Merge branches 'for-5.7/upstream-fixes', 'for-5.8/apple', 'for-5.8/asus', 'for-5...
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94  * Ordering of locks:
95  *
96  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 static struct kmem_cache *kvm_vcpu_cache;
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations stat_fops_per_vm;
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133                                 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137         return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
140                         .open           = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                 unsigned long start, unsigned long end, bool blockable)
160 {
161         return 0;
162 }
163
164 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165 {
166         /*
167          * The metadata used by is_zone_device_page() to determine whether or
168          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
169          * the device has been pinned, e.g. by get_user_pages().  WARN if the
170          * page_count() is zero to help detect bad usage of this helper.
171          */
172         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173                 return false;
174
175         return is_zone_device_page(pfn_to_page(pfn));
176 }
177
178 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
179 {
180         /*
181          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
182          * perspective they are "normal" pages, albeit with slightly different
183          * usage rules.
184          */
185         if (pfn_valid(pfn))
186                 return PageReserved(pfn_to_page(pfn)) &&
187                        !is_zero_pfn(pfn) &&
188                        !kvm_is_zone_device_pfn(pfn);
189
190         return true;
191 }
192
193 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
194 {
195         struct page *page = pfn_to_page(pfn);
196
197         if (!PageTransCompoundMap(page))
198                 return false;
199
200         return is_transparent_hugepage(compound_head(page));
201 }
202
203 /*
204  * Switches to specified vcpu, until a matching vcpu_put()
205  */
206 void vcpu_load(struct kvm_vcpu *vcpu)
207 {
208         int cpu = get_cpu();
209
210         __this_cpu_write(kvm_running_vcpu, vcpu);
211         preempt_notifier_register(&vcpu->preempt_notifier);
212         kvm_arch_vcpu_load(vcpu, cpu);
213         put_cpu();
214 }
215 EXPORT_SYMBOL_GPL(vcpu_load);
216
217 void vcpu_put(struct kvm_vcpu *vcpu)
218 {
219         preempt_disable();
220         kvm_arch_vcpu_put(vcpu);
221         preempt_notifier_unregister(&vcpu->preempt_notifier);
222         __this_cpu_write(kvm_running_vcpu, NULL);
223         preempt_enable();
224 }
225 EXPORT_SYMBOL_GPL(vcpu_put);
226
227 /* TODO: merge with kvm_arch_vcpu_should_kick */
228 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
229 {
230         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231
232         /*
233          * We need to wait for the VCPU to reenable interrupts and get out of
234          * READING_SHADOW_PAGE_TABLES mode.
235          */
236         if (req & KVM_REQUEST_WAIT)
237                 return mode != OUTSIDE_GUEST_MODE;
238
239         /*
240          * Need to kick a running VCPU, but otherwise there is nothing to do.
241          */
242         return mode == IN_GUEST_MODE;
243 }
244
245 static void ack_flush(void *_completed)
246 {
247 }
248
249 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250 {
251         if (unlikely(!cpus))
252                 cpus = cpu_online_mask;
253
254         if (cpumask_empty(cpus))
255                 return false;
256
257         smp_call_function_many(cpus, ack_flush, NULL, wait);
258         return true;
259 }
260
261 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
262                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264         int i, cpu, me;
265         struct kvm_vcpu *vcpu;
266         bool called;
267
268         me = get_cpu();
269
270         kvm_for_each_vcpu(i, vcpu, kvm) {
271                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
272                         continue;
273
274                 kvm_make_request(req, vcpu);
275                 cpu = vcpu->cpu;
276
277                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278                         continue;
279
280                 if (tmp != NULL && cpu != -1 && cpu != me &&
281                     kvm_request_needs_ipi(vcpu, req))
282                         __cpumask_set_cpu(cpu, tmp);
283         }
284
285         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286         put_cpu();
287
288         return called;
289 }
290
291 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
292 {
293         cpumask_var_t cpus;
294         bool called;
295
296         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
297
298         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
299
300         free_cpumask_var(cpus);
301         return called;
302 }
303
304 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
305 void kvm_flush_remote_tlbs(struct kvm *kvm)
306 {
307         /*
308          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
309          * kvm_make_all_cpus_request.
310          */
311         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
312
313         /*
314          * We want to publish modifications to the page tables before reading
315          * mode. Pairs with a memory barrier in arch-specific code.
316          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
317          * and smp_mb in walk_shadow_page_lockless_begin/end.
318          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
319          *
320          * There is already an smp_mb__after_atomic() before
321          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
322          * barrier here.
323          */
324         if (!kvm_arch_flush_remote_tlb(kvm)
325             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
326                 ++kvm->stat.remote_tlb_flush;
327         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
328 }
329 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
330 #endif
331
332 void kvm_reload_remote_mmus(struct kvm *kvm)
333 {
334         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
335 }
336
337 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
338 {
339         mutex_init(&vcpu->mutex);
340         vcpu->cpu = -1;
341         vcpu->kvm = kvm;
342         vcpu->vcpu_id = id;
343         vcpu->pid = NULL;
344         init_swait_queue_head(&vcpu->wq);
345         kvm_async_pf_vcpu_init(vcpu);
346
347         vcpu->pre_pcpu = -1;
348         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
349
350         kvm_vcpu_set_in_spin_loop(vcpu, false);
351         kvm_vcpu_set_dy_eligible(vcpu, false);
352         vcpu->preempted = false;
353         vcpu->ready = false;
354         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
355 }
356
357 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
358 {
359         kvm_arch_vcpu_destroy(vcpu);
360
361         /*
362          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
363          * the vcpu->pid pointer, and at destruction time all file descriptors
364          * are already gone.
365          */
366         put_pid(rcu_dereference_protected(vcpu->pid, 1));
367
368         free_page((unsigned long)vcpu->run);
369         kmem_cache_free(kvm_vcpu_cache, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
372
373 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
374 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
375 {
376         return container_of(mn, struct kvm, mmu_notifier);
377 }
378
379 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
380                                         struct mm_struct *mm,
381                                         unsigned long address,
382                                         pte_t pte)
383 {
384         struct kvm *kvm = mmu_notifier_to_kvm(mn);
385         int idx;
386
387         idx = srcu_read_lock(&kvm->srcu);
388         spin_lock(&kvm->mmu_lock);
389         kvm->mmu_notifier_seq++;
390
391         if (kvm_set_spte_hva(kvm, address, pte))
392                 kvm_flush_remote_tlbs(kvm);
393
394         spin_unlock(&kvm->mmu_lock);
395         srcu_read_unlock(&kvm->srcu, idx);
396 }
397
398 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
399                                         const struct mmu_notifier_range *range)
400 {
401         struct kvm *kvm = mmu_notifier_to_kvm(mn);
402         int need_tlb_flush = 0, idx;
403         int ret;
404
405         idx = srcu_read_lock(&kvm->srcu);
406         spin_lock(&kvm->mmu_lock);
407         /*
408          * The count increase must become visible at unlock time as no
409          * spte can be established without taking the mmu_lock and
410          * count is also read inside the mmu_lock critical section.
411          */
412         kvm->mmu_notifier_count++;
413         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
414         need_tlb_flush |= kvm->tlbs_dirty;
415         /* we've to flush the tlb before the pages can be freed */
416         if (need_tlb_flush)
417                 kvm_flush_remote_tlbs(kvm);
418
419         spin_unlock(&kvm->mmu_lock);
420
421         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
422                                         range->end,
423                                         mmu_notifier_range_blockable(range));
424
425         srcu_read_unlock(&kvm->srcu, idx);
426
427         return ret;
428 }
429
430 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
431                                         const struct mmu_notifier_range *range)
432 {
433         struct kvm *kvm = mmu_notifier_to_kvm(mn);
434
435         spin_lock(&kvm->mmu_lock);
436         /*
437          * This sequence increase will notify the kvm page fault that
438          * the page that is going to be mapped in the spte could have
439          * been freed.
440          */
441         kvm->mmu_notifier_seq++;
442         smp_wmb();
443         /*
444          * The above sequence increase must be visible before the
445          * below count decrease, which is ensured by the smp_wmb above
446          * in conjunction with the smp_rmb in mmu_notifier_retry().
447          */
448         kvm->mmu_notifier_count--;
449         spin_unlock(&kvm->mmu_lock);
450
451         BUG_ON(kvm->mmu_notifier_count < 0);
452 }
453
454 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
455                                               struct mm_struct *mm,
456                                               unsigned long start,
457                                               unsigned long end)
458 {
459         struct kvm *kvm = mmu_notifier_to_kvm(mn);
460         int young, idx;
461
462         idx = srcu_read_lock(&kvm->srcu);
463         spin_lock(&kvm->mmu_lock);
464
465         young = kvm_age_hva(kvm, start, end);
466         if (young)
467                 kvm_flush_remote_tlbs(kvm);
468
469         spin_unlock(&kvm->mmu_lock);
470         srcu_read_unlock(&kvm->srcu, idx);
471
472         return young;
473 }
474
475 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
476                                         struct mm_struct *mm,
477                                         unsigned long start,
478                                         unsigned long end)
479 {
480         struct kvm *kvm = mmu_notifier_to_kvm(mn);
481         int young, idx;
482
483         idx = srcu_read_lock(&kvm->srcu);
484         spin_lock(&kvm->mmu_lock);
485         /*
486          * Even though we do not flush TLB, this will still adversely
487          * affect performance on pre-Haswell Intel EPT, where there is
488          * no EPT Access Bit to clear so that we have to tear down EPT
489          * tables instead. If we find this unacceptable, we can always
490          * add a parameter to kvm_age_hva so that it effectively doesn't
491          * do anything on clear_young.
492          *
493          * Also note that currently we never issue secondary TLB flushes
494          * from clear_young, leaving this job up to the regular system
495          * cadence. If we find this inaccurate, we might come up with a
496          * more sophisticated heuristic later.
497          */
498         young = kvm_age_hva(kvm, start, end);
499         spin_unlock(&kvm->mmu_lock);
500         srcu_read_unlock(&kvm->srcu, idx);
501
502         return young;
503 }
504
505 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
506                                        struct mm_struct *mm,
507                                        unsigned long address)
508 {
509         struct kvm *kvm = mmu_notifier_to_kvm(mn);
510         int young, idx;
511
512         idx = srcu_read_lock(&kvm->srcu);
513         spin_lock(&kvm->mmu_lock);
514         young = kvm_test_age_hva(kvm, address);
515         spin_unlock(&kvm->mmu_lock);
516         srcu_read_unlock(&kvm->srcu, idx);
517
518         return young;
519 }
520
521 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
522                                      struct mm_struct *mm)
523 {
524         struct kvm *kvm = mmu_notifier_to_kvm(mn);
525         int idx;
526
527         idx = srcu_read_lock(&kvm->srcu);
528         kvm_arch_flush_shadow_all(kvm);
529         srcu_read_unlock(&kvm->srcu, idx);
530 }
531
532 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
533         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
534         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
535         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
536         .clear_young            = kvm_mmu_notifier_clear_young,
537         .test_young             = kvm_mmu_notifier_test_young,
538         .change_pte             = kvm_mmu_notifier_change_pte,
539         .release                = kvm_mmu_notifier_release,
540 };
541
542 static int kvm_init_mmu_notifier(struct kvm *kvm)
543 {
544         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
545         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
546 }
547
548 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
549
550 static int kvm_init_mmu_notifier(struct kvm *kvm)
551 {
552         return 0;
553 }
554
555 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
556
557 static struct kvm_memslots *kvm_alloc_memslots(void)
558 {
559         int i;
560         struct kvm_memslots *slots;
561
562         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
563         if (!slots)
564                 return NULL;
565
566         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
567                 slots->id_to_index[i] = -1;
568
569         return slots;
570 }
571
572 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
573 {
574         if (!memslot->dirty_bitmap)
575                 return;
576
577         kvfree(memslot->dirty_bitmap);
578         memslot->dirty_bitmap = NULL;
579 }
580
581 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
582 {
583         kvm_destroy_dirty_bitmap(slot);
584
585         kvm_arch_free_memslot(kvm, slot);
586
587         slot->flags = 0;
588         slot->npages = 0;
589 }
590
591 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
592 {
593         struct kvm_memory_slot *memslot;
594
595         if (!slots)
596                 return;
597
598         kvm_for_each_memslot(memslot, slots)
599                 kvm_free_memslot(kvm, memslot);
600
601         kvfree(slots);
602 }
603
604 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
605 {
606         int i;
607
608         if (!kvm->debugfs_dentry)
609                 return;
610
611         debugfs_remove_recursive(kvm->debugfs_dentry);
612
613         if (kvm->debugfs_stat_data) {
614                 for (i = 0; i < kvm_debugfs_num_entries; i++)
615                         kfree(kvm->debugfs_stat_data[i]);
616                 kfree(kvm->debugfs_stat_data);
617         }
618 }
619
620 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
621 {
622         char dir_name[ITOA_MAX_LEN * 2];
623         struct kvm_stat_data *stat_data;
624         struct kvm_stats_debugfs_item *p;
625
626         if (!debugfs_initialized())
627                 return 0;
628
629         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
630         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
631
632         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
633                                          sizeof(*kvm->debugfs_stat_data),
634                                          GFP_KERNEL_ACCOUNT);
635         if (!kvm->debugfs_stat_data)
636                 return -ENOMEM;
637
638         for (p = debugfs_entries; p->name; p++) {
639                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
640                 if (!stat_data)
641                         return -ENOMEM;
642
643                 stat_data->kvm = kvm;
644                 stat_data->dbgfs_item = p;
645                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
646                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
647                                     kvm->debugfs_dentry, stat_data,
648                                     &stat_fops_per_vm);
649         }
650         return 0;
651 }
652
653 /*
654  * Called after the VM is otherwise initialized, but just before adding it to
655  * the vm_list.
656  */
657 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
658 {
659         return 0;
660 }
661
662 /*
663  * Called just after removing the VM from the vm_list, but before doing any
664  * other destruction.
665  */
666 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
667 {
668 }
669
670 static struct kvm *kvm_create_vm(unsigned long type)
671 {
672         struct kvm *kvm = kvm_arch_alloc_vm();
673         int r = -ENOMEM;
674         int i;
675
676         if (!kvm)
677                 return ERR_PTR(-ENOMEM);
678
679         spin_lock_init(&kvm->mmu_lock);
680         mmgrab(current->mm);
681         kvm->mm = current->mm;
682         kvm_eventfd_init(kvm);
683         mutex_init(&kvm->lock);
684         mutex_init(&kvm->irq_lock);
685         mutex_init(&kvm->slots_lock);
686         INIT_LIST_HEAD(&kvm->devices);
687
688         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
689
690         if (init_srcu_struct(&kvm->srcu))
691                 goto out_err_no_srcu;
692         if (init_srcu_struct(&kvm->irq_srcu))
693                 goto out_err_no_irq_srcu;
694
695         refcount_set(&kvm->users_count, 1);
696         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
697                 struct kvm_memslots *slots = kvm_alloc_memslots();
698
699                 if (!slots)
700                         goto out_err_no_arch_destroy_vm;
701                 /* Generations must be different for each address space. */
702                 slots->generation = i;
703                 rcu_assign_pointer(kvm->memslots[i], slots);
704         }
705
706         for (i = 0; i < KVM_NR_BUSES; i++) {
707                 rcu_assign_pointer(kvm->buses[i],
708                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
709                 if (!kvm->buses[i])
710                         goto out_err_no_arch_destroy_vm;
711         }
712
713         r = kvm_arch_init_vm(kvm, type);
714         if (r)
715                 goto out_err_no_arch_destroy_vm;
716
717         r = hardware_enable_all();
718         if (r)
719                 goto out_err_no_disable;
720
721 #ifdef CONFIG_HAVE_KVM_IRQFD
722         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
723 #endif
724
725         r = kvm_init_mmu_notifier(kvm);
726         if (r)
727                 goto out_err_no_mmu_notifier;
728
729         r = kvm_arch_post_init_vm(kvm);
730         if (r)
731                 goto out_err;
732
733         mutex_lock(&kvm_lock);
734         list_add(&kvm->vm_list, &vm_list);
735         mutex_unlock(&kvm_lock);
736
737         preempt_notifier_inc();
738
739         return kvm;
740
741 out_err:
742 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
743         if (kvm->mmu_notifier.ops)
744                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
745 #endif
746 out_err_no_mmu_notifier:
747         hardware_disable_all();
748 out_err_no_disable:
749         kvm_arch_destroy_vm(kvm);
750 out_err_no_arch_destroy_vm:
751         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
752         for (i = 0; i < KVM_NR_BUSES; i++)
753                 kfree(kvm_get_bus(kvm, i));
754         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
755                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
756         cleanup_srcu_struct(&kvm->irq_srcu);
757 out_err_no_irq_srcu:
758         cleanup_srcu_struct(&kvm->srcu);
759 out_err_no_srcu:
760         kvm_arch_free_vm(kvm);
761         mmdrop(current->mm);
762         return ERR_PTR(r);
763 }
764
765 static void kvm_destroy_devices(struct kvm *kvm)
766 {
767         struct kvm_device *dev, *tmp;
768
769         /*
770          * We do not need to take the kvm->lock here, because nobody else
771          * has a reference to the struct kvm at this point and therefore
772          * cannot access the devices list anyhow.
773          */
774         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
775                 list_del(&dev->vm_node);
776                 dev->ops->destroy(dev);
777         }
778 }
779
780 static void kvm_destroy_vm(struct kvm *kvm)
781 {
782         int i;
783         struct mm_struct *mm = kvm->mm;
784
785         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
786         kvm_destroy_vm_debugfs(kvm);
787         kvm_arch_sync_events(kvm);
788         mutex_lock(&kvm_lock);
789         list_del(&kvm->vm_list);
790         mutex_unlock(&kvm_lock);
791         kvm_arch_pre_destroy_vm(kvm);
792
793         kvm_free_irq_routing(kvm);
794         for (i = 0; i < KVM_NR_BUSES; i++) {
795                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
796
797                 if (bus)
798                         kvm_io_bus_destroy(bus);
799                 kvm->buses[i] = NULL;
800         }
801         kvm_coalesced_mmio_free(kvm);
802 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
803         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
804 #else
805         kvm_arch_flush_shadow_all(kvm);
806 #endif
807         kvm_arch_destroy_vm(kvm);
808         kvm_destroy_devices(kvm);
809         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
810                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
811         cleanup_srcu_struct(&kvm->irq_srcu);
812         cleanup_srcu_struct(&kvm->srcu);
813         kvm_arch_free_vm(kvm);
814         preempt_notifier_dec();
815         hardware_disable_all();
816         mmdrop(mm);
817 }
818
819 void kvm_get_kvm(struct kvm *kvm)
820 {
821         refcount_inc(&kvm->users_count);
822 }
823 EXPORT_SYMBOL_GPL(kvm_get_kvm);
824
825 void kvm_put_kvm(struct kvm *kvm)
826 {
827         if (refcount_dec_and_test(&kvm->users_count))
828                 kvm_destroy_vm(kvm);
829 }
830 EXPORT_SYMBOL_GPL(kvm_put_kvm);
831
832 /*
833  * Used to put a reference that was taken on behalf of an object associated
834  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
835  * of the new file descriptor fails and the reference cannot be transferred to
836  * its final owner.  In such cases, the caller is still actively using @kvm and
837  * will fail miserably if the refcount unexpectedly hits zero.
838  */
839 void kvm_put_kvm_no_destroy(struct kvm *kvm)
840 {
841         WARN_ON(refcount_dec_and_test(&kvm->users_count));
842 }
843 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
844
845 static int kvm_vm_release(struct inode *inode, struct file *filp)
846 {
847         struct kvm *kvm = filp->private_data;
848
849         kvm_irqfd_release(kvm);
850
851         kvm_put_kvm(kvm);
852         return 0;
853 }
854
855 /*
856  * Allocation size is twice as large as the actual dirty bitmap size.
857  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
858  */
859 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
860 {
861         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
862
863         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
864         if (!memslot->dirty_bitmap)
865                 return -ENOMEM;
866
867         return 0;
868 }
869
870 /*
871  * Delete a memslot by decrementing the number of used slots and shifting all
872  * other entries in the array forward one spot.
873  */
874 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
875                                       struct kvm_memory_slot *memslot)
876 {
877         struct kvm_memory_slot *mslots = slots->memslots;
878         int i;
879
880         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
881                 return;
882
883         slots->used_slots--;
884
885         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
886                 atomic_set(&slots->lru_slot, 0);
887
888         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
889                 mslots[i] = mslots[i + 1];
890                 slots->id_to_index[mslots[i].id] = i;
891         }
892         mslots[i] = *memslot;
893         slots->id_to_index[memslot->id] = -1;
894 }
895
896 /*
897  * "Insert" a new memslot by incrementing the number of used slots.  Returns
898  * the new slot's initial index into the memslots array.
899  */
900 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
901 {
902         return slots->used_slots++;
903 }
904
905 /*
906  * Move a changed memslot backwards in the array by shifting existing slots
907  * with a higher GFN toward the front of the array.  Note, the changed memslot
908  * itself is not preserved in the array, i.e. not swapped at this time, only
909  * its new index into the array is tracked.  Returns the changed memslot's
910  * current index into the memslots array.
911  */
912 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
913                                             struct kvm_memory_slot *memslot)
914 {
915         struct kvm_memory_slot *mslots = slots->memslots;
916         int i;
917
918         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
919             WARN_ON_ONCE(!slots->used_slots))
920                 return -1;
921
922         /*
923          * Move the target memslot backward in the array by shifting existing
924          * memslots with a higher GFN (than the target memslot) towards the
925          * front of the array.
926          */
927         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
928                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
929                         break;
930
931                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
932
933                 /* Shift the next memslot forward one and update its index. */
934                 mslots[i] = mslots[i + 1];
935                 slots->id_to_index[mslots[i].id] = i;
936         }
937         return i;
938 }
939
940 /*
941  * Move a changed memslot forwards in the array by shifting existing slots with
942  * a lower GFN toward the back of the array.  Note, the changed memslot itself
943  * is not preserved in the array, i.e. not swapped at this time, only its new
944  * index into the array is tracked.  Returns the changed memslot's final index
945  * into the memslots array.
946  */
947 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
948                                            struct kvm_memory_slot *memslot,
949                                            int start)
950 {
951         struct kvm_memory_slot *mslots = slots->memslots;
952         int i;
953
954         for (i = start; i > 0; i--) {
955                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
956                         break;
957
958                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
959
960                 /* Shift the next memslot back one and update its index. */
961                 mslots[i] = mslots[i - 1];
962                 slots->id_to_index[mslots[i].id] = i;
963         }
964         return i;
965 }
966
967 /*
968  * Re-sort memslots based on their GFN to account for an added, deleted, or
969  * moved memslot.  Sorting memslots by GFN allows using a binary search during
970  * memslot lookup.
971  *
972  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
973  * at memslots[0] has the highest GFN.
974  *
975  * The sorting algorithm takes advantage of having initially sorted memslots
976  * and knowing the position of the changed memslot.  Sorting is also optimized
977  * by not swapping the updated memslot and instead only shifting other memslots
978  * and tracking the new index for the update memslot.  Only once its final
979  * index is known is the updated memslot copied into its position in the array.
980  *
981  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
982  *    the end of the array.
983  *
984  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
985  *    end of the array and then it forward to its correct location.
986  *
987  *  - When moving a memslot, the algorithm first moves the updated memslot
988  *    backward to handle the scenario where the memslot's GFN was changed to a
989  *    lower value.  update_memslots() then falls through and runs the same flow
990  *    as creating a memslot to move the memslot forward to handle the scenario
991  *    where its GFN was changed to a higher value.
992  *
993  * Note, slots are sorted from highest->lowest instead of lowest->highest for
994  * historical reasons.  Originally, invalid memslots where denoted by having
995  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
996  * to the end of the array.  The current algorithm uses dedicated logic to
997  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
998  *
999  * The other historical motiviation for highest->lowest was to improve the
1000  * performance of memslot lookup.  KVM originally used a linear search starting
1001  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1002  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1003  * single memslot above the 4gb boundary.  As the largest memslot is also the
1004  * most likely to be referenced, sorting it to the front of the array was
1005  * advantageous.  The current binary search starts from the middle of the array
1006  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1007  */
1008 static void update_memslots(struct kvm_memslots *slots,
1009                             struct kvm_memory_slot *memslot,
1010                             enum kvm_mr_change change)
1011 {
1012         int i;
1013
1014         if (change == KVM_MR_DELETE) {
1015                 kvm_memslot_delete(slots, memslot);
1016         } else {
1017                 if (change == KVM_MR_CREATE)
1018                         i = kvm_memslot_insert_back(slots);
1019                 else
1020                         i = kvm_memslot_move_backward(slots, memslot);
1021                 i = kvm_memslot_move_forward(slots, memslot, i);
1022
1023                 /*
1024                  * Copy the memslot to its new position in memslots and update
1025                  * its index accordingly.
1026                  */
1027                 slots->memslots[i] = *memslot;
1028                 slots->id_to_index[memslot->id] = i;
1029         }
1030 }
1031
1032 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1033 {
1034         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1035
1036 #ifdef __KVM_HAVE_READONLY_MEM
1037         valid_flags |= KVM_MEM_READONLY;
1038 #endif
1039
1040         if (mem->flags & ~valid_flags)
1041                 return -EINVAL;
1042
1043         return 0;
1044 }
1045
1046 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1047                 int as_id, struct kvm_memslots *slots)
1048 {
1049         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1050         u64 gen = old_memslots->generation;
1051
1052         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1053         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1054
1055         rcu_assign_pointer(kvm->memslots[as_id], slots);
1056         synchronize_srcu_expedited(&kvm->srcu);
1057
1058         /*
1059          * Increment the new memslot generation a second time, dropping the
1060          * update in-progress flag and incrementing the generation based on
1061          * the number of address spaces.  This provides a unique and easily
1062          * identifiable generation number while the memslots are in flux.
1063          */
1064         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1065
1066         /*
1067          * Generations must be unique even across address spaces.  We do not need
1068          * a global counter for that, instead the generation space is evenly split
1069          * across address spaces.  For example, with two address spaces, address
1070          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1071          * use generations 1, 3, 5, ...
1072          */
1073         gen += KVM_ADDRESS_SPACE_NUM;
1074
1075         kvm_arch_memslots_updated(kvm, gen);
1076
1077         slots->generation = gen;
1078
1079         return old_memslots;
1080 }
1081
1082 /*
1083  * Note, at a minimum, the current number of used slots must be allocated, even
1084  * when deleting a memslot, as we need a complete duplicate of the memslots for
1085  * use when invalidating a memslot prior to deleting/moving the memslot.
1086  */
1087 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1088                                              enum kvm_mr_change change)
1089 {
1090         struct kvm_memslots *slots;
1091         size_t old_size, new_size;
1092
1093         old_size = sizeof(struct kvm_memslots) +
1094                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1095
1096         if (change == KVM_MR_CREATE)
1097                 new_size = old_size + sizeof(struct kvm_memory_slot);
1098         else
1099                 new_size = old_size;
1100
1101         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1102         if (likely(slots))
1103                 memcpy(slots, old, old_size);
1104
1105         return slots;
1106 }
1107
1108 static int kvm_set_memslot(struct kvm *kvm,
1109                            const struct kvm_userspace_memory_region *mem,
1110                            struct kvm_memory_slot *old,
1111                            struct kvm_memory_slot *new, int as_id,
1112                            enum kvm_mr_change change)
1113 {
1114         struct kvm_memory_slot *slot;
1115         struct kvm_memslots *slots;
1116         int r;
1117
1118         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1119         if (!slots)
1120                 return -ENOMEM;
1121
1122         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1123                 /*
1124                  * Note, the INVALID flag needs to be in the appropriate entry
1125                  * in the freshly allocated memslots, not in @old or @new.
1126                  */
1127                 slot = id_to_memslot(slots, old->id);
1128                 slot->flags |= KVM_MEMSLOT_INVALID;
1129
1130                 /*
1131                  * We can re-use the old memslots, the only difference from the
1132                  * newly installed memslots is the invalid flag, which will get
1133                  * dropped by update_memslots anyway.  We'll also revert to the
1134                  * old memslots if preparing the new memory region fails.
1135                  */
1136                 slots = install_new_memslots(kvm, as_id, slots);
1137
1138                 /* From this point no new shadow pages pointing to a deleted,
1139                  * or moved, memslot will be created.
1140                  *
1141                  * validation of sp->gfn happens in:
1142                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1143                  *      - kvm_is_visible_gfn (mmu_check_root)
1144                  */
1145                 kvm_arch_flush_shadow_memslot(kvm, slot);
1146         }
1147
1148         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1149         if (r)
1150                 goto out_slots;
1151
1152         update_memslots(slots, new, change);
1153         slots = install_new_memslots(kvm, as_id, slots);
1154
1155         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1156
1157         kvfree(slots);
1158         return 0;
1159
1160 out_slots:
1161         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1162                 slots = install_new_memslots(kvm, as_id, slots);
1163         kvfree(slots);
1164         return r;
1165 }
1166
1167 static int kvm_delete_memslot(struct kvm *kvm,
1168                               const struct kvm_userspace_memory_region *mem,
1169                               struct kvm_memory_slot *old, int as_id)
1170 {
1171         struct kvm_memory_slot new;
1172         int r;
1173
1174         if (!old->npages)
1175                 return -EINVAL;
1176
1177         memset(&new, 0, sizeof(new));
1178         new.id = old->id;
1179
1180         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1181         if (r)
1182                 return r;
1183
1184         kvm_free_memslot(kvm, old);
1185         return 0;
1186 }
1187
1188 /*
1189  * Allocate some memory and give it an address in the guest physical address
1190  * space.
1191  *
1192  * Discontiguous memory is allowed, mostly for framebuffers.
1193  *
1194  * Must be called holding kvm->slots_lock for write.
1195  */
1196 int __kvm_set_memory_region(struct kvm *kvm,
1197                             const struct kvm_userspace_memory_region *mem)
1198 {
1199         struct kvm_memory_slot old, new;
1200         struct kvm_memory_slot *tmp;
1201         enum kvm_mr_change change;
1202         int as_id, id;
1203         int r;
1204
1205         r = check_memory_region_flags(mem);
1206         if (r)
1207                 return r;
1208
1209         as_id = mem->slot >> 16;
1210         id = (u16)mem->slot;
1211
1212         /* General sanity checks */
1213         if (mem->memory_size & (PAGE_SIZE - 1))
1214                 return -EINVAL;
1215         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1216                 return -EINVAL;
1217         /* We can read the guest memory with __xxx_user() later on. */
1218         if ((id < KVM_USER_MEM_SLOTS) &&
1219             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1220              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1221                         mem->memory_size)))
1222                 return -EINVAL;
1223         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1224                 return -EINVAL;
1225         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1226                 return -EINVAL;
1227
1228         /*
1229          * Make a full copy of the old memslot, the pointer will become stale
1230          * when the memslots are re-sorted by update_memslots(), and the old
1231          * memslot needs to be referenced after calling update_memslots(), e.g.
1232          * to free its resources and for arch specific behavior.
1233          */
1234         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1235         if (tmp) {
1236                 old = *tmp;
1237                 tmp = NULL;
1238         } else {
1239                 memset(&old, 0, sizeof(old));
1240                 old.id = id;
1241         }
1242
1243         if (!mem->memory_size)
1244                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1245
1246         new.id = id;
1247         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1248         new.npages = mem->memory_size >> PAGE_SHIFT;
1249         new.flags = mem->flags;
1250         new.userspace_addr = mem->userspace_addr;
1251
1252         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1253                 return -EINVAL;
1254
1255         if (!old.npages) {
1256                 change = KVM_MR_CREATE;
1257                 new.dirty_bitmap = NULL;
1258                 memset(&new.arch, 0, sizeof(new.arch));
1259         } else { /* Modify an existing slot. */
1260                 if ((new.userspace_addr != old.userspace_addr) ||
1261                     (new.npages != old.npages) ||
1262                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1263                         return -EINVAL;
1264
1265                 if (new.base_gfn != old.base_gfn)
1266                         change = KVM_MR_MOVE;
1267                 else if (new.flags != old.flags)
1268                         change = KVM_MR_FLAGS_ONLY;
1269                 else /* Nothing to change. */
1270                         return 0;
1271
1272                 /* Copy dirty_bitmap and arch from the current memslot. */
1273                 new.dirty_bitmap = old.dirty_bitmap;
1274                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1275         }
1276
1277         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1278                 /* Check for overlaps */
1279                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1280                         if (tmp->id == id)
1281                                 continue;
1282                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1283                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1284                                 return -EEXIST;
1285                 }
1286         }
1287
1288         /* Allocate/free page dirty bitmap as needed */
1289         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1290                 new.dirty_bitmap = NULL;
1291         else if (!new.dirty_bitmap) {
1292                 r = kvm_alloc_dirty_bitmap(&new);
1293                 if (r)
1294                         return r;
1295
1296                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1297                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1298         }
1299
1300         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1301         if (r)
1302                 goto out_bitmap;
1303
1304         if (old.dirty_bitmap && !new.dirty_bitmap)
1305                 kvm_destroy_dirty_bitmap(&old);
1306         return 0;
1307
1308 out_bitmap:
1309         if (new.dirty_bitmap && !old.dirty_bitmap)
1310                 kvm_destroy_dirty_bitmap(&new);
1311         return r;
1312 }
1313 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1314
1315 int kvm_set_memory_region(struct kvm *kvm,
1316                           const struct kvm_userspace_memory_region *mem)
1317 {
1318         int r;
1319
1320         mutex_lock(&kvm->slots_lock);
1321         r = __kvm_set_memory_region(kvm, mem);
1322         mutex_unlock(&kvm->slots_lock);
1323         return r;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1326
1327 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1328                                           struct kvm_userspace_memory_region *mem)
1329 {
1330         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1331                 return -EINVAL;
1332
1333         return kvm_set_memory_region(kvm, mem);
1334 }
1335
1336 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1337 /**
1338  * kvm_get_dirty_log - get a snapshot of dirty pages
1339  * @kvm:        pointer to kvm instance
1340  * @log:        slot id and address to which we copy the log
1341  * @is_dirty:   set to '1' if any dirty pages were found
1342  * @memslot:    set to the associated memslot, always valid on success
1343  */
1344 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1345                       int *is_dirty, struct kvm_memory_slot **memslot)
1346 {
1347         struct kvm_memslots *slots;
1348         int i, as_id, id;
1349         unsigned long n;
1350         unsigned long any = 0;
1351
1352         *memslot = NULL;
1353         *is_dirty = 0;
1354
1355         as_id = log->slot >> 16;
1356         id = (u16)log->slot;
1357         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1358                 return -EINVAL;
1359
1360         slots = __kvm_memslots(kvm, as_id);
1361         *memslot = id_to_memslot(slots, id);
1362         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1363                 return -ENOENT;
1364
1365         kvm_arch_sync_dirty_log(kvm, *memslot);
1366
1367         n = kvm_dirty_bitmap_bytes(*memslot);
1368
1369         for (i = 0; !any && i < n/sizeof(long); ++i)
1370                 any = (*memslot)->dirty_bitmap[i];
1371
1372         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1373                 return -EFAULT;
1374
1375         if (any)
1376                 *is_dirty = 1;
1377         return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1380
1381 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1382 /**
1383  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1384  *      and reenable dirty page tracking for the corresponding pages.
1385  * @kvm:        pointer to kvm instance
1386  * @log:        slot id and address to which we copy the log
1387  *
1388  * We need to keep it in mind that VCPU threads can write to the bitmap
1389  * concurrently. So, to avoid losing track of dirty pages we keep the
1390  * following order:
1391  *
1392  *    1. Take a snapshot of the bit and clear it if needed.
1393  *    2. Write protect the corresponding page.
1394  *    3. Copy the snapshot to the userspace.
1395  *    4. Upon return caller flushes TLB's if needed.
1396  *
1397  * Between 2 and 4, the guest may write to the page using the remaining TLB
1398  * entry.  This is not a problem because the page is reported dirty using
1399  * the snapshot taken before and step 4 ensures that writes done after
1400  * exiting to userspace will be logged for the next call.
1401  *
1402  */
1403 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1404 {
1405         struct kvm_memslots *slots;
1406         struct kvm_memory_slot *memslot;
1407         int i, as_id, id;
1408         unsigned long n;
1409         unsigned long *dirty_bitmap;
1410         unsigned long *dirty_bitmap_buffer;
1411         bool flush;
1412
1413         as_id = log->slot >> 16;
1414         id = (u16)log->slot;
1415         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1416                 return -EINVAL;
1417
1418         slots = __kvm_memslots(kvm, as_id);
1419         memslot = id_to_memslot(slots, id);
1420         if (!memslot || !memslot->dirty_bitmap)
1421                 return -ENOENT;
1422
1423         dirty_bitmap = memslot->dirty_bitmap;
1424
1425         kvm_arch_sync_dirty_log(kvm, memslot);
1426
1427         n = kvm_dirty_bitmap_bytes(memslot);
1428         flush = false;
1429         if (kvm->manual_dirty_log_protect) {
1430                 /*
1431                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1432                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1433                  * is some code duplication between this function and
1434                  * kvm_get_dirty_log, but hopefully all architecture
1435                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1436                  * can be eliminated.
1437                  */
1438                 dirty_bitmap_buffer = dirty_bitmap;
1439         } else {
1440                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1441                 memset(dirty_bitmap_buffer, 0, n);
1442
1443                 spin_lock(&kvm->mmu_lock);
1444                 for (i = 0; i < n / sizeof(long); i++) {
1445                         unsigned long mask;
1446                         gfn_t offset;
1447
1448                         if (!dirty_bitmap[i])
1449                                 continue;
1450
1451                         flush = true;
1452                         mask = xchg(&dirty_bitmap[i], 0);
1453                         dirty_bitmap_buffer[i] = mask;
1454
1455                         offset = i * BITS_PER_LONG;
1456                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1457                                                                 offset, mask);
1458                 }
1459                 spin_unlock(&kvm->mmu_lock);
1460         }
1461
1462         if (flush)
1463                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1464
1465         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1466                 return -EFAULT;
1467         return 0;
1468 }
1469
1470
1471 /**
1472  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1473  * @kvm: kvm instance
1474  * @log: slot id and address to which we copy the log
1475  *
1476  * Steps 1-4 below provide general overview of dirty page logging. See
1477  * kvm_get_dirty_log_protect() function description for additional details.
1478  *
1479  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1480  * always flush the TLB (step 4) even if previous step failed  and the dirty
1481  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1482  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1483  * writes will be marked dirty for next log read.
1484  *
1485  *   1. Take a snapshot of the bit and clear it if needed.
1486  *   2. Write protect the corresponding page.
1487  *   3. Copy the snapshot to the userspace.
1488  *   4. Flush TLB's if needed.
1489  */
1490 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1491                                       struct kvm_dirty_log *log)
1492 {
1493         int r;
1494
1495         mutex_lock(&kvm->slots_lock);
1496
1497         r = kvm_get_dirty_log_protect(kvm, log);
1498
1499         mutex_unlock(&kvm->slots_lock);
1500         return r;
1501 }
1502
1503 /**
1504  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1505  *      and reenable dirty page tracking for the corresponding pages.
1506  * @kvm:        pointer to kvm instance
1507  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1508  */
1509 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1510                                        struct kvm_clear_dirty_log *log)
1511 {
1512         struct kvm_memslots *slots;
1513         struct kvm_memory_slot *memslot;
1514         int as_id, id;
1515         gfn_t offset;
1516         unsigned long i, n;
1517         unsigned long *dirty_bitmap;
1518         unsigned long *dirty_bitmap_buffer;
1519         bool flush;
1520
1521         as_id = log->slot >> 16;
1522         id = (u16)log->slot;
1523         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1524                 return -EINVAL;
1525
1526         if (log->first_page & 63)
1527                 return -EINVAL;
1528
1529         slots = __kvm_memslots(kvm, as_id);
1530         memslot = id_to_memslot(slots, id);
1531         if (!memslot || !memslot->dirty_bitmap)
1532                 return -ENOENT;
1533
1534         dirty_bitmap = memslot->dirty_bitmap;
1535
1536         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1537
1538         if (log->first_page > memslot->npages ||
1539             log->num_pages > memslot->npages - log->first_page ||
1540             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1541             return -EINVAL;
1542
1543         kvm_arch_sync_dirty_log(kvm, memslot);
1544
1545         flush = false;
1546         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1547         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1548                 return -EFAULT;
1549
1550         spin_lock(&kvm->mmu_lock);
1551         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1552                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1553              i++, offset += BITS_PER_LONG) {
1554                 unsigned long mask = *dirty_bitmap_buffer++;
1555                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1556                 if (!mask)
1557                         continue;
1558
1559                 mask &= atomic_long_fetch_andnot(mask, p);
1560
1561                 /*
1562                  * mask contains the bits that really have been cleared.  This
1563                  * never includes any bits beyond the length of the memslot (if
1564                  * the length is not aligned to 64 pages), therefore it is not
1565                  * a problem if userspace sets them in log->dirty_bitmap.
1566                 */
1567                 if (mask) {
1568                         flush = true;
1569                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1570                                                                 offset, mask);
1571                 }
1572         }
1573         spin_unlock(&kvm->mmu_lock);
1574
1575         if (flush)
1576                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1577
1578         return 0;
1579 }
1580
1581 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1582                                         struct kvm_clear_dirty_log *log)
1583 {
1584         int r;
1585
1586         mutex_lock(&kvm->slots_lock);
1587
1588         r = kvm_clear_dirty_log_protect(kvm, log);
1589
1590         mutex_unlock(&kvm->slots_lock);
1591         return r;
1592 }
1593 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1594
1595 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1596 {
1597         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1598 }
1599 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1600
1601 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1602 {
1603         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1604 }
1605
1606 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1607 {
1608         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1609
1610         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1611               memslot->flags & KVM_MEMSLOT_INVALID)
1612                 return false;
1613
1614         return true;
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1617
1618 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1619 {
1620         struct vm_area_struct *vma;
1621         unsigned long addr, size;
1622
1623         size = PAGE_SIZE;
1624
1625         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1626         if (kvm_is_error_hva(addr))
1627                 return PAGE_SIZE;
1628
1629         down_read(&current->mm->mmap_sem);
1630         vma = find_vma(current->mm, addr);
1631         if (!vma)
1632                 goto out;
1633
1634         size = vma_kernel_pagesize(vma);
1635
1636 out:
1637         up_read(&current->mm->mmap_sem);
1638
1639         return size;
1640 }
1641
1642 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1643 {
1644         return slot->flags & KVM_MEM_READONLY;
1645 }
1646
1647 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1648                                        gfn_t *nr_pages, bool write)
1649 {
1650         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1651                 return KVM_HVA_ERR_BAD;
1652
1653         if (memslot_is_readonly(slot) && write)
1654                 return KVM_HVA_ERR_RO_BAD;
1655
1656         if (nr_pages)
1657                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1658
1659         return __gfn_to_hva_memslot(slot, gfn);
1660 }
1661
1662 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1663                                      gfn_t *nr_pages)
1664 {
1665         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1666 }
1667
1668 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1669                                         gfn_t gfn)
1670 {
1671         return gfn_to_hva_many(slot, gfn, NULL);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1674
1675 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1676 {
1677         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_hva);
1680
1681 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1682 {
1683         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1686
1687 /*
1688  * Return the hva of a @gfn and the R/W attribute if possible.
1689  *
1690  * @slot: the kvm_memory_slot which contains @gfn
1691  * @gfn: the gfn to be translated
1692  * @writable: used to return the read/write attribute of the @slot if the hva
1693  * is valid and @writable is not NULL
1694  */
1695 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1696                                       gfn_t gfn, bool *writable)
1697 {
1698         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1699
1700         if (!kvm_is_error_hva(hva) && writable)
1701                 *writable = !memslot_is_readonly(slot);
1702
1703         return hva;
1704 }
1705
1706 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1707 {
1708         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1709
1710         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1711 }
1712
1713 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1714 {
1715         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1716
1717         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1718 }
1719
1720 static inline int check_user_page_hwpoison(unsigned long addr)
1721 {
1722         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1723
1724         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1725         return rc == -EHWPOISON;
1726 }
1727
1728 /*
1729  * The fast path to get the writable pfn which will be stored in @pfn,
1730  * true indicates success, otherwise false is returned.  It's also the
1731  * only part that runs if we can in atomic context.
1732  */
1733 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1734                             bool *writable, kvm_pfn_t *pfn)
1735 {
1736         struct page *page[1];
1737         int npages;
1738
1739         /*
1740          * Fast pin a writable pfn only if it is a write fault request
1741          * or the caller allows to map a writable pfn for a read fault
1742          * request.
1743          */
1744         if (!(write_fault || writable))
1745                 return false;
1746
1747         npages = __get_user_pages_fast(addr, 1, 1, page);
1748         if (npages == 1) {
1749                 *pfn = page_to_pfn(page[0]);
1750
1751                 if (writable)
1752                         *writable = true;
1753                 return true;
1754         }
1755
1756         return false;
1757 }
1758
1759 /*
1760  * The slow path to get the pfn of the specified host virtual address,
1761  * 1 indicates success, -errno is returned if error is detected.
1762  */
1763 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1764                            bool *writable, kvm_pfn_t *pfn)
1765 {
1766         unsigned int flags = FOLL_HWPOISON;
1767         struct page *page;
1768         int npages = 0;
1769
1770         might_sleep();
1771
1772         if (writable)
1773                 *writable = write_fault;
1774
1775         if (write_fault)
1776                 flags |= FOLL_WRITE;
1777         if (async)
1778                 flags |= FOLL_NOWAIT;
1779
1780         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1781         if (npages != 1)
1782                 return npages;
1783
1784         /* map read fault as writable if possible */
1785         if (unlikely(!write_fault) && writable) {
1786                 struct page *wpage;
1787
1788                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1789                         *writable = true;
1790                         put_page(page);
1791                         page = wpage;
1792                 }
1793         }
1794         *pfn = page_to_pfn(page);
1795         return npages;
1796 }
1797
1798 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1799 {
1800         if (unlikely(!(vma->vm_flags & VM_READ)))
1801                 return false;
1802
1803         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1804                 return false;
1805
1806         return true;
1807 }
1808
1809 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1810                                unsigned long addr, bool *async,
1811                                bool write_fault, bool *writable,
1812                                kvm_pfn_t *p_pfn)
1813 {
1814         unsigned long pfn;
1815         int r;
1816
1817         r = follow_pfn(vma, addr, &pfn);
1818         if (r) {
1819                 /*
1820                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1821                  * not call the fault handler, so do it here.
1822                  */
1823                 bool unlocked = false;
1824                 r = fixup_user_fault(current, current->mm, addr,
1825                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1826                                      &unlocked);
1827                 if (unlocked)
1828                         return -EAGAIN;
1829                 if (r)
1830                         return r;
1831
1832                 r = follow_pfn(vma, addr, &pfn);
1833                 if (r)
1834                         return r;
1835
1836         }
1837
1838         if (writable)
1839                 *writable = true;
1840
1841         /*
1842          * Get a reference here because callers of *hva_to_pfn* and
1843          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1844          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1845          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1846          * simply do nothing for reserved pfns.
1847          *
1848          * Whoever called remap_pfn_range is also going to call e.g.
1849          * unmap_mapping_range before the underlying pages are freed,
1850          * causing a call to our MMU notifier.
1851          */ 
1852         kvm_get_pfn(pfn);
1853
1854         *p_pfn = pfn;
1855         return 0;
1856 }
1857
1858 /*
1859  * Pin guest page in memory and return its pfn.
1860  * @addr: host virtual address which maps memory to the guest
1861  * @atomic: whether this function can sleep
1862  * @async: whether this function need to wait IO complete if the
1863  *         host page is not in the memory
1864  * @write_fault: whether we should get a writable host page
1865  * @writable: whether it allows to map a writable host page for !@write_fault
1866  *
1867  * The function will map a writable host page for these two cases:
1868  * 1): @write_fault = true
1869  * 2): @write_fault = false && @writable, @writable will tell the caller
1870  *     whether the mapping is writable.
1871  */
1872 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1873                         bool write_fault, bool *writable)
1874 {
1875         struct vm_area_struct *vma;
1876         kvm_pfn_t pfn = 0;
1877         int npages, r;
1878
1879         /* we can do it either atomically or asynchronously, not both */
1880         BUG_ON(atomic && async);
1881
1882         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1883                 return pfn;
1884
1885         if (atomic)
1886                 return KVM_PFN_ERR_FAULT;
1887
1888         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1889         if (npages == 1)
1890                 return pfn;
1891
1892         down_read(&current->mm->mmap_sem);
1893         if (npages == -EHWPOISON ||
1894               (!async && check_user_page_hwpoison(addr))) {
1895                 pfn = KVM_PFN_ERR_HWPOISON;
1896                 goto exit;
1897         }
1898
1899 retry:
1900         vma = find_vma_intersection(current->mm, addr, addr + 1);
1901
1902         if (vma == NULL)
1903                 pfn = KVM_PFN_ERR_FAULT;
1904         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1905                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1906                 if (r == -EAGAIN)
1907                         goto retry;
1908                 if (r < 0)
1909                         pfn = KVM_PFN_ERR_FAULT;
1910         } else {
1911                 if (async && vma_is_valid(vma, write_fault))
1912                         *async = true;
1913                 pfn = KVM_PFN_ERR_FAULT;
1914         }
1915 exit:
1916         up_read(&current->mm->mmap_sem);
1917         return pfn;
1918 }
1919
1920 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1921                                bool atomic, bool *async, bool write_fault,
1922                                bool *writable)
1923 {
1924         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1925
1926         if (addr == KVM_HVA_ERR_RO_BAD) {
1927                 if (writable)
1928                         *writable = false;
1929                 return KVM_PFN_ERR_RO_FAULT;
1930         }
1931
1932         if (kvm_is_error_hva(addr)) {
1933                 if (writable)
1934                         *writable = false;
1935                 return KVM_PFN_NOSLOT;
1936         }
1937
1938         /* Do not map writable pfn in the readonly memslot. */
1939         if (writable && memslot_is_readonly(slot)) {
1940                 *writable = false;
1941                 writable = NULL;
1942         }
1943
1944         return hva_to_pfn(addr, atomic, async, write_fault,
1945                           writable);
1946 }
1947 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1948
1949 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1950                       bool *writable)
1951 {
1952         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1953                                     write_fault, writable);
1954 }
1955 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1956
1957 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1958 {
1959         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1960 }
1961 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1962
1963 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1964 {
1965         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1966 }
1967 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1968
1969 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1970 {
1971         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1972 }
1973 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1974
1975 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1976 {
1977         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1978 }
1979 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1980
1981 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1982 {
1983         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1986
1987 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1988                             struct page **pages, int nr_pages)
1989 {
1990         unsigned long addr;
1991         gfn_t entry = 0;
1992
1993         addr = gfn_to_hva_many(slot, gfn, &entry);
1994         if (kvm_is_error_hva(addr))
1995                 return -1;
1996
1997         if (entry < nr_pages)
1998                 return 0;
1999
2000         return __get_user_pages_fast(addr, nr_pages, 1, pages);
2001 }
2002 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2003
2004 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2005 {
2006         if (is_error_noslot_pfn(pfn))
2007                 return KVM_ERR_PTR_BAD_PAGE;
2008
2009         if (kvm_is_reserved_pfn(pfn)) {
2010                 WARN_ON(1);
2011                 return KVM_ERR_PTR_BAD_PAGE;
2012         }
2013
2014         return pfn_to_page(pfn);
2015 }
2016
2017 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2018 {
2019         kvm_pfn_t pfn;
2020
2021         pfn = gfn_to_pfn(kvm, gfn);
2022
2023         return kvm_pfn_to_page(pfn);
2024 }
2025 EXPORT_SYMBOL_GPL(gfn_to_page);
2026
2027 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2028 {
2029         if (pfn == 0)
2030                 return;
2031
2032         if (cache)
2033                 cache->pfn = cache->gfn = 0;
2034
2035         if (dirty)
2036                 kvm_release_pfn_dirty(pfn);
2037         else
2038                 kvm_release_pfn_clean(pfn);
2039 }
2040
2041 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2042                                  struct gfn_to_pfn_cache *cache, u64 gen)
2043 {
2044         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2045
2046         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2047         cache->gfn = gfn;
2048         cache->dirty = false;
2049         cache->generation = gen;
2050 }
2051
2052 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2053                          struct kvm_host_map *map,
2054                          struct gfn_to_pfn_cache *cache,
2055                          bool atomic)
2056 {
2057         kvm_pfn_t pfn;
2058         void *hva = NULL;
2059         struct page *page = KVM_UNMAPPED_PAGE;
2060         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2061         u64 gen = slots->generation;
2062
2063         if (!map)
2064                 return -EINVAL;
2065
2066         if (cache) {
2067                 if (!cache->pfn || cache->gfn != gfn ||
2068                         cache->generation != gen) {
2069                         if (atomic)
2070                                 return -EAGAIN;
2071                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2072                 }
2073                 pfn = cache->pfn;
2074         } else {
2075                 if (atomic)
2076                         return -EAGAIN;
2077                 pfn = gfn_to_pfn_memslot(slot, gfn);
2078         }
2079         if (is_error_noslot_pfn(pfn))
2080                 return -EINVAL;
2081
2082         if (pfn_valid(pfn)) {
2083                 page = pfn_to_page(pfn);
2084                 if (atomic)
2085                         hva = kmap_atomic(page);
2086                 else
2087                         hva = kmap(page);
2088 #ifdef CONFIG_HAS_IOMEM
2089         } else if (!atomic) {
2090                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2091         } else {
2092                 return -EINVAL;
2093 #endif
2094         }
2095
2096         if (!hva)
2097                 return -EFAULT;
2098
2099         map->page = page;
2100         map->hva = hva;
2101         map->pfn = pfn;
2102         map->gfn = gfn;
2103
2104         return 0;
2105 }
2106
2107 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2108                 struct gfn_to_pfn_cache *cache, bool atomic)
2109 {
2110         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2111                         cache, atomic);
2112 }
2113 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2114
2115 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2116 {
2117         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2118                 NULL, false);
2119 }
2120 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2121
2122 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2123                         struct kvm_host_map *map,
2124                         struct gfn_to_pfn_cache *cache,
2125                         bool dirty, bool atomic)
2126 {
2127         if (!map)
2128                 return;
2129
2130         if (!map->hva)
2131                 return;
2132
2133         if (map->page != KVM_UNMAPPED_PAGE) {
2134                 if (atomic)
2135                         kunmap_atomic(map->hva);
2136                 else
2137                         kunmap(map->page);
2138         }
2139 #ifdef CONFIG_HAS_IOMEM
2140         else if (!atomic)
2141                 memunmap(map->hva);
2142         else
2143                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2144 #endif
2145
2146         if (dirty)
2147                 mark_page_dirty_in_slot(memslot, map->gfn);
2148
2149         if (cache)
2150                 cache->dirty |= dirty;
2151         else
2152                 kvm_release_pfn(map->pfn, dirty, NULL);
2153
2154         map->hva = NULL;
2155         map->page = NULL;
2156 }
2157
2158 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2159                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2160 {
2161         __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2162                         cache, dirty, atomic);
2163         return 0;
2164 }
2165 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2166
2167 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2168 {
2169         __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2170                         dirty, false);
2171 }
2172 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2173
2174 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2175 {
2176         kvm_pfn_t pfn;
2177
2178         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2179
2180         return kvm_pfn_to_page(pfn);
2181 }
2182 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2183
2184 void kvm_release_page_clean(struct page *page)
2185 {
2186         WARN_ON(is_error_page(page));
2187
2188         kvm_release_pfn_clean(page_to_pfn(page));
2189 }
2190 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2191
2192 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2193 {
2194         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2195                 put_page(pfn_to_page(pfn));
2196 }
2197 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2198
2199 void kvm_release_page_dirty(struct page *page)
2200 {
2201         WARN_ON(is_error_page(page));
2202
2203         kvm_release_pfn_dirty(page_to_pfn(page));
2204 }
2205 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2206
2207 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2208 {
2209         kvm_set_pfn_dirty(pfn);
2210         kvm_release_pfn_clean(pfn);
2211 }
2212 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2213
2214 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2215 {
2216         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2217                 SetPageDirty(pfn_to_page(pfn));
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2220
2221 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2222 {
2223         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2224                 mark_page_accessed(pfn_to_page(pfn));
2225 }
2226 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2227
2228 void kvm_get_pfn(kvm_pfn_t pfn)
2229 {
2230         if (!kvm_is_reserved_pfn(pfn))
2231                 get_page(pfn_to_page(pfn));
2232 }
2233 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2234
2235 static int next_segment(unsigned long len, int offset)
2236 {
2237         if (len > PAGE_SIZE - offset)
2238                 return PAGE_SIZE - offset;
2239         else
2240                 return len;
2241 }
2242
2243 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2244                                  void *data, int offset, int len)
2245 {
2246         int r;
2247         unsigned long addr;
2248
2249         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2250         if (kvm_is_error_hva(addr))
2251                 return -EFAULT;
2252         r = __copy_from_user(data, (void __user *)addr + offset, len);
2253         if (r)
2254                 return -EFAULT;
2255         return 0;
2256 }
2257
2258 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2259                         int len)
2260 {
2261         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2262
2263         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2264 }
2265 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2266
2267 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2268                              int offset, int len)
2269 {
2270         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2271
2272         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2273 }
2274 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2275
2276 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2277 {
2278         gfn_t gfn = gpa >> PAGE_SHIFT;
2279         int seg;
2280         int offset = offset_in_page(gpa);
2281         int ret;
2282
2283         while ((seg = next_segment(len, offset)) != 0) {
2284                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2285                 if (ret < 0)
2286                         return ret;
2287                 offset = 0;
2288                 len -= seg;
2289                 data += seg;
2290                 ++gfn;
2291         }
2292         return 0;
2293 }
2294 EXPORT_SYMBOL_GPL(kvm_read_guest);
2295
2296 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2297 {
2298         gfn_t gfn = gpa >> PAGE_SHIFT;
2299         int seg;
2300         int offset = offset_in_page(gpa);
2301         int ret;
2302
2303         while ((seg = next_segment(len, offset)) != 0) {
2304                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2305                 if (ret < 0)
2306                         return ret;
2307                 offset = 0;
2308                 len -= seg;
2309                 data += seg;
2310                 ++gfn;
2311         }
2312         return 0;
2313 }
2314 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2315
2316 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2317                                    void *data, int offset, unsigned long len)
2318 {
2319         int r;
2320         unsigned long addr;
2321
2322         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2323         if (kvm_is_error_hva(addr))
2324                 return -EFAULT;
2325         pagefault_disable();
2326         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2327         pagefault_enable();
2328         if (r)
2329                 return -EFAULT;
2330         return 0;
2331 }
2332
2333 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2334                                void *data, unsigned long len)
2335 {
2336         gfn_t gfn = gpa >> PAGE_SHIFT;
2337         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2338         int offset = offset_in_page(gpa);
2339
2340         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2343
2344 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2345                                   const void *data, int offset, int len)
2346 {
2347         int r;
2348         unsigned long addr;
2349
2350         addr = gfn_to_hva_memslot(memslot, gfn);
2351         if (kvm_is_error_hva(addr))
2352                 return -EFAULT;
2353         r = __copy_to_user((void __user *)addr + offset, data, len);
2354         if (r)
2355                 return -EFAULT;
2356         mark_page_dirty_in_slot(memslot, gfn);
2357         return 0;
2358 }
2359
2360 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2361                          const void *data, int offset, int len)
2362 {
2363         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2364
2365         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2366 }
2367 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2368
2369 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2370                               const void *data, int offset, int len)
2371 {
2372         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2373
2374         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2377
2378 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2379                     unsigned long len)
2380 {
2381         gfn_t gfn = gpa >> PAGE_SHIFT;
2382         int seg;
2383         int offset = offset_in_page(gpa);
2384         int ret;
2385
2386         while ((seg = next_segment(len, offset)) != 0) {
2387                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2388                 if (ret < 0)
2389                         return ret;
2390                 offset = 0;
2391                 len -= seg;
2392                 data += seg;
2393                 ++gfn;
2394         }
2395         return 0;
2396 }
2397 EXPORT_SYMBOL_GPL(kvm_write_guest);
2398
2399 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2400                          unsigned long len)
2401 {
2402         gfn_t gfn = gpa >> PAGE_SHIFT;
2403         int seg;
2404         int offset = offset_in_page(gpa);
2405         int ret;
2406
2407         while ((seg = next_segment(len, offset)) != 0) {
2408                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2409                 if (ret < 0)
2410                         return ret;
2411                 offset = 0;
2412                 len -= seg;
2413                 data += seg;
2414                 ++gfn;
2415         }
2416         return 0;
2417 }
2418 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2419
2420 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2421                                        struct gfn_to_hva_cache *ghc,
2422                                        gpa_t gpa, unsigned long len)
2423 {
2424         int offset = offset_in_page(gpa);
2425         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2426         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2427         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2428         gfn_t nr_pages_avail;
2429
2430         /* Update ghc->generation before performing any error checks. */
2431         ghc->generation = slots->generation;
2432
2433         if (start_gfn > end_gfn) {
2434                 ghc->hva = KVM_HVA_ERR_BAD;
2435                 return -EINVAL;
2436         }
2437
2438         /*
2439          * If the requested region crosses two memslots, we still
2440          * verify that the entire region is valid here.
2441          */
2442         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2443                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2444                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2445                                            &nr_pages_avail);
2446                 if (kvm_is_error_hva(ghc->hva))
2447                         return -EFAULT;
2448         }
2449
2450         /* Use the slow path for cross page reads and writes. */
2451         if (nr_pages_needed == 1)
2452                 ghc->hva += offset;
2453         else
2454                 ghc->memslot = NULL;
2455
2456         ghc->gpa = gpa;
2457         ghc->len = len;
2458         return 0;
2459 }
2460
2461 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2462                               gpa_t gpa, unsigned long len)
2463 {
2464         struct kvm_memslots *slots = kvm_memslots(kvm);
2465         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2466 }
2467 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2468
2469 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2470                                   void *data, unsigned int offset,
2471                                   unsigned long len)
2472 {
2473         struct kvm_memslots *slots = kvm_memslots(kvm);
2474         int r;
2475         gpa_t gpa = ghc->gpa + offset;
2476
2477         BUG_ON(len + offset > ghc->len);
2478
2479         if (slots->generation != ghc->generation) {
2480                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2481                         return -EFAULT;
2482         }
2483
2484         if (kvm_is_error_hva(ghc->hva))
2485                 return -EFAULT;
2486
2487         if (unlikely(!ghc->memslot))
2488                 return kvm_write_guest(kvm, gpa, data, len);
2489
2490         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2491         if (r)
2492                 return -EFAULT;
2493         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2494
2495         return 0;
2496 }
2497 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2498
2499 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2500                            void *data, unsigned long len)
2501 {
2502         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2503 }
2504 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2505
2506 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2507                            void *data, unsigned long len)
2508 {
2509         struct kvm_memslots *slots = kvm_memslots(kvm);
2510         int r;
2511
2512         BUG_ON(len > ghc->len);
2513
2514         if (slots->generation != ghc->generation) {
2515                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2516                         return -EFAULT;
2517         }
2518
2519         if (kvm_is_error_hva(ghc->hva))
2520                 return -EFAULT;
2521
2522         if (unlikely(!ghc->memslot))
2523                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2524
2525         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2526         if (r)
2527                 return -EFAULT;
2528
2529         return 0;
2530 }
2531 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2532
2533 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2534 {
2535         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2536
2537         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2538 }
2539 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2540
2541 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2542 {
2543         gfn_t gfn = gpa >> PAGE_SHIFT;
2544         int seg;
2545         int offset = offset_in_page(gpa);
2546         int ret;
2547
2548         while ((seg = next_segment(len, offset)) != 0) {
2549                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2550                 if (ret < 0)
2551                         return ret;
2552                 offset = 0;
2553                 len -= seg;
2554                 ++gfn;
2555         }
2556         return 0;
2557 }
2558 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2559
2560 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2561                                     gfn_t gfn)
2562 {
2563         if (memslot && memslot->dirty_bitmap) {
2564                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2565
2566                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2567         }
2568 }
2569
2570 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2571 {
2572         struct kvm_memory_slot *memslot;
2573
2574         memslot = gfn_to_memslot(kvm, gfn);
2575         mark_page_dirty_in_slot(memslot, gfn);
2576 }
2577 EXPORT_SYMBOL_GPL(mark_page_dirty);
2578
2579 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2580 {
2581         struct kvm_memory_slot *memslot;
2582
2583         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2584         mark_page_dirty_in_slot(memslot, gfn);
2585 }
2586 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2587
2588 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2589 {
2590         if (!vcpu->sigset_active)
2591                 return;
2592
2593         /*
2594          * This does a lockless modification of ->real_blocked, which is fine
2595          * because, only current can change ->real_blocked and all readers of
2596          * ->real_blocked don't care as long ->real_blocked is always a subset
2597          * of ->blocked.
2598          */
2599         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2600 }
2601
2602 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2603 {
2604         if (!vcpu->sigset_active)
2605                 return;
2606
2607         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2608         sigemptyset(&current->real_blocked);
2609 }
2610
2611 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2612 {
2613         unsigned int old, val, grow, grow_start;
2614
2615         old = val = vcpu->halt_poll_ns;
2616         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2617         grow = READ_ONCE(halt_poll_ns_grow);
2618         if (!grow)
2619                 goto out;
2620
2621         val *= grow;
2622         if (val < grow_start)
2623                 val = grow_start;
2624
2625         if (val > halt_poll_ns)
2626                 val = halt_poll_ns;
2627
2628         vcpu->halt_poll_ns = val;
2629 out:
2630         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2631 }
2632
2633 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2634 {
2635         unsigned int old, val, shrink;
2636
2637         old = val = vcpu->halt_poll_ns;
2638         shrink = READ_ONCE(halt_poll_ns_shrink);
2639         if (shrink == 0)
2640                 val = 0;
2641         else
2642                 val /= shrink;
2643
2644         vcpu->halt_poll_ns = val;
2645         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2646 }
2647
2648 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2649 {
2650         int ret = -EINTR;
2651         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2652
2653         if (kvm_arch_vcpu_runnable(vcpu)) {
2654                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2655                 goto out;
2656         }
2657         if (kvm_cpu_has_pending_timer(vcpu))
2658                 goto out;
2659         if (signal_pending(current))
2660                 goto out;
2661
2662         ret = 0;
2663 out:
2664         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2665         return ret;
2666 }
2667
2668 /*
2669  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2670  */
2671 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2672 {
2673         ktime_t start, cur;
2674         DECLARE_SWAITQUEUE(wait);
2675         bool waited = false;
2676         u64 block_ns;
2677
2678         kvm_arch_vcpu_blocking(vcpu);
2679
2680         start = cur = ktime_get();
2681         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2682                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2683
2684                 ++vcpu->stat.halt_attempted_poll;
2685                 do {
2686                         /*
2687                          * This sets KVM_REQ_UNHALT if an interrupt
2688                          * arrives.
2689                          */
2690                         if (kvm_vcpu_check_block(vcpu) < 0) {
2691                                 ++vcpu->stat.halt_successful_poll;
2692                                 if (!vcpu_valid_wakeup(vcpu))
2693                                         ++vcpu->stat.halt_poll_invalid;
2694                                 goto out;
2695                         }
2696                         cur = ktime_get();
2697                 } while (single_task_running() && ktime_before(cur, stop));
2698         }
2699
2700         for (;;) {
2701                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2702
2703                 if (kvm_vcpu_check_block(vcpu) < 0)
2704                         break;
2705
2706                 waited = true;
2707                 schedule();
2708         }
2709
2710         finish_swait(&vcpu->wq, &wait);
2711         cur = ktime_get();
2712 out:
2713         kvm_arch_vcpu_unblocking(vcpu);
2714         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2715
2716         if (!kvm_arch_no_poll(vcpu)) {
2717                 if (!vcpu_valid_wakeup(vcpu)) {
2718                         shrink_halt_poll_ns(vcpu);
2719                 } else if (halt_poll_ns) {
2720                         if (block_ns <= vcpu->halt_poll_ns)
2721                                 ;
2722                         /* we had a long block, shrink polling */
2723                         else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2724                                 shrink_halt_poll_ns(vcpu);
2725                         /* we had a short halt and our poll time is too small */
2726                         else if (vcpu->halt_poll_ns < halt_poll_ns &&
2727                                 block_ns < halt_poll_ns)
2728                                 grow_halt_poll_ns(vcpu);
2729                 } else {
2730                         vcpu->halt_poll_ns = 0;
2731                 }
2732         }
2733
2734         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2735         kvm_arch_vcpu_block_finish(vcpu);
2736 }
2737 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2738
2739 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2740 {
2741         struct swait_queue_head *wqp;
2742
2743         wqp = kvm_arch_vcpu_wq(vcpu);
2744         if (swq_has_sleeper(wqp)) {
2745                 swake_up_one(wqp);
2746                 WRITE_ONCE(vcpu->ready, true);
2747                 ++vcpu->stat.halt_wakeup;
2748                 return true;
2749         }
2750
2751         return false;
2752 }
2753 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2754
2755 #ifndef CONFIG_S390
2756 /*
2757  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2758  */
2759 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2760 {
2761         int me;
2762         int cpu = vcpu->cpu;
2763
2764         if (kvm_vcpu_wake_up(vcpu))
2765                 return;
2766
2767         me = get_cpu();
2768         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2769                 if (kvm_arch_vcpu_should_kick(vcpu))
2770                         smp_send_reschedule(cpu);
2771         put_cpu();
2772 }
2773 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2774 #endif /* !CONFIG_S390 */
2775
2776 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2777 {
2778         struct pid *pid;
2779         struct task_struct *task = NULL;
2780         int ret = 0;
2781
2782         rcu_read_lock();
2783         pid = rcu_dereference(target->pid);
2784         if (pid)
2785                 task = get_pid_task(pid, PIDTYPE_PID);
2786         rcu_read_unlock();
2787         if (!task)
2788                 return ret;
2789         ret = yield_to(task, 1);
2790         put_task_struct(task);
2791
2792         return ret;
2793 }
2794 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2795
2796 /*
2797  * Helper that checks whether a VCPU is eligible for directed yield.
2798  * Most eligible candidate to yield is decided by following heuristics:
2799  *
2800  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2801  *  (preempted lock holder), indicated by @in_spin_loop.
2802  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2803  *
2804  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2805  *  chance last time (mostly it has become eligible now since we have probably
2806  *  yielded to lockholder in last iteration. This is done by toggling
2807  *  @dy_eligible each time a VCPU checked for eligibility.)
2808  *
2809  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2810  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2811  *  burning. Giving priority for a potential lock-holder increases lock
2812  *  progress.
2813  *
2814  *  Since algorithm is based on heuristics, accessing another VCPU data without
2815  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2816  *  and continue with next VCPU and so on.
2817  */
2818 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2819 {
2820 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2821         bool eligible;
2822
2823         eligible = !vcpu->spin_loop.in_spin_loop ||
2824                     vcpu->spin_loop.dy_eligible;
2825
2826         if (vcpu->spin_loop.in_spin_loop)
2827                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2828
2829         return eligible;
2830 #else
2831         return true;
2832 #endif
2833 }
2834
2835 /*
2836  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2837  * a vcpu_load/vcpu_put pair.  However, for most architectures
2838  * kvm_arch_vcpu_runnable does not require vcpu_load.
2839  */
2840 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2841 {
2842         return kvm_arch_vcpu_runnable(vcpu);
2843 }
2844
2845 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2846 {
2847         if (kvm_arch_dy_runnable(vcpu))
2848                 return true;
2849
2850 #ifdef CONFIG_KVM_ASYNC_PF
2851         if (!list_empty_careful(&vcpu->async_pf.done))
2852                 return true;
2853 #endif
2854
2855         return false;
2856 }
2857
2858 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2859 {
2860         struct kvm *kvm = me->kvm;
2861         struct kvm_vcpu *vcpu;
2862         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2863         int yielded = 0;
2864         int try = 3;
2865         int pass;
2866         int i;
2867
2868         kvm_vcpu_set_in_spin_loop(me, true);
2869         /*
2870          * We boost the priority of a VCPU that is runnable but not
2871          * currently running, because it got preempted by something
2872          * else and called schedule in __vcpu_run.  Hopefully that
2873          * VCPU is holding the lock that we need and will release it.
2874          * We approximate round-robin by starting at the last boosted VCPU.
2875          */
2876         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2877                 kvm_for_each_vcpu(i, vcpu, kvm) {
2878                         if (!pass && i <= last_boosted_vcpu) {
2879                                 i = last_boosted_vcpu;
2880                                 continue;
2881                         } else if (pass && i > last_boosted_vcpu)
2882                                 break;
2883                         if (!READ_ONCE(vcpu->ready))
2884                                 continue;
2885                         if (vcpu == me)
2886                                 continue;
2887                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2888                                 continue;
2889                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2890                                 !kvm_arch_vcpu_in_kernel(vcpu))
2891                                 continue;
2892                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2893                                 continue;
2894
2895                         yielded = kvm_vcpu_yield_to(vcpu);
2896                         if (yielded > 0) {
2897                                 kvm->last_boosted_vcpu = i;
2898                                 break;
2899                         } else if (yielded < 0) {
2900                                 try--;
2901                                 if (!try)
2902                                         break;
2903                         }
2904                 }
2905         }
2906         kvm_vcpu_set_in_spin_loop(me, false);
2907
2908         /* Ensure vcpu is not eligible during next spinloop */
2909         kvm_vcpu_set_dy_eligible(me, false);
2910 }
2911 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2912
2913 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2914 {
2915         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2916         struct page *page;
2917
2918         if (vmf->pgoff == 0)
2919                 page = virt_to_page(vcpu->run);
2920 #ifdef CONFIG_X86
2921         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2922                 page = virt_to_page(vcpu->arch.pio_data);
2923 #endif
2924 #ifdef CONFIG_KVM_MMIO
2925         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2926                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2927 #endif
2928         else
2929                 return kvm_arch_vcpu_fault(vcpu, vmf);
2930         get_page(page);
2931         vmf->page = page;
2932         return 0;
2933 }
2934
2935 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2936         .fault = kvm_vcpu_fault,
2937 };
2938
2939 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2940 {
2941         vma->vm_ops = &kvm_vcpu_vm_ops;
2942         return 0;
2943 }
2944
2945 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2946 {
2947         struct kvm_vcpu *vcpu = filp->private_data;
2948
2949         debugfs_remove_recursive(vcpu->debugfs_dentry);
2950         kvm_put_kvm(vcpu->kvm);
2951         return 0;
2952 }
2953
2954 static struct file_operations kvm_vcpu_fops = {
2955         .release        = kvm_vcpu_release,
2956         .unlocked_ioctl = kvm_vcpu_ioctl,
2957         .mmap           = kvm_vcpu_mmap,
2958         .llseek         = noop_llseek,
2959         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2960 };
2961
2962 /*
2963  * Allocates an inode for the vcpu.
2964  */
2965 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2966 {
2967         char name[8 + 1 + ITOA_MAX_LEN + 1];
2968
2969         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2970         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2971 }
2972
2973 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2974 {
2975 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2976         char dir_name[ITOA_MAX_LEN * 2];
2977
2978         if (!debugfs_initialized())
2979                 return;
2980
2981         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2982         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2983                                                   vcpu->kvm->debugfs_dentry);
2984
2985         kvm_arch_create_vcpu_debugfs(vcpu);
2986 #endif
2987 }
2988
2989 /*
2990  * Creates some virtual cpus.  Good luck creating more than one.
2991  */
2992 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2993 {
2994         int r;
2995         struct kvm_vcpu *vcpu;
2996         struct page *page;
2997
2998         if (id >= KVM_MAX_VCPU_ID)
2999                 return -EINVAL;
3000
3001         mutex_lock(&kvm->lock);
3002         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3003                 mutex_unlock(&kvm->lock);
3004                 return -EINVAL;
3005         }
3006
3007         kvm->created_vcpus++;
3008         mutex_unlock(&kvm->lock);
3009
3010         r = kvm_arch_vcpu_precreate(kvm, id);
3011         if (r)
3012                 goto vcpu_decrement;
3013
3014         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3015         if (!vcpu) {
3016                 r = -ENOMEM;
3017                 goto vcpu_decrement;
3018         }
3019
3020         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3021         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3022         if (!page) {
3023                 r = -ENOMEM;
3024                 goto vcpu_free;
3025         }
3026         vcpu->run = page_address(page);
3027
3028         kvm_vcpu_init(vcpu, kvm, id);
3029
3030         r = kvm_arch_vcpu_create(vcpu);
3031         if (r)
3032                 goto vcpu_free_run_page;
3033
3034         kvm_create_vcpu_debugfs(vcpu);
3035
3036         mutex_lock(&kvm->lock);
3037         if (kvm_get_vcpu_by_id(kvm, id)) {
3038                 r = -EEXIST;
3039                 goto unlock_vcpu_destroy;
3040         }
3041
3042         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3043         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3044
3045         /* Now it's all set up, let userspace reach it */
3046         kvm_get_kvm(kvm);
3047         r = create_vcpu_fd(vcpu);
3048         if (r < 0) {
3049                 kvm_put_kvm_no_destroy(kvm);
3050                 goto unlock_vcpu_destroy;
3051         }
3052
3053         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3054
3055         /*
3056          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3057          * before kvm->online_vcpu's incremented value.
3058          */
3059         smp_wmb();
3060         atomic_inc(&kvm->online_vcpus);
3061
3062         mutex_unlock(&kvm->lock);
3063         kvm_arch_vcpu_postcreate(vcpu);
3064         return r;
3065
3066 unlock_vcpu_destroy:
3067         mutex_unlock(&kvm->lock);
3068         debugfs_remove_recursive(vcpu->debugfs_dentry);
3069         kvm_arch_vcpu_destroy(vcpu);
3070 vcpu_free_run_page:
3071         free_page((unsigned long)vcpu->run);
3072 vcpu_free:
3073         kmem_cache_free(kvm_vcpu_cache, vcpu);
3074 vcpu_decrement:
3075         mutex_lock(&kvm->lock);
3076         kvm->created_vcpus--;
3077         mutex_unlock(&kvm->lock);
3078         return r;
3079 }
3080
3081 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3082 {
3083         if (sigset) {
3084                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3085                 vcpu->sigset_active = 1;
3086                 vcpu->sigset = *sigset;
3087         } else
3088                 vcpu->sigset_active = 0;
3089         return 0;
3090 }
3091
3092 static long kvm_vcpu_ioctl(struct file *filp,
3093                            unsigned int ioctl, unsigned long arg)
3094 {
3095         struct kvm_vcpu *vcpu = filp->private_data;
3096         void __user *argp = (void __user *)arg;
3097         int r;
3098         struct kvm_fpu *fpu = NULL;
3099         struct kvm_sregs *kvm_sregs = NULL;
3100
3101         if (vcpu->kvm->mm != current->mm)
3102                 return -EIO;
3103
3104         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3105                 return -EINVAL;
3106
3107         /*
3108          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3109          * execution; mutex_lock() would break them.
3110          */
3111         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3112         if (r != -ENOIOCTLCMD)
3113                 return r;
3114
3115         if (mutex_lock_killable(&vcpu->mutex))
3116                 return -EINTR;
3117         switch (ioctl) {
3118         case KVM_RUN: {
3119                 struct pid *oldpid;
3120                 r = -EINVAL;
3121                 if (arg)
3122                         goto out;
3123                 oldpid = rcu_access_pointer(vcpu->pid);
3124                 if (unlikely(oldpid != task_pid(current))) {
3125                         /* The thread running this VCPU changed. */
3126                         struct pid *newpid;
3127
3128                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3129                         if (r)
3130                                 break;
3131
3132                         newpid = get_task_pid(current, PIDTYPE_PID);
3133                         rcu_assign_pointer(vcpu->pid, newpid);
3134                         if (oldpid)
3135                                 synchronize_rcu();
3136                         put_pid(oldpid);
3137                 }
3138                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
3139                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3140                 break;
3141         }
3142         case KVM_GET_REGS: {
3143                 struct kvm_regs *kvm_regs;
3144
3145                 r = -ENOMEM;
3146                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3147                 if (!kvm_regs)
3148                         goto out;
3149                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3150                 if (r)
3151                         goto out_free1;
3152                 r = -EFAULT;
3153                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3154                         goto out_free1;
3155                 r = 0;
3156 out_free1:
3157                 kfree(kvm_regs);
3158                 break;
3159         }
3160         case KVM_SET_REGS: {
3161                 struct kvm_regs *kvm_regs;
3162
3163                 r = -ENOMEM;
3164                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3165                 if (IS_ERR(kvm_regs)) {
3166                         r = PTR_ERR(kvm_regs);
3167                         goto out;
3168                 }
3169                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3170                 kfree(kvm_regs);
3171                 break;
3172         }
3173         case KVM_GET_SREGS: {
3174                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3175                                     GFP_KERNEL_ACCOUNT);
3176                 r = -ENOMEM;
3177                 if (!kvm_sregs)
3178                         goto out;
3179                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3180                 if (r)
3181                         goto out;
3182                 r = -EFAULT;
3183                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3184                         goto out;
3185                 r = 0;
3186                 break;
3187         }
3188         case KVM_SET_SREGS: {
3189                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3190                 if (IS_ERR(kvm_sregs)) {
3191                         r = PTR_ERR(kvm_sregs);
3192                         kvm_sregs = NULL;
3193                         goto out;
3194                 }
3195                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3196                 break;
3197         }
3198         case KVM_GET_MP_STATE: {
3199                 struct kvm_mp_state mp_state;
3200
3201                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3202                 if (r)
3203                         goto out;
3204                 r = -EFAULT;
3205                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3206                         goto out;
3207                 r = 0;
3208                 break;
3209         }
3210         case KVM_SET_MP_STATE: {
3211                 struct kvm_mp_state mp_state;
3212
3213                 r = -EFAULT;
3214                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3215                         goto out;
3216                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3217                 break;
3218         }
3219         case KVM_TRANSLATE: {
3220                 struct kvm_translation tr;
3221
3222                 r = -EFAULT;
3223                 if (copy_from_user(&tr, argp, sizeof(tr)))
3224                         goto out;
3225                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3226                 if (r)
3227                         goto out;
3228                 r = -EFAULT;
3229                 if (copy_to_user(argp, &tr, sizeof(tr)))
3230                         goto out;
3231                 r = 0;
3232                 break;
3233         }
3234         case KVM_SET_GUEST_DEBUG: {
3235                 struct kvm_guest_debug dbg;
3236
3237                 r = -EFAULT;
3238                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3239                         goto out;
3240                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3241                 break;
3242         }
3243         case KVM_SET_SIGNAL_MASK: {
3244                 struct kvm_signal_mask __user *sigmask_arg = argp;
3245                 struct kvm_signal_mask kvm_sigmask;
3246                 sigset_t sigset, *p;
3247
3248                 p = NULL;
3249                 if (argp) {
3250                         r = -EFAULT;
3251                         if (copy_from_user(&kvm_sigmask, argp,
3252                                            sizeof(kvm_sigmask)))
3253                                 goto out;
3254                         r = -EINVAL;
3255                         if (kvm_sigmask.len != sizeof(sigset))
3256                                 goto out;
3257                         r = -EFAULT;
3258                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3259                                            sizeof(sigset)))
3260                                 goto out;
3261                         p = &sigset;
3262                 }
3263                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3264                 break;
3265         }
3266         case KVM_GET_FPU: {
3267                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3268                 r = -ENOMEM;
3269                 if (!fpu)
3270                         goto out;
3271                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3272                 if (r)
3273                         goto out;
3274                 r = -EFAULT;
3275                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3276                         goto out;
3277                 r = 0;
3278                 break;
3279         }
3280         case KVM_SET_FPU: {
3281                 fpu = memdup_user(argp, sizeof(*fpu));
3282                 if (IS_ERR(fpu)) {
3283                         r = PTR_ERR(fpu);
3284                         fpu = NULL;
3285                         goto out;
3286                 }
3287                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3288                 break;
3289         }
3290         default:
3291                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3292         }
3293 out:
3294         mutex_unlock(&vcpu->mutex);
3295         kfree(fpu);
3296         kfree(kvm_sregs);
3297         return r;
3298 }
3299
3300 #ifdef CONFIG_KVM_COMPAT
3301 static long kvm_vcpu_compat_ioctl(struct file *filp,
3302                                   unsigned int ioctl, unsigned long arg)
3303 {
3304         struct kvm_vcpu *vcpu = filp->private_data;
3305         void __user *argp = compat_ptr(arg);
3306         int r;
3307
3308         if (vcpu->kvm->mm != current->mm)
3309                 return -EIO;
3310
3311         switch (ioctl) {
3312         case KVM_SET_SIGNAL_MASK: {
3313                 struct kvm_signal_mask __user *sigmask_arg = argp;
3314                 struct kvm_signal_mask kvm_sigmask;
3315                 sigset_t sigset;
3316
3317                 if (argp) {
3318                         r = -EFAULT;
3319                         if (copy_from_user(&kvm_sigmask, argp,
3320                                            sizeof(kvm_sigmask)))
3321                                 goto out;
3322                         r = -EINVAL;
3323                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3324                                 goto out;
3325                         r = -EFAULT;
3326                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3327                                 goto out;
3328                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3329                 } else
3330                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3331                 break;
3332         }
3333         default:
3334                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3335         }
3336
3337 out:
3338         return r;
3339 }
3340 #endif
3341
3342 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3343 {
3344         struct kvm_device *dev = filp->private_data;
3345
3346         if (dev->ops->mmap)
3347                 return dev->ops->mmap(dev, vma);
3348
3349         return -ENODEV;
3350 }
3351
3352 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3353                                  int (*accessor)(struct kvm_device *dev,
3354                                                  struct kvm_device_attr *attr),
3355                                  unsigned long arg)
3356 {
3357         struct kvm_device_attr attr;
3358
3359         if (!accessor)
3360                 return -EPERM;
3361
3362         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3363                 return -EFAULT;
3364
3365         return accessor(dev, &attr);
3366 }
3367
3368 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3369                              unsigned long arg)
3370 {
3371         struct kvm_device *dev = filp->private_data;
3372
3373         if (dev->kvm->mm != current->mm)
3374                 return -EIO;
3375
3376         switch (ioctl) {
3377         case KVM_SET_DEVICE_ATTR:
3378                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3379         case KVM_GET_DEVICE_ATTR:
3380                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3381         case KVM_HAS_DEVICE_ATTR:
3382                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3383         default:
3384                 if (dev->ops->ioctl)
3385                         return dev->ops->ioctl(dev, ioctl, arg);
3386
3387                 return -ENOTTY;
3388         }
3389 }
3390
3391 static int kvm_device_release(struct inode *inode, struct file *filp)
3392 {
3393         struct kvm_device *dev = filp->private_data;
3394         struct kvm *kvm = dev->kvm;
3395
3396         if (dev->ops->release) {
3397                 mutex_lock(&kvm->lock);
3398                 list_del(&dev->vm_node);
3399                 dev->ops->release(dev);
3400                 mutex_unlock(&kvm->lock);
3401         }
3402
3403         kvm_put_kvm(kvm);
3404         return 0;
3405 }
3406
3407 static const struct file_operations kvm_device_fops = {
3408         .unlocked_ioctl = kvm_device_ioctl,
3409         .release = kvm_device_release,
3410         KVM_COMPAT(kvm_device_ioctl),
3411         .mmap = kvm_device_mmap,
3412 };
3413
3414 struct kvm_device *kvm_device_from_filp(struct file *filp)
3415 {
3416         if (filp->f_op != &kvm_device_fops)
3417                 return NULL;
3418
3419         return filp->private_data;
3420 }
3421
3422 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3423 #ifdef CONFIG_KVM_MPIC
3424         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3425         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3426 #endif
3427 };
3428
3429 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3430 {
3431         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3432                 return -ENOSPC;
3433
3434         if (kvm_device_ops_table[type] != NULL)
3435                 return -EEXIST;
3436
3437         kvm_device_ops_table[type] = ops;
3438         return 0;
3439 }
3440
3441 void kvm_unregister_device_ops(u32 type)
3442 {
3443         if (kvm_device_ops_table[type] != NULL)
3444                 kvm_device_ops_table[type] = NULL;
3445 }
3446
3447 static int kvm_ioctl_create_device(struct kvm *kvm,
3448                                    struct kvm_create_device *cd)
3449 {
3450         const struct kvm_device_ops *ops = NULL;
3451         struct kvm_device *dev;
3452         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3453         int type;
3454         int ret;
3455
3456         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3457                 return -ENODEV;
3458
3459         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3460         ops = kvm_device_ops_table[type];
3461         if (ops == NULL)
3462                 return -ENODEV;
3463
3464         if (test)
3465                 return 0;
3466
3467         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3468         if (!dev)
3469                 return -ENOMEM;
3470
3471         dev->ops = ops;
3472         dev->kvm = kvm;
3473
3474         mutex_lock(&kvm->lock);
3475         ret = ops->create(dev, type);
3476         if (ret < 0) {
3477                 mutex_unlock(&kvm->lock);
3478                 kfree(dev);
3479                 return ret;
3480         }
3481         list_add(&dev->vm_node, &kvm->devices);
3482         mutex_unlock(&kvm->lock);
3483
3484         if (ops->init)
3485                 ops->init(dev);
3486
3487         kvm_get_kvm(kvm);
3488         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3489         if (ret < 0) {
3490                 kvm_put_kvm_no_destroy(kvm);
3491                 mutex_lock(&kvm->lock);
3492                 list_del(&dev->vm_node);
3493                 mutex_unlock(&kvm->lock);
3494                 ops->destroy(dev);
3495                 return ret;
3496         }
3497
3498         cd->fd = ret;
3499         return 0;
3500 }
3501
3502 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3503 {
3504         switch (arg) {
3505         case KVM_CAP_USER_MEMORY:
3506         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3507         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3508         case KVM_CAP_INTERNAL_ERROR_DATA:
3509 #ifdef CONFIG_HAVE_KVM_MSI
3510         case KVM_CAP_SIGNAL_MSI:
3511 #endif
3512 #ifdef CONFIG_HAVE_KVM_IRQFD
3513         case KVM_CAP_IRQFD:
3514         case KVM_CAP_IRQFD_RESAMPLE:
3515 #endif
3516         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3517         case KVM_CAP_CHECK_EXTENSION_VM:
3518         case KVM_CAP_ENABLE_CAP_VM:
3519                 return 1;
3520 #ifdef CONFIG_KVM_MMIO
3521         case KVM_CAP_COALESCED_MMIO:
3522                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3523         case KVM_CAP_COALESCED_PIO:
3524                 return 1;
3525 #endif
3526 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3527         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3528                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3529 #endif
3530 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3531         case KVM_CAP_IRQ_ROUTING:
3532                 return KVM_MAX_IRQ_ROUTES;
3533 #endif
3534 #if KVM_ADDRESS_SPACE_NUM > 1
3535         case KVM_CAP_MULTI_ADDRESS_SPACE:
3536                 return KVM_ADDRESS_SPACE_NUM;
3537 #endif
3538         case KVM_CAP_NR_MEMSLOTS:
3539                 return KVM_USER_MEM_SLOTS;
3540         default:
3541                 break;
3542         }
3543         return kvm_vm_ioctl_check_extension(kvm, arg);
3544 }
3545
3546 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3547                                                   struct kvm_enable_cap *cap)
3548 {
3549         return -EINVAL;
3550 }
3551
3552 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3553                                            struct kvm_enable_cap *cap)
3554 {
3555         switch (cap->cap) {
3556 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3557         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3558                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3559
3560                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3561                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3562
3563                 if (cap->flags || (cap->args[0] & ~allowed_options))
3564                         return -EINVAL;
3565                 kvm->manual_dirty_log_protect = cap->args[0];
3566                 return 0;
3567         }
3568 #endif
3569         default:
3570                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3571         }
3572 }
3573
3574 static long kvm_vm_ioctl(struct file *filp,
3575                            unsigned int ioctl, unsigned long arg)
3576 {
3577         struct kvm *kvm = filp->private_data;
3578         void __user *argp = (void __user *)arg;
3579         int r;
3580
3581         if (kvm->mm != current->mm)
3582                 return -EIO;
3583         switch (ioctl) {
3584         case KVM_CREATE_VCPU:
3585                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3586                 break;
3587         case KVM_ENABLE_CAP: {
3588                 struct kvm_enable_cap cap;
3589
3590                 r = -EFAULT;
3591                 if (copy_from_user(&cap, argp, sizeof(cap)))
3592                         goto out;
3593                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3594                 break;
3595         }
3596         case KVM_SET_USER_MEMORY_REGION: {
3597                 struct kvm_userspace_memory_region kvm_userspace_mem;
3598
3599                 r = -EFAULT;
3600                 if (copy_from_user(&kvm_userspace_mem, argp,
3601                                                 sizeof(kvm_userspace_mem)))
3602                         goto out;
3603
3604                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3605                 break;
3606         }
3607         case KVM_GET_DIRTY_LOG: {
3608                 struct kvm_dirty_log log;
3609
3610                 r = -EFAULT;
3611                 if (copy_from_user(&log, argp, sizeof(log)))
3612                         goto out;
3613                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3614                 break;
3615         }
3616 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3617         case KVM_CLEAR_DIRTY_LOG: {
3618                 struct kvm_clear_dirty_log log;
3619
3620                 r = -EFAULT;
3621                 if (copy_from_user(&log, argp, sizeof(log)))
3622                         goto out;
3623                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3624                 break;
3625         }
3626 #endif
3627 #ifdef CONFIG_KVM_MMIO
3628         case KVM_REGISTER_COALESCED_MMIO: {
3629                 struct kvm_coalesced_mmio_zone zone;
3630
3631                 r = -EFAULT;
3632                 if (copy_from_user(&zone, argp, sizeof(zone)))
3633                         goto out;
3634                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3635                 break;
3636         }
3637         case KVM_UNREGISTER_COALESCED_MMIO: {
3638                 struct kvm_coalesced_mmio_zone zone;
3639
3640                 r = -EFAULT;
3641                 if (copy_from_user(&zone, argp, sizeof(zone)))
3642                         goto out;
3643                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3644                 break;
3645         }
3646 #endif
3647         case KVM_IRQFD: {
3648                 struct kvm_irqfd data;
3649
3650                 r = -EFAULT;
3651                 if (copy_from_user(&data, argp, sizeof(data)))
3652                         goto out;
3653                 r = kvm_irqfd(kvm, &data);
3654                 break;
3655         }
3656         case KVM_IOEVENTFD: {
3657                 struct kvm_ioeventfd data;
3658
3659                 r = -EFAULT;
3660                 if (copy_from_user(&data, argp, sizeof(data)))
3661                         goto out;
3662                 r = kvm_ioeventfd(kvm, &data);
3663                 break;
3664         }
3665 #ifdef CONFIG_HAVE_KVM_MSI
3666         case KVM_SIGNAL_MSI: {
3667                 struct kvm_msi msi;
3668
3669                 r = -EFAULT;
3670                 if (copy_from_user(&msi, argp, sizeof(msi)))
3671                         goto out;
3672                 r = kvm_send_userspace_msi(kvm, &msi);
3673                 break;
3674         }
3675 #endif
3676 #ifdef __KVM_HAVE_IRQ_LINE
3677         case KVM_IRQ_LINE_STATUS:
3678         case KVM_IRQ_LINE: {
3679                 struct kvm_irq_level irq_event;
3680
3681                 r = -EFAULT;
3682                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3683                         goto out;
3684
3685                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3686                                         ioctl == KVM_IRQ_LINE_STATUS);
3687                 if (r)
3688                         goto out;
3689
3690                 r = -EFAULT;
3691                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3692                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3693                                 goto out;
3694                 }
3695
3696                 r = 0;
3697                 break;
3698         }
3699 #endif
3700 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3701         case KVM_SET_GSI_ROUTING: {
3702                 struct kvm_irq_routing routing;
3703                 struct kvm_irq_routing __user *urouting;
3704                 struct kvm_irq_routing_entry *entries = NULL;
3705
3706                 r = -EFAULT;
3707                 if (copy_from_user(&routing, argp, sizeof(routing)))
3708                         goto out;
3709                 r = -EINVAL;
3710                 if (!kvm_arch_can_set_irq_routing(kvm))
3711                         goto out;
3712                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3713                         goto out;
3714                 if (routing.flags)
3715                         goto out;
3716                 if (routing.nr) {
3717                         r = -ENOMEM;
3718                         entries = vmalloc(array_size(sizeof(*entries),
3719                                                      routing.nr));
3720                         if (!entries)
3721                                 goto out;
3722                         r = -EFAULT;
3723                         urouting = argp;
3724                         if (copy_from_user(entries, urouting->entries,
3725                                            routing.nr * sizeof(*entries)))
3726                                 goto out_free_irq_routing;
3727                 }
3728                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3729                                         routing.flags);
3730 out_free_irq_routing:
3731                 vfree(entries);
3732                 break;
3733         }
3734 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3735         case KVM_CREATE_DEVICE: {
3736                 struct kvm_create_device cd;
3737
3738                 r = -EFAULT;
3739                 if (copy_from_user(&cd, argp, sizeof(cd)))
3740                         goto out;
3741
3742                 r = kvm_ioctl_create_device(kvm, &cd);
3743                 if (r)
3744                         goto out;
3745
3746                 r = -EFAULT;
3747                 if (copy_to_user(argp, &cd, sizeof(cd)))
3748                         goto out;
3749
3750                 r = 0;
3751                 break;
3752         }
3753         case KVM_CHECK_EXTENSION:
3754                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3755                 break;
3756         default:
3757                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3758         }
3759 out:
3760         return r;
3761 }
3762
3763 #ifdef CONFIG_KVM_COMPAT
3764 struct compat_kvm_dirty_log {
3765         __u32 slot;
3766         __u32 padding1;
3767         union {
3768                 compat_uptr_t dirty_bitmap; /* one bit per page */
3769                 __u64 padding2;
3770         };
3771 };
3772
3773 static long kvm_vm_compat_ioctl(struct file *filp,
3774                            unsigned int ioctl, unsigned long arg)
3775 {
3776         struct kvm *kvm = filp->private_data;
3777         int r;
3778
3779         if (kvm->mm != current->mm)
3780                 return -EIO;
3781         switch (ioctl) {
3782         case KVM_GET_DIRTY_LOG: {
3783                 struct compat_kvm_dirty_log compat_log;
3784                 struct kvm_dirty_log log;
3785
3786                 if (copy_from_user(&compat_log, (void __user *)arg,
3787                                    sizeof(compat_log)))
3788                         return -EFAULT;
3789                 log.slot         = compat_log.slot;
3790                 log.padding1     = compat_log.padding1;
3791                 log.padding2     = compat_log.padding2;
3792                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3793
3794                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3795                 break;
3796         }
3797         default:
3798                 r = kvm_vm_ioctl(filp, ioctl, arg);
3799         }
3800         return r;
3801 }
3802 #endif
3803
3804 static struct file_operations kvm_vm_fops = {
3805         .release        = kvm_vm_release,
3806         .unlocked_ioctl = kvm_vm_ioctl,
3807         .llseek         = noop_llseek,
3808         KVM_COMPAT(kvm_vm_compat_ioctl),
3809 };
3810
3811 static int kvm_dev_ioctl_create_vm(unsigned long type)
3812 {
3813         int r;
3814         struct kvm *kvm;
3815         struct file *file;
3816
3817         kvm = kvm_create_vm(type);
3818         if (IS_ERR(kvm))
3819                 return PTR_ERR(kvm);
3820 #ifdef CONFIG_KVM_MMIO
3821         r = kvm_coalesced_mmio_init(kvm);
3822         if (r < 0)
3823                 goto put_kvm;
3824 #endif
3825         r = get_unused_fd_flags(O_CLOEXEC);
3826         if (r < 0)
3827                 goto put_kvm;
3828
3829         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3830         if (IS_ERR(file)) {
3831                 put_unused_fd(r);
3832                 r = PTR_ERR(file);
3833                 goto put_kvm;
3834         }
3835
3836         /*
3837          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3838          * already set, with ->release() being kvm_vm_release().  In error
3839          * cases it will be called by the final fput(file) and will take
3840          * care of doing kvm_put_kvm(kvm).
3841          */
3842         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3843                 put_unused_fd(r);
3844                 fput(file);
3845                 return -ENOMEM;
3846         }
3847         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3848
3849         fd_install(r, file);
3850         return r;
3851
3852 put_kvm:
3853         kvm_put_kvm(kvm);
3854         return r;
3855 }
3856
3857 static long kvm_dev_ioctl(struct file *filp,
3858                           unsigned int ioctl, unsigned long arg)
3859 {
3860         long r = -EINVAL;
3861
3862         switch (ioctl) {
3863         case KVM_GET_API_VERSION:
3864                 if (arg)
3865                         goto out;
3866                 r = KVM_API_VERSION;
3867                 break;
3868         case KVM_CREATE_VM:
3869                 r = kvm_dev_ioctl_create_vm(arg);
3870                 break;
3871         case KVM_CHECK_EXTENSION:
3872                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3873                 break;
3874         case KVM_GET_VCPU_MMAP_SIZE:
3875                 if (arg)
3876                         goto out;
3877                 r = PAGE_SIZE;     /* struct kvm_run */
3878 #ifdef CONFIG_X86
3879                 r += PAGE_SIZE;    /* pio data page */
3880 #endif
3881 #ifdef CONFIG_KVM_MMIO
3882                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3883 #endif
3884                 break;
3885         case KVM_TRACE_ENABLE:
3886         case KVM_TRACE_PAUSE:
3887         case KVM_TRACE_DISABLE:
3888                 r = -EOPNOTSUPP;
3889                 break;
3890         default:
3891                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3892         }
3893 out:
3894         return r;
3895 }
3896
3897 static struct file_operations kvm_chardev_ops = {
3898         .unlocked_ioctl = kvm_dev_ioctl,
3899         .llseek         = noop_llseek,
3900         KVM_COMPAT(kvm_dev_ioctl),
3901 };
3902
3903 static struct miscdevice kvm_dev = {
3904         KVM_MINOR,
3905         "kvm",
3906         &kvm_chardev_ops,
3907 };
3908
3909 static void hardware_enable_nolock(void *junk)
3910 {
3911         int cpu = raw_smp_processor_id();
3912         int r;
3913
3914         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3915                 return;
3916
3917         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3918
3919         r = kvm_arch_hardware_enable();
3920
3921         if (r) {
3922                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3923                 atomic_inc(&hardware_enable_failed);
3924                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3925         }
3926 }
3927
3928 static int kvm_starting_cpu(unsigned int cpu)
3929 {
3930         raw_spin_lock(&kvm_count_lock);
3931         if (kvm_usage_count)
3932                 hardware_enable_nolock(NULL);
3933         raw_spin_unlock(&kvm_count_lock);
3934         return 0;
3935 }
3936
3937 static void hardware_disable_nolock(void *junk)
3938 {
3939         int cpu = raw_smp_processor_id();
3940
3941         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3942                 return;
3943         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3944         kvm_arch_hardware_disable();
3945 }
3946
3947 static int kvm_dying_cpu(unsigned int cpu)
3948 {
3949         raw_spin_lock(&kvm_count_lock);
3950         if (kvm_usage_count)
3951                 hardware_disable_nolock(NULL);
3952         raw_spin_unlock(&kvm_count_lock);
3953         return 0;
3954 }
3955
3956 static void hardware_disable_all_nolock(void)
3957 {
3958         BUG_ON(!kvm_usage_count);
3959
3960         kvm_usage_count--;
3961         if (!kvm_usage_count)
3962                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3963 }
3964
3965 static void hardware_disable_all(void)
3966 {
3967         raw_spin_lock(&kvm_count_lock);
3968         hardware_disable_all_nolock();
3969         raw_spin_unlock(&kvm_count_lock);
3970 }
3971
3972 static int hardware_enable_all(void)
3973 {
3974         int r = 0;
3975
3976         raw_spin_lock(&kvm_count_lock);
3977
3978         kvm_usage_count++;
3979         if (kvm_usage_count == 1) {
3980                 atomic_set(&hardware_enable_failed, 0);
3981                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3982
3983                 if (atomic_read(&hardware_enable_failed)) {
3984                         hardware_disable_all_nolock();
3985                         r = -EBUSY;
3986                 }
3987         }
3988
3989         raw_spin_unlock(&kvm_count_lock);
3990
3991         return r;
3992 }
3993
3994 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3995                       void *v)
3996 {
3997         /*
3998          * Some (well, at least mine) BIOSes hang on reboot if
3999          * in vmx root mode.
4000          *
4001          * And Intel TXT required VMX off for all cpu when system shutdown.
4002          */
4003         pr_info("kvm: exiting hardware virtualization\n");
4004         kvm_rebooting = true;
4005         on_each_cpu(hardware_disable_nolock, NULL, 1);
4006         return NOTIFY_OK;
4007 }
4008
4009 static struct notifier_block kvm_reboot_notifier = {
4010         .notifier_call = kvm_reboot,
4011         .priority = 0,
4012 };
4013
4014 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4015 {
4016         int i;
4017
4018         for (i = 0; i < bus->dev_count; i++) {
4019                 struct kvm_io_device *pos = bus->range[i].dev;
4020
4021                 kvm_iodevice_destructor(pos);
4022         }
4023         kfree(bus);
4024 }
4025
4026 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4027                                  const struct kvm_io_range *r2)
4028 {
4029         gpa_t addr1 = r1->addr;
4030         gpa_t addr2 = r2->addr;
4031
4032         if (addr1 < addr2)
4033                 return -1;
4034
4035         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4036          * accept any overlapping write.  Any order is acceptable for
4037          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4038          * we process all of them.
4039          */
4040         if (r2->len) {
4041                 addr1 += r1->len;
4042                 addr2 += r2->len;
4043         }
4044
4045         if (addr1 > addr2)
4046                 return 1;
4047
4048         return 0;
4049 }
4050
4051 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4052 {
4053         return kvm_io_bus_cmp(p1, p2);
4054 }
4055
4056 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4057                              gpa_t addr, int len)
4058 {
4059         struct kvm_io_range *range, key;
4060         int off;
4061
4062         key = (struct kvm_io_range) {
4063                 .addr = addr,
4064                 .len = len,
4065         };
4066
4067         range = bsearch(&key, bus->range, bus->dev_count,
4068                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4069         if (range == NULL)
4070                 return -ENOENT;
4071
4072         off = range - bus->range;
4073
4074         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4075                 off--;
4076
4077         return off;
4078 }
4079
4080 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4081                               struct kvm_io_range *range, const void *val)
4082 {
4083         int idx;
4084
4085         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4086         if (idx < 0)
4087                 return -EOPNOTSUPP;
4088
4089         while (idx < bus->dev_count &&
4090                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4091                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4092                                         range->len, val))
4093                         return idx;
4094                 idx++;
4095         }
4096
4097         return -EOPNOTSUPP;
4098 }
4099
4100 /* kvm_io_bus_write - called under kvm->slots_lock */
4101 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4102                      int len, const void *val)
4103 {
4104         struct kvm_io_bus *bus;
4105         struct kvm_io_range range;
4106         int r;
4107
4108         range = (struct kvm_io_range) {
4109                 .addr = addr,
4110                 .len = len,
4111         };
4112
4113         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4114         if (!bus)
4115                 return -ENOMEM;
4116         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4117         return r < 0 ? r : 0;
4118 }
4119 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4120
4121 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4122 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4123                             gpa_t addr, int len, const void *val, long cookie)
4124 {
4125         struct kvm_io_bus *bus;
4126         struct kvm_io_range range;
4127
4128         range = (struct kvm_io_range) {
4129                 .addr = addr,
4130                 .len = len,
4131         };
4132
4133         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4134         if (!bus)
4135                 return -ENOMEM;
4136
4137         /* First try the device referenced by cookie. */
4138         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4139             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4140                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4141                                         val))
4142                         return cookie;
4143
4144         /*
4145          * cookie contained garbage; fall back to search and return the
4146          * correct cookie value.
4147          */
4148         return __kvm_io_bus_write(vcpu, bus, &range, val);
4149 }
4150
4151 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4152                              struct kvm_io_range *range, void *val)
4153 {
4154         int idx;
4155
4156         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4157         if (idx < 0)
4158                 return -EOPNOTSUPP;
4159
4160         while (idx < bus->dev_count &&
4161                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4162                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4163                                        range->len, val))
4164                         return idx;
4165                 idx++;
4166         }
4167
4168         return -EOPNOTSUPP;
4169 }
4170
4171 /* kvm_io_bus_read - called under kvm->slots_lock */
4172 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4173                     int len, void *val)
4174 {
4175         struct kvm_io_bus *bus;
4176         struct kvm_io_range range;
4177         int r;
4178
4179         range = (struct kvm_io_range) {
4180                 .addr = addr,
4181                 .len = len,
4182         };
4183
4184         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4185         if (!bus)
4186                 return -ENOMEM;
4187         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4188         return r < 0 ? r : 0;
4189 }
4190
4191 /* Caller must hold slots_lock. */
4192 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4193                             int len, struct kvm_io_device *dev)
4194 {
4195         int i;
4196         struct kvm_io_bus *new_bus, *bus;
4197         struct kvm_io_range range;
4198
4199         bus = kvm_get_bus(kvm, bus_idx);
4200         if (!bus)
4201                 return -ENOMEM;
4202
4203         /* exclude ioeventfd which is limited by maximum fd */
4204         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4205                 return -ENOSPC;
4206
4207         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4208                           GFP_KERNEL_ACCOUNT);
4209         if (!new_bus)
4210                 return -ENOMEM;
4211
4212         range = (struct kvm_io_range) {
4213                 .addr = addr,
4214                 .len = len,
4215                 .dev = dev,
4216         };
4217
4218         for (i = 0; i < bus->dev_count; i++)
4219                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4220                         break;
4221
4222         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4223         new_bus->dev_count++;
4224         new_bus->range[i] = range;
4225         memcpy(new_bus->range + i + 1, bus->range + i,
4226                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4227         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4228         synchronize_srcu_expedited(&kvm->srcu);
4229         kfree(bus);
4230
4231         return 0;
4232 }
4233
4234 /* Caller must hold slots_lock. */
4235 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4236                                struct kvm_io_device *dev)
4237 {
4238         int i;
4239         struct kvm_io_bus *new_bus, *bus;
4240
4241         bus = kvm_get_bus(kvm, bus_idx);
4242         if (!bus)
4243                 return;
4244
4245         for (i = 0; i < bus->dev_count; i++)
4246                 if (bus->range[i].dev == dev) {
4247                         break;
4248                 }
4249
4250         if (i == bus->dev_count)
4251                 return;
4252
4253         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4254                           GFP_KERNEL_ACCOUNT);
4255         if (!new_bus)  {
4256                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4257                 goto broken;
4258         }
4259
4260         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4261         new_bus->dev_count--;
4262         memcpy(new_bus->range + i, bus->range + i + 1,
4263                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4264
4265 broken:
4266         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4267         synchronize_srcu_expedited(&kvm->srcu);
4268         kfree(bus);
4269         return;
4270 }
4271
4272 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4273                                          gpa_t addr)
4274 {
4275         struct kvm_io_bus *bus;
4276         int dev_idx, srcu_idx;
4277         struct kvm_io_device *iodev = NULL;
4278
4279         srcu_idx = srcu_read_lock(&kvm->srcu);
4280
4281         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4282         if (!bus)
4283                 goto out_unlock;
4284
4285         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4286         if (dev_idx < 0)
4287                 goto out_unlock;
4288
4289         iodev = bus->range[dev_idx].dev;
4290
4291 out_unlock:
4292         srcu_read_unlock(&kvm->srcu, srcu_idx);
4293
4294         return iodev;
4295 }
4296 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4297
4298 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4299                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4300                            const char *fmt)
4301 {
4302         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4303                                           inode->i_private;
4304
4305         /* The debugfs files are a reference to the kvm struct which
4306          * is still valid when kvm_destroy_vm is called.
4307          * To avoid the race between open and the removal of the debugfs
4308          * directory we test against the users count.
4309          */
4310         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4311                 return -ENOENT;
4312
4313         if (simple_attr_open(inode, file, get,
4314                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4315                     ? set : NULL,
4316                     fmt)) {
4317                 kvm_put_kvm(stat_data->kvm);
4318                 return -ENOMEM;
4319         }
4320
4321         return 0;
4322 }
4323
4324 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4325 {
4326         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4327                                           inode->i_private;
4328
4329         simple_attr_release(inode, file);
4330         kvm_put_kvm(stat_data->kvm);
4331
4332         return 0;
4333 }
4334
4335 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4336 {
4337         *val = *(ulong *)((void *)kvm + offset);
4338
4339         return 0;
4340 }
4341
4342 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4343 {
4344         *(ulong *)((void *)kvm + offset) = 0;
4345
4346         return 0;
4347 }
4348
4349 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4350 {
4351         int i;
4352         struct kvm_vcpu *vcpu;
4353
4354         *val = 0;
4355
4356         kvm_for_each_vcpu(i, vcpu, kvm)
4357                 *val += *(u64 *)((void *)vcpu + offset);
4358
4359         return 0;
4360 }
4361
4362 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4363 {
4364         int i;
4365         struct kvm_vcpu *vcpu;
4366
4367         kvm_for_each_vcpu(i, vcpu, kvm)
4368                 *(u64 *)((void *)vcpu + offset) = 0;
4369
4370         return 0;
4371 }
4372
4373 static int kvm_stat_data_get(void *data, u64 *val)
4374 {
4375         int r = -EFAULT;
4376         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4377
4378         switch (stat_data->dbgfs_item->kind) {
4379         case KVM_STAT_VM:
4380                 r = kvm_get_stat_per_vm(stat_data->kvm,
4381                                         stat_data->dbgfs_item->offset, val);
4382                 break;
4383         case KVM_STAT_VCPU:
4384                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4385                                           stat_data->dbgfs_item->offset, val);
4386                 break;
4387         }
4388
4389         return r;
4390 }
4391
4392 static int kvm_stat_data_clear(void *data, u64 val)
4393 {
4394         int r = -EFAULT;
4395         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4396
4397         if (val)
4398                 return -EINVAL;
4399
4400         switch (stat_data->dbgfs_item->kind) {
4401         case KVM_STAT_VM:
4402                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4403                                           stat_data->dbgfs_item->offset);
4404                 break;
4405         case KVM_STAT_VCPU:
4406                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4407                                             stat_data->dbgfs_item->offset);
4408                 break;
4409         }
4410
4411         return r;
4412 }
4413
4414 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4415 {
4416         __simple_attr_check_format("%llu\n", 0ull);
4417         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4418                                 kvm_stat_data_clear, "%llu\n");
4419 }
4420
4421 static const struct file_operations stat_fops_per_vm = {
4422         .owner = THIS_MODULE,
4423         .open = kvm_stat_data_open,
4424         .release = kvm_debugfs_release,
4425         .read = simple_attr_read,
4426         .write = simple_attr_write,
4427         .llseek = no_llseek,
4428 };
4429
4430 static int vm_stat_get(void *_offset, u64 *val)
4431 {
4432         unsigned offset = (long)_offset;
4433         struct kvm *kvm;
4434         u64 tmp_val;
4435
4436         *val = 0;
4437         mutex_lock(&kvm_lock);
4438         list_for_each_entry(kvm, &vm_list, vm_list) {
4439                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4440                 *val += tmp_val;
4441         }
4442         mutex_unlock(&kvm_lock);
4443         return 0;
4444 }
4445
4446 static int vm_stat_clear(void *_offset, u64 val)
4447 {
4448         unsigned offset = (long)_offset;
4449         struct kvm *kvm;
4450
4451         if (val)
4452                 return -EINVAL;
4453
4454         mutex_lock(&kvm_lock);
4455         list_for_each_entry(kvm, &vm_list, vm_list) {
4456                 kvm_clear_stat_per_vm(kvm, offset);
4457         }
4458         mutex_unlock(&kvm_lock);
4459
4460         return 0;
4461 }
4462
4463 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4464
4465 static int vcpu_stat_get(void *_offset, u64 *val)
4466 {
4467         unsigned offset = (long)_offset;
4468         struct kvm *kvm;
4469         u64 tmp_val;
4470
4471         *val = 0;
4472         mutex_lock(&kvm_lock);
4473         list_for_each_entry(kvm, &vm_list, vm_list) {
4474                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4475                 *val += tmp_val;
4476         }
4477         mutex_unlock(&kvm_lock);
4478         return 0;
4479 }
4480
4481 static int vcpu_stat_clear(void *_offset, u64 val)
4482 {
4483         unsigned offset = (long)_offset;
4484         struct kvm *kvm;
4485
4486         if (val)
4487                 return -EINVAL;
4488
4489         mutex_lock(&kvm_lock);
4490         list_for_each_entry(kvm, &vm_list, vm_list) {
4491                 kvm_clear_stat_per_vcpu(kvm, offset);
4492         }
4493         mutex_unlock(&kvm_lock);
4494
4495         return 0;
4496 }
4497
4498 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4499                         "%llu\n");
4500
4501 static const struct file_operations *stat_fops[] = {
4502         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4503         [KVM_STAT_VM]   = &vm_stat_fops,
4504 };
4505
4506 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4507 {
4508         struct kobj_uevent_env *env;
4509         unsigned long long created, active;
4510
4511         if (!kvm_dev.this_device || !kvm)
4512                 return;
4513
4514         mutex_lock(&kvm_lock);
4515         if (type == KVM_EVENT_CREATE_VM) {
4516                 kvm_createvm_count++;
4517                 kvm_active_vms++;
4518         } else if (type == KVM_EVENT_DESTROY_VM) {
4519                 kvm_active_vms--;
4520         }
4521         created = kvm_createvm_count;
4522         active = kvm_active_vms;
4523         mutex_unlock(&kvm_lock);
4524
4525         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4526         if (!env)
4527                 return;
4528
4529         add_uevent_var(env, "CREATED=%llu", created);
4530         add_uevent_var(env, "COUNT=%llu", active);
4531
4532         if (type == KVM_EVENT_CREATE_VM) {
4533                 add_uevent_var(env, "EVENT=create");
4534                 kvm->userspace_pid = task_pid_nr(current);
4535         } else if (type == KVM_EVENT_DESTROY_VM) {
4536                 add_uevent_var(env, "EVENT=destroy");
4537         }
4538         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4539
4540         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4541                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4542
4543                 if (p) {
4544                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4545                         if (!IS_ERR(tmp))
4546                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4547                         kfree(p);
4548                 }
4549         }
4550         /* no need for checks, since we are adding at most only 5 keys */
4551         env->envp[env->envp_idx++] = NULL;
4552         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4553         kfree(env);
4554 }
4555
4556 static void kvm_init_debug(void)
4557 {
4558         struct kvm_stats_debugfs_item *p;
4559
4560         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4561
4562         kvm_debugfs_num_entries = 0;
4563         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4564                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4565                                     kvm_debugfs_dir, (void *)(long)p->offset,
4566                                     stat_fops[p->kind]);
4567         }
4568 }
4569
4570 static int kvm_suspend(void)
4571 {
4572         if (kvm_usage_count)
4573                 hardware_disable_nolock(NULL);
4574         return 0;
4575 }
4576
4577 static void kvm_resume(void)
4578 {
4579         if (kvm_usage_count) {
4580 #ifdef CONFIG_LOCKDEP
4581                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4582 #endif
4583                 hardware_enable_nolock(NULL);
4584         }
4585 }
4586
4587 static struct syscore_ops kvm_syscore_ops = {
4588         .suspend = kvm_suspend,
4589         .resume = kvm_resume,
4590 };
4591
4592 static inline
4593 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4594 {
4595         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4596 }
4597
4598 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4599 {
4600         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4601
4602         WRITE_ONCE(vcpu->preempted, false);
4603         WRITE_ONCE(vcpu->ready, false);
4604
4605         __this_cpu_write(kvm_running_vcpu, vcpu);
4606         kvm_arch_sched_in(vcpu, cpu);
4607         kvm_arch_vcpu_load(vcpu, cpu);
4608 }
4609
4610 static void kvm_sched_out(struct preempt_notifier *pn,
4611                           struct task_struct *next)
4612 {
4613         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4614
4615         if (current->state == TASK_RUNNING) {
4616                 WRITE_ONCE(vcpu->preempted, true);
4617                 WRITE_ONCE(vcpu->ready, true);
4618         }
4619         kvm_arch_vcpu_put(vcpu);
4620         __this_cpu_write(kvm_running_vcpu, NULL);
4621 }
4622
4623 /**
4624  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4625  *
4626  * We can disable preemption locally around accessing the per-CPU variable,
4627  * and use the resolved vcpu pointer after enabling preemption again,
4628  * because even if the current thread is migrated to another CPU, reading
4629  * the per-CPU value later will give us the same value as we update the
4630  * per-CPU variable in the preempt notifier handlers.
4631  */
4632 struct kvm_vcpu *kvm_get_running_vcpu(void)
4633 {
4634         struct kvm_vcpu *vcpu;
4635
4636         preempt_disable();
4637         vcpu = __this_cpu_read(kvm_running_vcpu);
4638         preempt_enable();
4639
4640         return vcpu;
4641 }
4642
4643 /**
4644  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4645  */
4646 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4647 {
4648         return &kvm_running_vcpu;
4649 }
4650
4651 struct kvm_cpu_compat_check {
4652         void *opaque;
4653         int *ret;
4654 };
4655
4656 static void check_processor_compat(void *data)
4657 {
4658         struct kvm_cpu_compat_check *c = data;
4659
4660         *c->ret = kvm_arch_check_processor_compat(c->opaque);
4661 }
4662
4663 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4664                   struct module *module)
4665 {
4666         struct kvm_cpu_compat_check c;
4667         int r;
4668         int cpu;
4669
4670         r = kvm_arch_init(opaque);
4671         if (r)
4672                 goto out_fail;
4673
4674         /*
4675          * kvm_arch_init makes sure there's at most one caller
4676          * for architectures that support multiple implementations,
4677          * like intel and amd on x86.
4678          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4679          * conflicts in case kvm is already setup for another implementation.
4680          */
4681         r = kvm_irqfd_init();
4682         if (r)
4683                 goto out_irqfd;
4684
4685         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4686                 r = -ENOMEM;
4687                 goto out_free_0;
4688         }
4689
4690         r = kvm_arch_hardware_setup(opaque);
4691         if (r < 0)
4692                 goto out_free_1;
4693
4694         c.ret = &r;
4695         c.opaque = opaque;
4696         for_each_online_cpu(cpu) {
4697                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4698                 if (r < 0)
4699                         goto out_free_2;
4700         }
4701
4702         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4703                                       kvm_starting_cpu, kvm_dying_cpu);
4704         if (r)
4705                 goto out_free_2;
4706         register_reboot_notifier(&kvm_reboot_notifier);
4707
4708         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4709         if (!vcpu_align)
4710                 vcpu_align = __alignof__(struct kvm_vcpu);
4711         kvm_vcpu_cache =
4712                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4713                                            SLAB_ACCOUNT,
4714                                            offsetof(struct kvm_vcpu, arch),
4715                                            sizeof_field(struct kvm_vcpu, arch),
4716                                            NULL);
4717         if (!kvm_vcpu_cache) {
4718                 r = -ENOMEM;
4719                 goto out_free_3;
4720         }
4721
4722         r = kvm_async_pf_init();
4723         if (r)
4724                 goto out_free;
4725
4726         kvm_chardev_ops.owner = module;
4727         kvm_vm_fops.owner = module;
4728         kvm_vcpu_fops.owner = module;
4729
4730         r = misc_register(&kvm_dev);
4731         if (r) {
4732                 pr_err("kvm: misc device register failed\n");
4733                 goto out_unreg;
4734         }
4735
4736         register_syscore_ops(&kvm_syscore_ops);
4737
4738         kvm_preempt_ops.sched_in = kvm_sched_in;
4739         kvm_preempt_ops.sched_out = kvm_sched_out;
4740
4741         kvm_init_debug();
4742
4743         r = kvm_vfio_ops_init();
4744         WARN_ON(r);
4745
4746         return 0;
4747
4748 out_unreg:
4749         kvm_async_pf_deinit();
4750 out_free:
4751         kmem_cache_destroy(kvm_vcpu_cache);
4752 out_free_3:
4753         unregister_reboot_notifier(&kvm_reboot_notifier);
4754         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4755 out_free_2:
4756         kvm_arch_hardware_unsetup();
4757 out_free_1:
4758         free_cpumask_var(cpus_hardware_enabled);
4759 out_free_0:
4760         kvm_irqfd_exit();
4761 out_irqfd:
4762         kvm_arch_exit();
4763 out_fail:
4764         return r;
4765 }
4766 EXPORT_SYMBOL_GPL(kvm_init);
4767
4768 void kvm_exit(void)
4769 {
4770         debugfs_remove_recursive(kvm_debugfs_dir);
4771         misc_deregister(&kvm_dev);
4772         kmem_cache_destroy(kvm_vcpu_cache);
4773         kvm_async_pf_deinit();
4774         unregister_syscore_ops(&kvm_syscore_ops);
4775         unregister_reboot_notifier(&kvm_reboot_notifier);
4776         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4777         on_each_cpu(hardware_disable_nolock, NULL, 1);
4778         kvm_arch_hardware_unsetup();
4779         kvm_arch_exit();
4780         kvm_irqfd_exit();
4781         free_cpumask_var(cpus_hardware_enabled);
4782         kvm_vfio_ops_exit();
4783 }
4784 EXPORT_SYMBOL_GPL(kvm_exit);
4785
4786 struct kvm_vm_worker_thread_context {
4787         struct kvm *kvm;
4788         struct task_struct *parent;
4789         struct completion init_done;
4790         kvm_vm_thread_fn_t thread_fn;
4791         uintptr_t data;
4792         int err;
4793 };
4794
4795 static int kvm_vm_worker_thread(void *context)
4796 {
4797         /*
4798          * The init_context is allocated on the stack of the parent thread, so
4799          * we have to locally copy anything that is needed beyond initialization
4800          */
4801         struct kvm_vm_worker_thread_context *init_context = context;
4802         struct kvm *kvm = init_context->kvm;
4803         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4804         uintptr_t data = init_context->data;
4805         int err;
4806
4807         err = kthread_park(current);
4808         /* kthread_park(current) is never supposed to return an error */
4809         WARN_ON(err != 0);
4810         if (err)
4811                 goto init_complete;
4812
4813         err = cgroup_attach_task_all(init_context->parent, current);
4814         if (err) {
4815                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4816                         __func__, err);
4817                 goto init_complete;
4818         }
4819
4820         set_user_nice(current, task_nice(init_context->parent));
4821
4822 init_complete:
4823         init_context->err = err;
4824         complete(&init_context->init_done);
4825         init_context = NULL;
4826
4827         if (err)
4828                 return err;
4829
4830         /* Wait to be woken up by the spawner before proceeding. */
4831         kthread_parkme();
4832
4833         if (!kthread_should_stop())
4834                 err = thread_fn(kvm, data);
4835
4836         return err;
4837 }
4838
4839 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4840                                 uintptr_t data, const char *name,
4841                                 struct task_struct **thread_ptr)
4842 {
4843         struct kvm_vm_worker_thread_context init_context = {};
4844         struct task_struct *thread;
4845
4846         *thread_ptr = NULL;
4847         init_context.kvm = kvm;
4848         init_context.parent = current;
4849         init_context.thread_fn = thread_fn;
4850         init_context.data = data;
4851         init_completion(&init_context.init_done);
4852
4853         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4854                              "%s-%d", name, task_pid_nr(current));
4855         if (IS_ERR(thread))
4856                 return PTR_ERR(thread);
4857
4858         /* kthread_run is never supposed to return NULL */
4859         WARN_ON(thread == NULL);
4860
4861         wait_for_completion(&init_context.init_done);
4862
4863         if (!init_context.err)
4864                 *thread_ptr = thread;
4865
4866         return init_context.err;
4867 }