Merge tag 'pm-4.19-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122                                 unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134
135 static bool largepages_enabled = true;
136
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142
143 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144                 unsigned long start, unsigned long end)
145 {
146 }
147
148 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
149 {
150         if (pfn_valid(pfn))
151                 return PageReserved(pfn_to_page(pfn));
152
153         return true;
154 }
155
156 /*
157  * Switches to specified vcpu, until a matching vcpu_put()
158  */
159 void vcpu_load(struct kvm_vcpu *vcpu)
160 {
161         int cpu = get_cpu();
162         preempt_notifier_register(&vcpu->preempt_notifier);
163         kvm_arch_vcpu_load(vcpu, cpu);
164         put_cpu();
165 }
166 EXPORT_SYMBOL_GPL(vcpu_load);
167
168 void vcpu_put(struct kvm_vcpu *vcpu)
169 {
170         preempt_disable();
171         kvm_arch_vcpu_put(vcpu);
172         preempt_notifier_unregister(&vcpu->preempt_notifier);
173         preempt_enable();
174 }
175 EXPORT_SYMBOL_GPL(vcpu_put);
176
177 /* TODO: merge with kvm_arch_vcpu_should_kick */
178 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
179 {
180         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
181
182         /*
183          * We need to wait for the VCPU to reenable interrupts and get out of
184          * READING_SHADOW_PAGE_TABLES mode.
185          */
186         if (req & KVM_REQUEST_WAIT)
187                 return mode != OUTSIDE_GUEST_MODE;
188
189         /*
190          * Need to kick a running VCPU, but otherwise there is nothing to do.
191          */
192         return mode == IN_GUEST_MODE;
193 }
194
195 static void ack_flush(void *_completed)
196 {
197 }
198
199 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
200 {
201         if (unlikely(!cpus))
202                 cpus = cpu_online_mask;
203
204         if (cpumask_empty(cpus))
205                 return false;
206
207         smp_call_function_many(cpus, ack_flush, NULL, wait);
208         return true;
209 }
210
211 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
212                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
213 {
214         int i, cpu, me;
215         struct kvm_vcpu *vcpu;
216         bool called;
217
218         me = get_cpu();
219
220         kvm_for_each_vcpu(i, vcpu, kvm) {
221                 if (!test_bit(i, vcpu_bitmap))
222                         continue;
223
224                 kvm_make_request(req, vcpu);
225                 cpu = vcpu->cpu;
226
227                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
228                         continue;
229
230                 if (tmp != NULL && cpu != -1 && cpu != me &&
231                     kvm_request_needs_ipi(vcpu, req))
232                         __cpumask_set_cpu(cpu, tmp);
233         }
234
235         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
236         put_cpu();
237
238         return called;
239 }
240
241 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
242 {
243         cpumask_var_t cpus;
244         bool called;
245         static unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)]
246                 = {[0 ... BITS_TO_LONGS(KVM_MAX_VCPUS)-1] = ULONG_MAX};
247
248         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
249
250         called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap, cpus);
251
252         free_cpumask_var(cpus);
253         return called;
254 }
255
256 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
257 void kvm_flush_remote_tlbs(struct kvm *kvm)
258 {
259         /*
260          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
261          * kvm_make_all_cpus_request.
262          */
263         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
264
265         /*
266          * We want to publish modifications to the page tables before reading
267          * mode. Pairs with a memory barrier in arch-specific code.
268          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
269          * and smp_mb in walk_shadow_page_lockless_begin/end.
270          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
271          *
272          * There is already an smp_mb__after_atomic() before
273          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
274          * barrier here.
275          */
276         if (!kvm_arch_flush_remote_tlb(kvm)
277             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
278                 ++kvm->stat.remote_tlb_flush;
279         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
280 }
281 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
282 #endif
283
284 void kvm_reload_remote_mmus(struct kvm *kvm)
285 {
286         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
287 }
288
289 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
290 {
291         struct page *page;
292         int r;
293
294         mutex_init(&vcpu->mutex);
295         vcpu->cpu = -1;
296         vcpu->kvm = kvm;
297         vcpu->vcpu_id = id;
298         vcpu->pid = NULL;
299         init_swait_queue_head(&vcpu->wq);
300         kvm_async_pf_vcpu_init(vcpu);
301
302         vcpu->pre_pcpu = -1;
303         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
304
305         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
306         if (!page) {
307                 r = -ENOMEM;
308                 goto fail;
309         }
310         vcpu->run = page_address(page);
311
312         kvm_vcpu_set_in_spin_loop(vcpu, false);
313         kvm_vcpu_set_dy_eligible(vcpu, false);
314         vcpu->preempted = false;
315
316         r = kvm_arch_vcpu_init(vcpu);
317         if (r < 0)
318                 goto fail_free_run;
319         return 0;
320
321 fail_free_run:
322         free_page((unsigned long)vcpu->run);
323 fail:
324         return r;
325 }
326 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
327
328 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
329 {
330         /*
331          * no need for rcu_read_lock as VCPU_RUN is the only place that
332          * will change the vcpu->pid pointer and on uninit all file
333          * descriptors are already gone.
334          */
335         put_pid(rcu_dereference_protected(vcpu->pid, 1));
336         kvm_arch_vcpu_uninit(vcpu);
337         free_page((unsigned long)vcpu->run);
338 }
339 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
340
341 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
342 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
343 {
344         return container_of(mn, struct kvm, mmu_notifier);
345 }
346
347 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
348                                         struct mm_struct *mm,
349                                         unsigned long address,
350                                         pte_t pte)
351 {
352         struct kvm *kvm = mmu_notifier_to_kvm(mn);
353         int idx;
354
355         idx = srcu_read_lock(&kvm->srcu);
356         spin_lock(&kvm->mmu_lock);
357         kvm->mmu_notifier_seq++;
358         kvm_set_spte_hva(kvm, address, pte);
359         spin_unlock(&kvm->mmu_lock);
360         srcu_read_unlock(&kvm->srcu, idx);
361 }
362
363 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
364                                                     struct mm_struct *mm,
365                                                     unsigned long start,
366                                                     unsigned long end)
367 {
368         struct kvm *kvm = mmu_notifier_to_kvm(mn);
369         int need_tlb_flush = 0, idx;
370
371         idx = srcu_read_lock(&kvm->srcu);
372         spin_lock(&kvm->mmu_lock);
373         /*
374          * The count increase must become visible at unlock time as no
375          * spte can be established without taking the mmu_lock and
376          * count is also read inside the mmu_lock critical section.
377          */
378         kvm->mmu_notifier_count++;
379         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
380         need_tlb_flush |= kvm->tlbs_dirty;
381         /* we've to flush the tlb before the pages can be freed */
382         if (need_tlb_flush)
383                 kvm_flush_remote_tlbs(kvm);
384
385         spin_unlock(&kvm->mmu_lock);
386
387         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
388
389         srcu_read_unlock(&kvm->srcu, idx);
390 }
391
392 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
393                                                   struct mm_struct *mm,
394                                                   unsigned long start,
395                                                   unsigned long end)
396 {
397         struct kvm *kvm = mmu_notifier_to_kvm(mn);
398
399         spin_lock(&kvm->mmu_lock);
400         /*
401          * This sequence increase will notify the kvm page fault that
402          * the page that is going to be mapped in the spte could have
403          * been freed.
404          */
405         kvm->mmu_notifier_seq++;
406         smp_wmb();
407         /*
408          * The above sequence increase must be visible before the
409          * below count decrease, which is ensured by the smp_wmb above
410          * in conjunction with the smp_rmb in mmu_notifier_retry().
411          */
412         kvm->mmu_notifier_count--;
413         spin_unlock(&kvm->mmu_lock);
414
415         BUG_ON(kvm->mmu_notifier_count < 0);
416 }
417
418 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
419                                               struct mm_struct *mm,
420                                               unsigned long start,
421                                               unsigned long end)
422 {
423         struct kvm *kvm = mmu_notifier_to_kvm(mn);
424         int young, idx;
425
426         idx = srcu_read_lock(&kvm->srcu);
427         spin_lock(&kvm->mmu_lock);
428
429         young = kvm_age_hva(kvm, start, end);
430         if (young)
431                 kvm_flush_remote_tlbs(kvm);
432
433         spin_unlock(&kvm->mmu_lock);
434         srcu_read_unlock(&kvm->srcu, idx);
435
436         return young;
437 }
438
439 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
440                                         struct mm_struct *mm,
441                                         unsigned long start,
442                                         unsigned long end)
443 {
444         struct kvm *kvm = mmu_notifier_to_kvm(mn);
445         int young, idx;
446
447         idx = srcu_read_lock(&kvm->srcu);
448         spin_lock(&kvm->mmu_lock);
449         /*
450          * Even though we do not flush TLB, this will still adversely
451          * affect performance on pre-Haswell Intel EPT, where there is
452          * no EPT Access Bit to clear so that we have to tear down EPT
453          * tables instead. If we find this unacceptable, we can always
454          * add a parameter to kvm_age_hva so that it effectively doesn't
455          * do anything on clear_young.
456          *
457          * Also note that currently we never issue secondary TLB flushes
458          * from clear_young, leaving this job up to the regular system
459          * cadence. If we find this inaccurate, we might come up with a
460          * more sophisticated heuristic later.
461          */
462         young = kvm_age_hva(kvm, start, end);
463         spin_unlock(&kvm->mmu_lock);
464         srcu_read_unlock(&kvm->srcu, idx);
465
466         return young;
467 }
468
469 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
470                                        struct mm_struct *mm,
471                                        unsigned long address)
472 {
473         struct kvm *kvm = mmu_notifier_to_kvm(mn);
474         int young, idx;
475
476         idx = srcu_read_lock(&kvm->srcu);
477         spin_lock(&kvm->mmu_lock);
478         young = kvm_test_age_hva(kvm, address);
479         spin_unlock(&kvm->mmu_lock);
480         srcu_read_unlock(&kvm->srcu, idx);
481
482         return young;
483 }
484
485 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
486                                      struct mm_struct *mm)
487 {
488         struct kvm *kvm = mmu_notifier_to_kvm(mn);
489         int idx;
490
491         idx = srcu_read_lock(&kvm->srcu);
492         kvm_arch_flush_shadow_all(kvm);
493         srcu_read_unlock(&kvm->srcu, idx);
494 }
495
496 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
497         .flags                  = MMU_INVALIDATE_DOES_NOT_BLOCK,
498         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
499         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
500         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
501         .clear_young            = kvm_mmu_notifier_clear_young,
502         .test_young             = kvm_mmu_notifier_test_young,
503         .change_pte             = kvm_mmu_notifier_change_pte,
504         .release                = kvm_mmu_notifier_release,
505 };
506
507 static int kvm_init_mmu_notifier(struct kvm *kvm)
508 {
509         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
510         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
511 }
512
513 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
514
515 static int kvm_init_mmu_notifier(struct kvm *kvm)
516 {
517         return 0;
518 }
519
520 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
521
522 static struct kvm_memslots *kvm_alloc_memslots(void)
523 {
524         int i;
525         struct kvm_memslots *slots;
526
527         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
528         if (!slots)
529                 return NULL;
530
531         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
532                 slots->id_to_index[i] = slots->memslots[i].id = i;
533
534         return slots;
535 }
536
537 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
538 {
539         if (!memslot->dirty_bitmap)
540                 return;
541
542         kvfree(memslot->dirty_bitmap);
543         memslot->dirty_bitmap = NULL;
544 }
545
546 /*
547  * Free any memory in @free but not in @dont.
548  */
549 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
550                               struct kvm_memory_slot *dont)
551 {
552         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
553                 kvm_destroy_dirty_bitmap(free);
554
555         kvm_arch_free_memslot(kvm, free, dont);
556
557         free->npages = 0;
558 }
559
560 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
561 {
562         struct kvm_memory_slot *memslot;
563
564         if (!slots)
565                 return;
566
567         kvm_for_each_memslot(memslot, slots)
568                 kvm_free_memslot(kvm, memslot, NULL);
569
570         kvfree(slots);
571 }
572
573 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
574 {
575         int i;
576
577         if (!kvm->debugfs_dentry)
578                 return;
579
580         debugfs_remove_recursive(kvm->debugfs_dentry);
581
582         if (kvm->debugfs_stat_data) {
583                 for (i = 0; i < kvm_debugfs_num_entries; i++)
584                         kfree(kvm->debugfs_stat_data[i]);
585                 kfree(kvm->debugfs_stat_data);
586         }
587 }
588
589 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
590 {
591         char dir_name[ITOA_MAX_LEN * 2];
592         struct kvm_stat_data *stat_data;
593         struct kvm_stats_debugfs_item *p;
594
595         if (!debugfs_initialized())
596                 return 0;
597
598         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
599         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
600
601         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
602                                          sizeof(*kvm->debugfs_stat_data),
603                                          GFP_KERNEL);
604         if (!kvm->debugfs_stat_data)
605                 return -ENOMEM;
606
607         for (p = debugfs_entries; p->name; p++) {
608                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
609                 if (!stat_data)
610                         return -ENOMEM;
611
612                 stat_data->kvm = kvm;
613                 stat_data->offset = p->offset;
614                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
615                 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
616                                     stat_data, stat_fops_per_vm[p->kind]);
617         }
618         return 0;
619 }
620
621 static struct kvm *kvm_create_vm(unsigned long type)
622 {
623         int r, i;
624         struct kvm *kvm = kvm_arch_alloc_vm();
625
626         if (!kvm)
627                 return ERR_PTR(-ENOMEM);
628
629         spin_lock_init(&kvm->mmu_lock);
630         mmgrab(current->mm);
631         kvm->mm = current->mm;
632         kvm_eventfd_init(kvm);
633         mutex_init(&kvm->lock);
634         mutex_init(&kvm->irq_lock);
635         mutex_init(&kvm->slots_lock);
636         refcount_set(&kvm->users_count, 1);
637         INIT_LIST_HEAD(&kvm->devices);
638
639         r = kvm_arch_init_vm(kvm, type);
640         if (r)
641                 goto out_err_no_disable;
642
643         r = hardware_enable_all();
644         if (r)
645                 goto out_err_no_disable;
646
647 #ifdef CONFIG_HAVE_KVM_IRQFD
648         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
649 #endif
650
651         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
652
653         r = -ENOMEM;
654         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
655                 struct kvm_memslots *slots = kvm_alloc_memslots();
656                 if (!slots)
657                         goto out_err_no_srcu;
658                 /*
659                  * Generations must be different for each address space.
660                  * Init kvm generation close to the maximum to easily test the
661                  * code of handling generation number wrap-around.
662                  */
663                 slots->generation = i * 2 - 150;
664                 rcu_assign_pointer(kvm->memslots[i], slots);
665         }
666
667         if (init_srcu_struct(&kvm->srcu))
668                 goto out_err_no_srcu;
669         if (init_srcu_struct(&kvm->irq_srcu))
670                 goto out_err_no_irq_srcu;
671         for (i = 0; i < KVM_NR_BUSES; i++) {
672                 rcu_assign_pointer(kvm->buses[i],
673                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
674                 if (!kvm->buses[i])
675                         goto out_err;
676         }
677
678         r = kvm_init_mmu_notifier(kvm);
679         if (r)
680                 goto out_err;
681
682         spin_lock(&kvm_lock);
683         list_add(&kvm->vm_list, &vm_list);
684         spin_unlock(&kvm_lock);
685
686         preempt_notifier_inc();
687
688         return kvm;
689
690 out_err:
691         cleanup_srcu_struct(&kvm->irq_srcu);
692 out_err_no_irq_srcu:
693         cleanup_srcu_struct(&kvm->srcu);
694 out_err_no_srcu:
695         hardware_disable_all();
696 out_err_no_disable:
697         refcount_set(&kvm->users_count, 0);
698         for (i = 0; i < KVM_NR_BUSES; i++)
699                 kfree(kvm_get_bus(kvm, i));
700         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
701                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
702         kvm_arch_free_vm(kvm);
703         mmdrop(current->mm);
704         return ERR_PTR(r);
705 }
706
707 static void kvm_destroy_devices(struct kvm *kvm)
708 {
709         struct kvm_device *dev, *tmp;
710
711         /*
712          * We do not need to take the kvm->lock here, because nobody else
713          * has a reference to the struct kvm at this point and therefore
714          * cannot access the devices list anyhow.
715          */
716         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
717                 list_del(&dev->vm_node);
718                 dev->ops->destroy(dev);
719         }
720 }
721
722 static void kvm_destroy_vm(struct kvm *kvm)
723 {
724         int i;
725         struct mm_struct *mm = kvm->mm;
726
727         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
728         kvm_destroy_vm_debugfs(kvm);
729         kvm_arch_sync_events(kvm);
730         spin_lock(&kvm_lock);
731         list_del(&kvm->vm_list);
732         spin_unlock(&kvm_lock);
733         kvm_free_irq_routing(kvm);
734         for (i = 0; i < KVM_NR_BUSES; i++) {
735                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
736
737                 if (bus)
738                         kvm_io_bus_destroy(bus);
739                 kvm->buses[i] = NULL;
740         }
741         kvm_coalesced_mmio_free(kvm);
742 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
743         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
744 #else
745         kvm_arch_flush_shadow_all(kvm);
746 #endif
747         kvm_arch_destroy_vm(kvm);
748         kvm_destroy_devices(kvm);
749         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
750                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
751         cleanup_srcu_struct(&kvm->irq_srcu);
752         cleanup_srcu_struct(&kvm->srcu);
753         kvm_arch_free_vm(kvm);
754         preempt_notifier_dec();
755         hardware_disable_all();
756         mmdrop(mm);
757 }
758
759 void kvm_get_kvm(struct kvm *kvm)
760 {
761         refcount_inc(&kvm->users_count);
762 }
763 EXPORT_SYMBOL_GPL(kvm_get_kvm);
764
765 void kvm_put_kvm(struct kvm *kvm)
766 {
767         if (refcount_dec_and_test(&kvm->users_count))
768                 kvm_destroy_vm(kvm);
769 }
770 EXPORT_SYMBOL_GPL(kvm_put_kvm);
771
772
773 static int kvm_vm_release(struct inode *inode, struct file *filp)
774 {
775         struct kvm *kvm = filp->private_data;
776
777         kvm_irqfd_release(kvm);
778
779         kvm_put_kvm(kvm);
780         return 0;
781 }
782
783 /*
784  * Allocation size is twice as large as the actual dirty bitmap size.
785  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
786  */
787 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
788 {
789         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
790
791         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
792         if (!memslot->dirty_bitmap)
793                 return -ENOMEM;
794
795         return 0;
796 }
797
798 /*
799  * Insert memslot and re-sort memslots based on their GFN,
800  * so binary search could be used to lookup GFN.
801  * Sorting algorithm takes advantage of having initially
802  * sorted array and known changed memslot position.
803  */
804 static void update_memslots(struct kvm_memslots *slots,
805                             struct kvm_memory_slot *new)
806 {
807         int id = new->id;
808         int i = slots->id_to_index[id];
809         struct kvm_memory_slot *mslots = slots->memslots;
810
811         WARN_ON(mslots[i].id != id);
812         if (!new->npages) {
813                 WARN_ON(!mslots[i].npages);
814                 if (mslots[i].npages)
815                         slots->used_slots--;
816         } else {
817                 if (!mslots[i].npages)
818                         slots->used_slots++;
819         }
820
821         while (i < KVM_MEM_SLOTS_NUM - 1 &&
822                new->base_gfn <= mslots[i + 1].base_gfn) {
823                 if (!mslots[i + 1].npages)
824                         break;
825                 mslots[i] = mslots[i + 1];
826                 slots->id_to_index[mslots[i].id] = i;
827                 i++;
828         }
829
830         /*
831          * The ">=" is needed when creating a slot with base_gfn == 0,
832          * so that it moves before all those with base_gfn == npages == 0.
833          *
834          * On the other hand, if new->npages is zero, the above loop has
835          * already left i pointing to the beginning of the empty part of
836          * mslots, and the ">=" would move the hole backwards in this
837          * case---which is wrong.  So skip the loop when deleting a slot.
838          */
839         if (new->npages) {
840                 while (i > 0 &&
841                        new->base_gfn >= mslots[i - 1].base_gfn) {
842                         mslots[i] = mslots[i - 1];
843                         slots->id_to_index[mslots[i].id] = i;
844                         i--;
845                 }
846         } else
847                 WARN_ON_ONCE(i != slots->used_slots);
848
849         mslots[i] = *new;
850         slots->id_to_index[mslots[i].id] = i;
851 }
852
853 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
854 {
855         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
856
857 #ifdef __KVM_HAVE_READONLY_MEM
858         valid_flags |= KVM_MEM_READONLY;
859 #endif
860
861         if (mem->flags & ~valid_flags)
862                 return -EINVAL;
863
864         return 0;
865 }
866
867 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
868                 int as_id, struct kvm_memslots *slots)
869 {
870         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
871
872         /*
873          * Set the low bit in the generation, which disables SPTE caching
874          * until the end of synchronize_srcu_expedited.
875          */
876         WARN_ON(old_memslots->generation & 1);
877         slots->generation = old_memslots->generation + 1;
878
879         rcu_assign_pointer(kvm->memslots[as_id], slots);
880         synchronize_srcu_expedited(&kvm->srcu);
881
882         /*
883          * Increment the new memslot generation a second time. This prevents
884          * vm exits that race with memslot updates from caching a memslot
885          * generation that will (potentially) be valid forever.
886          *
887          * Generations must be unique even across address spaces.  We do not need
888          * a global counter for that, instead the generation space is evenly split
889          * across address spaces.  For example, with two address spaces, address
890          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
891          * use generations 2, 6, 10, 14, ...
892          */
893         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
894
895         kvm_arch_memslots_updated(kvm, slots);
896
897         return old_memslots;
898 }
899
900 /*
901  * Allocate some memory and give it an address in the guest physical address
902  * space.
903  *
904  * Discontiguous memory is allowed, mostly for framebuffers.
905  *
906  * Must be called holding kvm->slots_lock for write.
907  */
908 int __kvm_set_memory_region(struct kvm *kvm,
909                             const struct kvm_userspace_memory_region *mem)
910 {
911         int r;
912         gfn_t base_gfn;
913         unsigned long npages;
914         struct kvm_memory_slot *slot;
915         struct kvm_memory_slot old, new;
916         struct kvm_memslots *slots = NULL, *old_memslots;
917         int as_id, id;
918         enum kvm_mr_change change;
919
920         r = check_memory_region_flags(mem);
921         if (r)
922                 goto out;
923
924         r = -EINVAL;
925         as_id = mem->slot >> 16;
926         id = (u16)mem->slot;
927
928         /* General sanity checks */
929         if (mem->memory_size & (PAGE_SIZE - 1))
930                 goto out;
931         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
932                 goto out;
933         /* We can read the guest memory with __xxx_user() later on. */
934         if ((id < KVM_USER_MEM_SLOTS) &&
935             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
936              !access_ok(VERIFY_WRITE,
937                         (void __user *)(unsigned long)mem->userspace_addr,
938                         mem->memory_size)))
939                 goto out;
940         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
941                 goto out;
942         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
943                 goto out;
944
945         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
946         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
947         npages = mem->memory_size >> PAGE_SHIFT;
948
949         if (npages > KVM_MEM_MAX_NR_PAGES)
950                 goto out;
951
952         new = old = *slot;
953
954         new.id = id;
955         new.base_gfn = base_gfn;
956         new.npages = npages;
957         new.flags = mem->flags;
958
959         if (npages) {
960                 if (!old.npages)
961                         change = KVM_MR_CREATE;
962                 else { /* Modify an existing slot. */
963                         if ((mem->userspace_addr != old.userspace_addr) ||
964                             (npages != old.npages) ||
965                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
966                                 goto out;
967
968                         if (base_gfn != old.base_gfn)
969                                 change = KVM_MR_MOVE;
970                         else if (new.flags != old.flags)
971                                 change = KVM_MR_FLAGS_ONLY;
972                         else { /* Nothing to change. */
973                                 r = 0;
974                                 goto out;
975                         }
976                 }
977         } else {
978                 if (!old.npages)
979                         goto out;
980
981                 change = KVM_MR_DELETE;
982                 new.base_gfn = 0;
983                 new.flags = 0;
984         }
985
986         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
987                 /* Check for overlaps */
988                 r = -EEXIST;
989                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
990                         if (slot->id == id)
991                                 continue;
992                         if (!((base_gfn + npages <= slot->base_gfn) ||
993                               (base_gfn >= slot->base_gfn + slot->npages)))
994                                 goto out;
995                 }
996         }
997
998         /* Free page dirty bitmap if unneeded */
999         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1000                 new.dirty_bitmap = NULL;
1001
1002         r = -ENOMEM;
1003         if (change == KVM_MR_CREATE) {
1004                 new.userspace_addr = mem->userspace_addr;
1005
1006                 if (kvm_arch_create_memslot(kvm, &new, npages))
1007                         goto out_free;
1008         }
1009
1010         /* Allocate page dirty bitmap if needed */
1011         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1012                 if (kvm_create_dirty_bitmap(&new) < 0)
1013                         goto out_free;
1014         }
1015
1016         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1017         if (!slots)
1018                 goto out_free;
1019         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1020
1021         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1022                 slot = id_to_memslot(slots, id);
1023                 slot->flags |= KVM_MEMSLOT_INVALID;
1024
1025                 old_memslots = install_new_memslots(kvm, as_id, slots);
1026
1027                 /* From this point no new shadow pages pointing to a deleted,
1028                  * or moved, memslot will be created.
1029                  *
1030                  * validation of sp->gfn happens in:
1031                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1032                  *      - kvm_is_visible_gfn (mmu_check_roots)
1033                  */
1034                 kvm_arch_flush_shadow_memslot(kvm, slot);
1035
1036                 /*
1037                  * We can re-use the old_memslots from above, the only difference
1038                  * from the currently installed memslots is the invalid flag.  This
1039                  * will get overwritten by update_memslots anyway.
1040                  */
1041                 slots = old_memslots;
1042         }
1043
1044         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1045         if (r)
1046                 goto out_slots;
1047
1048         /* actual memory is freed via old in kvm_free_memslot below */
1049         if (change == KVM_MR_DELETE) {
1050                 new.dirty_bitmap = NULL;
1051                 memset(&new.arch, 0, sizeof(new.arch));
1052         }
1053
1054         update_memslots(slots, &new);
1055         old_memslots = install_new_memslots(kvm, as_id, slots);
1056
1057         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1058
1059         kvm_free_memslot(kvm, &old, &new);
1060         kvfree(old_memslots);
1061         return 0;
1062
1063 out_slots:
1064         kvfree(slots);
1065 out_free:
1066         kvm_free_memslot(kvm, &new, &old);
1067 out:
1068         return r;
1069 }
1070 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1071
1072 int kvm_set_memory_region(struct kvm *kvm,
1073                           const struct kvm_userspace_memory_region *mem)
1074 {
1075         int r;
1076
1077         mutex_lock(&kvm->slots_lock);
1078         r = __kvm_set_memory_region(kvm, mem);
1079         mutex_unlock(&kvm->slots_lock);
1080         return r;
1081 }
1082 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1083
1084 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1085                                           struct kvm_userspace_memory_region *mem)
1086 {
1087         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1088                 return -EINVAL;
1089
1090         return kvm_set_memory_region(kvm, mem);
1091 }
1092
1093 int kvm_get_dirty_log(struct kvm *kvm,
1094                         struct kvm_dirty_log *log, int *is_dirty)
1095 {
1096         struct kvm_memslots *slots;
1097         struct kvm_memory_slot *memslot;
1098         int i, as_id, id;
1099         unsigned long n;
1100         unsigned long any = 0;
1101
1102         as_id = log->slot >> 16;
1103         id = (u16)log->slot;
1104         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1105                 return -EINVAL;
1106
1107         slots = __kvm_memslots(kvm, as_id);
1108         memslot = id_to_memslot(slots, id);
1109         if (!memslot->dirty_bitmap)
1110                 return -ENOENT;
1111
1112         n = kvm_dirty_bitmap_bytes(memslot);
1113
1114         for (i = 0; !any && i < n/sizeof(long); ++i)
1115                 any = memslot->dirty_bitmap[i];
1116
1117         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1118                 return -EFAULT;
1119
1120         if (any)
1121                 *is_dirty = 1;
1122         return 0;
1123 }
1124 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1125
1126 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1127 /**
1128  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1129  *      are dirty write protect them for next write.
1130  * @kvm:        pointer to kvm instance
1131  * @log:        slot id and address to which we copy the log
1132  * @is_dirty:   flag set if any page is dirty
1133  *
1134  * We need to keep it in mind that VCPU threads can write to the bitmap
1135  * concurrently. So, to avoid losing track of dirty pages we keep the
1136  * following order:
1137  *
1138  *    1. Take a snapshot of the bit and clear it if needed.
1139  *    2. Write protect the corresponding page.
1140  *    3. Copy the snapshot to the userspace.
1141  *    4. Upon return caller flushes TLB's if needed.
1142  *
1143  * Between 2 and 4, the guest may write to the page using the remaining TLB
1144  * entry.  This is not a problem because the page is reported dirty using
1145  * the snapshot taken before and step 4 ensures that writes done after
1146  * exiting to userspace will be logged for the next call.
1147  *
1148  */
1149 int kvm_get_dirty_log_protect(struct kvm *kvm,
1150                         struct kvm_dirty_log *log, bool *is_dirty)
1151 {
1152         struct kvm_memslots *slots;
1153         struct kvm_memory_slot *memslot;
1154         int i, as_id, id;
1155         unsigned long n;
1156         unsigned long *dirty_bitmap;
1157         unsigned long *dirty_bitmap_buffer;
1158
1159         as_id = log->slot >> 16;
1160         id = (u16)log->slot;
1161         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1162                 return -EINVAL;
1163
1164         slots = __kvm_memslots(kvm, as_id);
1165         memslot = id_to_memslot(slots, id);
1166
1167         dirty_bitmap = memslot->dirty_bitmap;
1168         if (!dirty_bitmap)
1169                 return -ENOENT;
1170
1171         n = kvm_dirty_bitmap_bytes(memslot);
1172
1173         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1174         memset(dirty_bitmap_buffer, 0, n);
1175
1176         spin_lock(&kvm->mmu_lock);
1177         *is_dirty = false;
1178         for (i = 0; i < n / sizeof(long); i++) {
1179                 unsigned long mask;
1180                 gfn_t offset;
1181
1182                 if (!dirty_bitmap[i])
1183                         continue;
1184
1185                 *is_dirty = true;
1186
1187                 mask = xchg(&dirty_bitmap[i], 0);
1188                 dirty_bitmap_buffer[i] = mask;
1189
1190                 if (mask) {
1191                         offset = i * BITS_PER_LONG;
1192                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1193                                                                 offset, mask);
1194                 }
1195         }
1196
1197         spin_unlock(&kvm->mmu_lock);
1198         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1199                 return -EFAULT;
1200         return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1203 #endif
1204
1205 bool kvm_largepages_enabled(void)
1206 {
1207         return largepages_enabled;
1208 }
1209
1210 void kvm_disable_largepages(void)
1211 {
1212         largepages_enabled = false;
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1215
1216 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1217 {
1218         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1219 }
1220 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1221
1222 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1223 {
1224         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1225 }
1226
1227 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1228 {
1229         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1230
1231         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1232               memslot->flags & KVM_MEMSLOT_INVALID)
1233                 return false;
1234
1235         return true;
1236 }
1237 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1238
1239 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1240 {
1241         struct vm_area_struct *vma;
1242         unsigned long addr, size;
1243
1244         size = PAGE_SIZE;
1245
1246         addr = gfn_to_hva(kvm, gfn);
1247         if (kvm_is_error_hva(addr))
1248                 return PAGE_SIZE;
1249
1250         down_read(&current->mm->mmap_sem);
1251         vma = find_vma(current->mm, addr);
1252         if (!vma)
1253                 goto out;
1254
1255         size = vma_kernel_pagesize(vma);
1256
1257 out:
1258         up_read(&current->mm->mmap_sem);
1259
1260         return size;
1261 }
1262
1263 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1264 {
1265         return slot->flags & KVM_MEM_READONLY;
1266 }
1267
1268 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1269                                        gfn_t *nr_pages, bool write)
1270 {
1271         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1272                 return KVM_HVA_ERR_BAD;
1273
1274         if (memslot_is_readonly(slot) && write)
1275                 return KVM_HVA_ERR_RO_BAD;
1276
1277         if (nr_pages)
1278                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1279
1280         return __gfn_to_hva_memslot(slot, gfn);
1281 }
1282
1283 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1284                                      gfn_t *nr_pages)
1285 {
1286         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1287 }
1288
1289 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1290                                         gfn_t gfn)
1291 {
1292         return gfn_to_hva_many(slot, gfn, NULL);
1293 }
1294 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1295
1296 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1297 {
1298         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1299 }
1300 EXPORT_SYMBOL_GPL(gfn_to_hva);
1301
1302 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1303 {
1304         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1307
1308 /*
1309  * If writable is set to false, the hva returned by this function is only
1310  * allowed to be read.
1311  */
1312 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1313                                       gfn_t gfn, bool *writable)
1314 {
1315         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1316
1317         if (!kvm_is_error_hva(hva) && writable)
1318                 *writable = !memslot_is_readonly(slot);
1319
1320         return hva;
1321 }
1322
1323 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1324 {
1325         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1326
1327         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1328 }
1329
1330 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1331 {
1332         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1333
1334         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1335 }
1336
1337 static inline int check_user_page_hwpoison(unsigned long addr)
1338 {
1339         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1340
1341         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1342         return rc == -EHWPOISON;
1343 }
1344
1345 /*
1346  * The fast path to get the writable pfn which will be stored in @pfn,
1347  * true indicates success, otherwise false is returned.  It's also the
1348  * only part that runs if we can are in atomic context.
1349  */
1350 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1351                             bool *writable, kvm_pfn_t *pfn)
1352 {
1353         struct page *page[1];
1354         int npages;
1355
1356         /*
1357          * Fast pin a writable pfn only if it is a write fault request
1358          * or the caller allows to map a writable pfn for a read fault
1359          * request.
1360          */
1361         if (!(write_fault || writable))
1362                 return false;
1363
1364         npages = __get_user_pages_fast(addr, 1, 1, page);
1365         if (npages == 1) {
1366                 *pfn = page_to_pfn(page[0]);
1367
1368                 if (writable)
1369                         *writable = true;
1370                 return true;
1371         }
1372
1373         return false;
1374 }
1375
1376 /*
1377  * The slow path to get the pfn of the specified host virtual address,
1378  * 1 indicates success, -errno is returned if error is detected.
1379  */
1380 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1381                            bool *writable, kvm_pfn_t *pfn)
1382 {
1383         unsigned int flags = FOLL_HWPOISON;
1384         struct page *page;
1385         int npages = 0;
1386
1387         might_sleep();
1388
1389         if (writable)
1390                 *writable = write_fault;
1391
1392         if (write_fault)
1393                 flags |= FOLL_WRITE;
1394         if (async)
1395                 flags |= FOLL_NOWAIT;
1396
1397         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1398         if (npages != 1)
1399                 return npages;
1400
1401         /* map read fault as writable if possible */
1402         if (unlikely(!write_fault) && writable) {
1403                 struct page *wpage;
1404
1405                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1406                         *writable = true;
1407                         put_page(page);
1408                         page = wpage;
1409                 }
1410         }
1411         *pfn = page_to_pfn(page);
1412         return npages;
1413 }
1414
1415 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1416 {
1417         if (unlikely(!(vma->vm_flags & VM_READ)))
1418                 return false;
1419
1420         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1421                 return false;
1422
1423         return true;
1424 }
1425
1426 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1427                                unsigned long addr, bool *async,
1428                                bool write_fault, bool *writable,
1429                                kvm_pfn_t *p_pfn)
1430 {
1431         unsigned long pfn;
1432         int r;
1433
1434         r = follow_pfn(vma, addr, &pfn);
1435         if (r) {
1436                 /*
1437                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1438                  * not call the fault handler, so do it here.
1439                  */
1440                 bool unlocked = false;
1441                 r = fixup_user_fault(current, current->mm, addr,
1442                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1443                                      &unlocked);
1444                 if (unlocked)
1445                         return -EAGAIN;
1446                 if (r)
1447                         return r;
1448
1449                 r = follow_pfn(vma, addr, &pfn);
1450                 if (r)
1451                         return r;
1452
1453         }
1454
1455         if (writable)
1456                 *writable = true;
1457
1458         /*
1459          * Get a reference here because callers of *hva_to_pfn* and
1460          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1461          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1462          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1463          * simply do nothing for reserved pfns.
1464          *
1465          * Whoever called remap_pfn_range is also going to call e.g.
1466          * unmap_mapping_range before the underlying pages are freed,
1467          * causing a call to our MMU notifier.
1468          */ 
1469         kvm_get_pfn(pfn);
1470
1471         *p_pfn = pfn;
1472         return 0;
1473 }
1474
1475 /*
1476  * Pin guest page in memory and return its pfn.
1477  * @addr: host virtual address which maps memory to the guest
1478  * @atomic: whether this function can sleep
1479  * @async: whether this function need to wait IO complete if the
1480  *         host page is not in the memory
1481  * @write_fault: whether we should get a writable host page
1482  * @writable: whether it allows to map a writable host page for !@write_fault
1483  *
1484  * The function will map a writable host page for these two cases:
1485  * 1): @write_fault = true
1486  * 2): @write_fault = false && @writable, @writable will tell the caller
1487  *     whether the mapping is writable.
1488  */
1489 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1490                         bool write_fault, bool *writable)
1491 {
1492         struct vm_area_struct *vma;
1493         kvm_pfn_t pfn = 0;
1494         int npages, r;
1495
1496         /* we can do it either atomically or asynchronously, not both */
1497         BUG_ON(atomic && async);
1498
1499         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1500                 return pfn;
1501
1502         if (atomic)
1503                 return KVM_PFN_ERR_FAULT;
1504
1505         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1506         if (npages == 1)
1507                 return pfn;
1508
1509         down_read(&current->mm->mmap_sem);
1510         if (npages == -EHWPOISON ||
1511               (!async && check_user_page_hwpoison(addr))) {
1512                 pfn = KVM_PFN_ERR_HWPOISON;
1513                 goto exit;
1514         }
1515
1516 retry:
1517         vma = find_vma_intersection(current->mm, addr, addr + 1);
1518
1519         if (vma == NULL)
1520                 pfn = KVM_PFN_ERR_FAULT;
1521         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1522                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1523                 if (r == -EAGAIN)
1524                         goto retry;
1525                 if (r < 0)
1526                         pfn = KVM_PFN_ERR_FAULT;
1527         } else {
1528                 if (async && vma_is_valid(vma, write_fault))
1529                         *async = true;
1530                 pfn = KVM_PFN_ERR_FAULT;
1531         }
1532 exit:
1533         up_read(&current->mm->mmap_sem);
1534         return pfn;
1535 }
1536
1537 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1538                                bool atomic, bool *async, bool write_fault,
1539                                bool *writable)
1540 {
1541         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1542
1543         if (addr == KVM_HVA_ERR_RO_BAD) {
1544                 if (writable)
1545                         *writable = false;
1546                 return KVM_PFN_ERR_RO_FAULT;
1547         }
1548
1549         if (kvm_is_error_hva(addr)) {
1550                 if (writable)
1551                         *writable = false;
1552                 return KVM_PFN_NOSLOT;
1553         }
1554
1555         /* Do not map writable pfn in the readonly memslot. */
1556         if (writable && memslot_is_readonly(slot)) {
1557                 *writable = false;
1558                 writable = NULL;
1559         }
1560
1561         return hva_to_pfn(addr, atomic, async, write_fault,
1562                           writable);
1563 }
1564 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1565
1566 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1567                       bool *writable)
1568 {
1569         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1570                                     write_fault, writable);
1571 }
1572 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1573
1574 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1575 {
1576         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1577 }
1578 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1579
1580 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1581 {
1582         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1583 }
1584 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1585
1586 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1587 {
1588         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1589 }
1590 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1591
1592 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1593 {
1594         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1595 }
1596 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1597
1598 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1599 {
1600         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1601 }
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1603
1604 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1605 {
1606         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1607 }
1608 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1609
1610 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1611                             struct page **pages, int nr_pages)
1612 {
1613         unsigned long addr;
1614         gfn_t entry = 0;
1615
1616         addr = gfn_to_hva_many(slot, gfn, &entry);
1617         if (kvm_is_error_hva(addr))
1618                 return -1;
1619
1620         if (entry < nr_pages)
1621                 return 0;
1622
1623         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1624 }
1625 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1626
1627 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1628 {
1629         if (is_error_noslot_pfn(pfn))
1630                 return KVM_ERR_PTR_BAD_PAGE;
1631
1632         if (kvm_is_reserved_pfn(pfn)) {
1633                 WARN_ON(1);
1634                 return KVM_ERR_PTR_BAD_PAGE;
1635         }
1636
1637         return pfn_to_page(pfn);
1638 }
1639
1640 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1641 {
1642         kvm_pfn_t pfn;
1643
1644         pfn = gfn_to_pfn(kvm, gfn);
1645
1646         return kvm_pfn_to_page(pfn);
1647 }
1648 EXPORT_SYMBOL_GPL(gfn_to_page);
1649
1650 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1651 {
1652         kvm_pfn_t pfn;
1653
1654         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1655
1656         return kvm_pfn_to_page(pfn);
1657 }
1658 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1659
1660 void kvm_release_page_clean(struct page *page)
1661 {
1662         WARN_ON(is_error_page(page));
1663
1664         kvm_release_pfn_clean(page_to_pfn(page));
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1667
1668 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1669 {
1670         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1671                 put_page(pfn_to_page(pfn));
1672 }
1673 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1674
1675 void kvm_release_page_dirty(struct page *page)
1676 {
1677         WARN_ON(is_error_page(page));
1678
1679         kvm_release_pfn_dirty(page_to_pfn(page));
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1682
1683 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1684 {
1685         kvm_set_pfn_dirty(pfn);
1686         kvm_release_pfn_clean(pfn);
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1689
1690 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1691 {
1692         if (!kvm_is_reserved_pfn(pfn)) {
1693                 struct page *page = pfn_to_page(pfn);
1694
1695                 if (!PageReserved(page))
1696                         SetPageDirty(page);
1697         }
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1700
1701 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1702 {
1703         if (!kvm_is_reserved_pfn(pfn))
1704                 mark_page_accessed(pfn_to_page(pfn));
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1707
1708 void kvm_get_pfn(kvm_pfn_t pfn)
1709 {
1710         if (!kvm_is_reserved_pfn(pfn))
1711                 get_page(pfn_to_page(pfn));
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1714
1715 static int next_segment(unsigned long len, int offset)
1716 {
1717         if (len > PAGE_SIZE - offset)
1718                 return PAGE_SIZE - offset;
1719         else
1720                 return len;
1721 }
1722
1723 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1724                                  void *data, int offset, int len)
1725 {
1726         int r;
1727         unsigned long addr;
1728
1729         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1730         if (kvm_is_error_hva(addr))
1731                 return -EFAULT;
1732         r = __copy_from_user(data, (void __user *)addr + offset, len);
1733         if (r)
1734                 return -EFAULT;
1735         return 0;
1736 }
1737
1738 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1739                         int len)
1740 {
1741         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1742
1743         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1744 }
1745 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1746
1747 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1748                              int offset, int len)
1749 {
1750         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1751
1752         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1753 }
1754 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1755
1756 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1757 {
1758         gfn_t gfn = gpa >> PAGE_SHIFT;
1759         int seg;
1760         int offset = offset_in_page(gpa);
1761         int ret;
1762
1763         while ((seg = next_segment(len, offset)) != 0) {
1764                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1765                 if (ret < 0)
1766                         return ret;
1767                 offset = 0;
1768                 len -= seg;
1769                 data += seg;
1770                 ++gfn;
1771         }
1772         return 0;
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_read_guest);
1775
1776 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1777 {
1778         gfn_t gfn = gpa >> PAGE_SHIFT;
1779         int seg;
1780         int offset = offset_in_page(gpa);
1781         int ret;
1782
1783         while ((seg = next_segment(len, offset)) != 0) {
1784                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1785                 if (ret < 0)
1786                         return ret;
1787                 offset = 0;
1788                 len -= seg;
1789                 data += seg;
1790                 ++gfn;
1791         }
1792         return 0;
1793 }
1794 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1795
1796 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1797                                    void *data, int offset, unsigned long len)
1798 {
1799         int r;
1800         unsigned long addr;
1801
1802         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1803         if (kvm_is_error_hva(addr))
1804                 return -EFAULT;
1805         pagefault_disable();
1806         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1807         pagefault_enable();
1808         if (r)
1809                 return -EFAULT;
1810         return 0;
1811 }
1812
1813 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1814                           unsigned long len)
1815 {
1816         gfn_t gfn = gpa >> PAGE_SHIFT;
1817         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1818         int offset = offset_in_page(gpa);
1819
1820         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1821 }
1822 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1823
1824 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1825                                void *data, unsigned long len)
1826 {
1827         gfn_t gfn = gpa >> PAGE_SHIFT;
1828         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1829         int offset = offset_in_page(gpa);
1830
1831         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1834
1835 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1836                                   const void *data, int offset, int len)
1837 {
1838         int r;
1839         unsigned long addr;
1840
1841         addr = gfn_to_hva_memslot(memslot, gfn);
1842         if (kvm_is_error_hva(addr))
1843                 return -EFAULT;
1844         r = __copy_to_user((void __user *)addr + offset, data, len);
1845         if (r)
1846                 return -EFAULT;
1847         mark_page_dirty_in_slot(memslot, gfn);
1848         return 0;
1849 }
1850
1851 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1852                          const void *data, int offset, int len)
1853 {
1854         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1855
1856         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1857 }
1858 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1859
1860 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1861                               const void *data, int offset, int len)
1862 {
1863         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1864
1865         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1866 }
1867 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1868
1869 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1870                     unsigned long len)
1871 {
1872         gfn_t gfn = gpa >> PAGE_SHIFT;
1873         int seg;
1874         int offset = offset_in_page(gpa);
1875         int ret;
1876
1877         while ((seg = next_segment(len, offset)) != 0) {
1878                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1879                 if (ret < 0)
1880                         return ret;
1881                 offset = 0;
1882                 len -= seg;
1883                 data += seg;
1884                 ++gfn;
1885         }
1886         return 0;
1887 }
1888 EXPORT_SYMBOL_GPL(kvm_write_guest);
1889
1890 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1891                          unsigned long len)
1892 {
1893         gfn_t gfn = gpa >> PAGE_SHIFT;
1894         int seg;
1895         int offset = offset_in_page(gpa);
1896         int ret;
1897
1898         while ((seg = next_segment(len, offset)) != 0) {
1899                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1900                 if (ret < 0)
1901                         return ret;
1902                 offset = 0;
1903                 len -= seg;
1904                 data += seg;
1905                 ++gfn;
1906         }
1907         return 0;
1908 }
1909 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1910
1911 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1912                                        struct gfn_to_hva_cache *ghc,
1913                                        gpa_t gpa, unsigned long len)
1914 {
1915         int offset = offset_in_page(gpa);
1916         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1917         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1918         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1919         gfn_t nr_pages_avail;
1920
1921         ghc->gpa = gpa;
1922         ghc->generation = slots->generation;
1923         ghc->len = len;
1924         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1925         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1926         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1927                 ghc->hva += offset;
1928         } else {
1929                 /*
1930                  * If the requested region crosses two memslots, we still
1931                  * verify that the entire region is valid here.
1932                  */
1933                 while (start_gfn <= end_gfn) {
1934                         nr_pages_avail = 0;
1935                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1936                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1937                                                    &nr_pages_avail);
1938                         if (kvm_is_error_hva(ghc->hva))
1939                                 return -EFAULT;
1940                         start_gfn += nr_pages_avail;
1941                 }
1942                 /* Use the slow path for cross page reads and writes. */
1943                 ghc->memslot = NULL;
1944         }
1945         return 0;
1946 }
1947
1948 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1949                               gpa_t gpa, unsigned long len)
1950 {
1951         struct kvm_memslots *slots = kvm_memslots(kvm);
1952         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1955
1956 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1957                            void *data, int offset, unsigned long len)
1958 {
1959         struct kvm_memslots *slots = kvm_memslots(kvm);
1960         int r;
1961         gpa_t gpa = ghc->gpa + offset;
1962
1963         BUG_ON(len + offset > ghc->len);
1964
1965         if (slots->generation != ghc->generation)
1966                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1967
1968         if (unlikely(!ghc->memslot))
1969                 return kvm_write_guest(kvm, gpa, data, len);
1970
1971         if (kvm_is_error_hva(ghc->hva))
1972                 return -EFAULT;
1973
1974         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1975         if (r)
1976                 return -EFAULT;
1977         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1978
1979         return 0;
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1982
1983 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1984                            void *data, unsigned long len)
1985 {
1986         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1987 }
1988 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1989
1990 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1991                            void *data, unsigned long len)
1992 {
1993         struct kvm_memslots *slots = kvm_memslots(kvm);
1994         int r;
1995
1996         BUG_ON(len > ghc->len);
1997
1998         if (slots->generation != ghc->generation)
1999                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2000
2001         if (unlikely(!ghc->memslot))
2002                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2003
2004         if (kvm_is_error_hva(ghc->hva))
2005                 return -EFAULT;
2006
2007         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2008         if (r)
2009                 return -EFAULT;
2010
2011         return 0;
2012 }
2013 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2014
2015 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2016 {
2017         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2018
2019         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2020 }
2021 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2022
2023 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2024 {
2025         gfn_t gfn = gpa >> PAGE_SHIFT;
2026         int seg;
2027         int offset = offset_in_page(gpa);
2028         int ret;
2029
2030         while ((seg = next_segment(len, offset)) != 0) {
2031                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2032                 if (ret < 0)
2033                         return ret;
2034                 offset = 0;
2035                 len -= seg;
2036                 ++gfn;
2037         }
2038         return 0;
2039 }
2040 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2041
2042 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2043                                     gfn_t gfn)
2044 {
2045         if (memslot && memslot->dirty_bitmap) {
2046                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2047
2048                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2049         }
2050 }
2051
2052 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2053 {
2054         struct kvm_memory_slot *memslot;
2055
2056         memslot = gfn_to_memslot(kvm, gfn);
2057         mark_page_dirty_in_slot(memslot, gfn);
2058 }
2059 EXPORT_SYMBOL_GPL(mark_page_dirty);
2060
2061 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2062 {
2063         struct kvm_memory_slot *memslot;
2064
2065         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2066         mark_page_dirty_in_slot(memslot, gfn);
2067 }
2068 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2069
2070 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2071 {
2072         if (!vcpu->sigset_active)
2073                 return;
2074
2075         /*
2076          * This does a lockless modification of ->real_blocked, which is fine
2077          * because, only current can change ->real_blocked and all readers of
2078          * ->real_blocked don't care as long ->real_blocked is always a subset
2079          * of ->blocked.
2080          */
2081         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2082 }
2083
2084 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2085 {
2086         if (!vcpu->sigset_active)
2087                 return;
2088
2089         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2090         sigemptyset(&current->real_blocked);
2091 }
2092
2093 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2094 {
2095         unsigned int old, val, grow;
2096
2097         old = val = vcpu->halt_poll_ns;
2098         grow = READ_ONCE(halt_poll_ns_grow);
2099         /* 10us base */
2100         if (val == 0 && grow)
2101                 val = 10000;
2102         else
2103                 val *= grow;
2104
2105         if (val > halt_poll_ns)
2106                 val = halt_poll_ns;
2107
2108         vcpu->halt_poll_ns = val;
2109         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2110 }
2111
2112 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2113 {
2114         unsigned int old, val, shrink;
2115
2116         old = val = vcpu->halt_poll_ns;
2117         shrink = READ_ONCE(halt_poll_ns_shrink);
2118         if (shrink == 0)
2119                 val = 0;
2120         else
2121                 val /= shrink;
2122
2123         vcpu->halt_poll_ns = val;
2124         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2125 }
2126
2127 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2128 {
2129         int ret = -EINTR;
2130         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2131
2132         if (kvm_arch_vcpu_runnable(vcpu)) {
2133                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2134                 goto out;
2135         }
2136         if (kvm_cpu_has_pending_timer(vcpu))
2137                 goto out;
2138         if (signal_pending(current))
2139                 goto out;
2140
2141         ret = 0;
2142 out:
2143         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2144         return ret;
2145 }
2146
2147 /*
2148  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2149  */
2150 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2151 {
2152         ktime_t start, cur;
2153         DECLARE_SWAITQUEUE(wait);
2154         bool waited = false;
2155         u64 block_ns;
2156
2157         start = cur = ktime_get();
2158         if (vcpu->halt_poll_ns) {
2159                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2160
2161                 ++vcpu->stat.halt_attempted_poll;
2162                 do {
2163                         /*
2164                          * This sets KVM_REQ_UNHALT if an interrupt
2165                          * arrives.
2166                          */
2167                         if (kvm_vcpu_check_block(vcpu) < 0) {
2168                                 ++vcpu->stat.halt_successful_poll;
2169                                 if (!vcpu_valid_wakeup(vcpu))
2170                                         ++vcpu->stat.halt_poll_invalid;
2171                                 goto out;
2172                         }
2173                         cur = ktime_get();
2174                 } while (single_task_running() && ktime_before(cur, stop));
2175         }
2176
2177         kvm_arch_vcpu_blocking(vcpu);
2178
2179         for (;;) {
2180                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2181
2182                 if (kvm_vcpu_check_block(vcpu) < 0)
2183                         break;
2184
2185                 waited = true;
2186                 schedule();
2187         }
2188
2189         finish_swait(&vcpu->wq, &wait);
2190         cur = ktime_get();
2191
2192         kvm_arch_vcpu_unblocking(vcpu);
2193 out:
2194         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2195
2196         if (!vcpu_valid_wakeup(vcpu))
2197                 shrink_halt_poll_ns(vcpu);
2198         else if (halt_poll_ns) {
2199                 if (block_ns <= vcpu->halt_poll_ns)
2200                         ;
2201                 /* we had a long block, shrink polling */
2202                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2203                         shrink_halt_poll_ns(vcpu);
2204                 /* we had a short halt and our poll time is too small */
2205                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2206                         block_ns < halt_poll_ns)
2207                         grow_halt_poll_ns(vcpu);
2208         } else
2209                 vcpu->halt_poll_ns = 0;
2210
2211         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2212         kvm_arch_vcpu_block_finish(vcpu);
2213 }
2214 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2215
2216 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2217 {
2218         struct swait_queue_head *wqp;
2219
2220         wqp = kvm_arch_vcpu_wq(vcpu);
2221         if (swq_has_sleeper(wqp)) {
2222                 swake_up_one(wqp);
2223                 ++vcpu->stat.halt_wakeup;
2224                 return true;
2225         }
2226
2227         return false;
2228 }
2229 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2230
2231 #ifndef CONFIG_S390
2232 /*
2233  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2234  */
2235 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2236 {
2237         int me;
2238         int cpu = vcpu->cpu;
2239
2240         if (kvm_vcpu_wake_up(vcpu))
2241                 return;
2242
2243         me = get_cpu();
2244         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2245                 if (kvm_arch_vcpu_should_kick(vcpu))
2246                         smp_send_reschedule(cpu);
2247         put_cpu();
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2250 #endif /* !CONFIG_S390 */
2251
2252 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2253 {
2254         struct pid *pid;
2255         struct task_struct *task = NULL;
2256         int ret = 0;
2257
2258         rcu_read_lock();
2259         pid = rcu_dereference(target->pid);
2260         if (pid)
2261                 task = get_pid_task(pid, PIDTYPE_PID);
2262         rcu_read_unlock();
2263         if (!task)
2264                 return ret;
2265         ret = yield_to(task, 1);
2266         put_task_struct(task);
2267
2268         return ret;
2269 }
2270 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2271
2272 /*
2273  * Helper that checks whether a VCPU is eligible for directed yield.
2274  * Most eligible candidate to yield is decided by following heuristics:
2275  *
2276  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2277  *  (preempted lock holder), indicated by @in_spin_loop.
2278  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2279  *
2280  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2281  *  chance last time (mostly it has become eligible now since we have probably
2282  *  yielded to lockholder in last iteration. This is done by toggling
2283  *  @dy_eligible each time a VCPU checked for eligibility.)
2284  *
2285  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2286  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2287  *  burning. Giving priority for a potential lock-holder increases lock
2288  *  progress.
2289  *
2290  *  Since algorithm is based on heuristics, accessing another VCPU data without
2291  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2292  *  and continue with next VCPU and so on.
2293  */
2294 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2295 {
2296 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2297         bool eligible;
2298
2299         eligible = !vcpu->spin_loop.in_spin_loop ||
2300                     vcpu->spin_loop.dy_eligible;
2301
2302         if (vcpu->spin_loop.in_spin_loop)
2303                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2304
2305         return eligible;
2306 #else
2307         return true;
2308 #endif
2309 }
2310
2311 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2312 {
2313         struct kvm *kvm = me->kvm;
2314         struct kvm_vcpu *vcpu;
2315         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2316         int yielded = 0;
2317         int try = 3;
2318         int pass;
2319         int i;
2320
2321         kvm_vcpu_set_in_spin_loop(me, true);
2322         /*
2323          * We boost the priority of a VCPU that is runnable but not
2324          * currently running, because it got preempted by something
2325          * else and called schedule in __vcpu_run.  Hopefully that
2326          * VCPU is holding the lock that we need and will release it.
2327          * We approximate round-robin by starting at the last boosted VCPU.
2328          */
2329         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2330                 kvm_for_each_vcpu(i, vcpu, kvm) {
2331                         if (!pass && i <= last_boosted_vcpu) {
2332                                 i = last_boosted_vcpu;
2333                                 continue;
2334                         } else if (pass && i > last_boosted_vcpu)
2335                                 break;
2336                         if (!READ_ONCE(vcpu->preempted))
2337                                 continue;
2338                         if (vcpu == me)
2339                                 continue;
2340                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2341                                 continue;
2342                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2343                                 continue;
2344                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2345                                 continue;
2346
2347                         yielded = kvm_vcpu_yield_to(vcpu);
2348                         if (yielded > 0) {
2349                                 kvm->last_boosted_vcpu = i;
2350                                 break;
2351                         } else if (yielded < 0) {
2352                                 try--;
2353                                 if (!try)
2354                                         break;
2355                         }
2356                 }
2357         }
2358         kvm_vcpu_set_in_spin_loop(me, false);
2359
2360         /* Ensure vcpu is not eligible during next spinloop */
2361         kvm_vcpu_set_dy_eligible(me, false);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2364
2365 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2366 {
2367         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2368         struct page *page;
2369
2370         if (vmf->pgoff == 0)
2371                 page = virt_to_page(vcpu->run);
2372 #ifdef CONFIG_X86
2373         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2374                 page = virt_to_page(vcpu->arch.pio_data);
2375 #endif
2376 #ifdef CONFIG_KVM_MMIO
2377         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2378                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2379 #endif
2380         else
2381                 return kvm_arch_vcpu_fault(vcpu, vmf);
2382         get_page(page);
2383         vmf->page = page;
2384         return 0;
2385 }
2386
2387 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2388         .fault = kvm_vcpu_fault,
2389 };
2390
2391 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2392 {
2393         vma->vm_ops = &kvm_vcpu_vm_ops;
2394         return 0;
2395 }
2396
2397 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2398 {
2399         struct kvm_vcpu *vcpu = filp->private_data;
2400
2401         debugfs_remove_recursive(vcpu->debugfs_dentry);
2402         kvm_put_kvm(vcpu->kvm);
2403         return 0;
2404 }
2405
2406 static struct file_operations kvm_vcpu_fops = {
2407         .release        = kvm_vcpu_release,
2408         .unlocked_ioctl = kvm_vcpu_ioctl,
2409         .mmap           = kvm_vcpu_mmap,
2410         .llseek         = noop_llseek,
2411         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2412 };
2413
2414 /*
2415  * Allocates an inode for the vcpu.
2416  */
2417 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2418 {
2419         char name[8 + 1 + ITOA_MAX_LEN + 1];
2420
2421         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2422         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2423 }
2424
2425 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2426 {
2427         char dir_name[ITOA_MAX_LEN * 2];
2428         int ret;
2429
2430         if (!kvm_arch_has_vcpu_debugfs())
2431                 return 0;
2432
2433         if (!debugfs_initialized())
2434                 return 0;
2435
2436         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2437         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2438                                                                 vcpu->kvm->debugfs_dentry);
2439         if (!vcpu->debugfs_dentry)
2440                 return -ENOMEM;
2441
2442         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2443         if (ret < 0) {
2444                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2445                 return ret;
2446         }
2447
2448         return 0;
2449 }
2450
2451 /*
2452  * Creates some virtual cpus.  Good luck creating more than one.
2453  */
2454 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2455 {
2456         int r;
2457         struct kvm_vcpu *vcpu;
2458
2459         if (id >= KVM_MAX_VCPU_ID)
2460                 return -EINVAL;
2461
2462         mutex_lock(&kvm->lock);
2463         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2464                 mutex_unlock(&kvm->lock);
2465                 return -EINVAL;
2466         }
2467
2468         kvm->created_vcpus++;
2469         mutex_unlock(&kvm->lock);
2470
2471         vcpu = kvm_arch_vcpu_create(kvm, id);
2472         if (IS_ERR(vcpu)) {
2473                 r = PTR_ERR(vcpu);
2474                 goto vcpu_decrement;
2475         }
2476
2477         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2478
2479         r = kvm_arch_vcpu_setup(vcpu);
2480         if (r)
2481                 goto vcpu_destroy;
2482
2483         r = kvm_create_vcpu_debugfs(vcpu);
2484         if (r)
2485                 goto vcpu_destroy;
2486
2487         mutex_lock(&kvm->lock);
2488         if (kvm_get_vcpu_by_id(kvm, id)) {
2489                 r = -EEXIST;
2490                 goto unlock_vcpu_destroy;
2491         }
2492
2493         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2494
2495         /* Now it's all set up, let userspace reach it */
2496         kvm_get_kvm(kvm);
2497         r = create_vcpu_fd(vcpu);
2498         if (r < 0) {
2499                 kvm_put_kvm(kvm);
2500                 goto unlock_vcpu_destroy;
2501         }
2502
2503         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2504
2505         /*
2506          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2507          * before kvm->online_vcpu's incremented value.
2508          */
2509         smp_wmb();
2510         atomic_inc(&kvm->online_vcpus);
2511
2512         mutex_unlock(&kvm->lock);
2513         kvm_arch_vcpu_postcreate(vcpu);
2514         return r;
2515
2516 unlock_vcpu_destroy:
2517         mutex_unlock(&kvm->lock);
2518         debugfs_remove_recursive(vcpu->debugfs_dentry);
2519 vcpu_destroy:
2520         kvm_arch_vcpu_destroy(vcpu);
2521 vcpu_decrement:
2522         mutex_lock(&kvm->lock);
2523         kvm->created_vcpus--;
2524         mutex_unlock(&kvm->lock);
2525         return r;
2526 }
2527
2528 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2529 {
2530         if (sigset) {
2531                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2532                 vcpu->sigset_active = 1;
2533                 vcpu->sigset = *sigset;
2534         } else
2535                 vcpu->sigset_active = 0;
2536         return 0;
2537 }
2538
2539 static long kvm_vcpu_ioctl(struct file *filp,
2540                            unsigned int ioctl, unsigned long arg)
2541 {
2542         struct kvm_vcpu *vcpu = filp->private_data;
2543         void __user *argp = (void __user *)arg;
2544         int r;
2545         struct kvm_fpu *fpu = NULL;
2546         struct kvm_sregs *kvm_sregs = NULL;
2547
2548         if (vcpu->kvm->mm != current->mm)
2549                 return -EIO;
2550
2551         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2552                 return -EINVAL;
2553
2554         /*
2555          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2556          * execution; mutex_lock() would break them.
2557          */
2558         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2559         if (r != -ENOIOCTLCMD)
2560                 return r;
2561
2562         if (mutex_lock_killable(&vcpu->mutex))
2563                 return -EINTR;
2564         switch (ioctl) {
2565         case KVM_RUN: {
2566                 struct pid *oldpid;
2567                 r = -EINVAL;
2568                 if (arg)
2569                         goto out;
2570                 oldpid = rcu_access_pointer(vcpu->pid);
2571                 if (unlikely(oldpid != task_pid(current))) {
2572                         /* The thread running this VCPU changed. */
2573                         struct pid *newpid;
2574
2575                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2576                         if (r)
2577                                 break;
2578
2579                         newpid = get_task_pid(current, PIDTYPE_PID);
2580                         rcu_assign_pointer(vcpu->pid, newpid);
2581                         if (oldpid)
2582                                 synchronize_rcu();
2583                         put_pid(oldpid);
2584                 }
2585                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2586                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2587                 break;
2588         }
2589         case KVM_GET_REGS: {
2590                 struct kvm_regs *kvm_regs;
2591
2592                 r = -ENOMEM;
2593                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2594                 if (!kvm_regs)
2595                         goto out;
2596                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2597                 if (r)
2598                         goto out_free1;
2599                 r = -EFAULT;
2600                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2601                         goto out_free1;
2602                 r = 0;
2603 out_free1:
2604                 kfree(kvm_regs);
2605                 break;
2606         }
2607         case KVM_SET_REGS: {
2608                 struct kvm_regs *kvm_regs;
2609
2610                 r = -ENOMEM;
2611                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2612                 if (IS_ERR(kvm_regs)) {
2613                         r = PTR_ERR(kvm_regs);
2614                         goto out;
2615                 }
2616                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2617                 kfree(kvm_regs);
2618                 break;
2619         }
2620         case KVM_GET_SREGS: {
2621                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2622                 r = -ENOMEM;
2623                 if (!kvm_sregs)
2624                         goto out;
2625                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2626                 if (r)
2627                         goto out;
2628                 r = -EFAULT;
2629                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2630                         goto out;
2631                 r = 0;
2632                 break;
2633         }
2634         case KVM_SET_SREGS: {
2635                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2636                 if (IS_ERR(kvm_sregs)) {
2637                         r = PTR_ERR(kvm_sregs);
2638                         kvm_sregs = NULL;
2639                         goto out;
2640                 }
2641                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2642                 break;
2643         }
2644         case KVM_GET_MP_STATE: {
2645                 struct kvm_mp_state mp_state;
2646
2647                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2648                 if (r)
2649                         goto out;
2650                 r = -EFAULT;
2651                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2652                         goto out;
2653                 r = 0;
2654                 break;
2655         }
2656         case KVM_SET_MP_STATE: {
2657                 struct kvm_mp_state mp_state;
2658
2659                 r = -EFAULT;
2660                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2661                         goto out;
2662                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2663                 break;
2664         }
2665         case KVM_TRANSLATE: {
2666                 struct kvm_translation tr;
2667
2668                 r = -EFAULT;
2669                 if (copy_from_user(&tr, argp, sizeof(tr)))
2670                         goto out;
2671                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2672                 if (r)
2673                         goto out;
2674                 r = -EFAULT;
2675                 if (copy_to_user(argp, &tr, sizeof(tr)))
2676                         goto out;
2677                 r = 0;
2678                 break;
2679         }
2680         case KVM_SET_GUEST_DEBUG: {
2681                 struct kvm_guest_debug dbg;
2682
2683                 r = -EFAULT;
2684                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2685                         goto out;
2686                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2687                 break;
2688         }
2689         case KVM_SET_SIGNAL_MASK: {
2690                 struct kvm_signal_mask __user *sigmask_arg = argp;
2691                 struct kvm_signal_mask kvm_sigmask;
2692                 sigset_t sigset, *p;
2693
2694                 p = NULL;
2695                 if (argp) {
2696                         r = -EFAULT;
2697                         if (copy_from_user(&kvm_sigmask, argp,
2698                                            sizeof(kvm_sigmask)))
2699                                 goto out;
2700                         r = -EINVAL;
2701                         if (kvm_sigmask.len != sizeof(sigset))
2702                                 goto out;
2703                         r = -EFAULT;
2704                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2705                                            sizeof(sigset)))
2706                                 goto out;
2707                         p = &sigset;
2708                 }
2709                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2710                 break;
2711         }
2712         case KVM_GET_FPU: {
2713                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2714                 r = -ENOMEM;
2715                 if (!fpu)
2716                         goto out;
2717                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2718                 if (r)
2719                         goto out;
2720                 r = -EFAULT;
2721                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2722                         goto out;
2723                 r = 0;
2724                 break;
2725         }
2726         case KVM_SET_FPU: {
2727                 fpu = memdup_user(argp, sizeof(*fpu));
2728                 if (IS_ERR(fpu)) {
2729                         r = PTR_ERR(fpu);
2730                         fpu = NULL;
2731                         goto out;
2732                 }
2733                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2734                 break;
2735         }
2736         default:
2737                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2738         }
2739 out:
2740         mutex_unlock(&vcpu->mutex);
2741         kfree(fpu);
2742         kfree(kvm_sregs);
2743         return r;
2744 }
2745
2746 #ifdef CONFIG_KVM_COMPAT
2747 static long kvm_vcpu_compat_ioctl(struct file *filp,
2748                                   unsigned int ioctl, unsigned long arg)
2749 {
2750         struct kvm_vcpu *vcpu = filp->private_data;
2751         void __user *argp = compat_ptr(arg);
2752         int r;
2753
2754         if (vcpu->kvm->mm != current->mm)
2755                 return -EIO;
2756
2757         switch (ioctl) {
2758         case KVM_SET_SIGNAL_MASK: {
2759                 struct kvm_signal_mask __user *sigmask_arg = argp;
2760                 struct kvm_signal_mask kvm_sigmask;
2761                 sigset_t sigset;
2762
2763                 if (argp) {
2764                         r = -EFAULT;
2765                         if (copy_from_user(&kvm_sigmask, argp,
2766                                            sizeof(kvm_sigmask)))
2767                                 goto out;
2768                         r = -EINVAL;
2769                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2770                                 goto out;
2771                         r = -EFAULT;
2772                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2773                                 goto out;
2774                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2775                 } else
2776                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2777                 break;
2778         }
2779         default:
2780                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2781         }
2782
2783 out:
2784         return r;
2785 }
2786 #endif
2787
2788 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2789                                  int (*accessor)(struct kvm_device *dev,
2790                                                  struct kvm_device_attr *attr),
2791                                  unsigned long arg)
2792 {
2793         struct kvm_device_attr attr;
2794
2795         if (!accessor)
2796                 return -EPERM;
2797
2798         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2799                 return -EFAULT;
2800
2801         return accessor(dev, &attr);
2802 }
2803
2804 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2805                              unsigned long arg)
2806 {
2807         struct kvm_device *dev = filp->private_data;
2808
2809         switch (ioctl) {
2810         case KVM_SET_DEVICE_ATTR:
2811                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2812         case KVM_GET_DEVICE_ATTR:
2813                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2814         case KVM_HAS_DEVICE_ATTR:
2815                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2816         default:
2817                 if (dev->ops->ioctl)
2818                         return dev->ops->ioctl(dev, ioctl, arg);
2819
2820                 return -ENOTTY;
2821         }
2822 }
2823
2824 static int kvm_device_release(struct inode *inode, struct file *filp)
2825 {
2826         struct kvm_device *dev = filp->private_data;
2827         struct kvm *kvm = dev->kvm;
2828
2829         kvm_put_kvm(kvm);
2830         return 0;
2831 }
2832
2833 static const struct file_operations kvm_device_fops = {
2834         .unlocked_ioctl = kvm_device_ioctl,
2835         .release = kvm_device_release,
2836         KVM_COMPAT(kvm_device_ioctl),
2837 };
2838
2839 struct kvm_device *kvm_device_from_filp(struct file *filp)
2840 {
2841         if (filp->f_op != &kvm_device_fops)
2842                 return NULL;
2843
2844         return filp->private_data;
2845 }
2846
2847 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2848 #ifdef CONFIG_KVM_MPIC
2849         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2850         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2851 #endif
2852 };
2853
2854 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2855 {
2856         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2857                 return -ENOSPC;
2858
2859         if (kvm_device_ops_table[type] != NULL)
2860                 return -EEXIST;
2861
2862         kvm_device_ops_table[type] = ops;
2863         return 0;
2864 }
2865
2866 void kvm_unregister_device_ops(u32 type)
2867 {
2868         if (kvm_device_ops_table[type] != NULL)
2869                 kvm_device_ops_table[type] = NULL;
2870 }
2871
2872 static int kvm_ioctl_create_device(struct kvm *kvm,
2873                                    struct kvm_create_device *cd)
2874 {
2875         struct kvm_device_ops *ops = NULL;
2876         struct kvm_device *dev;
2877         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2878         int ret;
2879
2880         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2881                 return -ENODEV;
2882
2883         ops = kvm_device_ops_table[cd->type];
2884         if (ops == NULL)
2885                 return -ENODEV;
2886
2887         if (test)
2888                 return 0;
2889
2890         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2891         if (!dev)
2892                 return -ENOMEM;
2893
2894         dev->ops = ops;
2895         dev->kvm = kvm;
2896
2897         mutex_lock(&kvm->lock);
2898         ret = ops->create(dev, cd->type);
2899         if (ret < 0) {
2900                 mutex_unlock(&kvm->lock);
2901                 kfree(dev);
2902                 return ret;
2903         }
2904         list_add(&dev->vm_node, &kvm->devices);
2905         mutex_unlock(&kvm->lock);
2906
2907         if (ops->init)
2908                 ops->init(dev);
2909
2910         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2911         if (ret < 0) {
2912                 mutex_lock(&kvm->lock);
2913                 list_del(&dev->vm_node);
2914                 mutex_unlock(&kvm->lock);
2915                 ops->destroy(dev);
2916                 return ret;
2917         }
2918
2919         kvm_get_kvm(kvm);
2920         cd->fd = ret;
2921         return 0;
2922 }
2923
2924 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2925 {
2926         switch (arg) {
2927         case KVM_CAP_USER_MEMORY:
2928         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2929         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2930         case KVM_CAP_INTERNAL_ERROR_DATA:
2931 #ifdef CONFIG_HAVE_KVM_MSI
2932         case KVM_CAP_SIGNAL_MSI:
2933 #endif
2934 #ifdef CONFIG_HAVE_KVM_IRQFD
2935         case KVM_CAP_IRQFD:
2936         case KVM_CAP_IRQFD_RESAMPLE:
2937 #endif
2938         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2939         case KVM_CAP_CHECK_EXTENSION_VM:
2940                 return 1;
2941 #ifdef CONFIG_KVM_MMIO
2942         case KVM_CAP_COALESCED_MMIO:
2943                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2944 #endif
2945 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2946         case KVM_CAP_IRQ_ROUTING:
2947                 return KVM_MAX_IRQ_ROUTES;
2948 #endif
2949 #if KVM_ADDRESS_SPACE_NUM > 1
2950         case KVM_CAP_MULTI_ADDRESS_SPACE:
2951                 return KVM_ADDRESS_SPACE_NUM;
2952 #endif
2953         case KVM_CAP_MAX_VCPU_ID:
2954                 return KVM_MAX_VCPU_ID;
2955         default:
2956                 break;
2957         }
2958         return kvm_vm_ioctl_check_extension(kvm, arg);
2959 }
2960
2961 static long kvm_vm_ioctl(struct file *filp,
2962                            unsigned int ioctl, unsigned long arg)
2963 {
2964         struct kvm *kvm = filp->private_data;
2965         void __user *argp = (void __user *)arg;
2966         int r;
2967
2968         if (kvm->mm != current->mm)
2969                 return -EIO;
2970         switch (ioctl) {
2971         case KVM_CREATE_VCPU:
2972                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2973                 break;
2974         case KVM_SET_USER_MEMORY_REGION: {
2975                 struct kvm_userspace_memory_region kvm_userspace_mem;
2976
2977                 r = -EFAULT;
2978                 if (copy_from_user(&kvm_userspace_mem, argp,
2979                                                 sizeof(kvm_userspace_mem)))
2980                         goto out;
2981
2982                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2983                 break;
2984         }
2985         case KVM_GET_DIRTY_LOG: {
2986                 struct kvm_dirty_log log;
2987
2988                 r = -EFAULT;
2989                 if (copy_from_user(&log, argp, sizeof(log)))
2990                         goto out;
2991                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2992                 break;
2993         }
2994 #ifdef CONFIG_KVM_MMIO
2995         case KVM_REGISTER_COALESCED_MMIO: {
2996                 struct kvm_coalesced_mmio_zone zone;
2997
2998                 r = -EFAULT;
2999                 if (copy_from_user(&zone, argp, sizeof(zone)))
3000                         goto out;
3001                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3002                 break;
3003         }
3004         case KVM_UNREGISTER_COALESCED_MMIO: {
3005                 struct kvm_coalesced_mmio_zone zone;
3006
3007                 r = -EFAULT;
3008                 if (copy_from_user(&zone, argp, sizeof(zone)))
3009                         goto out;
3010                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3011                 break;
3012         }
3013 #endif
3014         case KVM_IRQFD: {
3015                 struct kvm_irqfd data;
3016
3017                 r = -EFAULT;
3018                 if (copy_from_user(&data, argp, sizeof(data)))
3019                         goto out;
3020                 r = kvm_irqfd(kvm, &data);
3021                 break;
3022         }
3023         case KVM_IOEVENTFD: {
3024                 struct kvm_ioeventfd data;
3025
3026                 r = -EFAULT;
3027                 if (copy_from_user(&data, argp, sizeof(data)))
3028                         goto out;
3029                 r = kvm_ioeventfd(kvm, &data);
3030                 break;
3031         }
3032 #ifdef CONFIG_HAVE_KVM_MSI
3033         case KVM_SIGNAL_MSI: {
3034                 struct kvm_msi msi;
3035
3036                 r = -EFAULT;
3037                 if (copy_from_user(&msi, argp, sizeof(msi)))
3038                         goto out;
3039                 r = kvm_send_userspace_msi(kvm, &msi);
3040                 break;
3041         }
3042 #endif
3043 #ifdef __KVM_HAVE_IRQ_LINE
3044         case KVM_IRQ_LINE_STATUS:
3045         case KVM_IRQ_LINE: {
3046                 struct kvm_irq_level irq_event;
3047
3048                 r = -EFAULT;
3049                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3050                         goto out;
3051
3052                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3053                                         ioctl == KVM_IRQ_LINE_STATUS);
3054                 if (r)
3055                         goto out;
3056
3057                 r = -EFAULT;
3058                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3059                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3060                                 goto out;
3061                 }
3062
3063                 r = 0;
3064                 break;
3065         }
3066 #endif
3067 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3068         case KVM_SET_GSI_ROUTING: {
3069                 struct kvm_irq_routing routing;
3070                 struct kvm_irq_routing __user *urouting;
3071                 struct kvm_irq_routing_entry *entries = NULL;
3072
3073                 r = -EFAULT;
3074                 if (copy_from_user(&routing, argp, sizeof(routing)))
3075                         goto out;
3076                 r = -EINVAL;
3077                 if (!kvm_arch_can_set_irq_routing(kvm))
3078                         goto out;
3079                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3080                         goto out;
3081                 if (routing.flags)
3082                         goto out;
3083                 if (routing.nr) {
3084                         r = -ENOMEM;
3085                         entries = vmalloc(array_size(sizeof(*entries),
3086                                                      routing.nr));
3087                         if (!entries)
3088                                 goto out;
3089                         r = -EFAULT;
3090                         urouting = argp;
3091                         if (copy_from_user(entries, urouting->entries,
3092                                            routing.nr * sizeof(*entries)))
3093                                 goto out_free_irq_routing;
3094                 }
3095                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3096                                         routing.flags);
3097 out_free_irq_routing:
3098                 vfree(entries);
3099                 break;
3100         }
3101 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3102         case KVM_CREATE_DEVICE: {
3103                 struct kvm_create_device cd;
3104
3105                 r = -EFAULT;
3106                 if (copy_from_user(&cd, argp, sizeof(cd)))
3107                         goto out;
3108
3109                 r = kvm_ioctl_create_device(kvm, &cd);
3110                 if (r)
3111                         goto out;
3112
3113                 r = -EFAULT;
3114                 if (copy_to_user(argp, &cd, sizeof(cd)))
3115                         goto out;
3116
3117                 r = 0;
3118                 break;
3119         }
3120         case KVM_CHECK_EXTENSION:
3121                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3122                 break;
3123         default:
3124                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3125         }
3126 out:
3127         return r;
3128 }
3129
3130 #ifdef CONFIG_KVM_COMPAT
3131 struct compat_kvm_dirty_log {
3132         __u32 slot;
3133         __u32 padding1;
3134         union {
3135                 compat_uptr_t dirty_bitmap; /* one bit per page */
3136                 __u64 padding2;
3137         };
3138 };
3139
3140 static long kvm_vm_compat_ioctl(struct file *filp,
3141                            unsigned int ioctl, unsigned long arg)
3142 {
3143         struct kvm *kvm = filp->private_data;
3144         int r;
3145
3146         if (kvm->mm != current->mm)
3147                 return -EIO;
3148         switch (ioctl) {
3149         case KVM_GET_DIRTY_LOG: {
3150                 struct compat_kvm_dirty_log compat_log;
3151                 struct kvm_dirty_log log;
3152
3153                 if (copy_from_user(&compat_log, (void __user *)arg,
3154                                    sizeof(compat_log)))
3155                         return -EFAULT;
3156                 log.slot         = compat_log.slot;
3157                 log.padding1     = compat_log.padding1;
3158                 log.padding2     = compat_log.padding2;
3159                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3160
3161                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3162                 break;
3163         }
3164         default:
3165                 r = kvm_vm_ioctl(filp, ioctl, arg);
3166         }
3167         return r;
3168 }
3169 #endif
3170
3171 static struct file_operations kvm_vm_fops = {
3172         .release        = kvm_vm_release,
3173         .unlocked_ioctl = kvm_vm_ioctl,
3174         .llseek         = noop_llseek,
3175         KVM_COMPAT(kvm_vm_compat_ioctl),
3176 };
3177
3178 static int kvm_dev_ioctl_create_vm(unsigned long type)
3179 {
3180         int r;
3181         struct kvm *kvm;
3182         struct file *file;
3183
3184         kvm = kvm_create_vm(type);
3185         if (IS_ERR(kvm))
3186                 return PTR_ERR(kvm);
3187 #ifdef CONFIG_KVM_MMIO
3188         r = kvm_coalesced_mmio_init(kvm);
3189         if (r < 0)
3190                 goto put_kvm;
3191 #endif
3192         r = get_unused_fd_flags(O_CLOEXEC);
3193         if (r < 0)
3194                 goto put_kvm;
3195
3196         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3197         if (IS_ERR(file)) {
3198                 put_unused_fd(r);
3199                 r = PTR_ERR(file);
3200                 goto put_kvm;
3201         }
3202
3203         /*
3204          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3205          * already set, with ->release() being kvm_vm_release().  In error
3206          * cases it will be called by the final fput(file) and will take
3207          * care of doing kvm_put_kvm(kvm).
3208          */
3209         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3210                 put_unused_fd(r);
3211                 fput(file);
3212                 return -ENOMEM;
3213         }
3214         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3215
3216         fd_install(r, file);
3217         return r;
3218
3219 put_kvm:
3220         kvm_put_kvm(kvm);
3221         return r;
3222 }
3223
3224 static long kvm_dev_ioctl(struct file *filp,
3225                           unsigned int ioctl, unsigned long arg)
3226 {
3227         long r = -EINVAL;
3228
3229         switch (ioctl) {
3230         case KVM_GET_API_VERSION:
3231                 if (arg)
3232                         goto out;
3233                 r = KVM_API_VERSION;
3234                 break;
3235         case KVM_CREATE_VM:
3236                 r = kvm_dev_ioctl_create_vm(arg);
3237                 break;
3238         case KVM_CHECK_EXTENSION:
3239                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3240                 break;
3241         case KVM_GET_VCPU_MMAP_SIZE:
3242                 if (arg)
3243                         goto out;
3244                 r = PAGE_SIZE;     /* struct kvm_run */
3245 #ifdef CONFIG_X86
3246                 r += PAGE_SIZE;    /* pio data page */
3247 #endif
3248 #ifdef CONFIG_KVM_MMIO
3249                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3250 #endif
3251                 break;
3252         case KVM_TRACE_ENABLE:
3253         case KVM_TRACE_PAUSE:
3254         case KVM_TRACE_DISABLE:
3255                 r = -EOPNOTSUPP;
3256                 break;
3257         default:
3258                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3259         }
3260 out:
3261         return r;
3262 }
3263
3264 static struct file_operations kvm_chardev_ops = {
3265         .unlocked_ioctl = kvm_dev_ioctl,
3266         .llseek         = noop_llseek,
3267         KVM_COMPAT(kvm_dev_ioctl),
3268 };
3269
3270 static struct miscdevice kvm_dev = {
3271         KVM_MINOR,
3272         "kvm",
3273         &kvm_chardev_ops,
3274 };
3275
3276 static void hardware_enable_nolock(void *junk)
3277 {
3278         int cpu = raw_smp_processor_id();
3279         int r;
3280
3281         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3282                 return;
3283
3284         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3285
3286         r = kvm_arch_hardware_enable();
3287
3288         if (r) {
3289                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3290                 atomic_inc(&hardware_enable_failed);
3291                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3292         }
3293 }
3294
3295 static int kvm_starting_cpu(unsigned int cpu)
3296 {
3297         raw_spin_lock(&kvm_count_lock);
3298         if (kvm_usage_count)
3299                 hardware_enable_nolock(NULL);
3300         raw_spin_unlock(&kvm_count_lock);
3301         return 0;
3302 }
3303
3304 static void hardware_disable_nolock(void *junk)
3305 {
3306         int cpu = raw_smp_processor_id();
3307
3308         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3309                 return;
3310         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3311         kvm_arch_hardware_disable();
3312 }
3313
3314 static int kvm_dying_cpu(unsigned int cpu)
3315 {
3316         raw_spin_lock(&kvm_count_lock);
3317         if (kvm_usage_count)
3318                 hardware_disable_nolock(NULL);
3319         raw_spin_unlock(&kvm_count_lock);
3320         return 0;
3321 }
3322
3323 static void hardware_disable_all_nolock(void)
3324 {
3325         BUG_ON(!kvm_usage_count);
3326
3327         kvm_usage_count--;
3328         if (!kvm_usage_count)
3329                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3330 }
3331
3332 static void hardware_disable_all(void)
3333 {
3334         raw_spin_lock(&kvm_count_lock);
3335         hardware_disable_all_nolock();
3336         raw_spin_unlock(&kvm_count_lock);
3337 }
3338
3339 static int hardware_enable_all(void)
3340 {
3341         int r = 0;
3342
3343         raw_spin_lock(&kvm_count_lock);
3344
3345         kvm_usage_count++;
3346         if (kvm_usage_count == 1) {
3347                 atomic_set(&hardware_enable_failed, 0);
3348                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3349
3350                 if (atomic_read(&hardware_enable_failed)) {
3351                         hardware_disable_all_nolock();
3352                         r = -EBUSY;
3353                 }
3354         }
3355
3356         raw_spin_unlock(&kvm_count_lock);
3357
3358         return r;
3359 }
3360
3361 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3362                       void *v)
3363 {
3364         /*
3365          * Some (well, at least mine) BIOSes hang on reboot if
3366          * in vmx root mode.
3367          *
3368          * And Intel TXT required VMX off for all cpu when system shutdown.
3369          */
3370         pr_info("kvm: exiting hardware virtualization\n");
3371         kvm_rebooting = true;
3372         on_each_cpu(hardware_disable_nolock, NULL, 1);
3373         return NOTIFY_OK;
3374 }
3375
3376 static struct notifier_block kvm_reboot_notifier = {
3377         .notifier_call = kvm_reboot,
3378         .priority = 0,
3379 };
3380
3381 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3382 {
3383         int i;
3384
3385         for (i = 0; i < bus->dev_count; i++) {
3386                 struct kvm_io_device *pos = bus->range[i].dev;
3387
3388                 kvm_iodevice_destructor(pos);
3389         }
3390         kfree(bus);
3391 }
3392
3393 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3394                                  const struct kvm_io_range *r2)
3395 {
3396         gpa_t addr1 = r1->addr;
3397         gpa_t addr2 = r2->addr;
3398
3399         if (addr1 < addr2)
3400                 return -1;
3401
3402         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3403          * accept any overlapping write.  Any order is acceptable for
3404          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3405          * we process all of them.
3406          */
3407         if (r2->len) {
3408                 addr1 += r1->len;
3409                 addr2 += r2->len;
3410         }
3411
3412         if (addr1 > addr2)
3413                 return 1;
3414
3415         return 0;
3416 }
3417
3418 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3419 {
3420         return kvm_io_bus_cmp(p1, p2);
3421 }
3422
3423 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3424                              gpa_t addr, int len)
3425 {
3426         struct kvm_io_range *range, key;
3427         int off;
3428
3429         key = (struct kvm_io_range) {
3430                 .addr = addr,
3431                 .len = len,
3432         };
3433
3434         range = bsearch(&key, bus->range, bus->dev_count,
3435                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3436         if (range == NULL)
3437                 return -ENOENT;
3438
3439         off = range - bus->range;
3440
3441         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3442                 off--;
3443
3444         return off;
3445 }
3446
3447 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3448                               struct kvm_io_range *range, const void *val)
3449 {
3450         int idx;
3451
3452         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3453         if (idx < 0)
3454                 return -EOPNOTSUPP;
3455
3456         while (idx < bus->dev_count &&
3457                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3458                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3459                                         range->len, val))
3460                         return idx;
3461                 idx++;
3462         }
3463
3464         return -EOPNOTSUPP;
3465 }
3466
3467 /* kvm_io_bus_write - called under kvm->slots_lock */
3468 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3469                      int len, const void *val)
3470 {
3471         struct kvm_io_bus *bus;
3472         struct kvm_io_range range;
3473         int r;
3474
3475         range = (struct kvm_io_range) {
3476                 .addr = addr,
3477                 .len = len,
3478         };
3479
3480         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3481         if (!bus)
3482                 return -ENOMEM;
3483         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3484         return r < 0 ? r : 0;
3485 }
3486
3487 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3488 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3489                             gpa_t addr, int len, const void *val, long cookie)
3490 {
3491         struct kvm_io_bus *bus;
3492         struct kvm_io_range range;
3493
3494         range = (struct kvm_io_range) {
3495                 .addr = addr,
3496                 .len = len,
3497         };
3498
3499         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3500         if (!bus)
3501                 return -ENOMEM;
3502
3503         /* First try the device referenced by cookie. */
3504         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3505             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3506                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3507                                         val))
3508                         return cookie;
3509
3510         /*
3511          * cookie contained garbage; fall back to search and return the
3512          * correct cookie value.
3513          */
3514         return __kvm_io_bus_write(vcpu, bus, &range, val);
3515 }
3516
3517 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3518                              struct kvm_io_range *range, void *val)
3519 {
3520         int idx;
3521
3522         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3523         if (idx < 0)
3524                 return -EOPNOTSUPP;
3525
3526         while (idx < bus->dev_count &&
3527                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3528                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3529                                        range->len, val))
3530                         return idx;
3531                 idx++;
3532         }
3533
3534         return -EOPNOTSUPP;
3535 }
3536 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3537
3538 /* kvm_io_bus_read - called under kvm->slots_lock */
3539 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3540                     int len, void *val)
3541 {
3542         struct kvm_io_bus *bus;
3543         struct kvm_io_range range;
3544         int r;
3545
3546         range = (struct kvm_io_range) {
3547                 .addr = addr,
3548                 .len = len,
3549         };
3550
3551         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3552         if (!bus)
3553                 return -ENOMEM;
3554         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3555         return r < 0 ? r : 0;
3556 }
3557
3558
3559 /* Caller must hold slots_lock. */
3560 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3561                             int len, struct kvm_io_device *dev)
3562 {
3563         int i;
3564         struct kvm_io_bus *new_bus, *bus;
3565         struct kvm_io_range range;
3566
3567         bus = kvm_get_bus(kvm, bus_idx);
3568         if (!bus)
3569                 return -ENOMEM;
3570
3571         /* exclude ioeventfd which is limited by maximum fd */
3572         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3573                 return -ENOSPC;
3574
3575         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3576                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3577         if (!new_bus)
3578                 return -ENOMEM;
3579
3580         range = (struct kvm_io_range) {
3581                 .addr = addr,
3582                 .len = len,
3583                 .dev = dev,
3584         };
3585
3586         for (i = 0; i < bus->dev_count; i++)
3587                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3588                         break;
3589
3590         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3591         new_bus->dev_count++;
3592         new_bus->range[i] = range;
3593         memcpy(new_bus->range + i + 1, bus->range + i,
3594                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3595         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3596         synchronize_srcu_expedited(&kvm->srcu);
3597         kfree(bus);
3598
3599         return 0;
3600 }
3601
3602 /* Caller must hold slots_lock. */
3603 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3604                                struct kvm_io_device *dev)
3605 {
3606         int i;
3607         struct kvm_io_bus *new_bus, *bus;
3608
3609         bus = kvm_get_bus(kvm, bus_idx);
3610         if (!bus)
3611                 return;
3612
3613         for (i = 0; i < bus->dev_count; i++)
3614                 if (bus->range[i].dev == dev) {
3615                         break;
3616                 }
3617
3618         if (i == bus->dev_count)
3619                 return;
3620
3621         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3622                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3623         if (!new_bus)  {
3624                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3625                 goto broken;
3626         }
3627
3628         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3629         new_bus->dev_count--;
3630         memcpy(new_bus->range + i, bus->range + i + 1,
3631                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3632
3633 broken:
3634         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3635         synchronize_srcu_expedited(&kvm->srcu);
3636         kfree(bus);
3637         return;
3638 }
3639
3640 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3641                                          gpa_t addr)
3642 {
3643         struct kvm_io_bus *bus;
3644         int dev_idx, srcu_idx;
3645         struct kvm_io_device *iodev = NULL;
3646
3647         srcu_idx = srcu_read_lock(&kvm->srcu);
3648
3649         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3650         if (!bus)
3651                 goto out_unlock;
3652
3653         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3654         if (dev_idx < 0)
3655                 goto out_unlock;
3656
3657         iodev = bus->range[dev_idx].dev;
3658
3659 out_unlock:
3660         srcu_read_unlock(&kvm->srcu, srcu_idx);
3661
3662         return iodev;
3663 }
3664 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3665
3666 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3667                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3668                            const char *fmt)
3669 {
3670         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3671                                           inode->i_private;
3672
3673         /* The debugfs files are a reference to the kvm struct which
3674          * is still valid when kvm_destroy_vm is called.
3675          * To avoid the race between open and the removal of the debugfs
3676          * directory we test against the users count.
3677          */
3678         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3679                 return -ENOENT;
3680
3681         if (simple_attr_open(inode, file, get, set, fmt)) {
3682                 kvm_put_kvm(stat_data->kvm);
3683                 return -ENOMEM;
3684         }
3685
3686         return 0;
3687 }
3688
3689 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3690 {
3691         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3692                                           inode->i_private;
3693
3694         simple_attr_release(inode, file);
3695         kvm_put_kvm(stat_data->kvm);
3696
3697         return 0;
3698 }
3699
3700 static int vm_stat_get_per_vm(void *data, u64 *val)
3701 {
3702         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3703
3704         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3705
3706         return 0;
3707 }
3708
3709 static int vm_stat_clear_per_vm(void *data, u64 val)
3710 {
3711         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3712
3713         if (val)
3714                 return -EINVAL;
3715
3716         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3717
3718         return 0;
3719 }
3720
3721 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3722 {
3723         __simple_attr_check_format("%llu\n", 0ull);
3724         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3725                                 vm_stat_clear_per_vm, "%llu\n");
3726 }
3727
3728 static const struct file_operations vm_stat_get_per_vm_fops = {
3729         .owner   = THIS_MODULE,
3730         .open    = vm_stat_get_per_vm_open,
3731         .release = kvm_debugfs_release,
3732         .read    = simple_attr_read,
3733         .write   = simple_attr_write,
3734         .llseek  = no_llseek,
3735 };
3736
3737 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3738 {
3739         int i;
3740         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3741         struct kvm_vcpu *vcpu;
3742
3743         *val = 0;
3744
3745         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3746                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3747
3748         return 0;
3749 }
3750
3751 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3752 {
3753         int i;
3754         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3755         struct kvm_vcpu *vcpu;
3756
3757         if (val)
3758                 return -EINVAL;
3759
3760         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3761                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3762
3763         return 0;
3764 }
3765
3766 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3767 {
3768         __simple_attr_check_format("%llu\n", 0ull);
3769         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3770                                  vcpu_stat_clear_per_vm, "%llu\n");
3771 }
3772
3773 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3774         .owner   = THIS_MODULE,
3775         .open    = vcpu_stat_get_per_vm_open,
3776         .release = kvm_debugfs_release,
3777         .read    = simple_attr_read,
3778         .write   = simple_attr_write,
3779         .llseek  = no_llseek,
3780 };
3781
3782 static const struct file_operations *stat_fops_per_vm[] = {
3783         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3784         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3785 };
3786
3787 static int vm_stat_get(void *_offset, u64 *val)
3788 {
3789         unsigned offset = (long)_offset;
3790         struct kvm *kvm;
3791         struct kvm_stat_data stat_tmp = {.offset = offset};
3792         u64 tmp_val;
3793
3794         *val = 0;
3795         spin_lock(&kvm_lock);
3796         list_for_each_entry(kvm, &vm_list, vm_list) {
3797                 stat_tmp.kvm = kvm;
3798                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3799                 *val += tmp_val;
3800         }
3801         spin_unlock(&kvm_lock);
3802         return 0;
3803 }
3804
3805 static int vm_stat_clear(void *_offset, u64 val)
3806 {
3807         unsigned offset = (long)_offset;
3808         struct kvm *kvm;
3809         struct kvm_stat_data stat_tmp = {.offset = offset};
3810
3811         if (val)
3812                 return -EINVAL;
3813
3814         spin_lock(&kvm_lock);
3815         list_for_each_entry(kvm, &vm_list, vm_list) {
3816                 stat_tmp.kvm = kvm;
3817                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3818         }
3819         spin_unlock(&kvm_lock);
3820
3821         return 0;
3822 }
3823
3824 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3825
3826 static int vcpu_stat_get(void *_offset, u64 *val)
3827 {
3828         unsigned offset = (long)_offset;
3829         struct kvm *kvm;
3830         struct kvm_stat_data stat_tmp = {.offset = offset};
3831         u64 tmp_val;
3832
3833         *val = 0;
3834         spin_lock(&kvm_lock);
3835         list_for_each_entry(kvm, &vm_list, vm_list) {
3836                 stat_tmp.kvm = kvm;
3837                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3838                 *val += tmp_val;
3839         }
3840         spin_unlock(&kvm_lock);
3841         return 0;
3842 }
3843
3844 static int vcpu_stat_clear(void *_offset, u64 val)
3845 {
3846         unsigned offset = (long)_offset;
3847         struct kvm *kvm;
3848         struct kvm_stat_data stat_tmp = {.offset = offset};
3849
3850         if (val)
3851                 return -EINVAL;
3852
3853         spin_lock(&kvm_lock);
3854         list_for_each_entry(kvm, &vm_list, vm_list) {
3855                 stat_tmp.kvm = kvm;
3856                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3857         }
3858         spin_unlock(&kvm_lock);
3859
3860         return 0;
3861 }
3862
3863 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3864                         "%llu\n");
3865
3866 static const struct file_operations *stat_fops[] = {
3867         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3868         [KVM_STAT_VM]   = &vm_stat_fops,
3869 };
3870
3871 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3872 {
3873         struct kobj_uevent_env *env;
3874         unsigned long long created, active;
3875
3876         if (!kvm_dev.this_device || !kvm)
3877                 return;
3878
3879         spin_lock(&kvm_lock);
3880         if (type == KVM_EVENT_CREATE_VM) {
3881                 kvm_createvm_count++;
3882                 kvm_active_vms++;
3883         } else if (type == KVM_EVENT_DESTROY_VM) {
3884                 kvm_active_vms--;
3885         }
3886         created = kvm_createvm_count;
3887         active = kvm_active_vms;
3888         spin_unlock(&kvm_lock);
3889
3890         env = kzalloc(sizeof(*env), GFP_KERNEL);
3891         if (!env)
3892                 return;
3893
3894         add_uevent_var(env, "CREATED=%llu", created);
3895         add_uevent_var(env, "COUNT=%llu", active);
3896
3897         if (type == KVM_EVENT_CREATE_VM) {
3898                 add_uevent_var(env, "EVENT=create");
3899                 kvm->userspace_pid = task_pid_nr(current);
3900         } else if (type == KVM_EVENT_DESTROY_VM) {
3901                 add_uevent_var(env, "EVENT=destroy");
3902         }
3903         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3904
3905         if (kvm->debugfs_dentry) {
3906                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3907
3908                 if (p) {
3909                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3910                         if (!IS_ERR(tmp))
3911                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3912                         kfree(p);
3913                 }
3914         }
3915         /* no need for checks, since we are adding at most only 5 keys */
3916         env->envp[env->envp_idx++] = NULL;
3917         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3918         kfree(env);
3919 }
3920
3921 static void kvm_init_debug(void)
3922 {
3923         struct kvm_stats_debugfs_item *p;
3924
3925         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3926
3927         kvm_debugfs_num_entries = 0;
3928         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3929                 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3930                                     (void *)(long)p->offset,
3931                                     stat_fops[p->kind]);
3932         }
3933 }
3934
3935 static int kvm_suspend(void)
3936 {
3937         if (kvm_usage_count)
3938                 hardware_disable_nolock(NULL);
3939         return 0;
3940 }
3941
3942 static void kvm_resume(void)
3943 {
3944         if (kvm_usage_count) {
3945                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3946                 hardware_enable_nolock(NULL);
3947         }
3948 }
3949
3950 static struct syscore_ops kvm_syscore_ops = {
3951         .suspend = kvm_suspend,
3952         .resume = kvm_resume,
3953 };
3954
3955 static inline
3956 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3957 {
3958         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3959 }
3960
3961 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3962 {
3963         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3964
3965         if (vcpu->preempted)
3966                 vcpu->preempted = false;
3967
3968         kvm_arch_sched_in(vcpu, cpu);
3969
3970         kvm_arch_vcpu_load(vcpu, cpu);
3971 }
3972
3973 static void kvm_sched_out(struct preempt_notifier *pn,
3974                           struct task_struct *next)
3975 {
3976         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3977
3978         if (current->state == TASK_RUNNING)
3979                 vcpu->preempted = true;
3980         kvm_arch_vcpu_put(vcpu);
3981 }
3982
3983 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3984                   struct module *module)
3985 {
3986         int r;
3987         int cpu;
3988
3989         r = kvm_arch_init(opaque);
3990         if (r)
3991                 goto out_fail;
3992
3993         /*
3994          * kvm_arch_init makes sure there's at most one caller
3995          * for architectures that support multiple implementations,
3996          * like intel and amd on x86.
3997          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3998          * conflicts in case kvm is already setup for another implementation.
3999          */
4000         r = kvm_irqfd_init();
4001         if (r)
4002                 goto out_irqfd;
4003
4004         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4005                 r = -ENOMEM;
4006                 goto out_free_0;
4007         }
4008
4009         r = kvm_arch_hardware_setup();
4010         if (r < 0)
4011                 goto out_free_0a;
4012
4013         for_each_online_cpu(cpu) {
4014                 smp_call_function_single(cpu,
4015                                 kvm_arch_check_processor_compat,
4016                                 &r, 1);
4017                 if (r < 0)
4018                         goto out_free_1;
4019         }
4020
4021         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4022                                       kvm_starting_cpu, kvm_dying_cpu);
4023         if (r)
4024                 goto out_free_2;
4025         register_reboot_notifier(&kvm_reboot_notifier);
4026
4027         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4028         if (!vcpu_align)
4029                 vcpu_align = __alignof__(struct kvm_vcpu);
4030         kvm_vcpu_cache =
4031                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4032                                            SLAB_ACCOUNT,
4033                                            offsetof(struct kvm_vcpu, arch),
4034                                            sizeof_field(struct kvm_vcpu, arch),
4035                                            NULL);
4036         if (!kvm_vcpu_cache) {
4037                 r = -ENOMEM;
4038                 goto out_free_3;
4039         }
4040
4041         r = kvm_async_pf_init();
4042         if (r)
4043                 goto out_free;
4044
4045         kvm_chardev_ops.owner = module;
4046         kvm_vm_fops.owner = module;
4047         kvm_vcpu_fops.owner = module;
4048
4049         r = misc_register(&kvm_dev);
4050         if (r) {
4051                 pr_err("kvm: misc device register failed\n");
4052                 goto out_unreg;
4053         }
4054
4055         register_syscore_ops(&kvm_syscore_ops);
4056
4057         kvm_preempt_ops.sched_in = kvm_sched_in;
4058         kvm_preempt_ops.sched_out = kvm_sched_out;
4059
4060         kvm_init_debug();
4061
4062         r = kvm_vfio_ops_init();
4063         WARN_ON(r);
4064
4065         return 0;
4066
4067 out_unreg:
4068         kvm_async_pf_deinit();
4069 out_free:
4070         kmem_cache_destroy(kvm_vcpu_cache);
4071 out_free_3:
4072         unregister_reboot_notifier(&kvm_reboot_notifier);
4073         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4074 out_free_2:
4075 out_free_1:
4076         kvm_arch_hardware_unsetup();
4077 out_free_0a:
4078         free_cpumask_var(cpus_hardware_enabled);
4079 out_free_0:
4080         kvm_irqfd_exit();
4081 out_irqfd:
4082         kvm_arch_exit();
4083 out_fail:
4084         return r;
4085 }
4086 EXPORT_SYMBOL_GPL(kvm_init);
4087
4088 void kvm_exit(void)
4089 {
4090         debugfs_remove_recursive(kvm_debugfs_dir);
4091         misc_deregister(&kvm_dev);
4092         kmem_cache_destroy(kvm_vcpu_cache);
4093         kvm_async_pf_deinit();
4094         unregister_syscore_ops(&kvm_syscore_ops);
4095         unregister_reboot_notifier(&kvm_reboot_notifier);
4096         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4097         on_each_cpu(hardware_disable_nolock, NULL, 1);
4098         kvm_arch_hardware_unsetup();
4099         kvm_arch_exit();
4100         kvm_irqfd_exit();
4101         free_cpumask_var(cpus_hardware_enabled);
4102         kvm_vfio_ops_exit();
4103 }
4104 EXPORT_SYMBOL_GPL(kvm_exit);