Merge tag 'omap-for-v5.1/fixes-rc6' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* The start value to grow halt_poll_ns from */
85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
86 module_param(halt_poll_ns_grow_start, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
88
89 /* Default resets per-vcpu halt_poll_ns . */
90 unsigned int halt_poll_ns_shrink;
91 module_param(halt_poll_ns_shrink, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
93
94 /*
95  * Ordering of locks:
96  *
97  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
98  */
99
100 DEFINE_SPINLOCK(kvm_lock);
101 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
102 LIST_HEAD(vm_list);
103
104 static cpumask_var_t cpus_hardware_enabled;
105 static int kvm_usage_count;
106 static atomic_t hardware_enable_failed;
107
108 struct kmem_cache *kvm_vcpu_cache;
109 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
110
111 static __read_mostly struct preempt_ops kvm_preempt_ops;
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static int kvm_debugfs_num_entries;
117 static const struct file_operations *stat_fops_per_vm[];
118
119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120                            unsigned long arg);
121 #ifdef CONFIG_KVM_COMPAT
122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123                                   unsigned long arg);
124 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
125 #else
126 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
127                                 unsigned long arg) { return -EINVAL; }
128 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
129 #endif
130 static int hardware_enable_all(void);
131 static void hardware_disable_all(void);
132
133 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
134
135 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
136
137 __visible bool kvm_rebooting;
138 EXPORT_SYMBOL_GPL(kvm_rebooting);
139
140 static bool largepages_enabled = true;
141
142 #define KVM_EVENT_CREATE_VM 0
143 #define KVM_EVENT_DESTROY_VM 1
144 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
145 static unsigned long long kvm_createvm_count;
146 static unsigned long long kvm_active_vms;
147
148 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
149                 unsigned long start, unsigned long end, bool blockable)
150 {
151         return 0;
152 }
153
154 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
155 {
156         if (pfn_valid(pfn))
157                 return PageReserved(pfn_to_page(pfn));
158
159         return true;
160 }
161
162 /*
163  * Switches to specified vcpu, until a matching vcpu_put()
164  */
165 void vcpu_load(struct kvm_vcpu *vcpu)
166 {
167         int cpu = get_cpu();
168         preempt_notifier_register(&vcpu->preempt_notifier);
169         kvm_arch_vcpu_load(vcpu, cpu);
170         put_cpu();
171 }
172 EXPORT_SYMBOL_GPL(vcpu_load);
173
174 void vcpu_put(struct kvm_vcpu *vcpu)
175 {
176         preempt_disable();
177         kvm_arch_vcpu_put(vcpu);
178         preempt_notifier_unregister(&vcpu->preempt_notifier);
179         preempt_enable();
180 }
181 EXPORT_SYMBOL_GPL(vcpu_put);
182
183 /* TODO: merge with kvm_arch_vcpu_should_kick */
184 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
185 {
186         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
187
188         /*
189          * We need to wait for the VCPU to reenable interrupts and get out of
190          * READING_SHADOW_PAGE_TABLES mode.
191          */
192         if (req & KVM_REQUEST_WAIT)
193                 return mode != OUTSIDE_GUEST_MODE;
194
195         /*
196          * Need to kick a running VCPU, but otherwise there is nothing to do.
197          */
198         return mode == IN_GUEST_MODE;
199 }
200
201 static void ack_flush(void *_completed)
202 {
203 }
204
205 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
206 {
207         if (unlikely(!cpus))
208                 cpus = cpu_online_mask;
209
210         if (cpumask_empty(cpus))
211                 return false;
212
213         smp_call_function_many(cpus, ack_flush, NULL, wait);
214         return true;
215 }
216
217 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
218                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
219 {
220         int i, cpu, me;
221         struct kvm_vcpu *vcpu;
222         bool called;
223
224         me = get_cpu();
225
226         kvm_for_each_vcpu(i, vcpu, kvm) {
227                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
228                         continue;
229
230                 kvm_make_request(req, vcpu);
231                 cpu = vcpu->cpu;
232
233                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
234                         continue;
235
236                 if (tmp != NULL && cpu != -1 && cpu != me &&
237                     kvm_request_needs_ipi(vcpu, req))
238                         __cpumask_set_cpu(cpu, tmp);
239         }
240
241         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
242         put_cpu();
243
244         return called;
245 }
246
247 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
248 {
249         cpumask_var_t cpus;
250         bool called;
251
252         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
253
254         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
255
256         free_cpumask_var(cpus);
257         return called;
258 }
259
260 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
261 void kvm_flush_remote_tlbs(struct kvm *kvm)
262 {
263         /*
264          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
265          * kvm_make_all_cpus_request.
266          */
267         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
268
269         /*
270          * We want to publish modifications to the page tables before reading
271          * mode. Pairs with a memory barrier in arch-specific code.
272          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
273          * and smp_mb in walk_shadow_page_lockless_begin/end.
274          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
275          *
276          * There is already an smp_mb__after_atomic() before
277          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
278          * barrier here.
279          */
280         if (!kvm_arch_flush_remote_tlb(kvm)
281             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
282                 ++kvm->stat.remote_tlb_flush;
283         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
284 }
285 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
286 #endif
287
288 void kvm_reload_remote_mmus(struct kvm *kvm)
289 {
290         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
291 }
292
293 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
294 {
295         struct page *page;
296         int r;
297
298         mutex_init(&vcpu->mutex);
299         vcpu->cpu = -1;
300         vcpu->kvm = kvm;
301         vcpu->vcpu_id = id;
302         vcpu->pid = NULL;
303         init_swait_queue_head(&vcpu->wq);
304         kvm_async_pf_vcpu_init(vcpu);
305
306         vcpu->pre_pcpu = -1;
307         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
308
309         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
310         if (!page) {
311                 r = -ENOMEM;
312                 goto fail;
313         }
314         vcpu->run = page_address(page);
315
316         kvm_vcpu_set_in_spin_loop(vcpu, false);
317         kvm_vcpu_set_dy_eligible(vcpu, false);
318         vcpu->preempted = false;
319
320         r = kvm_arch_vcpu_init(vcpu);
321         if (r < 0)
322                 goto fail_free_run;
323         return 0;
324
325 fail_free_run:
326         free_page((unsigned long)vcpu->run);
327 fail:
328         return r;
329 }
330 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
331
332 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
333 {
334         /*
335          * no need for rcu_read_lock as VCPU_RUN is the only place that
336          * will change the vcpu->pid pointer and on uninit all file
337          * descriptors are already gone.
338          */
339         put_pid(rcu_dereference_protected(vcpu->pid, 1));
340         kvm_arch_vcpu_uninit(vcpu);
341         free_page((unsigned long)vcpu->run);
342 }
343 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
344
345 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
346 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
347 {
348         return container_of(mn, struct kvm, mmu_notifier);
349 }
350
351 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
352                                         struct mm_struct *mm,
353                                         unsigned long address,
354                                         pte_t pte)
355 {
356         struct kvm *kvm = mmu_notifier_to_kvm(mn);
357         int idx;
358
359         idx = srcu_read_lock(&kvm->srcu);
360         spin_lock(&kvm->mmu_lock);
361         kvm->mmu_notifier_seq++;
362
363         if (kvm_set_spte_hva(kvm, address, pte))
364                 kvm_flush_remote_tlbs(kvm);
365
366         spin_unlock(&kvm->mmu_lock);
367         srcu_read_unlock(&kvm->srcu, idx);
368 }
369
370 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
371                                         const struct mmu_notifier_range *range)
372 {
373         struct kvm *kvm = mmu_notifier_to_kvm(mn);
374         int need_tlb_flush = 0, idx;
375         int ret;
376
377         idx = srcu_read_lock(&kvm->srcu);
378         spin_lock(&kvm->mmu_lock);
379         /*
380          * The count increase must become visible at unlock time as no
381          * spte can be established without taking the mmu_lock and
382          * count is also read inside the mmu_lock critical section.
383          */
384         kvm->mmu_notifier_count++;
385         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
386         need_tlb_flush |= kvm->tlbs_dirty;
387         /* we've to flush the tlb before the pages can be freed */
388         if (need_tlb_flush)
389                 kvm_flush_remote_tlbs(kvm);
390
391         spin_unlock(&kvm->mmu_lock);
392
393         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
394                                         range->end,
395                                         mmu_notifier_range_blockable(range));
396
397         srcu_read_unlock(&kvm->srcu, idx);
398
399         return ret;
400 }
401
402 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
403                                         const struct mmu_notifier_range *range)
404 {
405         struct kvm *kvm = mmu_notifier_to_kvm(mn);
406
407         spin_lock(&kvm->mmu_lock);
408         /*
409          * This sequence increase will notify the kvm page fault that
410          * the page that is going to be mapped in the spte could have
411          * been freed.
412          */
413         kvm->mmu_notifier_seq++;
414         smp_wmb();
415         /*
416          * The above sequence increase must be visible before the
417          * below count decrease, which is ensured by the smp_wmb above
418          * in conjunction with the smp_rmb in mmu_notifier_retry().
419          */
420         kvm->mmu_notifier_count--;
421         spin_unlock(&kvm->mmu_lock);
422
423         BUG_ON(kvm->mmu_notifier_count < 0);
424 }
425
426 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
427                                               struct mm_struct *mm,
428                                               unsigned long start,
429                                               unsigned long end)
430 {
431         struct kvm *kvm = mmu_notifier_to_kvm(mn);
432         int young, idx;
433
434         idx = srcu_read_lock(&kvm->srcu);
435         spin_lock(&kvm->mmu_lock);
436
437         young = kvm_age_hva(kvm, start, end);
438         if (young)
439                 kvm_flush_remote_tlbs(kvm);
440
441         spin_unlock(&kvm->mmu_lock);
442         srcu_read_unlock(&kvm->srcu, idx);
443
444         return young;
445 }
446
447 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
448                                         struct mm_struct *mm,
449                                         unsigned long start,
450                                         unsigned long end)
451 {
452         struct kvm *kvm = mmu_notifier_to_kvm(mn);
453         int young, idx;
454
455         idx = srcu_read_lock(&kvm->srcu);
456         spin_lock(&kvm->mmu_lock);
457         /*
458          * Even though we do not flush TLB, this will still adversely
459          * affect performance on pre-Haswell Intel EPT, where there is
460          * no EPT Access Bit to clear so that we have to tear down EPT
461          * tables instead. If we find this unacceptable, we can always
462          * add a parameter to kvm_age_hva so that it effectively doesn't
463          * do anything on clear_young.
464          *
465          * Also note that currently we never issue secondary TLB flushes
466          * from clear_young, leaving this job up to the regular system
467          * cadence. If we find this inaccurate, we might come up with a
468          * more sophisticated heuristic later.
469          */
470         young = kvm_age_hva(kvm, start, end);
471         spin_unlock(&kvm->mmu_lock);
472         srcu_read_unlock(&kvm->srcu, idx);
473
474         return young;
475 }
476
477 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
478                                        struct mm_struct *mm,
479                                        unsigned long address)
480 {
481         struct kvm *kvm = mmu_notifier_to_kvm(mn);
482         int young, idx;
483
484         idx = srcu_read_lock(&kvm->srcu);
485         spin_lock(&kvm->mmu_lock);
486         young = kvm_test_age_hva(kvm, address);
487         spin_unlock(&kvm->mmu_lock);
488         srcu_read_unlock(&kvm->srcu, idx);
489
490         return young;
491 }
492
493 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
494                                      struct mm_struct *mm)
495 {
496         struct kvm *kvm = mmu_notifier_to_kvm(mn);
497         int idx;
498
499         idx = srcu_read_lock(&kvm->srcu);
500         kvm_arch_flush_shadow_all(kvm);
501         srcu_read_unlock(&kvm->srcu, idx);
502 }
503
504 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
505         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
506         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
507         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
508         .clear_young            = kvm_mmu_notifier_clear_young,
509         .test_young             = kvm_mmu_notifier_test_young,
510         .change_pte             = kvm_mmu_notifier_change_pte,
511         .release                = kvm_mmu_notifier_release,
512 };
513
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
515 {
516         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
517         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
518 }
519
520 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
521
522 static int kvm_init_mmu_notifier(struct kvm *kvm)
523 {
524         return 0;
525 }
526
527 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
528
529 static struct kvm_memslots *kvm_alloc_memslots(void)
530 {
531         int i;
532         struct kvm_memslots *slots;
533
534         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
535         if (!slots)
536                 return NULL;
537
538         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
539                 slots->id_to_index[i] = slots->memslots[i].id = i;
540
541         return slots;
542 }
543
544 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
545 {
546         if (!memslot->dirty_bitmap)
547                 return;
548
549         kvfree(memslot->dirty_bitmap);
550         memslot->dirty_bitmap = NULL;
551 }
552
553 /*
554  * Free any memory in @free but not in @dont.
555  */
556 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
557                               struct kvm_memory_slot *dont)
558 {
559         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
560                 kvm_destroy_dirty_bitmap(free);
561
562         kvm_arch_free_memslot(kvm, free, dont);
563
564         free->npages = 0;
565 }
566
567 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
568 {
569         struct kvm_memory_slot *memslot;
570
571         if (!slots)
572                 return;
573
574         kvm_for_each_memslot(memslot, slots)
575                 kvm_free_memslot(kvm, memslot, NULL);
576
577         kvfree(slots);
578 }
579
580 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
581 {
582         int i;
583
584         if (!kvm->debugfs_dentry)
585                 return;
586
587         debugfs_remove_recursive(kvm->debugfs_dentry);
588
589         if (kvm->debugfs_stat_data) {
590                 for (i = 0; i < kvm_debugfs_num_entries; i++)
591                         kfree(kvm->debugfs_stat_data[i]);
592                 kfree(kvm->debugfs_stat_data);
593         }
594 }
595
596 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
597 {
598         char dir_name[ITOA_MAX_LEN * 2];
599         struct kvm_stat_data *stat_data;
600         struct kvm_stats_debugfs_item *p;
601
602         if (!debugfs_initialized())
603                 return 0;
604
605         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
606         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
607
608         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
609                                          sizeof(*kvm->debugfs_stat_data),
610                                          GFP_KERNEL_ACCOUNT);
611         if (!kvm->debugfs_stat_data)
612                 return -ENOMEM;
613
614         for (p = debugfs_entries; p->name; p++) {
615                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
616                 if (!stat_data)
617                         return -ENOMEM;
618
619                 stat_data->kvm = kvm;
620                 stat_data->offset = p->offset;
621                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
622                 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
623                                     stat_data, stat_fops_per_vm[p->kind]);
624         }
625         return 0;
626 }
627
628 static struct kvm *kvm_create_vm(unsigned long type)
629 {
630         int r, i;
631         struct kvm *kvm = kvm_arch_alloc_vm();
632
633         if (!kvm)
634                 return ERR_PTR(-ENOMEM);
635
636         spin_lock_init(&kvm->mmu_lock);
637         mmgrab(current->mm);
638         kvm->mm = current->mm;
639         kvm_eventfd_init(kvm);
640         mutex_init(&kvm->lock);
641         mutex_init(&kvm->irq_lock);
642         mutex_init(&kvm->slots_lock);
643         refcount_set(&kvm->users_count, 1);
644         INIT_LIST_HEAD(&kvm->devices);
645
646         r = kvm_arch_init_vm(kvm, type);
647         if (r)
648                 goto out_err_no_disable;
649
650         r = hardware_enable_all();
651         if (r)
652                 goto out_err_no_disable;
653
654 #ifdef CONFIG_HAVE_KVM_IRQFD
655         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
656 #endif
657
658         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
659
660         r = -ENOMEM;
661         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
662                 struct kvm_memslots *slots = kvm_alloc_memslots();
663                 if (!slots)
664                         goto out_err_no_srcu;
665                 /* Generations must be different for each address space. */
666                 slots->generation = i;
667                 rcu_assign_pointer(kvm->memslots[i], slots);
668         }
669
670         if (init_srcu_struct(&kvm->srcu))
671                 goto out_err_no_srcu;
672         if (init_srcu_struct(&kvm->irq_srcu))
673                 goto out_err_no_irq_srcu;
674         for (i = 0; i < KVM_NR_BUSES; i++) {
675                 rcu_assign_pointer(kvm->buses[i],
676                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
677                 if (!kvm->buses[i])
678                         goto out_err;
679         }
680
681         r = kvm_init_mmu_notifier(kvm);
682         if (r)
683                 goto out_err;
684
685         spin_lock(&kvm_lock);
686         list_add(&kvm->vm_list, &vm_list);
687         spin_unlock(&kvm_lock);
688
689         preempt_notifier_inc();
690
691         return kvm;
692
693 out_err:
694         cleanup_srcu_struct(&kvm->irq_srcu);
695 out_err_no_irq_srcu:
696         cleanup_srcu_struct(&kvm->srcu);
697 out_err_no_srcu:
698         hardware_disable_all();
699 out_err_no_disable:
700         refcount_set(&kvm->users_count, 0);
701         for (i = 0; i < KVM_NR_BUSES; i++)
702                 kfree(kvm_get_bus(kvm, i));
703         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
704                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
705         kvm_arch_free_vm(kvm);
706         mmdrop(current->mm);
707         return ERR_PTR(r);
708 }
709
710 static void kvm_destroy_devices(struct kvm *kvm)
711 {
712         struct kvm_device *dev, *tmp;
713
714         /*
715          * We do not need to take the kvm->lock here, because nobody else
716          * has a reference to the struct kvm at this point and therefore
717          * cannot access the devices list anyhow.
718          */
719         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
720                 list_del(&dev->vm_node);
721                 dev->ops->destroy(dev);
722         }
723 }
724
725 static void kvm_destroy_vm(struct kvm *kvm)
726 {
727         int i;
728         struct mm_struct *mm = kvm->mm;
729
730         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
731         kvm_destroy_vm_debugfs(kvm);
732         kvm_arch_sync_events(kvm);
733         spin_lock(&kvm_lock);
734         list_del(&kvm->vm_list);
735         spin_unlock(&kvm_lock);
736         kvm_free_irq_routing(kvm);
737         for (i = 0; i < KVM_NR_BUSES; i++) {
738                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
739
740                 if (bus)
741                         kvm_io_bus_destroy(bus);
742                 kvm->buses[i] = NULL;
743         }
744         kvm_coalesced_mmio_free(kvm);
745 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
746         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
747 #else
748         kvm_arch_flush_shadow_all(kvm);
749 #endif
750         kvm_arch_destroy_vm(kvm);
751         kvm_destroy_devices(kvm);
752         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
753                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
754         cleanup_srcu_struct(&kvm->irq_srcu);
755         cleanup_srcu_struct(&kvm->srcu);
756         kvm_arch_free_vm(kvm);
757         preempt_notifier_dec();
758         hardware_disable_all();
759         mmdrop(mm);
760 }
761
762 void kvm_get_kvm(struct kvm *kvm)
763 {
764         refcount_inc(&kvm->users_count);
765 }
766 EXPORT_SYMBOL_GPL(kvm_get_kvm);
767
768 void kvm_put_kvm(struct kvm *kvm)
769 {
770         if (refcount_dec_and_test(&kvm->users_count))
771                 kvm_destroy_vm(kvm);
772 }
773 EXPORT_SYMBOL_GPL(kvm_put_kvm);
774
775
776 static int kvm_vm_release(struct inode *inode, struct file *filp)
777 {
778         struct kvm *kvm = filp->private_data;
779
780         kvm_irqfd_release(kvm);
781
782         kvm_put_kvm(kvm);
783         return 0;
784 }
785
786 /*
787  * Allocation size is twice as large as the actual dirty bitmap size.
788  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
789  */
790 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
791 {
792         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
793
794         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
795         if (!memslot->dirty_bitmap)
796                 return -ENOMEM;
797
798         return 0;
799 }
800
801 /*
802  * Insert memslot and re-sort memslots based on their GFN,
803  * so binary search could be used to lookup GFN.
804  * Sorting algorithm takes advantage of having initially
805  * sorted array and known changed memslot position.
806  */
807 static void update_memslots(struct kvm_memslots *slots,
808                             struct kvm_memory_slot *new,
809                             enum kvm_mr_change change)
810 {
811         int id = new->id;
812         int i = slots->id_to_index[id];
813         struct kvm_memory_slot *mslots = slots->memslots;
814
815         WARN_ON(mslots[i].id != id);
816         switch (change) {
817         case KVM_MR_CREATE:
818                 slots->used_slots++;
819                 WARN_ON(mslots[i].npages || !new->npages);
820                 break;
821         case KVM_MR_DELETE:
822                 slots->used_slots--;
823                 WARN_ON(new->npages || !mslots[i].npages);
824                 break;
825         default:
826                 break;
827         }
828
829         while (i < KVM_MEM_SLOTS_NUM - 1 &&
830                new->base_gfn <= mslots[i + 1].base_gfn) {
831                 if (!mslots[i + 1].npages)
832                         break;
833                 mslots[i] = mslots[i + 1];
834                 slots->id_to_index[mslots[i].id] = i;
835                 i++;
836         }
837
838         /*
839          * The ">=" is needed when creating a slot with base_gfn == 0,
840          * so that it moves before all those with base_gfn == npages == 0.
841          *
842          * On the other hand, if new->npages is zero, the above loop has
843          * already left i pointing to the beginning of the empty part of
844          * mslots, and the ">=" would move the hole backwards in this
845          * case---which is wrong.  So skip the loop when deleting a slot.
846          */
847         if (new->npages) {
848                 while (i > 0 &&
849                        new->base_gfn >= mslots[i - 1].base_gfn) {
850                         mslots[i] = mslots[i - 1];
851                         slots->id_to_index[mslots[i].id] = i;
852                         i--;
853                 }
854         } else
855                 WARN_ON_ONCE(i != slots->used_slots);
856
857         mslots[i] = *new;
858         slots->id_to_index[mslots[i].id] = i;
859 }
860
861 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
862 {
863         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
864
865 #ifdef __KVM_HAVE_READONLY_MEM
866         valid_flags |= KVM_MEM_READONLY;
867 #endif
868
869         if (mem->flags & ~valid_flags)
870                 return -EINVAL;
871
872         return 0;
873 }
874
875 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
876                 int as_id, struct kvm_memslots *slots)
877 {
878         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
879         u64 gen = old_memslots->generation;
880
881         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
882         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
883
884         rcu_assign_pointer(kvm->memslots[as_id], slots);
885         synchronize_srcu_expedited(&kvm->srcu);
886
887         /*
888          * Increment the new memslot generation a second time, dropping the
889          * update in-progress flag and incrementing then generation based on
890          * the number of address spaces.  This provides a unique and easily
891          * identifiable generation number while the memslots are in flux.
892          */
893         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
894
895         /*
896          * Generations must be unique even across address spaces.  We do not need
897          * a global counter for that, instead the generation space is evenly split
898          * across address spaces.  For example, with two address spaces, address
899          * space 0 will use generations 0, 2, 4, ... while address space 1 will
900          * use generations 1, 3, 5, ...
901          */
902         gen += KVM_ADDRESS_SPACE_NUM;
903
904         kvm_arch_memslots_updated(kvm, gen);
905
906         slots->generation = gen;
907
908         return old_memslots;
909 }
910
911 /*
912  * Allocate some memory and give it an address in the guest physical address
913  * space.
914  *
915  * Discontiguous memory is allowed, mostly for framebuffers.
916  *
917  * Must be called holding kvm->slots_lock for write.
918  */
919 int __kvm_set_memory_region(struct kvm *kvm,
920                             const struct kvm_userspace_memory_region *mem)
921 {
922         int r;
923         gfn_t base_gfn;
924         unsigned long npages;
925         struct kvm_memory_slot *slot;
926         struct kvm_memory_slot old, new;
927         struct kvm_memslots *slots = NULL, *old_memslots;
928         int as_id, id;
929         enum kvm_mr_change change;
930
931         r = check_memory_region_flags(mem);
932         if (r)
933                 goto out;
934
935         r = -EINVAL;
936         as_id = mem->slot >> 16;
937         id = (u16)mem->slot;
938
939         /* General sanity checks */
940         if (mem->memory_size & (PAGE_SIZE - 1))
941                 goto out;
942         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
943                 goto out;
944         /* We can read the guest memory with __xxx_user() later on. */
945         if ((id < KVM_USER_MEM_SLOTS) &&
946             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
947              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
948                         mem->memory_size)))
949                 goto out;
950         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
951                 goto out;
952         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
953                 goto out;
954
955         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
956         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
957         npages = mem->memory_size >> PAGE_SHIFT;
958
959         if (npages > KVM_MEM_MAX_NR_PAGES)
960                 goto out;
961
962         new = old = *slot;
963
964         new.id = id;
965         new.base_gfn = base_gfn;
966         new.npages = npages;
967         new.flags = mem->flags;
968
969         if (npages) {
970                 if (!old.npages)
971                         change = KVM_MR_CREATE;
972                 else { /* Modify an existing slot. */
973                         if ((mem->userspace_addr != old.userspace_addr) ||
974                             (npages != old.npages) ||
975                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
976                                 goto out;
977
978                         if (base_gfn != old.base_gfn)
979                                 change = KVM_MR_MOVE;
980                         else if (new.flags != old.flags)
981                                 change = KVM_MR_FLAGS_ONLY;
982                         else { /* Nothing to change. */
983                                 r = 0;
984                                 goto out;
985                         }
986                 }
987         } else {
988                 if (!old.npages)
989                         goto out;
990
991                 change = KVM_MR_DELETE;
992                 new.base_gfn = 0;
993                 new.flags = 0;
994         }
995
996         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
997                 /* Check for overlaps */
998                 r = -EEXIST;
999                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1000                         if (slot->id == id)
1001                                 continue;
1002                         if (!((base_gfn + npages <= slot->base_gfn) ||
1003                               (base_gfn >= slot->base_gfn + slot->npages)))
1004                                 goto out;
1005                 }
1006         }
1007
1008         /* Free page dirty bitmap if unneeded */
1009         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1010                 new.dirty_bitmap = NULL;
1011
1012         r = -ENOMEM;
1013         if (change == KVM_MR_CREATE) {
1014                 new.userspace_addr = mem->userspace_addr;
1015
1016                 if (kvm_arch_create_memslot(kvm, &new, npages))
1017                         goto out_free;
1018         }
1019
1020         /* Allocate page dirty bitmap if needed */
1021         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1022                 if (kvm_create_dirty_bitmap(&new) < 0)
1023                         goto out_free;
1024         }
1025
1026         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1027         if (!slots)
1028                 goto out_free;
1029         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1030
1031         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1032                 slot = id_to_memslot(slots, id);
1033                 slot->flags |= KVM_MEMSLOT_INVALID;
1034
1035                 old_memslots = install_new_memslots(kvm, as_id, slots);
1036
1037                 /* From this point no new shadow pages pointing to a deleted,
1038                  * or moved, memslot will be created.
1039                  *
1040                  * validation of sp->gfn happens in:
1041                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1042                  *      - kvm_is_visible_gfn (mmu_check_roots)
1043                  */
1044                 kvm_arch_flush_shadow_memslot(kvm, slot);
1045
1046                 /*
1047                  * We can re-use the old_memslots from above, the only difference
1048                  * from the currently installed memslots is the invalid flag.  This
1049                  * will get overwritten by update_memslots anyway.
1050                  */
1051                 slots = old_memslots;
1052         }
1053
1054         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1055         if (r)
1056                 goto out_slots;
1057
1058         /* actual memory is freed via old in kvm_free_memslot below */
1059         if (change == KVM_MR_DELETE) {
1060                 new.dirty_bitmap = NULL;
1061                 memset(&new.arch, 0, sizeof(new.arch));
1062         }
1063
1064         update_memslots(slots, &new, change);
1065         old_memslots = install_new_memslots(kvm, as_id, slots);
1066
1067         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1068
1069         kvm_free_memslot(kvm, &old, &new);
1070         kvfree(old_memslots);
1071         return 0;
1072
1073 out_slots:
1074         kvfree(slots);
1075 out_free:
1076         kvm_free_memslot(kvm, &new, &old);
1077 out:
1078         return r;
1079 }
1080 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1081
1082 int kvm_set_memory_region(struct kvm *kvm,
1083                           const struct kvm_userspace_memory_region *mem)
1084 {
1085         int r;
1086
1087         mutex_lock(&kvm->slots_lock);
1088         r = __kvm_set_memory_region(kvm, mem);
1089         mutex_unlock(&kvm->slots_lock);
1090         return r;
1091 }
1092 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1093
1094 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1095                                           struct kvm_userspace_memory_region *mem)
1096 {
1097         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1098                 return -EINVAL;
1099
1100         return kvm_set_memory_region(kvm, mem);
1101 }
1102
1103 int kvm_get_dirty_log(struct kvm *kvm,
1104                         struct kvm_dirty_log *log, int *is_dirty)
1105 {
1106         struct kvm_memslots *slots;
1107         struct kvm_memory_slot *memslot;
1108         int i, as_id, id;
1109         unsigned long n;
1110         unsigned long any = 0;
1111
1112         as_id = log->slot >> 16;
1113         id = (u16)log->slot;
1114         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1115                 return -EINVAL;
1116
1117         slots = __kvm_memslots(kvm, as_id);
1118         memslot = id_to_memslot(slots, id);
1119         if (!memslot->dirty_bitmap)
1120                 return -ENOENT;
1121
1122         n = kvm_dirty_bitmap_bytes(memslot);
1123
1124         for (i = 0; !any && i < n/sizeof(long); ++i)
1125                 any = memslot->dirty_bitmap[i];
1126
1127         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1128                 return -EFAULT;
1129
1130         if (any)
1131                 *is_dirty = 1;
1132         return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1135
1136 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1137 /**
1138  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1139  *      and reenable dirty page tracking for the corresponding pages.
1140  * @kvm:        pointer to kvm instance
1141  * @log:        slot id and address to which we copy the log
1142  * @is_dirty:   flag set if any page is dirty
1143  *
1144  * We need to keep it in mind that VCPU threads can write to the bitmap
1145  * concurrently. So, to avoid losing track of dirty pages we keep the
1146  * following order:
1147  *
1148  *    1. Take a snapshot of the bit and clear it if needed.
1149  *    2. Write protect the corresponding page.
1150  *    3. Copy the snapshot to the userspace.
1151  *    4. Upon return caller flushes TLB's if needed.
1152  *
1153  * Between 2 and 4, the guest may write to the page using the remaining TLB
1154  * entry.  This is not a problem because the page is reported dirty using
1155  * the snapshot taken before and step 4 ensures that writes done after
1156  * exiting to userspace will be logged for the next call.
1157  *
1158  */
1159 int kvm_get_dirty_log_protect(struct kvm *kvm,
1160                         struct kvm_dirty_log *log, bool *flush)
1161 {
1162         struct kvm_memslots *slots;
1163         struct kvm_memory_slot *memslot;
1164         int i, as_id, id;
1165         unsigned long n;
1166         unsigned long *dirty_bitmap;
1167         unsigned long *dirty_bitmap_buffer;
1168
1169         as_id = log->slot >> 16;
1170         id = (u16)log->slot;
1171         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1172                 return -EINVAL;
1173
1174         slots = __kvm_memslots(kvm, as_id);
1175         memslot = id_to_memslot(slots, id);
1176
1177         dirty_bitmap = memslot->dirty_bitmap;
1178         if (!dirty_bitmap)
1179                 return -ENOENT;
1180
1181         n = kvm_dirty_bitmap_bytes(memslot);
1182         *flush = false;
1183         if (kvm->manual_dirty_log_protect) {
1184                 /*
1185                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1186                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1187                  * is some code duplication between this function and
1188                  * kvm_get_dirty_log, but hopefully all architecture
1189                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1190                  * can be eliminated.
1191                  */
1192                 dirty_bitmap_buffer = dirty_bitmap;
1193         } else {
1194                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1195                 memset(dirty_bitmap_buffer, 0, n);
1196
1197                 spin_lock(&kvm->mmu_lock);
1198                 for (i = 0; i < n / sizeof(long); i++) {
1199                         unsigned long mask;
1200                         gfn_t offset;
1201
1202                         if (!dirty_bitmap[i])
1203                                 continue;
1204
1205                         *flush = true;
1206                         mask = xchg(&dirty_bitmap[i], 0);
1207                         dirty_bitmap_buffer[i] = mask;
1208
1209                         offset = i * BITS_PER_LONG;
1210                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1211                                                                 offset, mask);
1212                 }
1213                 spin_unlock(&kvm->mmu_lock);
1214         }
1215
1216         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1217                 return -EFAULT;
1218         return 0;
1219 }
1220 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1221
1222 /**
1223  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1224  *      and reenable dirty page tracking for the corresponding pages.
1225  * @kvm:        pointer to kvm instance
1226  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1227  */
1228 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1229                                 struct kvm_clear_dirty_log *log, bool *flush)
1230 {
1231         struct kvm_memslots *slots;
1232         struct kvm_memory_slot *memslot;
1233         int as_id, id;
1234         gfn_t offset;
1235         unsigned long i, n;
1236         unsigned long *dirty_bitmap;
1237         unsigned long *dirty_bitmap_buffer;
1238
1239         as_id = log->slot >> 16;
1240         id = (u16)log->slot;
1241         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1242                 return -EINVAL;
1243
1244         if (log->first_page & 63)
1245                 return -EINVAL;
1246
1247         slots = __kvm_memslots(kvm, as_id);
1248         memslot = id_to_memslot(slots, id);
1249
1250         dirty_bitmap = memslot->dirty_bitmap;
1251         if (!dirty_bitmap)
1252                 return -ENOENT;
1253
1254         n = kvm_dirty_bitmap_bytes(memslot);
1255
1256         if (log->first_page > memslot->npages ||
1257             log->num_pages > memslot->npages - log->first_page ||
1258             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1259             return -EINVAL;
1260
1261         *flush = false;
1262         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1263         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1264                 return -EFAULT;
1265
1266         spin_lock(&kvm->mmu_lock);
1267         for (offset = log->first_page,
1268              i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1269              i++, offset += BITS_PER_LONG) {
1270                 unsigned long mask = *dirty_bitmap_buffer++;
1271                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1272                 if (!mask)
1273                         continue;
1274
1275                 mask &= atomic_long_fetch_andnot(mask, p);
1276
1277                 /*
1278                  * mask contains the bits that really have been cleared.  This
1279                  * never includes any bits beyond the length of the memslot (if
1280                  * the length is not aligned to 64 pages), therefore it is not
1281                  * a problem if userspace sets them in log->dirty_bitmap.
1282                 */
1283                 if (mask) {
1284                         *flush = true;
1285                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1286                                                                 offset, mask);
1287                 }
1288         }
1289         spin_unlock(&kvm->mmu_lock);
1290
1291         return 0;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1294 #endif
1295
1296 bool kvm_largepages_enabled(void)
1297 {
1298         return largepages_enabled;
1299 }
1300
1301 void kvm_disable_largepages(void)
1302 {
1303         largepages_enabled = false;
1304 }
1305 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1306
1307 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1308 {
1309         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1310 }
1311 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1312
1313 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1314 {
1315         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1316 }
1317
1318 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1319 {
1320         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1321
1322         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1323               memslot->flags & KVM_MEMSLOT_INVALID)
1324                 return false;
1325
1326         return true;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1329
1330 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1331 {
1332         struct vm_area_struct *vma;
1333         unsigned long addr, size;
1334
1335         size = PAGE_SIZE;
1336
1337         addr = gfn_to_hva(kvm, gfn);
1338         if (kvm_is_error_hva(addr))
1339                 return PAGE_SIZE;
1340
1341         down_read(&current->mm->mmap_sem);
1342         vma = find_vma(current->mm, addr);
1343         if (!vma)
1344                 goto out;
1345
1346         size = vma_kernel_pagesize(vma);
1347
1348 out:
1349         up_read(&current->mm->mmap_sem);
1350
1351         return size;
1352 }
1353
1354 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1355 {
1356         return slot->flags & KVM_MEM_READONLY;
1357 }
1358
1359 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1360                                        gfn_t *nr_pages, bool write)
1361 {
1362         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1363                 return KVM_HVA_ERR_BAD;
1364
1365         if (memslot_is_readonly(slot) && write)
1366                 return KVM_HVA_ERR_RO_BAD;
1367
1368         if (nr_pages)
1369                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1370
1371         return __gfn_to_hva_memslot(slot, gfn);
1372 }
1373
1374 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1375                                      gfn_t *nr_pages)
1376 {
1377         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1378 }
1379
1380 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1381                                         gfn_t gfn)
1382 {
1383         return gfn_to_hva_many(slot, gfn, NULL);
1384 }
1385 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1386
1387 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1388 {
1389         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1390 }
1391 EXPORT_SYMBOL_GPL(gfn_to_hva);
1392
1393 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1394 {
1395         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1398
1399 /*
1400  * Return the hva of a @gfn and the R/W attribute if possible.
1401  *
1402  * @slot: the kvm_memory_slot which contains @gfn
1403  * @gfn: the gfn to be translated
1404  * @writable: used to return the read/write attribute of the @slot if the hva
1405  * is valid and @writable is not NULL
1406  */
1407 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1408                                       gfn_t gfn, bool *writable)
1409 {
1410         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1411
1412         if (!kvm_is_error_hva(hva) && writable)
1413                 *writable = !memslot_is_readonly(slot);
1414
1415         return hva;
1416 }
1417
1418 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1419 {
1420         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1421
1422         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1423 }
1424
1425 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1426 {
1427         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1428
1429         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1430 }
1431
1432 static inline int check_user_page_hwpoison(unsigned long addr)
1433 {
1434         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1435
1436         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1437         return rc == -EHWPOISON;
1438 }
1439
1440 /*
1441  * The fast path to get the writable pfn which will be stored in @pfn,
1442  * true indicates success, otherwise false is returned.  It's also the
1443  * only part that runs if we can are in atomic context.
1444  */
1445 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1446                             bool *writable, kvm_pfn_t *pfn)
1447 {
1448         struct page *page[1];
1449         int npages;
1450
1451         /*
1452          * Fast pin a writable pfn only if it is a write fault request
1453          * or the caller allows to map a writable pfn for a read fault
1454          * request.
1455          */
1456         if (!(write_fault || writable))
1457                 return false;
1458
1459         npages = __get_user_pages_fast(addr, 1, 1, page);
1460         if (npages == 1) {
1461                 *pfn = page_to_pfn(page[0]);
1462
1463                 if (writable)
1464                         *writable = true;
1465                 return true;
1466         }
1467
1468         return false;
1469 }
1470
1471 /*
1472  * The slow path to get the pfn of the specified host virtual address,
1473  * 1 indicates success, -errno is returned if error is detected.
1474  */
1475 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1476                            bool *writable, kvm_pfn_t *pfn)
1477 {
1478         unsigned int flags = FOLL_HWPOISON;
1479         struct page *page;
1480         int npages = 0;
1481
1482         might_sleep();
1483
1484         if (writable)
1485                 *writable = write_fault;
1486
1487         if (write_fault)
1488                 flags |= FOLL_WRITE;
1489         if (async)
1490                 flags |= FOLL_NOWAIT;
1491
1492         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1493         if (npages != 1)
1494                 return npages;
1495
1496         /* map read fault as writable if possible */
1497         if (unlikely(!write_fault) && writable) {
1498                 struct page *wpage;
1499
1500                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1501                         *writable = true;
1502                         put_page(page);
1503                         page = wpage;
1504                 }
1505         }
1506         *pfn = page_to_pfn(page);
1507         return npages;
1508 }
1509
1510 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1511 {
1512         if (unlikely(!(vma->vm_flags & VM_READ)))
1513                 return false;
1514
1515         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1516                 return false;
1517
1518         return true;
1519 }
1520
1521 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1522                                unsigned long addr, bool *async,
1523                                bool write_fault, bool *writable,
1524                                kvm_pfn_t *p_pfn)
1525 {
1526         unsigned long pfn;
1527         int r;
1528
1529         r = follow_pfn(vma, addr, &pfn);
1530         if (r) {
1531                 /*
1532                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1533                  * not call the fault handler, so do it here.
1534                  */
1535                 bool unlocked = false;
1536                 r = fixup_user_fault(current, current->mm, addr,
1537                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1538                                      &unlocked);
1539                 if (unlocked)
1540                         return -EAGAIN;
1541                 if (r)
1542                         return r;
1543
1544                 r = follow_pfn(vma, addr, &pfn);
1545                 if (r)
1546                         return r;
1547
1548         }
1549
1550         if (writable)
1551                 *writable = true;
1552
1553         /*
1554          * Get a reference here because callers of *hva_to_pfn* and
1555          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1556          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1557          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1558          * simply do nothing for reserved pfns.
1559          *
1560          * Whoever called remap_pfn_range is also going to call e.g.
1561          * unmap_mapping_range before the underlying pages are freed,
1562          * causing a call to our MMU notifier.
1563          */ 
1564         kvm_get_pfn(pfn);
1565
1566         *p_pfn = pfn;
1567         return 0;
1568 }
1569
1570 /*
1571  * Pin guest page in memory and return its pfn.
1572  * @addr: host virtual address which maps memory to the guest
1573  * @atomic: whether this function can sleep
1574  * @async: whether this function need to wait IO complete if the
1575  *         host page is not in the memory
1576  * @write_fault: whether we should get a writable host page
1577  * @writable: whether it allows to map a writable host page for !@write_fault
1578  *
1579  * The function will map a writable host page for these two cases:
1580  * 1): @write_fault = true
1581  * 2): @write_fault = false && @writable, @writable will tell the caller
1582  *     whether the mapping is writable.
1583  */
1584 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1585                         bool write_fault, bool *writable)
1586 {
1587         struct vm_area_struct *vma;
1588         kvm_pfn_t pfn = 0;
1589         int npages, r;
1590
1591         /* we can do it either atomically or asynchronously, not both */
1592         BUG_ON(atomic && async);
1593
1594         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1595                 return pfn;
1596
1597         if (atomic)
1598                 return KVM_PFN_ERR_FAULT;
1599
1600         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1601         if (npages == 1)
1602                 return pfn;
1603
1604         down_read(&current->mm->mmap_sem);
1605         if (npages == -EHWPOISON ||
1606               (!async && check_user_page_hwpoison(addr))) {
1607                 pfn = KVM_PFN_ERR_HWPOISON;
1608                 goto exit;
1609         }
1610
1611 retry:
1612         vma = find_vma_intersection(current->mm, addr, addr + 1);
1613
1614         if (vma == NULL)
1615                 pfn = KVM_PFN_ERR_FAULT;
1616         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1617                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1618                 if (r == -EAGAIN)
1619                         goto retry;
1620                 if (r < 0)
1621                         pfn = KVM_PFN_ERR_FAULT;
1622         } else {
1623                 if (async && vma_is_valid(vma, write_fault))
1624                         *async = true;
1625                 pfn = KVM_PFN_ERR_FAULT;
1626         }
1627 exit:
1628         up_read(&current->mm->mmap_sem);
1629         return pfn;
1630 }
1631
1632 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1633                                bool atomic, bool *async, bool write_fault,
1634                                bool *writable)
1635 {
1636         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1637
1638         if (addr == KVM_HVA_ERR_RO_BAD) {
1639                 if (writable)
1640                         *writable = false;
1641                 return KVM_PFN_ERR_RO_FAULT;
1642         }
1643
1644         if (kvm_is_error_hva(addr)) {
1645                 if (writable)
1646                         *writable = false;
1647                 return KVM_PFN_NOSLOT;
1648         }
1649
1650         /* Do not map writable pfn in the readonly memslot. */
1651         if (writable && memslot_is_readonly(slot)) {
1652                 *writable = false;
1653                 writable = NULL;
1654         }
1655
1656         return hva_to_pfn(addr, atomic, async, write_fault,
1657                           writable);
1658 }
1659 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1660
1661 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1662                       bool *writable)
1663 {
1664         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1665                                     write_fault, writable);
1666 }
1667 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1668
1669 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1670 {
1671         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1674
1675 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1676 {
1677         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1680
1681 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1682 {
1683         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1684 }
1685 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1686
1687 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1688 {
1689         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1692
1693 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1694 {
1695         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1696 }
1697 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1698
1699 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1700 {
1701         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1704
1705 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1706                             struct page **pages, int nr_pages)
1707 {
1708         unsigned long addr;
1709         gfn_t entry = 0;
1710
1711         addr = gfn_to_hva_many(slot, gfn, &entry);
1712         if (kvm_is_error_hva(addr))
1713                 return -1;
1714
1715         if (entry < nr_pages)
1716                 return 0;
1717
1718         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1719 }
1720 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1721
1722 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1723 {
1724         if (is_error_noslot_pfn(pfn))
1725                 return KVM_ERR_PTR_BAD_PAGE;
1726
1727         if (kvm_is_reserved_pfn(pfn)) {
1728                 WARN_ON(1);
1729                 return KVM_ERR_PTR_BAD_PAGE;
1730         }
1731
1732         return pfn_to_page(pfn);
1733 }
1734
1735 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1736 {
1737         kvm_pfn_t pfn;
1738
1739         pfn = gfn_to_pfn(kvm, gfn);
1740
1741         return kvm_pfn_to_page(pfn);
1742 }
1743 EXPORT_SYMBOL_GPL(gfn_to_page);
1744
1745 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1746 {
1747         kvm_pfn_t pfn;
1748
1749         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1750
1751         return kvm_pfn_to_page(pfn);
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1754
1755 void kvm_release_page_clean(struct page *page)
1756 {
1757         WARN_ON(is_error_page(page));
1758
1759         kvm_release_pfn_clean(page_to_pfn(page));
1760 }
1761 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1762
1763 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1764 {
1765         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1766                 put_page(pfn_to_page(pfn));
1767 }
1768 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1769
1770 void kvm_release_page_dirty(struct page *page)
1771 {
1772         WARN_ON(is_error_page(page));
1773
1774         kvm_release_pfn_dirty(page_to_pfn(page));
1775 }
1776 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1777
1778 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1779 {
1780         kvm_set_pfn_dirty(pfn);
1781         kvm_release_pfn_clean(pfn);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1784
1785 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1786 {
1787         if (!kvm_is_reserved_pfn(pfn)) {
1788                 struct page *page = pfn_to_page(pfn);
1789
1790                 if (!PageReserved(page))
1791                         SetPageDirty(page);
1792         }
1793 }
1794 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1795
1796 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1797 {
1798         if (!kvm_is_reserved_pfn(pfn))
1799                 mark_page_accessed(pfn_to_page(pfn));
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1802
1803 void kvm_get_pfn(kvm_pfn_t pfn)
1804 {
1805         if (!kvm_is_reserved_pfn(pfn))
1806                 get_page(pfn_to_page(pfn));
1807 }
1808 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1809
1810 static int next_segment(unsigned long len, int offset)
1811 {
1812         if (len > PAGE_SIZE - offset)
1813                 return PAGE_SIZE - offset;
1814         else
1815                 return len;
1816 }
1817
1818 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1819                                  void *data, int offset, int len)
1820 {
1821         int r;
1822         unsigned long addr;
1823
1824         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1825         if (kvm_is_error_hva(addr))
1826                 return -EFAULT;
1827         r = __copy_from_user(data, (void __user *)addr + offset, len);
1828         if (r)
1829                 return -EFAULT;
1830         return 0;
1831 }
1832
1833 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1834                         int len)
1835 {
1836         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1837
1838         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1839 }
1840 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1841
1842 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1843                              int offset, int len)
1844 {
1845         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1846
1847         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1848 }
1849 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1850
1851 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1852 {
1853         gfn_t gfn = gpa >> PAGE_SHIFT;
1854         int seg;
1855         int offset = offset_in_page(gpa);
1856         int ret;
1857
1858         while ((seg = next_segment(len, offset)) != 0) {
1859                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1860                 if (ret < 0)
1861                         return ret;
1862                 offset = 0;
1863                 len -= seg;
1864                 data += seg;
1865                 ++gfn;
1866         }
1867         return 0;
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_read_guest);
1870
1871 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1872 {
1873         gfn_t gfn = gpa >> PAGE_SHIFT;
1874         int seg;
1875         int offset = offset_in_page(gpa);
1876         int ret;
1877
1878         while ((seg = next_segment(len, offset)) != 0) {
1879                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1880                 if (ret < 0)
1881                         return ret;
1882                 offset = 0;
1883                 len -= seg;
1884                 data += seg;
1885                 ++gfn;
1886         }
1887         return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1890
1891 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1892                                    void *data, int offset, unsigned long len)
1893 {
1894         int r;
1895         unsigned long addr;
1896
1897         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1898         if (kvm_is_error_hva(addr))
1899                 return -EFAULT;
1900         pagefault_disable();
1901         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1902         pagefault_enable();
1903         if (r)
1904                 return -EFAULT;
1905         return 0;
1906 }
1907
1908 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1909                           unsigned long len)
1910 {
1911         gfn_t gfn = gpa >> PAGE_SHIFT;
1912         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1913         int offset = offset_in_page(gpa);
1914
1915         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1918
1919 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1920                                void *data, unsigned long len)
1921 {
1922         gfn_t gfn = gpa >> PAGE_SHIFT;
1923         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1924         int offset = offset_in_page(gpa);
1925
1926         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1929
1930 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1931                                   const void *data, int offset, int len)
1932 {
1933         int r;
1934         unsigned long addr;
1935
1936         addr = gfn_to_hva_memslot(memslot, gfn);
1937         if (kvm_is_error_hva(addr))
1938                 return -EFAULT;
1939         r = __copy_to_user((void __user *)addr + offset, data, len);
1940         if (r)
1941                 return -EFAULT;
1942         mark_page_dirty_in_slot(memslot, gfn);
1943         return 0;
1944 }
1945
1946 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1947                          const void *data, int offset, int len)
1948 {
1949         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1950
1951         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1952 }
1953 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1954
1955 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1956                               const void *data, int offset, int len)
1957 {
1958         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1959
1960         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1961 }
1962 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1963
1964 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1965                     unsigned long len)
1966 {
1967         gfn_t gfn = gpa >> PAGE_SHIFT;
1968         int seg;
1969         int offset = offset_in_page(gpa);
1970         int ret;
1971
1972         while ((seg = next_segment(len, offset)) != 0) {
1973                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1974                 if (ret < 0)
1975                         return ret;
1976                 offset = 0;
1977                 len -= seg;
1978                 data += seg;
1979                 ++gfn;
1980         }
1981         return 0;
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_write_guest);
1984
1985 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1986                          unsigned long len)
1987 {
1988         gfn_t gfn = gpa >> PAGE_SHIFT;
1989         int seg;
1990         int offset = offset_in_page(gpa);
1991         int ret;
1992
1993         while ((seg = next_segment(len, offset)) != 0) {
1994                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1995                 if (ret < 0)
1996                         return ret;
1997                 offset = 0;
1998                 len -= seg;
1999                 data += seg;
2000                 ++gfn;
2001         }
2002         return 0;
2003 }
2004 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2005
2006 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2007                                        struct gfn_to_hva_cache *ghc,
2008                                        gpa_t gpa, unsigned long len)
2009 {
2010         int offset = offset_in_page(gpa);
2011         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2012         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2013         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2014         gfn_t nr_pages_avail;
2015         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2016
2017         ghc->gpa = gpa;
2018         ghc->generation = slots->generation;
2019         ghc->len = len;
2020         ghc->hva = KVM_HVA_ERR_BAD;
2021
2022         /*
2023          * If the requested region crosses two memslots, we still
2024          * verify that the entire region is valid here.
2025          */
2026         while (!r && start_gfn <= end_gfn) {
2027                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2028                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2029                                            &nr_pages_avail);
2030                 if (kvm_is_error_hva(ghc->hva))
2031                         r = -EFAULT;
2032                 start_gfn += nr_pages_avail;
2033         }
2034
2035         /* Use the slow path for cross page reads and writes. */
2036         if (!r && nr_pages_needed == 1)
2037                 ghc->hva += offset;
2038         else
2039                 ghc->memslot = NULL;
2040
2041         return r;
2042 }
2043
2044 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2045                               gpa_t gpa, unsigned long len)
2046 {
2047         struct kvm_memslots *slots = kvm_memslots(kvm);
2048         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2049 }
2050 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2051
2052 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2053                                   void *data, unsigned int offset,
2054                                   unsigned long len)
2055 {
2056         struct kvm_memslots *slots = kvm_memslots(kvm);
2057         int r;
2058         gpa_t gpa = ghc->gpa + offset;
2059
2060         BUG_ON(len + offset > ghc->len);
2061
2062         if (slots->generation != ghc->generation)
2063                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2064
2065         if (unlikely(!ghc->memslot))
2066                 return kvm_write_guest(kvm, gpa, data, len);
2067
2068         if (kvm_is_error_hva(ghc->hva))
2069                 return -EFAULT;
2070
2071         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2072         if (r)
2073                 return -EFAULT;
2074         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2075
2076         return 0;
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2079
2080 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2081                            void *data, unsigned long len)
2082 {
2083         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2084 }
2085 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2086
2087 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2088                            void *data, unsigned long len)
2089 {
2090         struct kvm_memslots *slots = kvm_memslots(kvm);
2091         int r;
2092
2093         BUG_ON(len > ghc->len);
2094
2095         if (slots->generation != ghc->generation)
2096                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2097
2098         if (unlikely(!ghc->memslot))
2099                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2100
2101         if (kvm_is_error_hva(ghc->hva))
2102                 return -EFAULT;
2103
2104         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2105         if (r)
2106                 return -EFAULT;
2107
2108         return 0;
2109 }
2110 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2111
2112 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2113 {
2114         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2115
2116         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2117 }
2118 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2119
2120 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2121 {
2122         gfn_t gfn = gpa >> PAGE_SHIFT;
2123         int seg;
2124         int offset = offset_in_page(gpa);
2125         int ret;
2126
2127         while ((seg = next_segment(len, offset)) != 0) {
2128                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2129                 if (ret < 0)
2130                         return ret;
2131                 offset = 0;
2132                 len -= seg;
2133                 ++gfn;
2134         }
2135         return 0;
2136 }
2137 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2138
2139 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2140                                     gfn_t gfn)
2141 {
2142         if (memslot && memslot->dirty_bitmap) {
2143                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2144
2145                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2146         }
2147 }
2148
2149 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2150 {
2151         struct kvm_memory_slot *memslot;
2152
2153         memslot = gfn_to_memslot(kvm, gfn);
2154         mark_page_dirty_in_slot(memslot, gfn);
2155 }
2156 EXPORT_SYMBOL_GPL(mark_page_dirty);
2157
2158 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2159 {
2160         struct kvm_memory_slot *memslot;
2161
2162         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2163         mark_page_dirty_in_slot(memslot, gfn);
2164 }
2165 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2166
2167 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2168 {
2169         if (!vcpu->sigset_active)
2170                 return;
2171
2172         /*
2173          * This does a lockless modification of ->real_blocked, which is fine
2174          * because, only current can change ->real_blocked and all readers of
2175          * ->real_blocked don't care as long ->real_blocked is always a subset
2176          * of ->blocked.
2177          */
2178         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2179 }
2180
2181 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2182 {
2183         if (!vcpu->sigset_active)
2184                 return;
2185
2186         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2187         sigemptyset(&current->real_blocked);
2188 }
2189
2190 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2191 {
2192         unsigned int old, val, grow, grow_start;
2193
2194         old = val = vcpu->halt_poll_ns;
2195         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2196         grow = READ_ONCE(halt_poll_ns_grow);
2197         if (!grow)
2198                 goto out;
2199
2200         val *= grow;
2201         if (val < grow_start)
2202                 val = grow_start;
2203
2204         if (val > halt_poll_ns)
2205                 val = halt_poll_ns;
2206
2207         vcpu->halt_poll_ns = val;
2208 out:
2209         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2210 }
2211
2212 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2213 {
2214         unsigned int old, val, shrink;
2215
2216         old = val = vcpu->halt_poll_ns;
2217         shrink = READ_ONCE(halt_poll_ns_shrink);
2218         if (shrink == 0)
2219                 val = 0;
2220         else
2221                 val /= shrink;
2222
2223         vcpu->halt_poll_ns = val;
2224         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2225 }
2226
2227 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2228 {
2229         int ret = -EINTR;
2230         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2231
2232         if (kvm_arch_vcpu_runnable(vcpu)) {
2233                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2234                 goto out;
2235         }
2236         if (kvm_cpu_has_pending_timer(vcpu))
2237                 goto out;
2238         if (signal_pending(current))
2239                 goto out;
2240
2241         ret = 0;
2242 out:
2243         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2244         return ret;
2245 }
2246
2247 /*
2248  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2249  */
2250 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2251 {
2252         ktime_t start, cur;
2253         DECLARE_SWAITQUEUE(wait);
2254         bool waited = false;
2255         u64 block_ns;
2256
2257         start = cur = ktime_get();
2258         if (vcpu->halt_poll_ns) {
2259                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2260
2261                 ++vcpu->stat.halt_attempted_poll;
2262                 do {
2263                         /*
2264                          * This sets KVM_REQ_UNHALT if an interrupt
2265                          * arrives.
2266                          */
2267                         if (kvm_vcpu_check_block(vcpu) < 0) {
2268                                 ++vcpu->stat.halt_successful_poll;
2269                                 if (!vcpu_valid_wakeup(vcpu))
2270                                         ++vcpu->stat.halt_poll_invalid;
2271                                 goto out;
2272                         }
2273                         cur = ktime_get();
2274                 } while (single_task_running() && ktime_before(cur, stop));
2275         }
2276
2277         kvm_arch_vcpu_blocking(vcpu);
2278
2279         for (;;) {
2280                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2281
2282                 if (kvm_vcpu_check_block(vcpu) < 0)
2283                         break;
2284
2285                 waited = true;
2286                 schedule();
2287         }
2288
2289         finish_swait(&vcpu->wq, &wait);
2290         cur = ktime_get();
2291
2292         kvm_arch_vcpu_unblocking(vcpu);
2293 out:
2294         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2295
2296         if (!vcpu_valid_wakeup(vcpu))
2297                 shrink_halt_poll_ns(vcpu);
2298         else if (halt_poll_ns) {
2299                 if (block_ns <= vcpu->halt_poll_ns)
2300                         ;
2301                 /* we had a long block, shrink polling */
2302                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2303                         shrink_halt_poll_ns(vcpu);
2304                 /* we had a short halt and our poll time is too small */
2305                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2306                         block_ns < halt_poll_ns)
2307                         grow_halt_poll_ns(vcpu);
2308         } else
2309                 vcpu->halt_poll_ns = 0;
2310
2311         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2312         kvm_arch_vcpu_block_finish(vcpu);
2313 }
2314 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2315
2316 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2317 {
2318         struct swait_queue_head *wqp;
2319
2320         wqp = kvm_arch_vcpu_wq(vcpu);
2321         if (swq_has_sleeper(wqp)) {
2322                 swake_up_one(wqp);
2323                 ++vcpu->stat.halt_wakeup;
2324                 return true;
2325         }
2326
2327         return false;
2328 }
2329 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2330
2331 #ifndef CONFIG_S390
2332 /*
2333  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2334  */
2335 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2336 {
2337         int me;
2338         int cpu = vcpu->cpu;
2339
2340         if (kvm_vcpu_wake_up(vcpu))
2341                 return;
2342
2343         me = get_cpu();
2344         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2345                 if (kvm_arch_vcpu_should_kick(vcpu))
2346                         smp_send_reschedule(cpu);
2347         put_cpu();
2348 }
2349 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2350 #endif /* !CONFIG_S390 */
2351
2352 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2353 {
2354         struct pid *pid;
2355         struct task_struct *task = NULL;
2356         int ret = 0;
2357
2358         rcu_read_lock();
2359         pid = rcu_dereference(target->pid);
2360         if (pid)
2361                 task = get_pid_task(pid, PIDTYPE_PID);
2362         rcu_read_unlock();
2363         if (!task)
2364                 return ret;
2365         ret = yield_to(task, 1);
2366         put_task_struct(task);
2367
2368         return ret;
2369 }
2370 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2371
2372 /*
2373  * Helper that checks whether a VCPU is eligible for directed yield.
2374  * Most eligible candidate to yield is decided by following heuristics:
2375  *
2376  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2377  *  (preempted lock holder), indicated by @in_spin_loop.
2378  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2379  *
2380  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2381  *  chance last time (mostly it has become eligible now since we have probably
2382  *  yielded to lockholder in last iteration. This is done by toggling
2383  *  @dy_eligible each time a VCPU checked for eligibility.)
2384  *
2385  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2386  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2387  *  burning. Giving priority for a potential lock-holder increases lock
2388  *  progress.
2389  *
2390  *  Since algorithm is based on heuristics, accessing another VCPU data without
2391  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2392  *  and continue with next VCPU and so on.
2393  */
2394 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2395 {
2396 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2397         bool eligible;
2398
2399         eligible = !vcpu->spin_loop.in_spin_loop ||
2400                     vcpu->spin_loop.dy_eligible;
2401
2402         if (vcpu->spin_loop.in_spin_loop)
2403                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2404
2405         return eligible;
2406 #else
2407         return true;
2408 #endif
2409 }
2410
2411 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2412 {
2413         struct kvm *kvm = me->kvm;
2414         struct kvm_vcpu *vcpu;
2415         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2416         int yielded = 0;
2417         int try = 3;
2418         int pass;
2419         int i;
2420
2421         kvm_vcpu_set_in_spin_loop(me, true);
2422         /*
2423          * We boost the priority of a VCPU that is runnable but not
2424          * currently running, because it got preempted by something
2425          * else and called schedule in __vcpu_run.  Hopefully that
2426          * VCPU is holding the lock that we need and will release it.
2427          * We approximate round-robin by starting at the last boosted VCPU.
2428          */
2429         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2430                 kvm_for_each_vcpu(i, vcpu, kvm) {
2431                         if (!pass && i <= last_boosted_vcpu) {
2432                                 i = last_boosted_vcpu;
2433                                 continue;
2434                         } else if (pass && i > last_boosted_vcpu)
2435                                 break;
2436                         if (!READ_ONCE(vcpu->preempted))
2437                                 continue;
2438                         if (vcpu == me)
2439                                 continue;
2440                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2441                                 continue;
2442                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2443                                 continue;
2444                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2445                                 continue;
2446
2447                         yielded = kvm_vcpu_yield_to(vcpu);
2448                         if (yielded > 0) {
2449                                 kvm->last_boosted_vcpu = i;
2450                                 break;
2451                         } else if (yielded < 0) {
2452                                 try--;
2453                                 if (!try)
2454                                         break;
2455                         }
2456                 }
2457         }
2458         kvm_vcpu_set_in_spin_loop(me, false);
2459
2460         /* Ensure vcpu is not eligible during next spinloop */
2461         kvm_vcpu_set_dy_eligible(me, false);
2462 }
2463 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2464
2465 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2466 {
2467         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2468         struct page *page;
2469
2470         if (vmf->pgoff == 0)
2471                 page = virt_to_page(vcpu->run);
2472 #ifdef CONFIG_X86
2473         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2474                 page = virt_to_page(vcpu->arch.pio_data);
2475 #endif
2476 #ifdef CONFIG_KVM_MMIO
2477         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2478                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2479 #endif
2480         else
2481                 return kvm_arch_vcpu_fault(vcpu, vmf);
2482         get_page(page);
2483         vmf->page = page;
2484         return 0;
2485 }
2486
2487 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2488         .fault = kvm_vcpu_fault,
2489 };
2490
2491 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2492 {
2493         vma->vm_ops = &kvm_vcpu_vm_ops;
2494         return 0;
2495 }
2496
2497 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2498 {
2499         struct kvm_vcpu *vcpu = filp->private_data;
2500
2501         debugfs_remove_recursive(vcpu->debugfs_dentry);
2502         kvm_put_kvm(vcpu->kvm);
2503         return 0;
2504 }
2505
2506 static struct file_operations kvm_vcpu_fops = {
2507         .release        = kvm_vcpu_release,
2508         .unlocked_ioctl = kvm_vcpu_ioctl,
2509         .mmap           = kvm_vcpu_mmap,
2510         .llseek         = noop_llseek,
2511         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2512 };
2513
2514 /*
2515  * Allocates an inode for the vcpu.
2516  */
2517 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2518 {
2519         char name[8 + 1 + ITOA_MAX_LEN + 1];
2520
2521         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2522         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2523 }
2524
2525 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2526 {
2527         char dir_name[ITOA_MAX_LEN * 2];
2528         int ret;
2529
2530         if (!kvm_arch_has_vcpu_debugfs())
2531                 return 0;
2532
2533         if (!debugfs_initialized())
2534                 return 0;
2535
2536         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2537         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2538                                                                 vcpu->kvm->debugfs_dentry);
2539         if (!vcpu->debugfs_dentry)
2540                 return -ENOMEM;
2541
2542         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2543         if (ret < 0) {
2544                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2545                 return ret;
2546         }
2547
2548         return 0;
2549 }
2550
2551 /*
2552  * Creates some virtual cpus.  Good luck creating more than one.
2553  */
2554 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2555 {
2556         int r;
2557         struct kvm_vcpu *vcpu;
2558
2559         if (id >= KVM_MAX_VCPU_ID)
2560                 return -EINVAL;
2561
2562         mutex_lock(&kvm->lock);
2563         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2564                 mutex_unlock(&kvm->lock);
2565                 return -EINVAL;
2566         }
2567
2568         kvm->created_vcpus++;
2569         mutex_unlock(&kvm->lock);
2570
2571         vcpu = kvm_arch_vcpu_create(kvm, id);
2572         if (IS_ERR(vcpu)) {
2573                 r = PTR_ERR(vcpu);
2574                 goto vcpu_decrement;
2575         }
2576
2577         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2578
2579         r = kvm_arch_vcpu_setup(vcpu);
2580         if (r)
2581                 goto vcpu_destroy;
2582
2583         r = kvm_create_vcpu_debugfs(vcpu);
2584         if (r)
2585                 goto vcpu_destroy;
2586
2587         mutex_lock(&kvm->lock);
2588         if (kvm_get_vcpu_by_id(kvm, id)) {
2589                 r = -EEXIST;
2590                 goto unlock_vcpu_destroy;
2591         }
2592
2593         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2594
2595         /* Now it's all set up, let userspace reach it */
2596         kvm_get_kvm(kvm);
2597         r = create_vcpu_fd(vcpu);
2598         if (r < 0) {
2599                 kvm_put_kvm(kvm);
2600                 goto unlock_vcpu_destroy;
2601         }
2602
2603         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2604
2605         /*
2606          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2607          * before kvm->online_vcpu's incremented value.
2608          */
2609         smp_wmb();
2610         atomic_inc(&kvm->online_vcpus);
2611
2612         mutex_unlock(&kvm->lock);
2613         kvm_arch_vcpu_postcreate(vcpu);
2614         return r;
2615
2616 unlock_vcpu_destroy:
2617         mutex_unlock(&kvm->lock);
2618         debugfs_remove_recursive(vcpu->debugfs_dentry);
2619 vcpu_destroy:
2620         kvm_arch_vcpu_destroy(vcpu);
2621 vcpu_decrement:
2622         mutex_lock(&kvm->lock);
2623         kvm->created_vcpus--;
2624         mutex_unlock(&kvm->lock);
2625         return r;
2626 }
2627
2628 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2629 {
2630         if (sigset) {
2631                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2632                 vcpu->sigset_active = 1;
2633                 vcpu->sigset = *sigset;
2634         } else
2635                 vcpu->sigset_active = 0;
2636         return 0;
2637 }
2638
2639 static long kvm_vcpu_ioctl(struct file *filp,
2640                            unsigned int ioctl, unsigned long arg)
2641 {
2642         struct kvm_vcpu *vcpu = filp->private_data;
2643         void __user *argp = (void __user *)arg;
2644         int r;
2645         struct kvm_fpu *fpu = NULL;
2646         struct kvm_sregs *kvm_sregs = NULL;
2647
2648         if (vcpu->kvm->mm != current->mm)
2649                 return -EIO;
2650
2651         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2652                 return -EINVAL;
2653
2654         /*
2655          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2656          * execution; mutex_lock() would break them.
2657          */
2658         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2659         if (r != -ENOIOCTLCMD)
2660                 return r;
2661
2662         if (mutex_lock_killable(&vcpu->mutex))
2663                 return -EINTR;
2664         switch (ioctl) {
2665         case KVM_RUN: {
2666                 struct pid *oldpid;
2667                 r = -EINVAL;
2668                 if (arg)
2669                         goto out;
2670                 oldpid = rcu_access_pointer(vcpu->pid);
2671                 if (unlikely(oldpid != task_pid(current))) {
2672                         /* The thread running this VCPU changed. */
2673                         struct pid *newpid;
2674
2675                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2676                         if (r)
2677                                 break;
2678
2679                         newpid = get_task_pid(current, PIDTYPE_PID);
2680                         rcu_assign_pointer(vcpu->pid, newpid);
2681                         if (oldpid)
2682                                 synchronize_rcu();
2683                         put_pid(oldpid);
2684                 }
2685                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2686                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2687                 break;
2688         }
2689         case KVM_GET_REGS: {
2690                 struct kvm_regs *kvm_regs;
2691
2692                 r = -ENOMEM;
2693                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2694                 if (!kvm_regs)
2695                         goto out;
2696                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2697                 if (r)
2698                         goto out_free1;
2699                 r = -EFAULT;
2700                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2701                         goto out_free1;
2702                 r = 0;
2703 out_free1:
2704                 kfree(kvm_regs);
2705                 break;
2706         }
2707         case KVM_SET_REGS: {
2708                 struct kvm_regs *kvm_regs;
2709
2710                 r = -ENOMEM;
2711                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2712                 if (IS_ERR(kvm_regs)) {
2713                         r = PTR_ERR(kvm_regs);
2714                         goto out;
2715                 }
2716                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2717                 kfree(kvm_regs);
2718                 break;
2719         }
2720         case KVM_GET_SREGS: {
2721                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2722                                     GFP_KERNEL_ACCOUNT);
2723                 r = -ENOMEM;
2724                 if (!kvm_sregs)
2725                         goto out;
2726                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2727                 if (r)
2728                         goto out;
2729                 r = -EFAULT;
2730                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2731                         goto out;
2732                 r = 0;
2733                 break;
2734         }
2735         case KVM_SET_SREGS: {
2736                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2737                 if (IS_ERR(kvm_sregs)) {
2738                         r = PTR_ERR(kvm_sregs);
2739                         kvm_sregs = NULL;
2740                         goto out;
2741                 }
2742                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2743                 break;
2744         }
2745         case KVM_GET_MP_STATE: {
2746                 struct kvm_mp_state mp_state;
2747
2748                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2749                 if (r)
2750                         goto out;
2751                 r = -EFAULT;
2752                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2753                         goto out;
2754                 r = 0;
2755                 break;
2756         }
2757         case KVM_SET_MP_STATE: {
2758                 struct kvm_mp_state mp_state;
2759
2760                 r = -EFAULT;
2761                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2762                         goto out;
2763                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2764                 break;
2765         }
2766         case KVM_TRANSLATE: {
2767                 struct kvm_translation tr;
2768
2769                 r = -EFAULT;
2770                 if (copy_from_user(&tr, argp, sizeof(tr)))
2771                         goto out;
2772                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2773                 if (r)
2774                         goto out;
2775                 r = -EFAULT;
2776                 if (copy_to_user(argp, &tr, sizeof(tr)))
2777                         goto out;
2778                 r = 0;
2779                 break;
2780         }
2781         case KVM_SET_GUEST_DEBUG: {
2782                 struct kvm_guest_debug dbg;
2783
2784                 r = -EFAULT;
2785                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2786                         goto out;
2787                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2788                 break;
2789         }
2790         case KVM_SET_SIGNAL_MASK: {
2791                 struct kvm_signal_mask __user *sigmask_arg = argp;
2792                 struct kvm_signal_mask kvm_sigmask;
2793                 sigset_t sigset, *p;
2794
2795                 p = NULL;
2796                 if (argp) {
2797                         r = -EFAULT;
2798                         if (copy_from_user(&kvm_sigmask, argp,
2799                                            sizeof(kvm_sigmask)))
2800                                 goto out;
2801                         r = -EINVAL;
2802                         if (kvm_sigmask.len != sizeof(sigset))
2803                                 goto out;
2804                         r = -EFAULT;
2805                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2806                                            sizeof(sigset)))
2807                                 goto out;
2808                         p = &sigset;
2809                 }
2810                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2811                 break;
2812         }
2813         case KVM_GET_FPU: {
2814                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2815                 r = -ENOMEM;
2816                 if (!fpu)
2817                         goto out;
2818                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2819                 if (r)
2820                         goto out;
2821                 r = -EFAULT;
2822                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2823                         goto out;
2824                 r = 0;
2825                 break;
2826         }
2827         case KVM_SET_FPU: {
2828                 fpu = memdup_user(argp, sizeof(*fpu));
2829                 if (IS_ERR(fpu)) {
2830                         r = PTR_ERR(fpu);
2831                         fpu = NULL;
2832                         goto out;
2833                 }
2834                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2835                 break;
2836         }
2837         default:
2838                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2839         }
2840 out:
2841         mutex_unlock(&vcpu->mutex);
2842         kfree(fpu);
2843         kfree(kvm_sregs);
2844         return r;
2845 }
2846
2847 #ifdef CONFIG_KVM_COMPAT
2848 static long kvm_vcpu_compat_ioctl(struct file *filp,
2849                                   unsigned int ioctl, unsigned long arg)
2850 {
2851         struct kvm_vcpu *vcpu = filp->private_data;
2852         void __user *argp = compat_ptr(arg);
2853         int r;
2854
2855         if (vcpu->kvm->mm != current->mm)
2856                 return -EIO;
2857
2858         switch (ioctl) {
2859         case KVM_SET_SIGNAL_MASK: {
2860                 struct kvm_signal_mask __user *sigmask_arg = argp;
2861                 struct kvm_signal_mask kvm_sigmask;
2862                 sigset_t sigset;
2863
2864                 if (argp) {
2865                         r = -EFAULT;
2866                         if (copy_from_user(&kvm_sigmask, argp,
2867                                            sizeof(kvm_sigmask)))
2868                                 goto out;
2869                         r = -EINVAL;
2870                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2871                                 goto out;
2872                         r = -EFAULT;
2873                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2874                                 goto out;
2875                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2876                 } else
2877                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2878                 break;
2879         }
2880         default:
2881                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2882         }
2883
2884 out:
2885         return r;
2886 }
2887 #endif
2888
2889 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2890                                  int (*accessor)(struct kvm_device *dev,
2891                                                  struct kvm_device_attr *attr),
2892                                  unsigned long arg)
2893 {
2894         struct kvm_device_attr attr;
2895
2896         if (!accessor)
2897                 return -EPERM;
2898
2899         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2900                 return -EFAULT;
2901
2902         return accessor(dev, &attr);
2903 }
2904
2905 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2906                              unsigned long arg)
2907 {
2908         struct kvm_device *dev = filp->private_data;
2909
2910         if (dev->kvm->mm != current->mm)
2911                 return -EIO;
2912
2913         switch (ioctl) {
2914         case KVM_SET_DEVICE_ATTR:
2915                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2916         case KVM_GET_DEVICE_ATTR:
2917                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2918         case KVM_HAS_DEVICE_ATTR:
2919                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2920         default:
2921                 if (dev->ops->ioctl)
2922                         return dev->ops->ioctl(dev, ioctl, arg);
2923
2924                 return -ENOTTY;
2925         }
2926 }
2927
2928 static int kvm_device_release(struct inode *inode, struct file *filp)
2929 {
2930         struct kvm_device *dev = filp->private_data;
2931         struct kvm *kvm = dev->kvm;
2932
2933         kvm_put_kvm(kvm);
2934         return 0;
2935 }
2936
2937 static const struct file_operations kvm_device_fops = {
2938         .unlocked_ioctl = kvm_device_ioctl,
2939         .release = kvm_device_release,
2940         KVM_COMPAT(kvm_device_ioctl),
2941 };
2942
2943 struct kvm_device *kvm_device_from_filp(struct file *filp)
2944 {
2945         if (filp->f_op != &kvm_device_fops)
2946                 return NULL;
2947
2948         return filp->private_data;
2949 }
2950
2951 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2952 #ifdef CONFIG_KVM_MPIC
2953         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2954         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2955 #endif
2956 };
2957
2958 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2959 {
2960         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2961                 return -ENOSPC;
2962
2963         if (kvm_device_ops_table[type] != NULL)
2964                 return -EEXIST;
2965
2966         kvm_device_ops_table[type] = ops;
2967         return 0;
2968 }
2969
2970 void kvm_unregister_device_ops(u32 type)
2971 {
2972         if (kvm_device_ops_table[type] != NULL)
2973                 kvm_device_ops_table[type] = NULL;
2974 }
2975
2976 static int kvm_ioctl_create_device(struct kvm *kvm,
2977                                    struct kvm_create_device *cd)
2978 {
2979         struct kvm_device_ops *ops = NULL;
2980         struct kvm_device *dev;
2981         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2982         int type;
2983         int ret;
2984
2985         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2986                 return -ENODEV;
2987
2988         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
2989         ops = kvm_device_ops_table[type];
2990         if (ops == NULL)
2991                 return -ENODEV;
2992
2993         if (test)
2994                 return 0;
2995
2996         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
2997         if (!dev)
2998                 return -ENOMEM;
2999
3000         dev->ops = ops;
3001         dev->kvm = kvm;
3002
3003         mutex_lock(&kvm->lock);
3004         ret = ops->create(dev, type);
3005         if (ret < 0) {
3006                 mutex_unlock(&kvm->lock);
3007                 kfree(dev);
3008                 return ret;
3009         }
3010         list_add(&dev->vm_node, &kvm->devices);
3011         mutex_unlock(&kvm->lock);
3012
3013         if (ops->init)
3014                 ops->init(dev);
3015
3016         kvm_get_kvm(kvm);
3017         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3018         if (ret < 0) {
3019                 kvm_put_kvm(kvm);
3020                 mutex_lock(&kvm->lock);
3021                 list_del(&dev->vm_node);
3022                 mutex_unlock(&kvm->lock);
3023                 ops->destroy(dev);
3024                 return ret;
3025         }
3026
3027         cd->fd = ret;
3028         return 0;
3029 }
3030
3031 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3032 {
3033         switch (arg) {
3034         case KVM_CAP_USER_MEMORY:
3035         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3036         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3037         case KVM_CAP_INTERNAL_ERROR_DATA:
3038 #ifdef CONFIG_HAVE_KVM_MSI
3039         case KVM_CAP_SIGNAL_MSI:
3040 #endif
3041 #ifdef CONFIG_HAVE_KVM_IRQFD
3042         case KVM_CAP_IRQFD:
3043         case KVM_CAP_IRQFD_RESAMPLE:
3044 #endif
3045         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3046         case KVM_CAP_CHECK_EXTENSION_VM:
3047         case KVM_CAP_ENABLE_CAP_VM:
3048 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3049         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3050 #endif
3051                 return 1;
3052 #ifdef CONFIG_KVM_MMIO
3053         case KVM_CAP_COALESCED_MMIO:
3054                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3055         case KVM_CAP_COALESCED_PIO:
3056                 return 1;
3057 #endif
3058 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3059         case KVM_CAP_IRQ_ROUTING:
3060                 return KVM_MAX_IRQ_ROUTES;
3061 #endif
3062 #if KVM_ADDRESS_SPACE_NUM > 1
3063         case KVM_CAP_MULTI_ADDRESS_SPACE:
3064                 return KVM_ADDRESS_SPACE_NUM;
3065 #endif
3066         case KVM_CAP_MAX_VCPU_ID:
3067                 return KVM_MAX_VCPU_ID;
3068         default:
3069                 break;
3070         }
3071         return kvm_vm_ioctl_check_extension(kvm, arg);
3072 }
3073
3074 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3075                                                   struct kvm_enable_cap *cap)
3076 {
3077         return -EINVAL;
3078 }
3079
3080 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3081                                            struct kvm_enable_cap *cap)
3082 {
3083         switch (cap->cap) {
3084 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3085         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3086                 if (cap->flags || (cap->args[0] & ~1))
3087                         return -EINVAL;
3088                 kvm->manual_dirty_log_protect = cap->args[0];
3089                 return 0;
3090 #endif
3091         default:
3092                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3093         }
3094 }
3095
3096 static long kvm_vm_ioctl(struct file *filp,
3097                            unsigned int ioctl, unsigned long arg)
3098 {
3099         struct kvm *kvm = filp->private_data;
3100         void __user *argp = (void __user *)arg;
3101         int r;
3102
3103         if (kvm->mm != current->mm)
3104                 return -EIO;
3105         switch (ioctl) {
3106         case KVM_CREATE_VCPU:
3107                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3108                 break;
3109         case KVM_ENABLE_CAP: {
3110                 struct kvm_enable_cap cap;
3111
3112                 r = -EFAULT;
3113                 if (copy_from_user(&cap, argp, sizeof(cap)))
3114                         goto out;
3115                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3116                 break;
3117         }
3118         case KVM_SET_USER_MEMORY_REGION: {
3119                 struct kvm_userspace_memory_region kvm_userspace_mem;
3120
3121                 r = -EFAULT;
3122                 if (copy_from_user(&kvm_userspace_mem, argp,
3123                                                 sizeof(kvm_userspace_mem)))
3124                         goto out;
3125
3126                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3127                 break;
3128         }
3129         case KVM_GET_DIRTY_LOG: {
3130                 struct kvm_dirty_log log;
3131
3132                 r = -EFAULT;
3133                 if (copy_from_user(&log, argp, sizeof(log)))
3134                         goto out;
3135                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3136                 break;
3137         }
3138 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3139         case KVM_CLEAR_DIRTY_LOG: {
3140                 struct kvm_clear_dirty_log log;
3141
3142                 r = -EFAULT;
3143                 if (copy_from_user(&log, argp, sizeof(log)))
3144                         goto out;
3145                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3146                 break;
3147         }
3148 #endif
3149 #ifdef CONFIG_KVM_MMIO
3150         case KVM_REGISTER_COALESCED_MMIO: {
3151                 struct kvm_coalesced_mmio_zone zone;
3152
3153                 r = -EFAULT;
3154                 if (copy_from_user(&zone, argp, sizeof(zone)))
3155                         goto out;
3156                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3157                 break;
3158         }
3159         case KVM_UNREGISTER_COALESCED_MMIO: {
3160                 struct kvm_coalesced_mmio_zone zone;
3161
3162                 r = -EFAULT;
3163                 if (copy_from_user(&zone, argp, sizeof(zone)))
3164                         goto out;
3165                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3166                 break;
3167         }
3168 #endif
3169         case KVM_IRQFD: {
3170                 struct kvm_irqfd data;
3171
3172                 r = -EFAULT;
3173                 if (copy_from_user(&data, argp, sizeof(data)))
3174                         goto out;
3175                 r = kvm_irqfd(kvm, &data);
3176                 break;
3177         }
3178         case KVM_IOEVENTFD: {
3179                 struct kvm_ioeventfd data;
3180
3181                 r = -EFAULT;
3182                 if (copy_from_user(&data, argp, sizeof(data)))
3183                         goto out;
3184                 r = kvm_ioeventfd(kvm, &data);
3185                 break;
3186         }
3187 #ifdef CONFIG_HAVE_KVM_MSI
3188         case KVM_SIGNAL_MSI: {
3189                 struct kvm_msi msi;
3190
3191                 r = -EFAULT;
3192                 if (copy_from_user(&msi, argp, sizeof(msi)))
3193                         goto out;
3194                 r = kvm_send_userspace_msi(kvm, &msi);
3195                 break;
3196         }
3197 #endif
3198 #ifdef __KVM_HAVE_IRQ_LINE
3199         case KVM_IRQ_LINE_STATUS:
3200         case KVM_IRQ_LINE: {
3201                 struct kvm_irq_level irq_event;
3202
3203                 r = -EFAULT;
3204                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3205                         goto out;
3206
3207                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3208                                         ioctl == KVM_IRQ_LINE_STATUS);
3209                 if (r)
3210                         goto out;
3211
3212                 r = -EFAULT;
3213                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3214                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3215                                 goto out;
3216                 }
3217
3218                 r = 0;
3219                 break;
3220         }
3221 #endif
3222 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3223         case KVM_SET_GSI_ROUTING: {
3224                 struct kvm_irq_routing routing;
3225                 struct kvm_irq_routing __user *urouting;
3226                 struct kvm_irq_routing_entry *entries = NULL;
3227
3228                 r = -EFAULT;
3229                 if (copy_from_user(&routing, argp, sizeof(routing)))
3230                         goto out;
3231                 r = -EINVAL;
3232                 if (!kvm_arch_can_set_irq_routing(kvm))
3233                         goto out;
3234                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3235                         goto out;
3236                 if (routing.flags)
3237                         goto out;
3238                 if (routing.nr) {
3239                         r = -ENOMEM;
3240                         entries = vmalloc(array_size(sizeof(*entries),
3241                                                      routing.nr));
3242                         if (!entries)
3243                                 goto out;
3244                         r = -EFAULT;
3245                         urouting = argp;
3246                         if (copy_from_user(entries, urouting->entries,
3247                                            routing.nr * sizeof(*entries)))
3248                                 goto out_free_irq_routing;
3249                 }
3250                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3251                                         routing.flags);
3252 out_free_irq_routing:
3253                 vfree(entries);
3254                 break;
3255         }
3256 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3257         case KVM_CREATE_DEVICE: {
3258                 struct kvm_create_device cd;
3259
3260                 r = -EFAULT;
3261                 if (copy_from_user(&cd, argp, sizeof(cd)))
3262                         goto out;
3263
3264                 r = kvm_ioctl_create_device(kvm, &cd);
3265                 if (r)
3266                         goto out;
3267
3268                 r = -EFAULT;
3269                 if (copy_to_user(argp, &cd, sizeof(cd)))
3270                         goto out;
3271
3272                 r = 0;
3273                 break;
3274         }
3275         case KVM_CHECK_EXTENSION:
3276                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3277                 break;
3278         default:
3279                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3280         }
3281 out:
3282         return r;
3283 }
3284
3285 #ifdef CONFIG_KVM_COMPAT
3286 struct compat_kvm_dirty_log {
3287         __u32 slot;
3288         __u32 padding1;
3289         union {
3290                 compat_uptr_t dirty_bitmap; /* one bit per page */
3291                 __u64 padding2;
3292         };
3293 };
3294
3295 static long kvm_vm_compat_ioctl(struct file *filp,
3296                            unsigned int ioctl, unsigned long arg)
3297 {
3298         struct kvm *kvm = filp->private_data;
3299         int r;
3300
3301         if (kvm->mm != current->mm)
3302                 return -EIO;
3303         switch (ioctl) {
3304         case KVM_GET_DIRTY_LOG: {
3305                 struct compat_kvm_dirty_log compat_log;
3306                 struct kvm_dirty_log log;
3307
3308                 if (copy_from_user(&compat_log, (void __user *)arg,
3309                                    sizeof(compat_log)))
3310                         return -EFAULT;
3311                 log.slot         = compat_log.slot;
3312                 log.padding1     = compat_log.padding1;
3313                 log.padding2     = compat_log.padding2;
3314                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3315
3316                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3317                 break;
3318         }
3319         default:
3320                 r = kvm_vm_ioctl(filp, ioctl, arg);
3321         }
3322         return r;
3323 }
3324 #endif
3325
3326 static struct file_operations kvm_vm_fops = {
3327         .release        = kvm_vm_release,
3328         .unlocked_ioctl = kvm_vm_ioctl,
3329         .llseek         = noop_llseek,
3330         KVM_COMPAT(kvm_vm_compat_ioctl),
3331 };
3332
3333 static int kvm_dev_ioctl_create_vm(unsigned long type)
3334 {
3335         int r;
3336         struct kvm *kvm;
3337         struct file *file;
3338
3339         kvm = kvm_create_vm(type);
3340         if (IS_ERR(kvm))
3341                 return PTR_ERR(kvm);
3342 #ifdef CONFIG_KVM_MMIO
3343         r = kvm_coalesced_mmio_init(kvm);
3344         if (r < 0)
3345                 goto put_kvm;
3346 #endif
3347         r = get_unused_fd_flags(O_CLOEXEC);
3348         if (r < 0)
3349                 goto put_kvm;
3350
3351         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3352         if (IS_ERR(file)) {
3353                 put_unused_fd(r);
3354                 r = PTR_ERR(file);
3355                 goto put_kvm;
3356         }
3357
3358         /*
3359          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3360          * already set, with ->release() being kvm_vm_release().  In error
3361          * cases it will be called by the final fput(file) and will take
3362          * care of doing kvm_put_kvm(kvm).
3363          */
3364         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3365                 put_unused_fd(r);
3366                 fput(file);
3367                 return -ENOMEM;
3368         }
3369         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3370
3371         fd_install(r, file);
3372         return r;
3373
3374 put_kvm:
3375         kvm_put_kvm(kvm);
3376         return r;
3377 }
3378
3379 static long kvm_dev_ioctl(struct file *filp,
3380                           unsigned int ioctl, unsigned long arg)
3381 {
3382         long r = -EINVAL;
3383
3384         switch (ioctl) {
3385         case KVM_GET_API_VERSION:
3386                 if (arg)
3387                         goto out;
3388                 r = KVM_API_VERSION;
3389                 break;
3390         case KVM_CREATE_VM:
3391                 r = kvm_dev_ioctl_create_vm(arg);
3392                 break;
3393         case KVM_CHECK_EXTENSION:
3394                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3395                 break;
3396         case KVM_GET_VCPU_MMAP_SIZE:
3397                 if (arg)
3398                         goto out;
3399                 r = PAGE_SIZE;     /* struct kvm_run */
3400 #ifdef CONFIG_X86
3401                 r += PAGE_SIZE;    /* pio data page */
3402 #endif
3403 #ifdef CONFIG_KVM_MMIO
3404                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3405 #endif
3406                 break;
3407         case KVM_TRACE_ENABLE:
3408         case KVM_TRACE_PAUSE:
3409         case KVM_TRACE_DISABLE:
3410                 r = -EOPNOTSUPP;
3411                 break;
3412         default:
3413                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3414         }
3415 out:
3416         return r;
3417 }
3418
3419 static struct file_operations kvm_chardev_ops = {
3420         .unlocked_ioctl = kvm_dev_ioctl,
3421         .llseek         = noop_llseek,
3422         KVM_COMPAT(kvm_dev_ioctl),
3423 };
3424
3425 static struct miscdevice kvm_dev = {
3426         KVM_MINOR,
3427         "kvm",
3428         &kvm_chardev_ops,
3429 };
3430
3431 static void hardware_enable_nolock(void *junk)
3432 {
3433         int cpu = raw_smp_processor_id();
3434         int r;
3435
3436         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3437                 return;
3438
3439         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3440
3441         r = kvm_arch_hardware_enable();
3442
3443         if (r) {
3444                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3445                 atomic_inc(&hardware_enable_failed);
3446                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3447         }
3448 }
3449
3450 static int kvm_starting_cpu(unsigned int cpu)
3451 {
3452         raw_spin_lock(&kvm_count_lock);
3453         if (kvm_usage_count)
3454                 hardware_enable_nolock(NULL);
3455         raw_spin_unlock(&kvm_count_lock);
3456         return 0;
3457 }
3458
3459 static void hardware_disable_nolock(void *junk)
3460 {
3461         int cpu = raw_smp_processor_id();
3462
3463         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3464                 return;
3465         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3466         kvm_arch_hardware_disable();
3467 }
3468
3469 static int kvm_dying_cpu(unsigned int cpu)
3470 {
3471         raw_spin_lock(&kvm_count_lock);
3472         if (kvm_usage_count)
3473                 hardware_disable_nolock(NULL);
3474         raw_spin_unlock(&kvm_count_lock);
3475         return 0;
3476 }
3477
3478 static void hardware_disable_all_nolock(void)
3479 {
3480         BUG_ON(!kvm_usage_count);
3481
3482         kvm_usage_count--;
3483         if (!kvm_usage_count)
3484                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3485 }
3486
3487 static void hardware_disable_all(void)
3488 {
3489         raw_spin_lock(&kvm_count_lock);
3490         hardware_disable_all_nolock();
3491         raw_spin_unlock(&kvm_count_lock);
3492 }
3493
3494 static int hardware_enable_all(void)
3495 {
3496         int r = 0;
3497
3498         raw_spin_lock(&kvm_count_lock);
3499
3500         kvm_usage_count++;
3501         if (kvm_usage_count == 1) {
3502                 atomic_set(&hardware_enable_failed, 0);
3503                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3504
3505                 if (atomic_read(&hardware_enable_failed)) {
3506                         hardware_disable_all_nolock();
3507                         r = -EBUSY;
3508                 }
3509         }
3510
3511         raw_spin_unlock(&kvm_count_lock);
3512
3513         return r;
3514 }
3515
3516 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3517                       void *v)
3518 {
3519         /*
3520          * Some (well, at least mine) BIOSes hang on reboot if
3521          * in vmx root mode.
3522          *
3523          * And Intel TXT required VMX off for all cpu when system shutdown.
3524          */
3525         pr_info("kvm: exiting hardware virtualization\n");
3526         kvm_rebooting = true;
3527         on_each_cpu(hardware_disable_nolock, NULL, 1);
3528         return NOTIFY_OK;
3529 }
3530
3531 static struct notifier_block kvm_reboot_notifier = {
3532         .notifier_call = kvm_reboot,
3533         .priority = 0,
3534 };
3535
3536 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3537 {
3538         int i;
3539
3540         for (i = 0; i < bus->dev_count; i++) {
3541                 struct kvm_io_device *pos = bus->range[i].dev;
3542
3543                 kvm_iodevice_destructor(pos);
3544         }
3545         kfree(bus);
3546 }
3547
3548 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3549                                  const struct kvm_io_range *r2)
3550 {
3551         gpa_t addr1 = r1->addr;
3552         gpa_t addr2 = r2->addr;
3553
3554         if (addr1 < addr2)
3555                 return -1;
3556
3557         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3558          * accept any overlapping write.  Any order is acceptable for
3559          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3560          * we process all of them.
3561          */
3562         if (r2->len) {
3563                 addr1 += r1->len;
3564                 addr2 += r2->len;
3565         }
3566
3567         if (addr1 > addr2)
3568                 return 1;
3569
3570         return 0;
3571 }
3572
3573 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3574 {
3575         return kvm_io_bus_cmp(p1, p2);
3576 }
3577
3578 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3579                              gpa_t addr, int len)
3580 {
3581         struct kvm_io_range *range, key;
3582         int off;
3583
3584         key = (struct kvm_io_range) {
3585                 .addr = addr,
3586                 .len = len,
3587         };
3588
3589         range = bsearch(&key, bus->range, bus->dev_count,
3590                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3591         if (range == NULL)
3592                 return -ENOENT;
3593
3594         off = range - bus->range;
3595
3596         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3597                 off--;
3598
3599         return off;
3600 }
3601
3602 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3603                               struct kvm_io_range *range, const void *val)
3604 {
3605         int idx;
3606
3607         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3608         if (idx < 0)
3609                 return -EOPNOTSUPP;
3610
3611         while (idx < bus->dev_count &&
3612                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3613                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3614                                         range->len, val))
3615                         return idx;
3616                 idx++;
3617         }
3618
3619         return -EOPNOTSUPP;
3620 }
3621
3622 /* kvm_io_bus_write - called under kvm->slots_lock */
3623 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3624                      int len, const void *val)
3625 {
3626         struct kvm_io_bus *bus;
3627         struct kvm_io_range range;
3628         int r;
3629
3630         range = (struct kvm_io_range) {
3631                 .addr = addr,
3632                 .len = len,
3633         };
3634
3635         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3636         if (!bus)
3637                 return -ENOMEM;
3638         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3639         return r < 0 ? r : 0;
3640 }
3641 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3642
3643 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3644 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3645                             gpa_t addr, int len, const void *val, long cookie)
3646 {
3647         struct kvm_io_bus *bus;
3648         struct kvm_io_range range;
3649
3650         range = (struct kvm_io_range) {
3651                 .addr = addr,
3652                 .len = len,
3653         };
3654
3655         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3656         if (!bus)
3657                 return -ENOMEM;
3658
3659         /* First try the device referenced by cookie. */
3660         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3661             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3662                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3663                                         val))
3664                         return cookie;
3665
3666         /*
3667          * cookie contained garbage; fall back to search and return the
3668          * correct cookie value.
3669          */
3670         return __kvm_io_bus_write(vcpu, bus, &range, val);
3671 }
3672
3673 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3674                              struct kvm_io_range *range, void *val)
3675 {
3676         int idx;
3677
3678         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3679         if (idx < 0)
3680                 return -EOPNOTSUPP;
3681
3682         while (idx < bus->dev_count &&
3683                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3684                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3685                                        range->len, val))
3686                         return idx;
3687                 idx++;
3688         }
3689
3690         return -EOPNOTSUPP;
3691 }
3692
3693 /* kvm_io_bus_read - called under kvm->slots_lock */
3694 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3695                     int len, void *val)
3696 {
3697         struct kvm_io_bus *bus;
3698         struct kvm_io_range range;
3699         int r;
3700
3701         range = (struct kvm_io_range) {
3702                 .addr = addr,
3703                 .len = len,
3704         };
3705
3706         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3707         if (!bus)
3708                 return -ENOMEM;
3709         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3710         return r < 0 ? r : 0;
3711 }
3712
3713 /* Caller must hold slots_lock. */
3714 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3715                             int len, struct kvm_io_device *dev)
3716 {
3717         int i;
3718         struct kvm_io_bus *new_bus, *bus;
3719         struct kvm_io_range range;
3720
3721         bus = kvm_get_bus(kvm, bus_idx);
3722         if (!bus)
3723                 return -ENOMEM;
3724
3725         /* exclude ioeventfd which is limited by maximum fd */
3726         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3727                 return -ENOSPC;
3728
3729         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3730                           GFP_KERNEL_ACCOUNT);
3731         if (!new_bus)
3732                 return -ENOMEM;
3733
3734         range = (struct kvm_io_range) {
3735                 .addr = addr,
3736                 .len = len,
3737                 .dev = dev,
3738         };
3739
3740         for (i = 0; i < bus->dev_count; i++)
3741                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3742                         break;
3743
3744         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3745         new_bus->dev_count++;
3746         new_bus->range[i] = range;
3747         memcpy(new_bus->range + i + 1, bus->range + i,
3748                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3749         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3750         synchronize_srcu_expedited(&kvm->srcu);
3751         kfree(bus);
3752
3753         return 0;
3754 }
3755
3756 /* Caller must hold slots_lock. */
3757 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3758                                struct kvm_io_device *dev)
3759 {
3760         int i;
3761         struct kvm_io_bus *new_bus, *bus;
3762
3763         bus = kvm_get_bus(kvm, bus_idx);
3764         if (!bus)
3765                 return;
3766
3767         for (i = 0; i < bus->dev_count; i++)
3768                 if (bus->range[i].dev == dev) {
3769                         break;
3770                 }
3771
3772         if (i == bus->dev_count)
3773                 return;
3774
3775         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3776                           GFP_KERNEL_ACCOUNT);
3777         if (!new_bus)  {
3778                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3779                 goto broken;
3780         }
3781
3782         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3783         new_bus->dev_count--;
3784         memcpy(new_bus->range + i, bus->range + i + 1,
3785                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3786
3787 broken:
3788         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3789         synchronize_srcu_expedited(&kvm->srcu);
3790         kfree(bus);
3791         return;
3792 }
3793
3794 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3795                                          gpa_t addr)
3796 {
3797         struct kvm_io_bus *bus;
3798         int dev_idx, srcu_idx;
3799         struct kvm_io_device *iodev = NULL;
3800
3801         srcu_idx = srcu_read_lock(&kvm->srcu);
3802
3803         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3804         if (!bus)
3805                 goto out_unlock;
3806
3807         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3808         if (dev_idx < 0)
3809                 goto out_unlock;
3810
3811         iodev = bus->range[dev_idx].dev;
3812
3813 out_unlock:
3814         srcu_read_unlock(&kvm->srcu, srcu_idx);
3815
3816         return iodev;
3817 }
3818 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3819
3820 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3821                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3822                            const char *fmt)
3823 {
3824         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3825                                           inode->i_private;
3826
3827         /* The debugfs files are a reference to the kvm struct which
3828          * is still valid when kvm_destroy_vm is called.
3829          * To avoid the race between open and the removal of the debugfs
3830          * directory we test against the users count.
3831          */
3832         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3833                 return -ENOENT;
3834
3835         if (simple_attr_open(inode, file, get, set, fmt)) {
3836                 kvm_put_kvm(stat_data->kvm);
3837                 return -ENOMEM;
3838         }
3839
3840         return 0;
3841 }
3842
3843 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3844 {
3845         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3846                                           inode->i_private;
3847
3848         simple_attr_release(inode, file);
3849         kvm_put_kvm(stat_data->kvm);
3850
3851         return 0;
3852 }
3853
3854 static int vm_stat_get_per_vm(void *data, u64 *val)
3855 {
3856         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3857
3858         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3859
3860         return 0;
3861 }
3862
3863 static int vm_stat_clear_per_vm(void *data, u64 val)
3864 {
3865         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3866
3867         if (val)
3868                 return -EINVAL;
3869
3870         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3871
3872         return 0;
3873 }
3874
3875 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3876 {
3877         __simple_attr_check_format("%llu\n", 0ull);
3878         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3879                                 vm_stat_clear_per_vm, "%llu\n");
3880 }
3881
3882 static const struct file_operations vm_stat_get_per_vm_fops = {
3883         .owner   = THIS_MODULE,
3884         .open    = vm_stat_get_per_vm_open,
3885         .release = kvm_debugfs_release,
3886         .read    = simple_attr_read,
3887         .write   = simple_attr_write,
3888         .llseek  = no_llseek,
3889 };
3890
3891 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3892 {
3893         int i;
3894         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3895         struct kvm_vcpu *vcpu;
3896
3897         *val = 0;
3898
3899         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3900                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3901
3902         return 0;
3903 }
3904
3905 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3906 {
3907         int i;
3908         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3909         struct kvm_vcpu *vcpu;
3910
3911         if (val)
3912                 return -EINVAL;
3913
3914         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3915                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3916
3917         return 0;
3918 }
3919
3920 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3921 {
3922         __simple_attr_check_format("%llu\n", 0ull);
3923         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3924                                  vcpu_stat_clear_per_vm, "%llu\n");
3925 }
3926
3927 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3928         .owner   = THIS_MODULE,
3929         .open    = vcpu_stat_get_per_vm_open,
3930         .release = kvm_debugfs_release,
3931         .read    = simple_attr_read,
3932         .write   = simple_attr_write,
3933         .llseek  = no_llseek,
3934 };
3935
3936 static const struct file_operations *stat_fops_per_vm[] = {
3937         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3938         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3939 };
3940
3941 static int vm_stat_get(void *_offset, u64 *val)
3942 {
3943         unsigned offset = (long)_offset;
3944         struct kvm *kvm;
3945         struct kvm_stat_data stat_tmp = {.offset = offset};
3946         u64 tmp_val;
3947
3948         *val = 0;
3949         spin_lock(&kvm_lock);
3950         list_for_each_entry(kvm, &vm_list, vm_list) {
3951                 stat_tmp.kvm = kvm;
3952                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3953                 *val += tmp_val;
3954         }
3955         spin_unlock(&kvm_lock);
3956         return 0;
3957 }
3958
3959 static int vm_stat_clear(void *_offset, u64 val)
3960 {
3961         unsigned offset = (long)_offset;
3962         struct kvm *kvm;
3963         struct kvm_stat_data stat_tmp = {.offset = offset};
3964
3965         if (val)
3966                 return -EINVAL;
3967
3968         spin_lock(&kvm_lock);
3969         list_for_each_entry(kvm, &vm_list, vm_list) {
3970                 stat_tmp.kvm = kvm;
3971                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3972         }
3973         spin_unlock(&kvm_lock);
3974
3975         return 0;
3976 }
3977
3978 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3979
3980 static int vcpu_stat_get(void *_offset, u64 *val)
3981 {
3982         unsigned offset = (long)_offset;
3983         struct kvm *kvm;
3984         struct kvm_stat_data stat_tmp = {.offset = offset};
3985         u64 tmp_val;
3986
3987         *val = 0;
3988         spin_lock(&kvm_lock);
3989         list_for_each_entry(kvm, &vm_list, vm_list) {
3990                 stat_tmp.kvm = kvm;
3991                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3992                 *val += tmp_val;
3993         }
3994         spin_unlock(&kvm_lock);
3995         return 0;
3996 }
3997
3998 static int vcpu_stat_clear(void *_offset, u64 val)
3999 {
4000         unsigned offset = (long)_offset;
4001         struct kvm *kvm;
4002         struct kvm_stat_data stat_tmp = {.offset = offset};
4003
4004         if (val)
4005                 return -EINVAL;
4006
4007         spin_lock(&kvm_lock);
4008         list_for_each_entry(kvm, &vm_list, vm_list) {
4009                 stat_tmp.kvm = kvm;
4010                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4011         }
4012         spin_unlock(&kvm_lock);
4013
4014         return 0;
4015 }
4016
4017 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4018                         "%llu\n");
4019
4020 static const struct file_operations *stat_fops[] = {
4021         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4022         [KVM_STAT_VM]   = &vm_stat_fops,
4023 };
4024
4025 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4026 {
4027         struct kobj_uevent_env *env;
4028         unsigned long long created, active;
4029
4030         if (!kvm_dev.this_device || !kvm)
4031                 return;
4032
4033         spin_lock(&kvm_lock);
4034         if (type == KVM_EVENT_CREATE_VM) {
4035                 kvm_createvm_count++;
4036                 kvm_active_vms++;
4037         } else if (type == KVM_EVENT_DESTROY_VM) {
4038                 kvm_active_vms--;
4039         }
4040         created = kvm_createvm_count;
4041         active = kvm_active_vms;
4042         spin_unlock(&kvm_lock);
4043
4044         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4045         if (!env)
4046                 return;
4047
4048         add_uevent_var(env, "CREATED=%llu", created);
4049         add_uevent_var(env, "COUNT=%llu", active);
4050
4051         if (type == KVM_EVENT_CREATE_VM) {
4052                 add_uevent_var(env, "EVENT=create");
4053                 kvm->userspace_pid = task_pid_nr(current);
4054         } else if (type == KVM_EVENT_DESTROY_VM) {
4055                 add_uevent_var(env, "EVENT=destroy");
4056         }
4057         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4058
4059         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4060                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4061
4062                 if (p) {
4063                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4064                         if (!IS_ERR(tmp))
4065                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4066                         kfree(p);
4067                 }
4068         }
4069         /* no need for checks, since we are adding at most only 5 keys */
4070         env->envp[env->envp_idx++] = NULL;
4071         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4072         kfree(env);
4073 }
4074
4075 static void kvm_init_debug(void)
4076 {
4077         struct kvm_stats_debugfs_item *p;
4078
4079         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4080
4081         kvm_debugfs_num_entries = 0;
4082         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4083                 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4084                                     (void *)(long)p->offset,
4085                                     stat_fops[p->kind]);
4086         }
4087 }
4088
4089 static int kvm_suspend(void)
4090 {
4091         if (kvm_usage_count)
4092                 hardware_disable_nolock(NULL);
4093         return 0;
4094 }
4095
4096 static void kvm_resume(void)
4097 {
4098         if (kvm_usage_count) {
4099                 lockdep_assert_held(&kvm_count_lock);
4100                 hardware_enable_nolock(NULL);
4101         }
4102 }
4103
4104 static struct syscore_ops kvm_syscore_ops = {
4105         .suspend = kvm_suspend,
4106         .resume = kvm_resume,
4107 };
4108
4109 static inline
4110 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4111 {
4112         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4113 }
4114
4115 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4116 {
4117         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4118
4119         if (vcpu->preempted)
4120                 vcpu->preempted = false;
4121
4122         kvm_arch_sched_in(vcpu, cpu);
4123
4124         kvm_arch_vcpu_load(vcpu, cpu);
4125 }
4126
4127 static void kvm_sched_out(struct preempt_notifier *pn,
4128                           struct task_struct *next)
4129 {
4130         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4131
4132         if (current->state == TASK_RUNNING)
4133                 vcpu->preempted = true;
4134         kvm_arch_vcpu_put(vcpu);
4135 }
4136
4137 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4138                   struct module *module)
4139 {
4140         int r;
4141         int cpu;
4142
4143         r = kvm_arch_init(opaque);
4144         if (r)
4145                 goto out_fail;
4146
4147         /*
4148          * kvm_arch_init makes sure there's at most one caller
4149          * for architectures that support multiple implementations,
4150          * like intel and amd on x86.
4151          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4152          * conflicts in case kvm is already setup for another implementation.
4153          */
4154         r = kvm_irqfd_init();
4155         if (r)
4156                 goto out_irqfd;
4157
4158         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4159                 r = -ENOMEM;
4160                 goto out_free_0;
4161         }
4162
4163         r = kvm_arch_hardware_setup();
4164         if (r < 0)
4165                 goto out_free_0a;
4166
4167         for_each_online_cpu(cpu) {
4168                 smp_call_function_single(cpu,
4169                                 kvm_arch_check_processor_compat,
4170                                 &r, 1);
4171                 if (r < 0)
4172                         goto out_free_1;
4173         }
4174
4175         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4176                                       kvm_starting_cpu, kvm_dying_cpu);
4177         if (r)
4178                 goto out_free_2;
4179         register_reboot_notifier(&kvm_reboot_notifier);
4180
4181         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4182         if (!vcpu_align)
4183                 vcpu_align = __alignof__(struct kvm_vcpu);
4184         kvm_vcpu_cache =
4185                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4186                                            SLAB_ACCOUNT,
4187                                            offsetof(struct kvm_vcpu, arch),
4188                                            sizeof_field(struct kvm_vcpu, arch),
4189                                            NULL);
4190         if (!kvm_vcpu_cache) {
4191                 r = -ENOMEM;
4192                 goto out_free_3;
4193         }
4194
4195         r = kvm_async_pf_init();
4196         if (r)
4197                 goto out_free;
4198
4199         kvm_chardev_ops.owner = module;
4200         kvm_vm_fops.owner = module;
4201         kvm_vcpu_fops.owner = module;
4202
4203         r = misc_register(&kvm_dev);
4204         if (r) {
4205                 pr_err("kvm: misc device register failed\n");
4206                 goto out_unreg;
4207         }
4208
4209         register_syscore_ops(&kvm_syscore_ops);
4210
4211         kvm_preempt_ops.sched_in = kvm_sched_in;
4212         kvm_preempt_ops.sched_out = kvm_sched_out;
4213
4214         kvm_init_debug();
4215
4216         r = kvm_vfio_ops_init();
4217         WARN_ON(r);
4218
4219         return 0;
4220
4221 out_unreg:
4222         kvm_async_pf_deinit();
4223 out_free:
4224         kmem_cache_destroy(kvm_vcpu_cache);
4225 out_free_3:
4226         unregister_reboot_notifier(&kvm_reboot_notifier);
4227         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4228 out_free_2:
4229 out_free_1:
4230         kvm_arch_hardware_unsetup();
4231 out_free_0a:
4232         free_cpumask_var(cpus_hardware_enabled);
4233 out_free_0:
4234         kvm_irqfd_exit();
4235 out_irqfd:
4236         kvm_arch_exit();
4237 out_fail:
4238         return r;
4239 }
4240 EXPORT_SYMBOL_GPL(kvm_init);
4241
4242 void kvm_exit(void)
4243 {
4244         debugfs_remove_recursive(kvm_debugfs_dir);
4245         misc_deregister(&kvm_dev);
4246         kmem_cache_destroy(kvm_vcpu_cache);
4247         kvm_async_pf_deinit();
4248         unregister_syscore_ops(&kvm_syscore_ops);
4249         unregister_reboot_notifier(&kvm_reboot_notifier);
4250         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4251         on_each_cpu(hardware_disable_nolock, NULL, 1);
4252         kvm_arch_hardware_unsetup();
4253         kvm_arch_exit();
4254         kvm_irqfd_exit();
4255         free_cpumask_var(cpus_hardware_enabled);
4256         kvm_vfio_ops_exit();
4257 }
4258 EXPORT_SYMBOL_GPL(kvm_exit);