kvm: use more precise cast and do not drop __user
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91
92 /*
93  * Ordering of locks:
94  *
95  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105
106 static struct kmem_cache *kvm_vcpu_cache;
107
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118                            unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121                                   unsigned long arg);
122 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
123 #else
124 /*
125  * For architectures that don't implement a compat infrastructure,
126  * adopt a double line of defense:
127  * - Prevent a compat task from opening /dev/kvm
128  * - If the open has been done by a 64bit task, and the KVM fd
129  *   passed to a compat task, let the ioctls fail.
130  */
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132                                 unsigned long arg) { return -EINVAL; }
133
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136         return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
139                         .open           = kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145
146 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
147
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158                                                    unsigned long start, unsigned long end)
159 {
160 }
161
162 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
163 {
164         /*
165          * The metadata used by is_zone_device_page() to determine whether or
166          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
167          * the device has been pinned, e.g. by get_user_pages().  WARN if the
168          * page_count() is zero to help detect bad usage of this helper.
169          */
170         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
171                 return false;
172
173         return is_zone_device_page(pfn_to_page(pfn));
174 }
175
176 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
177 {
178         /*
179          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
180          * perspective they are "normal" pages, albeit with slightly different
181          * usage rules.
182          */
183         if (pfn_valid(pfn))
184                 return PageReserved(pfn_to_page(pfn)) &&
185                        !is_zero_pfn(pfn) &&
186                        !kvm_is_zone_device_pfn(pfn);
187
188         return true;
189 }
190
191 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
192 {
193         struct page *page = pfn_to_page(pfn);
194
195         if (!PageTransCompoundMap(page))
196                 return false;
197
198         return is_transparent_hugepage(compound_head(page));
199 }
200
201 /*
202  * Switches to specified vcpu, until a matching vcpu_put()
203  */
204 void vcpu_load(struct kvm_vcpu *vcpu)
205 {
206         int cpu = get_cpu();
207
208         __this_cpu_write(kvm_running_vcpu, vcpu);
209         preempt_notifier_register(&vcpu->preempt_notifier);
210         kvm_arch_vcpu_load(vcpu, cpu);
211         put_cpu();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_load);
214
215 void vcpu_put(struct kvm_vcpu *vcpu)
216 {
217         preempt_disable();
218         kvm_arch_vcpu_put(vcpu);
219         preempt_notifier_unregister(&vcpu->preempt_notifier);
220         __this_cpu_write(kvm_running_vcpu, NULL);
221         preempt_enable();
222 }
223 EXPORT_SYMBOL_GPL(vcpu_put);
224
225 /* TODO: merge with kvm_arch_vcpu_should_kick */
226 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
227 {
228         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
229
230         /*
231          * We need to wait for the VCPU to reenable interrupts and get out of
232          * READING_SHADOW_PAGE_TABLES mode.
233          */
234         if (req & KVM_REQUEST_WAIT)
235                 return mode != OUTSIDE_GUEST_MODE;
236
237         /*
238          * Need to kick a running VCPU, but otherwise there is nothing to do.
239          */
240         return mode == IN_GUEST_MODE;
241 }
242
243 static void ack_flush(void *_completed)
244 {
245 }
246
247 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
248 {
249         if (unlikely(!cpus))
250                 cpus = cpu_online_mask;
251
252         if (cpumask_empty(cpus))
253                 return false;
254
255         smp_call_function_many(cpus, ack_flush, NULL, wait);
256         return true;
257 }
258
259 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
260                                  struct kvm_vcpu *except,
261                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
262 {
263         int i, cpu, me;
264         struct kvm_vcpu *vcpu;
265         bool called;
266
267         me = get_cpu();
268
269         kvm_for_each_vcpu(i, vcpu, kvm) {
270                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
271                     vcpu == except)
272                         continue;
273
274                 kvm_make_request(req, vcpu);
275                 cpu = vcpu->cpu;
276
277                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278                         continue;
279
280                 if (tmp != NULL && cpu != -1 && cpu != me &&
281                     kvm_request_needs_ipi(vcpu, req))
282                         __cpumask_set_cpu(cpu, tmp);
283         }
284
285         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286         put_cpu();
287
288         return called;
289 }
290
291 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
292                                       struct kvm_vcpu *except)
293 {
294         cpumask_var_t cpus;
295         bool called;
296
297         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
298
299         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
300
301         free_cpumask_var(cpus);
302         return called;
303 }
304
305 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
306 {
307         return kvm_make_all_cpus_request_except(kvm, req, NULL);
308 }
309
310 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
311 void kvm_flush_remote_tlbs(struct kvm *kvm)
312 {
313         /*
314          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
315          * kvm_make_all_cpus_request.
316          */
317         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
318
319         /*
320          * We want to publish modifications to the page tables before reading
321          * mode. Pairs with a memory barrier in arch-specific code.
322          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
323          * and smp_mb in walk_shadow_page_lockless_begin/end.
324          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
325          *
326          * There is already an smp_mb__after_atomic() before
327          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
328          * barrier here.
329          */
330         if (!kvm_arch_flush_remote_tlb(kvm)
331             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
332                 ++kvm->stat.remote_tlb_flush;
333         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
334 }
335 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
336 #endif
337
338 void kvm_reload_remote_mmus(struct kvm *kvm)
339 {
340         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
341 }
342
343 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
344 {
345         mutex_init(&vcpu->mutex);
346         vcpu->cpu = -1;
347         vcpu->kvm = kvm;
348         vcpu->vcpu_id = id;
349         vcpu->pid = NULL;
350         rcuwait_init(&vcpu->wait);
351         kvm_async_pf_vcpu_init(vcpu);
352
353         vcpu->pre_pcpu = -1;
354         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
355
356         kvm_vcpu_set_in_spin_loop(vcpu, false);
357         kvm_vcpu_set_dy_eligible(vcpu, false);
358         vcpu->preempted = false;
359         vcpu->ready = false;
360         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
361 }
362
363 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
364 {
365         kvm_arch_vcpu_destroy(vcpu);
366
367         /*
368          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
369          * the vcpu->pid pointer, and at destruction time all file descriptors
370          * are already gone.
371          */
372         put_pid(rcu_dereference_protected(vcpu->pid, 1));
373
374         free_page((unsigned long)vcpu->run);
375         kmem_cache_free(kvm_vcpu_cache, vcpu);
376 }
377 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
378
379 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
380 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
381 {
382         return container_of(mn, struct kvm, mmu_notifier);
383 }
384
385 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
386                                               struct mm_struct *mm,
387                                               unsigned long start, unsigned long end)
388 {
389         struct kvm *kvm = mmu_notifier_to_kvm(mn);
390         int idx;
391
392         idx = srcu_read_lock(&kvm->srcu);
393         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
394         srcu_read_unlock(&kvm->srcu, idx);
395 }
396
397 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
398                                         struct mm_struct *mm,
399                                         unsigned long address,
400                                         pte_t pte)
401 {
402         struct kvm *kvm = mmu_notifier_to_kvm(mn);
403         int idx;
404
405         idx = srcu_read_lock(&kvm->srcu);
406         spin_lock(&kvm->mmu_lock);
407         kvm->mmu_notifier_seq++;
408
409         if (kvm_set_spte_hva(kvm, address, pte))
410                 kvm_flush_remote_tlbs(kvm);
411
412         spin_unlock(&kvm->mmu_lock);
413         srcu_read_unlock(&kvm->srcu, idx);
414 }
415
416 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
417                                         const struct mmu_notifier_range *range)
418 {
419         struct kvm *kvm = mmu_notifier_to_kvm(mn);
420         int need_tlb_flush = 0, idx;
421
422         idx = srcu_read_lock(&kvm->srcu);
423         spin_lock(&kvm->mmu_lock);
424         /*
425          * The count increase must become visible at unlock time as no
426          * spte can be established without taking the mmu_lock and
427          * count is also read inside the mmu_lock critical section.
428          */
429         kvm->mmu_notifier_count++;
430         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
431         need_tlb_flush |= kvm->tlbs_dirty;
432         /* we've to flush the tlb before the pages can be freed */
433         if (need_tlb_flush)
434                 kvm_flush_remote_tlbs(kvm);
435
436         spin_unlock(&kvm->mmu_lock);
437         srcu_read_unlock(&kvm->srcu, idx);
438
439         return 0;
440 }
441
442 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
443                                         const struct mmu_notifier_range *range)
444 {
445         struct kvm *kvm = mmu_notifier_to_kvm(mn);
446
447         spin_lock(&kvm->mmu_lock);
448         /*
449          * This sequence increase will notify the kvm page fault that
450          * the page that is going to be mapped in the spte could have
451          * been freed.
452          */
453         kvm->mmu_notifier_seq++;
454         smp_wmb();
455         /*
456          * The above sequence increase must be visible before the
457          * below count decrease, which is ensured by the smp_wmb above
458          * in conjunction with the smp_rmb in mmu_notifier_retry().
459          */
460         kvm->mmu_notifier_count--;
461         spin_unlock(&kvm->mmu_lock);
462
463         BUG_ON(kvm->mmu_notifier_count < 0);
464 }
465
466 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
467                                               struct mm_struct *mm,
468                                               unsigned long start,
469                                               unsigned long end)
470 {
471         struct kvm *kvm = mmu_notifier_to_kvm(mn);
472         int young, idx;
473
474         idx = srcu_read_lock(&kvm->srcu);
475         spin_lock(&kvm->mmu_lock);
476
477         young = kvm_age_hva(kvm, start, end);
478         if (young)
479                 kvm_flush_remote_tlbs(kvm);
480
481         spin_unlock(&kvm->mmu_lock);
482         srcu_read_unlock(&kvm->srcu, idx);
483
484         return young;
485 }
486
487 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
488                                         struct mm_struct *mm,
489                                         unsigned long start,
490                                         unsigned long end)
491 {
492         struct kvm *kvm = mmu_notifier_to_kvm(mn);
493         int young, idx;
494
495         idx = srcu_read_lock(&kvm->srcu);
496         spin_lock(&kvm->mmu_lock);
497         /*
498          * Even though we do not flush TLB, this will still adversely
499          * affect performance on pre-Haswell Intel EPT, where there is
500          * no EPT Access Bit to clear so that we have to tear down EPT
501          * tables instead. If we find this unacceptable, we can always
502          * add a parameter to kvm_age_hva so that it effectively doesn't
503          * do anything on clear_young.
504          *
505          * Also note that currently we never issue secondary TLB flushes
506          * from clear_young, leaving this job up to the regular system
507          * cadence. If we find this inaccurate, we might come up with a
508          * more sophisticated heuristic later.
509          */
510         young = kvm_age_hva(kvm, start, end);
511         spin_unlock(&kvm->mmu_lock);
512         srcu_read_unlock(&kvm->srcu, idx);
513
514         return young;
515 }
516
517 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
518                                        struct mm_struct *mm,
519                                        unsigned long address)
520 {
521         struct kvm *kvm = mmu_notifier_to_kvm(mn);
522         int young, idx;
523
524         idx = srcu_read_lock(&kvm->srcu);
525         spin_lock(&kvm->mmu_lock);
526         young = kvm_test_age_hva(kvm, address);
527         spin_unlock(&kvm->mmu_lock);
528         srcu_read_unlock(&kvm->srcu, idx);
529
530         return young;
531 }
532
533 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
534                                      struct mm_struct *mm)
535 {
536         struct kvm *kvm = mmu_notifier_to_kvm(mn);
537         int idx;
538
539         idx = srcu_read_lock(&kvm->srcu);
540         kvm_arch_flush_shadow_all(kvm);
541         srcu_read_unlock(&kvm->srcu, idx);
542 }
543
544 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
545         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
546         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
547         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
548         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
549         .clear_young            = kvm_mmu_notifier_clear_young,
550         .test_young             = kvm_mmu_notifier_test_young,
551         .change_pte             = kvm_mmu_notifier_change_pte,
552         .release                = kvm_mmu_notifier_release,
553 };
554
555 static int kvm_init_mmu_notifier(struct kvm *kvm)
556 {
557         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
558         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
559 }
560
561 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
562
563 static int kvm_init_mmu_notifier(struct kvm *kvm)
564 {
565         return 0;
566 }
567
568 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
569
570 static struct kvm_memslots *kvm_alloc_memslots(void)
571 {
572         int i;
573         struct kvm_memslots *slots;
574
575         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
576         if (!slots)
577                 return NULL;
578
579         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
580                 slots->id_to_index[i] = -1;
581
582         return slots;
583 }
584
585 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
586 {
587         if (!memslot->dirty_bitmap)
588                 return;
589
590         kvfree(memslot->dirty_bitmap);
591         memslot->dirty_bitmap = NULL;
592 }
593
594 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
595 {
596         kvm_destroy_dirty_bitmap(slot);
597
598         kvm_arch_free_memslot(kvm, slot);
599
600         slot->flags = 0;
601         slot->npages = 0;
602 }
603
604 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
605 {
606         struct kvm_memory_slot *memslot;
607
608         if (!slots)
609                 return;
610
611         kvm_for_each_memslot(memslot, slots)
612                 kvm_free_memslot(kvm, memslot);
613
614         kvfree(slots);
615 }
616
617 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
618 {
619         int i;
620
621         if (!kvm->debugfs_dentry)
622                 return;
623
624         debugfs_remove_recursive(kvm->debugfs_dentry);
625
626         if (kvm->debugfs_stat_data) {
627                 for (i = 0; i < kvm_debugfs_num_entries; i++)
628                         kfree(kvm->debugfs_stat_data[i]);
629                 kfree(kvm->debugfs_stat_data);
630         }
631 }
632
633 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
634 {
635         char dir_name[ITOA_MAX_LEN * 2];
636         struct kvm_stat_data *stat_data;
637         struct kvm_stats_debugfs_item *p;
638
639         if (!debugfs_initialized())
640                 return 0;
641
642         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
643         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
644
645         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
646                                          sizeof(*kvm->debugfs_stat_data),
647                                          GFP_KERNEL_ACCOUNT);
648         if (!kvm->debugfs_stat_data)
649                 return -ENOMEM;
650
651         for (p = debugfs_entries; p->name; p++) {
652                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
653                 if (!stat_data)
654                         return -ENOMEM;
655
656                 stat_data->kvm = kvm;
657                 stat_data->dbgfs_item = p;
658                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
659                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
660                                     kvm->debugfs_dentry, stat_data,
661                                     &stat_fops_per_vm);
662         }
663         return 0;
664 }
665
666 /*
667  * Called after the VM is otherwise initialized, but just before adding it to
668  * the vm_list.
669  */
670 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
671 {
672         return 0;
673 }
674
675 /*
676  * Called just after removing the VM from the vm_list, but before doing any
677  * other destruction.
678  */
679 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
680 {
681 }
682
683 static struct kvm *kvm_create_vm(unsigned long type)
684 {
685         struct kvm *kvm = kvm_arch_alloc_vm();
686         int r = -ENOMEM;
687         int i;
688
689         if (!kvm)
690                 return ERR_PTR(-ENOMEM);
691
692         spin_lock_init(&kvm->mmu_lock);
693         mmgrab(current->mm);
694         kvm->mm = current->mm;
695         kvm_eventfd_init(kvm);
696         mutex_init(&kvm->lock);
697         mutex_init(&kvm->irq_lock);
698         mutex_init(&kvm->slots_lock);
699         INIT_LIST_HEAD(&kvm->devices);
700
701         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
702
703         if (init_srcu_struct(&kvm->srcu))
704                 goto out_err_no_srcu;
705         if (init_srcu_struct(&kvm->irq_srcu))
706                 goto out_err_no_irq_srcu;
707
708         refcount_set(&kvm->users_count, 1);
709         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
710                 struct kvm_memslots *slots = kvm_alloc_memslots();
711
712                 if (!slots)
713                         goto out_err_no_arch_destroy_vm;
714                 /* Generations must be different for each address space. */
715                 slots->generation = i;
716                 rcu_assign_pointer(kvm->memslots[i], slots);
717         }
718
719         for (i = 0; i < KVM_NR_BUSES; i++) {
720                 rcu_assign_pointer(kvm->buses[i],
721                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
722                 if (!kvm->buses[i])
723                         goto out_err_no_arch_destroy_vm;
724         }
725
726         kvm->max_halt_poll_ns = halt_poll_ns;
727
728         r = kvm_arch_init_vm(kvm, type);
729         if (r)
730                 goto out_err_no_arch_destroy_vm;
731
732         r = hardware_enable_all();
733         if (r)
734                 goto out_err_no_disable;
735
736 #ifdef CONFIG_HAVE_KVM_IRQFD
737         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
738 #endif
739
740         r = kvm_init_mmu_notifier(kvm);
741         if (r)
742                 goto out_err_no_mmu_notifier;
743
744         r = kvm_arch_post_init_vm(kvm);
745         if (r)
746                 goto out_err;
747
748         mutex_lock(&kvm_lock);
749         list_add(&kvm->vm_list, &vm_list);
750         mutex_unlock(&kvm_lock);
751
752         preempt_notifier_inc();
753
754         return kvm;
755
756 out_err:
757 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
758         if (kvm->mmu_notifier.ops)
759                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
760 #endif
761 out_err_no_mmu_notifier:
762         hardware_disable_all();
763 out_err_no_disable:
764         kvm_arch_destroy_vm(kvm);
765 out_err_no_arch_destroy_vm:
766         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
767         for (i = 0; i < KVM_NR_BUSES; i++)
768                 kfree(kvm_get_bus(kvm, i));
769         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
770                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
771         cleanup_srcu_struct(&kvm->irq_srcu);
772 out_err_no_irq_srcu:
773         cleanup_srcu_struct(&kvm->srcu);
774 out_err_no_srcu:
775         kvm_arch_free_vm(kvm);
776         mmdrop(current->mm);
777         return ERR_PTR(r);
778 }
779
780 static void kvm_destroy_devices(struct kvm *kvm)
781 {
782         struct kvm_device *dev, *tmp;
783
784         /*
785          * We do not need to take the kvm->lock here, because nobody else
786          * has a reference to the struct kvm at this point and therefore
787          * cannot access the devices list anyhow.
788          */
789         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
790                 list_del(&dev->vm_node);
791                 dev->ops->destroy(dev);
792         }
793 }
794
795 static void kvm_destroy_vm(struct kvm *kvm)
796 {
797         int i;
798         struct mm_struct *mm = kvm->mm;
799
800         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
801         kvm_destroy_vm_debugfs(kvm);
802         kvm_arch_sync_events(kvm);
803         mutex_lock(&kvm_lock);
804         list_del(&kvm->vm_list);
805         mutex_unlock(&kvm_lock);
806         kvm_arch_pre_destroy_vm(kvm);
807
808         kvm_free_irq_routing(kvm);
809         for (i = 0; i < KVM_NR_BUSES; i++) {
810                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
811
812                 if (bus)
813                         kvm_io_bus_destroy(bus);
814                 kvm->buses[i] = NULL;
815         }
816         kvm_coalesced_mmio_free(kvm);
817 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
818         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
819 #else
820         kvm_arch_flush_shadow_all(kvm);
821 #endif
822         kvm_arch_destroy_vm(kvm);
823         kvm_destroy_devices(kvm);
824         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
825                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
826         cleanup_srcu_struct(&kvm->irq_srcu);
827         cleanup_srcu_struct(&kvm->srcu);
828         kvm_arch_free_vm(kvm);
829         preempt_notifier_dec();
830         hardware_disable_all();
831         mmdrop(mm);
832 }
833
834 void kvm_get_kvm(struct kvm *kvm)
835 {
836         refcount_inc(&kvm->users_count);
837 }
838 EXPORT_SYMBOL_GPL(kvm_get_kvm);
839
840 void kvm_put_kvm(struct kvm *kvm)
841 {
842         if (refcount_dec_and_test(&kvm->users_count))
843                 kvm_destroy_vm(kvm);
844 }
845 EXPORT_SYMBOL_GPL(kvm_put_kvm);
846
847 /*
848  * Used to put a reference that was taken on behalf of an object associated
849  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
850  * of the new file descriptor fails and the reference cannot be transferred to
851  * its final owner.  In such cases, the caller is still actively using @kvm and
852  * will fail miserably if the refcount unexpectedly hits zero.
853  */
854 void kvm_put_kvm_no_destroy(struct kvm *kvm)
855 {
856         WARN_ON(refcount_dec_and_test(&kvm->users_count));
857 }
858 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
859
860 static int kvm_vm_release(struct inode *inode, struct file *filp)
861 {
862         struct kvm *kvm = filp->private_data;
863
864         kvm_irqfd_release(kvm);
865
866         kvm_put_kvm(kvm);
867         return 0;
868 }
869
870 /*
871  * Allocation size is twice as large as the actual dirty bitmap size.
872  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
873  */
874 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
875 {
876         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
877
878         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
879         if (!memslot->dirty_bitmap)
880                 return -ENOMEM;
881
882         return 0;
883 }
884
885 /*
886  * Delete a memslot by decrementing the number of used slots and shifting all
887  * other entries in the array forward one spot.
888  */
889 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
890                                       struct kvm_memory_slot *memslot)
891 {
892         struct kvm_memory_slot *mslots = slots->memslots;
893         int i;
894
895         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
896                 return;
897
898         slots->used_slots--;
899
900         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
901                 atomic_set(&slots->lru_slot, 0);
902
903         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
904                 mslots[i] = mslots[i + 1];
905                 slots->id_to_index[mslots[i].id] = i;
906         }
907         mslots[i] = *memslot;
908         slots->id_to_index[memslot->id] = -1;
909 }
910
911 /*
912  * "Insert" a new memslot by incrementing the number of used slots.  Returns
913  * the new slot's initial index into the memslots array.
914  */
915 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
916 {
917         return slots->used_slots++;
918 }
919
920 /*
921  * Move a changed memslot backwards in the array by shifting existing slots
922  * with a higher GFN toward the front of the array.  Note, the changed memslot
923  * itself is not preserved in the array, i.e. not swapped at this time, only
924  * its new index into the array is tracked.  Returns the changed memslot's
925  * current index into the memslots array.
926  */
927 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
928                                             struct kvm_memory_slot *memslot)
929 {
930         struct kvm_memory_slot *mslots = slots->memslots;
931         int i;
932
933         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
934             WARN_ON_ONCE(!slots->used_slots))
935                 return -1;
936
937         /*
938          * Move the target memslot backward in the array by shifting existing
939          * memslots with a higher GFN (than the target memslot) towards the
940          * front of the array.
941          */
942         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
943                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
944                         break;
945
946                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
947
948                 /* Shift the next memslot forward one and update its index. */
949                 mslots[i] = mslots[i + 1];
950                 slots->id_to_index[mslots[i].id] = i;
951         }
952         return i;
953 }
954
955 /*
956  * Move a changed memslot forwards in the array by shifting existing slots with
957  * a lower GFN toward the back of the array.  Note, the changed memslot itself
958  * is not preserved in the array, i.e. not swapped at this time, only its new
959  * index into the array is tracked.  Returns the changed memslot's final index
960  * into the memslots array.
961  */
962 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
963                                            struct kvm_memory_slot *memslot,
964                                            int start)
965 {
966         struct kvm_memory_slot *mslots = slots->memslots;
967         int i;
968
969         for (i = start; i > 0; i--) {
970                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
971                         break;
972
973                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
974
975                 /* Shift the next memslot back one and update its index. */
976                 mslots[i] = mslots[i - 1];
977                 slots->id_to_index[mslots[i].id] = i;
978         }
979         return i;
980 }
981
982 /*
983  * Re-sort memslots based on their GFN to account for an added, deleted, or
984  * moved memslot.  Sorting memslots by GFN allows using a binary search during
985  * memslot lookup.
986  *
987  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
988  * at memslots[0] has the highest GFN.
989  *
990  * The sorting algorithm takes advantage of having initially sorted memslots
991  * and knowing the position of the changed memslot.  Sorting is also optimized
992  * by not swapping the updated memslot and instead only shifting other memslots
993  * and tracking the new index for the update memslot.  Only once its final
994  * index is known is the updated memslot copied into its position in the array.
995  *
996  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
997  *    the end of the array.
998  *
999  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1000  *    end of the array and then it forward to its correct location.
1001  *
1002  *  - When moving a memslot, the algorithm first moves the updated memslot
1003  *    backward to handle the scenario where the memslot's GFN was changed to a
1004  *    lower value.  update_memslots() then falls through and runs the same flow
1005  *    as creating a memslot to move the memslot forward to handle the scenario
1006  *    where its GFN was changed to a higher value.
1007  *
1008  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1009  * historical reasons.  Originally, invalid memslots where denoted by having
1010  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1011  * to the end of the array.  The current algorithm uses dedicated logic to
1012  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1013  *
1014  * The other historical motiviation for highest->lowest was to improve the
1015  * performance of memslot lookup.  KVM originally used a linear search starting
1016  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1017  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1018  * single memslot above the 4gb boundary.  As the largest memslot is also the
1019  * most likely to be referenced, sorting it to the front of the array was
1020  * advantageous.  The current binary search starts from the middle of the array
1021  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1022  */
1023 static void update_memslots(struct kvm_memslots *slots,
1024                             struct kvm_memory_slot *memslot,
1025                             enum kvm_mr_change change)
1026 {
1027         int i;
1028
1029         if (change == KVM_MR_DELETE) {
1030                 kvm_memslot_delete(slots, memslot);
1031         } else {
1032                 if (change == KVM_MR_CREATE)
1033                         i = kvm_memslot_insert_back(slots);
1034                 else
1035                         i = kvm_memslot_move_backward(slots, memslot);
1036                 i = kvm_memslot_move_forward(slots, memslot, i);
1037
1038                 /*
1039                  * Copy the memslot to its new position in memslots and update
1040                  * its index accordingly.
1041                  */
1042                 slots->memslots[i] = *memslot;
1043                 slots->id_to_index[memslot->id] = i;
1044         }
1045 }
1046
1047 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1048 {
1049         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1050
1051 #ifdef __KVM_HAVE_READONLY_MEM
1052         valid_flags |= KVM_MEM_READONLY;
1053 #endif
1054
1055         if (mem->flags & ~valid_flags)
1056                 return -EINVAL;
1057
1058         return 0;
1059 }
1060
1061 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1062                 int as_id, struct kvm_memslots *slots)
1063 {
1064         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1065         u64 gen = old_memslots->generation;
1066
1067         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1068         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1069
1070         rcu_assign_pointer(kvm->memslots[as_id], slots);
1071         synchronize_srcu_expedited(&kvm->srcu);
1072
1073         /*
1074          * Increment the new memslot generation a second time, dropping the
1075          * update in-progress flag and incrementing the generation based on
1076          * the number of address spaces.  This provides a unique and easily
1077          * identifiable generation number while the memslots are in flux.
1078          */
1079         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1080
1081         /*
1082          * Generations must be unique even across address spaces.  We do not need
1083          * a global counter for that, instead the generation space is evenly split
1084          * across address spaces.  For example, with two address spaces, address
1085          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1086          * use generations 1, 3, 5, ...
1087          */
1088         gen += KVM_ADDRESS_SPACE_NUM;
1089
1090         kvm_arch_memslots_updated(kvm, gen);
1091
1092         slots->generation = gen;
1093
1094         return old_memslots;
1095 }
1096
1097 /*
1098  * Note, at a minimum, the current number of used slots must be allocated, even
1099  * when deleting a memslot, as we need a complete duplicate of the memslots for
1100  * use when invalidating a memslot prior to deleting/moving the memslot.
1101  */
1102 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1103                                              enum kvm_mr_change change)
1104 {
1105         struct kvm_memslots *slots;
1106         size_t old_size, new_size;
1107
1108         old_size = sizeof(struct kvm_memslots) +
1109                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1110
1111         if (change == KVM_MR_CREATE)
1112                 new_size = old_size + sizeof(struct kvm_memory_slot);
1113         else
1114                 new_size = old_size;
1115
1116         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1117         if (likely(slots))
1118                 memcpy(slots, old, old_size);
1119
1120         return slots;
1121 }
1122
1123 static int kvm_set_memslot(struct kvm *kvm,
1124                            const struct kvm_userspace_memory_region *mem,
1125                            struct kvm_memory_slot *old,
1126                            struct kvm_memory_slot *new, int as_id,
1127                            enum kvm_mr_change change)
1128 {
1129         struct kvm_memory_slot *slot;
1130         struct kvm_memslots *slots;
1131         int r;
1132
1133         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1134         if (!slots)
1135                 return -ENOMEM;
1136
1137         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1138                 /*
1139                  * Note, the INVALID flag needs to be in the appropriate entry
1140                  * in the freshly allocated memslots, not in @old or @new.
1141                  */
1142                 slot = id_to_memslot(slots, old->id);
1143                 slot->flags |= KVM_MEMSLOT_INVALID;
1144
1145                 /*
1146                  * We can re-use the old memslots, the only difference from the
1147                  * newly installed memslots is the invalid flag, which will get
1148                  * dropped by update_memslots anyway.  We'll also revert to the
1149                  * old memslots if preparing the new memory region fails.
1150                  */
1151                 slots = install_new_memslots(kvm, as_id, slots);
1152
1153                 /* From this point no new shadow pages pointing to a deleted,
1154                  * or moved, memslot will be created.
1155                  *
1156                  * validation of sp->gfn happens in:
1157                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1158                  *      - kvm_is_visible_gfn (mmu_check_root)
1159                  */
1160                 kvm_arch_flush_shadow_memslot(kvm, slot);
1161         }
1162
1163         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1164         if (r)
1165                 goto out_slots;
1166
1167         update_memslots(slots, new, change);
1168         slots = install_new_memslots(kvm, as_id, slots);
1169
1170         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1171
1172         kvfree(slots);
1173         return 0;
1174
1175 out_slots:
1176         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1177                 slots = install_new_memslots(kvm, as_id, slots);
1178         kvfree(slots);
1179         return r;
1180 }
1181
1182 static int kvm_delete_memslot(struct kvm *kvm,
1183                               const struct kvm_userspace_memory_region *mem,
1184                               struct kvm_memory_slot *old, int as_id)
1185 {
1186         struct kvm_memory_slot new;
1187         int r;
1188
1189         if (!old->npages)
1190                 return -EINVAL;
1191
1192         memset(&new, 0, sizeof(new));
1193         new.id = old->id;
1194
1195         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1196         if (r)
1197                 return r;
1198
1199         kvm_free_memslot(kvm, old);
1200         return 0;
1201 }
1202
1203 /*
1204  * Allocate some memory and give it an address in the guest physical address
1205  * space.
1206  *
1207  * Discontiguous memory is allowed, mostly for framebuffers.
1208  *
1209  * Must be called holding kvm->slots_lock for write.
1210  */
1211 int __kvm_set_memory_region(struct kvm *kvm,
1212                             const struct kvm_userspace_memory_region *mem)
1213 {
1214         struct kvm_memory_slot old, new;
1215         struct kvm_memory_slot *tmp;
1216         enum kvm_mr_change change;
1217         int as_id, id;
1218         int r;
1219
1220         r = check_memory_region_flags(mem);
1221         if (r)
1222                 return r;
1223
1224         as_id = mem->slot >> 16;
1225         id = (u16)mem->slot;
1226
1227         /* General sanity checks */
1228         if (mem->memory_size & (PAGE_SIZE - 1))
1229                 return -EINVAL;
1230         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1231                 return -EINVAL;
1232         /* We can read the guest memory with __xxx_user() later on. */
1233         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1234              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1235                         mem->memory_size))
1236                 return -EINVAL;
1237         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1238                 return -EINVAL;
1239         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1240                 return -EINVAL;
1241
1242         /*
1243          * Make a full copy of the old memslot, the pointer will become stale
1244          * when the memslots are re-sorted by update_memslots(), and the old
1245          * memslot needs to be referenced after calling update_memslots(), e.g.
1246          * to free its resources and for arch specific behavior.
1247          */
1248         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1249         if (tmp) {
1250                 old = *tmp;
1251                 tmp = NULL;
1252         } else {
1253                 memset(&old, 0, sizeof(old));
1254                 old.id = id;
1255         }
1256
1257         if (!mem->memory_size)
1258                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1259
1260         new.id = id;
1261         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1262         new.npages = mem->memory_size >> PAGE_SHIFT;
1263         new.flags = mem->flags;
1264         new.userspace_addr = mem->userspace_addr;
1265
1266         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1267                 return -EINVAL;
1268
1269         if (!old.npages) {
1270                 change = KVM_MR_CREATE;
1271                 new.dirty_bitmap = NULL;
1272                 memset(&new.arch, 0, sizeof(new.arch));
1273         } else { /* Modify an existing slot. */
1274                 if ((new.userspace_addr != old.userspace_addr) ||
1275                     (new.npages != old.npages) ||
1276                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1277                         return -EINVAL;
1278
1279                 if (new.base_gfn != old.base_gfn)
1280                         change = KVM_MR_MOVE;
1281                 else if (new.flags != old.flags)
1282                         change = KVM_MR_FLAGS_ONLY;
1283                 else /* Nothing to change. */
1284                         return 0;
1285
1286                 /* Copy dirty_bitmap and arch from the current memslot. */
1287                 new.dirty_bitmap = old.dirty_bitmap;
1288                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1289         }
1290
1291         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1292                 /* Check for overlaps */
1293                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1294                         if (tmp->id == id)
1295                                 continue;
1296                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1297                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1298                                 return -EEXIST;
1299                 }
1300         }
1301
1302         /* Allocate/free page dirty bitmap as needed */
1303         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1304                 new.dirty_bitmap = NULL;
1305         else if (!new.dirty_bitmap) {
1306                 r = kvm_alloc_dirty_bitmap(&new);
1307                 if (r)
1308                         return r;
1309
1310                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1311                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1312         }
1313
1314         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1315         if (r)
1316                 goto out_bitmap;
1317
1318         if (old.dirty_bitmap && !new.dirty_bitmap)
1319                 kvm_destroy_dirty_bitmap(&old);
1320         return 0;
1321
1322 out_bitmap:
1323         if (new.dirty_bitmap && !old.dirty_bitmap)
1324                 kvm_destroy_dirty_bitmap(&new);
1325         return r;
1326 }
1327 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1328
1329 int kvm_set_memory_region(struct kvm *kvm,
1330                           const struct kvm_userspace_memory_region *mem)
1331 {
1332         int r;
1333
1334         mutex_lock(&kvm->slots_lock);
1335         r = __kvm_set_memory_region(kvm, mem);
1336         mutex_unlock(&kvm->slots_lock);
1337         return r;
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1340
1341 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1342                                           struct kvm_userspace_memory_region *mem)
1343 {
1344         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1345                 return -EINVAL;
1346
1347         return kvm_set_memory_region(kvm, mem);
1348 }
1349
1350 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1351 /**
1352  * kvm_get_dirty_log - get a snapshot of dirty pages
1353  * @kvm:        pointer to kvm instance
1354  * @log:        slot id and address to which we copy the log
1355  * @is_dirty:   set to '1' if any dirty pages were found
1356  * @memslot:    set to the associated memslot, always valid on success
1357  */
1358 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1359                       int *is_dirty, struct kvm_memory_slot **memslot)
1360 {
1361         struct kvm_memslots *slots;
1362         int i, as_id, id;
1363         unsigned long n;
1364         unsigned long any = 0;
1365
1366         *memslot = NULL;
1367         *is_dirty = 0;
1368
1369         as_id = log->slot >> 16;
1370         id = (u16)log->slot;
1371         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1372                 return -EINVAL;
1373
1374         slots = __kvm_memslots(kvm, as_id);
1375         *memslot = id_to_memslot(slots, id);
1376         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1377                 return -ENOENT;
1378
1379         kvm_arch_sync_dirty_log(kvm, *memslot);
1380
1381         n = kvm_dirty_bitmap_bytes(*memslot);
1382
1383         for (i = 0; !any && i < n/sizeof(long); ++i)
1384                 any = (*memslot)->dirty_bitmap[i];
1385
1386         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1387                 return -EFAULT;
1388
1389         if (any)
1390                 *is_dirty = 1;
1391         return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1394
1395 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1396 /**
1397  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1398  *      and reenable dirty page tracking for the corresponding pages.
1399  * @kvm:        pointer to kvm instance
1400  * @log:        slot id and address to which we copy the log
1401  *
1402  * We need to keep it in mind that VCPU threads can write to the bitmap
1403  * concurrently. So, to avoid losing track of dirty pages we keep the
1404  * following order:
1405  *
1406  *    1. Take a snapshot of the bit and clear it if needed.
1407  *    2. Write protect the corresponding page.
1408  *    3. Copy the snapshot to the userspace.
1409  *    4. Upon return caller flushes TLB's if needed.
1410  *
1411  * Between 2 and 4, the guest may write to the page using the remaining TLB
1412  * entry.  This is not a problem because the page is reported dirty using
1413  * the snapshot taken before and step 4 ensures that writes done after
1414  * exiting to userspace will be logged for the next call.
1415  *
1416  */
1417 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1418 {
1419         struct kvm_memslots *slots;
1420         struct kvm_memory_slot *memslot;
1421         int i, as_id, id;
1422         unsigned long n;
1423         unsigned long *dirty_bitmap;
1424         unsigned long *dirty_bitmap_buffer;
1425         bool flush;
1426
1427         as_id = log->slot >> 16;
1428         id = (u16)log->slot;
1429         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1430                 return -EINVAL;
1431
1432         slots = __kvm_memslots(kvm, as_id);
1433         memslot = id_to_memslot(slots, id);
1434         if (!memslot || !memslot->dirty_bitmap)
1435                 return -ENOENT;
1436
1437         dirty_bitmap = memslot->dirty_bitmap;
1438
1439         kvm_arch_sync_dirty_log(kvm, memslot);
1440
1441         n = kvm_dirty_bitmap_bytes(memslot);
1442         flush = false;
1443         if (kvm->manual_dirty_log_protect) {
1444                 /*
1445                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1446                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1447                  * is some code duplication between this function and
1448                  * kvm_get_dirty_log, but hopefully all architecture
1449                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1450                  * can be eliminated.
1451                  */
1452                 dirty_bitmap_buffer = dirty_bitmap;
1453         } else {
1454                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1455                 memset(dirty_bitmap_buffer, 0, n);
1456
1457                 spin_lock(&kvm->mmu_lock);
1458                 for (i = 0; i < n / sizeof(long); i++) {
1459                         unsigned long mask;
1460                         gfn_t offset;
1461
1462                         if (!dirty_bitmap[i])
1463                                 continue;
1464
1465                         flush = true;
1466                         mask = xchg(&dirty_bitmap[i], 0);
1467                         dirty_bitmap_buffer[i] = mask;
1468
1469                         offset = i * BITS_PER_LONG;
1470                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1471                                                                 offset, mask);
1472                 }
1473                 spin_unlock(&kvm->mmu_lock);
1474         }
1475
1476         if (flush)
1477                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1478
1479         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1480                 return -EFAULT;
1481         return 0;
1482 }
1483
1484
1485 /**
1486  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1487  * @kvm: kvm instance
1488  * @log: slot id and address to which we copy the log
1489  *
1490  * Steps 1-4 below provide general overview of dirty page logging. See
1491  * kvm_get_dirty_log_protect() function description for additional details.
1492  *
1493  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1494  * always flush the TLB (step 4) even if previous step failed  and the dirty
1495  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1496  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1497  * writes will be marked dirty for next log read.
1498  *
1499  *   1. Take a snapshot of the bit and clear it if needed.
1500  *   2. Write protect the corresponding page.
1501  *   3. Copy the snapshot to the userspace.
1502  *   4. Flush TLB's if needed.
1503  */
1504 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1505                                       struct kvm_dirty_log *log)
1506 {
1507         int r;
1508
1509         mutex_lock(&kvm->slots_lock);
1510
1511         r = kvm_get_dirty_log_protect(kvm, log);
1512
1513         mutex_unlock(&kvm->slots_lock);
1514         return r;
1515 }
1516
1517 /**
1518  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1519  *      and reenable dirty page tracking for the corresponding pages.
1520  * @kvm:        pointer to kvm instance
1521  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1522  */
1523 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1524                                        struct kvm_clear_dirty_log *log)
1525 {
1526         struct kvm_memslots *slots;
1527         struct kvm_memory_slot *memslot;
1528         int as_id, id;
1529         gfn_t offset;
1530         unsigned long i, n;
1531         unsigned long *dirty_bitmap;
1532         unsigned long *dirty_bitmap_buffer;
1533         bool flush;
1534
1535         as_id = log->slot >> 16;
1536         id = (u16)log->slot;
1537         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1538                 return -EINVAL;
1539
1540         if (log->first_page & 63)
1541                 return -EINVAL;
1542
1543         slots = __kvm_memslots(kvm, as_id);
1544         memslot = id_to_memslot(slots, id);
1545         if (!memslot || !memslot->dirty_bitmap)
1546                 return -ENOENT;
1547
1548         dirty_bitmap = memslot->dirty_bitmap;
1549
1550         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1551
1552         if (log->first_page > memslot->npages ||
1553             log->num_pages > memslot->npages - log->first_page ||
1554             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1555             return -EINVAL;
1556
1557         kvm_arch_sync_dirty_log(kvm, memslot);
1558
1559         flush = false;
1560         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1561         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1562                 return -EFAULT;
1563
1564         spin_lock(&kvm->mmu_lock);
1565         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1566                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1567              i++, offset += BITS_PER_LONG) {
1568                 unsigned long mask = *dirty_bitmap_buffer++;
1569                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1570                 if (!mask)
1571                         continue;
1572
1573                 mask &= atomic_long_fetch_andnot(mask, p);
1574
1575                 /*
1576                  * mask contains the bits that really have been cleared.  This
1577                  * never includes any bits beyond the length of the memslot (if
1578                  * the length is not aligned to 64 pages), therefore it is not
1579                  * a problem if userspace sets them in log->dirty_bitmap.
1580                 */
1581                 if (mask) {
1582                         flush = true;
1583                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1584                                                                 offset, mask);
1585                 }
1586         }
1587         spin_unlock(&kvm->mmu_lock);
1588
1589         if (flush)
1590                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1591
1592         return 0;
1593 }
1594
1595 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1596                                         struct kvm_clear_dirty_log *log)
1597 {
1598         int r;
1599
1600         mutex_lock(&kvm->slots_lock);
1601
1602         r = kvm_clear_dirty_log_protect(kvm, log);
1603
1604         mutex_unlock(&kvm->slots_lock);
1605         return r;
1606 }
1607 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1608
1609 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1610 {
1611         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1612 }
1613 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1614
1615 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1616 {
1617         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1620
1621 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1622 {
1623         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1624
1625         return kvm_is_visible_memslot(memslot);
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1628
1629 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1630 {
1631         struct vm_area_struct *vma;
1632         unsigned long addr, size;
1633
1634         size = PAGE_SIZE;
1635
1636         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1637         if (kvm_is_error_hva(addr))
1638                 return PAGE_SIZE;
1639
1640         mmap_read_lock(current->mm);
1641         vma = find_vma(current->mm, addr);
1642         if (!vma)
1643                 goto out;
1644
1645         size = vma_kernel_pagesize(vma);
1646
1647 out:
1648         mmap_read_unlock(current->mm);
1649
1650         return size;
1651 }
1652
1653 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1654 {
1655         return slot->flags & KVM_MEM_READONLY;
1656 }
1657
1658 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1659                                        gfn_t *nr_pages, bool write)
1660 {
1661         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1662                 return KVM_HVA_ERR_BAD;
1663
1664         if (memslot_is_readonly(slot) && write)
1665                 return KVM_HVA_ERR_RO_BAD;
1666
1667         if (nr_pages)
1668                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1669
1670         return __gfn_to_hva_memslot(slot, gfn);
1671 }
1672
1673 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1674                                      gfn_t *nr_pages)
1675 {
1676         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1677 }
1678
1679 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1680                                         gfn_t gfn)
1681 {
1682         return gfn_to_hva_many(slot, gfn, NULL);
1683 }
1684 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1685
1686 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1687 {
1688         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1689 }
1690 EXPORT_SYMBOL_GPL(gfn_to_hva);
1691
1692 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1693 {
1694         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1697
1698 /*
1699  * Return the hva of a @gfn and the R/W attribute if possible.
1700  *
1701  * @slot: the kvm_memory_slot which contains @gfn
1702  * @gfn: the gfn to be translated
1703  * @writable: used to return the read/write attribute of the @slot if the hva
1704  * is valid and @writable is not NULL
1705  */
1706 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1707                                       gfn_t gfn, bool *writable)
1708 {
1709         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1710
1711         if (!kvm_is_error_hva(hva) && writable)
1712                 *writable = !memslot_is_readonly(slot);
1713
1714         return hva;
1715 }
1716
1717 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1718 {
1719         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1720
1721         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1722 }
1723
1724 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1725 {
1726         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1727
1728         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1729 }
1730
1731 static inline int check_user_page_hwpoison(unsigned long addr)
1732 {
1733         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1734
1735         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1736         return rc == -EHWPOISON;
1737 }
1738
1739 /*
1740  * The fast path to get the writable pfn which will be stored in @pfn,
1741  * true indicates success, otherwise false is returned.  It's also the
1742  * only part that runs if we can in atomic context.
1743  */
1744 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1745                             bool *writable, kvm_pfn_t *pfn)
1746 {
1747         struct page *page[1];
1748
1749         /*
1750          * Fast pin a writable pfn only if it is a write fault request
1751          * or the caller allows to map a writable pfn for a read fault
1752          * request.
1753          */
1754         if (!(write_fault || writable))
1755                 return false;
1756
1757         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1758                 *pfn = page_to_pfn(page[0]);
1759
1760                 if (writable)
1761                         *writable = true;
1762                 return true;
1763         }
1764
1765         return false;
1766 }
1767
1768 /*
1769  * The slow path to get the pfn of the specified host virtual address,
1770  * 1 indicates success, -errno is returned if error is detected.
1771  */
1772 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1773                            bool *writable, kvm_pfn_t *pfn)
1774 {
1775         unsigned int flags = FOLL_HWPOISON;
1776         struct page *page;
1777         int npages = 0;
1778
1779         might_sleep();
1780
1781         if (writable)
1782                 *writable = write_fault;
1783
1784         if (write_fault)
1785                 flags |= FOLL_WRITE;
1786         if (async)
1787                 flags |= FOLL_NOWAIT;
1788
1789         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1790         if (npages != 1)
1791                 return npages;
1792
1793         /* map read fault as writable if possible */
1794         if (unlikely(!write_fault) && writable) {
1795                 struct page *wpage;
1796
1797                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1798                         *writable = true;
1799                         put_page(page);
1800                         page = wpage;
1801                 }
1802         }
1803         *pfn = page_to_pfn(page);
1804         return npages;
1805 }
1806
1807 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1808 {
1809         if (unlikely(!(vma->vm_flags & VM_READ)))
1810                 return false;
1811
1812         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1813                 return false;
1814
1815         return true;
1816 }
1817
1818 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1819                                unsigned long addr, bool *async,
1820                                bool write_fault, bool *writable,
1821                                kvm_pfn_t *p_pfn)
1822 {
1823         unsigned long pfn;
1824         int r;
1825
1826         r = follow_pfn(vma, addr, &pfn);
1827         if (r) {
1828                 /*
1829                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1830                  * not call the fault handler, so do it here.
1831                  */
1832                 bool unlocked = false;
1833                 r = fixup_user_fault(current, current->mm, addr,
1834                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1835                                      &unlocked);
1836                 if (unlocked)
1837                         return -EAGAIN;
1838                 if (r)
1839                         return r;
1840
1841                 r = follow_pfn(vma, addr, &pfn);
1842                 if (r)
1843                         return r;
1844
1845         }
1846
1847         if (writable)
1848                 *writable = true;
1849
1850         /*
1851          * Get a reference here because callers of *hva_to_pfn* and
1852          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1853          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1854          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1855          * simply do nothing for reserved pfns.
1856          *
1857          * Whoever called remap_pfn_range is also going to call e.g.
1858          * unmap_mapping_range before the underlying pages are freed,
1859          * causing a call to our MMU notifier.
1860          */ 
1861         kvm_get_pfn(pfn);
1862
1863         *p_pfn = pfn;
1864         return 0;
1865 }
1866
1867 /*
1868  * Pin guest page in memory and return its pfn.
1869  * @addr: host virtual address which maps memory to the guest
1870  * @atomic: whether this function can sleep
1871  * @async: whether this function need to wait IO complete if the
1872  *         host page is not in the memory
1873  * @write_fault: whether we should get a writable host page
1874  * @writable: whether it allows to map a writable host page for !@write_fault
1875  *
1876  * The function will map a writable host page for these two cases:
1877  * 1): @write_fault = true
1878  * 2): @write_fault = false && @writable, @writable will tell the caller
1879  *     whether the mapping is writable.
1880  */
1881 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1882                         bool write_fault, bool *writable)
1883 {
1884         struct vm_area_struct *vma;
1885         kvm_pfn_t pfn = 0;
1886         int npages, r;
1887
1888         /* we can do it either atomically or asynchronously, not both */
1889         BUG_ON(atomic && async);
1890
1891         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1892                 return pfn;
1893
1894         if (atomic)
1895                 return KVM_PFN_ERR_FAULT;
1896
1897         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1898         if (npages == 1)
1899                 return pfn;
1900
1901         mmap_read_lock(current->mm);
1902         if (npages == -EHWPOISON ||
1903               (!async && check_user_page_hwpoison(addr))) {
1904                 pfn = KVM_PFN_ERR_HWPOISON;
1905                 goto exit;
1906         }
1907
1908 retry:
1909         vma = find_vma_intersection(current->mm, addr, addr + 1);
1910
1911         if (vma == NULL)
1912                 pfn = KVM_PFN_ERR_FAULT;
1913         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1914                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1915                 if (r == -EAGAIN)
1916                         goto retry;
1917                 if (r < 0)
1918                         pfn = KVM_PFN_ERR_FAULT;
1919         } else {
1920                 if (async && vma_is_valid(vma, write_fault))
1921                         *async = true;
1922                 pfn = KVM_PFN_ERR_FAULT;
1923         }
1924 exit:
1925         mmap_read_unlock(current->mm);
1926         return pfn;
1927 }
1928
1929 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1930                                bool atomic, bool *async, bool write_fault,
1931                                bool *writable)
1932 {
1933         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1934
1935         if (addr == KVM_HVA_ERR_RO_BAD) {
1936                 if (writable)
1937                         *writable = false;
1938                 return KVM_PFN_ERR_RO_FAULT;
1939         }
1940
1941         if (kvm_is_error_hva(addr)) {
1942                 if (writable)
1943                         *writable = false;
1944                 return KVM_PFN_NOSLOT;
1945         }
1946
1947         /* Do not map writable pfn in the readonly memslot. */
1948         if (writable && memslot_is_readonly(slot)) {
1949                 *writable = false;
1950                 writable = NULL;
1951         }
1952
1953         return hva_to_pfn(addr, atomic, async, write_fault,
1954                           writable);
1955 }
1956 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1957
1958 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1959                       bool *writable)
1960 {
1961         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1962                                     write_fault, writable);
1963 }
1964 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1965
1966 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1967 {
1968         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1969 }
1970 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1971
1972 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1973 {
1974         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1975 }
1976 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1977
1978 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1979 {
1980         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1981 }
1982 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1983
1984 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1985 {
1986         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1987 }
1988 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1989
1990 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1991 {
1992         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1993 }
1994 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1995
1996 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1997                             struct page **pages, int nr_pages)
1998 {
1999         unsigned long addr;
2000         gfn_t entry = 0;
2001
2002         addr = gfn_to_hva_many(slot, gfn, &entry);
2003         if (kvm_is_error_hva(addr))
2004                 return -1;
2005
2006         if (entry < nr_pages)
2007                 return 0;
2008
2009         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2010 }
2011 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2012
2013 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2014 {
2015         if (is_error_noslot_pfn(pfn))
2016                 return KVM_ERR_PTR_BAD_PAGE;
2017
2018         if (kvm_is_reserved_pfn(pfn)) {
2019                 WARN_ON(1);
2020                 return KVM_ERR_PTR_BAD_PAGE;
2021         }
2022
2023         return pfn_to_page(pfn);
2024 }
2025
2026 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2027 {
2028         kvm_pfn_t pfn;
2029
2030         pfn = gfn_to_pfn(kvm, gfn);
2031
2032         return kvm_pfn_to_page(pfn);
2033 }
2034 EXPORT_SYMBOL_GPL(gfn_to_page);
2035
2036 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2037 {
2038         if (pfn == 0)
2039                 return;
2040
2041         if (cache)
2042                 cache->pfn = cache->gfn = 0;
2043
2044         if (dirty)
2045                 kvm_release_pfn_dirty(pfn);
2046         else
2047                 kvm_release_pfn_clean(pfn);
2048 }
2049
2050 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2051                                  struct gfn_to_pfn_cache *cache, u64 gen)
2052 {
2053         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2054
2055         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2056         cache->gfn = gfn;
2057         cache->dirty = false;
2058         cache->generation = gen;
2059 }
2060
2061 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2062                          struct kvm_host_map *map,
2063                          struct gfn_to_pfn_cache *cache,
2064                          bool atomic)
2065 {
2066         kvm_pfn_t pfn;
2067         void *hva = NULL;
2068         struct page *page = KVM_UNMAPPED_PAGE;
2069         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2070         u64 gen = slots->generation;
2071
2072         if (!map)
2073                 return -EINVAL;
2074
2075         if (cache) {
2076                 if (!cache->pfn || cache->gfn != gfn ||
2077                         cache->generation != gen) {
2078                         if (atomic)
2079                                 return -EAGAIN;
2080                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2081                 }
2082                 pfn = cache->pfn;
2083         } else {
2084                 if (atomic)
2085                         return -EAGAIN;
2086                 pfn = gfn_to_pfn_memslot(slot, gfn);
2087         }
2088         if (is_error_noslot_pfn(pfn))
2089                 return -EINVAL;
2090
2091         if (pfn_valid(pfn)) {
2092                 page = pfn_to_page(pfn);
2093                 if (atomic)
2094                         hva = kmap_atomic(page);
2095                 else
2096                         hva = kmap(page);
2097 #ifdef CONFIG_HAS_IOMEM
2098         } else if (!atomic) {
2099                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2100         } else {
2101                 return -EINVAL;
2102 #endif
2103         }
2104
2105         if (!hva)
2106                 return -EFAULT;
2107
2108         map->page = page;
2109         map->hva = hva;
2110         map->pfn = pfn;
2111         map->gfn = gfn;
2112
2113         return 0;
2114 }
2115
2116 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2117                 struct gfn_to_pfn_cache *cache, bool atomic)
2118 {
2119         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2120                         cache, atomic);
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2123
2124 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2125 {
2126         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2127                 NULL, false);
2128 }
2129 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2130
2131 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2132                         struct kvm_host_map *map,
2133                         struct gfn_to_pfn_cache *cache,
2134                         bool dirty, bool atomic)
2135 {
2136         if (!map)
2137                 return;
2138
2139         if (!map->hva)
2140                 return;
2141
2142         if (map->page != KVM_UNMAPPED_PAGE) {
2143                 if (atomic)
2144                         kunmap_atomic(map->hva);
2145                 else
2146                         kunmap(map->page);
2147         }
2148 #ifdef CONFIG_HAS_IOMEM
2149         else if (!atomic)
2150                 memunmap(map->hva);
2151         else
2152                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2153 #endif
2154
2155         if (dirty)
2156                 mark_page_dirty_in_slot(memslot, map->gfn);
2157
2158         if (cache)
2159                 cache->dirty |= dirty;
2160         else
2161                 kvm_release_pfn(map->pfn, dirty, NULL);
2162
2163         map->hva = NULL;
2164         map->page = NULL;
2165 }
2166
2167 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2168                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2169 {
2170         __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2171                         cache, dirty, atomic);
2172         return 0;
2173 }
2174 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2175
2176 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2177 {
2178         __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2179                         dirty, false);
2180 }
2181 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2182
2183 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2184 {
2185         kvm_pfn_t pfn;
2186
2187         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2188
2189         return kvm_pfn_to_page(pfn);
2190 }
2191 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2192
2193 void kvm_release_page_clean(struct page *page)
2194 {
2195         WARN_ON(is_error_page(page));
2196
2197         kvm_release_pfn_clean(page_to_pfn(page));
2198 }
2199 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2200
2201 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2202 {
2203         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2204                 put_page(pfn_to_page(pfn));
2205 }
2206 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2207
2208 void kvm_release_page_dirty(struct page *page)
2209 {
2210         WARN_ON(is_error_page(page));
2211
2212         kvm_release_pfn_dirty(page_to_pfn(page));
2213 }
2214 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2215
2216 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2217 {
2218         kvm_set_pfn_dirty(pfn);
2219         kvm_release_pfn_clean(pfn);
2220 }
2221 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2222
2223 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2224 {
2225         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2226                 SetPageDirty(pfn_to_page(pfn));
2227 }
2228 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2229
2230 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2231 {
2232         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2233                 mark_page_accessed(pfn_to_page(pfn));
2234 }
2235 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2236
2237 void kvm_get_pfn(kvm_pfn_t pfn)
2238 {
2239         if (!kvm_is_reserved_pfn(pfn))
2240                 get_page(pfn_to_page(pfn));
2241 }
2242 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2243
2244 static int next_segment(unsigned long len, int offset)
2245 {
2246         if (len > PAGE_SIZE - offset)
2247                 return PAGE_SIZE - offset;
2248         else
2249                 return len;
2250 }
2251
2252 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2253                                  void *data, int offset, int len)
2254 {
2255         int r;
2256         unsigned long addr;
2257
2258         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2259         if (kvm_is_error_hva(addr))
2260                 return -EFAULT;
2261         r = __copy_from_user(data, (void __user *)addr + offset, len);
2262         if (r)
2263                 return -EFAULT;
2264         return 0;
2265 }
2266
2267 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2268                         int len)
2269 {
2270         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2271
2272         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2273 }
2274 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2275
2276 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2277                              int offset, int len)
2278 {
2279         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2280
2281         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2282 }
2283 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2284
2285 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2286 {
2287         gfn_t gfn = gpa >> PAGE_SHIFT;
2288         int seg;
2289         int offset = offset_in_page(gpa);
2290         int ret;
2291
2292         while ((seg = next_segment(len, offset)) != 0) {
2293                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2294                 if (ret < 0)
2295                         return ret;
2296                 offset = 0;
2297                 len -= seg;
2298                 data += seg;
2299                 ++gfn;
2300         }
2301         return 0;
2302 }
2303 EXPORT_SYMBOL_GPL(kvm_read_guest);
2304
2305 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2306 {
2307         gfn_t gfn = gpa >> PAGE_SHIFT;
2308         int seg;
2309         int offset = offset_in_page(gpa);
2310         int ret;
2311
2312         while ((seg = next_segment(len, offset)) != 0) {
2313                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2314                 if (ret < 0)
2315                         return ret;
2316                 offset = 0;
2317                 len -= seg;
2318                 data += seg;
2319                 ++gfn;
2320         }
2321         return 0;
2322 }
2323 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2324
2325 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2326                                    void *data, int offset, unsigned long len)
2327 {
2328         int r;
2329         unsigned long addr;
2330
2331         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2332         if (kvm_is_error_hva(addr))
2333                 return -EFAULT;
2334         pagefault_disable();
2335         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2336         pagefault_enable();
2337         if (r)
2338                 return -EFAULT;
2339         return 0;
2340 }
2341
2342 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2343                                void *data, unsigned long len)
2344 {
2345         gfn_t gfn = gpa >> PAGE_SHIFT;
2346         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2347         int offset = offset_in_page(gpa);
2348
2349         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2352
2353 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2354                                   const void *data, int offset, int len)
2355 {
2356         int r;
2357         unsigned long addr;
2358
2359         addr = gfn_to_hva_memslot(memslot, gfn);
2360         if (kvm_is_error_hva(addr))
2361                 return -EFAULT;
2362         r = __copy_to_user((void __user *)addr + offset, data, len);
2363         if (r)
2364                 return -EFAULT;
2365         mark_page_dirty_in_slot(memslot, gfn);
2366         return 0;
2367 }
2368
2369 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2370                          const void *data, int offset, int len)
2371 {
2372         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2373
2374         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2377
2378 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2379                               const void *data, int offset, int len)
2380 {
2381         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2382
2383         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2384 }
2385 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2386
2387 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2388                     unsigned long len)
2389 {
2390         gfn_t gfn = gpa >> PAGE_SHIFT;
2391         int seg;
2392         int offset = offset_in_page(gpa);
2393         int ret;
2394
2395         while ((seg = next_segment(len, offset)) != 0) {
2396                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2397                 if (ret < 0)
2398                         return ret;
2399                 offset = 0;
2400                 len -= seg;
2401                 data += seg;
2402                 ++gfn;
2403         }
2404         return 0;
2405 }
2406 EXPORT_SYMBOL_GPL(kvm_write_guest);
2407
2408 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2409                          unsigned long len)
2410 {
2411         gfn_t gfn = gpa >> PAGE_SHIFT;
2412         int seg;
2413         int offset = offset_in_page(gpa);
2414         int ret;
2415
2416         while ((seg = next_segment(len, offset)) != 0) {
2417                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2418                 if (ret < 0)
2419                         return ret;
2420                 offset = 0;
2421                 len -= seg;
2422                 data += seg;
2423                 ++gfn;
2424         }
2425         return 0;
2426 }
2427 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2428
2429 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2430                                        struct gfn_to_hva_cache *ghc,
2431                                        gpa_t gpa, unsigned long len)
2432 {
2433         int offset = offset_in_page(gpa);
2434         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2435         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2436         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2437         gfn_t nr_pages_avail;
2438
2439         /* Update ghc->generation before performing any error checks. */
2440         ghc->generation = slots->generation;
2441
2442         if (start_gfn > end_gfn) {
2443                 ghc->hva = KVM_HVA_ERR_BAD;
2444                 return -EINVAL;
2445         }
2446
2447         /*
2448          * If the requested region crosses two memslots, we still
2449          * verify that the entire region is valid here.
2450          */
2451         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2452                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2453                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2454                                            &nr_pages_avail);
2455                 if (kvm_is_error_hva(ghc->hva))
2456                         return -EFAULT;
2457         }
2458
2459         /* Use the slow path for cross page reads and writes. */
2460         if (nr_pages_needed == 1)
2461                 ghc->hva += offset;
2462         else
2463                 ghc->memslot = NULL;
2464
2465         ghc->gpa = gpa;
2466         ghc->len = len;
2467         return 0;
2468 }
2469
2470 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2471                               gpa_t gpa, unsigned long len)
2472 {
2473         struct kvm_memslots *slots = kvm_memslots(kvm);
2474         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2475 }
2476 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2477
2478 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2479                                   void *data, unsigned int offset,
2480                                   unsigned long len)
2481 {
2482         struct kvm_memslots *slots = kvm_memslots(kvm);
2483         int r;
2484         gpa_t gpa = ghc->gpa + offset;
2485
2486         BUG_ON(len + offset > ghc->len);
2487
2488         if (slots->generation != ghc->generation) {
2489                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2490                         return -EFAULT;
2491         }
2492
2493         if (kvm_is_error_hva(ghc->hva))
2494                 return -EFAULT;
2495
2496         if (unlikely(!ghc->memslot))
2497                 return kvm_write_guest(kvm, gpa, data, len);
2498
2499         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2500         if (r)
2501                 return -EFAULT;
2502         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2503
2504         return 0;
2505 }
2506 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2507
2508 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2509                            void *data, unsigned long len)
2510 {
2511         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2512 }
2513 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2514
2515 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2516                                  void *data, unsigned int offset,
2517                                  unsigned long len)
2518 {
2519         struct kvm_memslots *slots = kvm_memslots(kvm);
2520         int r;
2521         gpa_t gpa = ghc->gpa + offset;
2522
2523         BUG_ON(len + offset > ghc->len);
2524
2525         if (slots->generation != ghc->generation) {
2526                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2527                         return -EFAULT;
2528         }
2529
2530         if (kvm_is_error_hva(ghc->hva))
2531                 return -EFAULT;
2532
2533         if (unlikely(!ghc->memslot))
2534                 return kvm_read_guest(kvm, gpa, data, len);
2535
2536         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2537         if (r)
2538                 return -EFAULT;
2539
2540         return 0;
2541 }
2542 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2543
2544 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2545                           void *data, unsigned long len)
2546 {
2547         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2548 }
2549 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2550
2551 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2552 {
2553         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2554
2555         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2556 }
2557 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2558
2559 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2560 {
2561         gfn_t gfn = gpa >> PAGE_SHIFT;
2562         int seg;
2563         int offset = offset_in_page(gpa);
2564         int ret;
2565
2566         while ((seg = next_segment(len, offset)) != 0) {
2567                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2568                 if (ret < 0)
2569                         return ret;
2570                 offset = 0;
2571                 len -= seg;
2572                 ++gfn;
2573         }
2574         return 0;
2575 }
2576 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2577
2578 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2579                                     gfn_t gfn)
2580 {
2581         if (memslot && memslot->dirty_bitmap) {
2582                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2583
2584                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2585         }
2586 }
2587
2588 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2589 {
2590         struct kvm_memory_slot *memslot;
2591
2592         memslot = gfn_to_memslot(kvm, gfn);
2593         mark_page_dirty_in_slot(memslot, gfn);
2594 }
2595 EXPORT_SYMBOL_GPL(mark_page_dirty);
2596
2597 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2598 {
2599         struct kvm_memory_slot *memslot;
2600
2601         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2602         mark_page_dirty_in_slot(memslot, gfn);
2603 }
2604 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2605
2606 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2607 {
2608         if (!vcpu->sigset_active)
2609                 return;
2610
2611         /*
2612          * This does a lockless modification of ->real_blocked, which is fine
2613          * because, only current can change ->real_blocked and all readers of
2614          * ->real_blocked don't care as long ->real_blocked is always a subset
2615          * of ->blocked.
2616          */
2617         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2618 }
2619
2620 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2621 {
2622         if (!vcpu->sigset_active)
2623                 return;
2624
2625         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2626         sigemptyset(&current->real_blocked);
2627 }
2628
2629 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2630 {
2631         unsigned int old, val, grow, grow_start;
2632
2633         old = val = vcpu->halt_poll_ns;
2634         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2635         grow = READ_ONCE(halt_poll_ns_grow);
2636         if (!grow)
2637                 goto out;
2638
2639         val *= grow;
2640         if (val < grow_start)
2641                 val = grow_start;
2642
2643         if (val > halt_poll_ns)
2644                 val = halt_poll_ns;
2645
2646         vcpu->halt_poll_ns = val;
2647 out:
2648         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2649 }
2650
2651 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2652 {
2653         unsigned int old, val, shrink;
2654
2655         old = val = vcpu->halt_poll_ns;
2656         shrink = READ_ONCE(halt_poll_ns_shrink);
2657         if (shrink == 0)
2658                 val = 0;
2659         else
2660                 val /= shrink;
2661
2662         vcpu->halt_poll_ns = val;
2663         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2664 }
2665
2666 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2667 {
2668         int ret = -EINTR;
2669         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2670
2671         if (kvm_arch_vcpu_runnable(vcpu)) {
2672                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2673                 goto out;
2674         }
2675         if (kvm_cpu_has_pending_timer(vcpu))
2676                 goto out;
2677         if (signal_pending(current))
2678                 goto out;
2679
2680         ret = 0;
2681 out:
2682         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2683         return ret;
2684 }
2685
2686 static inline void
2687 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2688 {
2689         if (waited)
2690                 vcpu->stat.halt_poll_fail_ns += poll_ns;
2691         else
2692                 vcpu->stat.halt_poll_success_ns += poll_ns;
2693 }
2694
2695 /*
2696  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2697  */
2698 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2699 {
2700         ktime_t start, cur, poll_end;
2701         bool waited = false;
2702         u64 block_ns;
2703
2704         kvm_arch_vcpu_blocking(vcpu);
2705
2706         start = cur = poll_end = ktime_get();
2707         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2708                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2709
2710                 ++vcpu->stat.halt_attempted_poll;
2711                 do {
2712                         /*
2713                          * This sets KVM_REQ_UNHALT if an interrupt
2714                          * arrives.
2715                          */
2716                         if (kvm_vcpu_check_block(vcpu) < 0) {
2717                                 ++vcpu->stat.halt_successful_poll;
2718                                 if (!vcpu_valid_wakeup(vcpu))
2719                                         ++vcpu->stat.halt_poll_invalid;
2720                                 goto out;
2721                         }
2722                         poll_end = cur = ktime_get();
2723                 } while (single_task_running() && ktime_before(cur, stop));
2724         }
2725
2726         prepare_to_rcuwait(&vcpu->wait);
2727         for (;;) {
2728                 set_current_state(TASK_INTERRUPTIBLE);
2729
2730                 if (kvm_vcpu_check_block(vcpu) < 0)
2731                         break;
2732
2733                 waited = true;
2734                 schedule();
2735         }
2736         finish_rcuwait(&vcpu->wait);
2737         cur = ktime_get();
2738 out:
2739         kvm_arch_vcpu_unblocking(vcpu);
2740         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2741
2742         update_halt_poll_stats(
2743                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2744
2745         if (!kvm_arch_no_poll(vcpu)) {
2746                 if (!vcpu_valid_wakeup(vcpu)) {
2747                         shrink_halt_poll_ns(vcpu);
2748                 } else if (vcpu->kvm->max_halt_poll_ns) {
2749                         if (block_ns <= vcpu->halt_poll_ns)
2750                                 ;
2751                         /* we had a long block, shrink polling */
2752                         else if (vcpu->halt_poll_ns &&
2753                                         block_ns > vcpu->kvm->max_halt_poll_ns)
2754                                 shrink_halt_poll_ns(vcpu);
2755                         /* we had a short halt and our poll time is too small */
2756                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2757                                         block_ns < vcpu->kvm->max_halt_poll_ns)
2758                                 grow_halt_poll_ns(vcpu);
2759                 } else {
2760                         vcpu->halt_poll_ns = 0;
2761                 }
2762         }
2763
2764         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2765         kvm_arch_vcpu_block_finish(vcpu);
2766 }
2767 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2768
2769 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2770 {
2771         struct rcuwait *waitp;
2772
2773         waitp = kvm_arch_vcpu_get_wait(vcpu);
2774         if (rcuwait_wake_up(waitp)) {
2775                 WRITE_ONCE(vcpu->ready, true);
2776                 ++vcpu->stat.halt_wakeup;
2777                 return true;
2778         }
2779
2780         return false;
2781 }
2782 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2783
2784 #ifndef CONFIG_S390
2785 /*
2786  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2787  */
2788 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2789 {
2790         int me;
2791         int cpu = vcpu->cpu;
2792
2793         if (kvm_vcpu_wake_up(vcpu))
2794                 return;
2795
2796         me = get_cpu();
2797         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2798                 if (kvm_arch_vcpu_should_kick(vcpu))
2799                         smp_send_reschedule(cpu);
2800         put_cpu();
2801 }
2802 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2803 #endif /* !CONFIG_S390 */
2804
2805 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2806 {
2807         struct pid *pid;
2808         struct task_struct *task = NULL;
2809         int ret = 0;
2810
2811         rcu_read_lock();
2812         pid = rcu_dereference(target->pid);
2813         if (pid)
2814                 task = get_pid_task(pid, PIDTYPE_PID);
2815         rcu_read_unlock();
2816         if (!task)
2817                 return ret;
2818         ret = yield_to(task, 1);
2819         put_task_struct(task);
2820
2821         return ret;
2822 }
2823 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2824
2825 /*
2826  * Helper that checks whether a VCPU is eligible for directed yield.
2827  * Most eligible candidate to yield is decided by following heuristics:
2828  *
2829  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2830  *  (preempted lock holder), indicated by @in_spin_loop.
2831  *  Set at the beginning and cleared at the end of interception/PLE handler.
2832  *
2833  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2834  *  chance last time (mostly it has become eligible now since we have probably
2835  *  yielded to lockholder in last iteration. This is done by toggling
2836  *  @dy_eligible each time a VCPU checked for eligibility.)
2837  *
2838  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2839  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2840  *  burning. Giving priority for a potential lock-holder increases lock
2841  *  progress.
2842  *
2843  *  Since algorithm is based on heuristics, accessing another VCPU data without
2844  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2845  *  and continue with next VCPU and so on.
2846  */
2847 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2848 {
2849 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2850         bool eligible;
2851
2852         eligible = !vcpu->spin_loop.in_spin_loop ||
2853                     vcpu->spin_loop.dy_eligible;
2854
2855         if (vcpu->spin_loop.in_spin_loop)
2856                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2857
2858         return eligible;
2859 #else
2860         return true;
2861 #endif
2862 }
2863
2864 /*
2865  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2866  * a vcpu_load/vcpu_put pair.  However, for most architectures
2867  * kvm_arch_vcpu_runnable does not require vcpu_load.
2868  */
2869 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2870 {
2871         return kvm_arch_vcpu_runnable(vcpu);
2872 }
2873
2874 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2875 {
2876         if (kvm_arch_dy_runnable(vcpu))
2877                 return true;
2878
2879 #ifdef CONFIG_KVM_ASYNC_PF
2880         if (!list_empty_careful(&vcpu->async_pf.done))
2881                 return true;
2882 #endif
2883
2884         return false;
2885 }
2886
2887 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2888 {
2889         struct kvm *kvm = me->kvm;
2890         struct kvm_vcpu *vcpu;
2891         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2892         int yielded = 0;
2893         int try = 3;
2894         int pass;
2895         int i;
2896
2897         kvm_vcpu_set_in_spin_loop(me, true);
2898         /*
2899          * We boost the priority of a VCPU that is runnable but not
2900          * currently running, because it got preempted by something
2901          * else and called schedule in __vcpu_run.  Hopefully that
2902          * VCPU is holding the lock that we need and will release it.
2903          * We approximate round-robin by starting at the last boosted VCPU.
2904          */
2905         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2906                 kvm_for_each_vcpu(i, vcpu, kvm) {
2907                         if (!pass && i <= last_boosted_vcpu) {
2908                                 i = last_boosted_vcpu;
2909                                 continue;
2910                         } else if (pass && i > last_boosted_vcpu)
2911                                 break;
2912                         if (!READ_ONCE(vcpu->ready))
2913                                 continue;
2914                         if (vcpu == me)
2915                                 continue;
2916                         if (rcuwait_active(&vcpu->wait) &&
2917                             !vcpu_dy_runnable(vcpu))
2918                                 continue;
2919                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2920                                 !kvm_arch_vcpu_in_kernel(vcpu))
2921                                 continue;
2922                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2923                                 continue;
2924
2925                         yielded = kvm_vcpu_yield_to(vcpu);
2926                         if (yielded > 0) {
2927                                 kvm->last_boosted_vcpu = i;
2928                                 break;
2929                         } else if (yielded < 0) {
2930                                 try--;
2931                                 if (!try)
2932                                         break;
2933                         }
2934                 }
2935         }
2936         kvm_vcpu_set_in_spin_loop(me, false);
2937
2938         /* Ensure vcpu is not eligible during next spinloop */
2939         kvm_vcpu_set_dy_eligible(me, false);
2940 }
2941 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2942
2943 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2944 {
2945         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2946         struct page *page;
2947
2948         if (vmf->pgoff == 0)
2949                 page = virt_to_page(vcpu->run);
2950 #ifdef CONFIG_X86
2951         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2952                 page = virt_to_page(vcpu->arch.pio_data);
2953 #endif
2954 #ifdef CONFIG_KVM_MMIO
2955         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2956                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2957 #endif
2958         else
2959                 return kvm_arch_vcpu_fault(vcpu, vmf);
2960         get_page(page);
2961         vmf->page = page;
2962         return 0;
2963 }
2964
2965 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2966         .fault = kvm_vcpu_fault,
2967 };
2968
2969 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2970 {
2971         vma->vm_ops = &kvm_vcpu_vm_ops;
2972         return 0;
2973 }
2974
2975 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2976 {
2977         struct kvm_vcpu *vcpu = filp->private_data;
2978
2979         kvm_put_kvm(vcpu->kvm);
2980         return 0;
2981 }
2982
2983 static struct file_operations kvm_vcpu_fops = {
2984         .release        = kvm_vcpu_release,
2985         .unlocked_ioctl = kvm_vcpu_ioctl,
2986         .mmap           = kvm_vcpu_mmap,
2987         .llseek         = noop_llseek,
2988         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2989 };
2990
2991 /*
2992  * Allocates an inode for the vcpu.
2993  */
2994 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2995 {
2996         char name[8 + 1 + ITOA_MAX_LEN + 1];
2997
2998         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2999         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3000 }
3001
3002 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3003 {
3004 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3005         struct dentry *debugfs_dentry;
3006         char dir_name[ITOA_MAX_LEN * 2];
3007
3008         if (!debugfs_initialized())
3009                 return;
3010
3011         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3012         debugfs_dentry = debugfs_create_dir(dir_name,
3013                                             vcpu->kvm->debugfs_dentry);
3014
3015         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3016 #endif
3017 }
3018
3019 /*
3020  * Creates some virtual cpus.  Good luck creating more than one.
3021  */
3022 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3023 {
3024         int r;
3025         struct kvm_vcpu *vcpu;
3026         struct page *page;
3027
3028         if (id >= KVM_MAX_VCPU_ID)
3029                 return -EINVAL;
3030
3031         mutex_lock(&kvm->lock);
3032         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3033                 mutex_unlock(&kvm->lock);
3034                 return -EINVAL;
3035         }
3036
3037         kvm->created_vcpus++;
3038         mutex_unlock(&kvm->lock);
3039
3040         r = kvm_arch_vcpu_precreate(kvm, id);
3041         if (r)
3042                 goto vcpu_decrement;
3043
3044         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3045         if (!vcpu) {
3046                 r = -ENOMEM;
3047                 goto vcpu_decrement;
3048         }
3049
3050         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3051         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3052         if (!page) {
3053                 r = -ENOMEM;
3054                 goto vcpu_free;
3055         }
3056         vcpu->run = page_address(page);
3057
3058         kvm_vcpu_init(vcpu, kvm, id);
3059
3060         r = kvm_arch_vcpu_create(vcpu);
3061         if (r)
3062                 goto vcpu_free_run_page;
3063
3064         mutex_lock(&kvm->lock);
3065         if (kvm_get_vcpu_by_id(kvm, id)) {
3066                 r = -EEXIST;
3067                 goto unlock_vcpu_destroy;
3068         }
3069
3070         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3071         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3072
3073         /* Now it's all set up, let userspace reach it */
3074         kvm_get_kvm(kvm);
3075         r = create_vcpu_fd(vcpu);
3076         if (r < 0) {
3077                 kvm_put_kvm_no_destroy(kvm);
3078                 goto unlock_vcpu_destroy;
3079         }
3080
3081         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3082
3083         /*
3084          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3085          * before kvm->online_vcpu's incremented value.
3086          */
3087         smp_wmb();
3088         atomic_inc(&kvm->online_vcpus);
3089
3090         mutex_unlock(&kvm->lock);
3091         kvm_arch_vcpu_postcreate(vcpu);
3092         kvm_create_vcpu_debugfs(vcpu);
3093         return r;
3094
3095 unlock_vcpu_destroy:
3096         mutex_unlock(&kvm->lock);
3097         kvm_arch_vcpu_destroy(vcpu);
3098 vcpu_free_run_page:
3099         free_page((unsigned long)vcpu->run);
3100 vcpu_free:
3101         kmem_cache_free(kvm_vcpu_cache, vcpu);
3102 vcpu_decrement:
3103         mutex_lock(&kvm->lock);
3104         kvm->created_vcpus--;
3105         mutex_unlock(&kvm->lock);
3106         return r;
3107 }
3108
3109 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3110 {
3111         if (sigset) {
3112                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3113                 vcpu->sigset_active = 1;
3114                 vcpu->sigset = *sigset;
3115         } else
3116                 vcpu->sigset_active = 0;
3117         return 0;
3118 }
3119
3120 static long kvm_vcpu_ioctl(struct file *filp,
3121                            unsigned int ioctl, unsigned long arg)
3122 {
3123         struct kvm_vcpu *vcpu = filp->private_data;
3124         void __user *argp = (void __user *)arg;
3125         int r;
3126         struct kvm_fpu *fpu = NULL;
3127         struct kvm_sregs *kvm_sregs = NULL;
3128
3129         if (vcpu->kvm->mm != current->mm)
3130                 return -EIO;
3131
3132         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3133                 return -EINVAL;
3134
3135         /*
3136          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3137          * execution; mutex_lock() would break them.
3138          */
3139         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3140         if (r != -ENOIOCTLCMD)
3141                 return r;
3142
3143         if (mutex_lock_killable(&vcpu->mutex))
3144                 return -EINTR;
3145         switch (ioctl) {
3146         case KVM_RUN: {
3147                 struct pid *oldpid;
3148                 r = -EINVAL;
3149                 if (arg)
3150                         goto out;
3151                 oldpid = rcu_access_pointer(vcpu->pid);
3152                 if (unlikely(oldpid != task_pid(current))) {
3153                         /* The thread running this VCPU changed. */
3154                         struct pid *newpid;
3155
3156                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3157                         if (r)
3158                                 break;
3159
3160                         newpid = get_task_pid(current, PIDTYPE_PID);
3161                         rcu_assign_pointer(vcpu->pid, newpid);
3162                         if (oldpid)
3163                                 synchronize_rcu();
3164                         put_pid(oldpid);
3165                 }
3166                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3167                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3168                 break;
3169         }
3170         case KVM_GET_REGS: {
3171                 struct kvm_regs *kvm_regs;
3172
3173                 r = -ENOMEM;
3174                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3175                 if (!kvm_regs)
3176                         goto out;
3177                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3178                 if (r)
3179                         goto out_free1;
3180                 r = -EFAULT;
3181                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3182                         goto out_free1;
3183                 r = 0;
3184 out_free1:
3185                 kfree(kvm_regs);
3186                 break;
3187         }
3188         case KVM_SET_REGS: {
3189                 struct kvm_regs *kvm_regs;
3190
3191                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3192                 if (IS_ERR(kvm_regs)) {
3193                         r = PTR_ERR(kvm_regs);
3194                         goto out;
3195                 }
3196                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3197                 kfree(kvm_regs);
3198                 break;
3199         }
3200         case KVM_GET_SREGS: {
3201                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3202                                     GFP_KERNEL_ACCOUNT);
3203                 r = -ENOMEM;
3204                 if (!kvm_sregs)
3205                         goto out;
3206                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3207                 if (r)
3208                         goto out;
3209                 r = -EFAULT;
3210                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3211                         goto out;
3212                 r = 0;
3213                 break;
3214         }
3215         case KVM_SET_SREGS: {
3216                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3217                 if (IS_ERR(kvm_sregs)) {
3218                         r = PTR_ERR(kvm_sregs);
3219                         kvm_sregs = NULL;
3220                         goto out;
3221                 }
3222                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3223                 break;
3224         }
3225         case KVM_GET_MP_STATE: {
3226                 struct kvm_mp_state mp_state;
3227
3228                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3229                 if (r)
3230                         goto out;
3231                 r = -EFAULT;
3232                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3233                         goto out;
3234                 r = 0;
3235                 break;
3236         }
3237         case KVM_SET_MP_STATE: {
3238                 struct kvm_mp_state mp_state;
3239
3240                 r = -EFAULT;
3241                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3242                         goto out;
3243                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3244                 break;
3245         }
3246         case KVM_TRANSLATE: {
3247                 struct kvm_translation tr;
3248
3249                 r = -EFAULT;
3250                 if (copy_from_user(&tr, argp, sizeof(tr)))
3251                         goto out;
3252                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3253                 if (r)
3254                         goto out;
3255                 r = -EFAULT;
3256                 if (copy_to_user(argp, &tr, sizeof(tr)))
3257                         goto out;
3258                 r = 0;
3259                 break;
3260         }
3261         case KVM_SET_GUEST_DEBUG: {
3262                 struct kvm_guest_debug dbg;
3263
3264                 r = -EFAULT;
3265                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3266                         goto out;
3267                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3268                 break;
3269         }
3270         case KVM_SET_SIGNAL_MASK: {
3271                 struct kvm_signal_mask __user *sigmask_arg = argp;
3272                 struct kvm_signal_mask kvm_sigmask;
3273                 sigset_t sigset, *p;
3274
3275                 p = NULL;
3276                 if (argp) {
3277                         r = -EFAULT;
3278                         if (copy_from_user(&kvm_sigmask, argp,
3279                                            sizeof(kvm_sigmask)))
3280                                 goto out;
3281                         r = -EINVAL;
3282                         if (kvm_sigmask.len != sizeof(sigset))
3283                                 goto out;
3284                         r = -EFAULT;
3285                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3286                                            sizeof(sigset)))
3287                                 goto out;
3288                         p = &sigset;
3289                 }
3290                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3291                 break;
3292         }
3293         case KVM_GET_FPU: {
3294                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3295                 r = -ENOMEM;
3296                 if (!fpu)
3297                         goto out;
3298                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3299                 if (r)
3300                         goto out;
3301                 r = -EFAULT;
3302                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3303                         goto out;
3304                 r = 0;
3305                 break;
3306         }
3307         case KVM_SET_FPU: {
3308                 fpu = memdup_user(argp, sizeof(*fpu));
3309                 if (IS_ERR(fpu)) {
3310                         r = PTR_ERR(fpu);
3311                         fpu = NULL;
3312                         goto out;
3313                 }
3314                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3315                 break;
3316         }
3317         default:
3318                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3319         }
3320 out:
3321         mutex_unlock(&vcpu->mutex);
3322         kfree(fpu);
3323         kfree(kvm_sregs);
3324         return r;
3325 }
3326
3327 #ifdef CONFIG_KVM_COMPAT
3328 static long kvm_vcpu_compat_ioctl(struct file *filp,
3329                                   unsigned int ioctl, unsigned long arg)
3330 {
3331         struct kvm_vcpu *vcpu = filp->private_data;
3332         void __user *argp = compat_ptr(arg);
3333         int r;
3334
3335         if (vcpu->kvm->mm != current->mm)
3336                 return -EIO;
3337
3338         switch (ioctl) {
3339         case KVM_SET_SIGNAL_MASK: {
3340                 struct kvm_signal_mask __user *sigmask_arg = argp;
3341                 struct kvm_signal_mask kvm_sigmask;
3342                 sigset_t sigset;
3343
3344                 if (argp) {
3345                         r = -EFAULT;
3346                         if (copy_from_user(&kvm_sigmask, argp,
3347                                            sizeof(kvm_sigmask)))
3348                                 goto out;
3349                         r = -EINVAL;
3350                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3351                                 goto out;
3352                         r = -EFAULT;
3353                         if (get_compat_sigset(&sigset,
3354                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3355                                 goto out;
3356                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3357                 } else
3358                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3359                 break;
3360         }
3361         default:
3362                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3363         }
3364
3365 out:
3366         return r;
3367 }
3368 #endif
3369
3370 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3371 {
3372         struct kvm_device *dev = filp->private_data;
3373
3374         if (dev->ops->mmap)
3375                 return dev->ops->mmap(dev, vma);
3376
3377         return -ENODEV;
3378 }
3379
3380 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3381                                  int (*accessor)(struct kvm_device *dev,
3382                                                  struct kvm_device_attr *attr),
3383                                  unsigned long arg)
3384 {
3385         struct kvm_device_attr attr;
3386
3387         if (!accessor)
3388                 return -EPERM;
3389
3390         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3391                 return -EFAULT;
3392
3393         return accessor(dev, &attr);
3394 }
3395
3396 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3397                              unsigned long arg)
3398 {
3399         struct kvm_device *dev = filp->private_data;
3400
3401         if (dev->kvm->mm != current->mm)
3402                 return -EIO;
3403
3404         switch (ioctl) {
3405         case KVM_SET_DEVICE_ATTR:
3406                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3407         case KVM_GET_DEVICE_ATTR:
3408                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3409         case KVM_HAS_DEVICE_ATTR:
3410                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3411         default:
3412                 if (dev->ops->ioctl)
3413                         return dev->ops->ioctl(dev, ioctl, arg);
3414
3415                 return -ENOTTY;
3416         }
3417 }
3418
3419 static int kvm_device_release(struct inode *inode, struct file *filp)
3420 {
3421         struct kvm_device *dev = filp->private_data;
3422         struct kvm *kvm = dev->kvm;
3423
3424         if (dev->ops->release) {
3425                 mutex_lock(&kvm->lock);
3426                 list_del(&dev->vm_node);
3427                 dev->ops->release(dev);
3428                 mutex_unlock(&kvm->lock);
3429         }
3430
3431         kvm_put_kvm(kvm);
3432         return 0;
3433 }
3434
3435 static const struct file_operations kvm_device_fops = {
3436         .unlocked_ioctl = kvm_device_ioctl,
3437         .release = kvm_device_release,
3438         KVM_COMPAT(kvm_device_ioctl),
3439         .mmap = kvm_device_mmap,
3440 };
3441
3442 struct kvm_device *kvm_device_from_filp(struct file *filp)
3443 {
3444         if (filp->f_op != &kvm_device_fops)
3445                 return NULL;
3446
3447         return filp->private_data;
3448 }
3449
3450 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3451 #ifdef CONFIG_KVM_MPIC
3452         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3453         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3454 #endif
3455 };
3456
3457 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3458 {
3459         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3460                 return -ENOSPC;
3461
3462         if (kvm_device_ops_table[type] != NULL)
3463                 return -EEXIST;
3464
3465         kvm_device_ops_table[type] = ops;
3466         return 0;
3467 }
3468
3469 void kvm_unregister_device_ops(u32 type)
3470 {
3471         if (kvm_device_ops_table[type] != NULL)
3472                 kvm_device_ops_table[type] = NULL;
3473 }
3474
3475 static int kvm_ioctl_create_device(struct kvm *kvm,
3476                                    struct kvm_create_device *cd)
3477 {
3478         const struct kvm_device_ops *ops = NULL;
3479         struct kvm_device *dev;
3480         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3481         int type;
3482         int ret;
3483
3484         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3485                 return -ENODEV;
3486
3487         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3488         ops = kvm_device_ops_table[type];
3489         if (ops == NULL)
3490                 return -ENODEV;
3491
3492         if (test)
3493                 return 0;
3494
3495         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3496         if (!dev)
3497                 return -ENOMEM;
3498
3499         dev->ops = ops;
3500         dev->kvm = kvm;
3501
3502         mutex_lock(&kvm->lock);
3503         ret = ops->create(dev, type);
3504         if (ret < 0) {
3505                 mutex_unlock(&kvm->lock);
3506                 kfree(dev);
3507                 return ret;
3508         }
3509         list_add(&dev->vm_node, &kvm->devices);
3510         mutex_unlock(&kvm->lock);
3511
3512         if (ops->init)
3513                 ops->init(dev);
3514
3515         kvm_get_kvm(kvm);
3516         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3517         if (ret < 0) {
3518                 kvm_put_kvm_no_destroy(kvm);
3519                 mutex_lock(&kvm->lock);
3520                 list_del(&dev->vm_node);
3521                 mutex_unlock(&kvm->lock);
3522                 ops->destroy(dev);
3523                 return ret;
3524         }
3525
3526         cd->fd = ret;
3527         return 0;
3528 }
3529
3530 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3531 {
3532         switch (arg) {
3533         case KVM_CAP_USER_MEMORY:
3534         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3535         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3536         case KVM_CAP_INTERNAL_ERROR_DATA:
3537 #ifdef CONFIG_HAVE_KVM_MSI
3538         case KVM_CAP_SIGNAL_MSI:
3539 #endif
3540 #ifdef CONFIG_HAVE_KVM_IRQFD
3541         case KVM_CAP_IRQFD:
3542         case KVM_CAP_IRQFD_RESAMPLE:
3543 #endif
3544         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3545         case KVM_CAP_CHECK_EXTENSION_VM:
3546         case KVM_CAP_ENABLE_CAP_VM:
3547         case KVM_CAP_HALT_POLL:
3548                 return 1;
3549 #ifdef CONFIG_KVM_MMIO
3550         case KVM_CAP_COALESCED_MMIO:
3551                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3552         case KVM_CAP_COALESCED_PIO:
3553                 return 1;
3554 #endif
3555 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3556         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3557                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3558 #endif
3559 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3560         case KVM_CAP_IRQ_ROUTING:
3561                 return KVM_MAX_IRQ_ROUTES;
3562 #endif
3563 #if KVM_ADDRESS_SPACE_NUM > 1
3564         case KVM_CAP_MULTI_ADDRESS_SPACE:
3565                 return KVM_ADDRESS_SPACE_NUM;
3566 #endif
3567         case KVM_CAP_NR_MEMSLOTS:
3568                 return KVM_USER_MEM_SLOTS;
3569         default:
3570                 break;
3571         }
3572         return kvm_vm_ioctl_check_extension(kvm, arg);
3573 }
3574
3575 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3576                                                   struct kvm_enable_cap *cap)
3577 {
3578         return -EINVAL;
3579 }
3580
3581 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3582                                            struct kvm_enable_cap *cap)
3583 {
3584         switch (cap->cap) {
3585 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3586         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3587                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3588
3589                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3590                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3591
3592                 if (cap->flags || (cap->args[0] & ~allowed_options))
3593                         return -EINVAL;
3594                 kvm->manual_dirty_log_protect = cap->args[0];
3595                 return 0;
3596         }
3597 #endif
3598         case KVM_CAP_HALT_POLL: {
3599                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3600                         return -EINVAL;
3601
3602                 kvm->max_halt_poll_ns = cap->args[0];
3603                 return 0;
3604         }
3605         default:
3606                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3607         }
3608 }
3609
3610 static long kvm_vm_ioctl(struct file *filp,
3611                            unsigned int ioctl, unsigned long arg)
3612 {
3613         struct kvm *kvm = filp->private_data;
3614         void __user *argp = (void __user *)arg;
3615         int r;
3616
3617         if (kvm->mm != current->mm)
3618                 return -EIO;
3619         switch (ioctl) {
3620         case KVM_CREATE_VCPU:
3621                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3622                 break;
3623         case KVM_ENABLE_CAP: {
3624                 struct kvm_enable_cap cap;
3625
3626                 r = -EFAULT;
3627                 if (copy_from_user(&cap, argp, sizeof(cap)))
3628                         goto out;
3629                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3630                 break;
3631         }
3632         case KVM_SET_USER_MEMORY_REGION: {
3633                 struct kvm_userspace_memory_region kvm_userspace_mem;
3634
3635                 r = -EFAULT;
3636                 if (copy_from_user(&kvm_userspace_mem, argp,
3637                                                 sizeof(kvm_userspace_mem)))
3638                         goto out;
3639
3640                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3641                 break;
3642         }
3643         case KVM_GET_DIRTY_LOG: {
3644                 struct kvm_dirty_log log;
3645
3646                 r = -EFAULT;
3647                 if (copy_from_user(&log, argp, sizeof(log)))
3648                         goto out;
3649                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3650                 break;
3651         }
3652 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3653         case KVM_CLEAR_DIRTY_LOG: {
3654                 struct kvm_clear_dirty_log log;
3655
3656                 r = -EFAULT;
3657                 if (copy_from_user(&log, argp, sizeof(log)))
3658                         goto out;
3659                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3660                 break;
3661         }
3662 #endif
3663 #ifdef CONFIG_KVM_MMIO
3664         case KVM_REGISTER_COALESCED_MMIO: {
3665                 struct kvm_coalesced_mmio_zone zone;
3666
3667                 r = -EFAULT;
3668                 if (copy_from_user(&zone, argp, sizeof(zone)))
3669                         goto out;
3670                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3671                 break;
3672         }
3673         case KVM_UNREGISTER_COALESCED_MMIO: {
3674                 struct kvm_coalesced_mmio_zone zone;
3675
3676                 r = -EFAULT;
3677                 if (copy_from_user(&zone, argp, sizeof(zone)))
3678                         goto out;
3679                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3680                 break;
3681         }
3682 #endif
3683         case KVM_IRQFD: {
3684                 struct kvm_irqfd data;
3685
3686                 r = -EFAULT;
3687                 if (copy_from_user(&data, argp, sizeof(data)))
3688                         goto out;
3689                 r = kvm_irqfd(kvm, &data);
3690                 break;
3691         }
3692         case KVM_IOEVENTFD: {
3693                 struct kvm_ioeventfd data;
3694
3695                 r = -EFAULT;
3696                 if (copy_from_user(&data, argp, sizeof(data)))
3697                         goto out;
3698                 r = kvm_ioeventfd(kvm, &data);
3699                 break;
3700         }
3701 #ifdef CONFIG_HAVE_KVM_MSI
3702         case KVM_SIGNAL_MSI: {
3703                 struct kvm_msi msi;
3704
3705                 r = -EFAULT;
3706                 if (copy_from_user(&msi, argp, sizeof(msi)))
3707                         goto out;
3708                 r = kvm_send_userspace_msi(kvm, &msi);
3709                 break;
3710         }
3711 #endif
3712 #ifdef __KVM_HAVE_IRQ_LINE
3713         case KVM_IRQ_LINE_STATUS:
3714         case KVM_IRQ_LINE: {
3715                 struct kvm_irq_level irq_event;
3716
3717                 r = -EFAULT;
3718                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3719                         goto out;
3720
3721                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3722                                         ioctl == KVM_IRQ_LINE_STATUS);
3723                 if (r)
3724                         goto out;
3725
3726                 r = -EFAULT;
3727                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3728                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3729                                 goto out;
3730                 }
3731
3732                 r = 0;
3733                 break;
3734         }
3735 #endif
3736 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3737         case KVM_SET_GSI_ROUTING: {
3738                 struct kvm_irq_routing routing;
3739                 struct kvm_irq_routing __user *urouting;
3740                 struct kvm_irq_routing_entry *entries = NULL;
3741
3742                 r = -EFAULT;
3743                 if (copy_from_user(&routing, argp, sizeof(routing)))
3744                         goto out;
3745                 r = -EINVAL;
3746                 if (!kvm_arch_can_set_irq_routing(kvm))
3747                         goto out;
3748                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3749                         goto out;
3750                 if (routing.flags)
3751                         goto out;
3752                 if (routing.nr) {
3753                         urouting = argp;
3754                         entries = vmemdup_user(urouting->entries,
3755                                                array_size(sizeof(*entries),
3756                                                           routing.nr));
3757                         if (IS_ERR(entries)) {
3758                                 r = PTR_ERR(entries);
3759                                 goto out;
3760                         }
3761                 }
3762                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3763                                         routing.flags);
3764                 kvfree(entries);
3765                 break;
3766         }
3767 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3768         case KVM_CREATE_DEVICE: {
3769                 struct kvm_create_device cd;
3770
3771                 r = -EFAULT;
3772                 if (copy_from_user(&cd, argp, sizeof(cd)))
3773                         goto out;
3774
3775                 r = kvm_ioctl_create_device(kvm, &cd);
3776                 if (r)
3777                         goto out;
3778
3779                 r = -EFAULT;
3780                 if (copy_to_user(argp, &cd, sizeof(cd)))
3781                         goto out;
3782
3783                 r = 0;
3784                 break;
3785         }
3786         case KVM_CHECK_EXTENSION:
3787                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3788                 break;
3789         default:
3790                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3791         }
3792 out:
3793         return r;
3794 }
3795
3796 #ifdef CONFIG_KVM_COMPAT
3797 struct compat_kvm_dirty_log {
3798         __u32 slot;
3799         __u32 padding1;
3800         union {
3801                 compat_uptr_t dirty_bitmap; /* one bit per page */
3802                 __u64 padding2;
3803         };
3804 };
3805
3806 static long kvm_vm_compat_ioctl(struct file *filp,
3807                            unsigned int ioctl, unsigned long arg)
3808 {
3809         struct kvm *kvm = filp->private_data;
3810         int r;
3811
3812         if (kvm->mm != current->mm)
3813                 return -EIO;
3814         switch (ioctl) {
3815         case KVM_GET_DIRTY_LOG: {
3816                 struct compat_kvm_dirty_log compat_log;
3817                 struct kvm_dirty_log log;
3818
3819                 if (copy_from_user(&compat_log, (void __user *)arg,
3820                                    sizeof(compat_log)))
3821                         return -EFAULT;
3822                 log.slot         = compat_log.slot;
3823                 log.padding1     = compat_log.padding1;
3824                 log.padding2     = compat_log.padding2;
3825                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3826
3827                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3828                 break;
3829         }
3830         default:
3831                 r = kvm_vm_ioctl(filp, ioctl, arg);
3832         }
3833         return r;
3834 }
3835 #endif
3836
3837 static struct file_operations kvm_vm_fops = {
3838         .release        = kvm_vm_release,
3839         .unlocked_ioctl = kvm_vm_ioctl,
3840         .llseek         = noop_llseek,
3841         KVM_COMPAT(kvm_vm_compat_ioctl),
3842 };
3843
3844 static int kvm_dev_ioctl_create_vm(unsigned long type)
3845 {
3846         int r;
3847         struct kvm *kvm;
3848         struct file *file;
3849
3850         kvm = kvm_create_vm(type);
3851         if (IS_ERR(kvm))
3852                 return PTR_ERR(kvm);
3853 #ifdef CONFIG_KVM_MMIO
3854         r = kvm_coalesced_mmio_init(kvm);
3855         if (r < 0)
3856                 goto put_kvm;
3857 #endif
3858         r = get_unused_fd_flags(O_CLOEXEC);
3859         if (r < 0)
3860                 goto put_kvm;
3861
3862         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3863         if (IS_ERR(file)) {
3864                 put_unused_fd(r);
3865                 r = PTR_ERR(file);
3866                 goto put_kvm;
3867         }
3868
3869         /*
3870          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3871          * already set, with ->release() being kvm_vm_release().  In error
3872          * cases it will be called by the final fput(file) and will take
3873          * care of doing kvm_put_kvm(kvm).
3874          */
3875         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3876                 put_unused_fd(r);
3877                 fput(file);
3878                 return -ENOMEM;
3879         }
3880         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3881
3882         fd_install(r, file);
3883         return r;
3884
3885 put_kvm:
3886         kvm_put_kvm(kvm);
3887         return r;
3888 }
3889
3890 static long kvm_dev_ioctl(struct file *filp,
3891                           unsigned int ioctl, unsigned long arg)
3892 {
3893         long r = -EINVAL;
3894
3895         switch (ioctl) {
3896         case KVM_GET_API_VERSION:
3897                 if (arg)
3898                         goto out;
3899                 r = KVM_API_VERSION;
3900                 break;
3901         case KVM_CREATE_VM:
3902                 r = kvm_dev_ioctl_create_vm(arg);
3903                 break;
3904         case KVM_CHECK_EXTENSION:
3905                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3906                 break;
3907         case KVM_GET_VCPU_MMAP_SIZE:
3908                 if (arg)
3909                         goto out;
3910                 r = PAGE_SIZE;     /* struct kvm_run */
3911 #ifdef CONFIG_X86
3912                 r += PAGE_SIZE;    /* pio data page */
3913 #endif
3914 #ifdef CONFIG_KVM_MMIO
3915                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3916 #endif
3917                 break;
3918         case KVM_TRACE_ENABLE:
3919         case KVM_TRACE_PAUSE:
3920         case KVM_TRACE_DISABLE:
3921                 r = -EOPNOTSUPP;
3922                 break;
3923         default:
3924                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3925         }
3926 out:
3927         return r;
3928 }
3929
3930 static struct file_operations kvm_chardev_ops = {
3931         .unlocked_ioctl = kvm_dev_ioctl,
3932         .llseek         = noop_llseek,
3933         KVM_COMPAT(kvm_dev_ioctl),
3934 };
3935
3936 static struct miscdevice kvm_dev = {
3937         KVM_MINOR,
3938         "kvm",
3939         &kvm_chardev_ops,
3940 };
3941
3942 static void hardware_enable_nolock(void *junk)
3943 {
3944         int cpu = raw_smp_processor_id();
3945         int r;
3946
3947         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3948                 return;
3949
3950         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3951
3952         r = kvm_arch_hardware_enable();
3953
3954         if (r) {
3955                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3956                 atomic_inc(&hardware_enable_failed);
3957                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3958         }
3959 }
3960
3961 static int kvm_starting_cpu(unsigned int cpu)
3962 {
3963         raw_spin_lock(&kvm_count_lock);
3964         if (kvm_usage_count)
3965                 hardware_enable_nolock(NULL);
3966         raw_spin_unlock(&kvm_count_lock);
3967         return 0;
3968 }
3969
3970 static void hardware_disable_nolock(void *junk)
3971 {
3972         int cpu = raw_smp_processor_id();
3973
3974         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3975                 return;
3976         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3977         kvm_arch_hardware_disable();
3978 }
3979
3980 static int kvm_dying_cpu(unsigned int cpu)
3981 {
3982         raw_spin_lock(&kvm_count_lock);
3983         if (kvm_usage_count)
3984                 hardware_disable_nolock(NULL);
3985         raw_spin_unlock(&kvm_count_lock);
3986         return 0;
3987 }
3988
3989 static void hardware_disable_all_nolock(void)
3990 {
3991         BUG_ON(!kvm_usage_count);
3992
3993         kvm_usage_count--;
3994         if (!kvm_usage_count)
3995                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3996 }
3997
3998 static void hardware_disable_all(void)
3999 {
4000         raw_spin_lock(&kvm_count_lock);
4001         hardware_disable_all_nolock();
4002         raw_spin_unlock(&kvm_count_lock);
4003 }
4004
4005 static int hardware_enable_all(void)
4006 {
4007         int r = 0;
4008
4009         raw_spin_lock(&kvm_count_lock);
4010
4011         kvm_usage_count++;
4012         if (kvm_usage_count == 1) {
4013                 atomic_set(&hardware_enable_failed, 0);
4014                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4015
4016                 if (atomic_read(&hardware_enable_failed)) {
4017                         hardware_disable_all_nolock();
4018                         r = -EBUSY;
4019                 }
4020         }
4021
4022         raw_spin_unlock(&kvm_count_lock);
4023
4024         return r;
4025 }
4026
4027 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4028                       void *v)
4029 {
4030         /*
4031          * Some (well, at least mine) BIOSes hang on reboot if
4032          * in vmx root mode.
4033          *
4034          * And Intel TXT required VMX off for all cpu when system shutdown.
4035          */
4036         pr_info("kvm: exiting hardware virtualization\n");
4037         kvm_rebooting = true;
4038         on_each_cpu(hardware_disable_nolock, NULL, 1);
4039         return NOTIFY_OK;
4040 }
4041
4042 static struct notifier_block kvm_reboot_notifier = {
4043         .notifier_call = kvm_reboot,
4044         .priority = 0,
4045 };
4046
4047 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4048 {
4049         int i;
4050
4051         for (i = 0; i < bus->dev_count; i++) {
4052                 struct kvm_io_device *pos = bus->range[i].dev;
4053
4054                 kvm_iodevice_destructor(pos);
4055         }
4056         kfree(bus);
4057 }
4058
4059 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4060                                  const struct kvm_io_range *r2)
4061 {
4062         gpa_t addr1 = r1->addr;
4063         gpa_t addr2 = r2->addr;
4064
4065         if (addr1 < addr2)
4066                 return -1;
4067
4068         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4069          * accept any overlapping write.  Any order is acceptable for
4070          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4071          * we process all of them.
4072          */
4073         if (r2->len) {
4074                 addr1 += r1->len;
4075                 addr2 += r2->len;
4076         }
4077
4078         if (addr1 > addr2)
4079                 return 1;
4080
4081         return 0;
4082 }
4083
4084 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4085 {
4086         return kvm_io_bus_cmp(p1, p2);
4087 }
4088
4089 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4090                              gpa_t addr, int len)
4091 {
4092         struct kvm_io_range *range, key;
4093         int off;
4094
4095         key = (struct kvm_io_range) {
4096                 .addr = addr,
4097                 .len = len,
4098         };
4099
4100         range = bsearch(&key, bus->range, bus->dev_count,
4101                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4102         if (range == NULL)
4103                 return -ENOENT;
4104
4105         off = range - bus->range;
4106
4107         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4108                 off--;
4109
4110         return off;
4111 }
4112
4113 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4114                               struct kvm_io_range *range, const void *val)
4115 {
4116         int idx;
4117
4118         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4119         if (idx < 0)
4120                 return -EOPNOTSUPP;
4121
4122         while (idx < bus->dev_count &&
4123                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4124                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4125                                         range->len, val))
4126                         return idx;
4127                 idx++;
4128         }
4129
4130         return -EOPNOTSUPP;
4131 }
4132
4133 /* kvm_io_bus_write - called under kvm->slots_lock */
4134 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4135                      int len, const void *val)
4136 {
4137         struct kvm_io_bus *bus;
4138         struct kvm_io_range range;
4139         int r;
4140
4141         range = (struct kvm_io_range) {
4142                 .addr = addr,
4143                 .len = len,
4144         };
4145
4146         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4147         if (!bus)
4148                 return -ENOMEM;
4149         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4150         return r < 0 ? r : 0;
4151 }
4152 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4153
4154 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4155 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4156                             gpa_t addr, int len, const void *val, long cookie)
4157 {
4158         struct kvm_io_bus *bus;
4159         struct kvm_io_range range;
4160
4161         range = (struct kvm_io_range) {
4162                 .addr = addr,
4163                 .len = len,
4164         };
4165
4166         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4167         if (!bus)
4168                 return -ENOMEM;
4169
4170         /* First try the device referenced by cookie. */
4171         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4172             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4173                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4174                                         val))
4175                         return cookie;
4176
4177         /*
4178          * cookie contained garbage; fall back to search and return the
4179          * correct cookie value.
4180          */
4181         return __kvm_io_bus_write(vcpu, bus, &range, val);
4182 }
4183
4184 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4185                              struct kvm_io_range *range, void *val)
4186 {
4187         int idx;
4188
4189         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4190         if (idx < 0)
4191                 return -EOPNOTSUPP;
4192
4193         while (idx < bus->dev_count &&
4194                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4195                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4196                                        range->len, val))
4197                         return idx;
4198                 idx++;
4199         }
4200
4201         return -EOPNOTSUPP;
4202 }
4203
4204 /* kvm_io_bus_read - called under kvm->slots_lock */
4205 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4206                     int len, void *val)
4207 {
4208         struct kvm_io_bus *bus;
4209         struct kvm_io_range range;
4210         int r;
4211
4212         range = (struct kvm_io_range) {
4213                 .addr = addr,
4214                 .len = len,
4215         };
4216
4217         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4218         if (!bus)
4219                 return -ENOMEM;
4220         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4221         return r < 0 ? r : 0;
4222 }
4223
4224 /* Caller must hold slots_lock. */
4225 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4226                             int len, struct kvm_io_device *dev)
4227 {
4228         int i;
4229         struct kvm_io_bus *new_bus, *bus;
4230         struct kvm_io_range range;
4231
4232         bus = kvm_get_bus(kvm, bus_idx);
4233         if (!bus)
4234                 return -ENOMEM;
4235
4236         /* exclude ioeventfd which is limited by maximum fd */
4237         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4238                 return -ENOSPC;
4239
4240         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4241                           GFP_KERNEL_ACCOUNT);
4242         if (!new_bus)
4243                 return -ENOMEM;
4244
4245         range = (struct kvm_io_range) {
4246                 .addr = addr,
4247                 .len = len,
4248                 .dev = dev,
4249         };
4250
4251         for (i = 0; i < bus->dev_count; i++)
4252                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4253                         break;
4254
4255         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4256         new_bus->dev_count++;
4257         new_bus->range[i] = range;
4258         memcpy(new_bus->range + i + 1, bus->range + i,
4259                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4260         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4261         synchronize_srcu_expedited(&kvm->srcu);
4262         kfree(bus);
4263
4264         return 0;
4265 }
4266
4267 /* Caller must hold slots_lock. */
4268 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4269                                struct kvm_io_device *dev)
4270 {
4271         int i;
4272         struct kvm_io_bus *new_bus, *bus;
4273
4274         bus = kvm_get_bus(kvm, bus_idx);
4275         if (!bus)
4276                 return;
4277
4278         for (i = 0; i < bus->dev_count; i++)
4279                 if (bus->range[i].dev == dev) {
4280                         break;
4281                 }
4282
4283         if (i == bus->dev_count)
4284                 return;
4285
4286         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4287                           GFP_KERNEL_ACCOUNT);
4288         if (!new_bus)  {
4289                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4290                 goto broken;
4291         }
4292
4293         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4294         new_bus->dev_count--;
4295         memcpy(new_bus->range + i, bus->range + i + 1,
4296                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4297
4298 broken:
4299         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4300         synchronize_srcu_expedited(&kvm->srcu);
4301         kfree(bus);
4302         return;
4303 }
4304
4305 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4306                                          gpa_t addr)
4307 {
4308         struct kvm_io_bus *bus;
4309         int dev_idx, srcu_idx;
4310         struct kvm_io_device *iodev = NULL;
4311
4312         srcu_idx = srcu_read_lock(&kvm->srcu);
4313
4314         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4315         if (!bus)
4316                 goto out_unlock;
4317
4318         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4319         if (dev_idx < 0)
4320                 goto out_unlock;
4321
4322         iodev = bus->range[dev_idx].dev;
4323
4324 out_unlock:
4325         srcu_read_unlock(&kvm->srcu, srcu_idx);
4326
4327         return iodev;
4328 }
4329 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4330
4331 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4332                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4333                            const char *fmt)
4334 {
4335         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4336                                           inode->i_private;
4337
4338         /* The debugfs files are a reference to the kvm struct which
4339          * is still valid when kvm_destroy_vm is called.
4340          * To avoid the race between open and the removal of the debugfs
4341          * directory we test against the users count.
4342          */
4343         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4344                 return -ENOENT;
4345
4346         if (simple_attr_open(inode, file, get,
4347                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4348                     ? set : NULL,
4349                     fmt)) {
4350                 kvm_put_kvm(stat_data->kvm);
4351                 return -ENOMEM;
4352         }
4353
4354         return 0;
4355 }
4356
4357 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4358 {
4359         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4360                                           inode->i_private;
4361
4362         simple_attr_release(inode, file);
4363         kvm_put_kvm(stat_data->kvm);
4364
4365         return 0;
4366 }
4367
4368 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4369 {
4370         *val = *(ulong *)((void *)kvm + offset);
4371
4372         return 0;
4373 }
4374
4375 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4376 {
4377         *(ulong *)((void *)kvm + offset) = 0;
4378
4379         return 0;
4380 }
4381
4382 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4383 {
4384         int i;
4385         struct kvm_vcpu *vcpu;
4386
4387         *val = 0;
4388
4389         kvm_for_each_vcpu(i, vcpu, kvm)
4390                 *val += *(u64 *)((void *)vcpu + offset);
4391
4392         return 0;
4393 }
4394
4395 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4396 {
4397         int i;
4398         struct kvm_vcpu *vcpu;
4399
4400         kvm_for_each_vcpu(i, vcpu, kvm)
4401                 *(u64 *)((void *)vcpu + offset) = 0;
4402
4403         return 0;
4404 }
4405
4406 static int kvm_stat_data_get(void *data, u64 *val)
4407 {
4408         int r = -EFAULT;
4409         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4410
4411         switch (stat_data->dbgfs_item->kind) {
4412         case KVM_STAT_VM:
4413                 r = kvm_get_stat_per_vm(stat_data->kvm,
4414                                         stat_data->dbgfs_item->offset, val);
4415                 break;
4416         case KVM_STAT_VCPU:
4417                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4418                                           stat_data->dbgfs_item->offset, val);
4419                 break;
4420         }
4421
4422         return r;
4423 }
4424
4425 static int kvm_stat_data_clear(void *data, u64 val)
4426 {
4427         int r = -EFAULT;
4428         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4429
4430         if (val)
4431                 return -EINVAL;
4432
4433         switch (stat_data->dbgfs_item->kind) {
4434         case KVM_STAT_VM:
4435                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4436                                           stat_data->dbgfs_item->offset);
4437                 break;
4438         case KVM_STAT_VCPU:
4439                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4440                                             stat_data->dbgfs_item->offset);
4441                 break;
4442         }
4443
4444         return r;
4445 }
4446
4447 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4448 {
4449         __simple_attr_check_format("%llu\n", 0ull);
4450         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4451                                 kvm_stat_data_clear, "%llu\n");
4452 }
4453
4454 static const struct file_operations stat_fops_per_vm = {
4455         .owner = THIS_MODULE,
4456         .open = kvm_stat_data_open,
4457         .release = kvm_debugfs_release,
4458         .read = simple_attr_read,
4459         .write = simple_attr_write,
4460         .llseek = no_llseek,
4461 };
4462
4463 static int vm_stat_get(void *_offset, u64 *val)
4464 {
4465         unsigned offset = (long)_offset;
4466         struct kvm *kvm;
4467         u64 tmp_val;
4468
4469         *val = 0;
4470         mutex_lock(&kvm_lock);
4471         list_for_each_entry(kvm, &vm_list, vm_list) {
4472                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4473                 *val += tmp_val;
4474         }
4475         mutex_unlock(&kvm_lock);
4476         return 0;
4477 }
4478
4479 static int vm_stat_clear(void *_offset, u64 val)
4480 {
4481         unsigned offset = (long)_offset;
4482         struct kvm *kvm;
4483
4484         if (val)
4485                 return -EINVAL;
4486
4487         mutex_lock(&kvm_lock);
4488         list_for_each_entry(kvm, &vm_list, vm_list) {
4489                 kvm_clear_stat_per_vm(kvm, offset);
4490         }
4491         mutex_unlock(&kvm_lock);
4492
4493         return 0;
4494 }
4495
4496 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4497
4498 static int vcpu_stat_get(void *_offset, u64 *val)
4499 {
4500         unsigned offset = (long)_offset;
4501         struct kvm *kvm;
4502         u64 tmp_val;
4503
4504         *val = 0;
4505         mutex_lock(&kvm_lock);
4506         list_for_each_entry(kvm, &vm_list, vm_list) {
4507                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4508                 *val += tmp_val;
4509         }
4510         mutex_unlock(&kvm_lock);
4511         return 0;
4512 }
4513
4514 static int vcpu_stat_clear(void *_offset, u64 val)
4515 {
4516         unsigned offset = (long)_offset;
4517         struct kvm *kvm;
4518
4519         if (val)
4520                 return -EINVAL;
4521
4522         mutex_lock(&kvm_lock);
4523         list_for_each_entry(kvm, &vm_list, vm_list) {
4524                 kvm_clear_stat_per_vcpu(kvm, offset);
4525         }
4526         mutex_unlock(&kvm_lock);
4527
4528         return 0;
4529 }
4530
4531 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4532                         "%llu\n");
4533
4534 static const struct file_operations *stat_fops[] = {
4535         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4536         [KVM_STAT_VM]   = &vm_stat_fops,
4537 };
4538
4539 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4540 {
4541         struct kobj_uevent_env *env;
4542         unsigned long long created, active;
4543
4544         if (!kvm_dev.this_device || !kvm)
4545                 return;
4546
4547         mutex_lock(&kvm_lock);
4548         if (type == KVM_EVENT_CREATE_VM) {
4549                 kvm_createvm_count++;
4550                 kvm_active_vms++;
4551         } else if (type == KVM_EVENT_DESTROY_VM) {
4552                 kvm_active_vms--;
4553         }
4554         created = kvm_createvm_count;
4555         active = kvm_active_vms;
4556         mutex_unlock(&kvm_lock);
4557
4558         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4559         if (!env)
4560                 return;
4561
4562         add_uevent_var(env, "CREATED=%llu", created);
4563         add_uevent_var(env, "COUNT=%llu", active);
4564
4565         if (type == KVM_EVENT_CREATE_VM) {
4566                 add_uevent_var(env, "EVENT=create");
4567                 kvm->userspace_pid = task_pid_nr(current);
4568         } else if (type == KVM_EVENT_DESTROY_VM) {
4569                 add_uevent_var(env, "EVENT=destroy");
4570         }
4571         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4572
4573         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4574                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4575
4576                 if (p) {
4577                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4578                         if (!IS_ERR(tmp))
4579                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4580                         kfree(p);
4581                 }
4582         }
4583         /* no need for checks, since we are adding at most only 5 keys */
4584         env->envp[env->envp_idx++] = NULL;
4585         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4586         kfree(env);
4587 }
4588
4589 static void kvm_init_debug(void)
4590 {
4591         struct kvm_stats_debugfs_item *p;
4592
4593         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4594
4595         kvm_debugfs_num_entries = 0;
4596         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4597                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4598                                     kvm_debugfs_dir, (void *)(long)p->offset,
4599                                     stat_fops[p->kind]);
4600         }
4601 }
4602
4603 static int kvm_suspend(void)
4604 {
4605         if (kvm_usage_count)
4606                 hardware_disable_nolock(NULL);
4607         return 0;
4608 }
4609
4610 static void kvm_resume(void)
4611 {
4612         if (kvm_usage_count) {
4613 #ifdef CONFIG_LOCKDEP
4614                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4615 #endif
4616                 hardware_enable_nolock(NULL);
4617         }
4618 }
4619
4620 static struct syscore_ops kvm_syscore_ops = {
4621         .suspend = kvm_suspend,
4622         .resume = kvm_resume,
4623 };
4624
4625 static inline
4626 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4627 {
4628         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4629 }
4630
4631 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4632 {
4633         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4634
4635         WRITE_ONCE(vcpu->preempted, false);
4636         WRITE_ONCE(vcpu->ready, false);
4637
4638         __this_cpu_write(kvm_running_vcpu, vcpu);
4639         kvm_arch_sched_in(vcpu, cpu);
4640         kvm_arch_vcpu_load(vcpu, cpu);
4641 }
4642
4643 static void kvm_sched_out(struct preempt_notifier *pn,
4644                           struct task_struct *next)
4645 {
4646         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4647
4648         if (current->state == TASK_RUNNING) {
4649                 WRITE_ONCE(vcpu->preempted, true);
4650                 WRITE_ONCE(vcpu->ready, true);
4651         }
4652         kvm_arch_vcpu_put(vcpu);
4653         __this_cpu_write(kvm_running_vcpu, NULL);
4654 }
4655
4656 /**
4657  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4658  *
4659  * We can disable preemption locally around accessing the per-CPU variable,
4660  * and use the resolved vcpu pointer after enabling preemption again,
4661  * because even if the current thread is migrated to another CPU, reading
4662  * the per-CPU value later will give us the same value as we update the
4663  * per-CPU variable in the preempt notifier handlers.
4664  */
4665 struct kvm_vcpu *kvm_get_running_vcpu(void)
4666 {
4667         struct kvm_vcpu *vcpu;
4668
4669         preempt_disable();
4670         vcpu = __this_cpu_read(kvm_running_vcpu);
4671         preempt_enable();
4672
4673         return vcpu;
4674 }
4675 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4676
4677 /**
4678  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4679  */
4680 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4681 {
4682         return &kvm_running_vcpu;
4683 }
4684
4685 struct kvm_cpu_compat_check {
4686         void *opaque;
4687         int *ret;
4688 };
4689
4690 static void check_processor_compat(void *data)
4691 {
4692         struct kvm_cpu_compat_check *c = data;
4693
4694         *c->ret = kvm_arch_check_processor_compat(c->opaque);
4695 }
4696
4697 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4698                   struct module *module)
4699 {
4700         struct kvm_cpu_compat_check c;
4701         int r;
4702         int cpu;
4703
4704         r = kvm_arch_init(opaque);
4705         if (r)
4706                 goto out_fail;
4707
4708         /*
4709          * kvm_arch_init makes sure there's at most one caller
4710          * for architectures that support multiple implementations,
4711          * like intel and amd on x86.
4712          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4713          * conflicts in case kvm is already setup for another implementation.
4714          */
4715         r = kvm_irqfd_init();
4716         if (r)
4717                 goto out_irqfd;
4718
4719         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4720                 r = -ENOMEM;
4721                 goto out_free_0;
4722         }
4723
4724         r = kvm_arch_hardware_setup(opaque);
4725         if (r < 0)
4726                 goto out_free_1;
4727
4728         c.ret = &r;
4729         c.opaque = opaque;
4730         for_each_online_cpu(cpu) {
4731                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4732                 if (r < 0)
4733                         goto out_free_2;
4734         }
4735
4736         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4737                                       kvm_starting_cpu, kvm_dying_cpu);
4738         if (r)
4739                 goto out_free_2;
4740         register_reboot_notifier(&kvm_reboot_notifier);
4741
4742         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4743         if (!vcpu_align)
4744                 vcpu_align = __alignof__(struct kvm_vcpu);
4745         kvm_vcpu_cache =
4746                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4747                                            SLAB_ACCOUNT,
4748                                            offsetof(struct kvm_vcpu, arch),
4749                                            sizeof_field(struct kvm_vcpu, arch),
4750                                            NULL);
4751         if (!kvm_vcpu_cache) {
4752                 r = -ENOMEM;
4753                 goto out_free_3;
4754         }
4755
4756         r = kvm_async_pf_init();
4757         if (r)
4758                 goto out_free;
4759
4760         kvm_chardev_ops.owner = module;
4761         kvm_vm_fops.owner = module;
4762         kvm_vcpu_fops.owner = module;
4763
4764         r = misc_register(&kvm_dev);
4765         if (r) {
4766                 pr_err("kvm: misc device register failed\n");
4767                 goto out_unreg;
4768         }
4769
4770         register_syscore_ops(&kvm_syscore_ops);
4771
4772         kvm_preempt_ops.sched_in = kvm_sched_in;
4773         kvm_preempt_ops.sched_out = kvm_sched_out;
4774
4775         kvm_init_debug();
4776
4777         r = kvm_vfio_ops_init();
4778         WARN_ON(r);
4779
4780         return 0;
4781
4782 out_unreg:
4783         kvm_async_pf_deinit();
4784 out_free:
4785         kmem_cache_destroy(kvm_vcpu_cache);
4786 out_free_3:
4787         unregister_reboot_notifier(&kvm_reboot_notifier);
4788         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4789 out_free_2:
4790         kvm_arch_hardware_unsetup();
4791 out_free_1:
4792         free_cpumask_var(cpus_hardware_enabled);
4793 out_free_0:
4794         kvm_irqfd_exit();
4795 out_irqfd:
4796         kvm_arch_exit();
4797 out_fail:
4798         return r;
4799 }
4800 EXPORT_SYMBOL_GPL(kvm_init);
4801
4802 void kvm_exit(void)
4803 {
4804         debugfs_remove_recursive(kvm_debugfs_dir);
4805         misc_deregister(&kvm_dev);
4806         kmem_cache_destroy(kvm_vcpu_cache);
4807         kvm_async_pf_deinit();
4808         unregister_syscore_ops(&kvm_syscore_ops);
4809         unregister_reboot_notifier(&kvm_reboot_notifier);
4810         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4811         on_each_cpu(hardware_disable_nolock, NULL, 1);
4812         kvm_arch_hardware_unsetup();
4813         kvm_arch_exit();
4814         kvm_irqfd_exit();
4815         free_cpumask_var(cpus_hardware_enabled);
4816         kvm_vfio_ops_exit();
4817 }
4818 EXPORT_SYMBOL_GPL(kvm_exit);
4819
4820 struct kvm_vm_worker_thread_context {
4821         struct kvm *kvm;
4822         struct task_struct *parent;
4823         struct completion init_done;
4824         kvm_vm_thread_fn_t thread_fn;
4825         uintptr_t data;
4826         int err;
4827 };
4828
4829 static int kvm_vm_worker_thread(void *context)
4830 {
4831         /*
4832          * The init_context is allocated on the stack of the parent thread, so
4833          * we have to locally copy anything that is needed beyond initialization
4834          */
4835         struct kvm_vm_worker_thread_context *init_context = context;
4836         struct kvm *kvm = init_context->kvm;
4837         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4838         uintptr_t data = init_context->data;
4839         int err;
4840
4841         err = kthread_park(current);
4842         /* kthread_park(current) is never supposed to return an error */
4843         WARN_ON(err != 0);
4844         if (err)
4845                 goto init_complete;
4846
4847         err = cgroup_attach_task_all(init_context->parent, current);
4848         if (err) {
4849                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4850                         __func__, err);
4851                 goto init_complete;
4852         }
4853
4854         set_user_nice(current, task_nice(init_context->parent));
4855
4856 init_complete:
4857         init_context->err = err;
4858         complete(&init_context->init_done);
4859         init_context = NULL;
4860
4861         if (err)
4862                 return err;
4863
4864         /* Wait to be woken up by the spawner before proceeding. */
4865         kthread_parkme();
4866
4867         if (!kthread_should_stop())
4868                 err = thread_fn(kvm, data);
4869
4870         return err;
4871 }
4872
4873 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4874                                 uintptr_t data, const char *name,
4875                                 struct task_struct **thread_ptr)
4876 {
4877         struct kvm_vm_worker_thread_context init_context = {};
4878         struct task_struct *thread;
4879
4880         *thread_ptr = NULL;
4881         init_context.kvm = kvm;
4882         init_context.parent = current;
4883         init_context.thread_fn = thread_fn;
4884         init_context.data = data;
4885         init_completion(&init_context.init_done);
4886
4887         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4888                              "%s-%d", name, task_pid_nr(current));
4889         if (IS_ERR(thread))
4890                 return PTR_ERR(thread);
4891
4892         /* kthread_run is never supposed to return NULL */
4893         WARN_ON(thread == NULL);
4894
4895         wait_for_completion(&init_context.init_done);
4896
4897         if (!init_context.err)
4898                 *thread_ptr = thread;
4899
4900         return init_context.err;
4901 }