Merge tag 'soc-fixes-5.14-2' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / kernel / irq / affinity.c
index 6fef480..4d89ad4 100644 (file)
@@ -7,6 +7,7 @@
 #include <linux/kernel.h>
 #include <linux/slab.h>
 #include <linux/cpu.h>
+#include <linux/sort.h>
 
 static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
                                unsigned int cpus_per_vec)
@@ -94,6 +95,155 @@ static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
        return nodes;
 }
 
+struct node_vectors {
+       unsigned id;
+
+       union {
+               unsigned nvectors;
+               unsigned ncpus;
+       };
+};
+
+static int ncpus_cmp_func(const void *l, const void *r)
+{
+       const struct node_vectors *ln = l;
+       const struct node_vectors *rn = r;
+
+       return ln->ncpus - rn->ncpus;
+}
+
+/*
+ * Allocate vector number for each node, so that for each node:
+ *
+ * 1) the allocated number is >= 1
+ *
+ * 2) the allocated numbver is <= active CPU number of this node
+ *
+ * The actual allocated total vectors may be less than @numvecs when
+ * active total CPU number is less than @numvecs.
+ *
+ * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
+ * for each node.
+ */
+static void alloc_nodes_vectors(unsigned int numvecs,
+                               cpumask_var_t *node_to_cpumask,
+                               const struct cpumask *cpu_mask,
+                               const nodemask_t nodemsk,
+                               struct cpumask *nmsk,
+                               struct node_vectors *node_vectors)
+{
+       unsigned n, remaining_ncpus = 0;
+
+       for (n = 0; n < nr_node_ids; n++) {
+               node_vectors[n].id = n;
+               node_vectors[n].ncpus = UINT_MAX;
+       }
+
+       for_each_node_mask(n, nodemsk) {
+               unsigned ncpus;
+
+               cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
+               ncpus = cpumask_weight(nmsk);
+
+               if (!ncpus)
+                       continue;
+               remaining_ncpus += ncpus;
+               node_vectors[n].ncpus = ncpus;
+       }
+
+       numvecs = min_t(unsigned, remaining_ncpus, numvecs);
+
+       sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]),
+            ncpus_cmp_func, NULL);
+
+       /*
+        * Allocate vectors for each node according to the ratio of this
+        * node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is
+        * bigger than number of active numa nodes. Always start the
+        * allocation from the node with minimized nr_cpus.
+        *
+        * This way guarantees that each active node gets allocated at
+        * least one vector, and the theory is simple: over-allocation
+        * is only done when this node is assigned by one vector, so
+        * other nodes will be allocated >= 1 vector, since 'numvecs' is
+        * bigger than number of numa nodes.
+        *
+        * One perfect invariant is that number of allocated vectors for
+        * each node is <= CPU count of this node:
+        *
+        * 1) suppose there are two nodes: A and B
+        *      ncpu(X) is CPU count of node X
+        *      vecs(X) is the vector count allocated to node X via this
+        *      algorithm
+        *
+        *      ncpu(A) <= ncpu(B)
+        *      ncpu(A) + ncpu(B) = N
+        *      vecs(A) + vecs(B) = V
+        *
+        *      vecs(A) = max(1, round_down(V * ncpu(A) / N))
+        *      vecs(B) = V - vecs(A)
+        *
+        *      both N and V are integer, and 2 <= V <= N, suppose
+        *      V = N - delta, and 0 <= delta <= N - 2
+        *
+        * 2) obviously vecs(A) <= ncpu(A) because:
+        *
+        *      if vecs(A) is 1, then vecs(A) <= ncpu(A) given
+        *      ncpu(A) >= 1
+        *
+        *      otherwise,
+        *              vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N
+        *
+        * 3) prove how vecs(B) <= ncpu(B):
+        *
+        *      if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be
+        *      over-allocated, so vecs(B) <= ncpu(B),
+        *
+        *      otherwise:
+        *
+        *      vecs(A) =
+        *              round_down(V * ncpu(A) / N) =
+        *              round_down((N - delta) * ncpu(A) / N) =
+        *              round_down((N * ncpu(A) - delta * ncpu(A)) / N)  >=
+        *              round_down((N * ncpu(A) - delta * N) / N)        =
+        *              cpu(A) - delta
+        *
+        *      then:
+        *
+        *      vecs(A) - V >= ncpu(A) - delta - V
+        *      =>
+        *      V - vecs(A) <= V + delta - ncpu(A)
+        *      =>
+        *      vecs(B) <= N - ncpu(A)
+        *      =>
+        *      vecs(B) <= cpu(B)
+        *
+        * For nodes >= 3, it can be thought as one node and another big
+        * node given that is exactly what this algorithm is implemented,
+        * and we always re-calculate 'remaining_ncpus' & 'numvecs', and
+        * finally for each node X: vecs(X) <= ncpu(X).
+        *
+        */
+       for (n = 0; n < nr_node_ids; n++) {
+               unsigned nvectors, ncpus;
+
+               if (node_vectors[n].ncpus == UINT_MAX)
+                       continue;
+
+               WARN_ON_ONCE(numvecs == 0);
+
+               ncpus = node_vectors[n].ncpus;
+               nvectors = max_t(unsigned, 1,
+                                numvecs * ncpus / remaining_ncpus);
+               WARN_ON_ONCE(nvectors > ncpus);
+
+               node_vectors[n].nvectors = nvectors;
+
+               remaining_ncpus -= ncpus;
+               numvecs -= nvectors;
+       }
+}
+
 static int __irq_build_affinity_masks(unsigned int startvec,
                                      unsigned int numvecs,
                                      unsigned int firstvec,
@@ -102,10 +252,11 @@ static int __irq_build_affinity_masks(unsigned int startvec,
                                      struct cpumask *nmsk,
                                      struct irq_affinity_desc *masks)
 {
-       unsigned int n, nodes, cpus_per_vec, extra_vecs, done = 0;
+       unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0;
        unsigned int last_affv = firstvec + numvecs;
        unsigned int curvec = startvec;
        nodemask_t nodemsk = NODE_MASK_NONE;
+       struct node_vectors *node_vectors;
 
        if (!cpumask_weight(cpu_mask))
                return 0;
@@ -126,42 +277,56 @@ static int __irq_build_affinity_masks(unsigned int startvec,
                return numvecs;
        }
 
-       for_each_node_mask(n, nodemsk) {
-               unsigned int ncpus, v, vecs_to_assign, vecs_per_node;
+       node_vectors = kcalloc(nr_node_ids,
+                              sizeof(struct node_vectors),
+                              GFP_KERNEL);
+       if (!node_vectors)
+               return -ENOMEM;
 
-               /* Spread the vectors per node */
-               vecs_per_node = (numvecs - (curvec - firstvec)) / nodes;
+       /* allocate vector number for each node */
+       alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
+                           nodemsk, nmsk, node_vectors);
 
-               /* Get the cpus on this node which are in the mask */
-               cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
+       for (i = 0; i < nr_node_ids; i++) {
+               unsigned int ncpus, v;
+               struct node_vectors *nv = &node_vectors[i];
+
+               if (nv->nvectors == UINT_MAX)
+                       continue;
 
-               /* Calculate the number of cpus per vector */
+               /* Get the cpus on this node which are in the mask */
+               cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
                ncpus = cpumask_weight(nmsk);
-               vecs_to_assign = min(vecs_per_node, ncpus);
+               if (!ncpus)
+                       continue;
+
+               WARN_ON_ONCE(nv->nvectors > ncpus);
 
                /* Account for rounding errors */
-               extra_vecs = ncpus - vecs_to_assign * (ncpus / vecs_to_assign);
+               extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors);
 
-               for (v = 0; curvec < last_affv && v < vecs_to_assign;
-                    curvec++, v++) {
-                       cpus_per_vec = ncpus / vecs_to_assign;
+               /* Spread allocated vectors on CPUs of the current node */
+               for (v = 0; v < nv->nvectors; v++, curvec++) {
+                       cpus_per_vec = ncpus / nv->nvectors;
 
                        /* Account for extra vectors to compensate rounding errors */
                        if (extra_vecs) {
                                cpus_per_vec++;
                                --extra_vecs;
                        }
+
+                       /*
+                        * wrapping has to be considered given 'startvec'
+                        * may start anywhere
+                        */
+                       if (curvec >= last_affv)
+                               curvec = firstvec;
                        irq_spread_init_one(&masks[curvec].mask, nmsk,
                                                cpus_per_vec);
                }
-
-               done += v;
-               if (done >= numvecs)
-                       break;
-               if (curvec >= last_affv)
-                       curvec = firstvec;
-               --nodes;
+               done += nv->nvectors;
        }
+       kfree(node_vectors);
        return done;
 }
 
@@ -174,7 +339,7 @@ static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
                                    unsigned int firstvec,
                                    struct irq_affinity_desc *masks)
 {
-       unsigned int curvec = startvec, nr_present, nr_others;
+       unsigned int curvec = startvec, nr_present = 0, nr_others = 0;
        cpumask_var_t *node_to_cpumask;
        cpumask_var_t nmsk, npresmsk;
        int ret = -ENOMEM;
@@ -189,15 +354,17 @@ static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
        if (!node_to_cpumask)
                goto fail_npresmsk;
 
-       ret = 0;
        /* Stabilize the cpumasks */
        get_online_cpus();
        build_node_to_cpumask(node_to_cpumask);
 
        /* Spread on present CPUs starting from affd->pre_vectors */
-       nr_present = __irq_build_affinity_masks(curvec, numvecs,
-                                               firstvec, node_to_cpumask,
-                                               cpu_present_mask, nmsk, masks);
+       ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
+                                        node_to_cpumask, cpu_present_mask,
+                                        nmsk, masks);
+       if (ret < 0)
+               goto fail_build_affinity;
+       nr_present = ret;
 
        /*
         * Spread on non present CPUs starting from the next vector to be
@@ -210,12 +377,16 @@ static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
        else
                curvec = firstvec + nr_present;
        cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
-       nr_others = __irq_build_affinity_masks(curvec, numvecs,
-                                              firstvec, node_to_cpumask,
-                                              npresmsk, nmsk, masks);
+       ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
+                                        node_to_cpumask, npresmsk, nmsk,
+                                        masks);
+       if (ret >= 0)
+               nr_others = ret;
+
+ fail_build_affinity:
        put_online_cpus();
 
-       if (nr_present < numvecs)
+       if (ret >= 0)
                WARN_ON(nr_present + nr_others < numvecs);
 
        free_node_to_cpumask(node_to_cpumask);
@@ -225,7 +396,7 @@ static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
 
  fail_nmsk:
        free_cpumask_var(nmsk);
-       return ret;
+       return ret < 0 ? ret : 0;
 }
 
 static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)