SPI operations have been initially described through macros implicitly
implying the use of a single SPI SDR bus. Macros for supporting dual and
quad I/O transfers have been added on top, generally inspired by vendor
naming, followed by DTR operations. Soon we might see octal
and even octal DTR operations as well (including the opcode byte).
Let's clarify what the macro really means by describing the expected bus
topology in the erase macro name.
Reviewed-by: Tudor Ambarus <tudor.ambarus@linaro.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int row = nanddev_pos_to_row(nand, pos);
- struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
+ struct spi_mem_op op = SPINAND_BLK_ERASE_1S_1S_0_OP(row);
return spi_mem_exec_op(spinand->spimem, &op);
}
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_DATA_IN(1, valptr, 1))
-#define SPINAND_BLK_ERASE_OP(addr) \
+#define SPINAND_BLK_ERASE_1S_1S_0_OP(addr) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \
SPI_MEM_OP_ADDR(3, addr, 1), \
SPI_MEM_OP_NO_DUMMY, \