docs: move x86 documentation into Documentation/arch/
[linux-2.6-microblaze.git] / Documentation / x86 / sva.rst
diff --git a/Documentation/x86/sva.rst b/Documentation/x86/sva.rst
deleted file mode 100644 (file)
index 2e9b8b0..0000000
+++ /dev/null
@@ -1,286 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0
-
-===========================================
-Shared Virtual Addressing (SVA) with ENQCMD
-===========================================
-
-Background
-==========
-
-Shared Virtual Addressing (SVA) allows the processor and device to use the
-same virtual addresses avoiding the need for software to translate virtual
-addresses to physical addresses. SVA is what PCIe calls Shared Virtual
-Memory (SVM).
-
-In addition to the convenience of using application virtual addresses
-by the device, it also doesn't require pinning pages for DMA.
-PCIe Address Translation Services (ATS) along with Page Request Interface
-(PRI) allow devices to function much the same way as the CPU handling
-application page-faults. For more information please refer to the PCIe
-specification Chapter 10: ATS Specification.
-
-Use of SVA requires IOMMU support in the platform. IOMMU is also
-required to support the PCIe features ATS and PRI. ATS allows devices
-to cache translations for virtual addresses. The IOMMU driver uses the
-mmu_notifier() support to keep the device TLB cache and the CPU cache in
-sync. When an ATS lookup fails for a virtual address, the device should
-use the PRI in order to request the virtual address to be paged into the
-CPU page tables. The device must use ATS again in order the fetch the
-translation before use.
-
-Shared Hardware Workqueues
-==========================
-
-Unlike Single Root I/O Virtualization (SR-IOV), Scalable IOV (SIOV) permits
-the use of Shared Work Queues (SWQ) by both applications and Virtual
-Machines (VM's). This allows better hardware utilization vs. hard
-partitioning resources that could result in under utilization. In order to
-allow the hardware to distinguish the context for which work is being
-executed in the hardware by SWQ interface, SIOV uses Process Address Space
-ID (PASID), which is a 20-bit number defined by the PCIe SIG.
-
-PASID value is encoded in all transactions from the device. This allows the
-IOMMU to track I/O on a per-PASID granularity in addition to using the PCIe
-Resource Identifier (RID) which is the Bus/Device/Function.
-
-
-ENQCMD
-======
-
-ENQCMD is a new instruction on Intel platforms that atomically submits a
-work descriptor to a device. The descriptor includes the operation to be
-performed, virtual addresses of all parameters, virtual address of a completion
-record, and the PASID (process address space ID) of the current process.
-
-ENQCMD works with non-posted semantics and carries a status back if the
-command was accepted by hardware. This allows the submitter to know if the
-submission needs to be retried or other device specific mechanisms to
-implement fairness or ensure forward progress should be provided.
-
-ENQCMD is the glue that ensures applications can directly submit commands
-to the hardware and also permits hardware to be aware of application context
-to perform I/O operations via use of PASID.
-
-Process Address Space Tagging
-=============================
-
-A new thread-scoped MSR (IA32_PASID) provides the connection between
-user processes and the rest of the hardware. When an application first
-accesses an SVA-capable device, this MSR is initialized with a newly
-allocated PASID. The driver for the device calls an IOMMU-specific API
-that sets up the routing for DMA and page-requests.
-
-For example, the Intel Data Streaming Accelerator (DSA) uses
-iommu_sva_bind_device(), which will do the following:
-
-- Allocate the PASID, and program the process page-table (%cr3 register) in the
-  PASID context entries.
-- Register for mmu_notifier() to track any page-table invalidations to keep
-  the device TLB in sync. For example, when a page-table entry is invalidated,
-  the IOMMU propagates the invalidation to the device TLB. This will force any
-  future access by the device to this virtual address to participate in
-  ATS. If the IOMMU responds with proper response that a page is not
-  present, the device would request the page to be paged in via the PCIe PRI
-  protocol before performing I/O.
-
-This MSR is managed with the XSAVE feature set as "supervisor state" to
-ensure the MSR is updated during context switch.
-
-PASID Management
-================
-
-The kernel must allocate a PASID on behalf of each process which will use
-ENQCMD and program it into the new MSR to communicate the process identity to
-platform hardware.  ENQCMD uses the PASID stored in this MSR to tag requests
-from this process.  When a user submits a work descriptor to a device using the
-ENQCMD instruction, the PASID field in the descriptor is auto-filled with the
-value from MSR_IA32_PASID. Requests for DMA from the device are also tagged
-with the same PASID. The platform IOMMU uses the PASID in the transaction to
-perform address translation. The IOMMU APIs setup the corresponding PASID
-entry in IOMMU with the process address used by the CPU (e.g. %cr3 register in
-x86).
-
-The MSR must be configured on each logical CPU before any application
-thread can interact with a device. Threads that belong to the same
-process share the same page tables, thus the same MSR value.
-
-PASID Life Cycle Management
-===========================
-
-PASID is initialized as INVALID_IOASID (-1) when a process is created.
-
-Only processes that access SVA-capable devices need to have a PASID
-allocated. This allocation happens when a process opens/binds an SVA-capable
-device but finds no PASID for this process. Subsequent binds of the same, or
-other devices will share the same PASID.
-
-Although the PASID is allocated to the process by opening a device,
-it is not active in any of the threads of that process. It's loaded to the
-IA32_PASID MSR lazily when a thread tries to submit a work descriptor
-to a device using the ENQCMD.
-
-That first access will trigger a #GP fault because the IA32_PASID MSR
-has not been initialized with the PASID value assigned to the process
-when the device was opened. The Linux #GP handler notes that a PASID has
-been allocated for the process, and so initializes the IA32_PASID MSR
-and returns so that the ENQCMD instruction is re-executed.
-
-On fork(2) or exec(2) the PASID is removed from the process as it no
-longer has the same address space that it had when the device was opened.
-
-On clone(2) the new task shares the same address space, so will be
-able to use the PASID allocated to the process. The IA32_PASID is not
-preemptively initialized as the PASID value might not be allocated yet or
-the kernel does not know whether this thread is going to access the device
-and the cleared IA32_PASID MSR reduces context switch overhead by xstate
-init optimization. Since #GP faults have to be handled on any threads that
-were created before the PASID was assigned to the mm of the process, newly
-created threads might as well be treated in a consistent way.
-
-Due to complexity of freeing the PASID and clearing all IA32_PASID MSRs in
-all threads in unbind, free the PASID lazily only on mm exit.
-
-If a process does a close(2) of the device file descriptor and munmap(2)
-of the device MMIO portal, then the driver will unbind the device. The
-PASID is still marked VALID in the PASID_MSR for any threads in the
-process that accessed the device. But this is harmless as without the
-MMIO portal they cannot submit new work to the device.
-
-Relationships
-=============
-
- * Each process has many threads, but only one PASID.
- * Devices have a limited number (~10's to 1000's) of hardware workqueues.
-   The device driver manages allocating hardware workqueues.
- * A single mmap() maps a single hardware workqueue as a "portal" and
-   each portal maps down to a single workqueue.
- * For each device with which a process interacts, there must be
-   one or more mmap()'d portals.
- * Many threads within a process can share a single portal to access
-   a single device.
- * Multiple processes can separately mmap() the same portal, in
-   which case they still share one device hardware workqueue.
- * The single process-wide PASID is used by all threads to interact
-   with all devices.  There is not, for instance, a PASID for each
-   thread or each thread<->device pair.
-
-FAQ
-===
-
-* What is SVA/SVM?
-
-Shared Virtual Addressing (SVA) permits I/O hardware and the processor to
-work in the same address space, i.e., to share it. Some call it Shared
-Virtual Memory (SVM), but Linux community wanted to avoid confusing it with
-POSIX Shared Memory and Secure Virtual Machines which were terms already in
-circulation.
-
-* What is a PASID?
-
-A Process Address Space ID (PASID) is a PCIe-defined Transaction Layer Packet
-(TLP) prefix. A PASID is a 20-bit number allocated and managed by the OS.
-PASID is included in all transactions between the platform and the device.
-
-* How are shared workqueues different?
-
-Traditionally, in order for userspace applications to interact with hardware,
-there is a separate hardware instance required per process. For example,
-consider doorbells as a mechanism of informing hardware about work to process.
-Each doorbell is required to be spaced 4k (or page-size) apart for process
-isolation. This requires hardware to provision that space and reserve it in
-MMIO. This doesn't scale as the number of threads becomes quite large. The
-hardware also manages the queue depth for Shared Work Queues (SWQ), and
-consumers don't need to track queue depth. If there is no space to accept
-a command, the device will return an error indicating retry.
-
-A user should check Deferrable Memory Write (DMWr) capability on the device
-and only submits ENQCMD when the device supports it. In the new DMWr PCIe
-terminology, devices need to support DMWr completer capability. In addition,
-it requires all switch ports to support DMWr routing and must be enabled by
-the PCIe subsystem, much like how PCIe atomic operations are managed for
-instance.
-
-SWQ allows hardware to provision just a single address in the device. When
-used with ENQCMD to submit work, the device can distinguish the process
-submitting the work since it will include the PASID assigned to that
-process. This helps the device scale to a large number of processes.
-
-* Is this the same as a user space device driver?
-
-Communicating with the device via the shared workqueue is much simpler
-than a full blown user space driver. The kernel driver does all the
-initialization of the hardware. User space only needs to worry about
-submitting work and processing completions.
-
-* Is this the same as SR-IOV?
-
-Single Root I/O Virtualization (SR-IOV) focuses on providing independent
-hardware interfaces for virtualizing hardware. Hence, it's required to be
-almost fully functional interface to software supporting the traditional
-BARs, space for interrupts via MSI-X, its own register layout.
-Virtual Functions (VFs) are assisted by the Physical Function (PF)
-driver.
-
-Scalable I/O Virtualization builds on the PASID concept to create device
-instances for virtualization. SIOV requires host software to assist in
-creating virtual devices; each virtual device is represented by a PASID
-along with the bus/device/function of the device.  This allows device
-hardware to optimize device resource creation and can grow dynamically on
-demand. SR-IOV creation and management is very static in nature. Consult
-references below for more details.
-
-* Why not just create a virtual function for each app?
-
-Creating PCIe SR-IOV type Virtual Functions (VF) is expensive. VFs require
-duplicated hardware for PCI config space and interrupts such as MSI-X.
-Resources such as interrupts have to be hard partitioned between VFs at
-creation time, and cannot scale dynamically on demand. The VFs are not
-completely independent from the Physical Function (PF). Most VFs require
-some communication and assistance from the PF driver. SIOV, in contrast,
-creates a software-defined device where all the configuration and control
-aspects are mediated via the slow path. The work submission and completion
-happen without any mediation.
-
-* Does this support virtualization?
-
-ENQCMD can be used from within a guest VM. In these cases, the VMM helps
-with setting up a translation table to translate from Guest PASID to Host
-PASID. Please consult the ENQCMD instruction set reference for more
-details.
-
-* Does memory need to be pinned?
-
-When devices support SVA along with platform hardware such as IOMMU
-supporting such devices, there is no need to pin memory for DMA purposes.
-Devices that support SVA also support other PCIe features that remove the
-pinning requirement for memory.
-
-Device TLB support - Device requests the IOMMU to lookup an address before
-use via Address Translation Service (ATS) requests.  If the mapping exists
-but there is no page allocated by the OS, IOMMU hardware returns that no
-mapping exists.
-
-Device requests the virtual address to be mapped via Page Request
-Interface (PRI). Once the OS has successfully completed the mapping, it
-returns the response back to the device. The device requests again for
-a translation and continues.
-
-IOMMU works with the OS in managing consistency of page-tables with the
-device. When removing pages, it interacts with the device to remove any
-device TLB entry that might have been cached before removing the mappings from
-the OS.
-
-References
-==========
-
-VT-D:
-https://01.org/blogs/ashokraj/2018/recent-enhancements-intel-virtualization-technology-directed-i/o-intel-vt-d
-
-SIOV:
-https://01.org/blogs/2019/assignable-interfaces-intel-scalable-i/o-virtualization-linux
-
-ENQCMD in ISE:
-https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
-
-DSA spec:
-https://software.intel.com/sites/default/files/341204-intel-data-streaming-accelerator-spec.pdf