Merge tag 'amd-drm-next-5.15-2021-09-01' of https://gitlab.freedesktop.org/agd5f...
[linux-2.6-microblaze.git] / drivers / memory / emif.c
index f7825ee..762d0c0 100644 (file)
@@ -41,7 +41,6 @@
  * @node:                      node in the device list
  * @base:                      base address of memory-mapped IO registers.
  * @dev:                       device pointer.
- * @addressing                 table with addressing information from the spec
  * @regs_cache:                        An array of 'struct emif_regs' that stores
  *                             calculated register values for different
  *                             frequencies, to avoid re-calculating them on
@@ -61,7 +60,6 @@ struct emif_data {
        unsigned long                   irq_state;
        void __iomem                    *base;
        struct device                   *dev;
-       const struct lpddr2_addressing  *addressing;
        struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
        struct emif_regs                *curr_regs;
        struct emif_platform_data       *plat_data;
@@ -72,7 +70,6 @@ struct emif_data {
 static struct emif_data *emif1;
 static DEFINE_SPINLOCK(emif_lock);
 static unsigned long   irq_state;
-static u32             t_ck; /* DDR clock period in ps */
 static LIST_HEAD(device_list);
 
 #ifdef CONFIG_DEBUG_FS
@@ -169,15 +166,6 @@ static inline void __exit emif_debugfs_exit(struct emif_data *emif)
 }
 #endif
 
-/*
- * Calculate the period of DDR clock from frequency value
- */
-static void set_ddr_clk_period(u32 freq)
-{
-       /* Divide 10^12 by frequency to get period in ps */
-       t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
-}
-
 /*
  * Get bus width used by EMIF. Note that this may be different from the
  * bus width of the DDR devices used. For instance two 16-bit DDR devices
@@ -196,19 +184,6 @@ static u32 get_emif_bus_width(struct emif_data *emif)
        return width;
 }
 
-/*
- * Get the CL from SDRAM_CONFIG register
- */
-static u32 get_cl(struct emif_data *emif)
-{
-       u32             cl;
-       void __iomem    *base = emif->base;
-
-       cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
-
-       return cl;
-}
-
 static void set_lpmode(struct emif_data *emif, u8 lpmode)
 {
        u32 temp;
@@ -328,203 +303,6 @@ static const struct lpddr2_addressing *get_addressing_table(
        return &lpddr2_jedec_addressing_table[index];
 }
 
-/*
- * Find the the right timing table from the array of timing
- * tables of the device using DDR clock frequency
- */
-static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
-               u32 freq)
-{
-       u32                             i, min, max, freq_nearest;
-       const struct lpddr2_timings     *timings = NULL;
-       const struct lpddr2_timings     *timings_arr = emif->plat_data->timings;
-       struct                          device *dev = emif->dev;
-
-       /* Start with a very high frequency - 1GHz */
-       freq_nearest = 1000000000;
-
-       /*
-        * Find the timings table such that:
-        *  1. the frequency range covers the required frequency(safe) AND
-        *  2. the max_freq is closest to the required frequency(optimal)
-        */
-       for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
-               max = timings_arr[i].max_freq;
-               min = timings_arr[i].min_freq;
-               if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
-                       freq_nearest = max;
-                       timings = &timings_arr[i];
-               }
-       }
-
-       if (!timings)
-               dev_err(dev, "%s: couldn't find timings for - %dHz\n",
-                       __func__, freq);
-
-       dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
-               __func__, freq, freq_nearest);
-
-       return timings;
-}
-
-static u32 get_sdram_ref_ctrl_shdw(u32 freq,
-               const struct lpddr2_addressing *addressing)
-{
-       u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
-
-       /* Scale down frequency and t_refi to avoid overflow */
-       freq_khz = freq / 1000;
-       t_refi = addressing->tREFI_ns / 100;
-
-       /*
-        * refresh rate to be set is 'tREFI(in us) * freq in MHz
-        * division by 10000 to account for change in units
-        */
-       val = t_refi * freq_khz / 10000;
-       ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
-
-       return ref_ctrl_shdw;
-}
-
-static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
-               const struct lpddr2_min_tck *min_tck,
-               const struct lpddr2_addressing *addressing)
-{
-       u32 tim1 = 0, val = 0;
-
-       val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
-       tim1 |= val << T_WTR_SHIFT;
-
-       if (addressing->num_banks == B8)
-               val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
-       else
-               val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
-       tim1 |= (val - 1) << T_RRD_SHIFT;
-
-       val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
-       tim1 |= val << T_RC_SHIFT;
-
-       val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
-       tim1 |= (val - 1) << T_RAS_SHIFT;
-
-       val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
-       tim1 |= val << T_WR_SHIFT;
-
-       val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
-       tim1 |= val << T_RCD_SHIFT;
-
-       val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
-       tim1 |= val << T_RP_SHIFT;
-
-       return tim1;
-}
-
-static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
-               const struct lpddr2_min_tck *min_tck,
-               const struct lpddr2_addressing *addressing)
-{
-       u32 tim1 = 0, val = 0;
-
-       val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
-       tim1 = val << T_WTR_SHIFT;
-
-       /*
-        * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
-        * to tFAW for de-rating
-        */
-       if (addressing->num_banks == B8) {
-               val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
-       } else {
-               val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
-               val = max(min_tck->tRRD, val) - 1;
-       }
-       tim1 |= val << T_RRD_SHIFT;
-
-       val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
-       tim1 |= (val - 1) << T_RC_SHIFT;
-
-       val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
-       val = max(min_tck->tRASmin, val) - 1;
-       tim1 |= val << T_RAS_SHIFT;
-
-       val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
-       tim1 |= val << T_WR_SHIFT;
-
-       val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
-       tim1 |= (val - 1) << T_RCD_SHIFT;
-
-       val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
-       tim1 |= (val - 1) << T_RP_SHIFT;
-
-       return tim1;
-}
-
-static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
-               const struct lpddr2_min_tck *min_tck,
-               const struct lpddr2_addressing *addressing,
-               u32 type)
-{
-       u32 tim2 = 0, val = 0;
-
-       val = min_tck->tCKE - 1;
-       tim2 |= val << T_CKE_SHIFT;
-
-       val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
-       tim2 |= val << T_RTP_SHIFT;
-
-       /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
-       val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
-       tim2 |= val << T_XSNR_SHIFT;
-
-       /* XSRD same as XSNR for LPDDR2 */
-       tim2 |= val << T_XSRD_SHIFT;
-
-       val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
-       tim2 |= val << T_XP_SHIFT;
-
-       return tim2;
-}
-
-static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
-               const struct lpddr2_min_tck *min_tck,
-               const struct lpddr2_addressing *addressing,
-               u32 type, u32 ip_rev, u32 derated)
-{
-       u32 tim3 = 0, val = 0, t_dqsck;
-
-       val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
-       val = val > 0xF ? 0xF : val;
-       tim3 |= val << T_RAS_MAX_SHIFT;
-
-       val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
-       tim3 |= val << T_RFC_SHIFT;
-
-       t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
-               timings->tDQSCK_max_derated : timings->tDQSCK_max;
-       if (ip_rev == EMIF_4D5)
-               val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
-       else
-               val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
-
-       tim3 |= val << T_TDQSCKMAX_SHIFT;
-
-       val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
-       tim3 |= val << ZQ_ZQCS_SHIFT;
-
-       val = DIV_ROUND_UP(timings->tCKESR, t_ck);
-       val = max(min_tck->tCKESR, val) - 1;
-       tim3 |= val << T_CKESR_SHIFT;
-
-       if (ip_rev == EMIF_4D5) {
-               tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
-
-               val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
-               tim3 |= val << T_PDLL_UL_SHIFT;
-       }
-
-       return tim3;
-}
-
 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
                bool cs1_used, bool cal_resistors_per_cs)
 {
@@ -589,117 +367,6 @@ static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
        return alert;
 }
 
-static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
-{
-       u32 idle = 0, val = 0;
-
-       /*
-        * Maximum value in normal conditions and increased frequency
-        * when voltage is ramping
-        */
-       if (volt_ramp)
-               val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
-       else
-               val = 0x1FF;
-
-       /*
-        * READ_IDLE_CTRL register in EMIF4D has same offset and fields
-        * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
-        */
-       idle |= val << DLL_CALIB_INTERVAL_SHIFT;
-       idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
-
-       return idle;
-}
-
-static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
-{
-       u32 calib = 0, val = 0;
-
-       if (volt_ramp == DDR_VOLTAGE_RAMPING)
-               val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
-       else
-               val = 0; /* Disabled when voltage is stable */
-
-       calib |= val << DLL_CALIB_INTERVAL_SHIFT;
-       calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
-
-       return calib;
-}
-
-static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
-       u32 freq, u8 RL)
-{
-       u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
-
-       val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
-       phy |= val << READ_LATENCY_SHIFT_4D;
-
-       if (freq <= 100000000)
-               val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
-       else if (freq <= 200000000)
-               val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
-       else
-               val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
-
-       phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
-
-       return phy;
-}
-
-static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
-{
-       u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
-
-       /*
-        * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
-        * half-delay is not needed else set half-delay
-        */
-       if (freq >= 265000000 && freq < 267000000)
-               half_delay = 0;
-       else
-               half_delay = 1;
-
-       phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
-       phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
-                       t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
-
-       return phy;
-}
-
-static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
-{
-       u32 fifo_we_slave_ratio;
-
-       fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
-               EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
-
-       return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
-               fifo_we_slave_ratio << 22;
-}
-
-static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
-{
-       u32 fifo_we_slave_ratio;
-
-       fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
-               EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
-
-       return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
-               fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
-}
-
-static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
-{
-       u32 fifo_we_slave_ratio;
-
-       fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
-               EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
-
-       return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
-               fifo_we_slave_ratio << 13;
-}
-
 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
 {
        u32 pwr_mgmt_ctrl       = 0, timeout;
@@ -821,51 +488,6 @@ static void get_temperature_level(struct emif_data *emif)
                emif->temperature_level = temperature_level;
 }
 
-/*
- * Program EMIF shadow registers that are not dependent on temperature
- * or voltage
- */
-static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
-{
-       void __iomem    *base = emif->base;
-
-       writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
-       writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
-       writel(regs->pwr_mgmt_ctrl_shdw,
-              base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
-
-       /* Settings specific for EMIF4D5 */
-       if (emif->plat_data->ip_rev != EMIF_4D5)
-               return;
-       writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
-       writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
-       writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
-}
-
-/*
- * When voltage ramps dll calibration and forced read idle should
- * happen more often
- */
-static void setup_volt_sensitive_regs(struct emif_data *emif,
-               struct emif_regs *regs, u32 volt_state)
-{
-       u32             calib_ctrl;
-       void __iomem    *base = emif->base;
-
-       /*
-        * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
-        * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
-        * is an alias of the respective read_idle_ctrl_shdw_* (members of
-        * a union). So, the below code takes care of both cases
-        */
-       if (volt_state == DDR_VOLTAGE_RAMPING)
-               calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
-       else
-               calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
-
-       writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
-}
-
 /*
  * setup_temperature_sensitive_regs() - set the timings for temperature
  * sensitive registers. This happens once at initialisation time based
@@ -1508,7 +1130,6 @@ static int __init_or_module emif_probe(struct platform_device *pdev)
        }
 
        list_add(&emif->node, &device_list);
-       emif->addressing = get_addressing_table(emif->plat_data->device_info);
 
        /* Save pointers to each other in emif and device structures */
        emif->dev = &pdev->dev;
@@ -1563,305 +1184,6 @@ static void emif_shutdown(struct platform_device *pdev)
        disable_and_clear_all_interrupts(emif);
 }
 
-static int get_emif_reg_values(struct emif_data *emif, u32 freq,
-               struct emif_regs *regs)
-{
-       u32                             ip_rev, phy_type;
-       u32                             cl, type;
-       const struct lpddr2_timings     *timings;
-       const struct lpddr2_min_tck     *min_tck;
-       const struct ddr_device_info    *device_info;
-       const struct lpddr2_addressing  *addressing;
-       struct emif_data                *emif_for_calc;
-       struct device                   *dev;
-
-       dev = emif->dev;
-       /*
-        * If the devices on this EMIF instance is duplicate of EMIF1,
-        * use EMIF1 details for the calculation
-        */
-       emif_for_calc   = emif->duplicate ? emif1 : emif;
-       timings         = get_timings_table(emif_for_calc, freq);
-       addressing      = emif_for_calc->addressing;
-       if (!timings || !addressing) {
-               dev_err(dev, "%s: not enough data available for %dHz",
-                       __func__, freq);
-               return -1;
-       }
-
-       device_info     = emif_for_calc->plat_data->device_info;
-       type            = device_info->type;
-       ip_rev          = emif_for_calc->plat_data->ip_rev;
-       phy_type        = emif_for_calc->plat_data->phy_type;
-
-       min_tck         = emif_for_calc->plat_data->min_tck;
-
-       set_ddr_clk_period(freq);
-
-       regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
-       regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
-                       addressing);
-       regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
-                       addressing, type);
-       regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
-               addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
-
-       cl = get_cl(emif);
-
-       if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
-               regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
-                       timings, freq, cl);
-       } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
-               regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
-               regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
-               regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
-               regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
-       } else {
-               return -1;
-       }
-
-       /* Only timeout values in pwr_mgmt_ctrl_shdw register */
-       regs->pwr_mgmt_ctrl_shdw =
-               get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
-               (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
-
-       if (ip_rev & EMIF_4D) {
-               regs->read_idle_ctrl_shdw_normal =
-                       get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
-
-               regs->read_idle_ctrl_shdw_volt_ramp =
-                       get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
-       } else if (ip_rev & EMIF_4D5) {
-               regs->dll_calib_ctrl_shdw_normal =
-                       get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
-
-               regs->dll_calib_ctrl_shdw_volt_ramp =
-                       get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
-       }
-
-       if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
-               regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
-                       addressing);
-
-               regs->sdram_tim1_shdw_derated =
-                       get_sdram_tim_1_shdw_derated(timings, min_tck,
-                               addressing);
-
-               regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
-                       min_tck, addressing, type, ip_rev,
-                       EMIF_DERATED_TIMINGS);
-       }
-
-       regs->freq = freq;
-
-       return 0;
-}
-
-/*
- * get_regs() - gets the cached emif_regs structure for a given EMIF instance
- * given frequency(freq):
- *
- * As an optimisation, every EMIF instance other than EMIF1 shares the
- * register cache with EMIF1 if the devices connected on this instance
- * are same as that on EMIF1(indicated by the duplicate flag)
- *
- * If we do not have an entry corresponding to the frequency given, we
- * allocate a new entry and calculate the values
- *
- * Upon finding the right reg dump, save it in curr_regs. It can be
- * directly used for thermal de-rating and voltage ramping changes.
- */
-static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
-{
-       int                     i;
-       struct emif_regs        **regs_cache;
-       struct emif_regs        *regs = NULL;
-       struct device           *dev;
-
-       dev = emif->dev;
-       if (emif->curr_regs && emif->curr_regs->freq == freq) {
-               dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
-               return emif->curr_regs;
-       }
-
-       if (emif->duplicate)
-               regs_cache = emif1->regs_cache;
-       else
-               regs_cache = emif->regs_cache;
-
-       for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
-               if (regs_cache[i]->freq == freq) {
-                       regs = regs_cache[i];
-                       dev_dbg(dev,
-                               "%s: reg dump found in reg cache for %u Hz\n",
-                               __func__, freq);
-                       break;
-               }
-       }
-
-       /*
-        * If we don't have an entry for this frequency in the cache create one
-        * and calculate the values
-        */
-       if (!regs) {
-               regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
-               if (!regs)
-                       return NULL;
-
-               if (get_emif_reg_values(emif, freq, regs)) {
-                       devm_kfree(emif->dev, regs);
-                       return NULL;
-               }
-
-               /*
-                * Now look for an un-used entry in the cache and save the
-                * newly created struct. If there are no free entries
-                * over-write the last entry
-                */
-               for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
-                       ;
-
-               if (i >= EMIF_MAX_NUM_FREQUENCIES) {
-                       dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
-                               __func__);
-                       i = EMIF_MAX_NUM_FREQUENCIES - 1;
-                       devm_kfree(emif->dev, regs_cache[i]);
-               }
-               regs_cache[i] = regs;
-       }
-
-       return regs;
-}
-
-static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
-{
-       dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
-               volt_state);
-
-       if (!emif->curr_regs) {
-               dev_err(emif->dev,
-                       "%s: volt-notify before registers are ready: %d\n",
-                       __func__, volt_state);
-               return;
-       }
-
-       setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
-}
-
-/*
- * TODO: voltage notify handling should be hooked up to
- * regulator framework as soon as the necessary support
- * is available in mainline kernel. This function is un-used
- * right now.
- */
-static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
-{
-       struct emif_data *emif;
-
-       spin_lock_irqsave(&emif_lock, irq_state);
-
-       list_for_each_entry(emif, &device_list, node)
-               do_volt_notify_handling(emif, volt_state);
-       do_freq_update();
-
-       spin_unlock_irqrestore(&emif_lock, irq_state);
-}
-
-static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
-{
-       struct emif_regs *regs;
-
-       regs = get_regs(emif, new_freq);
-       if (!regs)
-               return;
-
-       emif->curr_regs = regs;
-
-       /*
-        * Update the shadow registers:
-        * Temperature and voltage-ramp sensitive settings are also configured
-        * in terms of DDR cycles. So, we need to update them too when there
-        * is a freq change
-        */
-       dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
-               __func__, new_freq);
-       setup_registers(emif, regs);
-       setup_temperature_sensitive_regs(emif, regs);
-       setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
-
-       /*
-        * Part of workaround for errata i728. See do_freq_update()
-        * for more details
-        */
-       if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
-               set_lpmode(emif, EMIF_LP_MODE_DISABLE);
-}
-
-/*
- * TODO: frequency notify handling should be hooked up to
- * clock framework as soon as the necessary support is
- * available in mainline kernel. This function is un-used
- * right now.
- */
-static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
-{
-       struct emif_data *emif;
-
-       /*
-        * NOTE: we are taking the spin-lock here and releases it
-        * only in post-notifier. This doesn't look good and
-        * Sparse complains about it, but this seems to be
-        * un-avoidable. We need to lock a sequence of events
-        * that is split between EMIF and clock framework.
-        *
-        * 1. EMIF driver updates EMIF timings in shadow registers in the
-        *    frequency pre-notify callback from clock framework
-        * 2. clock framework sets up the registers for the new frequency
-        * 3. clock framework initiates a hw-sequence that updates
-        *    the frequency EMIF timings synchronously.
-        *
-        * All these 3 steps should be performed as an atomic operation
-        * vis-a-vis similar sequence in the EMIF interrupt handler
-        * for temperature events. Otherwise, there could be race
-        * conditions that could result in incorrect EMIF timings for
-        * a given frequency
-        */
-       spin_lock_irqsave(&emif_lock, irq_state);
-
-       list_for_each_entry(emif, &device_list, node)
-               do_freq_pre_notify_handling(emif, new_freq);
-}
-
-static void do_freq_post_notify_handling(struct emif_data *emif)
-{
-       /*
-        * Part of workaround for errata i728. See do_freq_update()
-        * for more details
-        */
-       if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
-               set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
-}
-
-/*
- * TODO: frequency notify handling should be hooked up to
- * clock framework as soon as the necessary support is
- * available in mainline kernel. This function is un-used
- * right now.
- */
-static void __attribute__((unused)) freq_post_notify_handling(void)
-{
-       struct emif_data *emif;
-
-       list_for_each_entry(emif, &device_list, node)
-               do_freq_post_notify_handling(emif);
-
-       /*
-        * Lock is done in pre-notify handler. See freq_pre_notify_handling()
-        * for more details
-        */
-       spin_unlock_irqrestore(&emif_lock, irq_state);
-}
-
 #if defined(CONFIG_OF)
 static const struct of_device_id emif_of_match[] = {
                { .compatible = "ti,emif-4d" },