if (state->refs[i].id)
verbose(env, ",%d", state->refs[i].id);
}
+ if (state->in_callback_fn)
+ verbose(env, " cb");
+ if (state->in_async_callback_fn)
+ verbose(env, " async_cb");
verbose(env, "\n");
}
init_reg_state(env, state);
}
+/* Similar to push_stack(), but for async callbacks */
+static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
+ int insn_idx, int prev_insn_idx,
+ int subprog)
+{
+ struct bpf_verifier_stack_elem *elem;
+ struct bpf_func_state *frame;
+
+ elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
+ if (!elem)
+ goto err;
+
+ elem->insn_idx = insn_idx;
+ elem->prev_insn_idx = prev_insn_idx;
+ elem->next = env->head;
+ elem->log_pos = env->log.len_used;
+ env->head = elem;
+ env->stack_size++;
+ if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
+ verbose(env,
+ "The sequence of %d jumps is too complex for async cb.\n",
+ env->stack_size);
+ goto err;
+ }
+ /* Unlike push_stack() do not copy_verifier_state().
+ * The caller state doesn't matter.
+ * This is async callback. It starts in a fresh stack.
+ * Initialize it similar to do_check_common().
+ */
+ elem->st.branches = 1;
+ frame = kzalloc(sizeof(*frame), GFP_KERNEL);
+ if (!frame)
+ goto err;
+ init_func_state(env, frame,
+ BPF_MAIN_FUNC /* callsite */,
+ 0 /* frameno within this callchain */,
+ subprog /* subprog number within this prog */);
+ elem->st.frame[0] = frame;
+ return &elem->st;
+err:
+ free_verifier_state(env->cur_state, true);
+ env->cur_state = NULL;
+ /* pop all elements and return */
+ while (!pop_stack(env, NULL, NULL, false));
+ return NULL;
+}
+
+
enum reg_arg_type {
SRC_OP, /* register is used as source operand */
DST_OP, /* register is used as destination operand */
}
}
+ if (insn->code == (BPF_JMP | BPF_CALL) &&
+ insn->imm == BPF_FUNC_timer_set_callback) {
+ struct bpf_verifier_state *async_cb;
+
+ /* there is no real recursion here. timer callbacks are async */
+ async_cb = push_async_cb(env, env->subprog_info[subprog].start,
+ *insn_idx, subprog);
+ if (!async_cb)
+ return -EFAULT;
+ callee = async_cb->frame[0];
+ callee->async_entry_cnt = caller->async_entry_cnt + 1;
+
+ /* Convert bpf_timer_set_callback() args into timer callback args */
+ err = set_callee_state_cb(env, caller, callee, *insn_idx);
+ if (err)
+ return err;
+
+ clear_caller_saved_regs(env, caller->regs);
+ mark_reg_unknown(env, caller->regs, BPF_REG_0);
+ caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
+ /* continue with next insn after call */
+ return 0;
+ }
+
callee = kzalloc(sizeof(*callee), GFP_KERNEL);
if (!callee)
return -ENOMEM;
/* unused */
__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
+ callee->in_async_callback_fn = true;
return 0;
}
struct tnum range = tnum_range(0, 1);
enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
int err;
- const bool is_subprog = env->cur_state->frame[0]->subprogno;
+ struct bpf_func_state *frame = env->cur_state->frame[0];
+ const bool is_subprog = frame->subprogno;
/* LSM and struct_ops func-ptr's return type could be "void" */
if (!is_subprog &&
}
reg = cur_regs(env) + BPF_REG_0;
+
+ if (frame->in_async_callback_fn) {
+ /* enforce return zero from async callbacks like timer */
+ if (reg->type != SCALAR_VALUE) {
+ verbose(env, "In async callback the register R0 is not a known value (%s)\n",
+ reg_type_str[reg->type]);
+ return -EINVAL;
+ }
+
+ if (!tnum_in(tnum_const(0), reg->var_off)) {
+ verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
+ return -EINVAL;
+ }
+ return 0;
+ }
+
if (is_subprog) {
if (reg->type != SCALAR_VALUE) {
verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
return DONE_EXPLORING;
case BPF_CALL:
+ if (insns[t].imm == BPF_FUNC_timer_set_callback)
+ /* Mark this call insn to trigger is_state_visited() check
+ * before call itself is processed by __check_func_call().
+ * Otherwise new async state will be pushed for further
+ * exploration.
+ */
+ init_explored_state(env, t);
return visit_func_call_insn(t, insn_cnt, insns, env,
insns[t].src_reg == BPF_PSEUDO_CALL);
states_cnt++;
if (sl->state.insn_idx != insn_idx)
goto next;
+
if (sl->state.branches) {
- if (states_maybe_looping(&sl->state, cur) &&
- states_equal(env, &sl->state, cur)) {
+ struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
+
+ if (frame->in_async_callback_fn &&
+ frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
+ /* Different async_entry_cnt means that the verifier is
+ * processing another entry into async callback.
+ * Seeing the same state is not an indication of infinite
+ * loop or infinite recursion.
+ * But finding the same state doesn't mean that it's safe
+ * to stop processing the current state. The previous state
+ * hasn't yet reached bpf_exit, since state.branches > 0.
+ * Checking in_async_callback_fn alone is not enough either.
+ * Since the verifier still needs to catch infinite loops
+ * inside async callbacks.
+ */
+ } else if (states_maybe_looping(&sl->state, cur) &&
+ states_equal(env, &sl->state, cur)) {
verbose_linfo(env, insn_idx, "; ");
verbose(env, "infinite loop detected at insn %d\n", insn_idx);
return -EINVAL;