crypto: arm/crct10dif-ce - cleanup and optimizations
authorEric Biggers <ebiggers@google.com>
Thu, 31 Jan 2019 04:42:41 +0000 (20:42 -0800)
committerHerbert Xu <herbert@gondor.apana.org.au>
Fri, 8 Feb 2019 07:29:48 +0000 (15:29 +0800)
The x86, arm, and arm64 asm implementations of crct10dif are very
difficult to understand partly because many of the comments, labels, and
macros are named incorrectly: the lengths mentioned are usually off by a
factor of two from the actual code.  Many other things are unnecessarily
convoluted as well, e.g. there are many more fold constants than
actually needed and some aren't fully reduced.

This series therefore cleans up all these implementations to be much
more maintainable.  I also made some small optimizations where I saw
opportunities, resulting in slightly better performance.

This patch cleans up the arm version.

(Also moved the constants to .rodata as suggested by Ard Biesheuvel.)

Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
arch/arm/crypto/crct10dif-ce-core.S
arch/arm/crypto/crct10dif-ce-glue.c

index d058fad..86be258 100644 (file)
@@ -2,12 +2,14 @@
 // Accelerated CRC-T10DIF using ARM NEON and Crypto Extensions instructions
 //
 // Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
+// Copyright (C) 2019 Google LLC <ebiggers@google.com>
 //
 // This program is free software; you can redistribute it and/or modify
 // it under the terms of the GNU General Public License version 2 as
 // published by the Free Software Foundation.
 //
 
+// Derived from the x86 version:
 //
 // Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
 //
 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 //
-//       Function API:
-//       UINT16 crc_t10dif_pcl(
-//               UINT16 init_crc, //initial CRC value, 16 bits
-//               const unsigned char *buf, //buffer pointer to calculate CRC on
-//               UINT64 len //buffer length in bytes (64-bit data)
-//       );
-//
 //       Reference paper titled "Fast CRC Computation for Generic
 //     Polynomials Using PCLMULQDQ Instruction"
 //       URL: http://www.intel.com/content/dam/www/public/us/en/documents
 //  /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
 //
-//
 
 #include <linux/linkage.h>
 #include <asm/assembler.h>
 #endif
 
        .text
+       .arch           armv7-a
        .fpu            crypto-neon-fp-armv8
 
-       arg1_low32      .req    r0
-       arg2            .req    r1
-       arg3            .req    r2
+       init_crc        .req    r0
+       buf             .req    r1
+       len             .req    r2
 
-       qzr             .req    q13
+       fold_consts_ptr .req    ip
 
        q0l             .req    d0
        q0h             .req    d1
        q6h             .req    d13
        q7l             .req    d14
        q7h             .req    d15
-
-ENTRY(crc_t10dif_pmull)
-       vmov.i8         qzr, #0                 // init zero register
-
-       // adjust the 16-bit initial_crc value, scale it to 32 bits
-       lsl             arg1_low32, arg1_low32, #16
-
-       // check if smaller than 256
-       cmp             arg3, #256
-
-       // for sizes less than 128, we can't fold 64B at a time...
-       blt             _less_than_128
-
-       // load the initial crc value
-       // crc value does not need to be byte-reflected, but it needs
-       // to be moved to the high part of the register.
-       // because data will be byte-reflected and will align with
-       // initial crc at correct place.
-       vmov            s0, arg1_low32          // initial crc
-       vext.8          q10, qzr, q0, #4
-
-       // receive the initial 64B data, xor the initial crc value
-       vld1.64         {q0-q1}, [arg2]!
-       vld1.64         {q2-q3}, [arg2]!
-       vld1.64         {q4-q5}, [arg2]!
-       vld1.64         {q6-q7}, [arg2]!
-CPU_LE(        vrev64.8        q0, q0                  )
-CPU_LE(        vrev64.8        q1, q1                  )
-CPU_LE(        vrev64.8        q2, q2                  )
-CPU_LE(        vrev64.8        q3, q3                  )
-CPU_LE(        vrev64.8        q4, q4                  )
-CPU_LE(        vrev64.8        q5, q5                  )
-CPU_LE(        vrev64.8        q6, q6                  )
-CPU_LE(        vrev64.8        q7, q7                  )
-
-       vswp            d0, d1
-       vswp            d2, d3
-       vswp            d4, d5
-       vswp            d6, d7
-       vswp            d8, d9
-       vswp            d10, d11
-       vswp            d12, d13
-       vswp            d14, d15
-
-       // XOR the initial_crc value
-       veor.8          q0, q0, q10
-
-       adr             ip, rk3
-       vld1.64         {q10}, [ip, :128]       // xmm10 has rk3 and rk4
-
-       //
-       // we subtract 256 instead of 128 to save one instruction from the loop
-       //
-       sub             arg3, arg3, #256
-
-       // at this section of the code, there is 64*x+y (0<=y<64) bytes of
-       // buffer. The _fold_64_B_loop will fold 64B at a time
-       // until we have 64+y Bytes of buffer
-
-
-       // fold 64B at a time. This section of the code folds 4 vector
-       // registers in parallel
-_fold_64_B_loop:
-
-       .macro          fold64, reg1, reg2
-       vld1.64         {q11-q12}, [arg2]!
-
-       vmull.p64       q8, \reg1\()h, d21
-       vmull.p64       \reg1, \reg1\()l, d20
-       vmull.p64       q9, \reg2\()h, d21
-       vmull.p64       \reg2, \reg2\()l, d20
-
-CPU_LE(        vrev64.8        q11, q11                )
-CPU_LE(        vrev64.8        q12, q12                )
-       vswp            d22, d23
-       vswp            d24, d25
+       q8l             .req    d16
+       q8h             .req    d17
+       q9l             .req    d18
+       q9h             .req    d19
+       q10l            .req    d20
+       q10h            .req    d21
+       q11l            .req    d22
+       q11h            .req    d23
+       q12l            .req    d24
+       q12h            .req    d25
+
+       FOLD_CONSTS     .req    q10
+       FOLD_CONST_L    .req    q10l
+       FOLD_CONST_H    .req    q10h
+
+       // Fold reg1, reg2 into the next 32 data bytes, storing the result back
+       // into reg1, reg2.
+       .macro          fold_32_bytes, reg1, reg2
+       vld1.64         {q11-q12}, [buf]!
+
+       vmull.p64       q8, \reg1\()h, FOLD_CONST_H
+       vmull.p64       \reg1, \reg1\()l, FOLD_CONST_L
+       vmull.p64       q9, \reg2\()h, FOLD_CONST_H
+       vmull.p64       \reg2, \reg2\()l, FOLD_CONST_L
+
+CPU_LE(        vrev64.8        q11, q11        )
+CPU_LE(        vrev64.8        q12, q12        )
+       vswp            q11l, q11h
+       vswp            q12l, q12h
 
        veor.8          \reg1, \reg1, q8
        veor.8          \reg2, \reg2, q9
@@ -185,229 +133,248 @@ CPU_LE( vrev64.8        q12, q12                )
        veor.8          \reg2, \reg2, q12
        .endm
 
-       fold64          q0, q1
-       fold64          q2, q3
-       fold64          q4, q5
-       fold64          q6, q7
-
-       subs            arg3, arg3, #128
-
-       // check if there is another 64B in the buffer to be able to fold
-       bge             _fold_64_B_loop
-
-       // at this point, the buffer pointer is pointing at the last y Bytes
-       // of the buffer the 64B of folded data is in 4 of the vector
-       // registers: v0, v1, v2, v3
-
-       // fold the 8 vector registers to 1 vector register with different
-       // constants
-
-       adr             ip, rk9
-       vld1.64         {q10}, [ip, :128]!
-
-       .macro          fold16, reg, rk
-       vmull.p64       q8, \reg\()l, d20
-       vmull.p64       \reg, \reg\()h, d21
-       .ifnb           \rk
-       vld1.64         {q10}, [ip, :128]!
+       // Fold src_reg into dst_reg, optionally loading the next fold constants
+       .macro          fold_16_bytes, src_reg, dst_reg, load_next_consts
+       vmull.p64       q8, \src_reg\()l, FOLD_CONST_L
+       vmull.p64       \src_reg, \src_reg\()h, FOLD_CONST_H
+       .ifnb           \load_next_consts
+       vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
        .endif
-       veor.8          q7, q7, q8
-       veor.8          q7, q7, \reg
+       veor.8          \dst_reg, \dst_reg, q8
+       veor.8          \dst_reg, \dst_reg, \src_reg
        .endm
 
-       fold16          q0, rk11
-       fold16          q1, rk13
-       fold16          q2, rk15
-       fold16          q3, rk17
-       fold16          q4, rk19
-       fold16          q5, rk1
-       fold16          q6
-
-       // instead of 64, we add 48 to the loop counter to save 1 instruction
-       // from the loop instead of a cmp instruction, we use the negative
-       // flag with the jl instruction
-       adds            arg3, arg3, #(128-16)
-       blt             _final_reduction_for_128
-
-       // now we have 16+y bytes left to reduce. 16 Bytes is in register v7
-       // and the rest is in memory. We can fold 16 bytes at a time if y>=16
-       // continue folding 16B at a time
-
-_16B_reduction_loop:
-       vmull.p64       q8, d14, d20
-       vmull.p64       q7, d15, d21
-       veor.8          q7, q7, q8
-
-       vld1.64         {q0}, [arg2]!
-CPU_LE(        vrev64.8        q0, q0          )
-       vswp            d0, d1
-       veor.8          q7, q7, q0
-       subs            arg3, arg3, #16
-
-       // instead of a cmp instruction, we utilize the flags with the
-       // jge instruction equivalent of: cmp arg3, 16-16
-       // check if there is any more 16B in the buffer to be able to fold
-       bge             _16B_reduction_loop
-
-       // now we have 16+z bytes left to reduce, where 0<= z < 16.
-       // first, we reduce the data in the xmm7 register
-
-_final_reduction_for_128:
-       // check if any more data to fold. If not, compute the CRC of
-       // the final 128 bits
-       adds            arg3, arg3, #16
-       beq             _128_done
-
-       // here we are getting data that is less than 16 bytes.
-       // since we know that there was data before the pointer, we can
-       // offset the input pointer before the actual point, to receive
-       // exactly 16 bytes. after that the registers need to be adjusted.
-_get_last_two_regs:
-       add             arg2, arg2, arg3
-       sub             arg2, arg2, #16
-       vld1.64         {q1}, [arg2]
-CPU_LE(        vrev64.8        q1, q1                  )
-       vswp            d2, d3
-
-       // get rid of the extra data that was loaded before
-       // load the shift constant
-       adr             ip, tbl_shf_table + 16
-       sub             ip, ip, arg3
-       vld1.8          {q0}, [ip]
-
-       // shift v2 to the left by arg3 bytes
-       vtbl.8          d4, {d14-d15}, d0
-       vtbl.8          d5, {d14-d15}, d1
-
-       // shift v7 to the right by 16-arg3 bytes
-       vmov.i8         q9, #0x80
-       veor.8          q0, q0, q9
-       vtbl.8          d18, {d14-d15}, d0
-       vtbl.8          d19, {d14-d15}, d1
-
-       // blend
-       vshr.s8         q0, q0, #7              // convert to 8-bit mask
-       vbsl.8          q0, q2, q1
-
-       // fold 16 Bytes
-       vmull.p64       q8, d18, d20
-       vmull.p64       q7, d19, d21
-       veor.8          q7, q7, q8
-       veor.8          q7, q7, q0
+       .macro          __adrl, out, sym
+       movw            \out, #:lower16:\sym
+       movt            \out, #:upper16:\sym
+       .endm
 
-_128_done:
-       // compute crc of a 128-bit value
-       vldr            d20, rk5
-       vldr            d21, rk6                // rk5 and rk6 in xmm10
+//
+// u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len);
+//
+// Assumes len >= 16.
+//
+ENTRY(crc_t10dif_pmull)
 
-       // 64b fold
-       vext.8          q0, qzr, q7, #8
-       vmull.p64       q7, d15, d20
+       // For sizes less than 256 bytes, we can't fold 128 bytes at a time.
+       cmp             len, #256
+       blt             .Lless_than_256_bytes
+
+       __adrl          fold_consts_ptr, .Lfold_across_128_bytes_consts
+
+       // Load the first 128 data bytes.  Byte swapping is necessary to make
+       // the bit order match the polynomial coefficient order.
+       vld1.64         {q0-q1}, [buf]!
+       vld1.64         {q2-q3}, [buf]!
+       vld1.64         {q4-q5}, [buf]!
+       vld1.64         {q6-q7}, [buf]!
+CPU_LE(        vrev64.8        q0, q0  )
+CPU_LE(        vrev64.8        q1, q1  )
+CPU_LE(        vrev64.8        q2, q2  )
+CPU_LE(        vrev64.8        q3, q3  )
+CPU_LE(        vrev64.8        q4, q4  )
+CPU_LE(        vrev64.8        q5, q5  )
+CPU_LE(        vrev64.8        q6, q6  )
+CPU_LE(        vrev64.8        q7, q7  )
+       vswp            q0l, q0h
+       vswp            q1l, q1h
+       vswp            q2l, q2h
+       vswp            q3l, q3h
+       vswp            q4l, q4h
+       vswp            q5l, q5h
+       vswp            q6l, q6h
+       vswp            q7l, q7h
+
+       // XOR the first 16 data *bits* with the initial CRC value.
+       vmov.i8         q8h, #0
+       vmov.u16        q8h[3], init_crc
+       veor            q0h, q0h, q8h
+
+       // Load the constants for folding across 128 bytes.
+       vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
+
+       // Subtract 128 for the 128 data bytes just consumed.  Subtract another
+       // 128 to simplify the termination condition of the following loop.
+       sub             len, len, #256
+
+       // While >= 128 data bytes remain (not counting q0-q7), fold the 128
+       // bytes q0-q7 into them, storing the result back into q0-q7.
+.Lfold_128_bytes_loop:
+       fold_32_bytes   q0, q1
+       fold_32_bytes   q2, q3
+       fold_32_bytes   q4, q5
+       fold_32_bytes   q6, q7
+       subs            len, len, #128
+       bge             .Lfold_128_bytes_loop
+
+       // Now fold the 112 bytes in q0-q6 into the 16 bytes in q7.
+
+       // Fold across 64 bytes.
+       vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
+       fold_16_bytes   q0, q4
+       fold_16_bytes   q1, q5
+       fold_16_bytes   q2, q6
+       fold_16_bytes   q3, q7, 1
+       // Fold across 32 bytes.
+       fold_16_bytes   q4, q6
+       fold_16_bytes   q5, q7, 1
+       // Fold across 16 bytes.
+       fold_16_bytes   q6, q7
+
+       // Add 128 to get the correct number of data bytes remaining in 0...127
+       // (not counting q7), following the previous extra subtraction by 128.
+       // Then subtract 16 to simplify the termination condition of the
+       // following loop.
+       adds            len, len, #(128-16)
+
+       // While >= 16 data bytes remain (not counting q7), fold the 16 bytes q7
+       // into them, storing the result back into q7.
+       blt             .Lfold_16_bytes_loop_done
+.Lfold_16_bytes_loop:
+       vmull.p64       q8, q7l, FOLD_CONST_L
+       vmull.p64       q7, q7h, FOLD_CONST_H
+       veor.8          q7, q7, q8
+       vld1.64         {q0}, [buf]!
+CPU_LE(        vrev64.8        q0, q0  )
+       vswp            q0l, q0h
        veor.8          q7, q7, q0
-
-       // 32b fold
-       vext.8          q0, q7, qzr, #12
-       vmov            s31, s3
-       vmull.p64       q0, d0, d21
-       veor.8          q7, q0, q7
-
-       // barrett reduction
-_barrett:
-       vldr            d20, rk7
-       vldr            d21, rk8
-
-       vmull.p64       q0, d15, d20
-       vext.8          q0, qzr, q0, #12
-       vmull.p64       q0, d1, d21
-       vext.8          q0, qzr, q0, #12
+       subs            len, len, #16
+       bge             .Lfold_16_bytes_loop
+
+.Lfold_16_bytes_loop_done:
+       // Add 16 to get the correct number of data bytes remaining in 0...15
+       // (not counting q7), following the previous extra subtraction by 16.
+       adds            len, len, #16
+       beq             .Lreduce_final_16_bytes
+
+.Lhandle_partial_segment:
+       // Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
+       // 16 bytes are in q7 and the rest are the remaining data in 'buf'.  To
+       // do this without needing a fold constant for each possible 'len',
+       // redivide the bytes into a first chunk of 'len' bytes and a second
+       // chunk of 16 bytes, then fold the first chunk into the second.
+
+       // q0 = last 16 original data bytes
+       add             buf, buf, len
+       sub             buf, buf, #16
+       vld1.64         {q0}, [buf]
+CPU_LE(        vrev64.8        q0, q0  )
+       vswp            q0l, q0h
+
+       // q1 = high order part of second chunk: q7 left-shifted by 'len' bytes.
+       __adrl          r3, .Lbyteshift_table + 16
+       sub             r3, r3, len
+       vld1.8          {q2}, [r3]
+       vtbl.8          q1l, {q7l-q7h}, q2l
+       vtbl.8          q1h, {q7l-q7h}, q2h
+
+       // q3 = first chunk: q7 right-shifted by '16-len' bytes.
+       vmov.i8         q3, #0x80
+       veor.8          q2, q2, q3
+       vtbl.8          q3l, {q7l-q7h}, q2l
+       vtbl.8          q3h, {q7l-q7h}, q2h
+
+       // Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
+       vshr.s8         q2, q2, #7
+
+       // q2 = second chunk: 'len' bytes from q0 (low-order bytes),
+       // then '16-len' bytes from q1 (high-order bytes).
+       vbsl.8          q2, q1, q0
+
+       // Fold the first chunk into the second chunk, storing the result in q7.
+       vmull.p64       q0, q3l, FOLD_CONST_L
+       vmull.p64       q7, q3h, FOLD_CONST_H
        veor.8          q7, q7, q0
-       vmov            r0, s29
-
-_cleanup:
-       // scale the result back to 16 bits
-       lsr             r0, r0, #16
+       veor.8          q7, q7, q2
+
+.Lreduce_final_16_bytes:
+       // Reduce the 128-bit value M(x), stored in q7, to the final 16-bit CRC.
+
+       // Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
+       vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
+
+       // Fold the high 64 bits into the low 64 bits, while also multiplying by
+       // x^64.  This produces a 128-bit value congruent to x^64 * M(x) and
+       // whose low 48 bits are 0.
+       vmull.p64       q0, q7h, FOLD_CONST_H   // high bits * x^48 * (x^80 mod G(x))
+       veor.8          q0h, q0h, q7l           // + low bits * x^64
+
+       // Fold the high 32 bits into the low 96 bits.  This produces a 96-bit
+       // value congruent to x^64 * M(x) and whose low 48 bits are 0.
+       vmov.i8         q1, #0
+       vmov            s4, s3                  // extract high 32 bits
+       vmov            s3, s5                  // zero high 32 bits
+       vmull.p64       q1, q1l, FOLD_CONST_L   // high 32 bits * x^48 * (x^48 mod G(x))
+       veor.8          q0, q0, q1              // + low bits
+
+       // Load G(x) and floor(x^48 / G(x)).
+       vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]
+
+       // Use Barrett reduction to compute the final CRC value.
+       vmull.p64       q1, q0h, FOLD_CONST_H   // high 32 bits * floor(x^48 / G(x))
+       vshr.u64        q1l, q1l, #32           // /= x^32
+       vmull.p64       q1, q1l, FOLD_CONST_L   // *= G(x)
+       vshr.u64        q0l, q0l, #48
+       veor.8          q0l, q0l, q1l           // + low 16 nonzero bits
+       // Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of q0.
+
+       vmov.u16        r0, q0l[0]
        bx              lr
 
-_less_than_128:
-       teq             arg3, #0
-       beq             _cleanup
+.Lless_than_256_bytes:
+       // Checksumming a buffer of length 16...255 bytes
 
-       vmov.i8         q0, #0
-       vmov            s3, arg1_low32          // get the initial crc value
+       __adrl          fold_consts_ptr, .Lfold_across_16_bytes_consts
 
-       vld1.64         {q7}, [arg2]!
-CPU_LE(        vrev64.8        q7, q7          )
-       vswp            d14, d15
-       veor.8          q7, q7, q0
+       // Load the first 16 data bytes.
+       vld1.64         {q7}, [buf]!
+CPU_LE(        vrev64.8        q7, q7  )
+       vswp            q7l, q7h
 
-       cmp             arg3, #16
-       beq             _128_done               // exactly 16 left
+       // XOR the first 16 data *bits* with the initial CRC value.
+       vmov.i8         q0h, #0
+       vmov.u16        q0h[3], init_crc
+       veor.8          q7h, q7h, q0h
 
-       // now if there is, load the constants
-       vldr            d20, rk1
-       vldr            d21, rk2                // rk1 and rk2 in xmm10
+       // Load the fold-across-16-bytes constants.
+       vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
 
-       // check if there is enough buffer to be able to fold 16B at a time
-       subs            arg3, arg3, #32
-       addlt           arg3, arg3, #16
-       blt             _get_last_two_regs
-       b               _16B_reduction_loop
+       cmp             len, #16
+       beq             .Lreduce_final_16_bytes         // len == 16
+       subs            len, len, #32
+       addlt           len, len, #16
+       blt             .Lhandle_partial_segment        // 17 <= len <= 31
+       b               .Lfold_16_bytes_loop            // 32 <= len <= 255
 ENDPROC(crc_t10dif_pmull)
 
-// precomputed constants
-// these constants are precomputed from the poly:
-// 0x8bb70000 (0x8bb7 scaled to 32 bits)
+       .section        ".rodata", "a"
        .align          4
-// Q = 0x18BB70000
-// rk1 = 2^(32*3) mod Q << 32
-// rk2 = 2^(32*5) mod Q << 32
-// rk3 = 2^(32*15) mod Q << 32
-// rk4 = 2^(32*17) mod Q << 32
-// rk5 = 2^(32*3) mod Q << 32
-// rk6 = 2^(32*2) mod Q << 32
-// rk7 = floor(2^64/Q)
-// rk8 = Q
-
-rk3:   .quad           0x9d9d000000000000
-rk4:   .quad           0x7cf5000000000000
-rk5:   .quad           0x2d56000000000000
-rk6:   .quad           0x1368000000000000
-rk7:   .quad           0x00000001f65a57f8
-rk8:   .quad           0x000000018bb70000
-rk9:   .quad           0xceae000000000000
-rk10:  .quad           0xbfd6000000000000
-rk11:  .quad           0x1e16000000000000
-rk12:  .quad           0x713c000000000000
-rk13:  .quad           0xf7f9000000000000
-rk14:  .quad           0x80a6000000000000
-rk15:  .quad           0x044c000000000000
-rk16:  .quad           0xe658000000000000
-rk17:  .quad           0xad18000000000000
-rk18:  .quad           0xa497000000000000
-rk19:  .quad           0x6ee3000000000000
-rk20:  .quad           0xe7b5000000000000
-rk1:   .quad           0x2d56000000000000
-rk2:   .quad           0x06df000000000000
-
-tbl_shf_table:
-// use these values for shift constants for the tbl/tbx instruction
-// different alignments result in values as shown:
-//     DDQ 0x008f8e8d8c8b8a898887868584838281 # shl 15 (16-1) / shr1
-//     DDQ 0x01008f8e8d8c8b8a8988878685848382 # shl 14 (16-3) / shr2
-//     DDQ 0x0201008f8e8d8c8b8a89888786858483 # shl 13 (16-4) / shr3
-//     DDQ 0x030201008f8e8d8c8b8a898887868584 # shl 12 (16-4) / shr4
-//     DDQ 0x04030201008f8e8d8c8b8a8988878685 # shl 11 (16-5) / shr5
-//     DDQ 0x0504030201008f8e8d8c8b8a89888786 # shl 10 (16-6) / shr6
-//     DDQ 0x060504030201008f8e8d8c8b8a898887 # shl 9  (16-7) / shr7
-//     DDQ 0x07060504030201008f8e8d8c8b8a8988 # shl 8  (16-8) / shr8
-//     DDQ 0x0807060504030201008f8e8d8c8b8a89 # shl 7  (16-9) / shr9
-//     DDQ 0x090807060504030201008f8e8d8c8b8a # shl 6  (16-10) / shr10
-//     DDQ 0x0a090807060504030201008f8e8d8c8b # shl 5  (16-11) / shr11
-//     DDQ 0x0b0a090807060504030201008f8e8d8c # shl 4  (16-12) / shr12
-//     DDQ 0x0c0b0a090807060504030201008f8e8d # shl 3  (16-13) / shr13
-//     DDQ 0x0d0c0b0a090807060504030201008f8e # shl 2  (16-14) / shr14
-//     DDQ 0x0e0d0c0b0a090807060504030201008f # shl 1  (16-15) / shr15
 
+// Fold constants precomputed from the polynomial 0x18bb7
+// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
+.Lfold_across_128_bytes_consts:
+       .quad           0x0000000000006123      // x^(8*128)    mod G(x)
+       .quad           0x0000000000002295      // x^(8*128+64) mod G(x)
+// .Lfold_across_64_bytes_consts:
+       .quad           0x0000000000001069      // x^(4*128)    mod G(x)
+       .quad           0x000000000000dd31      // x^(4*128+64) mod G(x)
+// .Lfold_across_32_bytes_consts:
+       .quad           0x000000000000857d      // x^(2*128)    mod G(x)
+       .quad           0x0000000000007acc      // x^(2*128+64) mod G(x)
+.Lfold_across_16_bytes_consts:
+       .quad           0x000000000000a010      // x^(1*128)    mod G(x)
+       .quad           0x0000000000001faa      // x^(1*128+64) mod G(x)
+// .Lfinal_fold_consts:
+       .quad           0x1368000000000000      // x^48 * (x^48 mod G(x))
+       .quad           0x2d56000000000000      // x^48 * (x^80 mod G(x))
+// .Lbarrett_reduction_consts:
+       .quad           0x0000000000018bb7      // G(x)
+       .quad           0x00000001f65a57f8      // floor(x^48 / G(x))
+
+// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
+// len] is the index vector to shift left by 'len' bytes, and is also {0x80,
+// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
+.Lbyteshift_table:
        .byte            0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
        .byte           0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
        .byte            0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7
index 14c19c7..3d6b800 100644 (file)
@@ -21,7 +21,7 @@
 
 #define CRC_T10DIF_PMULL_CHUNK_SIZE    16U
 
-asmlinkage u16 crc_t10dif_pmull(u16 init_crc, const u8 buf[], u32 len);
+asmlinkage u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len);
 
 static int crct10dif_init(struct shash_desc *desc)
 {