Merge tag 'fbdev-v5.2' of git://github.com/bzolnier/linux
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* The start value to grow halt_poll_ns from */
85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
86 module_param(halt_poll_ns_grow_start, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
88
89 /* Default resets per-vcpu halt_poll_ns . */
90 unsigned int halt_poll_ns_shrink;
91 module_param(halt_poll_ns_shrink, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
93
94 /*
95  * Ordering of locks:
96  *
97  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
98  */
99
100 DEFINE_SPINLOCK(kvm_lock);
101 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
102 LIST_HEAD(vm_list);
103
104 static cpumask_var_t cpus_hardware_enabled;
105 static int kvm_usage_count;
106 static atomic_t hardware_enable_failed;
107
108 struct kmem_cache *kvm_vcpu_cache;
109 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
110
111 static __read_mostly struct preempt_ops kvm_preempt_ops;
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static int kvm_debugfs_num_entries;
117 static const struct file_operations *stat_fops_per_vm[];
118
119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120                            unsigned long arg);
121 #ifdef CONFIG_KVM_COMPAT
122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123                                   unsigned long arg);
124 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
125 #else
126 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
127                                 unsigned long arg) { return -EINVAL; }
128 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
129 #endif
130 static int hardware_enable_all(void);
131 static void hardware_disable_all(void);
132
133 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
134
135 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
136
137 __visible bool kvm_rebooting;
138 EXPORT_SYMBOL_GPL(kvm_rebooting);
139
140 static bool largepages_enabled = true;
141
142 #define KVM_EVENT_CREATE_VM 0
143 #define KVM_EVENT_DESTROY_VM 1
144 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
145 static unsigned long long kvm_createvm_count;
146 static unsigned long long kvm_active_vms;
147
148 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
149                 unsigned long start, unsigned long end, bool blockable)
150 {
151         return 0;
152 }
153
154 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
155 {
156         if (pfn_valid(pfn))
157                 return PageReserved(pfn_to_page(pfn));
158
159         return true;
160 }
161
162 /*
163  * Switches to specified vcpu, until a matching vcpu_put()
164  */
165 void vcpu_load(struct kvm_vcpu *vcpu)
166 {
167         int cpu = get_cpu();
168         preempt_notifier_register(&vcpu->preempt_notifier);
169         kvm_arch_vcpu_load(vcpu, cpu);
170         put_cpu();
171 }
172 EXPORT_SYMBOL_GPL(vcpu_load);
173
174 void vcpu_put(struct kvm_vcpu *vcpu)
175 {
176         preempt_disable();
177         kvm_arch_vcpu_put(vcpu);
178         preempt_notifier_unregister(&vcpu->preempt_notifier);
179         preempt_enable();
180 }
181 EXPORT_SYMBOL_GPL(vcpu_put);
182
183 /* TODO: merge with kvm_arch_vcpu_should_kick */
184 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
185 {
186         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
187
188         /*
189          * We need to wait for the VCPU to reenable interrupts and get out of
190          * READING_SHADOW_PAGE_TABLES mode.
191          */
192         if (req & KVM_REQUEST_WAIT)
193                 return mode != OUTSIDE_GUEST_MODE;
194
195         /*
196          * Need to kick a running VCPU, but otherwise there is nothing to do.
197          */
198         return mode == IN_GUEST_MODE;
199 }
200
201 static void ack_flush(void *_completed)
202 {
203 }
204
205 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
206 {
207         if (unlikely(!cpus))
208                 cpus = cpu_online_mask;
209
210         if (cpumask_empty(cpus))
211                 return false;
212
213         smp_call_function_many(cpus, ack_flush, NULL, wait);
214         return true;
215 }
216
217 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
218                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
219 {
220         int i, cpu, me;
221         struct kvm_vcpu *vcpu;
222         bool called;
223
224         me = get_cpu();
225
226         kvm_for_each_vcpu(i, vcpu, kvm) {
227                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
228                         continue;
229
230                 kvm_make_request(req, vcpu);
231                 cpu = vcpu->cpu;
232
233                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
234                         continue;
235
236                 if (tmp != NULL && cpu != -1 && cpu != me &&
237                     kvm_request_needs_ipi(vcpu, req))
238                         __cpumask_set_cpu(cpu, tmp);
239         }
240
241         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
242         put_cpu();
243
244         return called;
245 }
246
247 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
248 {
249         cpumask_var_t cpus;
250         bool called;
251
252         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
253
254         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
255
256         free_cpumask_var(cpus);
257         return called;
258 }
259
260 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
261 void kvm_flush_remote_tlbs(struct kvm *kvm)
262 {
263         /*
264          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
265          * kvm_make_all_cpus_request.
266          */
267         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
268
269         /*
270          * We want to publish modifications to the page tables before reading
271          * mode. Pairs with a memory barrier in arch-specific code.
272          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
273          * and smp_mb in walk_shadow_page_lockless_begin/end.
274          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
275          *
276          * There is already an smp_mb__after_atomic() before
277          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
278          * barrier here.
279          */
280         if (!kvm_arch_flush_remote_tlb(kvm)
281             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
282                 ++kvm->stat.remote_tlb_flush;
283         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
284 }
285 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
286 #endif
287
288 void kvm_reload_remote_mmus(struct kvm *kvm)
289 {
290         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
291 }
292
293 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
294 {
295         struct page *page;
296         int r;
297
298         mutex_init(&vcpu->mutex);
299         vcpu->cpu = -1;
300         vcpu->kvm = kvm;
301         vcpu->vcpu_id = id;
302         vcpu->pid = NULL;
303         init_swait_queue_head(&vcpu->wq);
304         kvm_async_pf_vcpu_init(vcpu);
305
306         vcpu->pre_pcpu = -1;
307         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
308
309         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
310         if (!page) {
311                 r = -ENOMEM;
312                 goto fail;
313         }
314         vcpu->run = page_address(page);
315
316         kvm_vcpu_set_in_spin_loop(vcpu, false);
317         kvm_vcpu_set_dy_eligible(vcpu, false);
318         vcpu->preempted = false;
319
320         r = kvm_arch_vcpu_init(vcpu);
321         if (r < 0)
322                 goto fail_free_run;
323         return 0;
324
325 fail_free_run:
326         free_page((unsigned long)vcpu->run);
327 fail:
328         return r;
329 }
330 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
331
332 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
333 {
334         /*
335          * no need for rcu_read_lock as VCPU_RUN is the only place that
336          * will change the vcpu->pid pointer and on uninit all file
337          * descriptors are already gone.
338          */
339         put_pid(rcu_dereference_protected(vcpu->pid, 1));
340         kvm_arch_vcpu_uninit(vcpu);
341         free_page((unsigned long)vcpu->run);
342 }
343 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
344
345 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
346 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
347 {
348         return container_of(mn, struct kvm, mmu_notifier);
349 }
350
351 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
352                                         struct mm_struct *mm,
353                                         unsigned long address,
354                                         pte_t pte)
355 {
356         struct kvm *kvm = mmu_notifier_to_kvm(mn);
357         int idx;
358
359         idx = srcu_read_lock(&kvm->srcu);
360         spin_lock(&kvm->mmu_lock);
361         kvm->mmu_notifier_seq++;
362
363         if (kvm_set_spte_hva(kvm, address, pte))
364                 kvm_flush_remote_tlbs(kvm);
365
366         spin_unlock(&kvm->mmu_lock);
367         srcu_read_unlock(&kvm->srcu, idx);
368 }
369
370 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
371                                         const struct mmu_notifier_range *range)
372 {
373         struct kvm *kvm = mmu_notifier_to_kvm(mn);
374         int need_tlb_flush = 0, idx;
375         int ret;
376
377         idx = srcu_read_lock(&kvm->srcu);
378         spin_lock(&kvm->mmu_lock);
379         /*
380          * The count increase must become visible at unlock time as no
381          * spte can be established without taking the mmu_lock and
382          * count is also read inside the mmu_lock critical section.
383          */
384         kvm->mmu_notifier_count++;
385         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
386         need_tlb_flush |= kvm->tlbs_dirty;
387         /* we've to flush the tlb before the pages can be freed */
388         if (need_tlb_flush)
389                 kvm_flush_remote_tlbs(kvm);
390
391         spin_unlock(&kvm->mmu_lock);
392
393         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
394                                         range->end, range->blockable);
395
396         srcu_read_unlock(&kvm->srcu, idx);
397
398         return ret;
399 }
400
401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
402                                         const struct mmu_notifier_range *range)
403 {
404         struct kvm *kvm = mmu_notifier_to_kvm(mn);
405
406         spin_lock(&kvm->mmu_lock);
407         /*
408          * This sequence increase will notify the kvm page fault that
409          * the page that is going to be mapped in the spte could have
410          * been freed.
411          */
412         kvm->mmu_notifier_seq++;
413         smp_wmb();
414         /*
415          * The above sequence increase must be visible before the
416          * below count decrease, which is ensured by the smp_wmb above
417          * in conjunction with the smp_rmb in mmu_notifier_retry().
418          */
419         kvm->mmu_notifier_count--;
420         spin_unlock(&kvm->mmu_lock);
421
422         BUG_ON(kvm->mmu_notifier_count < 0);
423 }
424
425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
426                                               struct mm_struct *mm,
427                                               unsigned long start,
428                                               unsigned long end)
429 {
430         struct kvm *kvm = mmu_notifier_to_kvm(mn);
431         int young, idx;
432
433         idx = srcu_read_lock(&kvm->srcu);
434         spin_lock(&kvm->mmu_lock);
435
436         young = kvm_age_hva(kvm, start, end);
437         if (young)
438                 kvm_flush_remote_tlbs(kvm);
439
440         spin_unlock(&kvm->mmu_lock);
441         srcu_read_unlock(&kvm->srcu, idx);
442
443         return young;
444 }
445
446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
447                                         struct mm_struct *mm,
448                                         unsigned long start,
449                                         unsigned long end)
450 {
451         struct kvm *kvm = mmu_notifier_to_kvm(mn);
452         int young, idx;
453
454         idx = srcu_read_lock(&kvm->srcu);
455         spin_lock(&kvm->mmu_lock);
456         /*
457          * Even though we do not flush TLB, this will still adversely
458          * affect performance on pre-Haswell Intel EPT, where there is
459          * no EPT Access Bit to clear so that we have to tear down EPT
460          * tables instead. If we find this unacceptable, we can always
461          * add a parameter to kvm_age_hva so that it effectively doesn't
462          * do anything on clear_young.
463          *
464          * Also note that currently we never issue secondary TLB flushes
465          * from clear_young, leaving this job up to the regular system
466          * cadence. If we find this inaccurate, we might come up with a
467          * more sophisticated heuristic later.
468          */
469         young = kvm_age_hva(kvm, start, end);
470         spin_unlock(&kvm->mmu_lock);
471         srcu_read_unlock(&kvm->srcu, idx);
472
473         return young;
474 }
475
476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
477                                        struct mm_struct *mm,
478                                        unsigned long address)
479 {
480         struct kvm *kvm = mmu_notifier_to_kvm(mn);
481         int young, idx;
482
483         idx = srcu_read_lock(&kvm->srcu);
484         spin_lock(&kvm->mmu_lock);
485         young = kvm_test_age_hva(kvm, address);
486         spin_unlock(&kvm->mmu_lock);
487         srcu_read_unlock(&kvm->srcu, idx);
488
489         return young;
490 }
491
492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
493                                      struct mm_struct *mm)
494 {
495         struct kvm *kvm = mmu_notifier_to_kvm(mn);
496         int idx;
497
498         idx = srcu_read_lock(&kvm->srcu);
499         kvm_arch_flush_shadow_all(kvm);
500         srcu_read_unlock(&kvm->srcu, idx);
501 }
502
503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
504         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
505         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
506         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
507         .clear_young            = kvm_mmu_notifier_clear_young,
508         .test_young             = kvm_mmu_notifier_test_young,
509         .change_pte             = kvm_mmu_notifier_change_pte,
510         .release                = kvm_mmu_notifier_release,
511 };
512
513 static int kvm_init_mmu_notifier(struct kvm *kvm)
514 {
515         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
516         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
517 }
518
519 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520
521 static int kvm_init_mmu_notifier(struct kvm *kvm)
522 {
523         return 0;
524 }
525
526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527
528 static struct kvm_memslots *kvm_alloc_memslots(void)
529 {
530         int i;
531         struct kvm_memslots *slots;
532
533         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
534         if (!slots)
535                 return NULL;
536
537         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
538                 slots->id_to_index[i] = slots->memslots[i].id = i;
539
540         return slots;
541 }
542
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545         if (!memslot->dirty_bitmap)
546                 return;
547
548         kvfree(memslot->dirty_bitmap);
549         memslot->dirty_bitmap = NULL;
550 }
551
552 /*
553  * Free any memory in @free but not in @dont.
554  */
555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
556                               struct kvm_memory_slot *dont)
557 {
558         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559                 kvm_destroy_dirty_bitmap(free);
560
561         kvm_arch_free_memslot(kvm, free, dont);
562
563         free->npages = 0;
564 }
565
566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
567 {
568         struct kvm_memory_slot *memslot;
569
570         if (!slots)
571                 return;
572
573         kvm_for_each_memslot(memslot, slots)
574                 kvm_free_memslot(kvm, memslot, NULL);
575
576         kvfree(slots);
577 }
578
579 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
580 {
581         int i;
582
583         if (!kvm->debugfs_dentry)
584                 return;
585
586         debugfs_remove_recursive(kvm->debugfs_dentry);
587
588         if (kvm->debugfs_stat_data) {
589                 for (i = 0; i < kvm_debugfs_num_entries; i++)
590                         kfree(kvm->debugfs_stat_data[i]);
591                 kfree(kvm->debugfs_stat_data);
592         }
593 }
594
595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
596 {
597         char dir_name[ITOA_MAX_LEN * 2];
598         struct kvm_stat_data *stat_data;
599         struct kvm_stats_debugfs_item *p;
600
601         if (!debugfs_initialized())
602                 return 0;
603
604         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
605         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
606
607         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
608                                          sizeof(*kvm->debugfs_stat_data),
609                                          GFP_KERNEL_ACCOUNT);
610         if (!kvm->debugfs_stat_data)
611                 return -ENOMEM;
612
613         for (p = debugfs_entries; p->name; p++) {
614                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
615                 if (!stat_data)
616                         return -ENOMEM;
617
618                 stat_data->kvm = kvm;
619                 stat_data->offset = p->offset;
620                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
621                 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
622                                     stat_data, stat_fops_per_vm[p->kind]);
623         }
624         return 0;
625 }
626
627 static struct kvm *kvm_create_vm(unsigned long type)
628 {
629         int r, i;
630         struct kvm *kvm = kvm_arch_alloc_vm();
631
632         if (!kvm)
633                 return ERR_PTR(-ENOMEM);
634
635         spin_lock_init(&kvm->mmu_lock);
636         mmgrab(current->mm);
637         kvm->mm = current->mm;
638         kvm_eventfd_init(kvm);
639         mutex_init(&kvm->lock);
640         mutex_init(&kvm->irq_lock);
641         mutex_init(&kvm->slots_lock);
642         refcount_set(&kvm->users_count, 1);
643         INIT_LIST_HEAD(&kvm->devices);
644
645         r = kvm_arch_init_vm(kvm, type);
646         if (r)
647                 goto out_err_no_disable;
648
649         r = hardware_enable_all();
650         if (r)
651                 goto out_err_no_disable;
652
653 #ifdef CONFIG_HAVE_KVM_IRQFD
654         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
655 #endif
656
657         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
658
659         r = -ENOMEM;
660         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
661                 struct kvm_memslots *slots = kvm_alloc_memslots();
662                 if (!slots)
663                         goto out_err_no_srcu;
664                 /* Generations must be different for each address space. */
665                 slots->generation = i;
666                 rcu_assign_pointer(kvm->memslots[i], slots);
667         }
668
669         if (init_srcu_struct(&kvm->srcu))
670                 goto out_err_no_srcu;
671         if (init_srcu_struct(&kvm->irq_srcu))
672                 goto out_err_no_irq_srcu;
673         for (i = 0; i < KVM_NR_BUSES; i++) {
674                 rcu_assign_pointer(kvm->buses[i],
675                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
676                 if (!kvm->buses[i])
677                         goto out_err;
678         }
679
680         r = kvm_init_mmu_notifier(kvm);
681         if (r)
682                 goto out_err;
683
684         spin_lock(&kvm_lock);
685         list_add(&kvm->vm_list, &vm_list);
686         spin_unlock(&kvm_lock);
687
688         preempt_notifier_inc();
689
690         return kvm;
691
692 out_err:
693         cleanup_srcu_struct(&kvm->irq_srcu);
694 out_err_no_irq_srcu:
695         cleanup_srcu_struct(&kvm->srcu);
696 out_err_no_srcu:
697         hardware_disable_all();
698 out_err_no_disable:
699         refcount_set(&kvm->users_count, 0);
700         for (i = 0; i < KVM_NR_BUSES; i++)
701                 kfree(kvm_get_bus(kvm, i));
702         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
703                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
704         kvm_arch_free_vm(kvm);
705         mmdrop(current->mm);
706         return ERR_PTR(r);
707 }
708
709 static void kvm_destroy_devices(struct kvm *kvm)
710 {
711         struct kvm_device *dev, *tmp;
712
713         /*
714          * We do not need to take the kvm->lock here, because nobody else
715          * has a reference to the struct kvm at this point and therefore
716          * cannot access the devices list anyhow.
717          */
718         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
719                 list_del(&dev->vm_node);
720                 dev->ops->destroy(dev);
721         }
722 }
723
724 static void kvm_destroy_vm(struct kvm *kvm)
725 {
726         int i;
727         struct mm_struct *mm = kvm->mm;
728
729         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
730         kvm_destroy_vm_debugfs(kvm);
731         kvm_arch_sync_events(kvm);
732         spin_lock(&kvm_lock);
733         list_del(&kvm->vm_list);
734         spin_unlock(&kvm_lock);
735         kvm_free_irq_routing(kvm);
736         for (i = 0; i < KVM_NR_BUSES; i++) {
737                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
738
739                 if (bus)
740                         kvm_io_bus_destroy(bus);
741                 kvm->buses[i] = NULL;
742         }
743         kvm_coalesced_mmio_free(kvm);
744 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
745         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
746 #else
747         kvm_arch_flush_shadow_all(kvm);
748 #endif
749         kvm_arch_destroy_vm(kvm);
750         kvm_destroy_devices(kvm);
751         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
752                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
753         cleanup_srcu_struct(&kvm->irq_srcu);
754         cleanup_srcu_struct(&kvm->srcu);
755         kvm_arch_free_vm(kvm);
756         preempt_notifier_dec();
757         hardware_disable_all();
758         mmdrop(mm);
759 }
760
761 void kvm_get_kvm(struct kvm *kvm)
762 {
763         refcount_inc(&kvm->users_count);
764 }
765 EXPORT_SYMBOL_GPL(kvm_get_kvm);
766
767 void kvm_put_kvm(struct kvm *kvm)
768 {
769         if (refcount_dec_and_test(&kvm->users_count))
770                 kvm_destroy_vm(kvm);
771 }
772 EXPORT_SYMBOL_GPL(kvm_put_kvm);
773
774
775 static int kvm_vm_release(struct inode *inode, struct file *filp)
776 {
777         struct kvm *kvm = filp->private_data;
778
779         kvm_irqfd_release(kvm);
780
781         kvm_put_kvm(kvm);
782         return 0;
783 }
784
785 /*
786  * Allocation size is twice as large as the actual dirty bitmap size.
787  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
788  */
789 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
790 {
791         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
792
793         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
794         if (!memslot->dirty_bitmap)
795                 return -ENOMEM;
796
797         return 0;
798 }
799
800 /*
801  * Insert memslot and re-sort memslots based on their GFN,
802  * so binary search could be used to lookup GFN.
803  * Sorting algorithm takes advantage of having initially
804  * sorted array and known changed memslot position.
805  */
806 static void update_memslots(struct kvm_memslots *slots,
807                             struct kvm_memory_slot *new,
808                             enum kvm_mr_change change)
809 {
810         int id = new->id;
811         int i = slots->id_to_index[id];
812         struct kvm_memory_slot *mslots = slots->memslots;
813
814         WARN_ON(mslots[i].id != id);
815         switch (change) {
816         case KVM_MR_CREATE:
817                 slots->used_slots++;
818                 WARN_ON(mslots[i].npages || !new->npages);
819                 break;
820         case KVM_MR_DELETE:
821                 slots->used_slots--;
822                 WARN_ON(new->npages || !mslots[i].npages);
823                 break;
824         default:
825                 break;
826         }
827
828         while (i < KVM_MEM_SLOTS_NUM - 1 &&
829                new->base_gfn <= mslots[i + 1].base_gfn) {
830                 if (!mslots[i + 1].npages)
831                         break;
832                 mslots[i] = mslots[i + 1];
833                 slots->id_to_index[mslots[i].id] = i;
834                 i++;
835         }
836
837         /*
838          * The ">=" is needed when creating a slot with base_gfn == 0,
839          * so that it moves before all those with base_gfn == npages == 0.
840          *
841          * On the other hand, if new->npages is zero, the above loop has
842          * already left i pointing to the beginning of the empty part of
843          * mslots, and the ">=" would move the hole backwards in this
844          * case---which is wrong.  So skip the loop when deleting a slot.
845          */
846         if (new->npages) {
847                 while (i > 0 &&
848                        new->base_gfn >= mslots[i - 1].base_gfn) {
849                         mslots[i] = mslots[i - 1];
850                         slots->id_to_index[mslots[i].id] = i;
851                         i--;
852                 }
853         } else
854                 WARN_ON_ONCE(i != slots->used_slots);
855
856         mslots[i] = *new;
857         slots->id_to_index[mslots[i].id] = i;
858 }
859
860 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
861 {
862         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
863
864 #ifdef __KVM_HAVE_READONLY_MEM
865         valid_flags |= KVM_MEM_READONLY;
866 #endif
867
868         if (mem->flags & ~valid_flags)
869                 return -EINVAL;
870
871         return 0;
872 }
873
874 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
875                 int as_id, struct kvm_memslots *slots)
876 {
877         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
878         u64 gen = old_memslots->generation;
879
880         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
881         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
882
883         rcu_assign_pointer(kvm->memslots[as_id], slots);
884         synchronize_srcu_expedited(&kvm->srcu);
885
886         /*
887          * Increment the new memslot generation a second time, dropping the
888          * update in-progress flag and incrementing then generation based on
889          * the number of address spaces.  This provides a unique and easily
890          * identifiable generation number while the memslots are in flux.
891          */
892         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
893
894         /*
895          * Generations must be unique even across address spaces.  We do not need
896          * a global counter for that, instead the generation space is evenly split
897          * across address spaces.  For example, with two address spaces, address
898          * space 0 will use generations 0, 2, 4, ... while address space 1 will
899          * use generations 1, 3, 5, ...
900          */
901         gen += KVM_ADDRESS_SPACE_NUM;
902
903         kvm_arch_memslots_updated(kvm, gen);
904
905         slots->generation = gen;
906
907         return old_memslots;
908 }
909
910 /*
911  * Allocate some memory and give it an address in the guest physical address
912  * space.
913  *
914  * Discontiguous memory is allowed, mostly for framebuffers.
915  *
916  * Must be called holding kvm->slots_lock for write.
917  */
918 int __kvm_set_memory_region(struct kvm *kvm,
919                             const struct kvm_userspace_memory_region *mem)
920 {
921         int r;
922         gfn_t base_gfn;
923         unsigned long npages;
924         struct kvm_memory_slot *slot;
925         struct kvm_memory_slot old, new;
926         struct kvm_memslots *slots = NULL, *old_memslots;
927         int as_id, id;
928         enum kvm_mr_change change;
929
930         r = check_memory_region_flags(mem);
931         if (r)
932                 goto out;
933
934         r = -EINVAL;
935         as_id = mem->slot >> 16;
936         id = (u16)mem->slot;
937
938         /* General sanity checks */
939         if (mem->memory_size & (PAGE_SIZE - 1))
940                 goto out;
941         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
942                 goto out;
943         /* We can read the guest memory with __xxx_user() later on. */
944         if ((id < KVM_USER_MEM_SLOTS) &&
945             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
946              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
947                         mem->memory_size)))
948                 goto out;
949         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
950                 goto out;
951         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
952                 goto out;
953
954         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
955         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
956         npages = mem->memory_size >> PAGE_SHIFT;
957
958         if (npages > KVM_MEM_MAX_NR_PAGES)
959                 goto out;
960
961         new = old = *slot;
962
963         new.id = id;
964         new.base_gfn = base_gfn;
965         new.npages = npages;
966         new.flags = mem->flags;
967
968         if (npages) {
969                 if (!old.npages)
970                         change = KVM_MR_CREATE;
971                 else { /* Modify an existing slot. */
972                         if ((mem->userspace_addr != old.userspace_addr) ||
973                             (npages != old.npages) ||
974                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
975                                 goto out;
976
977                         if (base_gfn != old.base_gfn)
978                                 change = KVM_MR_MOVE;
979                         else if (new.flags != old.flags)
980                                 change = KVM_MR_FLAGS_ONLY;
981                         else { /* Nothing to change. */
982                                 r = 0;
983                                 goto out;
984                         }
985                 }
986         } else {
987                 if (!old.npages)
988                         goto out;
989
990                 change = KVM_MR_DELETE;
991                 new.base_gfn = 0;
992                 new.flags = 0;
993         }
994
995         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
996                 /* Check for overlaps */
997                 r = -EEXIST;
998                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
999                         if (slot->id == id)
1000                                 continue;
1001                         if (!((base_gfn + npages <= slot->base_gfn) ||
1002                               (base_gfn >= slot->base_gfn + slot->npages)))
1003                                 goto out;
1004                 }
1005         }
1006
1007         /* Free page dirty bitmap if unneeded */
1008         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1009                 new.dirty_bitmap = NULL;
1010
1011         r = -ENOMEM;
1012         if (change == KVM_MR_CREATE) {
1013                 new.userspace_addr = mem->userspace_addr;
1014
1015                 if (kvm_arch_create_memslot(kvm, &new, npages))
1016                         goto out_free;
1017         }
1018
1019         /* Allocate page dirty bitmap if needed */
1020         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1021                 if (kvm_create_dirty_bitmap(&new) < 0)
1022                         goto out_free;
1023         }
1024
1025         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1026         if (!slots)
1027                 goto out_free;
1028         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1029
1030         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1031                 slot = id_to_memslot(slots, id);
1032                 slot->flags |= KVM_MEMSLOT_INVALID;
1033
1034                 old_memslots = install_new_memslots(kvm, as_id, slots);
1035
1036                 /* From this point no new shadow pages pointing to a deleted,
1037                  * or moved, memslot will be created.
1038                  *
1039                  * validation of sp->gfn happens in:
1040                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1041                  *      - kvm_is_visible_gfn (mmu_check_roots)
1042                  */
1043                 kvm_arch_flush_shadow_memslot(kvm, slot);
1044
1045                 /*
1046                  * We can re-use the old_memslots from above, the only difference
1047                  * from the currently installed memslots is the invalid flag.  This
1048                  * will get overwritten by update_memslots anyway.
1049                  */
1050                 slots = old_memslots;
1051         }
1052
1053         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1054         if (r)
1055                 goto out_slots;
1056
1057         /* actual memory is freed via old in kvm_free_memslot below */
1058         if (change == KVM_MR_DELETE) {
1059                 new.dirty_bitmap = NULL;
1060                 memset(&new.arch, 0, sizeof(new.arch));
1061         }
1062
1063         update_memslots(slots, &new, change);
1064         old_memslots = install_new_memslots(kvm, as_id, slots);
1065
1066         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1067
1068         kvm_free_memslot(kvm, &old, &new);
1069         kvfree(old_memslots);
1070         return 0;
1071
1072 out_slots:
1073         kvfree(slots);
1074 out_free:
1075         kvm_free_memslot(kvm, &new, &old);
1076 out:
1077         return r;
1078 }
1079 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1080
1081 int kvm_set_memory_region(struct kvm *kvm,
1082                           const struct kvm_userspace_memory_region *mem)
1083 {
1084         int r;
1085
1086         mutex_lock(&kvm->slots_lock);
1087         r = __kvm_set_memory_region(kvm, mem);
1088         mutex_unlock(&kvm->slots_lock);
1089         return r;
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1092
1093 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1094                                           struct kvm_userspace_memory_region *mem)
1095 {
1096         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1097                 return -EINVAL;
1098
1099         return kvm_set_memory_region(kvm, mem);
1100 }
1101
1102 int kvm_get_dirty_log(struct kvm *kvm,
1103                         struct kvm_dirty_log *log, int *is_dirty)
1104 {
1105         struct kvm_memslots *slots;
1106         struct kvm_memory_slot *memslot;
1107         int i, as_id, id;
1108         unsigned long n;
1109         unsigned long any = 0;
1110
1111         as_id = log->slot >> 16;
1112         id = (u16)log->slot;
1113         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1114                 return -EINVAL;
1115
1116         slots = __kvm_memslots(kvm, as_id);
1117         memslot = id_to_memslot(slots, id);
1118         if (!memslot->dirty_bitmap)
1119                 return -ENOENT;
1120
1121         n = kvm_dirty_bitmap_bytes(memslot);
1122
1123         for (i = 0; !any && i < n/sizeof(long); ++i)
1124                 any = memslot->dirty_bitmap[i];
1125
1126         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1127                 return -EFAULT;
1128
1129         if (any)
1130                 *is_dirty = 1;
1131         return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1134
1135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1136 /**
1137  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1138  *      and reenable dirty page tracking for the corresponding pages.
1139  * @kvm:        pointer to kvm instance
1140  * @log:        slot id and address to which we copy the log
1141  * @is_dirty:   flag set if any page is dirty
1142  *
1143  * We need to keep it in mind that VCPU threads can write to the bitmap
1144  * concurrently. So, to avoid losing track of dirty pages we keep the
1145  * following order:
1146  *
1147  *    1. Take a snapshot of the bit and clear it if needed.
1148  *    2. Write protect the corresponding page.
1149  *    3. Copy the snapshot to the userspace.
1150  *    4. Upon return caller flushes TLB's if needed.
1151  *
1152  * Between 2 and 4, the guest may write to the page using the remaining TLB
1153  * entry.  This is not a problem because the page is reported dirty using
1154  * the snapshot taken before and step 4 ensures that writes done after
1155  * exiting to userspace will be logged for the next call.
1156  *
1157  */
1158 int kvm_get_dirty_log_protect(struct kvm *kvm,
1159                         struct kvm_dirty_log *log, bool *flush)
1160 {
1161         struct kvm_memslots *slots;
1162         struct kvm_memory_slot *memslot;
1163         int i, as_id, id;
1164         unsigned long n;
1165         unsigned long *dirty_bitmap;
1166         unsigned long *dirty_bitmap_buffer;
1167
1168         as_id = log->slot >> 16;
1169         id = (u16)log->slot;
1170         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1171                 return -EINVAL;
1172
1173         slots = __kvm_memslots(kvm, as_id);
1174         memslot = id_to_memslot(slots, id);
1175
1176         dirty_bitmap = memslot->dirty_bitmap;
1177         if (!dirty_bitmap)
1178                 return -ENOENT;
1179
1180         n = kvm_dirty_bitmap_bytes(memslot);
1181         *flush = false;
1182         if (kvm->manual_dirty_log_protect) {
1183                 /*
1184                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1185                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1186                  * is some code duplication between this function and
1187                  * kvm_get_dirty_log, but hopefully all architecture
1188                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1189                  * can be eliminated.
1190                  */
1191                 dirty_bitmap_buffer = dirty_bitmap;
1192         } else {
1193                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1194                 memset(dirty_bitmap_buffer, 0, n);
1195
1196                 spin_lock(&kvm->mmu_lock);
1197                 for (i = 0; i < n / sizeof(long); i++) {
1198                         unsigned long mask;
1199                         gfn_t offset;
1200
1201                         if (!dirty_bitmap[i])
1202                                 continue;
1203
1204                         *flush = true;
1205                         mask = xchg(&dirty_bitmap[i], 0);
1206                         dirty_bitmap_buffer[i] = mask;
1207
1208                         offset = i * BITS_PER_LONG;
1209                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1210                                                                 offset, mask);
1211                 }
1212                 spin_unlock(&kvm->mmu_lock);
1213         }
1214
1215         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1216                 return -EFAULT;
1217         return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1220
1221 /**
1222  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1223  *      and reenable dirty page tracking for the corresponding pages.
1224  * @kvm:        pointer to kvm instance
1225  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1226  */
1227 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1228                                 struct kvm_clear_dirty_log *log, bool *flush)
1229 {
1230         struct kvm_memslots *slots;
1231         struct kvm_memory_slot *memslot;
1232         int as_id, id;
1233         gfn_t offset;
1234         unsigned long i, n;
1235         unsigned long *dirty_bitmap;
1236         unsigned long *dirty_bitmap_buffer;
1237
1238         as_id = log->slot >> 16;
1239         id = (u16)log->slot;
1240         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1241                 return -EINVAL;
1242
1243         if (log->first_page & 63)
1244                 return -EINVAL;
1245
1246         slots = __kvm_memslots(kvm, as_id);
1247         memslot = id_to_memslot(slots, id);
1248
1249         dirty_bitmap = memslot->dirty_bitmap;
1250         if (!dirty_bitmap)
1251                 return -ENOENT;
1252
1253         n = kvm_dirty_bitmap_bytes(memslot);
1254
1255         if (log->first_page > memslot->npages ||
1256             log->num_pages > memslot->npages - log->first_page ||
1257             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1258             return -EINVAL;
1259
1260         *flush = false;
1261         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1262         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1263                 return -EFAULT;
1264
1265         spin_lock(&kvm->mmu_lock);
1266         for (offset = log->first_page,
1267              i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1268              i++, offset += BITS_PER_LONG) {
1269                 unsigned long mask = *dirty_bitmap_buffer++;
1270                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1271                 if (!mask)
1272                         continue;
1273
1274                 mask &= atomic_long_fetch_andnot(mask, p);
1275
1276                 /*
1277                  * mask contains the bits that really have been cleared.  This
1278                  * never includes any bits beyond the length of the memslot (if
1279                  * the length is not aligned to 64 pages), therefore it is not
1280                  * a problem if userspace sets them in log->dirty_bitmap.
1281                 */
1282                 if (mask) {
1283                         *flush = true;
1284                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1285                                                                 offset, mask);
1286                 }
1287         }
1288         spin_unlock(&kvm->mmu_lock);
1289
1290         return 0;
1291 }
1292 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1293 #endif
1294
1295 bool kvm_largepages_enabled(void)
1296 {
1297         return largepages_enabled;
1298 }
1299
1300 void kvm_disable_largepages(void)
1301 {
1302         largepages_enabled = false;
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1305
1306 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1307 {
1308         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1309 }
1310 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1311
1312 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1313 {
1314         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1315 }
1316
1317 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1318 {
1319         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1320
1321         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1322               memslot->flags & KVM_MEMSLOT_INVALID)
1323                 return false;
1324
1325         return true;
1326 }
1327 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1328
1329 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1330 {
1331         struct vm_area_struct *vma;
1332         unsigned long addr, size;
1333
1334         size = PAGE_SIZE;
1335
1336         addr = gfn_to_hva(kvm, gfn);
1337         if (kvm_is_error_hva(addr))
1338                 return PAGE_SIZE;
1339
1340         down_read(&current->mm->mmap_sem);
1341         vma = find_vma(current->mm, addr);
1342         if (!vma)
1343                 goto out;
1344
1345         size = vma_kernel_pagesize(vma);
1346
1347 out:
1348         up_read(&current->mm->mmap_sem);
1349
1350         return size;
1351 }
1352
1353 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1354 {
1355         return slot->flags & KVM_MEM_READONLY;
1356 }
1357
1358 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1359                                        gfn_t *nr_pages, bool write)
1360 {
1361         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1362                 return KVM_HVA_ERR_BAD;
1363
1364         if (memslot_is_readonly(slot) && write)
1365                 return KVM_HVA_ERR_RO_BAD;
1366
1367         if (nr_pages)
1368                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1369
1370         return __gfn_to_hva_memslot(slot, gfn);
1371 }
1372
1373 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1374                                      gfn_t *nr_pages)
1375 {
1376         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1377 }
1378
1379 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1380                                         gfn_t gfn)
1381 {
1382         return gfn_to_hva_many(slot, gfn, NULL);
1383 }
1384 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1385
1386 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1387 {
1388         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1389 }
1390 EXPORT_SYMBOL_GPL(gfn_to_hva);
1391
1392 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1393 {
1394         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1395 }
1396 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1397
1398 /*
1399  * Return the hva of a @gfn and the R/W attribute if possible.
1400  *
1401  * @slot: the kvm_memory_slot which contains @gfn
1402  * @gfn: the gfn to be translated
1403  * @writable: used to return the read/write attribute of the @slot if the hva
1404  * is valid and @writable is not NULL
1405  */
1406 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1407                                       gfn_t gfn, bool *writable)
1408 {
1409         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1410
1411         if (!kvm_is_error_hva(hva) && writable)
1412                 *writable = !memslot_is_readonly(slot);
1413
1414         return hva;
1415 }
1416
1417 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1418 {
1419         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1420
1421         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1422 }
1423
1424 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1425 {
1426         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1427
1428         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1429 }
1430
1431 static inline int check_user_page_hwpoison(unsigned long addr)
1432 {
1433         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1434
1435         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1436         return rc == -EHWPOISON;
1437 }
1438
1439 /*
1440  * The fast path to get the writable pfn which will be stored in @pfn,
1441  * true indicates success, otherwise false is returned.  It's also the
1442  * only part that runs if we can are in atomic context.
1443  */
1444 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1445                             bool *writable, kvm_pfn_t *pfn)
1446 {
1447         struct page *page[1];
1448         int npages;
1449
1450         /*
1451          * Fast pin a writable pfn only if it is a write fault request
1452          * or the caller allows to map a writable pfn for a read fault
1453          * request.
1454          */
1455         if (!(write_fault || writable))
1456                 return false;
1457
1458         npages = __get_user_pages_fast(addr, 1, 1, page);
1459         if (npages == 1) {
1460                 *pfn = page_to_pfn(page[0]);
1461
1462                 if (writable)
1463                         *writable = true;
1464                 return true;
1465         }
1466
1467         return false;
1468 }
1469
1470 /*
1471  * The slow path to get the pfn of the specified host virtual address,
1472  * 1 indicates success, -errno is returned if error is detected.
1473  */
1474 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1475                            bool *writable, kvm_pfn_t *pfn)
1476 {
1477         unsigned int flags = FOLL_HWPOISON;
1478         struct page *page;
1479         int npages = 0;
1480
1481         might_sleep();
1482
1483         if (writable)
1484                 *writable = write_fault;
1485
1486         if (write_fault)
1487                 flags |= FOLL_WRITE;
1488         if (async)
1489                 flags |= FOLL_NOWAIT;
1490
1491         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1492         if (npages != 1)
1493                 return npages;
1494
1495         /* map read fault as writable if possible */
1496         if (unlikely(!write_fault) && writable) {
1497                 struct page *wpage;
1498
1499                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1500                         *writable = true;
1501                         put_page(page);
1502                         page = wpage;
1503                 }
1504         }
1505         *pfn = page_to_pfn(page);
1506         return npages;
1507 }
1508
1509 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1510 {
1511         if (unlikely(!(vma->vm_flags & VM_READ)))
1512                 return false;
1513
1514         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1515                 return false;
1516
1517         return true;
1518 }
1519
1520 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1521                                unsigned long addr, bool *async,
1522                                bool write_fault, bool *writable,
1523                                kvm_pfn_t *p_pfn)
1524 {
1525         unsigned long pfn;
1526         int r;
1527
1528         r = follow_pfn(vma, addr, &pfn);
1529         if (r) {
1530                 /*
1531                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1532                  * not call the fault handler, so do it here.
1533                  */
1534                 bool unlocked = false;
1535                 r = fixup_user_fault(current, current->mm, addr,
1536                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1537                                      &unlocked);
1538                 if (unlocked)
1539                         return -EAGAIN;
1540                 if (r)
1541                         return r;
1542
1543                 r = follow_pfn(vma, addr, &pfn);
1544                 if (r)
1545                         return r;
1546
1547         }
1548
1549         if (writable)
1550                 *writable = true;
1551
1552         /*
1553          * Get a reference here because callers of *hva_to_pfn* and
1554          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1555          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1556          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1557          * simply do nothing for reserved pfns.
1558          *
1559          * Whoever called remap_pfn_range is also going to call e.g.
1560          * unmap_mapping_range before the underlying pages are freed,
1561          * causing a call to our MMU notifier.
1562          */ 
1563         kvm_get_pfn(pfn);
1564
1565         *p_pfn = pfn;
1566         return 0;
1567 }
1568
1569 /*
1570  * Pin guest page in memory and return its pfn.
1571  * @addr: host virtual address which maps memory to the guest
1572  * @atomic: whether this function can sleep
1573  * @async: whether this function need to wait IO complete if the
1574  *         host page is not in the memory
1575  * @write_fault: whether we should get a writable host page
1576  * @writable: whether it allows to map a writable host page for !@write_fault
1577  *
1578  * The function will map a writable host page for these two cases:
1579  * 1): @write_fault = true
1580  * 2): @write_fault = false && @writable, @writable will tell the caller
1581  *     whether the mapping is writable.
1582  */
1583 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1584                         bool write_fault, bool *writable)
1585 {
1586         struct vm_area_struct *vma;
1587         kvm_pfn_t pfn = 0;
1588         int npages, r;
1589
1590         /* we can do it either atomically or asynchronously, not both */
1591         BUG_ON(atomic && async);
1592
1593         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1594                 return pfn;
1595
1596         if (atomic)
1597                 return KVM_PFN_ERR_FAULT;
1598
1599         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1600         if (npages == 1)
1601                 return pfn;
1602
1603         down_read(&current->mm->mmap_sem);
1604         if (npages == -EHWPOISON ||
1605               (!async && check_user_page_hwpoison(addr))) {
1606                 pfn = KVM_PFN_ERR_HWPOISON;
1607                 goto exit;
1608         }
1609
1610 retry:
1611         vma = find_vma_intersection(current->mm, addr, addr + 1);
1612
1613         if (vma == NULL)
1614                 pfn = KVM_PFN_ERR_FAULT;
1615         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1616                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1617                 if (r == -EAGAIN)
1618                         goto retry;
1619                 if (r < 0)
1620                         pfn = KVM_PFN_ERR_FAULT;
1621         } else {
1622                 if (async && vma_is_valid(vma, write_fault))
1623                         *async = true;
1624                 pfn = KVM_PFN_ERR_FAULT;
1625         }
1626 exit:
1627         up_read(&current->mm->mmap_sem);
1628         return pfn;
1629 }
1630
1631 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1632                                bool atomic, bool *async, bool write_fault,
1633                                bool *writable)
1634 {
1635         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1636
1637         if (addr == KVM_HVA_ERR_RO_BAD) {
1638                 if (writable)
1639                         *writable = false;
1640                 return KVM_PFN_ERR_RO_FAULT;
1641         }
1642
1643         if (kvm_is_error_hva(addr)) {
1644                 if (writable)
1645                         *writable = false;
1646                 return KVM_PFN_NOSLOT;
1647         }
1648
1649         /* Do not map writable pfn in the readonly memslot. */
1650         if (writable && memslot_is_readonly(slot)) {
1651                 *writable = false;
1652                 writable = NULL;
1653         }
1654
1655         return hva_to_pfn(addr, atomic, async, write_fault,
1656                           writable);
1657 }
1658 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1659
1660 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1661                       bool *writable)
1662 {
1663         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1664                                     write_fault, writable);
1665 }
1666 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1667
1668 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1669 {
1670         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1671 }
1672 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1673
1674 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1675 {
1676         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1677 }
1678 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1679
1680 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1681 {
1682         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1683 }
1684 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1685
1686 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1687 {
1688         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1691
1692 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1693 {
1694         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1695 }
1696 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1697
1698 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1699 {
1700         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1703
1704 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1705                             struct page **pages, int nr_pages)
1706 {
1707         unsigned long addr;
1708         gfn_t entry = 0;
1709
1710         addr = gfn_to_hva_many(slot, gfn, &entry);
1711         if (kvm_is_error_hva(addr))
1712                 return -1;
1713
1714         if (entry < nr_pages)
1715                 return 0;
1716
1717         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1718 }
1719 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1720
1721 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1722 {
1723         if (is_error_noslot_pfn(pfn))
1724                 return KVM_ERR_PTR_BAD_PAGE;
1725
1726         if (kvm_is_reserved_pfn(pfn)) {
1727                 WARN_ON(1);
1728                 return KVM_ERR_PTR_BAD_PAGE;
1729         }
1730
1731         return pfn_to_page(pfn);
1732 }
1733
1734 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1735 {
1736         kvm_pfn_t pfn;
1737
1738         pfn = gfn_to_pfn(kvm, gfn);
1739
1740         return kvm_pfn_to_page(pfn);
1741 }
1742 EXPORT_SYMBOL_GPL(gfn_to_page);
1743
1744 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1745 {
1746         kvm_pfn_t pfn;
1747
1748         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1749
1750         return kvm_pfn_to_page(pfn);
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1753
1754 void kvm_release_page_clean(struct page *page)
1755 {
1756         WARN_ON(is_error_page(page));
1757
1758         kvm_release_pfn_clean(page_to_pfn(page));
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1761
1762 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1763 {
1764         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1765                 put_page(pfn_to_page(pfn));
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1768
1769 void kvm_release_page_dirty(struct page *page)
1770 {
1771         WARN_ON(is_error_page(page));
1772
1773         kvm_release_pfn_dirty(page_to_pfn(page));
1774 }
1775 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1776
1777 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1778 {
1779         kvm_set_pfn_dirty(pfn);
1780         kvm_release_pfn_clean(pfn);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1783
1784 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1785 {
1786         if (!kvm_is_reserved_pfn(pfn)) {
1787                 struct page *page = pfn_to_page(pfn);
1788
1789                 if (!PageReserved(page))
1790                         SetPageDirty(page);
1791         }
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1794
1795 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1796 {
1797         if (!kvm_is_reserved_pfn(pfn))
1798                 mark_page_accessed(pfn_to_page(pfn));
1799 }
1800 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1801
1802 void kvm_get_pfn(kvm_pfn_t pfn)
1803 {
1804         if (!kvm_is_reserved_pfn(pfn))
1805                 get_page(pfn_to_page(pfn));
1806 }
1807 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1808
1809 static int next_segment(unsigned long len, int offset)
1810 {
1811         if (len > PAGE_SIZE - offset)
1812                 return PAGE_SIZE - offset;
1813         else
1814                 return len;
1815 }
1816
1817 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1818                                  void *data, int offset, int len)
1819 {
1820         int r;
1821         unsigned long addr;
1822
1823         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1824         if (kvm_is_error_hva(addr))
1825                 return -EFAULT;
1826         r = __copy_from_user(data, (void __user *)addr + offset, len);
1827         if (r)
1828                 return -EFAULT;
1829         return 0;
1830 }
1831
1832 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1833                         int len)
1834 {
1835         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1836
1837         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1840
1841 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1842                              int offset, int len)
1843 {
1844         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1845
1846         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1847 }
1848 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1849
1850 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1851 {
1852         gfn_t gfn = gpa >> PAGE_SHIFT;
1853         int seg;
1854         int offset = offset_in_page(gpa);
1855         int ret;
1856
1857         while ((seg = next_segment(len, offset)) != 0) {
1858                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1859                 if (ret < 0)
1860                         return ret;
1861                 offset = 0;
1862                 len -= seg;
1863                 data += seg;
1864                 ++gfn;
1865         }
1866         return 0;
1867 }
1868 EXPORT_SYMBOL_GPL(kvm_read_guest);
1869
1870 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1871 {
1872         gfn_t gfn = gpa >> PAGE_SHIFT;
1873         int seg;
1874         int offset = offset_in_page(gpa);
1875         int ret;
1876
1877         while ((seg = next_segment(len, offset)) != 0) {
1878                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1879                 if (ret < 0)
1880                         return ret;
1881                 offset = 0;
1882                 len -= seg;
1883                 data += seg;
1884                 ++gfn;
1885         }
1886         return 0;
1887 }
1888 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1889
1890 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1891                                    void *data, int offset, unsigned long len)
1892 {
1893         int r;
1894         unsigned long addr;
1895
1896         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1897         if (kvm_is_error_hva(addr))
1898                 return -EFAULT;
1899         pagefault_disable();
1900         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1901         pagefault_enable();
1902         if (r)
1903                 return -EFAULT;
1904         return 0;
1905 }
1906
1907 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1908                           unsigned long len)
1909 {
1910         gfn_t gfn = gpa >> PAGE_SHIFT;
1911         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1912         int offset = offset_in_page(gpa);
1913
1914         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1917
1918 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1919                                void *data, unsigned long len)
1920 {
1921         gfn_t gfn = gpa >> PAGE_SHIFT;
1922         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1923         int offset = offset_in_page(gpa);
1924
1925         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1926 }
1927 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1928
1929 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1930                                   const void *data, int offset, int len)
1931 {
1932         int r;
1933         unsigned long addr;
1934
1935         addr = gfn_to_hva_memslot(memslot, gfn);
1936         if (kvm_is_error_hva(addr))
1937                 return -EFAULT;
1938         r = __copy_to_user((void __user *)addr + offset, data, len);
1939         if (r)
1940                 return -EFAULT;
1941         mark_page_dirty_in_slot(memslot, gfn);
1942         return 0;
1943 }
1944
1945 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1946                          const void *data, int offset, int len)
1947 {
1948         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1949
1950         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1951 }
1952 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1953
1954 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1955                               const void *data, int offset, int len)
1956 {
1957         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1958
1959         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1960 }
1961 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1962
1963 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1964                     unsigned long len)
1965 {
1966         gfn_t gfn = gpa >> PAGE_SHIFT;
1967         int seg;
1968         int offset = offset_in_page(gpa);
1969         int ret;
1970
1971         while ((seg = next_segment(len, offset)) != 0) {
1972                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1973                 if (ret < 0)
1974                         return ret;
1975                 offset = 0;
1976                 len -= seg;
1977                 data += seg;
1978                 ++gfn;
1979         }
1980         return 0;
1981 }
1982 EXPORT_SYMBOL_GPL(kvm_write_guest);
1983
1984 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1985                          unsigned long len)
1986 {
1987         gfn_t gfn = gpa >> PAGE_SHIFT;
1988         int seg;
1989         int offset = offset_in_page(gpa);
1990         int ret;
1991
1992         while ((seg = next_segment(len, offset)) != 0) {
1993                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1994                 if (ret < 0)
1995                         return ret;
1996                 offset = 0;
1997                 len -= seg;
1998                 data += seg;
1999                 ++gfn;
2000         }
2001         return 0;
2002 }
2003 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2004
2005 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2006                                        struct gfn_to_hva_cache *ghc,
2007                                        gpa_t gpa, unsigned long len)
2008 {
2009         int offset = offset_in_page(gpa);
2010         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2011         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2012         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2013         gfn_t nr_pages_avail;
2014         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2015
2016         ghc->gpa = gpa;
2017         ghc->generation = slots->generation;
2018         ghc->len = len;
2019         ghc->hva = KVM_HVA_ERR_BAD;
2020
2021         /*
2022          * If the requested region crosses two memslots, we still
2023          * verify that the entire region is valid here.
2024          */
2025         while (!r && start_gfn <= end_gfn) {
2026                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2027                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2028                                            &nr_pages_avail);
2029                 if (kvm_is_error_hva(ghc->hva))
2030                         r = -EFAULT;
2031                 start_gfn += nr_pages_avail;
2032         }
2033
2034         /* Use the slow path for cross page reads and writes. */
2035         if (!r && nr_pages_needed == 1)
2036                 ghc->hva += offset;
2037         else
2038                 ghc->memslot = NULL;
2039
2040         return r;
2041 }
2042
2043 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2044                               gpa_t gpa, unsigned long len)
2045 {
2046         struct kvm_memslots *slots = kvm_memslots(kvm);
2047         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2048 }
2049 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2050
2051 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2052                                   void *data, unsigned int offset,
2053                                   unsigned long len)
2054 {
2055         struct kvm_memslots *slots = kvm_memslots(kvm);
2056         int r;
2057         gpa_t gpa = ghc->gpa + offset;
2058
2059         BUG_ON(len + offset > ghc->len);
2060
2061         if (slots->generation != ghc->generation)
2062                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2063
2064         if (unlikely(!ghc->memslot))
2065                 return kvm_write_guest(kvm, gpa, data, len);
2066
2067         if (kvm_is_error_hva(ghc->hva))
2068                 return -EFAULT;
2069
2070         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2071         if (r)
2072                 return -EFAULT;
2073         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2074
2075         return 0;
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2078
2079 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2080                            void *data, unsigned long len)
2081 {
2082         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2083 }
2084 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2085
2086 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2087                            void *data, unsigned long len)
2088 {
2089         struct kvm_memslots *slots = kvm_memslots(kvm);
2090         int r;
2091
2092         BUG_ON(len > ghc->len);
2093
2094         if (slots->generation != ghc->generation)
2095                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2096
2097         if (unlikely(!ghc->memslot))
2098                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2099
2100         if (kvm_is_error_hva(ghc->hva))
2101                 return -EFAULT;
2102
2103         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2104         if (r)
2105                 return -EFAULT;
2106
2107         return 0;
2108 }
2109 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2110
2111 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2112 {
2113         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2114
2115         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2118
2119 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2120 {
2121         gfn_t gfn = gpa >> PAGE_SHIFT;
2122         int seg;
2123         int offset = offset_in_page(gpa);
2124         int ret;
2125
2126         while ((seg = next_segment(len, offset)) != 0) {
2127                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2128                 if (ret < 0)
2129                         return ret;
2130                 offset = 0;
2131                 len -= seg;
2132                 ++gfn;
2133         }
2134         return 0;
2135 }
2136 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2137
2138 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2139                                     gfn_t gfn)
2140 {
2141         if (memslot && memslot->dirty_bitmap) {
2142                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2143
2144                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2145         }
2146 }
2147
2148 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2149 {
2150         struct kvm_memory_slot *memslot;
2151
2152         memslot = gfn_to_memslot(kvm, gfn);
2153         mark_page_dirty_in_slot(memslot, gfn);
2154 }
2155 EXPORT_SYMBOL_GPL(mark_page_dirty);
2156
2157 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2158 {
2159         struct kvm_memory_slot *memslot;
2160
2161         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2162         mark_page_dirty_in_slot(memslot, gfn);
2163 }
2164 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2165
2166 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2167 {
2168         if (!vcpu->sigset_active)
2169                 return;
2170
2171         /*
2172          * This does a lockless modification of ->real_blocked, which is fine
2173          * because, only current can change ->real_blocked and all readers of
2174          * ->real_blocked don't care as long ->real_blocked is always a subset
2175          * of ->blocked.
2176          */
2177         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2178 }
2179
2180 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2181 {
2182         if (!vcpu->sigset_active)
2183                 return;
2184
2185         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2186         sigemptyset(&current->real_blocked);
2187 }
2188
2189 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2190 {
2191         unsigned int old, val, grow, grow_start;
2192
2193         old = val = vcpu->halt_poll_ns;
2194         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2195         grow = READ_ONCE(halt_poll_ns_grow);
2196         if (!grow)
2197                 goto out;
2198
2199         val *= grow;
2200         if (val < grow_start)
2201                 val = grow_start;
2202
2203         if (val > halt_poll_ns)
2204                 val = halt_poll_ns;
2205
2206         vcpu->halt_poll_ns = val;
2207 out:
2208         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2209 }
2210
2211 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2212 {
2213         unsigned int old, val, shrink;
2214
2215         old = val = vcpu->halt_poll_ns;
2216         shrink = READ_ONCE(halt_poll_ns_shrink);
2217         if (shrink == 0)
2218                 val = 0;
2219         else
2220                 val /= shrink;
2221
2222         vcpu->halt_poll_ns = val;
2223         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2224 }
2225
2226 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2227 {
2228         int ret = -EINTR;
2229         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2230
2231         if (kvm_arch_vcpu_runnable(vcpu)) {
2232                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2233                 goto out;
2234         }
2235         if (kvm_cpu_has_pending_timer(vcpu))
2236                 goto out;
2237         if (signal_pending(current))
2238                 goto out;
2239
2240         ret = 0;
2241 out:
2242         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2243         return ret;
2244 }
2245
2246 /*
2247  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2248  */
2249 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2250 {
2251         ktime_t start, cur;
2252         DECLARE_SWAITQUEUE(wait);
2253         bool waited = false;
2254         u64 block_ns;
2255
2256         start = cur = ktime_get();
2257         if (vcpu->halt_poll_ns) {
2258                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2259
2260                 ++vcpu->stat.halt_attempted_poll;
2261                 do {
2262                         /*
2263                          * This sets KVM_REQ_UNHALT if an interrupt
2264                          * arrives.
2265                          */
2266                         if (kvm_vcpu_check_block(vcpu) < 0) {
2267                                 ++vcpu->stat.halt_successful_poll;
2268                                 if (!vcpu_valid_wakeup(vcpu))
2269                                         ++vcpu->stat.halt_poll_invalid;
2270                                 goto out;
2271                         }
2272                         cur = ktime_get();
2273                 } while (single_task_running() && ktime_before(cur, stop));
2274         }
2275
2276         kvm_arch_vcpu_blocking(vcpu);
2277
2278         for (;;) {
2279                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2280
2281                 if (kvm_vcpu_check_block(vcpu) < 0)
2282                         break;
2283
2284                 waited = true;
2285                 schedule();
2286         }
2287
2288         finish_swait(&vcpu->wq, &wait);
2289         cur = ktime_get();
2290
2291         kvm_arch_vcpu_unblocking(vcpu);
2292 out:
2293         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2294
2295         if (!vcpu_valid_wakeup(vcpu))
2296                 shrink_halt_poll_ns(vcpu);
2297         else if (halt_poll_ns) {
2298                 if (block_ns <= vcpu->halt_poll_ns)
2299                         ;
2300                 /* we had a long block, shrink polling */
2301                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2302                         shrink_halt_poll_ns(vcpu);
2303                 /* we had a short halt and our poll time is too small */
2304                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2305                         block_ns < halt_poll_ns)
2306                         grow_halt_poll_ns(vcpu);
2307         } else
2308                 vcpu->halt_poll_ns = 0;
2309
2310         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2311         kvm_arch_vcpu_block_finish(vcpu);
2312 }
2313 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2314
2315 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2316 {
2317         struct swait_queue_head *wqp;
2318
2319         wqp = kvm_arch_vcpu_wq(vcpu);
2320         if (swq_has_sleeper(wqp)) {
2321                 swake_up_one(wqp);
2322                 ++vcpu->stat.halt_wakeup;
2323                 return true;
2324         }
2325
2326         return false;
2327 }
2328 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2329
2330 #ifndef CONFIG_S390
2331 /*
2332  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2333  */
2334 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2335 {
2336         int me;
2337         int cpu = vcpu->cpu;
2338
2339         if (kvm_vcpu_wake_up(vcpu))
2340                 return;
2341
2342         me = get_cpu();
2343         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2344                 if (kvm_arch_vcpu_should_kick(vcpu))
2345                         smp_send_reschedule(cpu);
2346         put_cpu();
2347 }
2348 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2349 #endif /* !CONFIG_S390 */
2350
2351 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2352 {
2353         struct pid *pid;
2354         struct task_struct *task = NULL;
2355         int ret = 0;
2356
2357         rcu_read_lock();
2358         pid = rcu_dereference(target->pid);
2359         if (pid)
2360                 task = get_pid_task(pid, PIDTYPE_PID);
2361         rcu_read_unlock();
2362         if (!task)
2363                 return ret;
2364         ret = yield_to(task, 1);
2365         put_task_struct(task);
2366
2367         return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2370
2371 /*
2372  * Helper that checks whether a VCPU is eligible for directed yield.
2373  * Most eligible candidate to yield is decided by following heuristics:
2374  *
2375  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2376  *  (preempted lock holder), indicated by @in_spin_loop.
2377  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2378  *
2379  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2380  *  chance last time (mostly it has become eligible now since we have probably
2381  *  yielded to lockholder in last iteration. This is done by toggling
2382  *  @dy_eligible each time a VCPU checked for eligibility.)
2383  *
2384  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2385  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2386  *  burning. Giving priority for a potential lock-holder increases lock
2387  *  progress.
2388  *
2389  *  Since algorithm is based on heuristics, accessing another VCPU data without
2390  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2391  *  and continue with next VCPU and so on.
2392  */
2393 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2394 {
2395 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2396         bool eligible;
2397
2398         eligible = !vcpu->spin_loop.in_spin_loop ||
2399                     vcpu->spin_loop.dy_eligible;
2400
2401         if (vcpu->spin_loop.in_spin_loop)
2402                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2403
2404         return eligible;
2405 #else
2406         return true;
2407 #endif
2408 }
2409
2410 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2411 {
2412         struct kvm *kvm = me->kvm;
2413         struct kvm_vcpu *vcpu;
2414         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2415         int yielded = 0;
2416         int try = 3;
2417         int pass;
2418         int i;
2419
2420         kvm_vcpu_set_in_spin_loop(me, true);
2421         /*
2422          * We boost the priority of a VCPU that is runnable but not
2423          * currently running, because it got preempted by something
2424          * else and called schedule in __vcpu_run.  Hopefully that
2425          * VCPU is holding the lock that we need and will release it.
2426          * We approximate round-robin by starting at the last boosted VCPU.
2427          */
2428         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2429                 kvm_for_each_vcpu(i, vcpu, kvm) {
2430                         if (!pass && i <= last_boosted_vcpu) {
2431                                 i = last_boosted_vcpu;
2432                                 continue;
2433                         } else if (pass && i > last_boosted_vcpu)
2434                                 break;
2435                         if (!READ_ONCE(vcpu->preempted))
2436                                 continue;
2437                         if (vcpu == me)
2438                                 continue;
2439                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2440                                 continue;
2441                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2442                                 continue;
2443                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2444                                 continue;
2445
2446                         yielded = kvm_vcpu_yield_to(vcpu);
2447                         if (yielded > 0) {
2448                                 kvm->last_boosted_vcpu = i;
2449                                 break;
2450                         } else if (yielded < 0) {
2451                                 try--;
2452                                 if (!try)
2453                                         break;
2454                         }
2455                 }
2456         }
2457         kvm_vcpu_set_in_spin_loop(me, false);
2458
2459         /* Ensure vcpu is not eligible during next spinloop */
2460         kvm_vcpu_set_dy_eligible(me, false);
2461 }
2462 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2463
2464 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2465 {
2466         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2467         struct page *page;
2468
2469         if (vmf->pgoff == 0)
2470                 page = virt_to_page(vcpu->run);
2471 #ifdef CONFIG_X86
2472         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2473                 page = virt_to_page(vcpu->arch.pio_data);
2474 #endif
2475 #ifdef CONFIG_KVM_MMIO
2476         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2477                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2478 #endif
2479         else
2480                 return kvm_arch_vcpu_fault(vcpu, vmf);
2481         get_page(page);
2482         vmf->page = page;
2483         return 0;
2484 }
2485
2486 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2487         .fault = kvm_vcpu_fault,
2488 };
2489
2490 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2491 {
2492         vma->vm_ops = &kvm_vcpu_vm_ops;
2493         return 0;
2494 }
2495
2496 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2497 {
2498         struct kvm_vcpu *vcpu = filp->private_data;
2499
2500         debugfs_remove_recursive(vcpu->debugfs_dentry);
2501         kvm_put_kvm(vcpu->kvm);
2502         return 0;
2503 }
2504
2505 static struct file_operations kvm_vcpu_fops = {
2506         .release        = kvm_vcpu_release,
2507         .unlocked_ioctl = kvm_vcpu_ioctl,
2508         .mmap           = kvm_vcpu_mmap,
2509         .llseek         = noop_llseek,
2510         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2511 };
2512
2513 /*
2514  * Allocates an inode for the vcpu.
2515  */
2516 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2517 {
2518         char name[8 + 1 + ITOA_MAX_LEN + 1];
2519
2520         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2521         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2522 }
2523
2524 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2525 {
2526         char dir_name[ITOA_MAX_LEN * 2];
2527         int ret;
2528
2529         if (!kvm_arch_has_vcpu_debugfs())
2530                 return 0;
2531
2532         if (!debugfs_initialized())
2533                 return 0;
2534
2535         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2536         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2537                                                                 vcpu->kvm->debugfs_dentry);
2538         if (!vcpu->debugfs_dentry)
2539                 return -ENOMEM;
2540
2541         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2542         if (ret < 0) {
2543                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2544                 return ret;
2545         }
2546
2547         return 0;
2548 }
2549
2550 /*
2551  * Creates some virtual cpus.  Good luck creating more than one.
2552  */
2553 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2554 {
2555         int r;
2556         struct kvm_vcpu *vcpu;
2557
2558         if (id >= KVM_MAX_VCPU_ID)
2559                 return -EINVAL;
2560
2561         mutex_lock(&kvm->lock);
2562         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2563                 mutex_unlock(&kvm->lock);
2564                 return -EINVAL;
2565         }
2566
2567         kvm->created_vcpus++;
2568         mutex_unlock(&kvm->lock);
2569
2570         vcpu = kvm_arch_vcpu_create(kvm, id);
2571         if (IS_ERR(vcpu)) {
2572                 r = PTR_ERR(vcpu);
2573                 goto vcpu_decrement;
2574         }
2575
2576         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2577
2578         r = kvm_arch_vcpu_setup(vcpu);
2579         if (r)
2580                 goto vcpu_destroy;
2581
2582         r = kvm_create_vcpu_debugfs(vcpu);
2583         if (r)
2584                 goto vcpu_destroy;
2585
2586         mutex_lock(&kvm->lock);
2587         if (kvm_get_vcpu_by_id(kvm, id)) {
2588                 r = -EEXIST;
2589                 goto unlock_vcpu_destroy;
2590         }
2591
2592         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2593
2594         /* Now it's all set up, let userspace reach it */
2595         kvm_get_kvm(kvm);
2596         r = create_vcpu_fd(vcpu);
2597         if (r < 0) {
2598                 kvm_put_kvm(kvm);
2599                 goto unlock_vcpu_destroy;
2600         }
2601
2602         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2603
2604         /*
2605          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2606          * before kvm->online_vcpu's incremented value.
2607          */
2608         smp_wmb();
2609         atomic_inc(&kvm->online_vcpus);
2610
2611         mutex_unlock(&kvm->lock);
2612         kvm_arch_vcpu_postcreate(vcpu);
2613         return r;
2614
2615 unlock_vcpu_destroy:
2616         mutex_unlock(&kvm->lock);
2617         debugfs_remove_recursive(vcpu->debugfs_dentry);
2618 vcpu_destroy:
2619         kvm_arch_vcpu_destroy(vcpu);
2620 vcpu_decrement:
2621         mutex_lock(&kvm->lock);
2622         kvm->created_vcpus--;
2623         mutex_unlock(&kvm->lock);
2624         return r;
2625 }
2626
2627 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2628 {
2629         if (sigset) {
2630                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2631                 vcpu->sigset_active = 1;
2632                 vcpu->sigset = *sigset;
2633         } else
2634                 vcpu->sigset_active = 0;
2635         return 0;
2636 }
2637
2638 static long kvm_vcpu_ioctl(struct file *filp,
2639                            unsigned int ioctl, unsigned long arg)
2640 {
2641         struct kvm_vcpu *vcpu = filp->private_data;
2642         void __user *argp = (void __user *)arg;
2643         int r;
2644         struct kvm_fpu *fpu = NULL;
2645         struct kvm_sregs *kvm_sregs = NULL;
2646
2647         if (vcpu->kvm->mm != current->mm)
2648                 return -EIO;
2649
2650         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2651                 return -EINVAL;
2652
2653         /*
2654          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2655          * execution; mutex_lock() would break them.
2656          */
2657         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2658         if (r != -ENOIOCTLCMD)
2659                 return r;
2660
2661         if (mutex_lock_killable(&vcpu->mutex))
2662                 return -EINTR;
2663         switch (ioctl) {
2664         case KVM_RUN: {
2665                 struct pid *oldpid;
2666                 r = -EINVAL;
2667                 if (arg)
2668                         goto out;
2669                 oldpid = rcu_access_pointer(vcpu->pid);
2670                 if (unlikely(oldpid != task_pid(current))) {
2671                         /* The thread running this VCPU changed. */
2672                         struct pid *newpid;
2673
2674                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2675                         if (r)
2676                                 break;
2677
2678                         newpid = get_task_pid(current, PIDTYPE_PID);
2679                         rcu_assign_pointer(vcpu->pid, newpid);
2680                         if (oldpid)
2681                                 synchronize_rcu();
2682                         put_pid(oldpid);
2683                 }
2684                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2685                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2686                 break;
2687         }
2688         case KVM_GET_REGS: {
2689                 struct kvm_regs *kvm_regs;
2690
2691                 r = -ENOMEM;
2692                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2693                 if (!kvm_regs)
2694                         goto out;
2695                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2696                 if (r)
2697                         goto out_free1;
2698                 r = -EFAULT;
2699                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2700                         goto out_free1;
2701                 r = 0;
2702 out_free1:
2703                 kfree(kvm_regs);
2704                 break;
2705         }
2706         case KVM_SET_REGS: {
2707                 struct kvm_regs *kvm_regs;
2708
2709                 r = -ENOMEM;
2710                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2711                 if (IS_ERR(kvm_regs)) {
2712                         r = PTR_ERR(kvm_regs);
2713                         goto out;
2714                 }
2715                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2716                 kfree(kvm_regs);
2717                 break;
2718         }
2719         case KVM_GET_SREGS: {
2720                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2721                                     GFP_KERNEL_ACCOUNT);
2722                 r = -ENOMEM;
2723                 if (!kvm_sregs)
2724                         goto out;
2725                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2726                 if (r)
2727                         goto out;
2728                 r = -EFAULT;
2729                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2730                         goto out;
2731                 r = 0;
2732                 break;
2733         }
2734         case KVM_SET_SREGS: {
2735                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2736                 if (IS_ERR(kvm_sregs)) {
2737                         r = PTR_ERR(kvm_sregs);
2738                         kvm_sregs = NULL;
2739                         goto out;
2740                 }
2741                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2742                 break;
2743         }
2744         case KVM_GET_MP_STATE: {
2745                 struct kvm_mp_state mp_state;
2746
2747                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2748                 if (r)
2749                         goto out;
2750                 r = -EFAULT;
2751                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2752                         goto out;
2753                 r = 0;
2754                 break;
2755         }
2756         case KVM_SET_MP_STATE: {
2757                 struct kvm_mp_state mp_state;
2758
2759                 r = -EFAULT;
2760                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2761                         goto out;
2762                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2763                 break;
2764         }
2765         case KVM_TRANSLATE: {
2766                 struct kvm_translation tr;
2767
2768                 r = -EFAULT;
2769                 if (copy_from_user(&tr, argp, sizeof(tr)))
2770                         goto out;
2771                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2772                 if (r)
2773                         goto out;
2774                 r = -EFAULT;
2775                 if (copy_to_user(argp, &tr, sizeof(tr)))
2776                         goto out;
2777                 r = 0;
2778                 break;
2779         }
2780         case KVM_SET_GUEST_DEBUG: {
2781                 struct kvm_guest_debug dbg;
2782
2783                 r = -EFAULT;
2784                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2785                         goto out;
2786                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2787                 break;
2788         }
2789         case KVM_SET_SIGNAL_MASK: {
2790                 struct kvm_signal_mask __user *sigmask_arg = argp;
2791                 struct kvm_signal_mask kvm_sigmask;
2792                 sigset_t sigset, *p;
2793
2794                 p = NULL;
2795                 if (argp) {
2796                         r = -EFAULT;
2797                         if (copy_from_user(&kvm_sigmask, argp,
2798                                            sizeof(kvm_sigmask)))
2799                                 goto out;
2800                         r = -EINVAL;
2801                         if (kvm_sigmask.len != sizeof(sigset))
2802                                 goto out;
2803                         r = -EFAULT;
2804                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2805                                            sizeof(sigset)))
2806                                 goto out;
2807                         p = &sigset;
2808                 }
2809                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2810                 break;
2811         }
2812         case KVM_GET_FPU: {
2813                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2814                 r = -ENOMEM;
2815                 if (!fpu)
2816                         goto out;
2817                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2818                 if (r)
2819                         goto out;
2820                 r = -EFAULT;
2821                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2822                         goto out;
2823                 r = 0;
2824                 break;
2825         }
2826         case KVM_SET_FPU: {
2827                 fpu = memdup_user(argp, sizeof(*fpu));
2828                 if (IS_ERR(fpu)) {
2829                         r = PTR_ERR(fpu);
2830                         fpu = NULL;
2831                         goto out;
2832                 }
2833                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2834                 break;
2835         }
2836         default:
2837                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2838         }
2839 out:
2840         mutex_unlock(&vcpu->mutex);
2841         kfree(fpu);
2842         kfree(kvm_sregs);
2843         return r;
2844 }
2845
2846 #ifdef CONFIG_KVM_COMPAT
2847 static long kvm_vcpu_compat_ioctl(struct file *filp,
2848                                   unsigned int ioctl, unsigned long arg)
2849 {
2850         struct kvm_vcpu *vcpu = filp->private_data;
2851         void __user *argp = compat_ptr(arg);
2852         int r;
2853
2854         if (vcpu->kvm->mm != current->mm)
2855                 return -EIO;
2856
2857         switch (ioctl) {
2858         case KVM_SET_SIGNAL_MASK: {
2859                 struct kvm_signal_mask __user *sigmask_arg = argp;
2860                 struct kvm_signal_mask kvm_sigmask;
2861                 sigset_t sigset;
2862
2863                 if (argp) {
2864                         r = -EFAULT;
2865                         if (copy_from_user(&kvm_sigmask, argp,
2866                                            sizeof(kvm_sigmask)))
2867                                 goto out;
2868                         r = -EINVAL;
2869                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2870                                 goto out;
2871                         r = -EFAULT;
2872                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2873                                 goto out;
2874                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2875                 } else
2876                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2877                 break;
2878         }
2879         default:
2880                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2881         }
2882
2883 out:
2884         return r;
2885 }
2886 #endif
2887
2888 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2889                                  int (*accessor)(struct kvm_device *dev,
2890                                                  struct kvm_device_attr *attr),
2891                                  unsigned long arg)
2892 {
2893         struct kvm_device_attr attr;
2894
2895         if (!accessor)
2896                 return -EPERM;
2897
2898         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2899                 return -EFAULT;
2900
2901         return accessor(dev, &attr);
2902 }
2903
2904 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2905                              unsigned long arg)
2906 {
2907         struct kvm_device *dev = filp->private_data;
2908
2909         if (dev->kvm->mm != current->mm)
2910                 return -EIO;
2911
2912         switch (ioctl) {
2913         case KVM_SET_DEVICE_ATTR:
2914                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2915         case KVM_GET_DEVICE_ATTR:
2916                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2917         case KVM_HAS_DEVICE_ATTR:
2918                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2919         default:
2920                 if (dev->ops->ioctl)
2921                         return dev->ops->ioctl(dev, ioctl, arg);
2922
2923                 return -ENOTTY;
2924         }
2925 }
2926
2927 static int kvm_device_release(struct inode *inode, struct file *filp)
2928 {
2929         struct kvm_device *dev = filp->private_data;
2930         struct kvm *kvm = dev->kvm;
2931
2932         kvm_put_kvm(kvm);
2933         return 0;
2934 }
2935
2936 static const struct file_operations kvm_device_fops = {
2937         .unlocked_ioctl = kvm_device_ioctl,
2938         .release = kvm_device_release,
2939         KVM_COMPAT(kvm_device_ioctl),
2940 };
2941
2942 struct kvm_device *kvm_device_from_filp(struct file *filp)
2943 {
2944         if (filp->f_op != &kvm_device_fops)
2945                 return NULL;
2946
2947         return filp->private_data;
2948 }
2949
2950 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2951 #ifdef CONFIG_KVM_MPIC
2952         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2953         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2954 #endif
2955 };
2956
2957 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2958 {
2959         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2960                 return -ENOSPC;
2961
2962         if (kvm_device_ops_table[type] != NULL)
2963                 return -EEXIST;
2964
2965         kvm_device_ops_table[type] = ops;
2966         return 0;
2967 }
2968
2969 void kvm_unregister_device_ops(u32 type)
2970 {
2971         if (kvm_device_ops_table[type] != NULL)
2972                 kvm_device_ops_table[type] = NULL;
2973 }
2974
2975 static int kvm_ioctl_create_device(struct kvm *kvm,
2976                                    struct kvm_create_device *cd)
2977 {
2978         struct kvm_device_ops *ops = NULL;
2979         struct kvm_device *dev;
2980         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2981         int type;
2982         int ret;
2983
2984         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2985                 return -ENODEV;
2986
2987         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
2988         ops = kvm_device_ops_table[type];
2989         if (ops == NULL)
2990                 return -ENODEV;
2991
2992         if (test)
2993                 return 0;
2994
2995         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
2996         if (!dev)
2997                 return -ENOMEM;
2998
2999         dev->ops = ops;
3000         dev->kvm = kvm;
3001
3002         mutex_lock(&kvm->lock);
3003         ret = ops->create(dev, type);
3004         if (ret < 0) {
3005                 mutex_unlock(&kvm->lock);
3006                 kfree(dev);
3007                 return ret;
3008         }
3009         list_add(&dev->vm_node, &kvm->devices);
3010         mutex_unlock(&kvm->lock);
3011
3012         if (ops->init)
3013                 ops->init(dev);
3014
3015         kvm_get_kvm(kvm);
3016         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3017         if (ret < 0) {
3018                 kvm_put_kvm(kvm);
3019                 mutex_lock(&kvm->lock);
3020                 list_del(&dev->vm_node);
3021                 mutex_unlock(&kvm->lock);
3022                 ops->destroy(dev);
3023                 return ret;
3024         }
3025
3026         cd->fd = ret;
3027         return 0;
3028 }
3029
3030 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3031 {
3032         switch (arg) {
3033         case KVM_CAP_USER_MEMORY:
3034         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3035         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3036         case KVM_CAP_INTERNAL_ERROR_DATA:
3037 #ifdef CONFIG_HAVE_KVM_MSI
3038         case KVM_CAP_SIGNAL_MSI:
3039 #endif
3040 #ifdef CONFIG_HAVE_KVM_IRQFD
3041         case KVM_CAP_IRQFD:
3042         case KVM_CAP_IRQFD_RESAMPLE:
3043 #endif
3044         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3045         case KVM_CAP_CHECK_EXTENSION_VM:
3046         case KVM_CAP_ENABLE_CAP_VM:
3047 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3048         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3049 #endif
3050                 return 1;
3051 #ifdef CONFIG_KVM_MMIO
3052         case KVM_CAP_COALESCED_MMIO:
3053                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3054         case KVM_CAP_COALESCED_PIO:
3055                 return 1;
3056 #endif
3057 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3058         case KVM_CAP_IRQ_ROUTING:
3059                 return KVM_MAX_IRQ_ROUTES;
3060 #endif
3061 #if KVM_ADDRESS_SPACE_NUM > 1
3062         case KVM_CAP_MULTI_ADDRESS_SPACE:
3063                 return KVM_ADDRESS_SPACE_NUM;
3064 #endif
3065         case KVM_CAP_MAX_VCPU_ID:
3066                 return KVM_MAX_VCPU_ID;
3067         default:
3068                 break;
3069         }
3070         return kvm_vm_ioctl_check_extension(kvm, arg);
3071 }
3072
3073 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3074                                                   struct kvm_enable_cap *cap)
3075 {
3076         return -EINVAL;
3077 }
3078
3079 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3080                                            struct kvm_enable_cap *cap)
3081 {
3082         switch (cap->cap) {
3083 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3084         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3085                 if (cap->flags || (cap->args[0] & ~1))
3086                         return -EINVAL;
3087                 kvm->manual_dirty_log_protect = cap->args[0];
3088                 return 0;
3089 #endif
3090         default:
3091                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3092         }
3093 }
3094
3095 static long kvm_vm_ioctl(struct file *filp,
3096                            unsigned int ioctl, unsigned long arg)
3097 {
3098         struct kvm *kvm = filp->private_data;
3099         void __user *argp = (void __user *)arg;
3100         int r;
3101
3102         if (kvm->mm != current->mm)
3103                 return -EIO;
3104         switch (ioctl) {
3105         case KVM_CREATE_VCPU:
3106                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3107                 break;
3108         case KVM_ENABLE_CAP: {
3109                 struct kvm_enable_cap cap;
3110
3111                 r = -EFAULT;
3112                 if (copy_from_user(&cap, argp, sizeof(cap)))
3113                         goto out;
3114                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3115                 break;
3116         }
3117         case KVM_SET_USER_MEMORY_REGION: {
3118                 struct kvm_userspace_memory_region kvm_userspace_mem;
3119
3120                 r = -EFAULT;
3121                 if (copy_from_user(&kvm_userspace_mem, argp,
3122                                                 sizeof(kvm_userspace_mem)))
3123                         goto out;
3124
3125                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3126                 break;
3127         }
3128         case KVM_GET_DIRTY_LOG: {
3129                 struct kvm_dirty_log log;
3130
3131                 r = -EFAULT;
3132                 if (copy_from_user(&log, argp, sizeof(log)))
3133                         goto out;
3134                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3135                 break;
3136         }
3137 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3138         case KVM_CLEAR_DIRTY_LOG: {
3139                 struct kvm_clear_dirty_log log;
3140
3141                 r = -EFAULT;
3142                 if (copy_from_user(&log, argp, sizeof(log)))
3143                         goto out;
3144                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3145                 break;
3146         }
3147 #endif
3148 #ifdef CONFIG_KVM_MMIO
3149         case KVM_REGISTER_COALESCED_MMIO: {
3150                 struct kvm_coalesced_mmio_zone zone;
3151
3152                 r = -EFAULT;
3153                 if (copy_from_user(&zone, argp, sizeof(zone)))
3154                         goto out;
3155                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3156                 break;
3157         }
3158         case KVM_UNREGISTER_COALESCED_MMIO: {
3159                 struct kvm_coalesced_mmio_zone zone;
3160
3161                 r = -EFAULT;
3162                 if (copy_from_user(&zone, argp, sizeof(zone)))
3163                         goto out;
3164                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3165                 break;
3166         }
3167 #endif
3168         case KVM_IRQFD: {
3169                 struct kvm_irqfd data;
3170
3171                 r = -EFAULT;
3172                 if (copy_from_user(&data, argp, sizeof(data)))
3173                         goto out;
3174                 r = kvm_irqfd(kvm, &data);
3175                 break;
3176         }
3177         case KVM_IOEVENTFD: {
3178                 struct kvm_ioeventfd data;
3179
3180                 r = -EFAULT;
3181                 if (copy_from_user(&data, argp, sizeof(data)))
3182                         goto out;
3183                 r = kvm_ioeventfd(kvm, &data);
3184                 break;
3185         }
3186 #ifdef CONFIG_HAVE_KVM_MSI
3187         case KVM_SIGNAL_MSI: {
3188                 struct kvm_msi msi;
3189
3190                 r = -EFAULT;
3191                 if (copy_from_user(&msi, argp, sizeof(msi)))
3192                         goto out;
3193                 r = kvm_send_userspace_msi(kvm, &msi);
3194                 break;
3195         }
3196 #endif
3197 #ifdef __KVM_HAVE_IRQ_LINE
3198         case KVM_IRQ_LINE_STATUS:
3199         case KVM_IRQ_LINE: {
3200                 struct kvm_irq_level irq_event;
3201
3202                 r = -EFAULT;
3203                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3204                         goto out;
3205
3206                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3207                                         ioctl == KVM_IRQ_LINE_STATUS);
3208                 if (r)
3209                         goto out;
3210
3211                 r = -EFAULT;
3212                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3213                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3214                                 goto out;
3215                 }
3216
3217                 r = 0;
3218                 break;
3219         }
3220 #endif
3221 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3222         case KVM_SET_GSI_ROUTING: {
3223                 struct kvm_irq_routing routing;
3224                 struct kvm_irq_routing __user *urouting;
3225                 struct kvm_irq_routing_entry *entries = NULL;
3226
3227                 r = -EFAULT;
3228                 if (copy_from_user(&routing, argp, sizeof(routing)))
3229                         goto out;
3230                 r = -EINVAL;
3231                 if (!kvm_arch_can_set_irq_routing(kvm))
3232                         goto out;
3233                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3234                         goto out;
3235                 if (routing.flags)
3236                         goto out;
3237                 if (routing.nr) {
3238                         r = -ENOMEM;
3239                         entries = vmalloc(array_size(sizeof(*entries),
3240                                                      routing.nr));
3241                         if (!entries)
3242                                 goto out;
3243                         r = -EFAULT;
3244                         urouting = argp;
3245                         if (copy_from_user(entries, urouting->entries,
3246                                            routing.nr * sizeof(*entries)))
3247                                 goto out_free_irq_routing;
3248                 }
3249                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3250                                         routing.flags);
3251 out_free_irq_routing:
3252                 vfree(entries);
3253                 break;
3254         }
3255 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3256         case KVM_CREATE_DEVICE: {
3257                 struct kvm_create_device cd;
3258
3259                 r = -EFAULT;
3260                 if (copy_from_user(&cd, argp, sizeof(cd)))
3261                         goto out;
3262
3263                 r = kvm_ioctl_create_device(kvm, &cd);
3264                 if (r)
3265                         goto out;
3266
3267                 r = -EFAULT;
3268                 if (copy_to_user(argp, &cd, sizeof(cd)))
3269                         goto out;
3270
3271                 r = 0;
3272                 break;
3273         }
3274         case KVM_CHECK_EXTENSION:
3275                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3276                 break;
3277         default:
3278                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3279         }
3280 out:
3281         return r;
3282 }
3283
3284 #ifdef CONFIG_KVM_COMPAT
3285 struct compat_kvm_dirty_log {
3286         __u32 slot;
3287         __u32 padding1;
3288         union {
3289                 compat_uptr_t dirty_bitmap; /* one bit per page */
3290                 __u64 padding2;
3291         };
3292 };
3293
3294 static long kvm_vm_compat_ioctl(struct file *filp,
3295                            unsigned int ioctl, unsigned long arg)
3296 {
3297         struct kvm *kvm = filp->private_data;
3298         int r;
3299
3300         if (kvm->mm != current->mm)
3301                 return -EIO;
3302         switch (ioctl) {
3303         case KVM_GET_DIRTY_LOG: {
3304                 struct compat_kvm_dirty_log compat_log;
3305                 struct kvm_dirty_log log;
3306
3307                 if (copy_from_user(&compat_log, (void __user *)arg,
3308                                    sizeof(compat_log)))
3309                         return -EFAULT;
3310                 log.slot         = compat_log.slot;
3311                 log.padding1     = compat_log.padding1;
3312                 log.padding2     = compat_log.padding2;
3313                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3314
3315                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3316                 break;
3317         }
3318         default:
3319                 r = kvm_vm_ioctl(filp, ioctl, arg);
3320         }
3321         return r;
3322 }
3323 #endif
3324
3325 static struct file_operations kvm_vm_fops = {
3326         .release        = kvm_vm_release,
3327         .unlocked_ioctl = kvm_vm_ioctl,
3328         .llseek         = noop_llseek,
3329         KVM_COMPAT(kvm_vm_compat_ioctl),
3330 };
3331
3332 static int kvm_dev_ioctl_create_vm(unsigned long type)
3333 {
3334         int r;
3335         struct kvm *kvm;
3336         struct file *file;
3337
3338         kvm = kvm_create_vm(type);
3339         if (IS_ERR(kvm))
3340                 return PTR_ERR(kvm);
3341 #ifdef CONFIG_KVM_MMIO
3342         r = kvm_coalesced_mmio_init(kvm);
3343         if (r < 0)
3344                 goto put_kvm;
3345 #endif
3346         r = get_unused_fd_flags(O_CLOEXEC);
3347         if (r < 0)
3348                 goto put_kvm;
3349
3350         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3351         if (IS_ERR(file)) {
3352                 put_unused_fd(r);
3353                 r = PTR_ERR(file);
3354                 goto put_kvm;
3355         }
3356
3357         /*
3358          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3359          * already set, with ->release() being kvm_vm_release().  In error
3360          * cases it will be called by the final fput(file) and will take
3361          * care of doing kvm_put_kvm(kvm).
3362          */
3363         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3364                 put_unused_fd(r);
3365                 fput(file);
3366                 return -ENOMEM;
3367         }
3368         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3369
3370         fd_install(r, file);
3371         return r;
3372
3373 put_kvm:
3374         kvm_put_kvm(kvm);
3375         return r;
3376 }
3377
3378 static long kvm_dev_ioctl(struct file *filp,
3379                           unsigned int ioctl, unsigned long arg)
3380 {
3381         long r = -EINVAL;
3382
3383         switch (ioctl) {
3384         case KVM_GET_API_VERSION:
3385                 if (arg)
3386                         goto out;
3387                 r = KVM_API_VERSION;
3388                 break;
3389         case KVM_CREATE_VM:
3390                 r = kvm_dev_ioctl_create_vm(arg);
3391                 break;
3392         case KVM_CHECK_EXTENSION:
3393                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3394                 break;
3395         case KVM_GET_VCPU_MMAP_SIZE:
3396                 if (arg)
3397                         goto out;
3398                 r = PAGE_SIZE;     /* struct kvm_run */
3399 #ifdef CONFIG_X86
3400                 r += PAGE_SIZE;    /* pio data page */
3401 #endif
3402 #ifdef CONFIG_KVM_MMIO
3403                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3404 #endif
3405                 break;
3406         case KVM_TRACE_ENABLE:
3407         case KVM_TRACE_PAUSE:
3408         case KVM_TRACE_DISABLE:
3409                 r = -EOPNOTSUPP;
3410                 break;
3411         default:
3412                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3413         }
3414 out:
3415         return r;
3416 }
3417
3418 static struct file_operations kvm_chardev_ops = {
3419         .unlocked_ioctl = kvm_dev_ioctl,
3420         .llseek         = noop_llseek,
3421         KVM_COMPAT(kvm_dev_ioctl),
3422 };
3423
3424 static struct miscdevice kvm_dev = {
3425         KVM_MINOR,
3426         "kvm",
3427         &kvm_chardev_ops,
3428 };
3429
3430 static void hardware_enable_nolock(void *junk)
3431 {
3432         int cpu = raw_smp_processor_id();
3433         int r;
3434
3435         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3436                 return;
3437
3438         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3439
3440         r = kvm_arch_hardware_enable();
3441
3442         if (r) {
3443                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3444                 atomic_inc(&hardware_enable_failed);
3445                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3446         }
3447 }
3448
3449 static int kvm_starting_cpu(unsigned int cpu)
3450 {
3451         raw_spin_lock(&kvm_count_lock);
3452         if (kvm_usage_count)
3453                 hardware_enable_nolock(NULL);
3454         raw_spin_unlock(&kvm_count_lock);
3455         return 0;
3456 }
3457
3458 static void hardware_disable_nolock(void *junk)
3459 {
3460         int cpu = raw_smp_processor_id();
3461
3462         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3463                 return;
3464         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3465         kvm_arch_hardware_disable();
3466 }
3467
3468 static int kvm_dying_cpu(unsigned int cpu)
3469 {
3470         raw_spin_lock(&kvm_count_lock);
3471         if (kvm_usage_count)
3472                 hardware_disable_nolock(NULL);
3473         raw_spin_unlock(&kvm_count_lock);
3474         return 0;
3475 }
3476
3477 static void hardware_disable_all_nolock(void)
3478 {
3479         BUG_ON(!kvm_usage_count);
3480
3481         kvm_usage_count--;
3482         if (!kvm_usage_count)
3483                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3484 }
3485
3486 static void hardware_disable_all(void)
3487 {
3488         raw_spin_lock(&kvm_count_lock);
3489         hardware_disable_all_nolock();
3490         raw_spin_unlock(&kvm_count_lock);
3491 }
3492
3493 static int hardware_enable_all(void)
3494 {
3495         int r = 0;
3496
3497         raw_spin_lock(&kvm_count_lock);
3498
3499         kvm_usage_count++;
3500         if (kvm_usage_count == 1) {
3501                 atomic_set(&hardware_enable_failed, 0);
3502                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3503
3504                 if (atomic_read(&hardware_enable_failed)) {
3505                         hardware_disable_all_nolock();
3506                         r = -EBUSY;
3507                 }
3508         }
3509
3510         raw_spin_unlock(&kvm_count_lock);
3511
3512         return r;
3513 }
3514
3515 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3516                       void *v)
3517 {
3518         /*
3519          * Some (well, at least mine) BIOSes hang on reboot if
3520          * in vmx root mode.
3521          *
3522          * And Intel TXT required VMX off for all cpu when system shutdown.
3523          */
3524         pr_info("kvm: exiting hardware virtualization\n");
3525         kvm_rebooting = true;
3526         on_each_cpu(hardware_disable_nolock, NULL, 1);
3527         return NOTIFY_OK;
3528 }
3529
3530 static struct notifier_block kvm_reboot_notifier = {
3531         .notifier_call = kvm_reboot,
3532         .priority = 0,
3533 };
3534
3535 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3536 {
3537         int i;
3538
3539         for (i = 0; i < bus->dev_count; i++) {
3540                 struct kvm_io_device *pos = bus->range[i].dev;
3541
3542                 kvm_iodevice_destructor(pos);
3543         }
3544         kfree(bus);
3545 }
3546
3547 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3548                                  const struct kvm_io_range *r2)
3549 {
3550         gpa_t addr1 = r1->addr;
3551         gpa_t addr2 = r2->addr;
3552
3553         if (addr1 < addr2)
3554                 return -1;
3555
3556         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3557          * accept any overlapping write.  Any order is acceptable for
3558          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3559          * we process all of them.
3560          */
3561         if (r2->len) {
3562                 addr1 += r1->len;
3563                 addr2 += r2->len;
3564         }
3565
3566         if (addr1 > addr2)
3567                 return 1;
3568
3569         return 0;
3570 }
3571
3572 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3573 {
3574         return kvm_io_bus_cmp(p1, p2);
3575 }
3576
3577 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3578                              gpa_t addr, int len)
3579 {
3580         struct kvm_io_range *range, key;
3581         int off;
3582
3583         key = (struct kvm_io_range) {
3584                 .addr = addr,
3585                 .len = len,
3586         };
3587
3588         range = bsearch(&key, bus->range, bus->dev_count,
3589                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3590         if (range == NULL)
3591                 return -ENOENT;
3592
3593         off = range - bus->range;
3594
3595         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3596                 off--;
3597
3598         return off;
3599 }
3600
3601 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3602                               struct kvm_io_range *range, const void *val)
3603 {
3604         int idx;
3605
3606         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3607         if (idx < 0)
3608                 return -EOPNOTSUPP;
3609
3610         while (idx < bus->dev_count &&
3611                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3612                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3613                                         range->len, val))
3614                         return idx;
3615                 idx++;
3616         }
3617
3618         return -EOPNOTSUPP;
3619 }
3620
3621 /* kvm_io_bus_write - called under kvm->slots_lock */
3622 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3623                      int len, const void *val)
3624 {
3625         struct kvm_io_bus *bus;
3626         struct kvm_io_range range;
3627         int r;
3628
3629         range = (struct kvm_io_range) {
3630                 .addr = addr,
3631                 .len = len,
3632         };
3633
3634         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3635         if (!bus)
3636                 return -ENOMEM;
3637         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3638         return r < 0 ? r : 0;
3639 }
3640 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3641
3642 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3643 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3644                             gpa_t addr, int len, const void *val, long cookie)
3645 {
3646         struct kvm_io_bus *bus;
3647         struct kvm_io_range range;
3648
3649         range = (struct kvm_io_range) {
3650                 .addr = addr,
3651                 .len = len,
3652         };
3653
3654         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3655         if (!bus)
3656                 return -ENOMEM;
3657
3658         /* First try the device referenced by cookie. */
3659         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3660             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3661                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3662                                         val))
3663                         return cookie;
3664
3665         /*
3666          * cookie contained garbage; fall back to search and return the
3667          * correct cookie value.
3668          */
3669         return __kvm_io_bus_write(vcpu, bus, &range, val);
3670 }
3671
3672 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3673                              struct kvm_io_range *range, void *val)
3674 {
3675         int idx;
3676
3677         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3678         if (idx < 0)
3679                 return -EOPNOTSUPP;
3680
3681         while (idx < bus->dev_count &&
3682                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3683                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3684                                        range->len, val))
3685                         return idx;
3686                 idx++;
3687         }
3688
3689         return -EOPNOTSUPP;
3690 }
3691
3692 /* kvm_io_bus_read - called under kvm->slots_lock */
3693 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3694                     int len, void *val)
3695 {
3696         struct kvm_io_bus *bus;
3697         struct kvm_io_range range;
3698         int r;
3699
3700         range = (struct kvm_io_range) {
3701                 .addr = addr,
3702                 .len = len,
3703         };
3704
3705         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3706         if (!bus)
3707                 return -ENOMEM;
3708         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3709         return r < 0 ? r : 0;
3710 }
3711
3712 /* Caller must hold slots_lock. */
3713 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3714                             int len, struct kvm_io_device *dev)
3715 {
3716         int i;
3717         struct kvm_io_bus *new_bus, *bus;
3718         struct kvm_io_range range;
3719
3720         bus = kvm_get_bus(kvm, bus_idx);
3721         if (!bus)
3722                 return -ENOMEM;
3723
3724         /* exclude ioeventfd which is limited by maximum fd */
3725         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3726                 return -ENOSPC;
3727
3728         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3729                           GFP_KERNEL_ACCOUNT);
3730         if (!new_bus)
3731                 return -ENOMEM;
3732
3733         range = (struct kvm_io_range) {
3734                 .addr = addr,
3735                 .len = len,
3736                 .dev = dev,
3737         };
3738
3739         for (i = 0; i < bus->dev_count; i++)
3740                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3741                         break;
3742
3743         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3744         new_bus->dev_count++;
3745         new_bus->range[i] = range;
3746         memcpy(new_bus->range + i + 1, bus->range + i,
3747                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3748         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3749         synchronize_srcu_expedited(&kvm->srcu);
3750         kfree(bus);
3751
3752         return 0;
3753 }
3754
3755 /* Caller must hold slots_lock. */
3756 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3757                                struct kvm_io_device *dev)
3758 {
3759         int i;
3760         struct kvm_io_bus *new_bus, *bus;
3761
3762         bus = kvm_get_bus(kvm, bus_idx);
3763         if (!bus)
3764                 return;
3765
3766         for (i = 0; i < bus->dev_count; i++)
3767                 if (bus->range[i].dev == dev) {
3768                         break;
3769                 }
3770
3771         if (i == bus->dev_count)
3772                 return;
3773
3774         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3775                           GFP_KERNEL_ACCOUNT);
3776         if (!new_bus)  {
3777                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3778                 goto broken;
3779         }
3780
3781         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3782         new_bus->dev_count--;
3783         memcpy(new_bus->range + i, bus->range + i + 1,
3784                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3785
3786 broken:
3787         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3788         synchronize_srcu_expedited(&kvm->srcu);
3789         kfree(bus);
3790         return;
3791 }
3792
3793 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3794                                          gpa_t addr)
3795 {
3796         struct kvm_io_bus *bus;
3797         int dev_idx, srcu_idx;
3798         struct kvm_io_device *iodev = NULL;
3799
3800         srcu_idx = srcu_read_lock(&kvm->srcu);
3801
3802         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3803         if (!bus)
3804                 goto out_unlock;
3805
3806         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3807         if (dev_idx < 0)
3808                 goto out_unlock;
3809
3810         iodev = bus->range[dev_idx].dev;
3811
3812 out_unlock:
3813         srcu_read_unlock(&kvm->srcu, srcu_idx);
3814
3815         return iodev;
3816 }
3817 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3818
3819 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3820                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3821                            const char *fmt)
3822 {
3823         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3824                                           inode->i_private;
3825
3826         /* The debugfs files are a reference to the kvm struct which
3827          * is still valid when kvm_destroy_vm is called.
3828          * To avoid the race between open and the removal of the debugfs
3829          * directory we test against the users count.
3830          */
3831         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3832                 return -ENOENT;
3833
3834         if (simple_attr_open(inode, file, get, set, fmt)) {
3835                 kvm_put_kvm(stat_data->kvm);
3836                 return -ENOMEM;
3837         }
3838
3839         return 0;
3840 }
3841
3842 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3843 {
3844         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3845                                           inode->i_private;
3846
3847         simple_attr_release(inode, file);
3848         kvm_put_kvm(stat_data->kvm);
3849
3850         return 0;
3851 }
3852
3853 static int vm_stat_get_per_vm(void *data, u64 *val)
3854 {
3855         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3856
3857         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3858
3859         return 0;
3860 }
3861
3862 static int vm_stat_clear_per_vm(void *data, u64 val)
3863 {
3864         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3865
3866         if (val)
3867                 return -EINVAL;
3868
3869         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3870
3871         return 0;
3872 }
3873
3874 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3875 {
3876         __simple_attr_check_format("%llu\n", 0ull);
3877         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3878                                 vm_stat_clear_per_vm, "%llu\n");
3879 }
3880
3881 static const struct file_operations vm_stat_get_per_vm_fops = {
3882         .owner   = THIS_MODULE,
3883         .open    = vm_stat_get_per_vm_open,
3884         .release = kvm_debugfs_release,
3885         .read    = simple_attr_read,
3886         .write   = simple_attr_write,
3887         .llseek  = no_llseek,
3888 };
3889
3890 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3891 {
3892         int i;
3893         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3894         struct kvm_vcpu *vcpu;
3895
3896         *val = 0;
3897
3898         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3899                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3900
3901         return 0;
3902 }
3903
3904 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3905 {
3906         int i;
3907         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3908         struct kvm_vcpu *vcpu;
3909
3910         if (val)
3911                 return -EINVAL;
3912
3913         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3914                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3915
3916         return 0;
3917 }
3918
3919 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3920 {
3921         __simple_attr_check_format("%llu\n", 0ull);
3922         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3923                                  vcpu_stat_clear_per_vm, "%llu\n");
3924 }
3925
3926 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3927         .owner   = THIS_MODULE,
3928         .open    = vcpu_stat_get_per_vm_open,
3929         .release = kvm_debugfs_release,
3930         .read    = simple_attr_read,
3931         .write   = simple_attr_write,
3932         .llseek  = no_llseek,
3933 };
3934
3935 static const struct file_operations *stat_fops_per_vm[] = {
3936         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3937         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3938 };
3939
3940 static int vm_stat_get(void *_offset, u64 *val)
3941 {
3942         unsigned offset = (long)_offset;
3943         struct kvm *kvm;
3944         struct kvm_stat_data stat_tmp = {.offset = offset};
3945         u64 tmp_val;
3946
3947         *val = 0;
3948         spin_lock(&kvm_lock);
3949         list_for_each_entry(kvm, &vm_list, vm_list) {
3950                 stat_tmp.kvm = kvm;
3951                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3952                 *val += tmp_val;
3953         }
3954         spin_unlock(&kvm_lock);
3955         return 0;
3956 }
3957
3958 static int vm_stat_clear(void *_offset, u64 val)
3959 {
3960         unsigned offset = (long)_offset;
3961         struct kvm *kvm;
3962         struct kvm_stat_data stat_tmp = {.offset = offset};
3963
3964         if (val)
3965                 return -EINVAL;
3966
3967         spin_lock(&kvm_lock);
3968         list_for_each_entry(kvm, &vm_list, vm_list) {
3969                 stat_tmp.kvm = kvm;
3970                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3971         }
3972         spin_unlock(&kvm_lock);
3973
3974         return 0;
3975 }
3976
3977 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3978
3979 static int vcpu_stat_get(void *_offset, u64 *val)
3980 {
3981         unsigned offset = (long)_offset;
3982         struct kvm *kvm;
3983         struct kvm_stat_data stat_tmp = {.offset = offset};
3984         u64 tmp_val;
3985
3986         *val = 0;
3987         spin_lock(&kvm_lock);
3988         list_for_each_entry(kvm, &vm_list, vm_list) {
3989                 stat_tmp.kvm = kvm;
3990                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3991                 *val += tmp_val;
3992         }
3993         spin_unlock(&kvm_lock);
3994         return 0;
3995 }
3996
3997 static int vcpu_stat_clear(void *_offset, u64 val)
3998 {
3999         unsigned offset = (long)_offset;
4000         struct kvm *kvm;
4001         struct kvm_stat_data stat_tmp = {.offset = offset};
4002
4003         if (val)
4004                 return -EINVAL;
4005
4006         spin_lock(&kvm_lock);
4007         list_for_each_entry(kvm, &vm_list, vm_list) {
4008                 stat_tmp.kvm = kvm;
4009                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4010         }
4011         spin_unlock(&kvm_lock);
4012
4013         return 0;
4014 }
4015
4016 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4017                         "%llu\n");
4018
4019 static const struct file_operations *stat_fops[] = {
4020         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4021         [KVM_STAT_VM]   = &vm_stat_fops,
4022 };
4023
4024 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4025 {
4026         struct kobj_uevent_env *env;
4027         unsigned long long created, active;
4028
4029         if (!kvm_dev.this_device || !kvm)
4030                 return;
4031
4032         spin_lock(&kvm_lock);
4033         if (type == KVM_EVENT_CREATE_VM) {
4034                 kvm_createvm_count++;
4035                 kvm_active_vms++;
4036         } else if (type == KVM_EVENT_DESTROY_VM) {
4037                 kvm_active_vms--;
4038         }
4039         created = kvm_createvm_count;
4040         active = kvm_active_vms;
4041         spin_unlock(&kvm_lock);
4042
4043         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4044         if (!env)
4045                 return;
4046
4047         add_uevent_var(env, "CREATED=%llu", created);
4048         add_uevent_var(env, "COUNT=%llu", active);
4049
4050         if (type == KVM_EVENT_CREATE_VM) {
4051                 add_uevent_var(env, "EVENT=create");
4052                 kvm->userspace_pid = task_pid_nr(current);
4053         } else if (type == KVM_EVENT_DESTROY_VM) {
4054                 add_uevent_var(env, "EVENT=destroy");
4055         }
4056         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4057
4058         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4059                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4060
4061                 if (p) {
4062                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4063                         if (!IS_ERR(tmp))
4064                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4065                         kfree(p);
4066                 }
4067         }
4068         /* no need for checks, since we are adding at most only 5 keys */
4069         env->envp[env->envp_idx++] = NULL;
4070         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4071         kfree(env);
4072 }
4073
4074 static void kvm_init_debug(void)
4075 {
4076         struct kvm_stats_debugfs_item *p;
4077
4078         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4079
4080         kvm_debugfs_num_entries = 0;
4081         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4082                 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4083                                     (void *)(long)p->offset,
4084                                     stat_fops[p->kind]);
4085         }
4086 }
4087
4088 static int kvm_suspend(void)
4089 {
4090         if (kvm_usage_count)
4091                 hardware_disable_nolock(NULL);
4092         return 0;
4093 }
4094
4095 static void kvm_resume(void)
4096 {
4097         if (kvm_usage_count) {
4098                 lockdep_assert_held(&kvm_count_lock);
4099                 hardware_enable_nolock(NULL);
4100         }
4101 }
4102
4103 static struct syscore_ops kvm_syscore_ops = {
4104         .suspend = kvm_suspend,
4105         .resume = kvm_resume,
4106 };
4107
4108 static inline
4109 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4110 {
4111         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4112 }
4113
4114 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4115 {
4116         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4117
4118         if (vcpu->preempted)
4119                 vcpu->preempted = false;
4120
4121         kvm_arch_sched_in(vcpu, cpu);
4122
4123         kvm_arch_vcpu_load(vcpu, cpu);
4124 }
4125
4126 static void kvm_sched_out(struct preempt_notifier *pn,
4127                           struct task_struct *next)
4128 {
4129         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4130
4131         if (current->state == TASK_RUNNING)
4132                 vcpu->preempted = true;
4133         kvm_arch_vcpu_put(vcpu);
4134 }
4135
4136 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4137                   struct module *module)
4138 {
4139         int r;
4140         int cpu;
4141
4142         r = kvm_arch_init(opaque);
4143         if (r)
4144                 goto out_fail;
4145
4146         /*
4147          * kvm_arch_init makes sure there's at most one caller
4148          * for architectures that support multiple implementations,
4149          * like intel and amd on x86.
4150          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4151          * conflicts in case kvm is already setup for another implementation.
4152          */
4153         r = kvm_irqfd_init();
4154         if (r)
4155                 goto out_irqfd;
4156
4157         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4158                 r = -ENOMEM;
4159                 goto out_free_0;
4160         }
4161
4162         r = kvm_arch_hardware_setup();
4163         if (r < 0)
4164                 goto out_free_0a;
4165
4166         for_each_online_cpu(cpu) {
4167                 smp_call_function_single(cpu,
4168                                 kvm_arch_check_processor_compat,
4169                                 &r, 1);
4170                 if (r < 0)
4171                         goto out_free_1;
4172         }
4173
4174         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4175                                       kvm_starting_cpu, kvm_dying_cpu);
4176         if (r)
4177                 goto out_free_2;
4178         register_reboot_notifier(&kvm_reboot_notifier);
4179
4180         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4181         if (!vcpu_align)
4182                 vcpu_align = __alignof__(struct kvm_vcpu);
4183         kvm_vcpu_cache =
4184                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4185                                            SLAB_ACCOUNT,
4186                                            offsetof(struct kvm_vcpu, arch),
4187                                            sizeof_field(struct kvm_vcpu, arch),
4188                                            NULL);
4189         if (!kvm_vcpu_cache) {
4190                 r = -ENOMEM;
4191                 goto out_free_3;
4192         }
4193
4194         r = kvm_async_pf_init();
4195         if (r)
4196                 goto out_free;
4197
4198         kvm_chardev_ops.owner = module;
4199         kvm_vm_fops.owner = module;
4200         kvm_vcpu_fops.owner = module;
4201
4202         r = misc_register(&kvm_dev);
4203         if (r) {
4204                 pr_err("kvm: misc device register failed\n");
4205                 goto out_unreg;
4206         }
4207
4208         register_syscore_ops(&kvm_syscore_ops);
4209
4210         kvm_preempt_ops.sched_in = kvm_sched_in;
4211         kvm_preempt_ops.sched_out = kvm_sched_out;
4212
4213         kvm_init_debug();
4214
4215         r = kvm_vfio_ops_init();
4216         WARN_ON(r);
4217
4218         return 0;
4219
4220 out_unreg:
4221         kvm_async_pf_deinit();
4222 out_free:
4223         kmem_cache_destroy(kvm_vcpu_cache);
4224 out_free_3:
4225         unregister_reboot_notifier(&kvm_reboot_notifier);
4226         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4227 out_free_2:
4228 out_free_1:
4229         kvm_arch_hardware_unsetup();
4230 out_free_0a:
4231         free_cpumask_var(cpus_hardware_enabled);
4232 out_free_0:
4233         kvm_irqfd_exit();
4234 out_irqfd:
4235         kvm_arch_exit();
4236 out_fail:
4237         return r;
4238 }
4239 EXPORT_SYMBOL_GPL(kvm_init);
4240
4241 void kvm_exit(void)
4242 {
4243         debugfs_remove_recursive(kvm_debugfs_dir);
4244         misc_deregister(&kvm_dev);
4245         kmem_cache_destroy(kvm_vcpu_cache);
4246         kvm_async_pf_deinit();
4247         unregister_syscore_ops(&kvm_syscore_ops);
4248         unregister_reboot_notifier(&kvm_reboot_notifier);
4249         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4250         on_each_cpu(hardware_disable_nolock, NULL, 1);
4251         kvm_arch_hardware_unsetup();
4252         kvm_arch_exit();
4253         kvm_irqfd_exit();
4254         free_cpumask_var(cpus_hardware_enabled);
4255         kvm_vfio_ops_exit();
4256 }
4257 EXPORT_SYMBOL_GPL(kvm_exit);