KVM: x86: hyperv: optimize 'all cpus' case in kvm_hv_flush_tlb()
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122                                 unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134
135 static bool largepages_enabled = true;
136
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144                 unsigned long start, unsigned long end, bool blockable)
145 {
146         return 0;
147 }
148
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151         if (pfn_valid(pfn))
152                 return PageReserved(pfn_to_page(pfn));
153
154         return true;
155 }
156
157 /*
158  * Switches to specified vcpu, until a matching vcpu_put()
159  */
160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162         int cpu = get_cpu();
163         preempt_notifier_register(&vcpu->preempt_notifier);
164         kvm_arch_vcpu_load(vcpu, cpu);
165         put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171         preempt_disable();
172         kvm_arch_vcpu_put(vcpu);
173         preempt_notifier_unregister(&vcpu->preempt_notifier);
174         preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183         /*
184          * We need to wait for the VCPU to reenable interrupts and get out of
185          * READING_SHADOW_PAGE_TABLES mode.
186          */
187         if (req & KVM_REQUEST_WAIT)
188                 return mode != OUTSIDE_GUEST_MODE;
189
190         /*
191          * Need to kick a running VCPU, but otherwise there is nothing to do.
192          */
193         return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202         if (unlikely(!cpus))
203                 cpus = cpu_online_mask;
204
205         if (cpumask_empty(cpus))
206                 return false;
207
208         smp_call_function_many(cpus, ack_flush, NULL, wait);
209         return true;
210 }
211
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215         int i, cpu, me;
216         struct kvm_vcpu *vcpu;
217         bool called;
218
219         me = get_cpu();
220
221         kvm_for_each_vcpu(i, vcpu, kvm) {
222                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
223                         continue;
224
225                 kvm_make_request(req, vcpu);
226                 cpu = vcpu->cpu;
227
228                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229                         continue;
230
231                 if (tmp != NULL && cpu != -1 && cpu != me &&
232                     kvm_request_needs_ipi(vcpu, req))
233                         __cpumask_set_cpu(cpu, tmp);
234         }
235
236         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237         put_cpu();
238
239         return called;
240 }
241
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244         cpumask_var_t cpus;
245         bool called;
246
247         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
248
249         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
250
251         free_cpumask_var(cpus);
252         return called;
253 }
254
255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
256 void kvm_flush_remote_tlbs(struct kvm *kvm)
257 {
258         /*
259          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260          * kvm_make_all_cpus_request.
261          */
262         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
263
264         /*
265          * We want to publish modifications to the page tables before reading
266          * mode. Pairs with a memory barrier in arch-specific code.
267          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268          * and smp_mb in walk_shadow_page_lockless_begin/end.
269          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
270          *
271          * There is already an smp_mb__after_atomic() before
272          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
273          * barrier here.
274          */
275         if (!kvm_arch_flush_remote_tlb(kvm)
276             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277                 ++kvm->stat.remote_tlb_flush;
278         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290         struct page *page;
291         int r;
292
293         mutex_init(&vcpu->mutex);
294         vcpu->cpu = -1;
295         vcpu->kvm = kvm;
296         vcpu->vcpu_id = id;
297         vcpu->pid = NULL;
298         init_swait_queue_head(&vcpu->wq);
299         kvm_async_pf_vcpu_init(vcpu);
300
301         vcpu->pre_pcpu = -1;
302         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303
304         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305         if (!page) {
306                 r = -ENOMEM;
307                 goto fail;
308         }
309         vcpu->run = page_address(page);
310
311         kvm_vcpu_set_in_spin_loop(vcpu, false);
312         kvm_vcpu_set_dy_eligible(vcpu, false);
313         vcpu->preempted = false;
314
315         r = kvm_arch_vcpu_init(vcpu);
316         if (r < 0)
317                 goto fail_free_run;
318         return 0;
319
320 fail_free_run:
321         free_page((unsigned long)vcpu->run);
322 fail:
323         return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329         /*
330          * no need for rcu_read_lock as VCPU_RUN is the only place that
331          * will change the vcpu->pid pointer and on uninit all file
332          * descriptors are already gone.
333          */
334         put_pid(rcu_dereference_protected(vcpu->pid, 1));
335         kvm_arch_vcpu_uninit(vcpu);
336         free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343         return container_of(mn, struct kvm, mmu_notifier);
344 }
345
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347                                         struct mm_struct *mm,
348                                         unsigned long address,
349                                         pte_t pte)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352         int idx;
353
354         idx = srcu_read_lock(&kvm->srcu);
355         spin_lock(&kvm->mmu_lock);
356         kvm->mmu_notifier_seq++;
357         kvm_set_spte_hva(kvm, address, pte);
358         spin_unlock(&kvm->mmu_lock);
359         srcu_read_unlock(&kvm->srcu, idx);
360 }
361
362 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
363                                                     struct mm_struct *mm,
364                                                     unsigned long start,
365                                                     unsigned long end,
366                                                     bool blockable)
367 {
368         struct kvm *kvm = mmu_notifier_to_kvm(mn);
369         int need_tlb_flush = 0, idx;
370         int ret;
371
372         idx = srcu_read_lock(&kvm->srcu);
373         spin_lock(&kvm->mmu_lock);
374         /*
375          * The count increase must become visible at unlock time as no
376          * spte can be established without taking the mmu_lock and
377          * count is also read inside the mmu_lock critical section.
378          */
379         kvm->mmu_notifier_count++;
380         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
381         need_tlb_flush |= kvm->tlbs_dirty;
382         /* we've to flush the tlb before the pages can be freed */
383         if (need_tlb_flush)
384                 kvm_flush_remote_tlbs(kvm);
385
386         spin_unlock(&kvm->mmu_lock);
387
388         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, start, end, blockable);
389
390         srcu_read_unlock(&kvm->srcu, idx);
391
392         return ret;
393 }
394
395 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
396                                                   struct mm_struct *mm,
397                                                   unsigned long start,
398                                                   unsigned long end)
399 {
400         struct kvm *kvm = mmu_notifier_to_kvm(mn);
401
402         spin_lock(&kvm->mmu_lock);
403         /*
404          * This sequence increase will notify the kvm page fault that
405          * the page that is going to be mapped in the spte could have
406          * been freed.
407          */
408         kvm->mmu_notifier_seq++;
409         smp_wmb();
410         /*
411          * The above sequence increase must be visible before the
412          * below count decrease, which is ensured by the smp_wmb above
413          * in conjunction with the smp_rmb in mmu_notifier_retry().
414          */
415         kvm->mmu_notifier_count--;
416         spin_unlock(&kvm->mmu_lock);
417
418         BUG_ON(kvm->mmu_notifier_count < 0);
419 }
420
421 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
422                                               struct mm_struct *mm,
423                                               unsigned long start,
424                                               unsigned long end)
425 {
426         struct kvm *kvm = mmu_notifier_to_kvm(mn);
427         int young, idx;
428
429         idx = srcu_read_lock(&kvm->srcu);
430         spin_lock(&kvm->mmu_lock);
431
432         young = kvm_age_hva(kvm, start, end);
433         if (young)
434                 kvm_flush_remote_tlbs(kvm);
435
436         spin_unlock(&kvm->mmu_lock);
437         srcu_read_unlock(&kvm->srcu, idx);
438
439         return young;
440 }
441
442 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
443                                         struct mm_struct *mm,
444                                         unsigned long start,
445                                         unsigned long end)
446 {
447         struct kvm *kvm = mmu_notifier_to_kvm(mn);
448         int young, idx;
449
450         idx = srcu_read_lock(&kvm->srcu);
451         spin_lock(&kvm->mmu_lock);
452         /*
453          * Even though we do not flush TLB, this will still adversely
454          * affect performance on pre-Haswell Intel EPT, where there is
455          * no EPT Access Bit to clear so that we have to tear down EPT
456          * tables instead. If we find this unacceptable, we can always
457          * add a parameter to kvm_age_hva so that it effectively doesn't
458          * do anything on clear_young.
459          *
460          * Also note that currently we never issue secondary TLB flushes
461          * from clear_young, leaving this job up to the regular system
462          * cadence. If we find this inaccurate, we might come up with a
463          * more sophisticated heuristic later.
464          */
465         young = kvm_age_hva(kvm, start, end);
466         spin_unlock(&kvm->mmu_lock);
467         srcu_read_unlock(&kvm->srcu, idx);
468
469         return young;
470 }
471
472 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
473                                        struct mm_struct *mm,
474                                        unsigned long address)
475 {
476         struct kvm *kvm = mmu_notifier_to_kvm(mn);
477         int young, idx;
478
479         idx = srcu_read_lock(&kvm->srcu);
480         spin_lock(&kvm->mmu_lock);
481         young = kvm_test_age_hva(kvm, address);
482         spin_unlock(&kvm->mmu_lock);
483         srcu_read_unlock(&kvm->srcu, idx);
484
485         return young;
486 }
487
488 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
489                                      struct mm_struct *mm)
490 {
491         struct kvm *kvm = mmu_notifier_to_kvm(mn);
492         int idx;
493
494         idx = srcu_read_lock(&kvm->srcu);
495         kvm_arch_flush_shadow_all(kvm);
496         srcu_read_unlock(&kvm->srcu, idx);
497 }
498
499 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
500         .flags                  = MMU_INVALIDATE_DOES_NOT_BLOCK,
501         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
502         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
503         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
504         .clear_young            = kvm_mmu_notifier_clear_young,
505         .test_young             = kvm_mmu_notifier_test_young,
506         .change_pte             = kvm_mmu_notifier_change_pte,
507         .release                = kvm_mmu_notifier_release,
508 };
509
510 static int kvm_init_mmu_notifier(struct kvm *kvm)
511 {
512         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
513         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
514 }
515
516 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
517
518 static int kvm_init_mmu_notifier(struct kvm *kvm)
519 {
520         return 0;
521 }
522
523 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
524
525 static struct kvm_memslots *kvm_alloc_memslots(void)
526 {
527         int i;
528         struct kvm_memslots *slots;
529
530         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
531         if (!slots)
532                 return NULL;
533
534         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
535                 slots->id_to_index[i] = slots->memslots[i].id = i;
536
537         return slots;
538 }
539
540 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
541 {
542         if (!memslot->dirty_bitmap)
543                 return;
544
545         kvfree(memslot->dirty_bitmap);
546         memslot->dirty_bitmap = NULL;
547 }
548
549 /*
550  * Free any memory in @free but not in @dont.
551  */
552 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
553                               struct kvm_memory_slot *dont)
554 {
555         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
556                 kvm_destroy_dirty_bitmap(free);
557
558         kvm_arch_free_memslot(kvm, free, dont);
559
560         free->npages = 0;
561 }
562
563 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
564 {
565         struct kvm_memory_slot *memslot;
566
567         if (!slots)
568                 return;
569
570         kvm_for_each_memslot(memslot, slots)
571                 kvm_free_memslot(kvm, memslot, NULL);
572
573         kvfree(slots);
574 }
575
576 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
577 {
578         int i;
579
580         if (!kvm->debugfs_dentry)
581                 return;
582
583         debugfs_remove_recursive(kvm->debugfs_dentry);
584
585         if (kvm->debugfs_stat_data) {
586                 for (i = 0; i < kvm_debugfs_num_entries; i++)
587                         kfree(kvm->debugfs_stat_data[i]);
588                 kfree(kvm->debugfs_stat_data);
589         }
590 }
591
592 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
593 {
594         char dir_name[ITOA_MAX_LEN * 2];
595         struct kvm_stat_data *stat_data;
596         struct kvm_stats_debugfs_item *p;
597
598         if (!debugfs_initialized())
599                 return 0;
600
601         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
602         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
603
604         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
605                                          sizeof(*kvm->debugfs_stat_data),
606                                          GFP_KERNEL);
607         if (!kvm->debugfs_stat_data)
608                 return -ENOMEM;
609
610         for (p = debugfs_entries; p->name; p++) {
611                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
612                 if (!stat_data)
613                         return -ENOMEM;
614
615                 stat_data->kvm = kvm;
616                 stat_data->offset = p->offset;
617                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
618                 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
619                                     stat_data, stat_fops_per_vm[p->kind]);
620         }
621         return 0;
622 }
623
624 static struct kvm *kvm_create_vm(unsigned long type)
625 {
626         int r, i;
627         struct kvm *kvm = kvm_arch_alloc_vm();
628
629         if (!kvm)
630                 return ERR_PTR(-ENOMEM);
631
632         spin_lock_init(&kvm->mmu_lock);
633         mmgrab(current->mm);
634         kvm->mm = current->mm;
635         kvm_eventfd_init(kvm);
636         mutex_init(&kvm->lock);
637         mutex_init(&kvm->irq_lock);
638         mutex_init(&kvm->slots_lock);
639         refcount_set(&kvm->users_count, 1);
640         INIT_LIST_HEAD(&kvm->devices);
641
642         r = kvm_arch_init_vm(kvm, type);
643         if (r)
644                 goto out_err_no_disable;
645
646         r = hardware_enable_all();
647         if (r)
648                 goto out_err_no_disable;
649
650 #ifdef CONFIG_HAVE_KVM_IRQFD
651         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
652 #endif
653
654         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
655
656         r = -ENOMEM;
657         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
658                 struct kvm_memslots *slots = kvm_alloc_memslots();
659                 if (!slots)
660                         goto out_err_no_srcu;
661                 /*
662                  * Generations must be different for each address space.
663                  * Init kvm generation close to the maximum to easily test the
664                  * code of handling generation number wrap-around.
665                  */
666                 slots->generation = i * 2 - 150;
667                 rcu_assign_pointer(kvm->memslots[i], slots);
668         }
669
670         if (init_srcu_struct(&kvm->srcu))
671                 goto out_err_no_srcu;
672         if (init_srcu_struct(&kvm->irq_srcu))
673                 goto out_err_no_irq_srcu;
674         for (i = 0; i < KVM_NR_BUSES; i++) {
675                 rcu_assign_pointer(kvm->buses[i],
676                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
677                 if (!kvm->buses[i])
678                         goto out_err;
679         }
680
681         r = kvm_init_mmu_notifier(kvm);
682         if (r)
683                 goto out_err;
684
685         spin_lock(&kvm_lock);
686         list_add(&kvm->vm_list, &vm_list);
687         spin_unlock(&kvm_lock);
688
689         preempt_notifier_inc();
690
691         return kvm;
692
693 out_err:
694         cleanup_srcu_struct(&kvm->irq_srcu);
695 out_err_no_irq_srcu:
696         cleanup_srcu_struct(&kvm->srcu);
697 out_err_no_srcu:
698         hardware_disable_all();
699 out_err_no_disable:
700         refcount_set(&kvm->users_count, 0);
701         for (i = 0; i < KVM_NR_BUSES; i++)
702                 kfree(kvm_get_bus(kvm, i));
703         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
704                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
705         kvm_arch_free_vm(kvm);
706         mmdrop(current->mm);
707         return ERR_PTR(r);
708 }
709
710 static void kvm_destroy_devices(struct kvm *kvm)
711 {
712         struct kvm_device *dev, *tmp;
713
714         /*
715          * We do not need to take the kvm->lock here, because nobody else
716          * has a reference to the struct kvm at this point and therefore
717          * cannot access the devices list anyhow.
718          */
719         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
720                 list_del(&dev->vm_node);
721                 dev->ops->destroy(dev);
722         }
723 }
724
725 static void kvm_destroy_vm(struct kvm *kvm)
726 {
727         int i;
728         struct mm_struct *mm = kvm->mm;
729
730         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
731         kvm_destroy_vm_debugfs(kvm);
732         kvm_arch_sync_events(kvm);
733         spin_lock(&kvm_lock);
734         list_del(&kvm->vm_list);
735         spin_unlock(&kvm_lock);
736         kvm_free_irq_routing(kvm);
737         for (i = 0; i < KVM_NR_BUSES; i++) {
738                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
739
740                 if (bus)
741                         kvm_io_bus_destroy(bus);
742                 kvm->buses[i] = NULL;
743         }
744         kvm_coalesced_mmio_free(kvm);
745 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
746         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
747 #else
748         kvm_arch_flush_shadow_all(kvm);
749 #endif
750         kvm_arch_destroy_vm(kvm);
751         kvm_destroy_devices(kvm);
752         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
753                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
754         cleanup_srcu_struct(&kvm->irq_srcu);
755         cleanup_srcu_struct(&kvm->srcu);
756         kvm_arch_free_vm(kvm);
757         preempt_notifier_dec();
758         hardware_disable_all();
759         mmdrop(mm);
760 }
761
762 void kvm_get_kvm(struct kvm *kvm)
763 {
764         refcount_inc(&kvm->users_count);
765 }
766 EXPORT_SYMBOL_GPL(kvm_get_kvm);
767
768 void kvm_put_kvm(struct kvm *kvm)
769 {
770         if (refcount_dec_and_test(&kvm->users_count))
771                 kvm_destroy_vm(kvm);
772 }
773 EXPORT_SYMBOL_GPL(kvm_put_kvm);
774
775
776 static int kvm_vm_release(struct inode *inode, struct file *filp)
777 {
778         struct kvm *kvm = filp->private_data;
779
780         kvm_irqfd_release(kvm);
781
782         kvm_put_kvm(kvm);
783         return 0;
784 }
785
786 /*
787  * Allocation size is twice as large as the actual dirty bitmap size.
788  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
789  */
790 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
791 {
792         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
793
794         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
795         if (!memslot->dirty_bitmap)
796                 return -ENOMEM;
797
798         return 0;
799 }
800
801 /*
802  * Insert memslot and re-sort memslots based on their GFN,
803  * so binary search could be used to lookup GFN.
804  * Sorting algorithm takes advantage of having initially
805  * sorted array and known changed memslot position.
806  */
807 static void update_memslots(struct kvm_memslots *slots,
808                             struct kvm_memory_slot *new)
809 {
810         int id = new->id;
811         int i = slots->id_to_index[id];
812         struct kvm_memory_slot *mslots = slots->memslots;
813
814         WARN_ON(mslots[i].id != id);
815         if (!new->npages) {
816                 WARN_ON(!mslots[i].npages);
817                 if (mslots[i].npages)
818                         slots->used_slots--;
819         } else {
820                 if (!mslots[i].npages)
821                         slots->used_slots++;
822         }
823
824         while (i < KVM_MEM_SLOTS_NUM - 1 &&
825                new->base_gfn <= mslots[i + 1].base_gfn) {
826                 if (!mslots[i + 1].npages)
827                         break;
828                 mslots[i] = mslots[i + 1];
829                 slots->id_to_index[mslots[i].id] = i;
830                 i++;
831         }
832
833         /*
834          * The ">=" is needed when creating a slot with base_gfn == 0,
835          * so that it moves before all those with base_gfn == npages == 0.
836          *
837          * On the other hand, if new->npages is zero, the above loop has
838          * already left i pointing to the beginning of the empty part of
839          * mslots, and the ">=" would move the hole backwards in this
840          * case---which is wrong.  So skip the loop when deleting a slot.
841          */
842         if (new->npages) {
843                 while (i > 0 &&
844                        new->base_gfn >= mslots[i - 1].base_gfn) {
845                         mslots[i] = mslots[i - 1];
846                         slots->id_to_index[mslots[i].id] = i;
847                         i--;
848                 }
849         } else
850                 WARN_ON_ONCE(i != slots->used_slots);
851
852         mslots[i] = *new;
853         slots->id_to_index[mslots[i].id] = i;
854 }
855
856 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
857 {
858         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
859
860 #ifdef __KVM_HAVE_READONLY_MEM
861         valid_flags |= KVM_MEM_READONLY;
862 #endif
863
864         if (mem->flags & ~valid_flags)
865                 return -EINVAL;
866
867         return 0;
868 }
869
870 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
871                 int as_id, struct kvm_memslots *slots)
872 {
873         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
874
875         /*
876          * Set the low bit in the generation, which disables SPTE caching
877          * until the end of synchronize_srcu_expedited.
878          */
879         WARN_ON(old_memslots->generation & 1);
880         slots->generation = old_memslots->generation + 1;
881
882         rcu_assign_pointer(kvm->memslots[as_id], slots);
883         synchronize_srcu_expedited(&kvm->srcu);
884
885         /*
886          * Increment the new memslot generation a second time. This prevents
887          * vm exits that race with memslot updates from caching a memslot
888          * generation that will (potentially) be valid forever.
889          *
890          * Generations must be unique even across address spaces.  We do not need
891          * a global counter for that, instead the generation space is evenly split
892          * across address spaces.  For example, with two address spaces, address
893          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
894          * use generations 2, 6, 10, 14, ...
895          */
896         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
897
898         kvm_arch_memslots_updated(kvm, slots);
899
900         return old_memslots;
901 }
902
903 /*
904  * Allocate some memory and give it an address in the guest physical address
905  * space.
906  *
907  * Discontiguous memory is allowed, mostly for framebuffers.
908  *
909  * Must be called holding kvm->slots_lock for write.
910  */
911 int __kvm_set_memory_region(struct kvm *kvm,
912                             const struct kvm_userspace_memory_region *mem)
913 {
914         int r;
915         gfn_t base_gfn;
916         unsigned long npages;
917         struct kvm_memory_slot *slot;
918         struct kvm_memory_slot old, new;
919         struct kvm_memslots *slots = NULL, *old_memslots;
920         int as_id, id;
921         enum kvm_mr_change change;
922
923         r = check_memory_region_flags(mem);
924         if (r)
925                 goto out;
926
927         r = -EINVAL;
928         as_id = mem->slot >> 16;
929         id = (u16)mem->slot;
930
931         /* General sanity checks */
932         if (mem->memory_size & (PAGE_SIZE - 1))
933                 goto out;
934         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
935                 goto out;
936         /* We can read the guest memory with __xxx_user() later on. */
937         if ((id < KVM_USER_MEM_SLOTS) &&
938             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
939              !access_ok(VERIFY_WRITE,
940                         (void __user *)(unsigned long)mem->userspace_addr,
941                         mem->memory_size)))
942                 goto out;
943         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
944                 goto out;
945         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
946                 goto out;
947
948         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
949         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
950         npages = mem->memory_size >> PAGE_SHIFT;
951
952         if (npages > KVM_MEM_MAX_NR_PAGES)
953                 goto out;
954
955         new = old = *slot;
956
957         new.id = id;
958         new.base_gfn = base_gfn;
959         new.npages = npages;
960         new.flags = mem->flags;
961
962         if (npages) {
963                 if (!old.npages)
964                         change = KVM_MR_CREATE;
965                 else { /* Modify an existing slot. */
966                         if ((mem->userspace_addr != old.userspace_addr) ||
967                             (npages != old.npages) ||
968                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
969                                 goto out;
970
971                         if (base_gfn != old.base_gfn)
972                                 change = KVM_MR_MOVE;
973                         else if (new.flags != old.flags)
974                                 change = KVM_MR_FLAGS_ONLY;
975                         else { /* Nothing to change. */
976                                 r = 0;
977                                 goto out;
978                         }
979                 }
980         } else {
981                 if (!old.npages)
982                         goto out;
983
984                 change = KVM_MR_DELETE;
985                 new.base_gfn = 0;
986                 new.flags = 0;
987         }
988
989         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
990                 /* Check for overlaps */
991                 r = -EEXIST;
992                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
993                         if (slot->id == id)
994                                 continue;
995                         if (!((base_gfn + npages <= slot->base_gfn) ||
996                               (base_gfn >= slot->base_gfn + slot->npages)))
997                                 goto out;
998                 }
999         }
1000
1001         /* Free page dirty bitmap if unneeded */
1002         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1003                 new.dirty_bitmap = NULL;
1004
1005         r = -ENOMEM;
1006         if (change == KVM_MR_CREATE) {
1007                 new.userspace_addr = mem->userspace_addr;
1008
1009                 if (kvm_arch_create_memslot(kvm, &new, npages))
1010                         goto out_free;
1011         }
1012
1013         /* Allocate page dirty bitmap if needed */
1014         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1015                 if (kvm_create_dirty_bitmap(&new) < 0)
1016                         goto out_free;
1017         }
1018
1019         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1020         if (!slots)
1021                 goto out_free;
1022         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1023
1024         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1025                 slot = id_to_memslot(slots, id);
1026                 slot->flags |= KVM_MEMSLOT_INVALID;
1027
1028                 old_memslots = install_new_memslots(kvm, as_id, slots);
1029
1030                 /* From this point no new shadow pages pointing to a deleted,
1031                  * or moved, memslot will be created.
1032                  *
1033                  * validation of sp->gfn happens in:
1034                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1035                  *      - kvm_is_visible_gfn (mmu_check_roots)
1036                  */
1037                 kvm_arch_flush_shadow_memslot(kvm, slot);
1038
1039                 /*
1040                  * We can re-use the old_memslots from above, the only difference
1041                  * from the currently installed memslots is the invalid flag.  This
1042                  * will get overwritten by update_memslots anyway.
1043                  */
1044                 slots = old_memslots;
1045         }
1046
1047         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1048         if (r)
1049                 goto out_slots;
1050
1051         /* actual memory is freed via old in kvm_free_memslot below */
1052         if (change == KVM_MR_DELETE) {
1053                 new.dirty_bitmap = NULL;
1054                 memset(&new.arch, 0, sizeof(new.arch));
1055         }
1056
1057         update_memslots(slots, &new);
1058         old_memslots = install_new_memslots(kvm, as_id, slots);
1059
1060         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1061
1062         kvm_free_memslot(kvm, &old, &new);
1063         kvfree(old_memslots);
1064         return 0;
1065
1066 out_slots:
1067         kvfree(slots);
1068 out_free:
1069         kvm_free_memslot(kvm, &new, &old);
1070 out:
1071         return r;
1072 }
1073 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1074
1075 int kvm_set_memory_region(struct kvm *kvm,
1076                           const struct kvm_userspace_memory_region *mem)
1077 {
1078         int r;
1079
1080         mutex_lock(&kvm->slots_lock);
1081         r = __kvm_set_memory_region(kvm, mem);
1082         mutex_unlock(&kvm->slots_lock);
1083         return r;
1084 }
1085 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1086
1087 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1088                                           struct kvm_userspace_memory_region *mem)
1089 {
1090         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1091                 return -EINVAL;
1092
1093         return kvm_set_memory_region(kvm, mem);
1094 }
1095
1096 int kvm_get_dirty_log(struct kvm *kvm,
1097                         struct kvm_dirty_log *log, int *is_dirty)
1098 {
1099         struct kvm_memslots *slots;
1100         struct kvm_memory_slot *memslot;
1101         int i, as_id, id;
1102         unsigned long n;
1103         unsigned long any = 0;
1104
1105         as_id = log->slot >> 16;
1106         id = (u16)log->slot;
1107         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1108                 return -EINVAL;
1109
1110         slots = __kvm_memslots(kvm, as_id);
1111         memslot = id_to_memslot(slots, id);
1112         if (!memslot->dirty_bitmap)
1113                 return -ENOENT;
1114
1115         n = kvm_dirty_bitmap_bytes(memslot);
1116
1117         for (i = 0; !any && i < n/sizeof(long); ++i)
1118                 any = memslot->dirty_bitmap[i];
1119
1120         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1121                 return -EFAULT;
1122
1123         if (any)
1124                 *is_dirty = 1;
1125         return 0;
1126 }
1127 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1128
1129 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1130 /**
1131  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1132  *      are dirty write protect them for next write.
1133  * @kvm:        pointer to kvm instance
1134  * @log:        slot id and address to which we copy the log
1135  * @is_dirty:   flag set if any page is dirty
1136  *
1137  * We need to keep it in mind that VCPU threads can write to the bitmap
1138  * concurrently. So, to avoid losing track of dirty pages we keep the
1139  * following order:
1140  *
1141  *    1. Take a snapshot of the bit and clear it if needed.
1142  *    2. Write protect the corresponding page.
1143  *    3. Copy the snapshot to the userspace.
1144  *    4. Upon return caller flushes TLB's if needed.
1145  *
1146  * Between 2 and 4, the guest may write to the page using the remaining TLB
1147  * entry.  This is not a problem because the page is reported dirty using
1148  * the snapshot taken before and step 4 ensures that writes done after
1149  * exiting to userspace will be logged for the next call.
1150  *
1151  */
1152 int kvm_get_dirty_log_protect(struct kvm *kvm,
1153                         struct kvm_dirty_log *log, bool *is_dirty)
1154 {
1155         struct kvm_memslots *slots;
1156         struct kvm_memory_slot *memslot;
1157         int i, as_id, id;
1158         unsigned long n;
1159         unsigned long *dirty_bitmap;
1160         unsigned long *dirty_bitmap_buffer;
1161
1162         as_id = log->slot >> 16;
1163         id = (u16)log->slot;
1164         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1165                 return -EINVAL;
1166
1167         slots = __kvm_memslots(kvm, as_id);
1168         memslot = id_to_memslot(slots, id);
1169
1170         dirty_bitmap = memslot->dirty_bitmap;
1171         if (!dirty_bitmap)
1172                 return -ENOENT;
1173
1174         n = kvm_dirty_bitmap_bytes(memslot);
1175
1176         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1177         memset(dirty_bitmap_buffer, 0, n);
1178
1179         spin_lock(&kvm->mmu_lock);
1180         *is_dirty = false;
1181         for (i = 0; i < n / sizeof(long); i++) {
1182                 unsigned long mask;
1183                 gfn_t offset;
1184
1185                 if (!dirty_bitmap[i])
1186                         continue;
1187
1188                 *is_dirty = true;
1189
1190                 mask = xchg(&dirty_bitmap[i], 0);
1191                 dirty_bitmap_buffer[i] = mask;
1192
1193                 if (mask) {
1194                         offset = i * BITS_PER_LONG;
1195                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1196                                                                 offset, mask);
1197                 }
1198         }
1199
1200         spin_unlock(&kvm->mmu_lock);
1201         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1202                 return -EFAULT;
1203         return 0;
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1206 #endif
1207
1208 bool kvm_largepages_enabled(void)
1209 {
1210         return largepages_enabled;
1211 }
1212
1213 void kvm_disable_largepages(void)
1214 {
1215         largepages_enabled = false;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1218
1219 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1220 {
1221         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1222 }
1223 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1224
1225 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1226 {
1227         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1228 }
1229
1230 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1231 {
1232         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1233
1234         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1235               memslot->flags & KVM_MEMSLOT_INVALID)
1236                 return false;
1237
1238         return true;
1239 }
1240 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1241
1242 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1243 {
1244         struct vm_area_struct *vma;
1245         unsigned long addr, size;
1246
1247         size = PAGE_SIZE;
1248
1249         addr = gfn_to_hva(kvm, gfn);
1250         if (kvm_is_error_hva(addr))
1251                 return PAGE_SIZE;
1252
1253         down_read(&current->mm->mmap_sem);
1254         vma = find_vma(current->mm, addr);
1255         if (!vma)
1256                 goto out;
1257
1258         size = vma_kernel_pagesize(vma);
1259
1260 out:
1261         up_read(&current->mm->mmap_sem);
1262
1263         return size;
1264 }
1265
1266 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1267 {
1268         return slot->flags & KVM_MEM_READONLY;
1269 }
1270
1271 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1272                                        gfn_t *nr_pages, bool write)
1273 {
1274         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1275                 return KVM_HVA_ERR_BAD;
1276
1277         if (memslot_is_readonly(slot) && write)
1278                 return KVM_HVA_ERR_RO_BAD;
1279
1280         if (nr_pages)
1281                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1282
1283         return __gfn_to_hva_memslot(slot, gfn);
1284 }
1285
1286 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1287                                      gfn_t *nr_pages)
1288 {
1289         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1290 }
1291
1292 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1293                                         gfn_t gfn)
1294 {
1295         return gfn_to_hva_many(slot, gfn, NULL);
1296 }
1297 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1298
1299 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1300 {
1301         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_hva);
1304
1305 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1306 {
1307         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1310
1311 /*
1312  * If writable is set to false, the hva returned by this function is only
1313  * allowed to be read.
1314  */
1315 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1316                                       gfn_t gfn, bool *writable)
1317 {
1318         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1319
1320         if (!kvm_is_error_hva(hva) && writable)
1321                 *writable = !memslot_is_readonly(slot);
1322
1323         return hva;
1324 }
1325
1326 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1327 {
1328         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1329
1330         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1331 }
1332
1333 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1334 {
1335         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1336
1337         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1338 }
1339
1340 static inline int check_user_page_hwpoison(unsigned long addr)
1341 {
1342         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1343
1344         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1345         return rc == -EHWPOISON;
1346 }
1347
1348 /*
1349  * The fast path to get the writable pfn which will be stored in @pfn,
1350  * true indicates success, otherwise false is returned.  It's also the
1351  * only part that runs if we can are in atomic context.
1352  */
1353 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1354                             bool *writable, kvm_pfn_t *pfn)
1355 {
1356         struct page *page[1];
1357         int npages;
1358
1359         /*
1360          * Fast pin a writable pfn only if it is a write fault request
1361          * or the caller allows to map a writable pfn for a read fault
1362          * request.
1363          */
1364         if (!(write_fault || writable))
1365                 return false;
1366
1367         npages = __get_user_pages_fast(addr, 1, 1, page);
1368         if (npages == 1) {
1369                 *pfn = page_to_pfn(page[0]);
1370
1371                 if (writable)
1372                         *writable = true;
1373                 return true;
1374         }
1375
1376         return false;
1377 }
1378
1379 /*
1380  * The slow path to get the pfn of the specified host virtual address,
1381  * 1 indicates success, -errno is returned if error is detected.
1382  */
1383 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1384                            bool *writable, kvm_pfn_t *pfn)
1385 {
1386         unsigned int flags = FOLL_HWPOISON;
1387         struct page *page;
1388         int npages = 0;
1389
1390         might_sleep();
1391
1392         if (writable)
1393                 *writable = write_fault;
1394
1395         if (write_fault)
1396                 flags |= FOLL_WRITE;
1397         if (async)
1398                 flags |= FOLL_NOWAIT;
1399
1400         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1401         if (npages != 1)
1402                 return npages;
1403
1404         /* map read fault as writable if possible */
1405         if (unlikely(!write_fault) && writable) {
1406                 struct page *wpage;
1407
1408                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1409                         *writable = true;
1410                         put_page(page);
1411                         page = wpage;
1412                 }
1413         }
1414         *pfn = page_to_pfn(page);
1415         return npages;
1416 }
1417
1418 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1419 {
1420         if (unlikely(!(vma->vm_flags & VM_READ)))
1421                 return false;
1422
1423         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1424                 return false;
1425
1426         return true;
1427 }
1428
1429 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1430                                unsigned long addr, bool *async,
1431                                bool write_fault, bool *writable,
1432                                kvm_pfn_t *p_pfn)
1433 {
1434         unsigned long pfn;
1435         int r;
1436
1437         r = follow_pfn(vma, addr, &pfn);
1438         if (r) {
1439                 /*
1440                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1441                  * not call the fault handler, so do it here.
1442                  */
1443                 bool unlocked = false;
1444                 r = fixup_user_fault(current, current->mm, addr,
1445                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1446                                      &unlocked);
1447                 if (unlocked)
1448                         return -EAGAIN;
1449                 if (r)
1450                         return r;
1451
1452                 r = follow_pfn(vma, addr, &pfn);
1453                 if (r)
1454                         return r;
1455
1456         }
1457
1458         if (writable)
1459                 *writable = true;
1460
1461         /*
1462          * Get a reference here because callers of *hva_to_pfn* and
1463          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1464          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1465          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1466          * simply do nothing for reserved pfns.
1467          *
1468          * Whoever called remap_pfn_range is also going to call e.g.
1469          * unmap_mapping_range before the underlying pages are freed,
1470          * causing a call to our MMU notifier.
1471          */ 
1472         kvm_get_pfn(pfn);
1473
1474         *p_pfn = pfn;
1475         return 0;
1476 }
1477
1478 /*
1479  * Pin guest page in memory and return its pfn.
1480  * @addr: host virtual address which maps memory to the guest
1481  * @atomic: whether this function can sleep
1482  * @async: whether this function need to wait IO complete if the
1483  *         host page is not in the memory
1484  * @write_fault: whether we should get a writable host page
1485  * @writable: whether it allows to map a writable host page for !@write_fault
1486  *
1487  * The function will map a writable host page for these two cases:
1488  * 1): @write_fault = true
1489  * 2): @write_fault = false && @writable, @writable will tell the caller
1490  *     whether the mapping is writable.
1491  */
1492 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1493                         bool write_fault, bool *writable)
1494 {
1495         struct vm_area_struct *vma;
1496         kvm_pfn_t pfn = 0;
1497         int npages, r;
1498
1499         /* we can do it either atomically or asynchronously, not both */
1500         BUG_ON(atomic && async);
1501
1502         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1503                 return pfn;
1504
1505         if (atomic)
1506                 return KVM_PFN_ERR_FAULT;
1507
1508         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1509         if (npages == 1)
1510                 return pfn;
1511
1512         down_read(&current->mm->mmap_sem);
1513         if (npages == -EHWPOISON ||
1514               (!async && check_user_page_hwpoison(addr))) {
1515                 pfn = KVM_PFN_ERR_HWPOISON;
1516                 goto exit;
1517         }
1518
1519 retry:
1520         vma = find_vma_intersection(current->mm, addr, addr + 1);
1521
1522         if (vma == NULL)
1523                 pfn = KVM_PFN_ERR_FAULT;
1524         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1525                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1526                 if (r == -EAGAIN)
1527                         goto retry;
1528                 if (r < 0)
1529                         pfn = KVM_PFN_ERR_FAULT;
1530         } else {
1531                 if (async && vma_is_valid(vma, write_fault))
1532                         *async = true;
1533                 pfn = KVM_PFN_ERR_FAULT;
1534         }
1535 exit:
1536         up_read(&current->mm->mmap_sem);
1537         return pfn;
1538 }
1539
1540 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1541                                bool atomic, bool *async, bool write_fault,
1542                                bool *writable)
1543 {
1544         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1545
1546         if (addr == KVM_HVA_ERR_RO_BAD) {
1547                 if (writable)
1548                         *writable = false;
1549                 return KVM_PFN_ERR_RO_FAULT;
1550         }
1551
1552         if (kvm_is_error_hva(addr)) {
1553                 if (writable)
1554                         *writable = false;
1555                 return KVM_PFN_NOSLOT;
1556         }
1557
1558         /* Do not map writable pfn in the readonly memslot. */
1559         if (writable && memslot_is_readonly(slot)) {
1560                 *writable = false;
1561                 writable = NULL;
1562         }
1563
1564         return hva_to_pfn(addr, atomic, async, write_fault,
1565                           writable);
1566 }
1567 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1568
1569 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1570                       bool *writable)
1571 {
1572         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1573                                     write_fault, writable);
1574 }
1575 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1576
1577 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1578 {
1579         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1580 }
1581 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1582
1583 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1584 {
1585         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1586 }
1587 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1588
1589 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1590 {
1591         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1592 }
1593 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1594
1595 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1596 {
1597         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1598 }
1599 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1600
1601 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1602 {
1603         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1604 }
1605 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1606
1607 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1608 {
1609         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1610 }
1611 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1612
1613 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1614                             struct page **pages, int nr_pages)
1615 {
1616         unsigned long addr;
1617         gfn_t entry = 0;
1618
1619         addr = gfn_to_hva_many(slot, gfn, &entry);
1620         if (kvm_is_error_hva(addr))
1621                 return -1;
1622
1623         if (entry < nr_pages)
1624                 return 0;
1625
1626         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1627 }
1628 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1629
1630 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1631 {
1632         if (is_error_noslot_pfn(pfn))
1633                 return KVM_ERR_PTR_BAD_PAGE;
1634
1635         if (kvm_is_reserved_pfn(pfn)) {
1636                 WARN_ON(1);
1637                 return KVM_ERR_PTR_BAD_PAGE;
1638         }
1639
1640         return pfn_to_page(pfn);
1641 }
1642
1643 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1644 {
1645         kvm_pfn_t pfn;
1646
1647         pfn = gfn_to_pfn(kvm, gfn);
1648
1649         return kvm_pfn_to_page(pfn);
1650 }
1651 EXPORT_SYMBOL_GPL(gfn_to_page);
1652
1653 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1654 {
1655         kvm_pfn_t pfn;
1656
1657         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1658
1659         return kvm_pfn_to_page(pfn);
1660 }
1661 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1662
1663 void kvm_release_page_clean(struct page *page)
1664 {
1665         WARN_ON(is_error_page(page));
1666
1667         kvm_release_pfn_clean(page_to_pfn(page));
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1670
1671 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1672 {
1673         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1674                 put_page(pfn_to_page(pfn));
1675 }
1676 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1677
1678 void kvm_release_page_dirty(struct page *page)
1679 {
1680         WARN_ON(is_error_page(page));
1681
1682         kvm_release_pfn_dirty(page_to_pfn(page));
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1685
1686 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1687 {
1688         kvm_set_pfn_dirty(pfn);
1689         kvm_release_pfn_clean(pfn);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1692
1693 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1694 {
1695         if (!kvm_is_reserved_pfn(pfn)) {
1696                 struct page *page = pfn_to_page(pfn);
1697
1698                 if (!PageReserved(page))
1699                         SetPageDirty(page);
1700         }
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1703
1704 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1705 {
1706         if (!kvm_is_reserved_pfn(pfn))
1707                 mark_page_accessed(pfn_to_page(pfn));
1708 }
1709 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1710
1711 void kvm_get_pfn(kvm_pfn_t pfn)
1712 {
1713         if (!kvm_is_reserved_pfn(pfn))
1714                 get_page(pfn_to_page(pfn));
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1717
1718 static int next_segment(unsigned long len, int offset)
1719 {
1720         if (len > PAGE_SIZE - offset)
1721                 return PAGE_SIZE - offset;
1722         else
1723                 return len;
1724 }
1725
1726 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1727                                  void *data, int offset, int len)
1728 {
1729         int r;
1730         unsigned long addr;
1731
1732         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1733         if (kvm_is_error_hva(addr))
1734                 return -EFAULT;
1735         r = __copy_from_user(data, (void __user *)addr + offset, len);
1736         if (r)
1737                 return -EFAULT;
1738         return 0;
1739 }
1740
1741 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1742                         int len)
1743 {
1744         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1745
1746         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1747 }
1748 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1749
1750 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1751                              int offset, int len)
1752 {
1753         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1754
1755         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1756 }
1757 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1758
1759 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1760 {
1761         gfn_t gfn = gpa >> PAGE_SHIFT;
1762         int seg;
1763         int offset = offset_in_page(gpa);
1764         int ret;
1765
1766         while ((seg = next_segment(len, offset)) != 0) {
1767                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1768                 if (ret < 0)
1769                         return ret;
1770                 offset = 0;
1771                 len -= seg;
1772                 data += seg;
1773                 ++gfn;
1774         }
1775         return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(kvm_read_guest);
1778
1779 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1780 {
1781         gfn_t gfn = gpa >> PAGE_SHIFT;
1782         int seg;
1783         int offset = offset_in_page(gpa);
1784         int ret;
1785
1786         while ((seg = next_segment(len, offset)) != 0) {
1787                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1788                 if (ret < 0)
1789                         return ret;
1790                 offset = 0;
1791                 len -= seg;
1792                 data += seg;
1793                 ++gfn;
1794         }
1795         return 0;
1796 }
1797 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1798
1799 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1800                                    void *data, int offset, unsigned long len)
1801 {
1802         int r;
1803         unsigned long addr;
1804
1805         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1806         if (kvm_is_error_hva(addr))
1807                 return -EFAULT;
1808         pagefault_disable();
1809         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1810         pagefault_enable();
1811         if (r)
1812                 return -EFAULT;
1813         return 0;
1814 }
1815
1816 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1817                           unsigned long len)
1818 {
1819         gfn_t gfn = gpa >> PAGE_SHIFT;
1820         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1821         int offset = offset_in_page(gpa);
1822
1823         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1824 }
1825 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1826
1827 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1828                                void *data, unsigned long len)
1829 {
1830         gfn_t gfn = gpa >> PAGE_SHIFT;
1831         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1832         int offset = offset_in_page(gpa);
1833
1834         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1835 }
1836 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1837
1838 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1839                                   const void *data, int offset, int len)
1840 {
1841         int r;
1842         unsigned long addr;
1843
1844         addr = gfn_to_hva_memslot(memslot, gfn);
1845         if (kvm_is_error_hva(addr))
1846                 return -EFAULT;
1847         r = __copy_to_user((void __user *)addr + offset, data, len);
1848         if (r)
1849                 return -EFAULT;
1850         mark_page_dirty_in_slot(memslot, gfn);
1851         return 0;
1852 }
1853
1854 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1855                          const void *data, int offset, int len)
1856 {
1857         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1858
1859         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1860 }
1861 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1862
1863 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1864                               const void *data, int offset, int len)
1865 {
1866         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1867
1868         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1869 }
1870 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1871
1872 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1873                     unsigned long len)
1874 {
1875         gfn_t gfn = gpa >> PAGE_SHIFT;
1876         int seg;
1877         int offset = offset_in_page(gpa);
1878         int ret;
1879
1880         while ((seg = next_segment(len, offset)) != 0) {
1881                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1882                 if (ret < 0)
1883                         return ret;
1884                 offset = 0;
1885                 len -= seg;
1886                 data += seg;
1887                 ++gfn;
1888         }
1889         return 0;
1890 }
1891 EXPORT_SYMBOL_GPL(kvm_write_guest);
1892
1893 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1894                          unsigned long len)
1895 {
1896         gfn_t gfn = gpa >> PAGE_SHIFT;
1897         int seg;
1898         int offset = offset_in_page(gpa);
1899         int ret;
1900
1901         while ((seg = next_segment(len, offset)) != 0) {
1902                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1903                 if (ret < 0)
1904                         return ret;
1905                 offset = 0;
1906                 len -= seg;
1907                 data += seg;
1908                 ++gfn;
1909         }
1910         return 0;
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1913
1914 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1915                                        struct gfn_to_hva_cache *ghc,
1916                                        gpa_t gpa, unsigned long len)
1917 {
1918         int offset = offset_in_page(gpa);
1919         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1920         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1921         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1922         gfn_t nr_pages_avail;
1923
1924         ghc->gpa = gpa;
1925         ghc->generation = slots->generation;
1926         ghc->len = len;
1927         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1928         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1929         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1930                 ghc->hva += offset;
1931         } else {
1932                 /*
1933                  * If the requested region crosses two memslots, we still
1934                  * verify that the entire region is valid here.
1935                  */
1936                 while (start_gfn <= end_gfn) {
1937                         nr_pages_avail = 0;
1938                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1939                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1940                                                    &nr_pages_avail);
1941                         if (kvm_is_error_hva(ghc->hva))
1942                                 return -EFAULT;
1943                         start_gfn += nr_pages_avail;
1944                 }
1945                 /* Use the slow path for cross page reads and writes. */
1946                 ghc->memslot = NULL;
1947         }
1948         return 0;
1949 }
1950
1951 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1952                               gpa_t gpa, unsigned long len)
1953 {
1954         struct kvm_memslots *slots = kvm_memslots(kvm);
1955         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1956 }
1957 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1958
1959 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1960                            void *data, int offset, unsigned long len)
1961 {
1962         struct kvm_memslots *slots = kvm_memslots(kvm);
1963         int r;
1964         gpa_t gpa = ghc->gpa + offset;
1965
1966         BUG_ON(len + offset > ghc->len);
1967
1968         if (slots->generation != ghc->generation)
1969                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1970
1971         if (unlikely(!ghc->memslot))
1972                 return kvm_write_guest(kvm, gpa, data, len);
1973
1974         if (kvm_is_error_hva(ghc->hva))
1975                 return -EFAULT;
1976
1977         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1978         if (r)
1979                 return -EFAULT;
1980         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1981
1982         return 0;
1983 }
1984 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1985
1986 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1987                            void *data, unsigned long len)
1988 {
1989         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1990 }
1991 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1992
1993 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1994                            void *data, unsigned long len)
1995 {
1996         struct kvm_memslots *slots = kvm_memslots(kvm);
1997         int r;
1998
1999         BUG_ON(len > ghc->len);
2000
2001         if (slots->generation != ghc->generation)
2002                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2003
2004         if (unlikely(!ghc->memslot))
2005                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2006
2007         if (kvm_is_error_hva(ghc->hva))
2008                 return -EFAULT;
2009
2010         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2011         if (r)
2012                 return -EFAULT;
2013
2014         return 0;
2015 }
2016 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2017
2018 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2019 {
2020         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2021
2022         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2023 }
2024 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2025
2026 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2027 {
2028         gfn_t gfn = gpa >> PAGE_SHIFT;
2029         int seg;
2030         int offset = offset_in_page(gpa);
2031         int ret;
2032
2033         while ((seg = next_segment(len, offset)) != 0) {
2034                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2035                 if (ret < 0)
2036                         return ret;
2037                 offset = 0;
2038                 len -= seg;
2039                 ++gfn;
2040         }
2041         return 0;
2042 }
2043 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2044
2045 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2046                                     gfn_t gfn)
2047 {
2048         if (memslot && memslot->dirty_bitmap) {
2049                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2050
2051                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2052         }
2053 }
2054
2055 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2056 {
2057         struct kvm_memory_slot *memslot;
2058
2059         memslot = gfn_to_memslot(kvm, gfn);
2060         mark_page_dirty_in_slot(memslot, gfn);
2061 }
2062 EXPORT_SYMBOL_GPL(mark_page_dirty);
2063
2064 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2065 {
2066         struct kvm_memory_slot *memslot;
2067
2068         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2069         mark_page_dirty_in_slot(memslot, gfn);
2070 }
2071 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2072
2073 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2074 {
2075         if (!vcpu->sigset_active)
2076                 return;
2077
2078         /*
2079          * This does a lockless modification of ->real_blocked, which is fine
2080          * because, only current can change ->real_blocked and all readers of
2081          * ->real_blocked don't care as long ->real_blocked is always a subset
2082          * of ->blocked.
2083          */
2084         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2085 }
2086
2087 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2088 {
2089         if (!vcpu->sigset_active)
2090                 return;
2091
2092         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2093         sigemptyset(&current->real_blocked);
2094 }
2095
2096 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2097 {
2098         unsigned int old, val, grow;
2099
2100         old = val = vcpu->halt_poll_ns;
2101         grow = READ_ONCE(halt_poll_ns_grow);
2102         /* 10us base */
2103         if (val == 0 && grow)
2104                 val = 10000;
2105         else
2106                 val *= grow;
2107
2108         if (val > halt_poll_ns)
2109                 val = halt_poll_ns;
2110
2111         vcpu->halt_poll_ns = val;
2112         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2113 }
2114
2115 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2116 {
2117         unsigned int old, val, shrink;
2118
2119         old = val = vcpu->halt_poll_ns;
2120         shrink = READ_ONCE(halt_poll_ns_shrink);
2121         if (shrink == 0)
2122                 val = 0;
2123         else
2124                 val /= shrink;
2125
2126         vcpu->halt_poll_ns = val;
2127         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2128 }
2129
2130 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2131 {
2132         int ret = -EINTR;
2133         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2134
2135         if (kvm_arch_vcpu_runnable(vcpu)) {
2136                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2137                 goto out;
2138         }
2139         if (kvm_cpu_has_pending_timer(vcpu))
2140                 goto out;
2141         if (signal_pending(current))
2142                 goto out;
2143
2144         ret = 0;
2145 out:
2146         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2147         return ret;
2148 }
2149
2150 /*
2151  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2152  */
2153 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2154 {
2155         ktime_t start, cur;
2156         DECLARE_SWAITQUEUE(wait);
2157         bool waited = false;
2158         u64 block_ns;
2159
2160         start = cur = ktime_get();
2161         if (vcpu->halt_poll_ns) {
2162                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2163
2164                 ++vcpu->stat.halt_attempted_poll;
2165                 do {
2166                         /*
2167                          * This sets KVM_REQ_UNHALT if an interrupt
2168                          * arrives.
2169                          */
2170                         if (kvm_vcpu_check_block(vcpu) < 0) {
2171                                 ++vcpu->stat.halt_successful_poll;
2172                                 if (!vcpu_valid_wakeup(vcpu))
2173                                         ++vcpu->stat.halt_poll_invalid;
2174                                 goto out;
2175                         }
2176                         cur = ktime_get();
2177                 } while (single_task_running() && ktime_before(cur, stop));
2178         }
2179
2180         kvm_arch_vcpu_blocking(vcpu);
2181
2182         for (;;) {
2183                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2184
2185                 if (kvm_vcpu_check_block(vcpu) < 0)
2186                         break;
2187
2188                 waited = true;
2189                 schedule();
2190         }
2191
2192         finish_swait(&vcpu->wq, &wait);
2193         cur = ktime_get();
2194
2195         kvm_arch_vcpu_unblocking(vcpu);
2196 out:
2197         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2198
2199         if (!vcpu_valid_wakeup(vcpu))
2200                 shrink_halt_poll_ns(vcpu);
2201         else if (halt_poll_ns) {
2202                 if (block_ns <= vcpu->halt_poll_ns)
2203                         ;
2204                 /* we had a long block, shrink polling */
2205                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2206                         shrink_halt_poll_ns(vcpu);
2207                 /* we had a short halt and our poll time is too small */
2208                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2209                         block_ns < halt_poll_ns)
2210                         grow_halt_poll_ns(vcpu);
2211         } else
2212                 vcpu->halt_poll_ns = 0;
2213
2214         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2215         kvm_arch_vcpu_block_finish(vcpu);
2216 }
2217 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2218
2219 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2220 {
2221         struct swait_queue_head *wqp;
2222
2223         wqp = kvm_arch_vcpu_wq(vcpu);
2224         if (swq_has_sleeper(wqp)) {
2225                 swake_up_one(wqp);
2226                 ++vcpu->stat.halt_wakeup;
2227                 return true;
2228         }
2229
2230         return false;
2231 }
2232 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2233
2234 #ifndef CONFIG_S390
2235 /*
2236  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2237  */
2238 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2239 {
2240         int me;
2241         int cpu = vcpu->cpu;
2242
2243         if (kvm_vcpu_wake_up(vcpu))
2244                 return;
2245
2246         me = get_cpu();
2247         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2248                 if (kvm_arch_vcpu_should_kick(vcpu))
2249                         smp_send_reschedule(cpu);
2250         put_cpu();
2251 }
2252 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2253 #endif /* !CONFIG_S390 */
2254
2255 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2256 {
2257         struct pid *pid;
2258         struct task_struct *task = NULL;
2259         int ret = 0;
2260
2261         rcu_read_lock();
2262         pid = rcu_dereference(target->pid);
2263         if (pid)
2264                 task = get_pid_task(pid, PIDTYPE_PID);
2265         rcu_read_unlock();
2266         if (!task)
2267                 return ret;
2268         ret = yield_to(task, 1);
2269         put_task_struct(task);
2270
2271         return ret;
2272 }
2273 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2274
2275 /*
2276  * Helper that checks whether a VCPU is eligible for directed yield.
2277  * Most eligible candidate to yield is decided by following heuristics:
2278  *
2279  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2280  *  (preempted lock holder), indicated by @in_spin_loop.
2281  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2282  *
2283  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2284  *  chance last time (mostly it has become eligible now since we have probably
2285  *  yielded to lockholder in last iteration. This is done by toggling
2286  *  @dy_eligible each time a VCPU checked for eligibility.)
2287  *
2288  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2289  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2290  *  burning. Giving priority for a potential lock-holder increases lock
2291  *  progress.
2292  *
2293  *  Since algorithm is based on heuristics, accessing another VCPU data without
2294  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2295  *  and continue with next VCPU and so on.
2296  */
2297 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2298 {
2299 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2300         bool eligible;
2301
2302         eligible = !vcpu->spin_loop.in_spin_loop ||
2303                     vcpu->spin_loop.dy_eligible;
2304
2305         if (vcpu->spin_loop.in_spin_loop)
2306                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2307
2308         return eligible;
2309 #else
2310         return true;
2311 #endif
2312 }
2313
2314 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2315 {
2316         struct kvm *kvm = me->kvm;
2317         struct kvm_vcpu *vcpu;
2318         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2319         int yielded = 0;
2320         int try = 3;
2321         int pass;
2322         int i;
2323
2324         kvm_vcpu_set_in_spin_loop(me, true);
2325         /*
2326          * We boost the priority of a VCPU that is runnable but not
2327          * currently running, because it got preempted by something
2328          * else and called schedule in __vcpu_run.  Hopefully that
2329          * VCPU is holding the lock that we need and will release it.
2330          * We approximate round-robin by starting at the last boosted VCPU.
2331          */
2332         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2333                 kvm_for_each_vcpu(i, vcpu, kvm) {
2334                         if (!pass && i <= last_boosted_vcpu) {
2335                                 i = last_boosted_vcpu;
2336                                 continue;
2337                         } else if (pass && i > last_boosted_vcpu)
2338                                 break;
2339                         if (!READ_ONCE(vcpu->preempted))
2340                                 continue;
2341                         if (vcpu == me)
2342                                 continue;
2343                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2344                                 continue;
2345                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2346                                 continue;
2347                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2348                                 continue;
2349
2350                         yielded = kvm_vcpu_yield_to(vcpu);
2351                         if (yielded > 0) {
2352                                 kvm->last_boosted_vcpu = i;
2353                                 break;
2354                         } else if (yielded < 0) {
2355                                 try--;
2356                                 if (!try)
2357                                         break;
2358                         }
2359                 }
2360         }
2361         kvm_vcpu_set_in_spin_loop(me, false);
2362
2363         /* Ensure vcpu is not eligible during next spinloop */
2364         kvm_vcpu_set_dy_eligible(me, false);
2365 }
2366 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2367
2368 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2369 {
2370         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2371         struct page *page;
2372
2373         if (vmf->pgoff == 0)
2374                 page = virt_to_page(vcpu->run);
2375 #ifdef CONFIG_X86
2376         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2377                 page = virt_to_page(vcpu->arch.pio_data);
2378 #endif
2379 #ifdef CONFIG_KVM_MMIO
2380         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2381                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2382 #endif
2383         else
2384                 return kvm_arch_vcpu_fault(vcpu, vmf);
2385         get_page(page);
2386         vmf->page = page;
2387         return 0;
2388 }
2389
2390 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2391         .fault = kvm_vcpu_fault,
2392 };
2393
2394 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2395 {
2396         vma->vm_ops = &kvm_vcpu_vm_ops;
2397         return 0;
2398 }
2399
2400 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2401 {
2402         struct kvm_vcpu *vcpu = filp->private_data;
2403
2404         debugfs_remove_recursive(vcpu->debugfs_dentry);
2405         kvm_put_kvm(vcpu->kvm);
2406         return 0;
2407 }
2408
2409 static struct file_operations kvm_vcpu_fops = {
2410         .release        = kvm_vcpu_release,
2411         .unlocked_ioctl = kvm_vcpu_ioctl,
2412         .mmap           = kvm_vcpu_mmap,
2413         .llseek         = noop_llseek,
2414         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2415 };
2416
2417 /*
2418  * Allocates an inode for the vcpu.
2419  */
2420 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2421 {
2422         char name[8 + 1 + ITOA_MAX_LEN + 1];
2423
2424         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2425         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2426 }
2427
2428 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2429 {
2430         char dir_name[ITOA_MAX_LEN * 2];
2431         int ret;
2432
2433         if (!kvm_arch_has_vcpu_debugfs())
2434                 return 0;
2435
2436         if (!debugfs_initialized())
2437                 return 0;
2438
2439         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2440         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2441                                                                 vcpu->kvm->debugfs_dentry);
2442         if (!vcpu->debugfs_dentry)
2443                 return -ENOMEM;
2444
2445         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2446         if (ret < 0) {
2447                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2448                 return ret;
2449         }
2450
2451         return 0;
2452 }
2453
2454 /*
2455  * Creates some virtual cpus.  Good luck creating more than one.
2456  */
2457 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2458 {
2459         int r;
2460         struct kvm_vcpu *vcpu;
2461
2462         if (id >= KVM_MAX_VCPU_ID)
2463                 return -EINVAL;
2464
2465         mutex_lock(&kvm->lock);
2466         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2467                 mutex_unlock(&kvm->lock);
2468                 return -EINVAL;
2469         }
2470
2471         kvm->created_vcpus++;
2472         mutex_unlock(&kvm->lock);
2473
2474         vcpu = kvm_arch_vcpu_create(kvm, id);
2475         if (IS_ERR(vcpu)) {
2476                 r = PTR_ERR(vcpu);
2477                 goto vcpu_decrement;
2478         }
2479
2480         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2481
2482         r = kvm_arch_vcpu_setup(vcpu);
2483         if (r)
2484                 goto vcpu_destroy;
2485
2486         r = kvm_create_vcpu_debugfs(vcpu);
2487         if (r)
2488                 goto vcpu_destroy;
2489
2490         mutex_lock(&kvm->lock);
2491         if (kvm_get_vcpu_by_id(kvm, id)) {
2492                 r = -EEXIST;
2493                 goto unlock_vcpu_destroy;
2494         }
2495
2496         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2497
2498         /* Now it's all set up, let userspace reach it */
2499         kvm_get_kvm(kvm);
2500         r = create_vcpu_fd(vcpu);
2501         if (r < 0) {
2502                 kvm_put_kvm(kvm);
2503                 goto unlock_vcpu_destroy;
2504         }
2505
2506         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2507
2508         /*
2509          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2510          * before kvm->online_vcpu's incremented value.
2511          */
2512         smp_wmb();
2513         atomic_inc(&kvm->online_vcpus);
2514
2515         mutex_unlock(&kvm->lock);
2516         kvm_arch_vcpu_postcreate(vcpu);
2517         return r;
2518
2519 unlock_vcpu_destroy:
2520         mutex_unlock(&kvm->lock);
2521         debugfs_remove_recursive(vcpu->debugfs_dentry);
2522 vcpu_destroy:
2523         kvm_arch_vcpu_destroy(vcpu);
2524 vcpu_decrement:
2525         mutex_lock(&kvm->lock);
2526         kvm->created_vcpus--;
2527         mutex_unlock(&kvm->lock);
2528         return r;
2529 }
2530
2531 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2532 {
2533         if (sigset) {
2534                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2535                 vcpu->sigset_active = 1;
2536                 vcpu->sigset = *sigset;
2537         } else
2538                 vcpu->sigset_active = 0;
2539         return 0;
2540 }
2541
2542 static long kvm_vcpu_ioctl(struct file *filp,
2543                            unsigned int ioctl, unsigned long arg)
2544 {
2545         struct kvm_vcpu *vcpu = filp->private_data;
2546         void __user *argp = (void __user *)arg;
2547         int r;
2548         struct kvm_fpu *fpu = NULL;
2549         struct kvm_sregs *kvm_sregs = NULL;
2550
2551         if (vcpu->kvm->mm != current->mm)
2552                 return -EIO;
2553
2554         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2555                 return -EINVAL;
2556
2557         /*
2558          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2559          * execution; mutex_lock() would break them.
2560          */
2561         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2562         if (r != -ENOIOCTLCMD)
2563                 return r;
2564
2565         if (mutex_lock_killable(&vcpu->mutex))
2566                 return -EINTR;
2567         switch (ioctl) {
2568         case KVM_RUN: {
2569                 struct pid *oldpid;
2570                 r = -EINVAL;
2571                 if (arg)
2572                         goto out;
2573                 oldpid = rcu_access_pointer(vcpu->pid);
2574                 if (unlikely(oldpid != task_pid(current))) {
2575                         /* The thread running this VCPU changed. */
2576                         struct pid *newpid;
2577
2578                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2579                         if (r)
2580                                 break;
2581
2582                         newpid = get_task_pid(current, PIDTYPE_PID);
2583                         rcu_assign_pointer(vcpu->pid, newpid);
2584                         if (oldpid)
2585                                 synchronize_rcu();
2586                         put_pid(oldpid);
2587                 }
2588                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2589                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2590                 break;
2591         }
2592         case KVM_GET_REGS: {
2593                 struct kvm_regs *kvm_regs;
2594
2595                 r = -ENOMEM;
2596                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2597                 if (!kvm_regs)
2598                         goto out;
2599                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2600                 if (r)
2601                         goto out_free1;
2602                 r = -EFAULT;
2603                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2604                         goto out_free1;
2605                 r = 0;
2606 out_free1:
2607                 kfree(kvm_regs);
2608                 break;
2609         }
2610         case KVM_SET_REGS: {
2611                 struct kvm_regs *kvm_regs;
2612
2613                 r = -ENOMEM;
2614                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2615                 if (IS_ERR(kvm_regs)) {
2616                         r = PTR_ERR(kvm_regs);
2617                         goto out;
2618                 }
2619                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2620                 kfree(kvm_regs);
2621                 break;
2622         }
2623         case KVM_GET_SREGS: {
2624                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2625                 r = -ENOMEM;
2626                 if (!kvm_sregs)
2627                         goto out;
2628                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2629                 if (r)
2630                         goto out;
2631                 r = -EFAULT;
2632                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2633                         goto out;
2634                 r = 0;
2635                 break;
2636         }
2637         case KVM_SET_SREGS: {
2638                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2639                 if (IS_ERR(kvm_sregs)) {
2640                         r = PTR_ERR(kvm_sregs);
2641                         kvm_sregs = NULL;
2642                         goto out;
2643                 }
2644                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2645                 break;
2646         }
2647         case KVM_GET_MP_STATE: {
2648                 struct kvm_mp_state mp_state;
2649
2650                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2651                 if (r)
2652                         goto out;
2653                 r = -EFAULT;
2654                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2655                         goto out;
2656                 r = 0;
2657                 break;
2658         }
2659         case KVM_SET_MP_STATE: {
2660                 struct kvm_mp_state mp_state;
2661
2662                 r = -EFAULT;
2663                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2664                         goto out;
2665                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2666                 break;
2667         }
2668         case KVM_TRANSLATE: {
2669                 struct kvm_translation tr;
2670
2671                 r = -EFAULT;
2672                 if (copy_from_user(&tr, argp, sizeof(tr)))
2673                         goto out;
2674                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2675                 if (r)
2676                         goto out;
2677                 r = -EFAULT;
2678                 if (copy_to_user(argp, &tr, sizeof(tr)))
2679                         goto out;
2680                 r = 0;
2681                 break;
2682         }
2683         case KVM_SET_GUEST_DEBUG: {
2684                 struct kvm_guest_debug dbg;
2685
2686                 r = -EFAULT;
2687                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2688                         goto out;
2689                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2690                 break;
2691         }
2692         case KVM_SET_SIGNAL_MASK: {
2693                 struct kvm_signal_mask __user *sigmask_arg = argp;
2694                 struct kvm_signal_mask kvm_sigmask;
2695                 sigset_t sigset, *p;
2696
2697                 p = NULL;
2698                 if (argp) {
2699                         r = -EFAULT;
2700                         if (copy_from_user(&kvm_sigmask, argp,
2701                                            sizeof(kvm_sigmask)))
2702                                 goto out;
2703                         r = -EINVAL;
2704                         if (kvm_sigmask.len != sizeof(sigset))
2705                                 goto out;
2706                         r = -EFAULT;
2707                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2708                                            sizeof(sigset)))
2709                                 goto out;
2710                         p = &sigset;
2711                 }
2712                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2713                 break;
2714         }
2715         case KVM_GET_FPU: {
2716                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2717                 r = -ENOMEM;
2718                 if (!fpu)
2719                         goto out;
2720                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2721                 if (r)
2722                         goto out;
2723                 r = -EFAULT;
2724                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2725                         goto out;
2726                 r = 0;
2727                 break;
2728         }
2729         case KVM_SET_FPU: {
2730                 fpu = memdup_user(argp, sizeof(*fpu));
2731                 if (IS_ERR(fpu)) {
2732                         r = PTR_ERR(fpu);
2733                         fpu = NULL;
2734                         goto out;
2735                 }
2736                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2737                 break;
2738         }
2739         default:
2740                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2741         }
2742 out:
2743         mutex_unlock(&vcpu->mutex);
2744         kfree(fpu);
2745         kfree(kvm_sregs);
2746         return r;
2747 }
2748
2749 #ifdef CONFIG_KVM_COMPAT
2750 static long kvm_vcpu_compat_ioctl(struct file *filp,
2751                                   unsigned int ioctl, unsigned long arg)
2752 {
2753         struct kvm_vcpu *vcpu = filp->private_data;
2754         void __user *argp = compat_ptr(arg);
2755         int r;
2756
2757         if (vcpu->kvm->mm != current->mm)
2758                 return -EIO;
2759
2760         switch (ioctl) {
2761         case KVM_SET_SIGNAL_MASK: {
2762                 struct kvm_signal_mask __user *sigmask_arg = argp;
2763                 struct kvm_signal_mask kvm_sigmask;
2764                 sigset_t sigset;
2765
2766                 if (argp) {
2767                         r = -EFAULT;
2768                         if (copy_from_user(&kvm_sigmask, argp,
2769                                            sizeof(kvm_sigmask)))
2770                                 goto out;
2771                         r = -EINVAL;
2772                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2773                                 goto out;
2774                         r = -EFAULT;
2775                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2776                                 goto out;
2777                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2778                 } else
2779                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2780                 break;
2781         }
2782         default:
2783                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2784         }
2785
2786 out:
2787         return r;
2788 }
2789 #endif
2790
2791 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2792                                  int (*accessor)(struct kvm_device *dev,
2793                                                  struct kvm_device_attr *attr),
2794                                  unsigned long arg)
2795 {
2796         struct kvm_device_attr attr;
2797
2798         if (!accessor)
2799                 return -EPERM;
2800
2801         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2802                 return -EFAULT;
2803
2804         return accessor(dev, &attr);
2805 }
2806
2807 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2808                              unsigned long arg)
2809 {
2810         struct kvm_device *dev = filp->private_data;
2811
2812         switch (ioctl) {
2813         case KVM_SET_DEVICE_ATTR:
2814                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2815         case KVM_GET_DEVICE_ATTR:
2816                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2817         case KVM_HAS_DEVICE_ATTR:
2818                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2819         default:
2820                 if (dev->ops->ioctl)
2821                         return dev->ops->ioctl(dev, ioctl, arg);
2822
2823                 return -ENOTTY;
2824         }
2825 }
2826
2827 static int kvm_device_release(struct inode *inode, struct file *filp)
2828 {
2829         struct kvm_device *dev = filp->private_data;
2830         struct kvm *kvm = dev->kvm;
2831
2832         kvm_put_kvm(kvm);
2833         return 0;
2834 }
2835
2836 static const struct file_operations kvm_device_fops = {
2837         .unlocked_ioctl = kvm_device_ioctl,
2838         .release = kvm_device_release,
2839         KVM_COMPAT(kvm_device_ioctl),
2840 };
2841
2842 struct kvm_device *kvm_device_from_filp(struct file *filp)
2843 {
2844         if (filp->f_op != &kvm_device_fops)
2845                 return NULL;
2846
2847         return filp->private_data;
2848 }
2849
2850 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2851 #ifdef CONFIG_KVM_MPIC
2852         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2853         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2854 #endif
2855 };
2856
2857 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2858 {
2859         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2860                 return -ENOSPC;
2861
2862         if (kvm_device_ops_table[type] != NULL)
2863                 return -EEXIST;
2864
2865         kvm_device_ops_table[type] = ops;
2866         return 0;
2867 }
2868
2869 void kvm_unregister_device_ops(u32 type)
2870 {
2871         if (kvm_device_ops_table[type] != NULL)
2872                 kvm_device_ops_table[type] = NULL;
2873 }
2874
2875 static int kvm_ioctl_create_device(struct kvm *kvm,
2876                                    struct kvm_create_device *cd)
2877 {
2878         struct kvm_device_ops *ops = NULL;
2879         struct kvm_device *dev;
2880         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2881         int ret;
2882
2883         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2884                 return -ENODEV;
2885
2886         ops = kvm_device_ops_table[cd->type];
2887         if (ops == NULL)
2888                 return -ENODEV;
2889
2890         if (test)
2891                 return 0;
2892
2893         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2894         if (!dev)
2895                 return -ENOMEM;
2896
2897         dev->ops = ops;
2898         dev->kvm = kvm;
2899
2900         mutex_lock(&kvm->lock);
2901         ret = ops->create(dev, cd->type);
2902         if (ret < 0) {
2903                 mutex_unlock(&kvm->lock);
2904                 kfree(dev);
2905                 return ret;
2906         }
2907         list_add(&dev->vm_node, &kvm->devices);
2908         mutex_unlock(&kvm->lock);
2909
2910         if (ops->init)
2911                 ops->init(dev);
2912
2913         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2914         if (ret < 0) {
2915                 mutex_lock(&kvm->lock);
2916                 list_del(&dev->vm_node);
2917                 mutex_unlock(&kvm->lock);
2918                 ops->destroy(dev);
2919                 return ret;
2920         }
2921
2922         kvm_get_kvm(kvm);
2923         cd->fd = ret;
2924         return 0;
2925 }
2926
2927 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2928 {
2929         switch (arg) {
2930         case KVM_CAP_USER_MEMORY:
2931         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2932         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2933         case KVM_CAP_INTERNAL_ERROR_DATA:
2934 #ifdef CONFIG_HAVE_KVM_MSI
2935         case KVM_CAP_SIGNAL_MSI:
2936 #endif
2937 #ifdef CONFIG_HAVE_KVM_IRQFD
2938         case KVM_CAP_IRQFD:
2939         case KVM_CAP_IRQFD_RESAMPLE:
2940 #endif
2941         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2942         case KVM_CAP_CHECK_EXTENSION_VM:
2943                 return 1;
2944 #ifdef CONFIG_KVM_MMIO
2945         case KVM_CAP_COALESCED_MMIO:
2946                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2947 #endif
2948 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2949         case KVM_CAP_IRQ_ROUTING:
2950                 return KVM_MAX_IRQ_ROUTES;
2951 #endif
2952 #if KVM_ADDRESS_SPACE_NUM > 1
2953         case KVM_CAP_MULTI_ADDRESS_SPACE:
2954                 return KVM_ADDRESS_SPACE_NUM;
2955 #endif
2956         case KVM_CAP_MAX_VCPU_ID:
2957                 return KVM_MAX_VCPU_ID;
2958         default:
2959                 break;
2960         }
2961         return kvm_vm_ioctl_check_extension(kvm, arg);
2962 }
2963
2964 static long kvm_vm_ioctl(struct file *filp,
2965                            unsigned int ioctl, unsigned long arg)
2966 {
2967         struct kvm *kvm = filp->private_data;
2968         void __user *argp = (void __user *)arg;
2969         int r;
2970
2971         if (kvm->mm != current->mm)
2972                 return -EIO;
2973         switch (ioctl) {
2974         case KVM_CREATE_VCPU:
2975                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2976                 break;
2977         case KVM_SET_USER_MEMORY_REGION: {
2978                 struct kvm_userspace_memory_region kvm_userspace_mem;
2979
2980                 r = -EFAULT;
2981                 if (copy_from_user(&kvm_userspace_mem, argp,
2982                                                 sizeof(kvm_userspace_mem)))
2983                         goto out;
2984
2985                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2986                 break;
2987         }
2988         case KVM_GET_DIRTY_LOG: {
2989                 struct kvm_dirty_log log;
2990
2991                 r = -EFAULT;
2992                 if (copy_from_user(&log, argp, sizeof(log)))
2993                         goto out;
2994                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2995                 break;
2996         }
2997 #ifdef CONFIG_KVM_MMIO
2998         case KVM_REGISTER_COALESCED_MMIO: {
2999                 struct kvm_coalesced_mmio_zone zone;
3000
3001                 r = -EFAULT;
3002                 if (copy_from_user(&zone, argp, sizeof(zone)))
3003                         goto out;
3004                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3005                 break;
3006         }
3007         case KVM_UNREGISTER_COALESCED_MMIO: {
3008                 struct kvm_coalesced_mmio_zone zone;
3009
3010                 r = -EFAULT;
3011                 if (copy_from_user(&zone, argp, sizeof(zone)))
3012                         goto out;
3013                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3014                 break;
3015         }
3016 #endif
3017         case KVM_IRQFD: {
3018                 struct kvm_irqfd data;
3019
3020                 r = -EFAULT;
3021                 if (copy_from_user(&data, argp, sizeof(data)))
3022                         goto out;
3023                 r = kvm_irqfd(kvm, &data);
3024                 break;
3025         }
3026         case KVM_IOEVENTFD: {
3027                 struct kvm_ioeventfd data;
3028
3029                 r = -EFAULT;
3030                 if (copy_from_user(&data, argp, sizeof(data)))
3031                         goto out;
3032                 r = kvm_ioeventfd(kvm, &data);
3033                 break;
3034         }
3035 #ifdef CONFIG_HAVE_KVM_MSI
3036         case KVM_SIGNAL_MSI: {
3037                 struct kvm_msi msi;
3038
3039                 r = -EFAULT;
3040                 if (copy_from_user(&msi, argp, sizeof(msi)))
3041                         goto out;
3042                 r = kvm_send_userspace_msi(kvm, &msi);
3043                 break;
3044         }
3045 #endif
3046 #ifdef __KVM_HAVE_IRQ_LINE
3047         case KVM_IRQ_LINE_STATUS:
3048         case KVM_IRQ_LINE: {
3049                 struct kvm_irq_level irq_event;
3050
3051                 r = -EFAULT;
3052                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3053                         goto out;
3054
3055                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3056                                         ioctl == KVM_IRQ_LINE_STATUS);
3057                 if (r)
3058                         goto out;
3059
3060                 r = -EFAULT;
3061                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3062                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3063                                 goto out;
3064                 }
3065
3066                 r = 0;
3067                 break;
3068         }
3069 #endif
3070 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3071         case KVM_SET_GSI_ROUTING: {
3072                 struct kvm_irq_routing routing;
3073                 struct kvm_irq_routing __user *urouting;
3074                 struct kvm_irq_routing_entry *entries = NULL;
3075
3076                 r = -EFAULT;
3077                 if (copy_from_user(&routing, argp, sizeof(routing)))
3078                         goto out;
3079                 r = -EINVAL;
3080                 if (!kvm_arch_can_set_irq_routing(kvm))
3081                         goto out;
3082                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3083                         goto out;
3084                 if (routing.flags)
3085                         goto out;
3086                 if (routing.nr) {
3087                         r = -ENOMEM;
3088                         entries = vmalloc(array_size(sizeof(*entries),
3089                                                      routing.nr));
3090                         if (!entries)
3091                                 goto out;
3092                         r = -EFAULT;
3093                         urouting = argp;
3094                         if (copy_from_user(entries, urouting->entries,
3095                                            routing.nr * sizeof(*entries)))
3096                                 goto out_free_irq_routing;
3097                 }
3098                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3099                                         routing.flags);
3100 out_free_irq_routing:
3101                 vfree(entries);
3102                 break;
3103         }
3104 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3105         case KVM_CREATE_DEVICE: {
3106                 struct kvm_create_device cd;
3107
3108                 r = -EFAULT;
3109                 if (copy_from_user(&cd, argp, sizeof(cd)))
3110                         goto out;
3111
3112                 r = kvm_ioctl_create_device(kvm, &cd);
3113                 if (r)
3114                         goto out;
3115
3116                 r = -EFAULT;
3117                 if (copy_to_user(argp, &cd, sizeof(cd)))
3118                         goto out;
3119
3120                 r = 0;
3121                 break;
3122         }
3123         case KVM_CHECK_EXTENSION:
3124                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3125                 break;
3126         default:
3127                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3128         }
3129 out:
3130         return r;
3131 }
3132
3133 #ifdef CONFIG_KVM_COMPAT
3134 struct compat_kvm_dirty_log {
3135         __u32 slot;
3136         __u32 padding1;
3137         union {
3138                 compat_uptr_t dirty_bitmap; /* one bit per page */
3139                 __u64 padding2;
3140         };
3141 };
3142
3143 static long kvm_vm_compat_ioctl(struct file *filp,
3144                            unsigned int ioctl, unsigned long arg)
3145 {
3146         struct kvm *kvm = filp->private_data;
3147         int r;
3148
3149         if (kvm->mm != current->mm)
3150                 return -EIO;
3151         switch (ioctl) {
3152         case KVM_GET_DIRTY_LOG: {
3153                 struct compat_kvm_dirty_log compat_log;
3154                 struct kvm_dirty_log log;
3155
3156                 if (copy_from_user(&compat_log, (void __user *)arg,
3157                                    sizeof(compat_log)))
3158                         return -EFAULT;
3159                 log.slot         = compat_log.slot;
3160                 log.padding1     = compat_log.padding1;
3161                 log.padding2     = compat_log.padding2;
3162                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3163
3164                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3165                 break;
3166         }
3167         default:
3168                 r = kvm_vm_ioctl(filp, ioctl, arg);
3169         }
3170         return r;
3171 }
3172 #endif
3173
3174 static struct file_operations kvm_vm_fops = {
3175         .release        = kvm_vm_release,
3176         .unlocked_ioctl = kvm_vm_ioctl,
3177         .llseek         = noop_llseek,
3178         KVM_COMPAT(kvm_vm_compat_ioctl),
3179 };
3180
3181 static int kvm_dev_ioctl_create_vm(unsigned long type)
3182 {
3183         int r;
3184         struct kvm *kvm;
3185         struct file *file;
3186
3187         kvm = kvm_create_vm(type);
3188         if (IS_ERR(kvm))
3189                 return PTR_ERR(kvm);
3190 #ifdef CONFIG_KVM_MMIO
3191         r = kvm_coalesced_mmio_init(kvm);
3192         if (r < 0)
3193                 goto put_kvm;
3194 #endif
3195         r = get_unused_fd_flags(O_CLOEXEC);
3196         if (r < 0)
3197                 goto put_kvm;
3198
3199         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3200         if (IS_ERR(file)) {
3201                 put_unused_fd(r);
3202                 r = PTR_ERR(file);
3203                 goto put_kvm;
3204         }
3205
3206         /*
3207          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3208          * already set, with ->release() being kvm_vm_release().  In error
3209          * cases it will be called by the final fput(file) and will take
3210          * care of doing kvm_put_kvm(kvm).
3211          */
3212         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3213                 put_unused_fd(r);
3214                 fput(file);
3215                 return -ENOMEM;
3216         }
3217         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3218
3219         fd_install(r, file);
3220         return r;
3221
3222 put_kvm:
3223         kvm_put_kvm(kvm);
3224         return r;
3225 }
3226
3227 static long kvm_dev_ioctl(struct file *filp,
3228                           unsigned int ioctl, unsigned long arg)
3229 {
3230         long r = -EINVAL;
3231
3232         switch (ioctl) {
3233         case KVM_GET_API_VERSION:
3234                 if (arg)
3235                         goto out;
3236                 r = KVM_API_VERSION;
3237                 break;
3238         case KVM_CREATE_VM:
3239                 r = kvm_dev_ioctl_create_vm(arg);
3240                 break;
3241         case KVM_CHECK_EXTENSION:
3242                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3243                 break;
3244         case KVM_GET_VCPU_MMAP_SIZE:
3245                 if (arg)
3246                         goto out;
3247                 r = PAGE_SIZE;     /* struct kvm_run */
3248 #ifdef CONFIG_X86
3249                 r += PAGE_SIZE;    /* pio data page */
3250 #endif
3251 #ifdef CONFIG_KVM_MMIO
3252                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3253 #endif
3254                 break;
3255         case KVM_TRACE_ENABLE:
3256         case KVM_TRACE_PAUSE:
3257         case KVM_TRACE_DISABLE:
3258                 r = -EOPNOTSUPP;
3259                 break;
3260         default:
3261                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3262         }
3263 out:
3264         return r;
3265 }
3266
3267 static struct file_operations kvm_chardev_ops = {
3268         .unlocked_ioctl = kvm_dev_ioctl,
3269         .llseek         = noop_llseek,
3270         KVM_COMPAT(kvm_dev_ioctl),
3271 };
3272
3273 static struct miscdevice kvm_dev = {
3274         KVM_MINOR,
3275         "kvm",
3276         &kvm_chardev_ops,
3277 };
3278
3279 static void hardware_enable_nolock(void *junk)
3280 {
3281         int cpu = raw_smp_processor_id();
3282         int r;
3283
3284         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3285                 return;
3286
3287         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3288
3289         r = kvm_arch_hardware_enable();
3290
3291         if (r) {
3292                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3293                 atomic_inc(&hardware_enable_failed);
3294                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3295         }
3296 }
3297
3298 static int kvm_starting_cpu(unsigned int cpu)
3299 {
3300         raw_spin_lock(&kvm_count_lock);
3301         if (kvm_usage_count)
3302                 hardware_enable_nolock(NULL);
3303         raw_spin_unlock(&kvm_count_lock);
3304         return 0;
3305 }
3306
3307 static void hardware_disable_nolock(void *junk)
3308 {
3309         int cpu = raw_smp_processor_id();
3310
3311         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3312                 return;
3313         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3314         kvm_arch_hardware_disable();
3315 }
3316
3317 static int kvm_dying_cpu(unsigned int cpu)
3318 {
3319         raw_spin_lock(&kvm_count_lock);
3320         if (kvm_usage_count)
3321                 hardware_disable_nolock(NULL);
3322         raw_spin_unlock(&kvm_count_lock);
3323         return 0;
3324 }
3325
3326 static void hardware_disable_all_nolock(void)
3327 {
3328         BUG_ON(!kvm_usage_count);
3329
3330         kvm_usage_count--;
3331         if (!kvm_usage_count)
3332                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3333 }
3334
3335 static void hardware_disable_all(void)
3336 {
3337         raw_spin_lock(&kvm_count_lock);
3338         hardware_disable_all_nolock();
3339         raw_spin_unlock(&kvm_count_lock);
3340 }
3341
3342 static int hardware_enable_all(void)
3343 {
3344         int r = 0;
3345
3346         raw_spin_lock(&kvm_count_lock);
3347
3348         kvm_usage_count++;
3349         if (kvm_usage_count == 1) {
3350                 atomic_set(&hardware_enable_failed, 0);
3351                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3352
3353                 if (atomic_read(&hardware_enable_failed)) {
3354                         hardware_disable_all_nolock();
3355                         r = -EBUSY;
3356                 }
3357         }
3358
3359         raw_spin_unlock(&kvm_count_lock);
3360
3361         return r;
3362 }
3363
3364 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3365                       void *v)
3366 {
3367         /*
3368          * Some (well, at least mine) BIOSes hang on reboot if
3369          * in vmx root mode.
3370          *
3371          * And Intel TXT required VMX off for all cpu when system shutdown.
3372          */
3373         pr_info("kvm: exiting hardware virtualization\n");
3374         kvm_rebooting = true;
3375         on_each_cpu(hardware_disable_nolock, NULL, 1);
3376         return NOTIFY_OK;
3377 }
3378
3379 static struct notifier_block kvm_reboot_notifier = {
3380         .notifier_call = kvm_reboot,
3381         .priority = 0,
3382 };
3383
3384 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3385 {
3386         int i;
3387
3388         for (i = 0; i < bus->dev_count; i++) {
3389                 struct kvm_io_device *pos = bus->range[i].dev;
3390
3391                 kvm_iodevice_destructor(pos);
3392         }
3393         kfree(bus);
3394 }
3395
3396 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3397                                  const struct kvm_io_range *r2)
3398 {
3399         gpa_t addr1 = r1->addr;
3400         gpa_t addr2 = r2->addr;
3401
3402         if (addr1 < addr2)
3403                 return -1;
3404
3405         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3406          * accept any overlapping write.  Any order is acceptable for
3407          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3408          * we process all of them.
3409          */
3410         if (r2->len) {
3411                 addr1 += r1->len;
3412                 addr2 += r2->len;
3413         }
3414
3415         if (addr1 > addr2)
3416                 return 1;
3417
3418         return 0;
3419 }
3420
3421 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3422 {
3423         return kvm_io_bus_cmp(p1, p2);
3424 }
3425
3426 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3427                              gpa_t addr, int len)
3428 {
3429         struct kvm_io_range *range, key;
3430         int off;
3431
3432         key = (struct kvm_io_range) {
3433                 .addr = addr,
3434                 .len = len,
3435         };
3436
3437         range = bsearch(&key, bus->range, bus->dev_count,
3438                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3439         if (range == NULL)
3440                 return -ENOENT;
3441
3442         off = range - bus->range;
3443
3444         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3445                 off--;
3446
3447         return off;
3448 }
3449
3450 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3451                               struct kvm_io_range *range, const void *val)
3452 {
3453         int idx;
3454
3455         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3456         if (idx < 0)
3457                 return -EOPNOTSUPP;
3458
3459         while (idx < bus->dev_count &&
3460                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3461                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3462                                         range->len, val))
3463                         return idx;
3464                 idx++;
3465         }
3466
3467         return -EOPNOTSUPP;
3468 }
3469
3470 /* kvm_io_bus_write - called under kvm->slots_lock */
3471 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3472                      int len, const void *val)
3473 {
3474         struct kvm_io_bus *bus;
3475         struct kvm_io_range range;
3476         int r;
3477
3478         range = (struct kvm_io_range) {
3479                 .addr = addr,
3480                 .len = len,
3481         };
3482
3483         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3484         if (!bus)
3485                 return -ENOMEM;
3486         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3487         return r < 0 ? r : 0;
3488 }
3489
3490 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3491 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3492                             gpa_t addr, int len, const void *val, long cookie)
3493 {
3494         struct kvm_io_bus *bus;
3495         struct kvm_io_range range;
3496
3497         range = (struct kvm_io_range) {
3498                 .addr = addr,
3499                 .len = len,
3500         };
3501
3502         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3503         if (!bus)
3504                 return -ENOMEM;
3505
3506         /* First try the device referenced by cookie. */
3507         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3508             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3509                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3510                                         val))
3511                         return cookie;
3512
3513         /*
3514          * cookie contained garbage; fall back to search and return the
3515          * correct cookie value.
3516          */
3517         return __kvm_io_bus_write(vcpu, bus, &range, val);
3518 }
3519
3520 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3521                              struct kvm_io_range *range, void *val)
3522 {
3523         int idx;
3524
3525         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3526         if (idx < 0)
3527                 return -EOPNOTSUPP;
3528
3529         while (idx < bus->dev_count &&
3530                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3531                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3532                                        range->len, val))
3533                         return idx;
3534                 idx++;
3535         }
3536
3537         return -EOPNOTSUPP;
3538 }
3539 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3540
3541 /* kvm_io_bus_read - called under kvm->slots_lock */
3542 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3543                     int len, void *val)
3544 {
3545         struct kvm_io_bus *bus;
3546         struct kvm_io_range range;
3547         int r;
3548
3549         range = (struct kvm_io_range) {
3550                 .addr = addr,
3551                 .len = len,
3552         };
3553
3554         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3555         if (!bus)
3556                 return -ENOMEM;
3557         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3558         return r < 0 ? r : 0;
3559 }
3560
3561
3562 /* Caller must hold slots_lock. */
3563 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3564                             int len, struct kvm_io_device *dev)
3565 {
3566         int i;
3567         struct kvm_io_bus *new_bus, *bus;
3568         struct kvm_io_range range;
3569
3570         bus = kvm_get_bus(kvm, bus_idx);
3571         if (!bus)
3572                 return -ENOMEM;
3573
3574         /* exclude ioeventfd which is limited by maximum fd */
3575         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3576                 return -ENOSPC;
3577
3578         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3579                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3580         if (!new_bus)
3581                 return -ENOMEM;
3582
3583         range = (struct kvm_io_range) {
3584                 .addr = addr,
3585                 .len = len,
3586                 .dev = dev,
3587         };
3588
3589         for (i = 0; i < bus->dev_count; i++)
3590                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3591                         break;
3592
3593         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3594         new_bus->dev_count++;
3595         new_bus->range[i] = range;
3596         memcpy(new_bus->range + i + 1, bus->range + i,
3597                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3598         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3599         synchronize_srcu_expedited(&kvm->srcu);
3600         kfree(bus);
3601
3602         return 0;
3603 }
3604
3605 /* Caller must hold slots_lock. */
3606 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3607                                struct kvm_io_device *dev)
3608 {
3609         int i;
3610         struct kvm_io_bus *new_bus, *bus;
3611
3612         bus = kvm_get_bus(kvm, bus_idx);
3613         if (!bus)
3614                 return;
3615
3616         for (i = 0; i < bus->dev_count; i++)
3617                 if (bus->range[i].dev == dev) {
3618                         break;
3619                 }
3620
3621         if (i == bus->dev_count)
3622                 return;
3623
3624         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3625                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3626         if (!new_bus)  {
3627                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3628                 goto broken;
3629         }
3630
3631         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3632         new_bus->dev_count--;
3633         memcpy(new_bus->range + i, bus->range + i + 1,
3634                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3635
3636 broken:
3637         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3638         synchronize_srcu_expedited(&kvm->srcu);
3639         kfree(bus);
3640         return;
3641 }
3642
3643 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3644                                          gpa_t addr)
3645 {
3646         struct kvm_io_bus *bus;
3647         int dev_idx, srcu_idx;
3648         struct kvm_io_device *iodev = NULL;
3649
3650         srcu_idx = srcu_read_lock(&kvm->srcu);
3651
3652         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3653         if (!bus)
3654                 goto out_unlock;
3655
3656         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3657         if (dev_idx < 0)
3658                 goto out_unlock;
3659
3660         iodev = bus->range[dev_idx].dev;
3661
3662 out_unlock:
3663         srcu_read_unlock(&kvm->srcu, srcu_idx);
3664
3665         return iodev;
3666 }
3667 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3668
3669 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3670                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3671                            const char *fmt)
3672 {
3673         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3674                                           inode->i_private;
3675
3676         /* The debugfs files are a reference to the kvm struct which
3677          * is still valid when kvm_destroy_vm is called.
3678          * To avoid the race between open and the removal of the debugfs
3679          * directory we test against the users count.
3680          */
3681         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3682                 return -ENOENT;
3683
3684         if (simple_attr_open(inode, file, get, set, fmt)) {
3685                 kvm_put_kvm(stat_data->kvm);
3686                 return -ENOMEM;
3687         }
3688
3689         return 0;
3690 }
3691
3692 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3693 {
3694         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3695                                           inode->i_private;
3696
3697         simple_attr_release(inode, file);
3698         kvm_put_kvm(stat_data->kvm);
3699
3700         return 0;
3701 }
3702
3703 static int vm_stat_get_per_vm(void *data, u64 *val)
3704 {
3705         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3706
3707         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3708
3709         return 0;
3710 }
3711
3712 static int vm_stat_clear_per_vm(void *data, u64 val)
3713 {
3714         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3715
3716         if (val)
3717                 return -EINVAL;
3718
3719         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3720
3721         return 0;
3722 }
3723
3724 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3725 {
3726         __simple_attr_check_format("%llu\n", 0ull);
3727         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3728                                 vm_stat_clear_per_vm, "%llu\n");
3729 }
3730
3731 static const struct file_operations vm_stat_get_per_vm_fops = {
3732         .owner   = THIS_MODULE,
3733         .open    = vm_stat_get_per_vm_open,
3734         .release = kvm_debugfs_release,
3735         .read    = simple_attr_read,
3736         .write   = simple_attr_write,
3737         .llseek  = no_llseek,
3738 };
3739
3740 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3741 {
3742         int i;
3743         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3744         struct kvm_vcpu *vcpu;
3745
3746         *val = 0;
3747
3748         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3749                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3750
3751         return 0;
3752 }
3753
3754 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3755 {
3756         int i;
3757         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3758         struct kvm_vcpu *vcpu;
3759
3760         if (val)
3761                 return -EINVAL;
3762
3763         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3764                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3765
3766         return 0;
3767 }
3768
3769 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3770 {
3771         __simple_attr_check_format("%llu\n", 0ull);
3772         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3773                                  vcpu_stat_clear_per_vm, "%llu\n");
3774 }
3775
3776 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3777         .owner   = THIS_MODULE,
3778         .open    = vcpu_stat_get_per_vm_open,
3779         .release = kvm_debugfs_release,
3780         .read    = simple_attr_read,
3781         .write   = simple_attr_write,
3782         .llseek  = no_llseek,
3783 };
3784
3785 static const struct file_operations *stat_fops_per_vm[] = {
3786         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3787         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3788 };
3789
3790 static int vm_stat_get(void *_offset, u64 *val)
3791 {
3792         unsigned offset = (long)_offset;
3793         struct kvm *kvm;
3794         struct kvm_stat_data stat_tmp = {.offset = offset};
3795         u64 tmp_val;
3796
3797         *val = 0;
3798         spin_lock(&kvm_lock);
3799         list_for_each_entry(kvm, &vm_list, vm_list) {
3800                 stat_tmp.kvm = kvm;
3801                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3802                 *val += tmp_val;
3803         }
3804         spin_unlock(&kvm_lock);
3805         return 0;
3806 }
3807
3808 static int vm_stat_clear(void *_offset, u64 val)
3809 {
3810         unsigned offset = (long)_offset;
3811         struct kvm *kvm;
3812         struct kvm_stat_data stat_tmp = {.offset = offset};
3813
3814         if (val)
3815                 return -EINVAL;
3816
3817         spin_lock(&kvm_lock);
3818         list_for_each_entry(kvm, &vm_list, vm_list) {
3819                 stat_tmp.kvm = kvm;
3820                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3821         }
3822         spin_unlock(&kvm_lock);
3823
3824         return 0;
3825 }
3826
3827 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3828
3829 static int vcpu_stat_get(void *_offset, u64 *val)
3830 {
3831         unsigned offset = (long)_offset;
3832         struct kvm *kvm;
3833         struct kvm_stat_data stat_tmp = {.offset = offset};
3834         u64 tmp_val;
3835
3836         *val = 0;
3837         spin_lock(&kvm_lock);
3838         list_for_each_entry(kvm, &vm_list, vm_list) {
3839                 stat_tmp.kvm = kvm;
3840                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3841                 *val += tmp_val;
3842         }
3843         spin_unlock(&kvm_lock);
3844         return 0;
3845 }
3846
3847 static int vcpu_stat_clear(void *_offset, u64 val)
3848 {
3849         unsigned offset = (long)_offset;
3850         struct kvm *kvm;
3851         struct kvm_stat_data stat_tmp = {.offset = offset};
3852
3853         if (val)
3854                 return -EINVAL;
3855
3856         spin_lock(&kvm_lock);
3857         list_for_each_entry(kvm, &vm_list, vm_list) {
3858                 stat_tmp.kvm = kvm;
3859                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3860         }
3861         spin_unlock(&kvm_lock);
3862
3863         return 0;
3864 }
3865
3866 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3867                         "%llu\n");
3868
3869 static const struct file_operations *stat_fops[] = {
3870         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3871         [KVM_STAT_VM]   = &vm_stat_fops,
3872 };
3873
3874 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3875 {
3876         struct kobj_uevent_env *env;
3877         unsigned long long created, active;
3878
3879         if (!kvm_dev.this_device || !kvm)
3880                 return;
3881
3882         spin_lock(&kvm_lock);
3883         if (type == KVM_EVENT_CREATE_VM) {
3884                 kvm_createvm_count++;
3885                 kvm_active_vms++;
3886         } else if (type == KVM_EVENT_DESTROY_VM) {
3887                 kvm_active_vms--;
3888         }
3889         created = kvm_createvm_count;
3890         active = kvm_active_vms;
3891         spin_unlock(&kvm_lock);
3892
3893         env = kzalloc(sizeof(*env), GFP_KERNEL);
3894         if (!env)
3895                 return;
3896
3897         add_uevent_var(env, "CREATED=%llu", created);
3898         add_uevent_var(env, "COUNT=%llu", active);
3899
3900         if (type == KVM_EVENT_CREATE_VM) {
3901                 add_uevent_var(env, "EVENT=create");
3902                 kvm->userspace_pid = task_pid_nr(current);
3903         } else if (type == KVM_EVENT_DESTROY_VM) {
3904                 add_uevent_var(env, "EVENT=destroy");
3905         }
3906         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3907
3908         if (kvm->debugfs_dentry) {
3909                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3910
3911                 if (p) {
3912                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3913                         if (!IS_ERR(tmp))
3914                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3915                         kfree(p);
3916                 }
3917         }
3918         /* no need for checks, since we are adding at most only 5 keys */
3919         env->envp[env->envp_idx++] = NULL;
3920         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3921         kfree(env);
3922 }
3923
3924 static void kvm_init_debug(void)
3925 {
3926         struct kvm_stats_debugfs_item *p;
3927
3928         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3929
3930         kvm_debugfs_num_entries = 0;
3931         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3932                 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3933                                     (void *)(long)p->offset,
3934                                     stat_fops[p->kind]);
3935         }
3936 }
3937
3938 static int kvm_suspend(void)
3939 {
3940         if (kvm_usage_count)
3941                 hardware_disable_nolock(NULL);
3942         return 0;
3943 }
3944
3945 static void kvm_resume(void)
3946 {
3947         if (kvm_usage_count) {
3948                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3949                 hardware_enable_nolock(NULL);
3950         }
3951 }
3952
3953 static struct syscore_ops kvm_syscore_ops = {
3954         .suspend = kvm_suspend,
3955         .resume = kvm_resume,
3956 };
3957
3958 static inline
3959 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3960 {
3961         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3962 }
3963
3964 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3965 {
3966         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3967
3968         if (vcpu->preempted)
3969                 vcpu->preempted = false;
3970
3971         kvm_arch_sched_in(vcpu, cpu);
3972
3973         kvm_arch_vcpu_load(vcpu, cpu);
3974 }
3975
3976 static void kvm_sched_out(struct preempt_notifier *pn,
3977                           struct task_struct *next)
3978 {
3979         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3980
3981         if (current->state == TASK_RUNNING)
3982                 vcpu->preempted = true;
3983         kvm_arch_vcpu_put(vcpu);
3984 }
3985
3986 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3987                   struct module *module)
3988 {
3989         int r;
3990         int cpu;
3991
3992         r = kvm_arch_init(opaque);
3993         if (r)
3994                 goto out_fail;
3995
3996         /*
3997          * kvm_arch_init makes sure there's at most one caller
3998          * for architectures that support multiple implementations,
3999          * like intel and amd on x86.
4000          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4001          * conflicts in case kvm is already setup for another implementation.
4002          */
4003         r = kvm_irqfd_init();
4004         if (r)
4005                 goto out_irqfd;
4006
4007         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4008                 r = -ENOMEM;
4009                 goto out_free_0;
4010         }
4011
4012         r = kvm_arch_hardware_setup();
4013         if (r < 0)
4014                 goto out_free_0a;
4015
4016         for_each_online_cpu(cpu) {
4017                 smp_call_function_single(cpu,
4018                                 kvm_arch_check_processor_compat,
4019                                 &r, 1);
4020                 if (r < 0)
4021                         goto out_free_1;
4022         }
4023
4024         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4025                                       kvm_starting_cpu, kvm_dying_cpu);
4026         if (r)
4027                 goto out_free_2;
4028         register_reboot_notifier(&kvm_reboot_notifier);
4029
4030         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4031         if (!vcpu_align)
4032                 vcpu_align = __alignof__(struct kvm_vcpu);
4033         kvm_vcpu_cache =
4034                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4035                                            SLAB_ACCOUNT,
4036                                            offsetof(struct kvm_vcpu, arch),
4037                                            sizeof_field(struct kvm_vcpu, arch),
4038                                            NULL);
4039         if (!kvm_vcpu_cache) {
4040                 r = -ENOMEM;
4041                 goto out_free_3;
4042         }
4043
4044         r = kvm_async_pf_init();
4045         if (r)
4046                 goto out_free;
4047
4048         kvm_chardev_ops.owner = module;
4049         kvm_vm_fops.owner = module;
4050         kvm_vcpu_fops.owner = module;
4051
4052         r = misc_register(&kvm_dev);
4053         if (r) {
4054                 pr_err("kvm: misc device register failed\n");
4055                 goto out_unreg;
4056         }
4057
4058         register_syscore_ops(&kvm_syscore_ops);
4059
4060         kvm_preempt_ops.sched_in = kvm_sched_in;
4061         kvm_preempt_ops.sched_out = kvm_sched_out;
4062
4063         kvm_init_debug();
4064
4065         r = kvm_vfio_ops_init();
4066         WARN_ON(r);
4067
4068         return 0;
4069
4070 out_unreg:
4071         kvm_async_pf_deinit();
4072 out_free:
4073         kmem_cache_destroy(kvm_vcpu_cache);
4074 out_free_3:
4075         unregister_reboot_notifier(&kvm_reboot_notifier);
4076         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4077 out_free_2:
4078 out_free_1:
4079         kvm_arch_hardware_unsetup();
4080 out_free_0a:
4081         free_cpumask_var(cpus_hardware_enabled);
4082 out_free_0:
4083         kvm_irqfd_exit();
4084 out_irqfd:
4085         kvm_arch_exit();
4086 out_fail:
4087         return r;
4088 }
4089 EXPORT_SYMBOL_GPL(kvm_init);
4090
4091 void kvm_exit(void)
4092 {
4093         debugfs_remove_recursive(kvm_debugfs_dir);
4094         misc_deregister(&kvm_dev);
4095         kmem_cache_destroy(kvm_vcpu_cache);
4096         kvm_async_pf_deinit();
4097         unregister_syscore_ops(&kvm_syscore_ops);
4098         unregister_reboot_notifier(&kvm_reboot_notifier);
4099         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4100         on_each_cpu(hardware_disable_nolock, NULL, 1);
4101         kvm_arch_hardware_unsetup();
4102         kvm_arch_exit();
4103         kvm_irqfd_exit();
4104         free_cpumask_var(cpus_hardware_enabled);
4105         kvm_vfio_ops_exit();
4106 }
4107 EXPORT_SYMBOL_GPL(kvm_exit);