Merge tag 'trace-v5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91
92 /*
93  * Ordering of locks:
94  *
95  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105
106 static struct kmem_cache *kvm_vcpu_cache;
107
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118                            unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121                                   unsigned long arg);
122 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
123 #else
124 /*
125  * For architectures that don't implement a compat infrastructure,
126  * adopt a double line of defense:
127  * - Prevent a compat task from opening /dev/kvm
128  * - If the open has been done by a 64bit task, and the KVM fd
129  *   passed to a compat task, let the ioctls fail.
130  */
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132                                 unsigned long arg) { return -EINVAL; }
133
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136         return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
139                         .open           = kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145
146 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
147
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156
157 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158                 unsigned long start, unsigned long end, bool blockable)
159 {
160         return 0;
161 }
162
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165         /*
166          * The metadata used by is_zone_device_page() to determine whether or
167          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168          * the device has been pinned, e.g. by get_user_pages().  WARN if the
169          * page_count() is zero to help detect bad usage of this helper.
170          */
171         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172                 return false;
173
174         return is_zone_device_page(pfn_to_page(pfn));
175 }
176
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179         /*
180          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181          * perspective they are "normal" pages, albeit with slightly different
182          * usage rules.
183          */
184         if (pfn_valid(pfn))
185                 return PageReserved(pfn_to_page(pfn)) &&
186                        !is_zero_pfn(pfn) &&
187                        !kvm_is_zone_device_pfn(pfn);
188
189         return true;
190 }
191
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194         struct page *page = pfn_to_page(pfn);
195
196         if (!PageTransCompoundMap(page))
197                 return false;
198
199         return is_transparent_hugepage(compound_head(page));
200 }
201
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207         int cpu = get_cpu();
208
209         __this_cpu_write(kvm_running_vcpu, vcpu);
210         preempt_notifier_register(&vcpu->preempt_notifier);
211         kvm_arch_vcpu_load(vcpu, cpu);
212         put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218         preempt_disable();
219         kvm_arch_vcpu_put(vcpu);
220         preempt_notifier_unregister(&vcpu->preempt_notifier);
221         __this_cpu_write(kvm_running_vcpu, NULL);
222         preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230
231         /*
232          * We need to wait for the VCPU to reenable interrupts and get out of
233          * READING_SHADOW_PAGE_TABLES mode.
234          */
235         if (req & KVM_REQUEST_WAIT)
236                 return mode != OUTSIDE_GUEST_MODE;
237
238         /*
239          * Need to kick a running VCPU, but otherwise there is nothing to do.
240          */
241         return mode == IN_GUEST_MODE;
242 }
243
244 static void ack_flush(void *_completed)
245 {
246 }
247
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250         if (unlikely(!cpus))
251                 cpus = cpu_online_mask;
252
253         if (cpumask_empty(cpus))
254                 return false;
255
256         smp_call_function_many(cpus, ack_flush, NULL, wait);
257         return true;
258 }
259
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261                                  struct kvm_vcpu *except,
262                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264         int i, cpu, me;
265         struct kvm_vcpu *vcpu;
266         bool called;
267
268         me = get_cpu();
269
270         kvm_for_each_vcpu(i, vcpu, kvm) {
271                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272                     vcpu == except)
273                         continue;
274
275                 kvm_make_request(req, vcpu);
276                 cpu = vcpu->cpu;
277
278                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279                         continue;
280
281                 if (tmp != NULL && cpu != -1 && cpu != me &&
282                     kvm_request_needs_ipi(vcpu, req))
283                         __cpumask_set_cpu(cpu, tmp);
284         }
285
286         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287         put_cpu();
288
289         return called;
290 }
291
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293                                       struct kvm_vcpu *except)
294 {
295         cpumask_var_t cpus;
296         bool called;
297
298         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
300         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301
302         free_cpumask_var(cpus);
303         return called;
304 }
305
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308         return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310
311 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
312 void kvm_flush_remote_tlbs(struct kvm *kvm)
313 {
314         /*
315          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
316          * kvm_make_all_cpus_request.
317          */
318         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
319
320         /*
321          * We want to publish modifications to the page tables before reading
322          * mode. Pairs with a memory barrier in arch-specific code.
323          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
324          * and smp_mb in walk_shadow_page_lockless_begin/end.
325          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
326          *
327          * There is already an smp_mb__after_atomic() before
328          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
329          * barrier here.
330          */
331         if (!kvm_arch_flush_remote_tlb(kvm)
332             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
333                 ++kvm->stat.remote_tlb_flush;
334         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
335 }
336 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
337 #endif
338
339 void kvm_reload_remote_mmus(struct kvm *kvm)
340 {
341         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
342 }
343
344 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
345 {
346         mutex_init(&vcpu->mutex);
347         vcpu->cpu = -1;
348         vcpu->kvm = kvm;
349         vcpu->vcpu_id = id;
350         vcpu->pid = NULL;
351         rcuwait_init(&vcpu->wait);
352         kvm_async_pf_vcpu_init(vcpu);
353
354         vcpu->pre_pcpu = -1;
355         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
356
357         kvm_vcpu_set_in_spin_loop(vcpu, false);
358         kvm_vcpu_set_dy_eligible(vcpu, false);
359         vcpu->preempted = false;
360         vcpu->ready = false;
361         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
362 }
363
364 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
365 {
366         kvm_arch_vcpu_destroy(vcpu);
367
368         /*
369          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
370          * the vcpu->pid pointer, and at destruction time all file descriptors
371          * are already gone.
372          */
373         put_pid(rcu_dereference_protected(vcpu->pid, 1));
374
375         free_page((unsigned long)vcpu->run);
376         kmem_cache_free(kvm_vcpu_cache, vcpu);
377 }
378 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
379
380 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
381 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
382 {
383         return container_of(mn, struct kvm, mmu_notifier);
384 }
385
386 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
387                                         struct mm_struct *mm,
388                                         unsigned long address,
389                                         pte_t pte)
390 {
391         struct kvm *kvm = mmu_notifier_to_kvm(mn);
392         int idx;
393
394         idx = srcu_read_lock(&kvm->srcu);
395         spin_lock(&kvm->mmu_lock);
396         kvm->mmu_notifier_seq++;
397
398         if (kvm_set_spte_hva(kvm, address, pte))
399                 kvm_flush_remote_tlbs(kvm);
400
401         spin_unlock(&kvm->mmu_lock);
402         srcu_read_unlock(&kvm->srcu, idx);
403 }
404
405 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
406                                         const struct mmu_notifier_range *range)
407 {
408         struct kvm *kvm = mmu_notifier_to_kvm(mn);
409         int need_tlb_flush = 0, idx;
410         int ret;
411
412         idx = srcu_read_lock(&kvm->srcu);
413         spin_lock(&kvm->mmu_lock);
414         /*
415          * The count increase must become visible at unlock time as no
416          * spte can be established without taking the mmu_lock and
417          * count is also read inside the mmu_lock critical section.
418          */
419         kvm->mmu_notifier_count++;
420         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
421         need_tlb_flush |= kvm->tlbs_dirty;
422         /* we've to flush the tlb before the pages can be freed */
423         if (need_tlb_flush)
424                 kvm_flush_remote_tlbs(kvm);
425
426         spin_unlock(&kvm->mmu_lock);
427
428         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
429                                         range->end,
430                                         mmu_notifier_range_blockable(range));
431
432         srcu_read_unlock(&kvm->srcu, idx);
433
434         return ret;
435 }
436
437 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
438                                         const struct mmu_notifier_range *range)
439 {
440         struct kvm *kvm = mmu_notifier_to_kvm(mn);
441
442         spin_lock(&kvm->mmu_lock);
443         /*
444          * This sequence increase will notify the kvm page fault that
445          * the page that is going to be mapped in the spte could have
446          * been freed.
447          */
448         kvm->mmu_notifier_seq++;
449         smp_wmb();
450         /*
451          * The above sequence increase must be visible before the
452          * below count decrease, which is ensured by the smp_wmb above
453          * in conjunction with the smp_rmb in mmu_notifier_retry().
454          */
455         kvm->mmu_notifier_count--;
456         spin_unlock(&kvm->mmu_lock);
457
458         BUG_ON(kvm->mmu_notifier_count < 0);
459 }
460
461 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
462                                               struct mm_struct *mm,
463                                               unsigned long start,
464                                               unsigned long end)
465 {
466         struct kvm *kvm = mmu_notifier_to_kvm(mn);
467         int young, idx;
468
469         idx = srcu_read_lock(&kvm->srcu);
470         spin_lock(&kvm->mmu_lock);
471
472         young = kvm_age_hva(kvm, start, end);
473         if (young)
474                 kvm_flush_remote_tlbs(kvm);
475
476         spin_unlock(&kvm->mmu_lock);
477         srcu_read_unlock(&kvm->srcu, idx);
478
479         return young;
480 }
481
482 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
483                                         struct mm_struct *mm,
484                                         unsigned long start,
485                                         unsigned long end)
486 {
487         struct kvm *kvm = mmu_notifier_to_kvm(mn);
488         int young, idx;
489
490         idx = srcu_read_lock(&kvm->srcu);
491         spin_lock(&kvm->mmu_lock);
492         /*
493          * Even though we do not flush TLB, this will still adversely
494          * affect performance on pre-Haswell Intel EPT, where there is
495          * no EPT Access Bit to clear so that we have to tear down EPT
496          * tables instead. If we find this unacceptable, we can always
497          * add a parameter to kvm_age_hva so that it effectively doesn't
498          * do anything on clear_young.
499          *
500          * Also note that currently we never issue secondary TLB flushes
501          * from clear_young, leaving this job up to the regular system
502          * cadence. If we find this inaccurate, we might come up with a
503          * more sophisticated heuristic later.
504          */
505         young = kvm_age_hva(kvm, start, end);
506         spin_unlock(&kvm->mmu_lock);
507         srcu_read_unlock(&kvm->srcu, idx);
508
509         return young;
510 }
511
512 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
513                                        struct mm_struct *mm,
514                                        unsigned long address)
515 {
516         struct kvm *kvm = mmu_notifier_to_kvm(mn);
517         int young, idx;
518
519         idx = srcu_read_lock(&kvm->srcu);
520         spin_lock(&kvm->mmu_lock);
521         young = kvm_test_age_hva(kvm, address);
522         spin_unlock(&kvm->mmu_lock);
523         srcu_read_unlock(&kvm->srcu, idx);
524
525         return young;
526 }
527
528 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
529                                      struct mm_struct *mm)
530 {
531         struct kvm *kvm = mmu_notifier_to_kvm(mn);
532         int idx;
533
534         idx = srcu_read_lock(&kvm->srcu);
535         kvm_arch_flush_shadow_all(kvm);
536         srcu_read_unlock(&kvm->srcu, idx);
537 }
538
539 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
540         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
541         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
542         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
543         .clear_young            = kvm_mmu_notifier_clear_young,
544         .test_young             = kvm_mmu_notifier_test_young,
545         .change_pte             = kvm_mmu_notifier_change_pte,
546         .release                = kvm_mmu_notifier_release,
547 };
548
549 static int kvm_init_mmu_notifier(struct kvm *kvm)
550 {
551         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
552         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
553 }
554
555 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
556
557 static int kvm_init_mmu_notifier(struct kvm *kvm)
558 {
559         return 0;
560 }
561
562 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
563
564 static struct kvm_memslots *kvm_alloc_memslots(void)
565 {
566         int i;
567         struct kvm_memslots *slots;
568
569         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
570         if (!slots)
571                 return NULL;
572
573         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
574                 slots->id_to_index[i] = -1;
575
576         return slots;
577 }
578
579 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
580 {
581         if (!memslot->dirty_bitmap)
582                 return;
583
584         kvfree(memslot->dirty_bitmap);
585         memslot->dirty_bitmap = NULL;
586 }
587
588 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
589 {
590         kvm_destroy_dirty_bitmap(slot);
591
592         kvm_arch_free_memslot(kvm, slot);
593
594         slot->flags = 0;
595         slot->npages = 0;
596 }
597
598 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
599 {
600         struct kvm_memory_slot *memslot;
601
602         if (!slots)
603                 return;
604
605         kvm_for_each_memslot(memslot, slots)
606                 kvm_free_memslot(kvm, memslot);
607
608         kvfree(slots);
609 }
610
611 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
612 {
613         int i;
614
615         if (!kvm->debugfs_dentry)
616                 return;
617
618         debugfs_remove_recursive(kvm->debugfs_dentry);
619
620         if (kvm->debugfs_stat_data) {
621                 for (i = 0; i < kvm_debugfs_num_entries; i++)
622                         kfree(kvm->debugfs_stat_data[i]);
623                 kfree(kvm->debugfs_stat_data);
624         }
625 }
626
627 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
628 {
629         char dir_name[ITOA_MAX_LEN * 2];
630         struct kvm_stat_data *stat_data;
631         struct kvm_stats_debugfs_item *p;
632
633         if (!debugfs_initialized())
634                 return 0;
635
636         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
637         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
638
639         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
640                                          sizeof(*kvm->debugfs_stat_data),
641                                          GFP_KERNEL_ACCOUNT);
642         if (!kvm->debugfs_stat_data)
643                 return -ENOMEM;
644
645         for (p = debugfs_entries; p->name; p++) {
646                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
647                 if (!stat_data)
648                         return -ENOMEM;
649
650                 stat_data->kvm = kvm;
651                 stat_data->dbgfs_item = p;
652                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
653                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
654                                     kvm->debugfs_dentry, stat_data,
655                                     &stat_fops_per_vm);
656         }
657         return 0;
658 }
659
660 /*
661  * Called after the VM is otherwise initialized, but just before adding it to
662  * the vm_list.
663  */
664 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
665 {
666         return 0;
667 }
668
669 /*
670  * Called just after removing the VM from the vm_list, but before doing any
671  * other destruction.
672  */
673 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
674 {
675 }
676
677 static struct kvm *kvm_create_vm(unsigned long type)
678 {
679         struct kvm *kvm = kvm_arch_alloc_vm();
680         int r = -ENOMEM;
681         int i;
682
683         if (!kvm)
684                 return ERR_PTR(-ENOMEM);
685
686         spin_lock_init(&kvm->mmu_lock);
687         mmgrab(current->mm);
688         kvm->mm = current->mm;
689         kvm_eventfd_init(kvm);
690         mutex_init(&kvm->lock);
691         mutex_init(&kvm->irq_lock);
692         mutex_init(&kvm->slots_lock);
693         INIT_LIST_HEAD(&kvm->devices);
694
695         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
696
697         if (init_srcu_struct(&kvm->srcu))
698                 goto out_err_no_srcu;
699         if (init_srcu_struct(&kvm->irq_srcu))
700                 goto out_err_no_irq_srcu;
701
702         refcount_set(&kvm->users_count, 1);
703         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
704                 struct kvm_memslots *slots = kvm_alloc_memslots();
705
706                 if (!slots)
707                         goto out_err_no_arch_destroy_vm;
708                 /* Generations must be different for each address space. */
709                 slots->generation = i;
710                 rcu_assign_pointer(kvm->memslots[i], slots);
711         }
712
713         for (i = 0; i < KVM_NR_BUSES; i++) {
714                 rcu_assign_pointer(kvm->buses[i],
715                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
716                 if (!kvm->buses[i])
717                         goto out_err_no_arch_destroy_vm;
718         }
719
720         kvm->max_halt_poll_ns = halt_poll_ns;
721
722         r = kvm_arch_init_vm(kvm, type);
723         if (r)
724                 goto out_err_no_arch_destroy_vm;
725
726         r = hardware_enable_all();
727         if (r)
728                 goto out_err_no_disable;
729
730 #ifdef CONFIG_HAVE_KVM_IRQFD
731         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
732 #endif
733
734         r = kvm_init_mmu_notifier(kvm);
735         if (r)
736                 goto out_err_no_mmu_notifier;
737
738         r = kvm_arch_post_init_vm(kvm);
739         if (r)
740                 goto out_err;
741
742         mutex_lock(&kvm_lock);
743         list_add(&kvm->vm_list, &vm_list);
744         mutex_unlock(&kvm_lock);
745
746         preempt_notifier_inc();
747
748         return kvm;
749
750 out_err:
751 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
752         if (kvm->mmu_notifier.ops)
753                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
754 #endif
755 out_err_no_mmu_notifier:
756         hardware_disable_all();
757 out_err_no_disable:
758         kvm_arch_destroy_vm(kvm);
759 out_err_no_arch_destroy_vm:
760         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
761         for (i = 0; i < KVM_NR_BUSES; i++)
762                 kfree(kvm_get_bus(kvm, i));
763         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
764                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
765         cleanup_srcu_struct(&kvm->irq_srcu);
766 out_err_no_irq_srcu:
767         cleanup_srcu_struct(&kvm->srcu);
768 out_err_no_srcu:
769         kvm_arch_free_vm(kvm);
770         mmdrop(current->mm);
771         return ERR_PTR(r);
772 }
773
774 static void kvm_destroy_devices(struct kvm *kvm)
775 {
776         struct kvm_device *dev, *tmp;
777
778         /*
779          * We do not need to take the kvm->lock here, because nobody else
780          * has a reference to the struct kvm at this point and therefore
781          * cannot access the devices list anyhow.
782          */
783         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
784                 list_del(&dev->vm_node);
785                 dev->ops->destroy(dev);
786         }
787 }
788
789 static void kvm_destroy_vm(struct kvm *kvm)
790 {
791         int i;
792         struct mm_struct *mm = kvm->mm;
793
794         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
795         kvm_destroy_vm_debugfs(kvm);
796         kvm_arch_sync_events(kvm);
797         mutex_lock(&kvm_lock);
798         list_del(&kvm->vm_list);
799         mutex_unlock(&kvm_lock);
800         kvm_arch_pre_destroy_vm(kvm);
801
802         kvm_free_irq_routing(kvm);
803         for (i = 0; i < KVM_NR_BUSES; i++) {
804                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
805
806                 if (bus)
807                         kvm_io_bus_destroy(bus);
808                 kvm->buses[i] = NULL;
809         }
810         kvm_coalesced_mmio_free(kvm);
811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
813 #else
814         kvm_arch_flush_shadow_all(kvm);
815 #endif
816         kvm_arch_destroy_vm(kvm);
817         kvm_destroy_devices(kvm);
818         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
819                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820         cleanup_srcu_struct(&kvm->irq_srcu);
821         cleanup_srcu_struct(&kvm->srcu);
822         kvm_arch_free_vm(kvm);
823         preempt_notifier_dec();
824         hardware_disable_all();
825         mmdrop(mm);
826 }
827
828 void kvm_get_kvm(struct kvm *kvm)
829 {
830         refcount_inc(&kvm->users_count);
831 }
832 EXPORT_SYMBOL_GPL(kvm_get_kvm);
833
834 void kvm_put_kvm(struct kvm *kvm)
835 {
836         if (refcount_dec_and_test(&kvm->users_count))
837                 kvm_destroy_vm(kvm);
838 }
839 EXPORT_SYMBOL_GPL(kvm_put_kvm);
840
841 /*
842  * Used to put a reference that was taken on behalf of an object associated
843  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
844  * of the new file descriptor fails and the reference cannot be transferred to
845  * its final owner.  In such cases, the caller is still actively using @kvm and
846  * will fail miserably if the refcount unexpectedly hits zero.
847  */
848 void kvm_put_kvm_no_destroy(struct kvm *kvm)
849 {
850         WARN_ON(refcount_dec_and_test(&kvm->users_count));
851 }
852 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
853
854 static int kvm_vm_release(struct inode *inode, struct file *filp)
855 {
856         struct kvm *kvm = filp->private_data;
857
858         kvm_irqfd_release(kvm);
859
860         kvm_put_kvm(kvm);
861         return 0;
862 }
863
864 /*
865  * Allocation size is twice as large as the actual dirty bitmap size.
866  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
867  */
868 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
869 {
870         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
871
872         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
873         if (!memslot->dirty_bitmap)
874                 return -ENOMEM;
875
876         return 0;
877 }
878
879 /*
880  * Delete a memslot by decrementing the number of used slots and shifting all
881  * other entries in the array forward one spot.
882  */
883 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
884                                       struct kvm_memory_slot *memslot)
885 {
886         struct kvm_memory_slot *mslots = slots->memslots;
887         int i;
888
889         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
890                 return;
891
892         slots->used_slots--;
893
894         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
895                 atomic_set(&slots->lru_slot, 0);
896
897         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
898                 mslots[i] = mslots[i + 1];
899                 slots->id_to_index[mslots[i].id] = i;
900         }
901         mslots[i] = *memslot;
902         slots->id_to_index[memslot->id] = -1;
903 }
904
905 /*
906  * "Insert" a new memslot by incrementing the number of used slots.  Returns
907  * the new slot's initial index into the memslots array.
908  */
909 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
910 {
911         return slots->used_slots++;
912 }
913
914 /*
915  * Move a changed memslot backwards in the array by shifting existing slots
916  * with a higher GFN toward the front of the array.  Note, the changed memslot
917  * itself is not preserved in the array, i.e. not swapped at this time, only
918  * its new index into the array is tracked.  Returns the changed memslot's
919  * current index into the memslots array.
920  */
921 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
922                                             struct kvm_memory_slot *memslot)
923 {
924         struct kvm_memory_slot *mslots = slots->memslots;
925         int i;
926
927         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
928             WARN_ON_ONCE(!slots->used_slots))
929                 return -1;
930
931         /*
932          * Move the target memslot backward in the array by shifting existing
933          * memslots with a higher GFN (than the target memslot) towards the
934          * front of the array.
935          */
936         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
937                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
938                         break;
939
940                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
941
942                 /* Shift the next memslot forward one and update its index. */
943                 mslots[i] = mslots[i + 1];
944                 slots->id_to_index[mslots[i].id] = i;
945         }
946         return i;
947 }
948
949 /*
950  * Move a changed memslot forwards in the array by shifting existing slots with
951  * a lower GFN toward the back of the array.  Note, the changed memslot itself
952  * is not preserved in the array, i.e. not swapped at this time, only its new
953  * index into the array is tracked.  Returns the changed memslot's final index
954  * into the memslots array.
955  */
956 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
957                                            struct kvm_memory_slot *memslot,
958                                            int start)
959 {
960         struct kvm_memory_slot *mslots = slots->memslots;
961         int i;
962
963         for (i = start; i > 0; i--) {
964                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
965                         break;
966
967                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
968
969                 /* Shift the next memslot back one and update its index. */
970                 mslots[i] = mslots[i - 1];
971                 slots->id_to_index[mslots[i].id] = i;
972         }
973         return i;
974 }
975
976 /*
977  * Re-sort memslots based on their GFN to account for an added, deleted, or
978  * moved memslot.  Sorting memslots by GFN allows using a binary search during
979  * memslot lookup.
980  *
981  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
982  * at memslots[0] has the highest GFN.
983  *
984  * The sorting algorithm takes advantage of having initially sorted memslots
985  * and knowing the position of the changed memslot.  Sorting is also optimized
986  * by not swapping the updated memslot and instead only shifting other memslots
987  * and tracking the new index for the update memslot.  Only once its final
988  * index is known is the updated memslot copied into its position in the array.
989  *
990  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
991  *    the end of the array.
992  *
993  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
994  *    end of the array and then it forward to its correct location.
995  *
996  *  - When moving a memslot, the algorithm first moves the updated memslot
997  *    backward to handle the scenario where the memslot's GFN was changed to a
998  *    lower value.  update_memslots() then falls through and runs the same flow
999  *    as creating a memslot to move the memslot forward to handle the scenario
1000  *    where its GFN was changed to a higher value.
1001  *
1002  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1003  * historical reasons.  Originally, invalid memslots where denoted by having
1004  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1005  * to the end of the array.  The current algorithm uses dedicated logic to
1006  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1007  *
1008  * The other historical motiviation for highest->lowest was to improve the
1009  * performance of memslot lookup.  KVM originally used a linear search starting
1010  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1011  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1012  * single memslot above the 4gb boundary.  As the largest memslot is also the
1013  * most likely to be referenced, sorting it to the front of the array was
1014  * advantageous.  The current binary search starts from the middle of the array
1015  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1016  */
1017 static void update_memslots(struct kvm_memslots *slots,
1018                             struct kvm_memory_slot *memslot,
1019                             enum kvm_mr_change change)
1020 {
1021         int i;
1022
1023         if (change == KVM_MR_DELETE) {
1024                 kvm_memslot_delete(slots, memslot);
1025         } else {
1026                 if (change == KVM_MR_CREATE)
1027                         i = kvm_memslot_insert_back(slots);
1028                 else
1029                         i = kvm_memslot_move_backward(slots, memslot);
1030                 i = kvm_memslot_move_forward(slots, memslot, i);
1031
1032                 /*
1033                  * Copy the memslot to its new position in memslots and update
1034                  * its index accordingly.
1035                  */
1036                 slots->memslots[i] = *memslot;
1037                 slots->id_to_index[memslot->id] = i;
1038         }
1039 }
1040
1041 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1042 {
1043         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1044
1045 #ifdef __KVM_HAVE_READONLY_MEM
1046         valid_flags |= KVM_MEM_READONLY;
1047 #endif
1048
1049         if (mem->flags & ~valid_flags)
1050                 return -EINVAL;
1051
1052         return 0;
1053 }
1054
1055 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1056                 int as_id, struct kvm_memslots *slots)
1057 {
1058         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1059         u64 gen = old_memslots->generation;
1060
1061         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1062         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1063
1064         rcu_assign_pointer(kvm->memslots[as_id], slots);
1065         synchronize_srcu_expedited(&kvm->srcu);
1066
1067         /*
1068          * Increment the new memslot generation a second time, dropping the
1069          * update in-progress flag and incrementing the generation based on
1070          * the number of address spaces.  This provides a unique and easily
1071          * identifiable generation number while the memslots are in flux.
1072          */
1073         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1074
1075         /*
1076          * Generations must be unique even across address spaces.  We do not need
1077          * a global counter for that, instead the generation space is evenly split
1078          * across address spaces.  For example, with two address spaces, address
1079          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1080          * use generations 1, 3, 5, ...
1081          */
1082         gen += KVM_ADDRESS_SPACE_NUM;
1083
1084         kvm_arch_memslots_updated(kvm, gen);
1085
1086         slots->generation = gen;
1087
1088         return old_memslots;
1089 }
1090
1091 /*
1092  * Note, at a minimum, the current number of used slots must be allocated, even
1093  * when deleting a memslot, as we need a complete duplicate of the memslots for
1094  * use when invalidating a memslot prior to deleting/moving the memslot.
1095  */
1096 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1097                                              enum kvm_mr_change change)
1098 {
1099         struct kvm_memslots *slots;
1100         size_t old_size, new_size;
1101
1102         old_size = sizeof(struct kvm_memslots) +
1103                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1104
1105         if (change == KVM_MR_CREATE)
1106                 new_size = old_size + sizeof(struct kvm_memory_slot);
1107         else
1108                 new_size = old_size;
1109
1110         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1111         if (likely(slots))
1112                 memcpy(slots, old, old_size);
1113
1114         return slots;
1115 }
1116
1117 static int kvm_set_memslot(struct kvm *kvm,
1118                            const struct kvm_userspace_memory_region *mem,
1119                            struct kvm_memory_slot *old,
1120                            struct kvm_memory_slot *new, int as_id,
1121                            enum kvm_mr_change change)
1122 {
1123         struct kvm_memory_slot *slot;
1124         struct kvm_memslots *slots;
1125         int r;
1126
1127         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1128         if (!slots)
1129                 return -ENOMEM;
1130
1131         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1132                 /*
1133                  * Note, the INVALID flag needs to be in the appropriate entry
1134                  * in the freshly allocated memslots, not in @old or @new.
1135                  */
1136                 slot = id_to_memslot(slots, old->id);
1137                 slot->flags |= KVM_MEMSLOT_INVALID;
1138
1139                 /*
1140                  * We can re-use the old memslots, the only difference from the
1141                  * newly installed memslots is the invalid flag, which will get
1142                  * dropped by update_memslots anyway.  We'll also revert to the
1143                  * old memslots if preparing the new memory region fails.
1144                  */
1145                 slots = install_new_memslots(kvm, as_id, slots);
1146
1147                 /* From this point no new shadow pages pointing to a deleted,
1148                  * or moved, memslot will be created.
1149                  *
1150                  * validation of sp->gfn happens in:
1151                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1152                  *      - kvm_is_visible_gfn (mmu_check_root)
1153                  */
1154                 kvm_arch_flush_shadow_memslot(kvm, slot);
1155         }
1156
1157         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1158         if (r)
1159                 goto out_slots;
1160
1161         update_memslots(slots, new, change);
1162         slots = install_new_memslots(kvm, as_id, slots);
1163
1164         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1165
1166         kvfree(slots);
1167         return 0;
1168
1169 out_slots:
1170         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1171                 slots = install_new_memslots(kvm, as_id, slots);
1172         kvfree(slots);
1173         return r;
1174 }
1175
1176 static int kvm_delete_memslot(struct kvm *kvm,
1177                               const struct kvm_userspace_memory_region *mem,
1178                               struct kvm_memory_slot *old, int as_id)
1179 {
1180         struct kvm_memory_slot new;
1181         int r;
1182
1183         if (!old->npages)
1184                 return -EINVAL;
1185
1186         memset(&new, 0, sizeof(new));
1187         new.id = old->id;
1188
1189         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1190         if (r)
1191                 return r;
1192
1193         kvm_free_memslot(kvm, old);
1194         return 0;
1195 }
1196
1197 /*
1198  * Allocate some memory and give it an address in the guest physical address
1199  * space.
1200  *
1201  * Discontiguous memory is allowed, mostly for framebuffers.
1202  *
1203  * Must be called holding kvm->slots_lock for write.
1204  */
1205 int __kvm_set_memory_region(struct kvm *kvm,
1206                             const struct kvm_userspace_memory_region *mem)
1207 {
1208         struct kvm_memory_slot old, new;
1209         struct kvm_memory_slot *tmp;
1210         enum kvm_mr_change change;
1211         int as_id, id;
1212         int r;
1213
1214         r = check_memory_region_flags(mem);
1215         if (r)
1216                 return r;
1217
1218         as_id = mem->slot >> 16;
1219         id = (u16)mem->slot;
1220
1221         /* General sanity checks */
1222         if (mem->memory_size & (PAGE_SIZE - 1))
1223                 return -EINVAL;
1224         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1225                 return -EINVAL;
1226         /* We can read the guest memory with __xxx_user() later on. */
1227         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1228              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1229                         mem->memory_size))
1230                 return -EINVAL;
1231         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1232                 return -EINVAL;
1233         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1234                 return -EINVAL;
1235
1236         /*
1237          * Make a full copy of the old memslot, the pointer will become stale
1238          * when the memslots are re-sorted by update_memslots(), and the old
1239          * memslot needs to be referenced after calling update_memslots(), e.g.
1240          * to free its resources and for arch specific behavior.
1241          */
1242         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1243         if (tmp) {
1244                 old = *tmp;
1245                 tmp = NULL;
1246         } else {
1247                 memset(&old, 0, sizeof(old));
1248                 old.id = id;
1249         }
1250
1251         if (!mem->memory_size)
1252                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1253
1254         new.id = id;
1255         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1256         new.npages = mem->memory_size >> PAGE_SHIFT;
1257         new.flags = mem->flags;
1258         new.userspace_addr = mem->userspace_addr;
1259
1260         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1261                 return -EINVAL;
1262
1263         if (!old.npages) {
1264                 change = KVM_MR_CREATE;
1265                 new.dirty_bitmap = NULL;
1266                 memset(&new.arch, 0, sizeof(new.arch));
1267         } else { /* Modify an existing slot. */
1268                 if ((new.userspace_addr != old.userspace_addr) ||
1269                     (new.npages != old.npages) ||
1270                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1271                         return -EINVAL;
1272
1273                 if (new.base_gfn != old.base_gfn)
1274                         change = KVM_MR_MOVE;
1275                 else if (new.flags != old.flags)
1276                         change = KVM_MR_FLAGS_ONLY;
1277                 else /* Nothing to change. */
1278                         return 0;
1279
1280                 /* Copy dirty_bitmap and arch from the current memslot. */
1281                 new.dirty_bitmap = old.dirty_bitmap;
1282                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1283         }
1284
1285         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1286                 /* Check for overlaps */
1287                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1288                         if (tmp->id == id)
1289                                 continue;
1290                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1291                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1292                                 return -EEXIST;
1293                 }
1294         }
1295
1296         /* Allocate/free page dirty bitmap as needed */
1297         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1298                 new.dirty_bitmap = NULL;
1299         else if (!new.dirty_bitmap) {
1300                 r = kvm_alloc_dirty_bitmap(&new);
1301                 if (r)
1302                         return r;
1303
1304                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1305                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1306         }
1307
1308         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1309         if (r)
1310                 goto out_bitmap;
1311
1312         if (old.dirty_bitmap && !new.dirty_bitmap)
1313                 kvm_destroy_dirty_bitmap(&old);
1314         return 0;
1315
1316 out_bitmap:
1317         if (new.dirty_bitmap && !old.dirty_bitmap)
1318                 kvm_destroy_dirty_bitmap(&new);
1319         return r;
1320 }
1321 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1322
1323 int kvm_set_memory_region(struct kvm *kvm,
1324                           const struct kvm_userspace_memory_region *mem)
1325 {
1326         int r;
1327
1328         mutex_lock(&kvm->slots_lock);
1329         r = __kvm_set_memory_region(kvm, mem);
1330         mutex_unlock(&kvm->slots_lock);
1331         return r;
1332 }
1333 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1334
1335 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1336                                           struct kvm_userspace_memory_region *mem)
1337 {
1338         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1339                 return -EINVAL;
1340
1341         return kvm_set_memory_region(kvm, mem);
1342 }
1343
1344 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1345 /**
1346  * kvm_get_dirty_log - get a snapshot of dirty pages
1347  * @kvm:        pointer to kvm instance
1348  * @log:        slot id and address to which we copy the log
1349  * @is_dirty:   set to '1' if any dirty pages were found
1350  * @memslot:    set to the associated memslot, always valid on success
1351  */
1352 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1353                       int *is_dirty, struct kvm_memory_slot **memslot)
1354 {
1355         struct kvm_memslots *slots;
1356         int i, as_id, id;
1357         unsigned long n;
1358         unsigned long any = 0;
1359
1360         *memslot = NULL;
1361         *is_dirty = 0;
1362
1363         as_id = log->slot >> 16;
1364         id = (u16)log->slot;
1365         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1366                 return -EINVAL;
1367
1368         slots = __kvm_memslots(kvm, as_id);
1369         *memslot = id_to_memslot(slots, id);
1370         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1371                 return -ENOENT;
1372
1373         kvm_arch_sync_dirty_log(kvm, *memslot);
1374
1375         n = kvm_dirty_bitmap_bytes(*memslot);
1376
1377         for (i = 0; !any && i < n/sizeof(long); ++i)
1378                 any = (*memslot)->dirty_bitmap[i];
1379
1380         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1381                 return -EFAULT;
1382
1383         if (any)
1384                 *is_dirty = 1;
1385         return 0;
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1388
1389 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1390 /**
1391  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1392  *      and reenable dirty page tracking for the corresponding pages.
1393  * @kvm:        pointer to kvm instance
1394  * @log:        slot id and address to which we copy the log
1395  *
1396  * We need to keep it in mind that VCPU threads can write to the bitmap
1397  * concurrently. So, to avoid losing track of dirty pages we keep the
1398  * following order:
1399  *
1400  *    1. Take a snapshot of the bit and clear it if needed.
1401  *    2. Write protect the corresponding page.
1402  *    3. Copy the snapshot to the userspace.
1403  *    4. Upon return caller flushes TLB's if needed.
1404  *
1405  * Between 2 and 4, the guest may write to the page using the remaining TLB
1406  * entry.  This is not a problem because the page is reported dirty using
1407  * the snapshot taken before and step 4 ensures that writes done after
1408  * exiting to userspace will be logged for the next call.
1409  *
1410  */
1411 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1412 {
1413         struct kvm_memslots *slots;
1414         struct kvm_memory_slot *memslot;
1415         int i, as_id, id;
1416         unsigned long n;
1417         unsigned long *dirty_bitmap;
1418         unsigned long *dirty_bitmap_buffer;
1419         bool flush;
1420
1421         as_id = log->slot >> 16;
1422         id = (u16)log->slot;
1423         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1424                 return -EINVAL;
1425
1426         slots = __kvm_memslots(kvm, as_id);
1427         memslot = id_to_memslot(slots, id);
1428         if (!memslot || !memslot->dirty_bitmap)
1429                 return -ENOENT;
1430
1431         dirty_bitmap = memslot->dirty_bitmap;
1432
1433         kvm_arch_sync_dirty_log(kvm, memslot);
1434
1435         n = kvm_dirty_bitmap_bytes(memslot);
1436         flush = false;
1437         if (kvm->manual_dirty_log_protect) {
1438                 /*
1439                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1440                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1441                  * is some code duplication between this function and
1442                  * kvm_get_dirty_log, but hopefully all architecture
1443                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1444                  * can be eliminated.
1445                  */
1446                 dirty_bitmap_buffer = dirty_bitmap;
1447         } else {
1448                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1449                 memset(dirty_bitmap_buffer, 0, n);
1450
1451                 spin_lock(&kvm->mmu_lock);
1452                 for (i = 0; i < n / sizeof(long); i++) {
1453                         unsigned long mask;
1454                         gfn_t offset;
1455
1456                         if (!dirty_bitmap[i])
1457                                 continue;
1458
1459                         flush = true;
1460                         mask = xchg(&dirty_bitmap[i], 0);
1461                         dirty_bitmap_buffer[i] = mask;
1462
1463                         offset = i * BITS_PER_LONG;
1464                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1465                                                                 offset, mask);
1466                 }
1467                 spin_unlock(&kvm->mmu_lock);
1468         }
1469
1470         if (flush)
1471                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1472
1473         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1474                 return -EFAULT;
1475         return 0;
1476 }
1477
1478
1479 /**
1480  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1481  * @kvm: kvm instance
1482  * @log: slot id and address to which we copy the log
1483  *
1484  * Steps 1-4 below provide general overview of dirty page logging. See
1485  * kvm_get_dirty_log_protect() function description for additional details.
1486  *
1487  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1488  * always flush the TLB (step 4) even if previous step failed  and the dirty
1489  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1490  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1491  * writes will be marked dirty for next log read.
1492  *
1493  *   1. Take a snapshot of the bit and clear it if needed.
1494  *   2. Write protect the corresponding page.
1495  *   3. Copy the snapshot to the userspace.
1496  *   4. Flush TLB's if needed.
1497  */
1498 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1499                                       struct kvm_dirty_log *log)
1500 {
1501         int r;
1502
1503         mutex_lock(&kvm->slots_lock);
1504
1505         r = kvm_get_dirty_log_protect(kvm, log);
1506
1507         mutex_unlock(&kvm->slots_lock);
1508         return r;
1509 }
1510
1511 /**
1512  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1513  *      and reenable dirty page tracking for the corresponding pages.
1514  * @kvm:        pointer to kvm instance
1515  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1516  */
1517 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1518                                        struct kvm_clear_dirty_log *log)
1519 {
1520         struct kvm_memslots *slots;
1521         struct kvm_memory_slot *memslot;
1522         int as_id, id;
1523         gfn_t offset;
1524         unsigned long i, n;
1525         unsigned long *dirty_bitmap;
1526         unsigned long *dirty_bitmap_buffer;
1527         bool flush;
1528
1529         as_id = log->slot >> 16;
1530         id = (u16)log->slot;
1531         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1532                 return -EINVAL;
1533
1534         if (log->first_page & 63)
1535                 return -EINVAL;
1536
1537         slots = __kvm_memslots(kvm, as_id);
1538         memslot = id_to_memslot(slots, id);
1539         if (!memslot || !memslot->dirty_bitmap)
1540                 return -ENOENT;
1541
1542         dirty_bitmap = memslot->dirty_bitmap;
1543
1544         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1545
1546         if (log->first_page > memslot->npages ||
1547             log->num_pages > memslot->npages - log->first_page ||
1548             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1549             return -EINVAL;
1550
1551         kvm_arch_sync_dirty_log(kvm, memslot);
1552
1553         flush = false;
1554         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1555         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1556                 return -EFAULT;
1557
1558         spin_lock(&kvm->mmu_lock);
1559         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1560                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1561              i++, offset += BITS_PER_LONG) {
1562                 unsigned long mask = *dirty_bitmap_buffer++;
1563                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1564                 if (!mask)
1565                         continue;
1566
1567                 mask &= atomic_long_fetch_andnot(mask, p);
1568
1569                 /*
1570                  * mask contains the bits that really have been cleared.  This
1571                  * never includes any bits beyond the length of the memslot (if
1572                  * the length is not aligned to 64 pages), therefore it is not
1573                  * a problem if userspace sets them in log->dirty_bitmap.
1574                 */
1575                 if (mask) {
1576                         flush = true;
1577                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1578                                                                 offset, mask);
1579                 }
1580         }
1581         spin_unlock(&kvm->mmu_lock);
1582
1583         if (flush)
1584                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1585
1586         return 0;
1587 }
1588
1589 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1590                                         struct kvm_clear_dirty_log *log)
1591 {
1592         int r;
1593
1594         mutex_lock(&kvm->slots_lock);
1595
1596         r = kvm_clear_dirty_log_protect(kvm, log);
1597
1598         mutex_unlock(&kvm->slots_lock);
1599         return r;
1600 }
1601 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1602
1603 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1604 {
1605         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1606 }
1607 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1608
1609 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1610 {
1611         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1612 }
1613 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1614
1615 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1616 {
1617         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1618
1619         return kvm_is_visible_memslot(memslot);
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1622
1623 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1624 {
1625         struct vm_area_struct *vma;
1626         unsigned long addr, size;
1627
1628         size = PAGE_SIZE;
1629
1630         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1631         if (kvm_is_error_hva(addr))
1632                 return PAGE_SIZE;
1633
1634         mmap_read_lock(current->mm);
1635         vma = find_vma(current->mm, addr);
1636         if (!vma)
1637                 goto out;
1638
1639         size = vma_kernel_pagesize(vma);
1640
1641 out:
1642         mmap_read_unlock(current->mm);
1643
1644         return size;
1645 }
1646
1647 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1648 {
1649         return slot->flags & KVM_MEM_READONLY;
1650 }
1651
1652 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1653                                        gfn_t *nr_pages, bool write)
1654 {
1655         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1656                 return KVM_HVA_ERR_BAD;
1657
1658         if (memslot_is_readonly(slot) && write)
1659                 return KVM_HVA_ERR_RO_BAD;
1660
1661         if (nr_pages)
1662                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1663
1664         return __gfn_to_hva_memslot(slot, gfn);
1665 }
1666
1667 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1668                                      gfn_t *nr_pages)
1669 {
1670         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1671 }
1672
1673 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1674                                         gfn_t gfn)
1675 {
1676         return gfn_to_hva_many(slot, gfn, NULL);
1677 }
1678 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1679
1680 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1681 {
1682         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1683 }
1684 EXPORT_SYMBOL_GPL(gfn_to_hva);
1685
1686 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1687 {
1688         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1691
1692 /*
1693  * Return the hva of a @gfn and the R/W attribute if possible.
1694  *
1695  * @slot: the kvm_memory_slot which contains @gfn
1696  * @gfn: the gfn to be translated
1697  * @writable: used to return the read/write attribute of the @slot if the hva
1698  * is valid and @writable is not NULL
1699  */
1700 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1701                                       gfn_t gfn, bool *writable)
1702 {
1703         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1704
1705         if (!kvm_is_error_hva(hva) && writable)
1706                 *writable = !memslot_is_readonly(slot);
1707
1708         return hva;
1709 }
1710
1711 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1712 {
1713         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1714
1715         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1716 }
1717
1718 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1719 {
1720         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1721
1722         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1723 }
1724
1725 static inline int check_user_page_hwpoison(unsigned long addr)
1726 {
1727         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1728
1729         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1730         return rc == -EHWPOISON;
1731 }
1732
1733 /*
1734  * The fast path to get the writable pfn which will be stored in @pfn,
1735  * true indicates success, otherwise false is returned.  It's also the
1736  * only part that runs if we can in atomic context.
1737  */
1738 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1739                             bool *writable, kvm_pfn_t *pfn)
1740 {
1741         struct page *page[1];
1742
1743         /*
1744          * Fast pin a writable pfn only if it is a write fault request
1745          * or the caller allows to map a writable pfn for a read fault
1746          * request.
1747          */
1748         if (!(write_fault || writable))
1749                 return false;
1750
1751         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1752                 *pfn = page_to_pfn(page[0]);
1753
1754                 if (writable)
1755                         *writable = true;
1756                 return true;
1757         }
1758
1759         return false;
1760 }
1761
1762 /*
1763  * The slow path to get the pfn of the specified host virtual address,
1764  * 1 indicates success, -errno is returned if error is detected.
1765  */
1766 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1767                            bool *writable, kvm_pfn_t *pfn)
1768 {
1769         unsigned int flags = FOLL_HWPOISON;
1770         struct page *page;
1771         int npages = 0;
1772
1773         might_sleep();
1774
1775         if (writable)
1776                 *writable = write_fault;
1777
1778         if (write_fault)
1779                 flags |= FOLL_WRITE;
1780         if (async)
1781                 flags |= FOLL_NOWAIT;
1782
1783         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1784         if (npages != 1)
1785                 return npages;
1786
1787         /* map read fault as writable if possible */
1788         if (unlikely(!write_fault) && writable) {
1789                 struct page *wpage;
1790
1791                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1792                         *writable = true;
1793                         put_page(page);
1794                         page = wpage;
1795                 }
1796         }
1797         *pfn = page_to_pfn(page);
1798         return npages;
1799 }
1800
1801 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1802 {
1803         if (unlikely(!(vma->vm_flags & VM_READ)))
1804                 return false;
1805
1806         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1807                 return false;
1808
1809         return true;
1810 }
1811
1812 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1813                                unsigned long addr, bool *async,
1814                                bool write_fault, bool *writable,
1815                                kvm_pfn_t *p_pfn)
1816 {
1817         unsigned long pfn;
1818         int r;
1819
1820         r = follow_pfn(vma, addr, &pfn);
1821         if (r) {
1822                 /*
1823                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1824                  * not call the fault handler, so do it here.
1825                  */
1826                 bool unlocked = false;
1827                 r = fixup_user_fault(current, current->mm, addr,
1828                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1829                                      &unlocked);
1830                 if (unlocked)
1831                         return -EAGAIN;
1832                 if (r)
1833                         return r;
1834
1835                 r = follow_pfn(vma, addr, &pfn);
1836                 if (r)
1837                         return r;
1838
1839         }
1840
1841         if (writable)
1842                 *writable = true;
1843
1844         /*
1845          * Get a reference here because callers of *hva_to_pfn* and
1846          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1847          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1848          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1849          * simply do nothing for reserved pfns.
1850          *
1851          * Whoever called remap_pfn_range is also going to call e.g.
1852          * unmap_mapping_range before the underlying pages are freed,
1853          * causing a call to our MMU notifier.
1854          */ 
1855         kvm_get_pfn(pfn);
1856
1857         *p_pfn = pfn;
1858         return 0;
1859 }
1860
1861 /*
1862  * Pin guest page in memory and return its pfn.
1863  * @addr: host virtual address which maps memory to the guest
1864  * @atomic: whether this function can sleep
1865  * @async: whether this function need to wait IO complete if the
1866  *         host page is not in the memory
1867  * @write_fault: whether we should get a writable host page
1868  * @writable: whether it allows to map a writable host page for !@write_fault
1869  *
1870  * The function will map a writable host page for these two cases:
1871  * 1): @write_fault = true
1872  * 2): @write_fault = false && @writable, @writable will tell the caller
1873  *     whether the mapping is writable.
1874  */
1875 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1876                         bool write_fault, bool *writable)
1877 {
1878         struct vm_area_struct *vma;
1879         kvm_pfn_t pfn = 0;
1880         int npages, r;
1881
1882         /* we can do it either atomically or asynchronously, not both */
1883         BUG_ON(atomic && async);
1884
1885         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1886                 return pfn;
1887
1888         if (atomic)
1889                 return KVM_PFN_ERR_FAULT;
1890
1891         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1892         if (npages == 1)
1893                 return pfn;
1894
1895         mmap_read_lock(current->mm);
1896         if (npages == -EHWPOISON ||
1897               (!async && check_user_page_hwpoison(addr))) {
1898                 pfn = KVM_PFN_ERR_HWPOISON;
1899                 goto exit;
1900         }
1901
1902 retry:
1903         vma = find_vma_intersection(current->mm, addr, addr + 1);
1904
1905         if (vma == NULL)
1906                 pfn = KVM_PFN_ERR_FAULT;
1907         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1908                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1909                 if (r == -EAGAIN)
1910                         goto retry;
1911                 if (r < 0)
1912                         pfn = KVM_PFN_ERR_FAULT;
1913         } else {
1914                 if (async && vma_is_valid(vma, write_fault))
1915                         *async = true;
1916                 pfn = KVM_PFN_ERR_FAULT;
1917         }
1918 exit:
1919         mmap_read_unlock(current->mm);
1920         return pfn;
1921 }
1922
1923 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1924                                bool atomic, bool *async, bool write_fault,
1925                                bool *writable)
1926 {
1927         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1928
1929         if (addr == KVM_HVA_ERR_RO_BAD) {
1930                 if (writable)
1931                         *writable = false;
1932                 return KVM_PFN_ERR_RO_FAULT;
1933         }
1934
1935         if (kvm_is_error_hva(addr)) {
1936                 if (writable)
1937                         *writable = false;
1938                 return KVM_PFN_NOSLOT;
1939         }
1940
1941         /* Do not map writable pfn in the readonly memslot. */
1942         if (writable && memslot_is_readonly(slot)) {
1943                 *writable = false;
1944                 writable = NULL;
1945         }
1946
1947         return hva_to_pfn(addr, atomic, async, write_fault,
1948                           writable);
1949 }
1950 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1951
1952 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1953                       bool *writable)
1954 {
1955         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1956                                     write_fault, writable);
1957 }
1958 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1959
1960 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1961 {
1962         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1963 }
1964 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1965
1966 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1967 {
1968         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1969 }
1970 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1971
1972 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1973 {
1974         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1977
1978 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1979 {
1980         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1981 }
1982 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1983
1984 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1985 {
1986         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1987 }
1988 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1989
1990 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1991                             struct page **pages, int nr_pages)
1992 {
1993         unsigned long addr;
1994         gfn_t entry = 0;
1995
1996         addr = gfn_to_hva_many(slot, gfn, &entry);
1997         if (kvm_is_error_hva(addr))
1998                 return -1;
1999
2000         if (entry < nr_pages)
2001                 return 0;
2002
2003         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2004 }
2005 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2006
2007 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2008 {
2009         if (is_error_noslot_pfn(pfn))
2010                 return KVM_ERR_PTR_BAD_PAGE;
2011
2012         if (kvm_is_reserved_pfn(pfn)) {
2013                 WARN_ON(1);
2014                 return KVM_ERR_PTR_BAD_PAGE;
2015         }
2016
2017         return pfn_to_page(pfn);
2018 }
2019
2020 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2021 {
2022         kvm_pfn_t pfn;
2023
2024         pfn = gfn_to_pfn(kvm, gfn);
2025
2026         return kvm_pfn_to_page(pfn);
2027 }
2028 EXPORT_SYMBOL_GPL(gfn_to_page);
2029
2030 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2031 {
2032         if (pfn == 0)
2033                 return;
2034
2035         if (cache)
2036                 cache->pfn = cache->gfn = 0;
2037
2038         if (dirty)
2039                 kvm_release_pfn_dirty(pfn);
2040         else
2041                 kvm_release_pfn_clean(pfn);
2042 }
2043
2044 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2045                                  struct gfn_to_pfn_cache *cache, u64 gen)
2046 {
2047         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2048
2049         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2050         cache->gfn = gfn;
2051         cache->dirty = false;
2052         cache->generation = gen;
2053 }
2054
2055 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2056                          struct kvm_host_map *map,
2057                          struct gfn_to_pfn_cache *cache,
2058                          bool atomic)
2059 {
2060         kvm_pfn_t pfn;
2061         void *hva = NULL;
2062         struct page *page = KVM_UNMAPPED_PAGE;
2063         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2064         u64 gen = slots->generation;
2065
2066         if (!map)
2067                 return -EINVAL;
2068
2069         if (cache) {
2070                 if (!cache->pfn || cache->gfn != gfn ||
2071                         cache->generation != gen) {
2072                         if (atomic)
2073                                 return -EAGAIN;
2074                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2075                 }
2076                 pfn = cache->pfn;
2077         } else {
2078                 if (atomic)
2079                         return -EAGAIN;
2080                 pfn = gfn_to_pfn_memslot(slot, gfn);
2081         }
2082         if (is_error_noslot_pfn(pfn))
2083                 return -EINVAL;
2084
2085         if (pfn_valid(pfn)) {
2086                 page = pfn_to_page(pfn);
2087                 if (atomic)
2088                         hva = kmap_atomic(page);
2089                 else
2090                         hva = kmap(page);
2091 #ifdef CONFIG_HAS_IOMEM
2092         } else if (!atomic) {
2093                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2094         } else {
2095                 return -EINVAL;
2096 #endif
2097         }
2098
2099         if (!hva)
2100                 return -EFAULT;
2101
2102         map->page = page;
2103         map->hva = hva;
2104         map->pfn = pfn;
2105         map->gfn = gfn;
2106
2107         return 0;
2108 }
2109
2110 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2111                 struct gfn_to_pfn_cache *cache, bool atomic)
2112 {
2113         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2114                         cache, atomic);
2115 }
2116 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2117
2118 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2119 {
2120         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2121                 NULL, false);
2122 }
2123 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2124
2125 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2126                         struct kvm_host_map *map,
2127                         struct gfn_to_pfn_cache *cache,
2128                         bool dirty, bool atomic)
2129 {
2130         if (!map)
2131                 return;
2132
2133         if (!map->hva)
2134                 return;
2135
2136         if (map->page != KVM_UNMAPPED_PAGE) {
2137                 if (atomic)
2138                         kunmap_atomic(map->hva);
2139                 else
2140                         kunmap(map->page);
2141         }
2142 #ifdef CONFIG_HAS_IOMEM
2143         else if (!atomic)
2144                 memunmap(map->hva);
2145         else
2146                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2147 #endif
2148
2149         if (dirty)
2150                 mark_page_dirty_in_slot(memslot, map->gfn);
2151
2152         if (cache)
2153                 cache->dirty |= dirty;
2154         else
2155                 kvm_release_pfn(map->pfn, dirty, NULL);
2156
2157         map->hva = NULL;
2158         map->page = NULL;
2159 }
2160
2161 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2162                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2163 {
2164         __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2165                         cache, dirty, atomic);
2166         return 0;
2167 }
2168 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2169
2170 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2171 {
2172         __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2173                         dirty, false);
2174 }
2175 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2176
2177 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2178 {
2179         kvm_pfn_t pfn;
2180
2181         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2182
2183         return kvm_pfn_to_page(pfn);
2184 }
2185 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2186
2187 void kvm_release_page_clean(struct page *page)
2188 {
2189         WARN_ON(is_error_page(page));
2190
2191         kvm_release_pfn_clean(page_to_pfn(page));
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2194
2195 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2196 {
2197         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2198                 put_page(pfn_to_page(pfn));
2199 }
2200 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2201
2202 void kvm_release_page_dirty(struct page *page)
2203 {
2204         WARN_ON(is_error_page(page));
2205
2206         kvm_release_pfn_dirty(page_to_pfn(page));
2207 }
2208 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2209
2210 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2211 {
2212         kvm_set_pfn_dirty(pfn);
2213         kvm_release_pfn_clean(pfn);
2214 }
2215 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2216
2217 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2218 {
2219         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2220                 SetPageDirty(pfn_to_page(pfn));
2221 }
2222 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2223
2224 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2225 {
2226         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2227                 mark_page_accessed(pfn_to_page(pfn));
2228 }
2229 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2230
2231 void kvm_get_pfn(kvm_pfn_t pfn)
2232 {
2233         if (!kvm_is_reserved_pfn(pfn))
2234                 get_page(pfn_to_page(pfn));
2235 }
2236 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2237
2238 static int next_segment(unsigned long len, int offset)
2239 {
2240         if (len > PAGE_SIZE - offset)
2241                 return PAGE_SIZE - offset;
2242         else
2243                 return len;
2244 }
2245
2246 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2247                                  void *data, int offset, int len)
2248 {
2249         int r;
2250         unsigned long addr;
2251
2252         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2253         if (kvm_is_error_hva(addr))
2254                 return -EFAULT;
2255         r = __copy_from_user(data, (void __user *)addr + offset, len);
2256         if (r)
2257                 return -EFAULT;
2258         return 0;
2259 }
2260
2261 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2262                         int len)
2263 {
2264         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2265
2266         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2267 }
2268 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2269
2270 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2271                              int offset, int len)
2272 {
2273         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2274
2275         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2276 }
2277 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2278
2279 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2280 {
2281         gfn_t gfn = gpa >> PAGE_SHIFT;
2282         int seg;
2283         int offset = offset_in_page(gpa);
2284         int ret;
2285
2286         while ((seg = next_segment(len, offset)) != 0) {
2287                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2288                 if (ret < 0)
2289                         return ret;
2290                 offset = 0;
2291                 len -= seg;
2292                 data += seg;
2293                 ++gfn;
2294         }
2295         return 0;
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_read_guest);
2298
2299 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2300 {
2301         gfn_t gfn = gpa >> PAGE_SHIFT;
2302         int seg;
2303         int offset = offset_in_page(gpa);
2304         int ret;
2305
2306         while ((seg = next_segment(len, offset)) != 0) {
2307                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2308                 if (ret < 0)
2309                         return ret;
2310                 offset = 0;
2311                 len -= seg;
2312                 data += seg;
2313                 ++gfn;
2314         }
2315         return 0;
2316 }
2317 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2318
2319 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2320                                    void *data, int offset, unsigned long len)
2321 {
2322         int r;
2323         unsigned long addr;
2324
2325         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2326         if (kvm_is_error_hva(addr))
2327                 return -EFAULT;
2328         pagefault_disable();
2329         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2330         pagefault_enable();
2331         if (r)
2332                 return -EFAULT;
2333         return 0;
2334 }
2335
2336 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2337                                void *data, unsigned long len)
2338 {
2339         gfn_t gfn = gpa >> PAGE_SHIFT;
2340         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2341         int offset = offset_in_page(gpa);
2342
2343         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2344 }
2345 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2346
2347 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2348                                   const void *data, int offset, int len)
2349 {
2350         int r;
2351         unsigned long addr;
2352
2353         addr = gfn_to_hva_memslot(memslot, gfn);
2354         if (kvm_is_error_hva(addr))
2355                 return -EFAULT;
2356         r = __copy_to_user((void __user *)addr + offset, data, len);
2357         if (r)
2358                 return -EFAULT;
2359         mark_page_dirty_in_slot(memslot, gfn);
2360         return 0;
2361 }
2362
2363 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2364                          const void *data, int offset, int len)
2365 {
2366         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2367
2368         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2369 }
2370 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2371
2372 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2373                               const void *data, int offset, int len)
2374 {
2375         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2376
2377         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2378 }
2379 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2380
2381 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2382                     unsigned long len)
2383 {
2384         gfn_t gfn = gpa >> PAGE_SHIFT;
2385         int seg;
2386         int offset = offset_in_page(gpa);
2387         int ret;
2388
2389         while ((seg = next_segment(len, offset)) != 0) {
2390                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2391                 if (ret < 0)
2392                         return ret;
2393                 offset = 0;
2394                 len -= seg;
2395                 data += seg;
2396                 ++gfn;
2397         }
2398         return 0;
2399 }
2400 EXPORT_SYMBOL_GPL(kvm_write_guest);
2401
2402 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2403                          unsigned long len)
2404 {
2405         gfn_t gfn = gpa >> PAGE_SHIFT;
2406         int seg;
2407         int offset = offset_in_page(gpa);
2408         int ret;
2409
2410         while ((seg = next_segment(len, offset)) != 0) {
2411                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2412                 if (ret < 0)
2413                         return ret;
2414                 offset = 0;
2415                 len -= seg;
2416                 data += seg;
2417                 ++gfn;
2418         }
2419         return 0;
2420 }
2421 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2422
2423 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2424                                        struct gfn_to_hva_cache *ghc,
2425                                        gpa_t gpa, unsigned long len)
2426 {
2427         int offset = offset_in_page(gpa);
2428         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2429         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2430         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2431         gfn_t nr_pages_avail;
2432
2433         /* Update ghc->generation before performing any error checks. */
2434         ghc->generation = slots->generation;
2435
2436         if (start_gfn > end_gfn) {
2437                 ghc->hva = KVM_HVA_ERR_BAD;
2438                 return -EINVAL;
2439         }
2440
2441         /*
2442          * If the requested region crosses two memslots, we still
2443          * verify that the entire region is valid here.
2444          */
2445         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2446                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2447                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2448                                            &nr_pages_avail);
2449                 if (kvm_is_error_hva(ghc->hva))
2450                         return -EFAULT;
2451         }
2452
2453         /* Use the slow path for cross page reads and writes. */
2454         if (nr_pages_needed == 1)
2455                 ghc->hva += offset;
2456         else
2457                 ghc->memslot = NULL;
2458
2459         ghc->gpa = gpa;
2460         ghc->len = len;
2461         return 0;
2462 }
2463
2464 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2465                               gpa_t gpa, unsigned long len)
2466 {
2467         struct kvm_memslots *slots = kvm_memslots(kvm);
2468         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2469 }
2470 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2471
2472 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2473                                   void *data, unsigned int offset,
2474                                   unsigned long len)
2475 {
2476         struct kvm_memslots *slots = kvm_memslots(kvm);
2477         int r;
2478         gpa_t gpa = ghc->gpa + offset;
2479
2480         BUG_ON(len + offset > ghc->len);
2481
2482         if (slots->generation != ghc->generation) {
2483                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2484                         return -EFAULT;
2485         }
2486
2487         if (kvm_is_error_hva(ghc->hva))
2488                 return -EFAULT;
2489
2490         if (unlikely(!ghc->memslot))
2491                 return kvm_write_guest(kvm, gpa, data, len);
2492
2493         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2494         if (r)
2495                 return -EFAULT;
2496         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2497
2498         return 0;
2499 }
2500 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2501
2502 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2503                            void *data, unsigned long len)
2504 {
2505         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2506 }
2507 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2508
2509 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2510                                  void *data, unsigned int offset,
2511                                  unsigned long len)
2512 {
2513         struct kvm_memslots *slots = kvm_memslots(kvm);
2514         int r;
2515         gpa_t gpa = ghc->gpa + offset;
2516
2517         BUG_ON(len + offset > ghc->len);
2518
2519         if (slots->generation != ghc->generation) {
2520                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2521                         return -EFAULT;
2522         }
2523
2524         if (kvm_is_error_hva(ghc->hva))
2525                 return -EFAULT;
2526
2527         if (unlikely(!ghc->memslot))
2528                 return kvm_read_guest(kvm, gpa, data, len);
2529
2530         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2531         if (r)
2532                 return -EFAULT;
2533
2534         return 0;
2535 }
2536 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2537
2538 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2539                           void *data, unsigned long len)
2540 {
2541         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2542 }
2543 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2544
2545 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2546 {
2547         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2548
2549         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2550 }
2551 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2552
2553 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2554 {
2555         gfn_t gfn = gpa >> PAGE_SHIFT;
2556         int seg;
2557         int offset = offset_in_page(gpa);
2558         int ret;
2559
2560         while ((seg = next_segment(len, offset)) != 0) {
2561                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2562                 if (ret < 0)
2563                         return ret;
2564                 offset = 0;
2565                 len -= seg;
2566                 ++gfn;
2567         }
2568         return 0;
2569 }
2570 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2571
2572 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2573                                     gfn_t gfn)
2574 {
2575         if (memslot && memslot->dirty_bitmap) {
2576                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2577
2578                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2579         }
2580 }
2581
2582 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2583 {
2584         struct kvm_memory_slot *memslot;
2585
2586         memslot = gfn_to_memslot(kvm, gfn);
2587         mark_page_dirty_in_slot(memslot, gfn);
2588 }
2589 EXPORT_SYMBOL_GPL(mark_page_dirty);
2590
2591 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2592 {
2593         struct kvm_memory_slot *memslot;
2594
2595         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2596         mark_page_dirty_in_slot(memslot, gfn);
2597 }
2598 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2599
2600 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2601 {
2602         if (!vcpu->sigset_active)
2603                 return;
2604
2605         /*
2606          * This does a lockless modification of ->real_blocked, which is fine
2607          * because, only current can change ->real_blocked and all readers of
2608          * ->real_blocked don't care as long ->real_blocked is always a subset
2609          * of ->blocked.
2610          */
2611         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2612 }
2613
2614 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2615 {
2616         if (!vcpu->sigset_active)
2617                 return;
2618
2619         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2620         sigemptyset(&current->real_blocked);
2621 }
2622
2623 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2624 {
2625         unsigned int old, val, grow, grow_start;
2626
2627         old = val = vcpu->halt_poll_ns;
2628         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2629         grow = READ_ONCE(halt_poll_ns_grow);
2630         if (!grow)
2631                 goto out;
2632
2633         val *= grow;
2634         if (val < grow_start)
2635                 val = grow_start;
2636
2637         if (val > halt_poll_ns)
2638                 val = halt_poll_ns;
2639
2640         vcpu->halt_poll_ns = val;
2641 out:
2642         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2643 }
2644
2645 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2646 {
2647         unsigned int old, val, shrink;
2648
2649         old = val = vcpu->halt_poll_ns;
2650         shrink = READ_ONCE(halt_poll_ns_shrink);
2651         if (shrink == 0)
2652                 val = 0;
2653         else
2654                 val /= shrink;
2655
2656         vcpu->halt_poll_ns = val;
2657         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2658 }
2659
2660 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2661 {
2662         int ret = -EINTR;
2663         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2664
2665         if (kvm_arch_vcpu_runnable(vcpu)) {
2666                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2667                 goto out;
2668         }
2669         if (kvm_cpu_has_pending_timer(vcpu))
2670                 goto out;
2671         if (signal_pending(current))
2672                 goto out;
2673
2674         ret = 0;
2675 out:
2676         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2677         return ret;
2678 }
2679
2680 static inline void
2681 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2682 {
2683         if (waited)
2684                 vcpu->stat.halt_poll_fail_ns += poll_ns;
2685         else
2686                 vcpu->stat.halt_poll_success_ns += poll_ns;
2687 }
2688
2689 /*
2690  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2691  */
2692 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2693 {
2694         ktime_t start, cur, poll_end;
2695         bool waited = false;
2696         u64 block_ns;
2697
2698         kvm_arch_vcpu_blocking(vcpu);
2699
2700         start = cur = poll_end = ktime_get();
2701         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2702                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2703
2704                 ++vcpu->stat.halt_attempted_poll;
2705                 do {
2706                         /*
2707                          * This sets KVM_REQ_UNHALT if an interrupt
2708                          * arrives.
2709                          */
2710                         if (kvm_vcpu_check_block(vcpu) < 0) {
2711                                 ++vcpu->stat.halt_successful_poll;
2712                                 if (!vcpu_valid_wakeup(vcpu))
2713                                         ++vcpu->stat.halt_poll_invalid;
2714                                 goto out;
2715                         }
2716                         poll_end = cur = ktime_get();
2717                 } while (single_task_running() && ktime_before(cur, stop));
2718         }
2719
2720         prepare_to_rcuwait(&vcpu->wait);
2721         for (;;) {
2722                 set_current_state(TASK_INTERRUPTIBLE);
2723
2724                 if (kvm_vcpu_check_block(vcpu) < 0)
2725                         break;
2726
2727                 waited = true;
2728                 schedule();
2729         }
2730         finish_rcuwait(&vcpu->wait);
2731         cur = ktime_get();
2732 out:
2733         kvm_arch_vcpu_unblocking(vcpu);
2734         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2735
2736         update_halt_poll_stats(
2737                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2738
2739         if (!kvm_arch_no_poll(vcpu)) {
2740                 if (!vcpu_valid_wakeup(vcpu)) {
2741                         shrink_halt_poll_ns(vcpu);
2742                 } else if (vcpu->kvm->max_halt_poll_ns) {
2743                         if (block_ns <= vcpu->halt_poll_ns)
2744                                 ;
2745                         /* we had a long block, shrink polling */
2746                         else if (vcpu->halt_poll_ns &&
2747                                         block_ns > vcpu->kvm->max_halt_poll_ns)
2748                                 shrink_halt_poll_ns(vcpu);
2749                         /* we had a short halt and our poll time is too small */
2750                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2751                                         block_ns < vcpu->kvm->max_halt_poll_ns)
2752                                 grow_halt_poll_ns(vcpu);
2753                 } else {
2754                         vcpu->halt_poll_ns = 0;
2755                 }
2756         }
2757
2758         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2759         kvm_arch_vcpu_block_finish(vcpu);
2760 }
2761 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2762
2763 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2764 {
2765         struct rcuwait *waitp;
2766
2767         waitp = kvm_arch_vcpu_get_wait(vcpu);
2768         if (rcuwait_wake_up(waitp)) {
2769                 WRITE_ONCE(vcpu->ready, true);
2770                 ++vcpu->stat.halt_wakeup;
2771                 return true;
2772         }
2773
2774         return false;
2775 }
2776 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2777
2778 #ifndef CONFIG_S390
2779 /*
2780  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2781  */
2782 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2783 {
2784         int me;
2785         int cpu = vcpu->cpu;
2786
2787         if (kvm_vcpu_wake_up(vcpu))
2788                 return;
2789
2790         me = get_cpu();
2791         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2792                 if (kvm_arch_vcpu_should_kick(vcpu))
2793                         smp_send_reschedule(cpu);
2794         put_cpu();
2795 }
2796 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2797 #endif /* !CONFIG_S390 */
2798
2799 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2800 {
2801         struct pid *pid;
2802         struct task_struct *task = NULL;
2803         int ret = 0;
2804
2805         rcu_read_lock();
2806         pid = rcu_dereference(target->pid);
2807         if (pid)
2808                 task = get_pid_task(pid, PIDTYPE_PID);
2809         rcu_read_unlock();
2810         if (!task)
2811                 return ret;
2812         ret = yield_to(task, 1);
2813         put_task_struct(task);
2814
2815         return ret;
2816 }
2817 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2818
2819 /*
2820  * Helper that checks whether a VCPU is eligible for directed yield.
2821  * Most eligible candidate to yield is decided by following heuristics:
2822  *
2823  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2824  *  (preempted lock holder), indicated by @in_spin_loop.
2825  *  Set at the beginning and cleared at the end of interception/PLE handler.
2826  *
2827  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2828  *  chance last time (mostly it has become eligible now since we have probably
2829  *  yielded to lockholder in last iteration. This is done by toggling
2830  *  @dy_eligible each time a VCPU checked for eligibility.)
2831  *
2832  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2833  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2834  *  burning. Giving priority for a potential lock-holder increases lock
2835  *  progress.
2836  *
2837  *  Since algorithm is based on heuristics, accessing another VCPU data without
2838  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2839  *  and continue with next VCPU and so on.
2840  */
2841 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2842 {
2843 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2844         bool eligible;
2845
2846         eligible = !vcpu->spin_loop.in_spin_loop ||
2847                     vcpu->spin_loop.dy_eligible;
2848
2849         if (vcpu->spin_loop.in_spin_loop)
2850                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2851
2852         return eligible;
2853 #else
2854         return true;
2855 #endif
2856 }
2857
2858 /*
2859  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2860  * a vcpu_load/vcpu_put pair.  However, for most architectures
2861  * kvm_arch_vcpu_runnable does not require vcpu_load.
2862  */
2863 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2864 {
2865         return kvm_arch_vcpu_runnable(vcpu);
2866 }
2867
2868 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2869 {
2870         if (kvm_arch_dy_runnable(vcpu))
2871                 return true;
2872
2873 #ifdef CONFIG_KVM_ASYNC_PF
2874         if (!list_empty_careful(&vcpu->async_pf.done))
2875                 return true;
2876 #endif
2877
2878         return false;
2879 }
2880
2881 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2882 {
2883         struct kvm *kvm = me->kvm;
2884         struct kvm_vcpu *vcpu;
2885         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2886         int yielded = 0;
2887         int try = 3;
2888         int pass;
2889         int i;
2890
2891         kvm_vcpu_set_in_spin_loop(me, true);
2892         /*
2893          * We boost the priority of a VCPU that is runnable but not
2894          * currently running, because it got preempted by something
2895          * else and called schedule in __vcpu_run.  Hopefully that
2896          * VCPU is holding the lock that we need and will release it.
2897          * We approximate round-robin by starting at the last boosted VCPU.
2898          */
2899         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2900                 kvm_for_each_vcpu(i, vcpu, kvm) {
2901                         if (!pass && i <= last_boosted_vcpu) {
2902                                 i = last_boosted_vcpu;
2903                                 continue;
2904                         } else if (pass && i > last_boosted_vcpu)
2905                                 break;
2906                         if (!READ_ONCE(vcpu->ready))
2907                                 continue;
2908                         if (vcpu == me)
2909                                 continue;
2910                         if (rcuwait_active(&vcpu->wait) &&
2911                             !vcpu_dy_runnable(vcpu))
2912                                 continue;
2913                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2914                                 !kvm_arch_vcpu_in_kernel(vcpu))
2915                                 continue;
2916                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2917                                 continue;
2918
2919                         yielded = kvm_vcpu_yield_to(vcpu);
2920                         if (yielded > 0) {
2921                                 kvm->last_boosted_vcpu = i;
2922                                 break;
2923                         } else if (yielded < 0) {
2924                                 try--;
2925                                 if (!try)
2926                                         break;
2927                         }
2928                 }
2929         }
2930         kvm_vcpu_set_in_spin_loop(me, false);
2931
2932         /* Ensure vcpu is not eligible during next spinloop */
2933         kvm_vcpu_set_dy_eligible(me, false);
2934 }
2935 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2936
2937 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2938 {
2939         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2940         struct page *page;
2941
2942         if (vmf->pgoff == 0)
2943                 page = virt_to_page(vcpu->run);
2944 #ifdef CONFIG_X86
2945         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2946                 page = virt_to_page(vcpu->arch.pio_data);
2947 #endif
2948 #ifdef CONFIG_KVM_MMIO
2949         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2950                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2951 #endif
2952         else
2953                 return kvm_arch_vcpu_fault(vcpu, vmf);
2954         get_page(page);
2955         vmf->page = page;
2956         return 0;
2957 }
2958
2959 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2960         .fault = kvm_vcpu_fault,
2961 };
2962
2963 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2964 {
2965         vma->vm_ops = &kvm_vcpu_vm_ops;
2966         return 0;
2967 }
2968
2969 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2970 {
2971         struct kvm_vcpu *vcpu = filp->private_data;
2972
2973         debugfs_remove_recursive(vcpu->debugfs_dentry);
2974         kvm_put_kvm(vcpu->kvm);
2975         return 0;
2976 }
2977
2978 static struct file_operations kvm_vcpu_fops = {
2979         .release        = kvm_vcpu_release,
2980         .unlocked_ioctl = kvm_vcpu_ioctl,
2981         .mmap           = kvm_vcpu_mmap,
2982         .llseek         = noop_llseek,
2983         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2984 };
2985
2986 /*
2987  * Allocates an inode for the vcpu.
2988  */
2989 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2990 {
2991         char name[8 + 1 + ITOA_MAX_LEN + 1];
2992
2993         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2994         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2995 }
2996
2997 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2998 {
2999 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3000         char dir_name[ITOA_MAX_LEN * 2];
3001
3002         if (!debugfs_initialized())
3003                 return;
3004
3005         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3006         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
3007                                                   vcpu->kvm->debugfs_dentry);
3008
3009         kvm_arch_create_vcpu_debugfs(vcpu);
3010 #endif
3011 }
3012
3013 /*
3014  * Creates some virtual cpus.  Good luck creating more than one.
3015  */
3016 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3017 {
3018         int r;
3019         struct kvm_vcpu *vcpu;
3020         struct page *page;
3021
3022         if (id >= KVM_MAX_VCPU_ID)
3023                 return -EINVAL;
3024
3025         mutex_lock(&kvm->lock);
3026         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3027                 mutex_unlock(&kvm->lock);
3028                 return -EINVAL;
3029         }
3030
3031         kvm->created_vcpus++;
3032         mutex_unlock(&kvm->lock);
3033
3034         r = kvm_arch_vcpu_precreate(kvm, id);
3035         if (r)
3036                 goto vcpu_decrement;
3037
3038         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3039         if (!vcpu) {
3040                 r = -ENOMEM;
3041                 goto vcpu_decrement;
3042         }
3043
3044         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3045         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3046         if (!page) {
3047                 r = -ENOMEM;
3048                 goto vcpu_free;
3049         }
3050         vcpu->run = page_address(page);
3051
3052         kvm_vcpu_init(vcpu, kvm, id);
3053
3054         r = kvm_arch_vcpu_create(vcpu);
3055         if (r)
3056                 goto vcpu_free_run_page;
3057
3058         mutex_lock(&kvm->lock);
3059         if (kvm_get_vcpu_by_id(kvm, id)) {
3060                 r = -EEXIST;
3061                 goto unlock_vcpu_destroy;
3062         }
3063
3064         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3065         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3066
3067         /* Now it's all set up, let userspace reach it */
3068         kvm_get_kvm(kvm);
3069         r = create_vcpu_fd(vcpu);
3070         if (r < 0) {
3071                 kvm_put_kvm_no_destroy(kvm);
3072                 goto unlock_vcpu_destroy;
3073         }
3074
3075         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3076
3077         /*
3078          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3079          * before kvm->online_vcpu's incremented value.
3080          */
3081         smp_wmb();
3082         atomic_inc(&kvm->online_vcpus);
3083
3084         mutex_unlock(&kvm->lock);
3085         kvm_arch_vcpu_postcreate(vcpu);
3086         kvm_create_vcpu_debugfs(vcpu);
3087         return r;
3088
3089 unlock_vcpu_destroy:
3090         mutex_unlock(&kvm->lock);
3091         kvm_arch_vcpu_destroy(vcpu);
3092 vcpu_free_run_page:
3093         free_page((unsigned long)vcpu->run);
3094 vcpu_free:
3095         kmem_cache_free(kvm_vcpu_cache, vcpu);
3096 vcpu_decrement:
3097         mutex_lock(&kvm->lock);
3098         kvm->created_vcpus--;
3099         mutex_unlock(&kvm->lock);
3100         return r;
3101 }
3102
3103 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3104 {
3105         if (sigset) {
3106                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3107                 vcpu->sigset_active = 1;
3108                 vcpu->sigset = *sigset;
3109         } else
3110                 vcpu->sigset_active = 0;
3111         return 0;
3112 }
3113
3114 static long kvm_vcpu_ioctl(struct file *filp,
3115                            unsigned int ioctl, unsigned long arg)
3116 {
3117         struct kvm_vcpu *vcpu = filp->private_data;
3118         void __user *argp = (void __user *)arg;
3119         int r;
3120         struct kvm_fpu *fpu = NULL;
3121         struct kvm_sregs *kvm_sregs = NULL;
3122
3123         if (vcpu->kvm->mm != current->mm)
3124                 return -EIO;
3125
3126         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3127                 return -EINVAL;
3128
3129         /*
3130          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3131          * execution; mutex_lock() would break them.
3132          */
3133         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3134         if (r != -ENOIOCTLCMD)
3135                 return r;
3136
3137         if (mutex_lock_killable(&vcpu->mutex))
3138                 return -EINTR;
3139         switch (ioctl) {
3140         case KVM_RUN: {
3141                 struct pid *oldpid;
3142                 r = -EINVAL;
3143                 if (arg)
3144                         goto out;
3145                 oldpid = rcu_access_pointer(vcpu->pid);
3146                 if (unlikely(oldpid != task_pid(current))) {
3147                         /* The thread running this VCPU changed. */
3148                         struct pid *newpid;
3149
3150                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3151                         if (r)
3152                                 break;
3153
3154                         newpid = get_task_pid(current, PIDTYPE_PID);
3155                         rcu_assign_pointer(vcpu->pid, newpid);
3156                         if (oldpid)
3157                                 synchronize_rcu();
3158                         put_pid(oldpid);
3159                 }
3160                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3161                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3162                 break;
3163         }
3164         case KVM_GET_REGS: {
3165                 struct kvm_regs *kvm_regs;
3166
3167                 r = -ENOMEM;
3168                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3169                 if (!kvm_regs)
3170                         goto out;
3171                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3172                 if (r)
3173                         goto out_free1;
3174                 r = -EFAULT;
3175                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3176                         goto out_free1;
3177                 r = 0;
3178 out_free1:
3179                 kfree(kvm_regs);
3180                 break;
3181         }
3182         case KVM_SET_REGS: {
3183                 struct kvm_regs *kvm_regs;
3184
3185                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3186                 if (IS_ERR(kvm_regs)) {
3187                         r = PTR_ERR(kvm_regs);
3188                         goto out;
3189                 }
3190                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3191                 kfree(kvm_regs);
3192                 break;
3193         }
3194         case KVM_GET_SREGS: {
3195                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3196                                     GFP_KERNEL_ACCOUNT);
3197                 r = -ENOMEM;
3198                 if (!kvm_sregs)
3199                         goto out;
3200                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3201                 if (r)
3202                         goto out;
3203                 r = -EFAULT;
3204                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3205                         goto out;
3206                 r = 0;
3207                 break;
3208         }
3209         case KVM_SET_SREGS: {
3210                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3211                 if (IS_ERR(kvm_sregs)) {
3212                         r = PTR_ERR(kvm_sregs);
3213                         kvm_sregs = NULL;
3214                         goto out;
3215                 }
3216                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3217                 break;
3218         }
3219         case KVM_GET_MP_STATE: {
3220                 struct kvm_mp_state mp_state;
3221
3222                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3223                 if (r)
3224                         goto out;
3225                 r = -EFAULT;
3226                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3227                         goto out;
3228                 r = 0;
3229                 break;
3230         }
3231         case KVM_SET_MP_STATE: {
3232                 struct kvm_mp_state mp_state;
3233
3234                 r = -EFAULT;
3235                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3236                         goto out;
3237                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3238                 break;
3239         }
3240         case KVM_TRANSLATE: {
3241                 struct kvm_translation tr;
3242
3243                 r = -EFAULT;
3244                 if (copy_from_user(&tr, argp, sizeof(tr)))
3245                         goto out;
3246                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3247                 if (r)
3248                         goto out;
3249                 r = -EFAULT;
3250                 if (copy_to_user(argp, &tr, sizeof(tr)))
3251                         goto out;
3252                 r = 0;
3253                 break;
3254         }
3255         case KVM_SET_GUEST_DEBUG: {
3256                 struct kvm_guest_debug dbg;
3257
3258                 r = -EFAULT;
3259                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3260                         goto out;
3261                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3262                 break;
3263         }
3264         case KVM_SET_SIGNAL_MASK: {
3265                 struct kvm_signal_mask __user *sigmask_arg = argp;
3266                 struct kvm_signal_mask kvm_sigmask;
3267                 sigset_t sigset, *p;
3268
3269                 p = NULL;
3270                 if (argp) {
3271                         r = -EFAULT;
3272                         if (copy_from_user(&kvm_sigmask, argp,
3273                                            sizeof(kvm_sigmask)))
3274                                 goto out;
3275                         r = -EINVAL;
3276                         if (kvm_sigmask.len != sizeof(sigset))
3277                                 goto out;
3278                         r = -EFAULT;
3279                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3280                                            sizeof(sigset)))
3281                                 goto out;
3282                         p = &sigset;
3283                 }
3284                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3285                 break;
3286         }
3287         case KVM_GET_FPU: {
3288                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3289                 r = -ENOMEM;
3290                 if (!fpu)
3291                         goto out;
3292                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3293                 if (r)
3294                         goto out;
3295                 r = -EFAULT;
3296                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3297                         goto out;
3298                 r = 0;
3299                 break;
3300         }
3301         case KVM_SET_FPU: {
3302                 fpu = memdup_user(argp, sizeof(*fpu));
3303                 if (IS_ERR(fpu)) {
3304                         r = PTR_ERR(fpu);
3305                         fpu = NULL;
3306                         goto out;
3307                 }
3308                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3309                 break;
3310         }
3311         default:
3312                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3313         }
3314 out:
3315         mutex_unlock(&vcpu->mutex);
3316         kfree(fpu);
3317         kfree(kvm_sregs);
3318         return r;
3319 }
3320
3321 #ifdef CONFIG_KVM_COMPAT
3322 static long kvm_vcpu_compat_ioctl(struct file *filp,
3323                                   unsigned int ioctl, unsigned long arg)
3324 {
3325         struct kvm_vcpu *vcpu = filp->private_data;
3326         void __user *argp = compat_ptr(arg);
3327         int r;
3328
3329         if (vcpu->kvm->mm != current->mm)
3330                 return -EIO;
3331
3332         switch (ioctl) {
3333         case KVM_SET_SIGNAL_MASK: {
3334                 struct kvm_signal_mask __user *sigmask_arg = argp;
3335                 struct kvm_signal_mask kvm_sigmask;
3336                 sigset_t sigset;
3337
3338                 if (argp) {
3339                         r = -EFAULT;
3340                         if (copy_from_user(&kvm_sigmask, argp,
3341                                            sizeof(kvm_sigmask)))
3342                                 goto out;
3343                         r = -EINVAL;
3344                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3345                                 goto out;
3346                         r = -EFAULT;
3347                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3348                                 goto out;
3349                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3350                 } else
3351                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3352                 break;
3353         }
3354         default:
3355                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3356         }
3357
3358 out:
3359         return r;
3360 }
3361 #endif
3362
3363 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3364 {
3365         struct kvm_device *dev = filp->private_data;
3366
3367         if (dev->ops->mmap)
3368                 return dev->ops->mmap(dev, vma);
3369
3370         return -ENODEV;
3371 }
3372
3373 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3374                                  int (*accessor)(struct kvm_device *dev,
3375                                                  struct kvm_device_attr *attr),
3376                                  unsigned long arg)
3377 {
3378         struct kvm_device_attr attr;
3379
3380         if (!accessor)
3381                 return -EPERM;
3382
3383         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3384                 return -EFAULT;
3385
3386         return accessor(dev, &attr);
3387 }
3388
3389 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3390                              unsigned long arg)
3391 {
3392         struct kvm_device *dev = filp->private_data;
3393
3394         if (dev->kvm->mm != current->mm)
3395                 return -EIO;
3396
3397         switch (ioctl) {
3398         case KVM_SET_DEVICE_ATTR:
3399                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3400         case KVM_GET_DEVICE_ATTR:
3401                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3402         case KVM_HAS_DEVICE_ATTR:
3403                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3404         default:
3405                 if (dev->ops->ioctl)
3406                         return dev->ops->ioctl(dev, ioctl, arg);
3407
3408                 return -ENOTTY;
3409         }
3410 }
3411
3412 static int kvm_device_release(struct inode *inode, struct file *filp)
3413 {
3414         struct kvm_device *dev = filp->private_data;
3415         struct kvm *kvm = dev->kvm;
3416
3417         if (dev->ops->release) {
3418                 mutex_lock(&kvm->lock);
3419                 list_del(&dev->vm_node);
3420                 dev->ops->release(dev);
3421                 mutex_unlock(&kvm->lock);
3422         }
3423
3424         kvm_put_kvm(kvm);
3425         return 0;
3426 }
3427
3428 static const struct file_operations kvm_device_fops = {
3429         .unlocked_ioctl = kvm_device_ioctl,
3430         .release = kvm_device_release,
3431         KVM_COMPAT(kvm_device_ioctl),
3432         .mmap = kvm_device_mmap,
3433 };
3434
3435 struct kvm_device *kvm_device_from_filp(struct file *filp)
3436 {
3437         if (filp->f_op != &kvm_device_fops)
3438                 return NULL;
3439
3440         return filp->private_data;
3441 }
3442
3443 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3444 #ifdef CONFIG_KVM_MPIC
3445         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3446         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3447 #endif
3448 };
3449
3450 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3451 {
3452         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3453                 return -ENOSPC;
3454
3455         if (kvm_device_ops_table[type] != NULL)
3456                 return -EEXIST;
3457
3458         kvm_device_ops_table[type] = ops;
3459         return 0;
3460 }
3461
3462 void kvm_unregister_device_ops(u32 type)
3463 {
3464         if (kvm_device_ops_table[type] != NULL)
3465                 kvm_device_ops_table[type] = NULL;
3466 }
3467
3468 static int kvm_ioctl_create_device(struct kvm *kvm,
3469                                    struct kvm_create_device *cd)
3470 {
3471         const struct kvm_device_ops *ops = NULL;
3472         struct kvm_device *dev;
3473         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3474         int type;
3475         int ret;
3476
3477         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3478                 return -ENODEV;
3479
3480         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3481         ops = kvm_device_ops_table[type];
3482         if (ops == NULL)
3483                 return -ENODEV;
3484
3485         if (test)
3486                 return 0;
3487
3488         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3489         if (!dev)
3490                 return -ENOMEM;
3491
3492         dev->ops = ops;
3493         dev->kvm = kvm;
3494
3495         mutex_lock(&kvm->lock);
3496         ret = ops->create(dev, type);
3497         if (ret < 0) {
3498                 mutex_unlock(&kvm->lock);
3499                 kfree(dev);
3500                 return ret;
3501         }
3502         list_add(&dev->vm_node, &kvm->devices);
3503         mutex_unlock(&kvm->lock);
3504
3505         if (ops->init)
3506                 ops->init(dev);
3507
3508         kvm_get_kvm(kvm);
3509         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3510         if (ret < 0) {
3511                 kvm_put_kvm_no_destroy(kvm);
3512                 mutex_lock(&kvm->lock);
3513                 list_del(&dev->vm_node);
3514                 mutex_unlock(&kvm->lock);
3515                 ops->destroy(dev);
3516                 return ret;
3517         }
3518
3519         cd->fd = ret;
3520         return 0;
3521 }
3522
3523 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3524 {
3525         switch (arg) {
3526         case KVM_CAP_USER_MEMORY:
3527         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3528         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3529         case KVM_CAP_INTERNAL_ERROR_DATA:
3530 #ifdef CONFIG_HAVE_KVM_MSI
3531         case KVM_CAP_SIGNAL_MSI:
3532 #endif
3533 #ifdef CONFIG_HAVE_KVM_IRQFD
3534         case KVM_CAP_IRQFD:
3535         case KVM_CAP_IRQFD_RESAMPLE:
3536 #endif
3537         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3538         case KVM_CAP_CHECK_EXTENSION_VM:
3539         case KVM_CAP_ENABLE_CAP_VM:
3540         case KVM_CAP_HALT_POLL:
3541                 return 1;
3542 #ifdef CONFIG_KVM_MMIO
3543         case KVM_CAP_COALESCED_MMIO:
3544                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3545         case KVM_CAP_COALESCED_PIO:
3546                 return 1;
3547 #endif
3548 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3549         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3550                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3551 #endif
3552 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3553         case KVM_CAP_IRQ_ROUTING:
3554                 return KVM_MAX_IRQ_ROUTES;
3555 #endif
3556 #if KVM_ADDRESS_SPACE_NUM > 1
3557         case KVM_CAP_MULTI_ADDRESS_SPACE:
3558                 return KVM_ADDRESS_SPACE_NUM;
3559 #endif
3560         case KVM_CAP_NR_MEMSLOTS:
3561                 return KVM_USER_MEM_SLOTS;
3562         default:
3563                 break;
3564         }
3565         return kvm_vm_ioctl_check_extension(kvm, arg);
3566 }
3567
3568 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3569                                                   struct kvm_enable_cap *cap)
3570 {
3571         return -EINVAL;
3572 }
3573
3574 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3575                                            struct kvm_enable_cap *cap)
3576 {
3577         switch (cap->cap) {
3578 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3579         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3580                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3581
3582                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3583                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3584
3585                 if (cap->flags || (cap->args[0] & ~allowed_options))
3586                         return -EINVAL;
3587                 kvm->manual_dirty_log_protect = cap->args[0];
3588                 return 0;
3589         }
3590 #endif
3591         case KVM_CAP_HALT_POLL: {
3592                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3593                         return -EINVAL;
3594
3595                 kvm->max_halt_poll_ns = cap->args[0];
3596                 return 0;
3597         }
3598         default:
3599                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3600         }
3601 }
3602
3603 static long kvm_vm_ioctl(struct file *filp,
3604                            unsigned int ioctl, unsigned long arg)
3605 {
3606         struct kvm *kvm = filp->private_data;
3607         void __user *argp = (void __user *)arg;
3608         int r;
3609
3610         if (kvm->mm != current->mm)
3611                 return -EIO;
3612         switch (ioctl) {
3613         case KVM_CREATE_VCPU:
3614                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3615                 break;
3616         case KVM_ENABLE_CAP: {
3617                 struct kvm_enable_cap cap;
3618
3619                 r = -EFAULT;
3620                 if (copy_from_user(&cap, argp, sizeof(cap)))
3621                         goto out;
3622                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3623                 break;
3624         }
3625         case KVM_SET_USER_MEMORY_REGION: {
3626                 struct kvm_userspace_memory_region kvm_userspace_mem;
3627
3628                 r = -EFAULT;
3629                 if (copy_from_user(&kvm_userspace_mem, argp,
3630                                                 sizeof(kvm_userspace_mem)))
3631                         goto out;
3632
3633                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3634                 break;
3635         }
3636         case KVM_GET_DIRTY_LOG: {
3637                 struct kvm_dirty_log log;
3638
3639                 r = -EFAULT;
3640                 if (copy_from_user(&log, argp, sizeof(log)))
3641                         goto out;
3642                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3643                 break;
3644         }
3645 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3646         case KVM_CLEAR_DIRTY_LOG: {
3647                 struct kvm_clear_dirty_log log;
3648
3649                 r = -EFAULT;
3650                 if (copy_from_user(&log, argp, sizeof(log)))
3651                         goto out;
3652                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3653                 break;
3654         }
3655 #endif
3656 #ifdef CONFIG_KVM_MMIO
3657         case KVM_REGISTER_COALESCED_MMIO: {
3658                 struct kvm_coalesced_mmio_zone zone;
3659
3660                 r = -EFAULT;
3661                 if (copy_from_user(&zone, argp, sizeof(zone)))
3662                         goto out;
3663                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3664                 break;
3665         }
3666         case KVM_UNREGISTER_COALESCED_MMIO: {
3667                 struct kvm_coalesced_mmio_zone zone;
3668
3669                 r = -EFAULT;
3670                 if (copy_from_user(&zone, argp, sizeof(zone)))
3671                         goto out;
3672                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3673                 break;
3674         }
3675 #endif
3676         case KVM_IRQFD: {
3677                 struct kvm_irqfd data;
3678
3679                 r = -EFAULT;
3680                 if (copy_from_user(&data, argp, sizeof(data)))
3681                         goto out;
3682                 r = kvm_irqfd(kvm, &data);
3683                 break;
3684         }
3685         case KVM_IOEVENTFD: {
3686                 struct kvm_ioeventfd data;
3687
3688                 r = -EFAULT;
3689                 if (copy_from_user(&data, argp, sizeof(data)))
3690                         goto out;
3691                 r = kvm_ioeventfd(kvm, &data);
3692                 break;
3693         }
3694 #ifdef CONFIG_HAVE_KVM_MSI
3695         case KVM_SIGNAL_MSI: {
3696                 struct kvm_msi msi;
3697
3698                 r = -EFAULT;
3699                 if (copy_from_user(&msi, argp, sizeof(msi)))
3700                         goto out;
3701                 r = kvm_send_userspace_msi(kvm, &msi);
3702                 break;
3703         }
3704 #endif
3705 #ifdef __KVM_HAVE_IRQ_LINE
3706         case KVM_IRQ_LINE_STATUS:
3707         case KVM_IRQ_LINE: {
3708                 struct kvm_irq_level irq_event;
3709
3710                 r = -EFAULT;
3711                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3712                         goto out;
3713
3714                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3715                                         ioctl == KVM_IRQ_LINE_STATUS);
3716                 if (r)
3717                         goto out;
3718
3719                 r = -EFAULT;
3720                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3721                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3722                                 goto out;
3723                 }
3724
3725                 r = 0;
3726                 break;
3727         }
3728 #endif
3729 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3730         case KVM_SET_GSI_ROUTING: {
3731                 struct kvm_irq_routing routing;
3732                 struct kvm_irq_routing __user *urouting;
3733                 struct kvm_irq_routing_entry *entries = NULL;
3734
3735                 r = -EFAULT;
3736                 if (copy_from_user(&routing, argp, sizeof(routing)))
3737                         goto out;
3738                 r = -EINVAL;
3739                 if (!kvm_arch_can_set_irq_routing(kvm))
3740                         goto out;
3741                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3742                         goto out;
3743                 if (routing.flags)
3744                         goto out;
3745                 if (routing.nr) {
3746                         r = -ENOMEM;
3747                         entries = vmalloc(array_size(sizeof(*entries),
3748                                                      routing.nr));
3749                         if (!entries)
3750                                 goto out;
3751                         r = -EFAULT;
3752                         urouting = argp;
3753                         if (copy_from_user(entries, urouting->entries,
3754                                            routing.nr * sizeof(*entries)))
3755                                 goto out_free_irq_routing;
3756                 }
3757                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3758                                         routing.flags);
3759 out_free_irq_routing:
3760                 vfree(entries);
3761                 break;
3762         }
3763 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3764         case KVM_CREATE_DEVICE: {
3765                 struct kvm_create_device cd;
3766
3767                 r = -EFAULT;
3768                 if (copy_from_user(&cd, argp, sizeof(cd)))
3769                         goto out;
3770
3771                 r = kvm_ioctl_create_device(kvm, &cd);
3772                 if (r)
3773                         goto out;
3774
3775                 r = -EFAULT;
3776                 if (copy_to_user(argp, &cd, sizeof(cd)))
3777                         goto out;
3778
3779                 r = 0;
3780                 break;
3781         }
3782         case KVM_CHECK_EXTENSION:
3783                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3784                 break;
3785         default:
3786                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3787         }
3788 out:
3789         return r;
3790 }
3791
3792 #ifdef CONFIG_KVM_COMPAT
3793 struct compat_kvm_dirty_log {
3794         __u32 slot;
3795         __u32 padding1;
3796         union {
3797                 compat_uptr_t dirty_bitmap; /* one bit per page */
3798                 __u64 padding2;
3799         };
3800 };
3801
3802 static long kvm_vm_compat_ioctl(struct file *filp,
3803                            unsigned int ioctl, unsigned long arg)
3804 {
3805         struct kvm *kvm = filp->private_data;
3806         int r;
3807
3808         if (kvm->mm != current->mm)
3809                 return -EIO;
3810         switch (ioctl) {
3811         case KVM_GET_DIRTY_LOG: {
3812                 struct compat_kvm_dirty_log compat_log;
3813                 struct kvm_dirty_log log;
3814
3815                 if (copy_from_user(&compat_log, (void __user *)arg,
3816                                    sizeof(compat_log)))
3817                         return -EFAULT;
3818                 log.slot         = compat_log.slot;
3819                 log.padding1     = compat_log.padding1;
3820                 log.padding2     = compat_log.padding2;
3821                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3822
3823                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3824                 break;
3825         }
3826         default:
3827                 r = kvm_vm_ioctl(filp, ioctl, arg);
3828         }
3829         return r;
3830 }
3831 #endif
3832
3833 static struct file_operations kvm_vm_fops = {
3834         .release        = kvm_vm_release,
3835         .unlocked_ioctl = kvm_vm_ioctl,
3836         .llseek         = noop_llseek,
3837         KVM_COMPAT(kvm_vm_compat_ioctl),
3838 };
3839
3840 static int kvm_dev_ioctl_create_vm(unsigned long type)
3841 {
3842         int r;
3843         struct kvm *kvm;
3844         struct file *file;
3845
3846         kvm = kvm_create_vm(type);
3847         if (IS_ERR(kvm))
3848                 return PTR_ERR(kvm);
3849 #ifdef CONFIG_KVM_MMIO
3850         r = kvm_coalesced_mmio_init(kvm);
3851         if (r < 0)
3852                 goto put_kvm;
3853 #endif
3854         r = get_unused_fd_flags(O_CLOEXEC);
3855         if (r < 0)
3856                 goto put_kvm;
3857
3858         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3859         if (IS_ERR(file)) {
3860                 put_unused_fd(r);
3861                 r = PTR_ERR(file);
3862                 goto put_kvm;
3863         }
3864
3865         /*
3866          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3867          * already set, with ->release() being kvm_vm_release().  In error
3868          * cases it will be called by the final fput(file) and will take
3869          * care of doing kvm_put_kvm(kvm).
3870          */
3871         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3872                 put_unused_fd(r);
3873                 fput(file);
3874                 return -ENOMEM;
3875         }
3876         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3877
3878         fd_install(r, file);
3879         return r;
3880
3881 put_kvm:
3882         kvm_put_kvm(kvm);
3883         return r;
3884 }
3885
3886 static long kvm_dev_ioctl(struct file *filp,
3887                           unsigned int ioctl, unsigned long arg)
3888 {
3889         long r = -EINVAL;
3890
3891         switch (ioctl) {
3892         case KVM_GET_API_VERSION:
3893                 if (arg)
3894                         goto out;
3895                 r = KVM_API_VERSION;
3896                 break;
3897         case KVM_CREATE_VM:
3898                 r = kvm_dev_ioctl_create_vm(arg);
3899                 break;
3900         case KVM_CHECK_EXTENSION:
3901                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3902                 break;
3903         case KVM_GET_VCPU_MMAP_SIZE:
3904                 if (arg)
3905                         goto out;
3906                 r = PAGE_SIZE;     /* struct kvm_run */
3907 #ifdef CONFIG_X86
3908                 r += PAGE_SIZE;    /* pio data page */
3909 #endif
3910 #ifdef CONFIG_KVM_MMIO
3911                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3912 #endif
3913                 break;
3914         case KVM_TRACE_ENABLE:
3915         case KVM_TRACE_PAUSE:
3916         case KVM_TRACE_DISABLE:
3917                 r = -EOPNOTSUPP;
3918                 break;
3919         default:
3920                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3921         }
3922 out:
3923         return r;
3924 }
3925
3926 static struct file_operations kvm_chardev_ops = {
3927         .unlocked_ioctl = kvm_dev_ioctl,
3928         .llseek         = noop_llseek,
3929         KVM_COMPAT(kvm_dev_ioctl),
3930 };
3931
3932 static struct miscdevice kvm_dev = {
3933         KVM_MINOR,
3934         "kvm",
3935         &kvm_chardev_ops,
3936 };
3937
3938 static void hardware_enable_nolock(void *junk)
3939 {
3940         int cpu = raw_smp_processor_id();
3941         int r;
3942
3943         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3944                 return;
3945
3946         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3947
3948         r = kvm_arch_hardware_enable();
3949
3950         if (r) {
3951                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3952                 atomic_inc(&hardware_enable_failed);
3953                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3954         }
3955 }
3956
3957 static int kvm_starting_cpu(unsigned int cpu)
3958 {
3959         raw_spin_lock(&kvm_count_lock);
3960         if (kvm_usage_count)
3961                 hardware_enable_nolock(NULL);
3962         raw_spin_unlock(&kvm_count_lock);
3963         return 0;
3964 }
3965
3966 static void hardware_disable_nolock(void *junk)
3967 {
3968         int cpu = raw_smp_processor_id();
3969
3970         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3971                 return;
3972         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3973         kvm_arch_hardware_disable();
3974 }
3975
3976 static int kvm_dying_cpu(unsigned int cpu)
3977 {
3978         raw_spin_lock(&kvm_count_lock);
3979         if (kvm_usage_count)
3980                 hardware_disable_nolock(NULL);
3981         raw_spin_unlock(&kvm_count_lock);
3982         return 0;
3983 }
3984
3985 static void hardware_disable_all_nolock(void)
3986 {
3987         BUG_ON(!kvm_usage_count);
3988
3989         kvm_usage_count--;
3990         if (!kvm_usage_count)
3991                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3992 }
3993
3994 static void hardware_disable_all(void)
3995 {
3996         raw_spin_lock(&kvm_count_lock);
3997         hardware_disable_all_nolock();
3998         raw_spin_unlock(&kvm_count_lock);
3999 }
4000
4001 static int hardware_enable_all(void)
4002 {
4003         int r = 0;
4004
4005         raw_spin_lock(&kvm_count_lock);
4006
4007         kvm_usage_count++;
4008         if (kvm_usage_count == 1) {
4009                 atomic_set(&hardware_enable_failed, 0);
4010                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4011
4012                 if (atomic_read(&hardware_enable_failed)) {
4013                         hardware_disable_all_nolock();
4014                         r = -EBUSY;
4015                 }
4016         }
4017
4018         raw_spin_unlock(&kvm_count_lock);
4019
4020         return r;
4021 }
4022
4023 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4024                       void *v)
4025 {
4026         /*
4027          * Some (well, at least mine) BIOSes hang on reboot if
4028          * in vmx root mode.
4029          *
4030          * And Intel TXT required VMX off for all cpu when system shutdown.
4031          */
4032         pr_info("kvm: exiting hardware virtualization\n");
4033         kvm_rebooting = true;
4034         on_each_cpu(hardware_disable_nolock, NULL, 1);
4035         return NOTIFY_OK;
4036 }
4037
4038 static struct notifier_block kvm_reboot_notifier = {
4039         .notifier_call = kvm_reboot,
4040         .priority = 0,
4041 };
4042
4043 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4044 {
4045         int i;
4046
4047         for (i = 0; i < bus->dev_count; i++) {
4048                 struct kvm_io_device *pos = bus->range[i].dev;
4049
4050                 kvm_iodevice_destructor(pos);
4051         }
4052         kfree(bus);
4053 }
4054
4055 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4056                                  const struct kvm_io_range *r2)
4057 {
4058         gpa_t addr1 = r1->addr;
4059         gpa_t addr2 = r2->addr;
4060
4061         if (addr1 < addr2)
4062                 return -1;
4063
4064         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4065          * accept any overlapping write.  Any order is acceptable for
4066          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4067          * we process all of them.
4068          */
4069         if (r2->len) {
4070                 addr1 += r1->len;
4071                 addr2 += r2->len;
4072         }
4073
4074         if (addr1 > addr2)
4075                 return 1;
4076
4077         return 0;
4078 }
4079
4080 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4081 {
4082         return kvm_io_bus_cmp(p1, p2);
4083 }
4084
4085 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4086                              gpa_t addr, int len)
4087 {
4088         struct kvm_io_range *range, key;
4089         int off;
4090
4091         key = (struct kvm_io_range) {
4092                 .addr = addr,
4093                 .len = len,
4094         };
4095
4096         range = bsearch(&key, bus->range, bus->dev_count,
4097                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4098         if (range == NULL)
4099                 return -ENOENT;
4100
4101         off = range - bus->range;
4102
4103         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4104                 off--;
4105
4106         return off;
4107 }
4108
4109 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4110                               struct kvm_io_range *range, const void *val)
4111 {
4112         int idx;
4113
4114         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4115         if (idx < 0)
4116                 return -EOPNOTSUPP;
4117
4118         while (idx < bus->dev_count &&
4119                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4120                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4121                                         range->len, val))
4122                         return idx;
4123                 idx++;
4124         }
4125
4126         return -EOPNOTSUPP;
4127 }
4128
4129 /* kvm_io_bus_write - called under kvm->slots_lock */
4130 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4131                      int len, const void *val)
4132 {
4133         struct kvm_io_bus *bus;
4134         struct kvm_io_range range;
4135         int r;
4136
4137         range = (struct kvm_io_range) {
4138                 .addr = addr,
4139                 .len = len,
4140         };
4141
4142         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4143         if (!bus)
4144                 return -ENOMEM;
4145         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4146         return r < 0 ? r : 0;
4147 }
4148 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4149
4150 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4151 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4152                             gpa_t addr, int len, const void *val, long cookie)
4153 {
4154         struct kvm_io_bus *bus;
4155         struct kvm_io_range range;
4156
4157         range = (struct kvm_io_range) {
4158                 .addr = addr,
4159                 .len = len,
4160         };
4161
4162         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4163         if (!bus)
4164                 return -ENOMEM;
4165
4166         /* First try the device referenced by cookie. */
4167         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4168             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4169                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4170                                         val))
4171                         return cookie;
4172
4173         /*
4174          * cookie contained garbage; fall back to search and return the
4175          * correct cookie value.
4176          */
4177         return __kvm_io_bus_write(vcpu, bus, &range, val);
4178 }
4179
4180 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4181                              struct kvm_io_range *range, void *val)
4182 {
4183         int idx;
4184
4185         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4186         if (idx < 0)
4187                 return -EOPNOTSUPP;
4188
4189         while (idx < bus->dev_count &&
4190                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4191                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4192                                        range->len, val))
4193                         return idx;
4194                 idx++;
4195         }
4196
4197         return -EOPNOTSUPP;
4198 }
4199
4200 /* kvm_io_bus_read - called under kvm->slots_lock */
4201 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4202                     int len, void *val)
4203 {
4204         struct kvm_io_bus *bus;
4205         struct kvm_io_range range;
4206         int r;
4207
4208         range = (struct kvm_io_range) {
4209                 .addr = addr,
4210                 .len = len,
4211         };
4212
4213         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4214         if (!bus)
4215                 return -ENOMEM;
4216         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4217         return r < 0 ? r : 0;
4218 }
4219
4220 /* Caller must hold slots_lock. */
4221 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4222                             int len, struct kvm_io_device *dev)
4223 {
4224         int i;
4225         struct kvm_io_bus *new_bus, *bus;
4226         struct kvm_io_range range;
4227
4228         bus = kvm_get_bus(kvm, bus_idx);
4229         if (!bus)
4230                 return -ENOMEM;
4231
4232         /* exclude ioeventfd which is limited by maximum fd */
4233         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4234                 return -ENOSPC;
4235
4236         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4237                           GFP_KERNEL_ACCOUNT);
4238         if (!new_bus)
4239                 return -ENOMEM;
4240
4241         range = (struct kvm_io_range) {
4242                 .addr = addr,
4243                 .len = len,
4244                 .dev = dev,
4245         };
4246
4247         for (i = 0; i < bus->dev_count; i++)
4248                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4249                         break;
4250
4251         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4252         new_bus->dev_count++;
4253         new_bus->range[i] = range;
4254         memcpy(new_bus->range + i + 1, bus->range + i,
4255                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4256         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4257         synchronize_srcu_expedited(&kvm->srcu);
4258         kfree(bus);
4259
4260         return 0;
4261 }
4262
4263 /* Caller must hold slots_lock. */
4264 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4265                                struct kvm_io_device *dev)
4266 {
4267         int i;
4268         struct kvm_io_bus *new_bus, *bus;
4269
4270         bus = kvm_get_bus(kvm, bus_idx);
4271         if (!bus)
4272                 return;
4273
4274         for (i = 0; i < bus->dev_count; i++)
4275                 if (bus->range[i].dev == dev) {
4276                         break;
4277                 }
4278
4279         if (i == bus->dev_count)
4280                 return;
4281
4282         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4283                           GFP_KERNEL_ACCOUNT);
4284         if (!new_bus)  {
4285                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4286                 goto broken;
4287         }
4288
4289         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4290         new_bus->dev_count--;
4291         memcpy(new_bus->range + i, bus->range + i + 1,
4292                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4293
4294 broken:
4295         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4296         synchronize_srcu_expedited(&kvm->srcu);
4297         kfree(bus);
4298         return;
4299 }
4300
4301 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4302                                          gpa_t addr)
4303 {
4304         struct kvm_io_bus *bus;
4305         int dev_idx, srcu_idx;
4306         struct kvm_io_device *iodev = NULL;
4307
4308         srcu_idx = srcu_read_lock(&kvm->srcu);
4309
4310         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4311         if (!bus)
4312                 goto out_unlock;
4313
4314         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4315         if (dev_idx < 0)
4316                 goto out_unlock;
4317
4318         iodev = bus->range[dev_idx].dev;
4319
4320 out_unlock:
4321         srcu_read_unlock(&kvm->srcu, srcu_idx);
4322
4323         return iodev;
4324 }
4325 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4326
4327 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4328                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4329                            const char *fmt)
4330 {
4331         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4332                                           inode->i_private;
4333
4334         /* The debugfs files are a reference to the kvm struct which
4335          * is still valid when kvm_destroy_vm is called.
4336          * To avoid the race between open and the removal of the debugfs
4337          * directory we test against the users count.
4338          */
4339         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4340                 return -ENOENT;
4341
4342         if (simple_attr_open(inode, file, get,
4343                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4344                     ? set : NULL,
4345                     fmt)) {
4346                 kvm_put_kvm(stat_data->kvm);
4347                 return -ENOMEM;
4348         }
4349
4350         return 0;
4351 }
4352
4353 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4354 {
4355         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4356                                           inode->i_private;
4357
4358         simple_attr_release(inode, file);
4359         kvm_put_kvm(stat_data->kvm);
4360
4361         return 0;
4362 }
4363
4364 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4365 {
4366         *val = *(ulong *)((void *)kvm + offset);
4367
4368         return 0;
4369 }
4370
4371 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4372 {
4373         *(ulong *)((void *)kvm + offset) = 0;
4374
4375         return 0;
4376 }
4377
4378 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4379 {
4380         int i;
4381         struct kvm_vcpu *vcpu;
4382
4383         *val = 0;
4384
4385         kvm_for_each_vcpu(i, vcpu, kvm)
4386                 *val += *(u64 *)((void *)vcpu + offset);
4387
4388         return 0;
4389 }
4390
4391 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4392 {
4393         int i;
4394         struct kvm_vcpu *vcpu;
4395
4396         kvm_for_each_vcpu(i, vcpu, kvm)
4397                 *(u64 *)((void *)vcpu + offset) = 0;
4398
4399         return 0;
4400 }
4401
4402 static int kvm_stat_data_get(void *data, u64 *val)
4403 {
4404         int r = -EFAULT;
4405         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4406
4407         switch (stat_data->dbgfs_item->kind) {
4408         case KVM_STAT_VM:
4409                 r = kvm_get_stat_per_vm(stat_data->kvm,
4410                                         stat_data->dbgfs_item->offset, val);
4411                 break;
4412         case KVM_STAT_VCPU:
4413                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4414                                           stat_data->dbgfs_item->offset, val);
4415                 break;
4416         }
4417
4418         return r;
4419 }
4420
4421 static int kvm_stat_data_clear(void *data, u64 val)
4422 {
4423         int r = -EFAULT;
4424         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4425
4426         if (val)
4427                 return -EINVAL;
4428
4429         switch (stat_data->dbgfs_item->kind) {
4430         case KVM_STAT_VM:
4431                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4432                                           stat_data->dbgfs_item->offset);
4433                 break;
4434         case KVM_STAT_VCPU:
4435                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4436                                             stat_data->dbgfs_item->offset);
4437                 break;
4438         }
4439
4440         return r;
4441 }
4442
4443 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4444 {
4445         __simple_attr_check_format("%llu\n", 0ull);
4446         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4447                                 kvm_stat_data_clear, "%llu\n");
4448 }
4449
4450 static const struct file_operations stat_fops_per_vm = {
4451         .owner = THIS_MODULE,
4452         .open = kvm_stat_data_open,
4453         .release = kvm_debugfs_release,
4454         .read = simple_attr_read,
4455         .write = simple_attr_write,
4456         .llseek = no_llseek,
4457 };
4458
4459 static int vm_stat_get(void *_offset, u64 *val)
4460 {
4461         unsigned offset = (long)_offset;
4462         struct kvm *kvm;
4463         u64 tmp_val;
4464
4465         *val = 0;
4466         mutex_lock(&kvm_lock);
4467         list_for_each_entry(kvm, &vm_list, vm_list) {
4468                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4469                 *val += tmp_val;
4470         }
4471         mutex_unlock(&kvm_lock);
4472         return 0;
4473 }
4474
4475 static int vm_stat_clear(void *_offset, u64 val)
4476 {
4477         unsigned offset = (long)_offset;
4478         struct kvm *kvm;
4479
4480         if (val)
4481                 return -EINVAL;
4482
4483         mutex_lock(&kvm_lock);
4484         list_for_each_entry(kvm, &vm_list, vm_list) {
4485                 kvm_clear_stat_per_vm(kvm, offset);
4486         }
4487         mutex_unlock(&kvm_lock);
4488
4489         return 0;
4490 }
4491
4492 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4493
4494 static int vcpu_stat_get(void *_offset, u64 *val)
4495 {
4496         unsigned offset = (long)_offset;
4497         struct kvm *kvm;
4498         u64 tmp_val;
4499
4500         *val = 0;
4501         mutex_lock(&kvm_lock);
4502         list_for_each_entry(kvm, &vm_list, vm_list) {
4503                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4504                 *val += tmp_val;
4505         }
4506         mutex_unlock(&kvm_lock);
4507         return 0;
4508 }
4509
4510 static int vcpu_stat_clear(void *_offset, u64 val)
4511 {
4512         unsigned offset = (long)_offset;
4513         struct kvm *kvm;
4514
4515         if (val)
4516                 return -EINVAL;
4517
4518         mutex_lock(&kvm_lock);
4519         list_for_each_entry(kvm, &vm_list, vm_list) {
4520                 kvm_clear_stat_per_vcpu(kvm, offset);
4521         }
4522         mutex_unlock(&kvm_lock);
4523
4524         return 0;
4525 }
4526
4527 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4528                         "%llu\n");
4529
4530 static const struct file_operations *stat_fops[] = {
4531         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4532         [KVM_STAT_VM]   = &vm_stat_fops,
4533 };
4534
4535 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4536 {
4537         struct kobj_uevent_env *env;
4538         unsigned long long created, active;
4539
4540         if (!kvm_dev.this_device || !kvm)
4541                 return;
4542
4543         mutex_lock(&kvm_lock);
4544         if (type == KVM_EVENT_CREATE_VM) {
4545                 kvm_createvm_count++;
4546                 kvm_active_vms++;
4547         } else if (type == KVM_EVENT_DESTROY_VM) {
4548                 kvm_active_vms--;
4549         }
4550         created = kvm_createvm_count;
4551         active = kvm_active_vms;
4552         mutex_unlock(&kvm_lock);
4553
4554         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4555         if (!env)
4556                 return;
4557
4558         add_uevent_var(env, "CREATED=%llu", created);
4559         add_uevent_var(env, "COUNT=%llu", active);
4560
4561         if (type == KVM_EVENT_CREATE_VM) {
4562                 add_uevent_var(env, "EVENT=create");
4563                 kvm->userspace_pid = task_pid_nr(current);
4564         } else if (type == KVM_EVENT_DESTROY_VM) {
4565                 add_uevent_var(env, "EVENT=destroy");
4566         }
4567         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4568
4569         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4570                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4571
4572                 if (p) {
4573                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4574                         if (!IS_ERR(tmp))
4575                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4576                         kfree(p);
4577                 }
4578         }
4579         /* no need for checks, since we are adding at most only 5 keys */
4580         env->envp[env->envp_idx++] = NULL;
4581         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4582         kfree(env);
4583 }
4584
4585 static void kvm_init_debug(void)
4586 {
4587         struct kvm_stats_debugfs_item *p;
4588
4589         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4590
4591         kvm_debugfs_num_entries = 0;
4592         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4593                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4594                                     kvm_debugfs_dir, (void *)(long)p->offset,
4595                                     stat_fops[p->kind]);
4596         }
4597 }
4598
4599 static int kvm_suspend(void)
4600 {
4601         if (kvm_usage_count)
4602                 hardware_disable_nolock(NULL);
4603         return 0;
4604 }
4605
4606 static void kvm_resume(void)
4607 {
4608         if (kvm_usage_count) {
4609 #ifdef CONFIG_LOCKDEP
4610                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4611 #endif
4612                 hardware_enable_nolock(NULL);
4613         }
4614 }
4615
4616 static struct syscore_ops kvm_syscore_ops = {
4617         .suspend = kvm_suspend,
4618         .resume = kvm_resume,
4619 };
4620
4621 static inline
4622 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4623 {
4624         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4625 }
4626
4627 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4628 {
4629         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4630
4631         WRITE_ONCE(vcpu->preempted, false);
4632         WRITE_ONCE(vcpu->ready, false);
4633
4634         __this_cpu_write(kvm_running_vcpu, vcpu);
4635         kvm_arch_sched_in(vcpu, cpu);
4636         kvm_arch_vcpu_load(vcpu, cpu);
4637 }
4638
4639 static void kvm_sched_out(struct preempt_notifier *pn,
4640                           struct task_struct *next)
4641 {
4642         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4643
4644         if (current->state == TASK_RUNNING) {
4645                 WRITE_ONCE(vcpu->preempted, true);
4646                 WRITE_ONCE(vcpu->ready, true);
4647         }
4648         kvm_arch_vcpu_put(vcpu);
4649         __this_cpu_write(kvm_running_vcpu, NULL);
4650 }
4651
4652 /**
4653  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4654  *
4655  * We can disable preemption locally around accessing the per-CPU variable,
4656  * and use the resolved vcpu pointer after enabling preemption again,
4657  * because even if the current thread is migrated to another CPU, reading
4658  * the per-CPU value later will give us the same value as we update the
4659  * per-CPU variable in the preempt notifier handlers.
4660  */
4661 struct kvm_vcpu *kvm_get_running_vcpu(void)
4662 {
4663         struct kvm_vcpu *vcpu;
4664
4665         preempt_disable();
4666         vcpu = __this_cpu_read(kvm_running_vcpu);
4667         preempt_enable();
4668
4669         return vcpu;
4670 }
4671 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4672
4673 /**
4674  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4675  */
4676 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4677 {
4678         return &kvm_running_vcpu;
4679 }
4680
4681 struct kvm_cpu_compat_check {
4682         void *opaque;
4683         int *ret;
4684 };
4685
4686 static void check_processor_compat(void *data)
4687 {
4688         struct kvm_cpu_compat_check *c = data;
4689
4690         *c->ret = kvm_arch_check_processor_compat(c->opaque);
4691 }
4692
4693 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4694                   struct module *module)
4695 {
4696         struct kvm_cpu_compat_check c;
4697         int r;
4698         int cpu;
4699
4700         r = kvm_arch_init(opaque);
4701         if (r)
4702                 goto out_fail;
4703
4704         /*
4705          * kvm_arch_init makes sure there's at most one caller
4706          * for architectures that support multiple implementations,
4707          * like intel and amd on x86.
4708          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4709          * conflicts in case kvm is already setup for another implementation.
4710          */
4711         r = kvm_irqfd_init();
4712         if (r)
4713                 goto out_irqfd;
4714
4715         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4716                 r = -ENOMEM;
4717                 goto out_free_0;
4718         }
4719
4720         r = kvm_arch_hardware_setup(opaque);
4721         if (r < 0)
4722                 goto out_free_1;
4723
4724         c.ret = &r;
4725         c.opaque = opaque;
4726         for_each_online_cpu(cpu) {
4727                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4728                 if (r < 0)
4729                         goto out_free_2;
4730         }
4731
4732         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4733                                       kvm_starting_cpu, kvm_dying_cpu);
4734         if (r)
4735                 goto out_free_2;
4736         register_reboot_notifier(&kvm_reboot_notifier);
4737
4738         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4739         if (!vcpu_align)
4740                 vcpu_align = __alignof__(struct kvm_vcpu);
4741         kvm_vcpu_cache =
4742                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4743                                            SLAB_ACCOUNT,
4744                                            offsetof(struct kvm_vcpu, arch),
4745                                            sizeof_field(struct kvm_vcpu, arch),
4746                                            NULL);
4747         if (!kvm_vcpu_cache) {
4748                 r = -ENOMEM;
4749                 goto out_free_3;
4750         }
4751
4752         r = kvm_async_pf_init();
4753         if (r)
4754                 goto out_free;
4755
4756         kvm_chardev_ops.owner = module;
4757         kvm_vm_fops.owner = module;
4758         kvm_vcpu_fops.owner = module;
4759
4760         r = misc_register(&kvm_dev);
4761         if (r) {
4762                 pr_err("kvm: misc device register failed\n");
4763                 goto out_unreg;
4764         }
4765
4766         register_syscore_ops(&kvm_syscore_ops);
4767
4768         kvm_preempt_ops.sched_in = kvm_sched_in;
4769         kvm_preempt_ops.sched_out = kvm_sched_out;
4770
4771         kvm_init_debug();
4772
4773         r = kvm_vfio_ops_init();
4774         WARN_ON(r);
4775
4776         return 0;
4777
4778 out_unreg:
4779         kvm_async_pf_deinit();
4780 out_free:
4781         kmem_cache_destroy(kvm_vcpu_cache);
4782 out_free_3:
4783         unregister_reboot_notifier(&kvm_reboot_notifier);
4784         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4785 out_free_2:
4786         kvm_arch_hardware_unsetup();
4787 out_free_1:
4788         free_cpumask_var(cpus_hardware_enabled);
4789 out_free_0:
4790         kvm_irqfd_exit();
4791 out_irqfd:
4792         kvm_arch_exit();
4793 out_fail:
4794         return r;
4795 }
4796 EXPORT_SYMBOL_GPL(kvm_init);
4797
4798 void kvm_exit(void)
4799 {
4800         debugfs_remove_recursive(kvm_debugfs_dir);
4801         misc_deregister(&kvm_dev);
4802         kmem_cache_destroy(kvm_vcpu_cache);
4803         kvm_async_pf_deinit();
4804         unregister_syscore_ops(&kvm_syscore_ops);
4805         unregister_reboot_notifier(&kvm_reboot_notifier);
4806         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4807         on_each_cpu(hardware_disable_nolock, NULL, 1);
4808         kvm_arch_hardware_unsetup();
4809         kvm_arch_exit();
4810         kvm_irqfd_exit();
4811         free_cpumask_var(cpus_hardware_enabled);
4812         kvm_vfio_ops_exit();
4813 }
4814 EXPORT_SYMBOL_GPL(kvm_exit);
4815
4816 struct kvm_vm_worker_thread_context {
4817         struct kvm *kvm;
4818         struct task_struct *parent;
4819         struct completion init_done;
4820         kvm_vm_thread_fn_t thread_fn;
4821         uintptr_t data;
4822         int err;
4823 };
4824
4825 static int kvm_vm_worker_thread(void *context)
4826 {
4827         /*
4828          * The init_context is allocated on the stack of the parent thread, so
4829          * we have to locally copy anything that is needed beyond initialization
4830          */
4831         struct kvm_vm_worker_thread_context *init_context = context;
4832         struct kvm *kvm = init_context->kvm;
4833         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4834         uintptr_t data = init_context->data;
4835         int err;
4836
4837         err = kthread_park(current);
4838         /* kthread_park(current) is never supposed to return an error */
4839         WARN_ON(err != 0);
4840         if (err)
4841                 goto init_complete;
4842
4843         err = cgroup_attach_task_all(init_context->parent, current);
4844         if (err) {
4845                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4846                         __func__, err);
4847                 goto init_complete;
4848         }
4849
4850         set_user_nice(current, task_nice(init_context->parent));
4851
4852 init_complete:
4853         init_context->err = err;
4854         complete(&init_context->init_done);
4855         init_context = NULL;
4856
4857         if (err)
4858                 return err;
4859
4860         /* Wait to be woken up by the spawner before proceeding. */
4861         kthread_parkme();
4862
4863         if (!kthread_should_stop())
4864                 err = thread_fn(kvm, data);
4865
4866         return err;
4867 }
4868
4869 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4870                                 uintptr_t data, const char *name,
4871                                 struct task_struct **thread_ptr)
4872 {
4873         struct kvm_vm_worker_thread_context init_context = {};
4874         struct task_struct *thread;
4875
4876         *thread_ptr = NULL;
4877         init_context.kvm = kvm;
4878         init_context.parent = current;
4879         init_context.thread_fn = thread_fn;
4880         init_context.data = data;
4881         init_completion(&init_context.init_done);
4882
4883         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4884                              "%s-%d", name, task_pid_nr(current));
4885         if (IS_ERR(thread))
4886                 return PTR_ERR(thread);
4887
4888         /* kthread_run is never supposed to return NULL */
4889         WARN_ON(thread == NULL);
4890
4891         wait_for_completion(&init_context.init_done);
4892
4893         if (!init_context.err)
4894                 *thread_ptr = thread;
4895
4896         return init_context.err;
4897 }