Merge branch 'nvme-5.2-rc2' of git://git.infradead.org/nvme into for-linus
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 #include <linux/io.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* The start value to grow halt_poll_ns from */
85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
86 module_param(halt_poll_ns_grow_start, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
88
89 /* Default resets per-vcpu halt_poll_ns . */
90 unsigned int halt_poll_ns_shrink;
91 module_param(halt_poll_ns_shrink, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
93
94 /*
95  * Ordering of locks:
96  *
97  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
98  */
99
100 DEFINE_SPINLOCK(kvm_lock);
101 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
102 LIST_HEAD(vm_list);
103
104 static cpumask_var_t cpus_hardware_enabled;
105 static int kvm_usage_count;
106 static atomic_t hardware_enable_failed;
107
108 struct kmem_cache *kvm_vcpu_cache;
109 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
110
111 static __read_mostly struct preempt_ops kvm_preempt_ops;
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static int kvm_debugfs_num_entries;
117 static const struct file_operations *stat_fops_per_vm[];
118
119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120                            unsigned long arg);
121 #ifdef CONFIG_KVM_COMPAT
122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123                                   unsigned long arg);
124 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
125 #else
126 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
127                                 unsigned long arg) { return -EINVAL; }
128 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
129 #endif
130 static int hardware_enable_all(void);
131 static void hardware_disable_all(void);
132
133 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
134
135 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
136
137 __visible bool kvm_rebooting;
138 EXPORT_SYMBOL_GPL(kvm_rebooting);
139
140 static bool largepages_enabled = true;
141
142 #define KVM_EVENT_CREATE_VM 0
143 #define KVM_EVENT_DESTROY_VM 1
144 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
145 static unsigned long long kvm_createvm_count;
146 static unsigned long long kvm_active_vms;
147
148 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
149                 unsigned long start, unsigned long end, bool blockable)
150 {
151         return 0;
152 }
153
154 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
155 {
156         if (pfn_valid(pfn))
157                 return PageReserved(pfn_to_page(pfn));
158
159         return true;
160 }
161
162 /*
163  * Switches to specified vcpu, until a matching vcpu_put()
164  */
165 void vcpu_load(struct kvm_vcpu *vcpu)
166 {
167         int cpu = get_cpu();
168         preempt_notifier_register(&vcpu->preempt_notifier);
169         kvm_arch_vcpu_load(vcpu, cpu);
170         put_cpu();
171 }
172 EXPORT_SYMBOL_GPL(vcpu_load);
173
174 void vcpu_put(struct kvm_vcpu *vcpu)
175 {
176         preempt_disable();
177         kvm_arch_vcpu_put(vcpu);
178         preempt_notifier_unregister(&vcpu->preempt_notifier);
179         preempt_enable();
180 }
181 EXPORT_SYMBOL_GPL(vcpu_put);
182
183 /* TODO: merge with kvm_arch_vcpu_should_kick */
184 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
185 {
186         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
187
188         /*
189          * We need to wait for the VCPU to reenable interrupts and get out of
190          * READING_SHADOW_PAGE_TABLES mode.
191          */
192         if (req & KVM_REQUEST_WAIT)
193                 return mode != OUTSIDE_GUEST_MODE;
194
195         /*
196          * Need to kick a running VCPU, but otherwise there is nothing to do.
197          */
198         return mode == IN_GUEST_MODE;
199 }
200
201 static void ack_flush(void *_completed)
202 {
203 }
204
205 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
206 {
207         if (unlikely(!cpus))
208                 cpus = cpu_online_mask;
209
210         if (cpumask_empty(cpus))
211                 return false;
212
213         smp_call_function_many(cpus, ack_flush, NULL, wait);
214         return true;
215 }
216
217 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
218                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
219 {
220         int i, cpu, me;
221         struct kvm_vcpu *vcpu;
222         bool called;
223
224         me = get_cpu();
225
226         kvm_for_each_vcpu(i, vcpu, kvm) {
227                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
228                         continue;
229
230                 kvm_make_request(req, vcpu);
231                 cpu = vcpu->cpu;
232
233                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
234                         continue;
235
236                 if (tmp != NULL && cpu != -1 && cpu != me &&
237                     kvm_request_needs_ipi(vcpu, req))
238                         __cpumask_set_cpu(cpu, tmp);
239         }
240
241         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
242         put_cpu();
243
244         return called;
245 }
246
247 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
248 {
249         cpumask_var_t cpus;
250         bool called;
251
252         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
253
254         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
255
256         free_cpumask_var(cpus);
257         return called;
258 }
259
260 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
261 void kvm_flush_remote_tlbs(struct kvm *kvm)
262 {
263         /*
264          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
265          * kvm_make_all_cpus_request.
266          */
267         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
268
269         /*
270          * We want to publish modifications to the page tables before reading
271          * mode. Pairs with a memory barrier in arch-specific code.
272          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
273          * and smp_mb in walk_shadow_page_lockless_begin/end.
274          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
275          *
276          * There is already an smp_mb__after_atomic() before
277          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
278          * barrier here.
279          */
280         if (!kvm_arch_flush_remote_tlb(kvm)
281             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
282                 ++kvm->stat.remote_tlb_flush;
283         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
284 }
285 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
286 #endif
287
288 void kvm_reload_remote_mmus(struct kvm *kvm)
289 {
290         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
291 }
292
293 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
294 {
295         struct page *page;
296         int r;
297
298         mutex_init(&vcpu->mutex);
299         vcpu->cpu = -1;
300         vcpu->kvm = kvm;
301         vcpu->vcpu_id = id;
302         vcpu->pid = NULL;
303         init_swait_queue_head(&vcpu->wq);
304         kvm_async_pf_vcpu_init(vcpu);
305
306         vcpu->pre_pcpu = -1;
307         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
308
309         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
310         if (!page) {
311                 r = -ENOMEM;
312                 goto fail;
313         }
314         vcpu->run = page_address(page);
315
316         kvm_vcpu_set_in_spin_loop(vcpu, false);
317         kvm_vcpu_set_dy_eligible(vcpu, false);
318         vcpu->preempted = false;
319
320         r = kvm_arch_vcpu_init(vcpu);
321         if (r < 0)
322                 goto fail_free_run;
323         return 0;
324
325 fail_free_run:
326         free_page((unsigned long)vcpu->run);
327 fail:
328         return r;
329 }
330 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
331
332 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
333 {
334         /*
335          * no need for rcu_read_lock as VCPU_RUN is the only place that
336          * will change the vcpu->pid pointer and on uninit all file
337          * descriptors are already gone.
338          */
339         put_pid(rcu_dereference_protected(vcpu->pid, 1));
340         kvm_arch_vcpu_uninit(vcpu);
341         free_page((unsigned long)vcpu->run);
342 }
343 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
344
345 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
346 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
347 {
348         return container_of(mn, struct kvm, mmu_notifier);
349 }
350
351 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
352                                         struct mm_struct *mm,
353                                         unsigned long address,
354                                         pte_t pte)
355 {
356         struct kvm *kvm = mmu_notifier_to_kvm(mn);
357         int idx;
358
359         idx = srcu_read_lock(&kvm->srcu);
360         spin_lock(&kvm->mmu_lock);
361         kvm->mmu_notifier_seq++;
362
363         if (kvm_set_spte_hva(kvm, address, pte))
364                 kvm_flush_remote_tlbs(kvm);
365
366         spin_unlock(&kvm->mmu_lock);
367         srcu_read_unlock(&kvm->srcu, idx);
368 }
369
370 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
371                                         const struct mmu_notifier_range *range)
372 {
373         struct kvm *kvm = mmu_notifier_to_kvm(mn);
374         int need_tlb_flush = 0, idx;
375         int ret;
376
377         idx = srcu_read_lock(&kvm->srcu);
378         spin_lock(&kvm->mmu_lock);
379         /*
380          * The count increase must become visible at unlock time as no
381          * spte can be established without taking the mmu_lock and
382          * count is also read inside the mmu_lock critical section.
383          */
384         kvm->mmu_notifier_count++;
385         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
386         need_tlb_flush |= kvm->tlbs_dirty;
387         /* we've to flush the tlb before the pages can be freed */
388         if (need_tlb_flush)
389                 kvm_flush_remote_tlbs(kvm);
390
391         spin_unlock(&kvm->mmu_lock);
392
393         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
394                                         range->end,
395                                         mmu_notifier_range_blockable(range));
396
397         srcu_read_unlock(&kvm->srcu, idx);
398
399         return ret;
400 }
401
402 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
403                                         const struct mmu_notifier_range *range)
404 {
405         struct kvm *kvm = mmu_notifier_to_kvm(mn);
406
407         spin_lock(&kvm->mmu_lock);
408         /*
409          * This sequence increase will notify the kvm page fault that
410          * the page that is going to be mapped in the spte could have
411          * been freed.
412          */
413         kvm->mmu_notifier_seq++;
414         smp_wmb();
415         /*
416          * The above sequence increase must be visible before the
417          * below count decrease, which is ensured by the smp_wmb above
418          * in conjunction with the smp_rmb in mmu_notifier_retry().
419          */
420         kvm->mmu_notifier_count--;
421         spin_unlock(&kvm->mmu_lock);
422
423         BUG_ON(kvm->mmu_notifier_count < 0);
424 }
425
426 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
427                                               struct mm_struct *mm,
428                                               unsigned long start,
429                                               unsigned long end)
430 {
431         struct kvm *kvm = mmu_notifier_to_kvm(mn);
432         int young, idx;
433
434         idx = srcu_read_lock(&kvm->srcu);
435         spin_lock(&kvm->mmu_lock);
436
437         young = kvm_age_hva(kvm, start, end);
438         if (young)
439                 kvm_flush_remote_tlbs(kvm);
440
441         spin_unlock(&kvm->mmu_lock);
442         srcu_read_unlock(&kvm->srcu, idx);
443
444         return young;
445 }
446
447 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
448                                         struct mm_struct *mm,
449                                         unsigned long start,
450                                         unsigned long end)
451 {
452         struct kvm *kvm = mmu_notifier_to_kvm(mn);
453         int young, idx;
454
455         idx = srcu_read_lock(&kvm->srcu);
456         spin_lock(&kvm->mmu_lock);
457         /*
458          * Even though we do not flush TLB, this will still adversely
459          * affect performance on pre-Haswell Intel EPT, where there is
460          * no EPT Access Bit to clear so that we have to tear down EPT
461          * tables instead. If we find this unacceptable, we can always
462          * add a parameter to kvm_age_hva so that it effectively doesn't
463          * do anything on clear_young.
464          *
465          * Also note that currently we never issue secondary TLB flushes
466          * from clear_young, leaving this job up to the regular system
467          * cadence. If we find this inaccurate, we might come up with a
468          * more sophisticated heuristic later.
469          */
470         young = kvm_age_hva(kvm, start, end);
471         spin_unlock(&kvm->mmu_lock);
472         srcu_read_unlock(&kvm->srcu, idx);
473
474         return young;
475 }
476
477 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
478                                        struct mm_struct *mm,
479                                        unsigned long address)
480 {
481         struct kvm *kvm = mmu_notifier_to_kvm(mn);
482         int young, idx;
483
484         idx = srcu_read_lock(&kvm->srcu);
485         spin_lock(&kvm->mmu_lock);
486         young = kvm_test_age_hva(kvm, address);
487         spin_unlock(&kvm->mmu_lock);
488         srcu_read_unlock(&kvm->srcu, idx);
489
490         return young;
491 }
492
493 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
494                                      struct mm_struct *mm)
495 {
496         struct kvm *kvm = mmu_notifier_to_kvm(mn);
497         int idx;
498
499         idx = srcu_read_lock(&kvm->srcu);
500         kvm_arch_flush_shadow_all(kvm);
501         srcu_read_unlock(&kvm->srcu, idx);
502 }
503
504 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
505         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
506         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
507         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
508         .clear_young            = kvm_mmu_notifier_clear_young,
509         .test_young             = kvm_mmu_notifier_test_young,
510         .change_pte             = kvm_mmu_notifier_change_pte,
511         .release                = kvm_mmu_notifier_release,
512 };
513
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
515 {
516         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
517         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
518 }
519
520 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
521
522 static int kvm_init_mmu_notifier(struct kvm *kvm)
523 {
524         return 0;
525 }
526
527 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
528
529 static struct kvm_memslots *kvm_alloc_memslots(void)
530 {
531         int i;
532         struct kvm_memslots *slots;
533
534         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
535         if (!slots)
536                 return NULL;
537
538         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
539                 slots->id_to_index[i] = slots->memslots[i].id = i;
540
541         return slots;
542 }
543
544 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
545 {
546         if (!memslot->dirty_bitmap)
547                 return;
548
549         kvfree(memslot->dirty_bitmap);
550         memslot->dirty_bitmap = NULL;
551 }
552
553 /*
554  * Free any memory in @free but not in @dont.
555  */
556 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
557                               struct kvm_memory_slot *dont)
558 {
559         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
560                 kvm_destroy_dirty_bitmap(free);
561
562         kvm_arch_free_memslot(kvm, free, dont);
563
564         free->npages = 0;
565 }
566
567 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
568 {
569         struct kvm_memory_slot *memslot;
570
571         if (!slots)
572                 return;
573
574         kvm_for_each_memslot(memslot, slots)
575                 kvm_free_memslot(kvm, memslot, NULL);
576
577         kvfree(slots);
578 }
579
580 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
581 {
582         int i;
583
584         if (!kvm->debugfs_dentry)
585                 return;
586
587         debugfs_remove_recursive(kvm->debugfs_dentry);
588
589         if (kvm->debugfs_stat_data) {
590                 for (i = 0; i < kvm_debugfs_num_entries; i++)
591                         kfree(kvm->debugfs_stat_data[i]);
592                 kfree(kvm->debugfs_stat_data);
593         }
594 }
595
596 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
597 {
598         char dir_name[ITOA_MAX_LEN * 2];
599         struct kvm_stat_data *stat_data;
600         struct kvm_stats_debugfs_item *p;
601
602         if (!debugfs_initialized())
603                 return 0;
604
605         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
606         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
607
608         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
609                                          sizeof(*kvm->debugfs_stat_data),
610                                          GFP_KERNEL_ACCOUNT);
611         if (!kvm->debugfs_stat_data)
612                 return -ENOMEM;
613
614         for (p = debugfs_entries; p->name; p++) {
615                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
616                 if (!stat_data)
617                         return -ENOMEM;
618
619                 stat_data->kvm = kvm;
620                 stat_data->offset = p->offset;
621                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
622                 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
623                                     stat_data, stat_fops_per_vm[p->kind]);
624         }
625         return 0;
626 }
627
628 static struct kvm *kvm_create_vm(unsigned long type)
629 {
630         int r, i;
631         struct kvm *kvm = kvm_arch_alloc_vm();
632
633         if (!kvm)
634                 return ERR_PTR(-ENOMEM);
635
636         spin_lock_init(&kvm->mmu_lock);
637         mmgrab(current->mm);
638         kvm->mm = current->mm;
639         kvm_eventfd_init(kvm);
640         mutex_init(&kvm->lock);
641         mutex_init(&kvm->irq_lock);
642         mutex_init(&kvm->slots_lock);
643         refcount_set(&kvm->users_count, 1);
644         INIT_LIST_HEAD(&kvm->devices);
645
646         r = kvm_arch_init_vm(kvm, type);
647         if (r)
648                 goto out_err_no_disable;
649
650         r = hardware_enable_all();
651         if (r)
652                 goto out_err_no_disable;
653
654 #ifdef CONFIG_HAVE_KVM_IRQFD
655         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
656 #endif
657
658         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
659
660         r = -ENOMEM;
661         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
662                 struct kvm_memslots *slots = kvm_alloc_memslots();
663                 if (!slots)
664                         goto out_err_no_srcu;
665                 /* Generations must be different for each address space. */
666                 slots->generation = i;
667                 rcu_assign_pointer(kvm->memslots[i], slots);
668         }
669
670         if (init_srcu_struct(&kvm->srcu))
671                 goto out_err_no_srcu;
672         if (init_srcu_struct(&kvm->irq_srcu))
673                 goto out_err_no_irq_srcu;
674         for (i = 0; i < KVM_NR_BUSES; i++) {
675                 rcu_assign_pointer(kvm->buses[i],
676                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
677                 if (!kvm->buses[i])
678                         goto out_err;
679         }
680
681         r = kvm_init_mmu_notifier(kvm);
682         if (r)
683                 goto out_err;
684
685         spin_lock(&kvm_lock);
686         list_add(&kvm->vm_list, &vm_list);
687         spin_unlock(&kvm_lock);
688
689         preempt_notifier_inc();
690
691         return kvm;
692
693 out_err:
694         cleanup_srcu_struct(&kvm->irq_srcu);
695 out_err_no_irq_srcu:
696         cleanup_srcu_struct(&kvm->srcu);
697 out_err_no_srcu:
698         hardware_disable_all();
699 out_err_no_disable:
700         refcount_set(&kvm->users_count, 0);
701         for (i = 0; i < KVM_NR_BUSES; i++)
702                 kfree(kvm_get_bus(kvm, i));
703         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
704                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
705         kvm_arch_free_vm(kvm);
706         mmdrop(current->mm);
707         return ERR_PTR(r);
708 }
709
710 static void kvm_destroy_devices(struct kvm *kvm)
711 {
712         struct kvm_device *dev, *tmp;
713
714         /*
715          * We do not need to take the kvm->lock here, because nobody else
716          * has a reference to the struct kvm at this point and therefore
717          * cannot access the devices list anyhow.
718          */
719         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
720                 list_del(&dev->vm_node);
721                 dev->ops->destroy(dev);
722         }
723 }
724
725 static void kvm_destroy_vm(struct kvm *kvm)
726 {
727         int i;
728         struct mm_struct *mm = kvm->mm;
729
730         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
731         kvm_destroy_vm_debugfs(kvm);
732         kvm_arch_sync_events(kvm);
733         spin_lock(&kvm_lock);
734         list_del(&kvm->vm_list);
735         spin_unlock(&kvm_lock);
736         kvm_free_irq_routing(kvm);
737         for (i = 0; i < KVM_NR_BUSES; i++) {
738                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
739
740                 if (bus)
741                         kvm_io_bus_destroy(bus);
742                 kvm->buses[i] = NULL;
743         }
744         kvm_coalesced_mmio_free(kvm);
745 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
746         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
747 #else
748         kvm_arch_flush_shadow_all(kvm);
749 #endif
750         kvm_arch_destroy_vm(kvm);
751         kvm_destroy_devices(kvm);
752         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
753                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
754         cleanup_srcu_struct(&kvm->irq_srcu);
755         cleanup_srcu_struct(&kvm->srcu);
756         kvm_arch_free_vm(kvm);
757         preempt_notifier_dec();
758         hardware_disable_all();
759         mmdrop(mm);
760 }
761
762 void kvm_get_kvm(struct kvm *kvm)
763 {
764         refcount_inc(&kvm->users_count);
765 }
766 EXPORT_SYMBOL_GPL(kvm_get_kvm);
767
768 void kvm_put_kvm(struct kvm *kvm)
769 {
770         if (refcount_dec_and_test(&kvm->users_count))
771                 kvm_destroy_vm(kvm);
772 }
773 EXPORT_SYMBOL_GPL(kvm_put_kvm);
774
775
776 static int kvm_vm_release(struct inode *inode, struct file *filp)
777 {
778         struct kvm *kvm = filp->private_data;
779
780         kvm_irqfd_release(kvm);
781
782         kvm_put_kvm(kvm);
783         return 0;
784 }
785
786 /*
787  * Allocation size is twice as large as the actual dirty bitmap size.
788  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
789  */
790 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
791 {
792         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
793
794         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
795         if (!memslot->dirty_bitmap)
796                 return -ENOMEM;
797
798         return 0;
799 }
800
801 /*
802  * Insert memslot and re-sort memslots based on their GFN,
803  * so binary search could be used to lookup GFN.
804  * Sorting algorithm takes advantage of having initially
805  * sorted array and known changed memslot position.
806  */
807 static void update_memslots(struct kvm_memslots *slots,
808                             struct kvm_memory_slot *new,
809                             enum kvm_mr_change change)
810 {
811         int id = new->id;
812         int i = slots->id_to_index[id];
813         struct kvm_memory_slot *mslots = slots->memslots;
814
815         WARN_ON(mslots[i].id != id);
816         switch (change) {
817         case KVM_MR_CREATE:
818                 slots->used_slots++;
819                 WARN_ON(mslots[i].npages || !new->npages);
820                 break;
821         case KVM_MR_DELETE:
822                 slots->used_slots--;
823                 WARN_ON(new->npages || !mslots[i].npages);
824                 break;
825         default:
826                 break;
827         }
828
829         while (i < KVM_MEM_SLOTS_NUM - 1 &&
830                new->base_gfn <= mslots[i + 1].base_gfn) {
831                 if (!mslots[i + 1].npages)
832                         break;
833                 mslots[i] = mslots[i + 1];
834                 slots->id_to_index[mslots[i].id] = i;
835                 i++;
836         }
837
838         /*
839          * The ">=" is needed when creating a slot with base_gfn == 0,
840          * so that it moves before all those with base_gfn == npages == 0.
841          *
842          * On the other hand, if new->npages is zero, the above loop has
843          * already left i pointing to the beginning of the empty part of
844          * mslots, and the ">=" would move the hole backwards in this
845          * case---which is wrong.  So skip the loop when deleting a slot.
846          */
847         if (new->npages) {
848                 while (i > 0 &&
849                        new->base_gfn >= mslots[i - 1].base_gfn) {
850                         mslots[i] = mslots[i - 1];
851                         slots->id_to_index[mslots[i].id] = i;
852                         i--;
853                 }
854         } else
855                 WARN_ON_ONCE(i != slots->used_slots);
856
857         mslots[i] = *new;
858         slots->id_to_index[mslots[i].id] = i;
859 }
860
861 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
862 {
863         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
864
865 #ifdef __KVM_HAVE_READONLY_MEM
866         valid_flags |= KVM_MEM_READONLY;
867 #endif
868
869         if (mem->flags & ~valid_flags)
870                 return -EINVAL;
871
872         return 0;
873 }
874
875 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
876                 int as_id, struct kvm_memslots *slots)
877 {
878         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
879         u64 gen = old_memslots->generation;
880
881         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
882         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
883
884         rcu_assign_pointer(kvm->memslots[as_id], slots);
885         synchronize_srcu_expedited(&kvm->srcu);
886
887         /*
888          * Increment the new memslot generation a second time, dropping the
889          * update in-progress flag and incrementing then generation based on
890          * the number of address spaces.  This provides a unique and easily
891          * identifiable generation number while the memslots are in flux.
892          */
893         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
894
895         /*
896          * Generations must be unique even across address spaces.  We do not need
897          * a global counter for that, instead the generation space is evenly split
898          * across address spaces.  For example, with two address spaces, address
899          * space 0 will use generations 0, 2, 4, ... while address space 1 will
900          * use generations 1, 3, 5, ...
901          */
902         gen += KVM_ADDRESS_SPACE_NUM;
903
904         kvm_arch_memslots_updated(kvm, gen);
905
906         slots->generation = gen;
907
908         return old_memslots;
909 }
910
911 /*
912  * Allocate some memory and give it an address in the guest physical address
913  * space.
914  *
915  * Discontiguous memory is allowed, mostly for framebuffers.
916  *
917  * Must be called holding kvm->slots_lock for write.
918  */
919 int __kvm_set_memory_region(struct kvm *kvm,
920                             const struct kvm_userspace_memory_region *mem)
921 {
922         int r;
923         gfn_t base_gfn;
924         unsigned long npages;
925         struct kvm_memory_slot *slot;
926         struct kvm_memory_slot old, new;
927         struct kvm_memslots *slots = NULL, *old_memslots;
928         int as_id, id;
929         enum kvm_mr_change change;
930
931         r = check_memory_region_flags(mem);
932         if (r)
933                 goto out;
934
935         r = -EINVAL;
936         as_id = mem->slot >> 16;
937         id = (u16)mem->slot;
938
939         /* General sanity checks */
940         if (mem->memory_size & (PAGE_SIZE - 1))
941                 goto out;
942         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
943                 goto out;
944         /* We can read the guest memory with __xxx_user() later on. */
945         if ((id < KVM_USER_MEM_SLOTS) &&
946             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
947              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
948                         mem->memory_size)))
949                 goto out;
950         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
951                 goto out;
952         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
953                 goto out;
954
955         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
956         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
957         npages = mem->memory_size >> PAGE_SHIFT;
958
959         if (npages > KVM_MEM_MAX_NR_PAGES)
960                 goto out;
961
962         new = old = *slot;
963
964         new.id = id;
965         new.base_gfn = base_gfn;
966         new.npages = npages;
967         new.flags = mem->flags;
968
969         if (npages) {
970                 if (!old.npages)
971                         change = KVM_MR_CREATE;
972                 else { /* Modify an existing slot. */
973                         if ((mem->userspace_addr != old.userspace_addr) ||
974                             (npages != old.npages) ||
975                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
976                                 goto out;
977
978                         if (base_gfn != old.base_gfn)
979                                 change = KVM_MR_MOVE;
980                         else if (new.flags != old.flags)
981                                 change = KVM_MR_FLAGS_ONLY;
982                         else { /* Nothing to change. */
983                                 r = 0;
984                                 goto out;
985                         }
986                 }
987         } else {
988                 if (!old.npages)
989                         goto out;
990
991                 change = KVM_MR_DELETE;
992                 new.base_gfn = 0;
993                 new.flags = 0;
994         }
995
996         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
997                 /* Check for overlaps */
998                 r = -EEXIST;
999                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1000                         if (slot->id == id)
1001                                 continue;
1002                         if (!((base_gfn + npages <= slot->base_gfn) ||
1003                               (base_gfn >= slot->base_gfn + slot->npages)))
1004                                 goto out;
1005                 }
1006         }
1007
1008         /* Free page dirty bitmap if unneeded */
1009         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1010                 new.dirty_bitmap = NULL;
1011
1012         r = -ENOMEM;
1013         if (change == KVM_MR_CREATE) {
1014                 new.userspace_addr = mem->userspace_addr;
1015
1016                 if (kvm_arch_create_memslot(kvm, &new, npages))
1017                         goto out_free;
1018         }
1019
1020         /* Allocate page dirty bitmap if needed */
1021         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1022                 if (kvm_create_dirty_bitmap(&new) < 0)
1023                         goto out_free;
1024         }
1025
1026         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1027         if (!slots)
1028                 goto out_free;
1029         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1030
1031         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1032                 slot = id_to_memslot(slots, id);
1033                 slot->flags |= KVM_MEMSLOT_INVALID;
1034
1035                 old_memslots = install_new_memslots(kvm, as_id, slots);
1036
1037                 /* From this point no new shadow pages pointing to a deleted,
1038                  * or moved, memslot will be created.
1039                  *
1040                  * validation of sp->gfn happens in:
1041                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1042                  *      - kvm_is_visible_gfn (mmu_check_roots)
1043                  */
1044                 kvm_arch_flush_shadow_memslot(kvm, slot);
1045
1046                 /*
1047                  * We can re-use the old_memslots from above, the only difference
1048                  * from the currently installed memslots is the invalid flag.  This
1049                  * will get overwritten by update_memslots anyway.
1050                  */
1051                 slots = old_memslots;
1052         }
1053
1054         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1055         if (r)
1056                 goto out_slots;
1057
1058         /* actual memory is freed via old in kvm_free_memslot below */
1059         if (change == KVM_MR_DELETE) {
1060                 new.dirty_bitmap = NULL;
1061                 memset(&new.arch, 0, sizeof(new.arch));
1062         }
1063
1064         update_memslots(slots, &new, change);
1065         old_memslots = install_new_memslots(kvm, as_id, slots);
1066
1067         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1068
1069         kvm_free_memslot(kvm, &old, &new);
1070         kvfree(old_memslots);
1071         return 0;
1072
1073 out_slots:
1074         kvfree(slots);
1075 out_free:
1076         kvm_free_memslot(kvm, &new, &old);
1077 out:
1078         return r;
1079 }
1080 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1081
1082 int kvm_set_memory_region(struct kvm *kvm,
1083                           const struct kvm_userspace_memory_region *mem)
1084 {
1085         int r;
1086
1087         mutex_lock(&kvm->slots_lock);
1088         r = __kvm_set_memory_region(kvm, mem);
1089         mutex_unlock(&kvm->slots_lock);
1090         return r;
1091 }
1092 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1093
1094 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1095                                           struct kvm_userspace_memory_region *mem)
1096 {
1097         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1098                 return -EINVAL;
1099
1100         return kvm_set_memory_region(kvm, mem);
1101 }
1102
1103 int kvm_get_dirty_log(struct kvm *kvm,
1104                         struct kvm_dirty_log *log, int *is_dirty)
1105 {
1106         struct kvm_memslots *slots;
1107         struct kvm_memory_slot *memslot;
1108         int i, as_id, id;
1109         unsigned long n;
1110         unsigned long any = 0;
1111
1112         as_id = log->slot >> 16;
1113         id = (u16)log->slot;
1114         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1115                 return -EINVAL;
1116
1117         slots = __kvm_memslots(kvm, as_id);
1118         memslot = id_to_memslot(slots, id);
1119         if (!memslot->dirty_bitmap)
1120                 return -ENOENT;
1121
1122         n = kvm_dirty_bitmap_bytes(memslot);
1123
1124         for (i = 0; !any && i < n/sizeof(long); ++i)
1125                 any = memslot->dirty_bitmap[i];
1126
1127         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1128                 return -EFAULT;
1129
1130         if (any)
1131                 *is_dirty = 1;
1132         return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1135
1136 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1137 /**
1138  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1139  *      and reenable dirty page tracking for the corresponding pages.
1140  * @kvm:        pointer to kvm instance
1141  * @log:        slot id and address to which we copy the log
1142  * @flush:      true if TLB flush is needed by caller
1143  *
1144  * We need to keep it in mind that VCPU threads can write to the bitmap
1145  * concurrently. So, to avoid losing track of dirty pages we keep the
1146  * following order:
1147  *
1148  *    1. Take a snapshot of the bit and clear it if needed.
1149  *    2. Write protect the corresponding page.
1150  *    3. Copy the snapshot to the userspace.
1151  *    4. Upon return caller flushes TLB's if needed.
1152  *
1153  * Between 2 and 4, the guest may write to the page using the remaining TLB
1154  * entry.  This is not a problem because the page is reported dirty using
1155  * the snapshot taken before and step 4 ensures that writes done after
1156  * exiting to userspace will be logged for the next call.
1157  *
1158  */
1159 int kvm_get_dirty_log_protect(struct kvm *kvm,
1160                         struct kvm_dirty_log *log, bool *flush)
1161 {
1162         struct kvm_memslots *slots;
1163         struct kvm_memory_slot *memslot;
1164         int i, as_id, id;
1165         unsigned long n;
1166         unsigned long *dirty_bitmap;
1167         unsigned long *dirty_bitmap_buffer;
1168
1169         as_id = log->slot >> 16;
1170         id = (u16)log->slot;
1171         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1172                 return -EINVAL;
1173
1174         slots = __kvm_memslots(kvm, as_id);
1175         memslot = id_to_memslot(slots, id);
1176
1177         dirty_bitmap = memslot->dirty_bitmap;
1178         if (!dirty_bitmap)
1179                 return -ENOENT;
1180
1181         n = kvm_dirty_bitmap_bytes(memslot);
1182         *flush = false;
1183         if (kvm->manual_dirty_log_protect) {
1184                 /*
1185                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1186                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1187                  * is some code duplication between this function and
1188                  * kvm_get_dirty_log, but hopefully all architecture
1189                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1190                  * can be eliminated.
1191                  */
1192                 dirty_bitmap_buffer = dirty_bitmap;
1193         } else {
1194                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1195                 memset(dirty_bitmap_buffer, 0, n);
1196
1197                 spin_lock(&kvm->mmu_lock);
1198                 for (i = 0; i < n / sizeof(long); i++) {
1199                         unsigned long mask;
1200                         gfn_t offset;
1201
1202                         if (!dirty_bitmap[i])
1203                                 continue;
1204
1205                         *flush = true;
1206                         mask = xchg(&dirty_bitmap[i], 0);
1207                         dirty_bitmap_buffer[i] = mask;
1208
1209                         offset = i * BITS_PER_LONG;
1210                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1211                                                                 offset, mask);
1212                 }
1213                 spin_unlock(&kvm->mmu_lock);
1214         }
1215
1216         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1217                 return -EFAULT;
1218         return 0;
1219 }
1220 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1221
1222 /**
1223  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1224  *      and reenable dirty page tracking for the corresponding pages.
1225  * @kvm:        pointer to kvm instance
1226  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1227  * @flush:      true if TLB flush is needed by caller
1228  */
1229 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1230                                 struct kvm_clear_dirty_log *log, bool *flush)
1231 {
1232         struct kvm_memslots *slots;
1233         struct kvm_memory_slot *memslot;
1234         int as_id, id;
1235         gfn_t offset;
1236         unsigned long i, n;
1237         unsigned long *dirty_bitmap;
1238         unsigned long *dirty_bitmap_buffer;
1239
1240         as_id = log->slot >> 16;
1241         id = (u16)log->slot;
1242         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1243                 return -EINVAL;
1244
1245         if (log->first_page & 63)
1246                 return -EINVAL;
1247
1248         slots = __kvm_memslots(kvm, as_id);
1249         memslot = id_to_memslot(slots, id);
1250
1251         dirty_bitmap = memslot->dirty_bitmap;
1252         if (!dirty_bitmap)
1253                 return -ENOENT;
1254
1255         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1256
1257         if (log->first_page > memslot->npages ||
1258             log->num_pages > memslot->npages - log->first_page ||
1259             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1260             return -EINVAL;
1261
1262         *flush = false;
1263         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1264         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1265                 return -EFAULT;
1266
1267         spin_lock(&kvm->mmu_lock);
1268         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1269                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1270              i++, offset += BITS_PER_LONG) {
1271                 unsigned long mask = *dirty_bitmap_buffer++;
1272                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1273                 if (!mask)
1274                         continue;
1275
1276                 mask &= atomic_long_fetch_andnot(mask, p);
1277
1278                 /*
1279                  * mask contains the bits that really have been cleared.  This
1280                  * never includes any bits beyond the length of the memslot (if
1281                  * the length is not aligned to 64 pages), therefore it is not
1282                  * a problem if userspace sets them in log->dirty_bitmap.
1283                 */
1284                 if (mask) {
1285                         *flush = true;
1286                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1287                                                                 offset, mask);
1288                 }
1289         }
1290         spin_unlock(&kvm->mmu_lock);
1291
1292         return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1295 #endif
1296
1297 bool kvm_largepages_enabled(void)
1298 {
1299         return largepages_enabled;
1300 }
1301
1302 void kvm_disable_largepages(void)
1303 {
1304         largepages_enabled = false;
1305 }
1306 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1307
1308 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1309 {
1310         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1313
1314 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1315 {
1316         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1317 }
1318
1319 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1320 {
1321         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1322
1323         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1324               memslot->flags & KVM_MEMSLOT_INVALID)
1325                 return false;
1326
1327         return true;
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1330
1331 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1332 {
1333         struct vm_area_struct *vma;
1334         unsigned long addr, size;
1335
1336         size = PAGE_SIZE;
1337
1338         addr = gfn_to_hva(kvm, gfn);
1339         if (kvm_is_error_hva(addr))
1340                 return PAGE_SIZE;
1341
1342         down_read(&current->mm->mmap_sem);
1343         vma = find_vma(current->mm, addr);
1344         if (!vma)
1345                 goto out;
1346
1347         size = vma_kernel_pagesize(vma);
1348
1349 out:
1350         up_read(&current->mm->mmap_sem);
1351
1352         return size;
1353 }
1354
1355 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1356 {
1357         return slot->flags & KVM_MEM_READONLY;
1358 }
1359
1360 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1361                                        gfn_t *nr_pages, bool write)
1362 {
1363         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1364                 return KVM_HVA_ERR_BAD;
1365
1366         if (memslot_is_readonly(slot) && write)
1367                 return KVM_HVA_ERR_RO_BAD;
1368
1369         if (nr_pages)
1370                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1371
1372         return __gfn_to_hva_memslot(slot, gfn);
1373 }
1374
1375 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1376                                      gfn_t *nr_pages)
1377 {
1378         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1379 }
1380
1381 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1382                                         gfn_t gfn)
1383 {
1384         return gfn_to_hva_many(slot, gfn, NULL);
1385 }
1386 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1387
1388 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1389 {
1390         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1391 }
1392 EXPORT_SYMBOL_GPL(gfn_to_hva);
1393
1394 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1395 {
1396         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1397 }
1398 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1399
1400 /*
1401  * Return the hva of a @gfn and the R/W attribute if possible.
1402  *
1403  * @slot: the kvm_memory_slot which contains @gfn
1404  * @gfn: the gfn to be translated
1405  * @writable: used to return the read/write attribute of the @slot if the hva
1406  * is valid and @writable is not NULL
1407  */
1408 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1409                                       gfn_t gfn, bool *writable)
1410 {
1411         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1412
1413         if (!kvm_is_error_hva(hva) && writable)
1414                 *writable = !memslot_is_readonly(slot);
1415
1416         return hva;
1417 }
1418
1419 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1420 {
1421         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1422
1423         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1424 }
1425
1426 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1427 {
1428         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1429
1430         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1431 }
1432
1433 static inline int check_user_page_hwpoison(unsigned long addr)
1434 {
1435         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1436
1437         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1438         return rc == -EHWPOISON;
1439 }
1440
1441 /*
1442  * The fast path to get the writable pfn which will be stored in @pfn,
1443  * true indicates success, otherwise false is returned.  It's also the
1444  * only part that runs if we can are in atomic context.
1445  */
1446 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1447                             bool *writable, kvm_pfn_t *pfn)
1448 {
1449         struct page *page[1];
1450         int npages;
1451
1452         /*
1453          * Fast pin a writable pfn only if it is a write fault request
1454          * or the caller allows to map a writable pfn for a read fault
1455          * request.
1456          */
1457         if (!(write_fault || writable))
1458                 return false;
1459
1460         npages = __get_user_pages_fast(addr, 1, 1, page);
1461         if (npages == 1) {
1462                 *pfn = page_to_pfn(page[0]);
1463
1464                 if (writable)
1465                         *writable = true;
1466                 return true;
1467         }
1468
1469         return false;
1470 }
1471
1472 /*
1473  * The slow path to get the pfn of the specified host virtual address,
1474  * 1 indicates success, -errno is returned if error is detected.
1475  */
1476 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1477                            bool *writable, kvm_pfn_t *pfn)
1478 {
1479         unsigned int flags = FOLL_HWPOISON;
1480         struct page *page;
1481         int npages = 0;
1482
1483         might_sleep();
1484
1485         if (writable)
1486                 *writable = write_fault;
1487
1488         if (write_fault)
1489                 flags |= FOLL_WRITE;
1490         if (async)
1491                 flags |= FOLL_NOWAIT;
1492
1493         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1494         if (npages != 1)
1495                 return npages;
1496
1497         /* map read fault as writable if possible */
1498         if (unlikely(!write_fault) && writable) {
1499                 struct page *wpage;
1500
1501                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1502                         *writable = true;
1503                         put_page(page);
1504                         page = wpage;
1505                 }
1506         }
1507         *pfn = page_to_pfn(page);
1508         return npages;
1509 }
1510
1511 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1512 {
1513         if (unlikely(!(vma->vm_flags & VM_READ)))
1514                 return false;
1515
1516         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1517                 return false;
1518
1519         return true;
1520 }
1521
1522 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1523                                unsigned long addr, bool *async,
1524                                bool write_fault, bool *writable,
1525                                kvm_pfn_t *p_pfn)
1526 {
1527         unsigned long pfn;
1528         int r;
1529
1530         r = follow_pfn(vma, addr, &pfn);
1531         if (r) {
1532                 /*
1533                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1534                  * not call the fault handler, so do it here.
1535                  */
1536                 bool unlocked = false;
1537                 r = fixup_user_fault(current, current->mm, addr,
1538                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1539                                      &unlocked);
1540                 if (unlocked)
1541                         return -EAGAIN;
1542                 if (r)
1543                         return r;
1544
1545                 r = follow_pfn(vma, addr, &pfn);
1546                 if (r)
1547                         return r;
1548
1549         }
1550
1551         if (writable)
1552                 *writable = true;
1553
1554         /*
1555          * Get a reference here because callers of *hva_to_pfn* and
1556          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1557          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1558          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1559          * simply do nothing for reserved pfns.
1560          *
1561          * Whoever called remap_pfn_range is also going to call e.g.
1562          * unmap_mapping_range before the underlying pages are freed,
1563          * causing a call to our MMU notifier.
1564          */ 
1565         kvm_get_pfn(pfn);
1566
1567         *p_pfn = pfn;
1568         return 0;
1569 }
1570
1571 /*
1572  * Pin guest page in memory and return its pfn.
1573  * @addr: host virtual address which maps memory to the guest
1574  * @atomic: whether this function can sleep
1575  * @async: whether this function need to wait IO complete if the
1576  *         host page is not in the memory
1577  * @write_fault: whether we should get a writable host page
1578  * @writable: whether it allows to map a writable host page for !@write_fault
1579  *
1580  * The function will map a writable host page for these two cases:
1581  * 1): @write_fault = true
1582  * 2): @write_fault = false && @writable, @writable will tell the caller
1583  *     whether the mapping is writable.
1584  */
1585 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1586                         bool write_fault, bool *writable)
1587 {
1588         struct vm_area_struct *vma;
1589         kvm_pfn_t pfn = 0;
1590         int npages, r;
1591
1592         /* we can do it either atomically or asynchronously, not both */
1593         BUG_ON(atomic && async);
1594
1595         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1596                 return pfn;
1597
1598         if (atomic)
1599                 return KVM_PFN_ERR_FAULT;
1600
1601         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1602         if (npages == 1)
1603                 return pfn;
1604
1605         down_read(&current->mm->mmap_sem);
1606         if (npages == -EHWPOISON ||
1607               (!async && check_user_page_hwpoison(addr))) {
1608                 pfn = KVM_PFN_ERR_HWPOISON;
1609                 goto exit;
1610         }
1611
1612 retry:
1613         vma = find_vma_intersection(current->mm, addr, addr + 1);
1614
1615         if (vma == NULL)
1616                 pfn = KVM_PFN_ERR_FAULT;
1617         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1618                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1619                 if (r == -EAGAIN)
1620                         goto retry;
1621                 if (r < 0)
1622                         pfn = KVM_PFN_ERR_FAULT;
1623         } else {
1624                 if (async && vma_is_valid(vma, write_fault))
1625                         *async = true;
1626                 pfn = KVM_PFN_ERR_FAULT;
1627         }
1628 exit:
1629         up_read(&current->mm->mmap_sem);
1630         return pfn;
1631 }
1632
1633 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1634                                bool atomic, bool *async, bool write_fault,
1635                                bool *writable)
1636 {
1637         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1638
1639         if (addr == KVM_HVA_ERR_RO_BAD) {
1640                 if (writable)
1641                         *writable = false;
1642                 return KVM_PFN_ERR_RO_FAULT;
1643         }
1644
1645         if (kvm_is_error_hva(addr)) {
1646                 if (writable)
1647                         *writable = false;
1648                 return KVM_PFN_NOSLOT;
1649         }
1650
1651         /* Do not map writable pfn in the readonly memslot. */
1652         if (writable && memslot_is_readonly(slot)) {
1653                 *writable = false;
1654                 writable = NULL;
1655         }
1656
1657         return hva_to_pfn(addr, atomic, async, write_fault,
1658                           writable);
1659 }
1660 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1661
1662 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1663                       bool *writable)
1664 {
1665         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1666                                     write_fault, writable);
1667 }
1668 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1669
1670 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1671 {
1672         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1673 }
1674 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1675
1676 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1677 {
1678         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1679 }
1680 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1681
1682 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1683 {
1684         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1685 }
1686 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1687
1688 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1689 {
1690         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1693
1694 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1695 {
1696         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1697 }
1698 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1699
1700 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1701 {
1702         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1705
1706 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1707                             struct page **pages, int nr_pages)
1708 {
1709         unsigned long addr;
1710         gfn_t entry = 0;
1711
1712         addr = gfn_to_hva_many(slot, gfn, &entry);
1713         if (kvm_is_error_hva(addr))
1714                 return -1;
1715
1716         if (entry < nr_pages)
1717                 return 0;
1718
1719         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1720 }
1721 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1722
1723 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1724 {
1725         if (is_error_noslot_pfn(pfn))
1726                 return KVM_ERR_PTR_BAD_PAGE;
1727
1728         if (kvm_is_reserved_pfn(pfn)) {
1729                 WARN_ON(1);
1730                 return KVM_ERR_PTR_BAD_PAGE;
1731         }
1732
1733         return pfn_to_page(pfn);
1734 }
1735
1736 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1737 {
1738         kvm_pfn_t pfn;
1739
1740         pfn = gfn_to_pfn(kvm, gfn);
1741
1742         return kvm_pfn_to_page(pfn);
1743 }
1744 EXPORT_SYMBOL_GPL(gfn_to_page);
1745
1746 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1747                          struct kvm_host_map *map)
1748 {
1749         kvm_pfn_t pfn;
1750         void *hva = NULL;
1751         struct page *page = KVM_UNMAPPED_PAGE;
1752
1753         if (!map)
1754                 return -EINVAL;
1755
1756         pfn = gfn_to_pfn_memslot(slot, gfn);
1757         if (is_error_noslot_pfn(pfn))
1758                 return -EINVAL;
1759
1760         if (pfn_valid(pfn)) {
1761                 page = pfn_to_page(pfn);
1762                 hva = kmap(page);
1763         } else {
1764                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1765         }
1766
1767         if (!hva)
1768                 return -EFAULT;
1769
1770         map->page = page;
1771         map->hva = hva;
1772         map->pfn = pfn;
1773         map->gfn = gfn;
1774
1775         return 0;
1776 }
1777
1778 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1779 {
1780         return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1783
1784 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1785                     bool dirty)
1786 {
1787         if (!map)
1788                 return;
1789
1790         if (!map->hva)
1791                 return;
1792
1793         if (map->page)
1794                 kunmap(map->page);
1795         else
1796                 memunmap(map->hva);
1797
1798         if (dirty) {
1799                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1800                 kvm_release_pfn_dirty(map->pfn);
1801         } else {
1802                 kvm_release_pfn_clean(map->pfn);
1803         }
1804
1805         map->hva = NULL;
1806         map->page = NULL;
1807 }
1808 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1809
1810 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1811 {
1812         kvm_pfn_t pfn;
1813
1814         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1815
1816         return kvm_pfn_to_page(pfn);
1817 }
1818 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1819
1820 void kvm_release_page_clean(struct page *page)
1821 {
1822         WARN_ON(is_error_page(page));
1823
1824         kvm_release_pfn_clean(page_to_pfn(page));
1825 }
1826 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1827
1828 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1829 {
1830         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1831                 put_page(pfn_to_page(pfn));
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1834
1835 void kvm_release_page_dirty(struct page *page)
1836 {
1837         WARN_ON(is_error_page(page));
1838
1839         kvm_release_pfn_dirty(page_to_pfn(page));
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1842
1843 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1844 {
1845         kvm_set_pfn_dirty(pfn);
1846         kvm_release_pfn_clean(pfn);
1847 }
1848 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1849
1850 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1851 {
1852         if (!kvm_is_reserved_pfn(pfn)) {
1853                 struct page *page = pfn_to_page(pfn);
1854
1855                 if (!PageReserved(page))
1856                         SetPageDirty(page);
1857         }
1858 }
1859 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1860
1861 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1862 {
1863         if (!kvm_is_reserved_pfn(pfn))
1864                 mark_page_accessed(pfn_to_page(pfn));
1865 }
1866 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1867
1868 void kvm_get_pfn(kvm_pfn_t pfn)
1869 {
1870         if (!kvm_is_reserved_pfn(pfn))
1871                 get_page(pfn_to_page(pfn));
1872 }
1873 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1874
1875 static int next_segment(unsigned long len, int offset)
1876 {
1877         if (len > PAGE_SIZE - offset)
1878                 return PAGE_SIZE - offset;
1879         else
1880                 return len;
1881 }
1882
1883 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1884                                  void *data, int offset, int len)
1885 {
1886         int r;
1887         unsigned long addr;
1888
1889         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1890         if (kvm_is_error_hva(addr))
1891                 return -EFAULT;
1892         r = __copy_from_user(data, (void __user *)addr + offset, len);
1893         if (r)
1894                 return -EFAULT;
1895         return 0;
1896 }
1897
1898 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1899                         int len)
1900 {
1901         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1902
1903         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1906
1907 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1908                              int offset, int len)
1909 {
1910         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1911
1912         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1913 }
1914 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1915
1916 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1917 {
1918         gfn_t gfn = gpa >> PAGE_SHIFT;
1919         int seg;
1920         int offset = offset_in_page(gpa);
1921         int ret;
1922
1923         while ((seg = next_segment(len, offset)) != 0) {
1924                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1925                 if (ret < 0)
1926                         return ret;
1927                 offset = 0;
1928                 len -= seg;
1929                 data += seg;
1930                 ++gfn;
1931         }
1932         return 0;
1933 }
1934 EXPORT_SYMBOL_GPL(kvm_read_guest);
1935
1936 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1937 {
1938         gfn_t gfn = gpa >> PAGE_SHIFT;
1939         int seg;
1940         int offset = offset_in_page(gpa);
1941         int ret;
1942
1943         while ((seg = next_segment(len, offset)) != 0) {
1944                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1945                 if (ret < 0)
1946                         return ret;
1947                 offset = 0;
1948                 len -= seg;
1949                 data += seg;
1950                 ++gfn;
1951         }
1952         return 0;
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1955
1956 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1957                                    void *data, int offset, unsigned long len)
1958 {
1959         int r;
1960         unsigned long addr;
1961
1962         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1963         if (kvm_is_error_hva(addr))
1964                 return -EFAULT;
1965         pagefault_disable();
1966         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1967         pagefault_enable();
1968         if (r)
1969                 return -EFAULT;
1970         return 0;
1971 }
1972
1973 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1974                           unsigned long len)
1975 {
1976         gfn_t gfn = gpa >> PAGE_SHIFT;
1977         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1978         int offset = offset_in_page(gpa);
1979
1980         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1981 }
1982 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1983
1984 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1985                                void *data, unsigned long len)
1986 {
1987         gfn_t gfn = gpa >> PAGE_SHIFT;
1988         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1989         int offset = offset_in_page(gpa);
1990
1991         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1994
1995 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1996                                   const void *data, int offset, int len)
1997 {
1998         int r;
1999         unsigned long addr;
2000
2001         addr = gfn_to_hva_memslot(memslot, gfn);
2002         if (kvm_is_error_hva(addr))
2003                 return -EFAULT;
2004         r = __copy_to_user((void __user *)addr + offset, data, len);
2005         if (r)
2006                 return -EFAULT;
2007         mark_page_dirty_in_slot(memslot, gfn);
2008         return 0;
2009 }
2010
2011 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2012                          const void *data, int offset, int len)
2013 {
2014         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2015
2016         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2019
2020 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2021                               const void *data, int offset, int len)
2022 {
2023         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2024
2025         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2026 }
2027 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2028
2029 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2030                     unsigned long len)
2031 {
2032         gfn_t gfn = gpa >> PAGE_SHIFT;
2033         int seg;
2034         int offset = offset_in_page(gpa);
2035         int ret;
2036
2037         while ((seg = next_segment(len, offset)) != 0) {
2038                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2039                 if (ret < 0)
2040                         return ret;
2041                 offset = 0;
2042                 len -= seg;
2043                 data += seg;
2044                 ++gfn;
2045         }
2046         return 0;
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_write_guest);
2049
2050 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2051                          unsigned long len)
2052 {
2053         gfn_t gfn = gpa >> PAGE_SHIFT;
2054         int seg;
2055         int offset = offset_in_page(gpa);
2056         int ret;
2057
2058         while ((seg = next_segment(len, offset)) != 0) {
2059                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2060                 if (ret < 0)
2061                         return ret;
2062                 offset = 0;
2063                 len -= seg;
2064                 data += seg;
2065                 ++gfn;
2066         }
2067         return 0;
2068 }
2069 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2070
2071 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2072                                        struct gfn_to_hva_cache *ghc,
2073                                        gpa_t gpa, unsigned long len)
2074 {
2075         int offset = offset_in_page(gpa);
2076         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2077         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2078         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2079         gfn_t nr_pages_avail;
2080         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2081
2082         ghc->gpa = gpa;
2083         ghc->generation = slots->generation;
2084         ghc->len = len;
2085         ghc->hva = KVM_HVA_ERR_BAD;
2086
2087         /*
2088          * If the requested region crosses two memslots, we still
2089          * verify that the entire region is valid here.
2090          */
2091         while (!r && start_gfn <= end_gfn) {
2092                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2093                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2094                                            &nr_pages_avail);
2095                 if (kvm_is_error_hva(ghc->hva))
2096                         r = -EFAULT;
2097                 start_gfn += nr_pages_avail;
2098         }
2099
2100         /* Use the slow path for cross page reads and writes. */
2101         if (!r && nr_pages_needed == 1)
2102                 ghc->hva += offset;
2103         else
2104                 ghc->memslot = NULL;
2105
2106         return r;
2107 }
2108
2109 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2110                               gpa_t gpa, unsigned long len)
2111 {
2112         struct kvm_memslots *slots = kvm_memslots(kvm);
2113         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2116
2117 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2118                                   void *data, unsigned int offset,
2119                                   unsigned long len)
2120 {
2121         struct kvm_memslots *slots = kvm_memslots(kvm);
2122         int r;
2123         gpa_t gpa = ghc->gpa + offset;
2124
2125         BUG_ON(len + offset > ghc->len);
2126
2127         if (slots->generation != ghc->generation)
2128                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2129
2130         if (unlikely(!ghc->memslot))
2131                 return kvm_write_guest(kvm, gpa, data, len);
2132
2133         if (kvm_is_error_hva(ghc->hva))
2134                 return -EFAULT;
2135
2136         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2137         if (r)
2138                 return -EFAULT;
2139         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2140
2141         return 0;
2142 }
2143 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2144
2145 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2146                            void *data, unsigned long len)
2147 {
2148         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2149 }
2150 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2151
2152 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2153                            void *data, unsigned long len)
2154 {
2155         struct kvm_memslots *slots = kvm_memslots(kvm);
2156         int r;
2157
2158         BUG_ON(len > ghc->len);
2159
2160         if (slots->generation != ghc->generation)
2161                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2162
2163         if (unlikely(!ghc->memslot))
2164                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2165
2166         if (kvm_is_error_hva(ghc->hva))
2167                 return -EFAULT;
2168
2169         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2170         if (r)
2171                 return -EFAULT;
2172
2173         return 0;
2174 }
2175 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2176
2177 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2178 {
2179         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2180
2181         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2182 }
2183 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2184
2185 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2186 {
2187         gfn_t gfn = gpa >> PAGE_SHIFT;
2188         int seg;
2189         int offset = offset_in_page(gpa);
2190         int ret;
2191
2192         while ((seg = next_segment(len, offset)) != 0) {
2193                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2194                 if (ret < 0)
2195                         return ret;
2196                 offset = 0;
2197                 len -= seg;
2198                 ++gfn;
2199         }
2200         return 0;
2201 }
2202 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2203
2204 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2205                                     gfn_t gfn)
2206 {
2207         if (memslot && memslot->dirty_bitmap) {
2208                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2209
2210                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2211         }
2212 }
2213
2214 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2215 {
2216         struct kvm_memory_slot *memslot;
2217
2218         memslot = gfn_to_memslot(kvm, gfn);
2219         mark_page_dirty_in_slot(memslot, gfn);
2220 }
2221 EXPORT_SYMBOL_GPL(mark_page_dirty);
2222
2223 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2224 {
2225         struct kvm_memory_slot *memslot;
2226
2227         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2228         mark_page_dirty_in_slot(memslot, gfn);
2229 }
2230 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2231
2232 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2233 {
2234         if (!vcpu->sigset_active)
2235                 return;
2236
2237         /*
2238          * This does a lockless modification of ->real_blocked, which is fine
2239          * because, only current can change ->real_blocked and all readers of
2240          * ->real_blocked don't care as long ->real_blocked is always a subset
2241          * of ->blocked.
2242          */
2243         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2244 }
2245
2246 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2247 {
2248         if (!vcpu->sigset_active)
2249                 return;
2250
2251         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2252         sigemptyset(&current->real_blocked);
2253 }
2254
2255 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2256 {
2257         unsigned int old, val, grow, grow_start;
2258
2259         old = val = vcpu->halt_poll_ns;
2260         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2261         grow = READ_ONCE(halt_poll_ns_grow);
2262         if (!grow)
2263                 goto out;
2264
2265         val *= grow;
2266         if (val < grow_start)
2267                 val = grow_start;
2268
2269         if (val > halt_poll_ns)
2270                 val = halt_poll_ns;
2271
2272         vcpu->halt_poll_ns = val;
2273 out:
2274         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2275 }
2276
2277 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2278 {
2279         unsigned int old, val, shrink;
2280
2281         old = val = vcpu->halt_poll_ns;
2282         shrink = READ_ONCE(halt_poll_ns_shrink);
2283         if (shrink == 0)
2284                 val = 0;
2285         else
2286                 val /= shrink;
2287
2288         vcpu->halt_poll_ns = val;
2289         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2290 }
2291
2292 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2293 {
2294         int ret = -EINTR;
2295         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2296
2297         if (kvm_arch_vcpu_runnable(vcpu)) {
2298                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2299                 goto out;
2300         }
2301         if (kvm_cpu_has_pending_timer(vcpu))
2302                 goto out;
2303         if (signal_pending(current))
2304                 goto out;
2305
2306         ret = 0;
2307 out:
2308         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2309         return ret;
2310 }
2311
2312 /*
2313  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2314  */
2315 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2316 {
2317         ktime_t start, cur;
2318         DECLARE_SWAITQUEUE(wait);
2319         bool waited = false;
2320         u64 block_ns;
2321
2322         start = cur = ktime_get();
2323         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2324                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2325
2326                 ++vcpu->stat.halt_attempted_poll;
2327                 do {
2328                         /*
2329                          * This sets KVM_REQ_UNHALT if an interrupt
2330                          * arrives.
2331                          */
2332                         if (kvm_vcpu_check_block(vcpu) < 0) {
2333                                 ++vcpu->stat.halt_successful_poll;
2334                                 if (!vcpu_valid_wakeup(vcpu))
2335                                         ++vcpu->stat.halt_poll_invalid;
2336                                 goto out;
2337                         }
2338                         cur = ktime_get();
2339                 } while (single_task_running() && ktime_before(cur, stop));
2340         }
2341
2342         kvm_arch_vcpu_blocking(vcpu);
2343
2344         for (;;) {
2345                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2346
2347                 if (kvm_vcpu_check_block(vcpu) < 0)
2348                         break;
2349
2350                 waited = true;
2351                 schedule();
2352         }
2353
2354         finish_swait(&vcpu->wq, &wait);
2355         cur = ktime_get();
2356
2357         kvm_arch_vcpu_unblocking(vcpu);
2358 out:
2359         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2360
2361         if (!vcpu_valid_wakeup(vcpu))
2362                 shrink_halt_poll_ns(vcpu);
2363         else if (halt_poll_ns) {
2364                 if (block_ns <= vcpu->halt_poll_ns)
2365                         ;
2366                 /* we had a long block, shrink polling */
2367                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2368                         shrink_halt_poll_ns(vcpu);
2369                 /* we had a short halt and our poll time is too small */
2370                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2371                         block_ns < halt_poll_ns)
2372                         grow_halt_poll_ns(vcpu);
2373         } else
2374                 vcpu->halt_poll_ns = 0;
2375
2376         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2377         kvm_arch_vcpu_block_finish(vcpu);
2378 }
2379 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2380
2381 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2382 {
2383         struct swait_queue_head *wqp;
2384
2385         wqp = kvm_arch_vcpu_wq(vcpu);
2386         if (swq_has_sleeper(wqp)) {
2387                 swake_up_one(wqp);
2388                 ++vcpu->stat.halt_wakeup;
2389                 return true;
2390         }
2391
2392         return false;
2393 }
2394 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2395
2396 #ifndef CONFIG_S390
2397 /*
2398  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2399  */
2400 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2401 {
2402         int me;
2403         int cpu = vcpu->cpu;
2404
2405         if (kvm_vcpu_wake_up(vcpu))
2406                 return;
2407
2408         me = get_cpu();
2409         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2410                 if (kvm_arch_vcpu_should_kick(vcpu))
2411                         smp_send_reschedule(cpu);
2412         put_cpu();
2413 }
2414 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2415 #endif /* !CONFIG_S390 */
2416
2417 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2418 {
2419         struct pid *pid;
2420         struct task_struct *task = NULL;
2421         int ret = 0;
2422
2423         rcu_read_lock();
2424         pid = rcu_dereference(target->pid);
2425         if (pid)
2426                 task = get_pid_task(pid, PIDTYPE_PID);
2427         rcu_read_unlock();
2428         if (!task)
2429                 return ret;
2430         ret = yield_to(task, 1);
2431         put_task_struct(task);
2432
2433         return ret;
2434 }
2435 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2436
2437 /*
2438  * Helper that checks whether a VCPU is eligible for directed yield.
2439  * Most eligible candidate to yield is decided by following heuristics:
2440  *
2441  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2442  *  (preempted lock holder), indicated by @in_spin_loop.
2443  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2444  *
2445  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2446  *  chance last time (mostly it has become eligible now since we have probably
2447  *  yielded to lockholder in last iteration. This is done by toggling
2448  *  @dy_eligible each time a VCPU checked for eligibility.)
2449  *
2450  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2451  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2452  *  burning. Giving priority for a potential lock-holder increases lock
2453  *  progress.
2454  *
2455  *  Since algorithm is based on heuristics, accessing another VCPU data without
2456  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2457  *  and continue with next VCPU and so on.
2458  */
2459 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2460 {
2461 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2462         bool eligible;
2463
2464         eligible = !vcpu->spin_loop.in_spin_loop ||
2465                     vcpu->spin_loop.dy_eligible;
2466
2467         if (vcpu->spin_loop.in_spin_loop)
2468                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2469
2470         return eligible;
2471 #else
2472         return true;
2473 #endif
2474 }
2475
2476 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2477 {
2478         struct kvm *kvm = me->kvm;
2479         struct kvm_vcpu *vcpu;
2480         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2481         int yielded = 0;
2482         int try = 3;
2483         int pass;
2484         int i;
2485
2486         kvm_vcpu_set_in_spin_loop(me, true);
2487         /*
2488          * We boost the priority of a VCPU that is runnable but not
2489          * currently running, because it got preempted by something
2490          * else and called schedule in __vcpu_run.  Hopefully that
2491          * VCPU is holding the lock that we need and will release it.
2492          * We approximate round-robin by starting at the last boosted VCPU.
2493          */
2494         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2495                 kvm_for_each_vcpu(i, vcpu, kvm) {
2496                         if (!pass && i <= last_boosted_vcpu) {
2497                                 i = last_boosted_vcpu;
2498                                 continue;
2499                         } else if (pass && i > last_boosted_vcpu)
2500                                 break;
2501                         if (!READ_ONCE(vcpu->preempted))
2502                                 continue;
2503                         if (vcpu == me)
2504                                 continue;
2505                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2506                                 continue;
2507                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2508                                 continue;
2509                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2510                                 continue;
2511
2512                         yielded = kvm_vcpu_yield_to(vcpu);
2513                         if (yielded > 0) {
2514                                 kvm->last_boosted_vcpu = i;
2515                                 break;
2516                         } else if (yielded < 0) {
2517                                 try--;
2518                                 if (!try)
2519                                         break;
2520                         }
2521                 }
2522         }
2523         kvm_vcpu_set_in_spin_loop(me, false);
2524
2525         /* Ensure vcpu is not eligible during next spinloop */
2526         kvm_vcpu_set_dy_eligible(me, false);
2527 }
2528 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2529
2530 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2531 {
2532         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2533         struct page *page;
2534
2535         if (vmf->pgoff == 0)
2536                 page = virt_to_page(vcpu->run);
2537 #ifdef CONFIG_X86
2538         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2539                 page = virt_to_page(vcpu->arch.pio_data);
2540 #endif
2541 #ifdef CONFIG_KVM_MMIO
2542         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2543                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2544 #endif
2545         else
2546                 return kvm_arch_vcpu_fault(vcpu, vmf);
2547         get_page(page);
2548         vmf->page = page;
2549         return 0;
2550 }
2551
2552 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2553         .fault = kvm_vcpu_fault,
2554 };
2555
2556 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2557 {
2558         vma->vm_ops = &kvm_vcpu_vm_ops;
2559         return 0;
2560 }
2561
2562 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2563 {
2564         struct kvm_vcpu *vcpu = filp->private_data;
2565
2566         debugfs_remove_recursive(vcpu->debugfs_dentry);
2567         kvm_put_kvm(vcpu->kvm);
2568         return 0;
2569 }
2570
2571 static struct file_operations kvm_vcpu_fops = {
2572         .release        = kvm_vcpu_release,
2573         .unlocked_ioctl = kvm_vcpu_ioctl,
2574         .mmap           = kvm_vcpu_mmap,
2575         .llseek         = noop_llseek,
2576         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2577 };
2578
2579 /*
2580  * Allocates an inode for the vcpu.
2581  */
2582 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2583 {
2584         char name[8 + 1 + ITOA_MAX_LEN + 1];
2585
2586         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2587         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2588 }
2589
2590 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2591 {
2592         char dir_name[ITOA_MAX_LEN * 2];
2593         int ret;
2594
2595         if (!kvm_arch_has_vcpu_debugfs())
2596                 return 0;
2597
2598         if (!debugfs_initialized())
2599                 return 0;
2600
2601         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2602         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2603                                                                 vcpu->kvm->debugfs_dentry);
2604         if (!vcpu->debugfs_dentry)
2605                 return -ENOMEM;
2606
2607         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2608         if (ret < 0) {
2609                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2610                 return ret;
2611         }
2612
2613         return 0;
2614 }
2615
2616 /*
2617  * Creates some virtual cpus.  Good luck creating more than one.
2618  */
2619 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2620 {
2621         int r;
2622         struct kvm_vcpu *vcpu;
2623
2624         if (id >= KVM_MAX_VCPU_ID)
2625                 return -EINVAL;
2626
2627         mutex_lock(&kvm->lock);
2628         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2629                 mutex_unlock(&kvm->lock);
2630                 return -EINVAL;
2631         }
2632
2633         kvm->created_vcpus++;
2634         mutex_unlock(&kvm->lock);
2635
2636         vcpu = kvm_arch_vcpu_create(kvm, id);
2637         if (IS_ERR(vcpu)) {
2638                 r = PTR_ERR(vcpu);
2639                 goto vcpu_decrement;
2640         }
2641
2642         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2643
2644         r = kvm_arch_vcpu_setup(vcpu);
2645         if (r)
2646                 goto vcpu_destroy;
2647
2648         r = kvm_create_vcpu_debugfs(vcpu);
2649         if (r)
2650                 goto vcpu_destroy;
2651
2652         mutex_lock(&kvm->lock);
2653         if (kvm_get_vcpu_by_id(kvm, id)) {
2654                 r = -EEXIST;
2655                 goto unlock_vcpu_destroy;
2656         }
2657
2658         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2659
2660         /* Now it's all set up, let userspace reach it */
2661         kvm_get_kvm(kvm);
2662         r = create_vcpu_fd(vcpu);
2663         if (r < 0) {
2664                 kvm_put_kvm(kvm);
2665                 goto unlock_vcpu_destroy;
2666         }
2667
2668         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2669
2670         /*
2671          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2672          * before kvm->online_vcpu's incremented value.
2673          */
2674         smp_wmb();
2675         atomic_inc(&kvm->online_vcpus);
2676
2677         mutex_unlock(&kvm->lock);
2678         kvm_arch_vcpu_postcreate(vcpu);
2679         return r;
2680
2681 unlock_vcpu_destroy:
2682         mutex_unlock(&kvm->lock);
2683         debugfs_remove_recursive(vcpu->debugfs_dentry);
2684 vcpu_destroy:
2685         kvm_arch_vcpu_destroy(vcpu);
2686 vcpu_decrement:
2687         mutex_lock(&kvm->lock);
2688         kvm->created_vcpus--;
2689         mutex_unlock(&kvm->lock);
2690         return r;
2691 }
2692
2693 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2694 {
2695         if (sigset) {
2696                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2697                 vcpu->sigset_active = 1;
2698                 vcpu->sigset = *sigset;
2699         } else
2700                 vcpu->sigset_active = 0;
2701         return 0;
2702 }
2703
2704 static long kvm_vcpu_ioctl(struct file *filp,
2705                            unsigned int ioctl, unsigned long arg)
2706 {
2707         struct kvm_vcpu *vcpu = filp->private_data;
2708         void __user *argp = (void __user *)arg;
2709         int r;
2710         struct kvm_fpu *fpu = NULL;
2711         struct kvm_sregs *kvm_sregs = NULL;
2712
2713         if (vcpu->kvm->mm != current->mm)
2714                 return -EIO;
2715
2716         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2717                 return -EINVAL;
2718
2719         /*
2720          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2721          * execution; mutex_lock() would break them.
2722          */
2723         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2724         if (r != -ENOIOCTLCMD)
2725                 return r;
2726
2727         if (mutex_lock_killable(&vcpu->mutex))
2728                 return -EINTR;
2729         switch (ioctl) {
2730         case KVM_RUN: {
2731                 struct pid *oldpid;
2732                 r = -EINVAL;
2733                 if (arg)
2734                         goto out;
2735                 oldpid = rcu_access_pointer(vcpu->pid);
2736                 if (unlikely(oldpid != task_pid(current))) {
2737                         /* The thread running this VCPU changed. */
2738                         struct pid *newpid;
2739
2740                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2741                         if (r)
2742                                 break;
2743
2744                         newpid = get_task_pid(current, PIDTYPE_PID);
2745                         rcu_assign_pointer(vcpu->pid, newpid);
2746                         if (oldpid)
2747                                 synchronize_rcu();
2748                         put_pid(oldpid);
2749                 }
2750                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2751                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2752                 break;
2753         }
2754         case KVM_GET_REGS: {
2755                 struct kvm_regs *kvm_regs;
2756
2757                 r = -ENOMEM;
2758                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2759                 if (!kvm_regs)
2760                         goto out;
2761                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2762                 if (r)
2763                         goto out_free1;
2764                 r = -EFAULT;
2765                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2766                         goto out_free1;
2767                 r = 0;
2768 out_free1:
2769                 kfree(kvm_regs);
2770                 break;
2771         }
2772         case KVM_SET_REGS: {
2773                 struct kvm_regs *kvm_regs;
2774
2775                 r = -ENOMEM;
2776                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2777                 if (IS_ERR(kvm_regs)) {
2778                         r = PTR_ERR(kvm_regs);
2779                         goto out;
2780                 }
2781                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2782                 kfree(kvm_regs);
2783                 break;
2784         }
2785         case KVM_GET_SREGS: {
2786                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2787                                     GFP_KERNEL_ACCOUNT);
2788                 r = -ENOMEM;
2789                 if (!kvm_sregs)
2790                         goto out;
2791                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2792                 if (r)
2793                         goto out;
2794                 r = -EFAULT;
2795                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2796                         goto out;
2797                 r = 0;
2798                 break;
2799         }
2800         case KVM_SET_SREGS: {
2801                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2802                 if (IS_ERR(kvm_sregs)) {
2803                         r = PTR_ERR(kvm_sregs);
2804                         kvm_sregs = NULL;
2805                         goto out;
2806                 }
2807                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2808                 break;
2809         }
2810         case KVM_GET_MP_STATE: {
2811                 struct kvm_mp_state mp_state;
2812
2813                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2814                 if (r)
2815                         goto out;
2816                 r = -EFAULT;
2817                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2818                         goto out;
2819                 r = 0;
2820                 break;
2821         }
2822         case KVM_SET_MP_STATE: {
2823                 struct kvm_mp_state mp_state;
2824
2825                 r = -EFAULT;
2826                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2827                         goto out;
2828                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2829                 break;
2830         }
2831         case KVM_TRANSLATE: {
2832                 struct kvm_translation tr;
2833
2834                 r = -EFAULT;
2835                 if (copy_from_user(&tr, argp, sizeof(tr)))
2836                         goto out;
2837                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2838                 if (r)
2839                         goto out;
2840                 r = -EFAULT;
2841                 if (copy_to_user(argp, &tr, sizeof(tr)))
2842                         goto out;
2843                 r = 0;
2844                 break;
2845         }
2846         case KVM_SET_GUEST_DEBUG: {
2847                 struct kvm_guest_debug dbg;
2848
2849                 r = -EFAULT;
2850                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2851                         goto out;
2852                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2853                 break;
2854         }
2855         case KVM_SET_SIGNAL_MASK: {
2856                 struct kvm_signal_mask __user *sigmask_arg = argp;
2857                 struct kvm_signal_mask kvm_sigmask;
2858                 sigset_t sigset, *p;
2859
2860                 p = NULL;
2861                 if (argp) {
2862                         r = -EFAULT;
2863                         if (copy_from_user(&kvm_sigmask, argp,
2864                                            sizeof(kvm_sigmask)))
2865                                 goto out;
2866                         r = -EINVAL;
2867                         if (kvm_sigmask.len != sizeof(sigset))
2868                                 goto out;
2869                         r = -EFAULT;
2870                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2871                                            sizeof(sigset)))
2872                                 goto out;
2873                         p = &sigset;
2874                 }
2875                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2876                 break;
2877         }
2878         case KVM_GET_FPU: {
2879                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2880                 r = -ENOMEM;
2881                 if (!fpu)
2882                         goto out;
2883                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2884                 if (r)
2885                         goto out;
2886                 r = -EFAULT;
2887                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2888                         goto out;
2889                 r = 0;
2890                 break;
2891         }
2892         case KVM_SET_FPU: {
2893                 fpu = memdup_user(argp, sizeof(*fpu));
2894                 if (IS_ERR(fpu)) {
2895                         r = PTR_ERR(fpu);
2896                         fpu = NULL;
2897                         goto out;
2898                 }
2899                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2900                 break;
2901         }
2902         default:
2903                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2904         }
2905 out:
2906         mutex_unlock(&vcpu->mutex);
2907         kfree(fpu);
2908         kfree(kvm_sregs);
2909         return r;
2910 }
2911
2912 #ifdef CONFIG_KVM_COMPAT
2913 static long kvm_vcpu_compat_ioctl(struct file *filp,
2914                                   unsigned int ioctl, unsigned long arg)
2915 {
2916         struct kvm_vcpu *vcpu = filp->private_data;
2917         void __user *argp = compat_ptr(arg);
2918         int r;
2919
2920         if (vcpu->kvm->mm != current->mm)
2921                 return -EIO;
2922
2923         switch (ioctl) {
2924         case KVM_SET_SIGNAL_MASK: {
2925                 struct kvm_signal_mask __user *sigmask_arg = argp;
2926                 struct kvm_signal_mask kvm_sigmask;
2927                 sigset_t sigset;
2928
2929                 if (argp) {
2930                         r = -EFAULT;
2931                         if (copy_from_user(&kvm_sigmask, argp,
2932                                            sizeof(kvm_sigmask)))
2933                                 goto out;
2934                         r = -EINVAL;
2935                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2936                                 goto out;
2937                         r = -EFAULT;
2938                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2939                                 goto out;
2940                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2941                 } else
2942                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2943                 break;
2944         }
2945         default:
2946                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2947         }
2948
2949 out:
2950         return r;
2951 }
2952 #endif
2953
2954 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2955 {
2956         struct kvm_device *dev = filp->private_data;
2957
2958         if (dev->ops->mmap)
2959                 return dev->ops->mmap(dev, vma);
2960
2961         return -ENODEV;
2962 }
2963
2964 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2965                                  int (*accessor)(struct kvm_device *dev,
2966                                                  struct kvm_device_attr *attr),
2967                                  unsigned long arg)
2968 {
2969         struct kvm_device_attr attr;
2970
2971         if (!accessor)
2972                 return -EPERM;
2973
2974         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2975                 return -EFAULT;
2976
2977         return accessor(dev, &attr);
2978 }
2979
2980 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2981                              unsigned long arg)
2982 {
2983         struct kvm_device *dev = filp->private_data;
2984
2985         if (dev->kvm->mm != current->mm)
2986                 return -EIO;
2987
2988         switch (ioctl) {
2989         case KVM_SET_DEVICE_ATTR:
2990                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2991         case KVM_GET_DEVICE_ATTR:
2992                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2993         case KVM_HAS_DEVICE_ATTR:
2994                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2995         default:
2996                 if (dev->ops->ioctl)
2997                         return dev->ops->ioctl(dev, ioctl, arg);
2998
2999                 return -ENOTTY;
3000         }
3001 }
3002
3003 static int kvm_device_release(struct inode *inode, struct file *filp)
3004 {
3005         struct kvm_device *dev = filp->private_data;
3006         struct kvm *kvm = dev->kvm;
3007
3008         if (dev->ops->release) {
3009                 mutex_lock(&kvm->lock);
3010                 list_del(&dev->vm_node);
3011                 dev->ops->release(dev);
3012                 mutex_unlock(&kvm->lock);
3013         }
3014
3015         kvm_put_kvm(kvm);
3016         return 0;
3017 }
3018
3019 static const struct file_operations kvm_device_fops = {
3020         .unlocked_ioctl = kvm_device_ioctl,
3021         .release = kvm_device_release,
3022         KVM_COMPAT(kvm_device_ioctl),
3023         .mmap = kvm_device_mmap,
3024 };
3025
3026 struct kvm_device *kvm_device_from_filp(struct file *filp)
3027 {
3028         if (filp->f_op != &kvm_device_fops)
3029                 return NULL;
3030
3031         return filp->private_data;
3032 }
3033
3034 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3035 #ifdef CONFIG_KVM_MPIC
3036         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3037         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3038 #endif
3039 };
3040
3041 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3042 {
3043         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3044                 return -ENOSPC;
3045
3046         if (kvm_device_ops_table[type] != NULL)
3047                 return -EEXIST;
3048
3049         kvm_device_ops_table[type] = ops;
3050         return 0;
3051 }
3052
3053 void kvm_unregister_device_ops(u32 type)
3054 {
3055         if (kvm_device_ops_table[type] != NULL)
3056                 kvm_device_ops_table[type] = NULL;
3057 }
3058
3059 static int kvm_ioctl_create_device(struct kvm *kvm,
3060                                    struct kvm_create_device *cd)
3061 {
3062         struct kvm_device_ops *ops = NULL;
3063         struct kvm_device *dev;
3064         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3065         int type;
3066         int ret;
3067
3068         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3069                 return -ENODEV;
3070
3071         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3072         ops = kvm_device_ops_table[type];
3073         if (ops == NULL)
3074                 return -ENODEV;
3075
3076         if (test)
3077                 return 0;
3078
3079         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3080         if (!dev)
3081                 return -ENOMEM;
3082
3083         dev->ops = ops;
3084         dev->kvm = kvm;
3085
3086         mutex_lock(&kvm->lock);
3087         ret = ops->create(dev, type);
3088         if (ret < 0) {
3089                 mutex_unlock(&kvm->lock);
3090                 kfree(dev);
3091                 return ret;
3092         }
3093         list_add(&dev->vm_node, &kvm->devices);
3094         mutex_unlock(&kvm->lock);
3095
3096         if (ops->init)
3097                 ops->init(dev);
3098
3099         kvm_get_kvm(kvm);
3100         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3101         if (ret < 0) {
3102                 kvm_put_kvm(kvm);
3103                 mutex_lock(&kvm->lock);
3104                 list_del(&dev->vm_node);
3105                 mutex_unlock(&kvm->lock);
3106                 ops->destroy(dev);
3107                 return ret;
3108         }
3109
3110         cd->fd = ret;
3111         return 0;
3112 }
3113
3114 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3115 {
3116         switch (arg) {
3117         case KVM_CAP_USER_MEMORY:
3118         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3119         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3120         case KVM_CAP_INTERNAL_ERROR_DATA:
3121 #ifdef CONFIG_HAVE_KVM_MSI
3122         case KVM_CAP_SIGNAL_MSI:
3123 #endif
3124 #ifdef CONFIG_HAVE_KVM_IRQFD
3125         case KVM_CAP_IRQFD:
3126         case KVM_CAP_IRQFD_RESAMPLE:
3127 #endif
3128         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3129         case KVM_CAP_CHECK_EXTENSION_VM:
3130         case KVM_CAP_ENABLE_CAP_VM:
3131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3132         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3133 #endif
3134                 return 1;
3135 #ifdef CONFIG_KVM_MMIO
3136         case KVM_CAP_COALESCED_MMIO:
3137                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3138         case KVM_CAP_COALESCED_PIO:
3139                 return 1;
3140 #endif
3141 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3142         case KVM_CAP_IRQ_ROUTING:
3143                 return KVM_MAX_IRQ_ROUTES;
3144 #endif
3145 #if KVM_ADDRESS_SPACE_NUM > 1
3146         case KVM_CAP_MULTI_ADDRESS_SPACE:
3147                 return KVM_ADDRESS_SPACE_NUM;
3148 #endif
3149         case KVM_CAP_MAX_VCPU_ID:
3150                 return KVM_MAX_VCPU_ID;
3151         case KVM_CAP_NR_MEMSLOTS:
3152                 return KVM_USER_MEM_SLOTS;
3153         default:
3154                 break;
3155         }
3156         return kvm_vm_ioctl_check_extension(kvm, arg);
3157 }
3158
3159 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3160                                                   struct kvm_enable_cap *cap)
3161 {
3162         return -EINVAL;
3163 }
3164
3165 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3166                                            struct kvm_enable_cap *cap)
3167 {
3168         switch (cap->cap) {
3169 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3170         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3171                 if (cap->flags || (cap->args[0] & ~1))
3172                         return -EINVAL;
3173                 kvm->manual_dirty_log_protect = cap->args[0];
3174                 return 0;
3175 #endif
3176         default:
3177                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3178         }
3179 }
3180
3181 static long kvm_vm_ioctl(struct file *filp,
3182                            unsigned int ioctl, unsigned long arg)
3183 {
3184         struct kvm *kvm = filp->private_data;
3185         void __user *argp = (void __user *)arg;
3186         int r;
3187
3188         if (kvm->mm != current->mm)
3189                 return -EIO;
3190         switch (ioctl) {
3191         case KVM_CREATE_VCPU:
3192                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3193                 break;
3194         case KVM_ENABLE_CAP: {
3195                 struct kvm_enable_cap cap;
3196
3197                 r = -EFAULT;
3198                 if (copy_from_user(&cap, argp, sizeof(cap)))
3199                         goto out;
3200                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3201                 break;
3202         }
3203         case KVM_SET_USER_MEMORY_REGION: {
3204                 struct kvm_userspace_memory_region kvm_userspace_mem;
3205
3206                 r = -EFAULT;
3207                 if (copy_from_user(&kvm_userspace_mem, argp,
3208                                                 sizeof(kvm_userspace_mem)))
3209                         goto out;
3210
3211                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3212                 break;
3213         }
3214         case KVM_GET_DIRTY_LOG: {
3215                 struct kvm_dirty_log log;
3216
3217                 r = -EFAULT;
3218                 if (copy_from_user(&log, argp, sizeof(log)))
3219                         goto out;
3220                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3221                 break;
3222         }
3223 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3224         case KVM_CLEAR_DIRTY_LOG: {
3225                 struct kvm_clear_dirty_log log;
3226
3227                 r = -EFAULT;
3228                 if (copy_from_user(&log, argp, sizeof(log)))
3229                         goto out;
3230                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3231                 break;
3232         }
3233 #endif
3234 #ifdef CONFIG_KVM_MMIO
3235         case KVM_REGISTER_COALESCED_MMIO: {
3236                 struct kvm_coalesced_mmio_zone zone;
3237
3238                 r = -EFAULT;
3239                 if (copy_from_user(&zone, argp, sizeof(zone)))
3240                         goto out;
3241                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3242                 break;
3243         }
3244         case KVM_UNREGISTER_COALESCED_MMIO: {
3245                 struct kvm_coalesced_mmio_zone zone;
3246
3247                 r = -EFAULT;
3248                 if (copy_from_user(&zone, argp, sizeof(zone)))
3249                         goto out;
3250                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3251                 break;
3252         }
3253 #endif
3254         case KVM_IRQFD: {
3255                 struct kvm_irqfd data;
3256
3257                 r = -EFAULT;
3258                 if (copy_from_user(&data, argp, sizeof(data)))
3259                         goto out;
3260                 r = kvm_irqfd(kvm, &data);
3261                 break;
3262         }
3263         case KVM_IOEVENTFD: {
3264                 struct kvm_ioeventfd data;
3265
3266                 r = -EFAULT;
3267                 if (copy_from_user(&data, argp, sizeof(data)))
3268                         goto out;
3269                 r = kvm_ioeventfd(kvm, &data);
3270                 break;
3271         }
3272 #ifdef CONFIG_HAVE_KVM_MSI
3273         case KVM_SIGNAL_MSI: {
3274                 struct kvm_msi msi;
3275
3276                 r = -EFAULT;
3277                 if (copy_from_user(&msi, argp, sizeof(msi)))
3278                         goto out;
3279                 r = kvm_send_userspace_msi(kvm, &msi);
3280                 break;
3281         }
3282 #endif
3283 #ifdef __KVM_HAVE_IRQ_LINE
3284         case KVM_IRQ_LINE_STATUS:
3285         case KVM_IRQ_LINE: {
3286                 struct kvm_irq_level irq_event;
3287
3288                 r = -EFAULT;
3289                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3290                         goto out;
3291
3292                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3293                                         ioctl == KVM_IRQ_LINE_STATUS);
3294                 if (r)
3295                         goto out;
3296
3297                 r = -EFAULT;
3298                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3299                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3300                                 goto out;
3301                 }
3302
3303                 r = 0;
3304                 break;
3305         }
3306 #endif
3307 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3308         case KVM_SET_GSI_ROUTING: {
3309                 struct kvm_irq_routing routing;
3310                 struct kvm_irq_routing __user *urouting;
3311                 struct kvm_irq_routing_entry *entries = NULL;
3312
3313                 r = -EFAULT;
3314                 if (copy_from_user(&routing, argp, sizeof(routing)))
3315                         goto out;
3316                 r = -EINVAL;
3317                 if (!kvm_arch_can_set_irq_routing(kvm))
3318                         goto out;
3319                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3320                         goto out;
3321                 if (routing.flags)
3322                         goto out;
3323                 if (routing.nr) {
3324                         r = -ENOMEM;
3325                         entries = vmalloc(array_size(sizeof(*entries),
3326                                                      routing.nr));
3327                         if (!entries)
3328                                 goto out;
3329                         r = -EFAULT;
3330                         urouting = argp;
3331                         if (copy_from_user(entries, urouting->entries,
3332                                            routing.nr * sizeof(*entries)))
3333                                 goto out_free_irq_routing;
3334                 }
3335                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3336                                         routing.flags);
3337 out_free_irq_routing:
3338                 vfree(entries);
3339                 break;
3340         }
3341 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3342         case KVM_CREATE_DEVICE: {
3343                 struct kvm_create_device cd;
3344
3345                 r = -EFAULT;
3346                 if (copy_from_user(&cd, argp, sizeof(cd)))
3347                         goto out;
3348
3349                 r = kvm_ioctl_create_device(kvm, &cd);
3350                 if (r)
3351                         goto out;
3352
3353                 r = -EFAULT;
3354                 if (copy_to_user(argp, &cd, sizeof(cd)))
3355                         goto out;
3356
3357                 r = 0;
3358                 break;
3359         }
3360         case KVM_CHECK_EXTENSION:
3361                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3362                 break;
3363         default:
3364                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3365         }
3366 out:
3367         return r;
3368 }
3369
3370 #ifdef CONFIG_KVM_COMPAT
3371 struct compat_kvm_dirty_log {
3372         __u32 slot;
3373         __u32 padding1;
3374         union {
3375                 compat_uptr_t dirty_bitmap; /* one bit per page */
3376                 __u64 padding2;
3377         };
3378 };
3379
3380 static long kvm_vm_compat_ioctl(struct file *filp,
3381                            unsigned int ioctl, unsigned long arg)
3382 {
3383         struct kvm *kvm = filp->private_data;
3384         int r;
3385
3386         if (kvm->mm != current->mm)
3387                 return -EIO;
3388         switch (ioctl) {
3389         case KVM_GET_DIRTY_LOG: {
3390                 struct compat_kvm_dirty_log compat_log;
3391                 struct kvm_dirty_log log;
3392
3393                 if (copy_from_user(&compat_log, (void __user *)arg,
3394                                    sizeof(compat_log)))
3395                         return -EFAULT;
3396                 log.slot         = compat_log.slot;
3397                 log.padding1     = compat_log.padding1;
3398                 log.padding2     = compat_log.padding2;
3399                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3400
3401                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3402                 break;
3403         }
3404         default:
3405                 r = kvm_vm_ioctl(filp, ioctl, arg);
3406         }
3407         return r;
3408 }
3409 #endif
3410
3411 static struct file_operations kvm_vm_fops = {
3412         .release        = kvm_vm_release,
3413         .unlocked_ioctl = kvm_vm_ioctl,
3414         .llseek         = noop_llseek,
3415         KVM_COMPAT(kvm_vm_compat_ioctl),
3416 };
3417
3418 static int kvm_dev_ioctl_create_vm(unsigned long type)
3419 {
3420         int r;
3421         struct kvm *kvm;
3422         struct file *file;
3423
3424         kvm = kvm_create_vm(type);
3425         if (IS_ERR(kvm))
3426                 return PTR_ERR(kvm);
3427 #ifdef CONFIG_KVM_MMIO
3428         r = kvm_coalesced_mmio_init(kvm);
3429         if (r < 0)
3430                 goto put_kvm;
3431 #endif
3432         r = get_unused_fd_flags(O_CLOEXEC);
3433         if (r < 0)
3434                 goto put_kvm;
3435
3436         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3437         if (IS_ERR(file)) {
3438                 put_unused_fd(r);
3439                 r = PTR_ERR(file);
3440                 goto put_kvm;
3441         }
3442
3443         /*
3444          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3445          * already set, with ->release() being kvm_vm_release().  In error
3446          * cases it will be called by the final fput(file) and will take
3447          * care of doing kvm_put_kvm(kvm).
3448          */
3449         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3450                 put_unused_fd(r);
3451                 fput(file);
3452                 return -ENOMEM;
3453         }
3454         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3455
3456         fd_install(r, file);
3457         return r;
3458
3459 put_kvm:
3460         kvm_put_kvm(kvm);
3461         return r;
3462 }
3463
3464 static long kvm_dev_ioctl(struct file *filp,
3465                           unsigned int ioctl, unsigned long arg)
3466 {
3467         long r = -EINVAL;
3468
3469         switch (ioctl) {
3470         case KVM_GET_API_VERSION:
3471                 if (arg)
3472                         goto out;
3473                 r = KVM_API_VERSION;
3474                 break;
3475         case KVM_CREATE_VM:
3476                 r = kvm_dev_ioctl_create_vm(arg);
3477                 break;
3478         case KVM_CHECK_EXTENSION:
3479                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3480                 break;
3481         case KVM_GET_VCPU_MMAP_SIZE:
3482                 if (arg)
3483                         goto out;
3484                 r = PAGE_SIZE;     /* struct kvm_run */
3485 #ifdef CONFIG_X86
3486                 r += PAGE_SIZE;    /* pio data page */
3487 #endif
3488 #ifdef CONFIG_KVM_MMIO
3489                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3490 #endif
3491                 break;
3492         case KVM_TRACE_ENABLE:
3493         case KVM_TRACE_PAUSE:
3494         case KVM_TRACE_DISABLE:
3495                 r = -EOPNOTSUPP;
3496                 break;
3497         default:
3498                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3499         }
3500 out:
3501         return r;
3502 }
3503
3504 static struct file_operations kvm_chardev_ops = {
3505         .unlocked_ioctl = kvm_dev_ioctl,
3506         .llseek         = noop_llseek,
3507         KVM_COMPAT(kvm_dev_ioctl),
3508 };
3509
3510 static struct miscdevice kvm_dev = {
3511         KVM_MINOR,
3512         "kvm",
3513         &kvm_chardev_ops,
3514 };
3515
3516 static void hardware_enable_nolock(void *junk)
3517 {
3518         int cpu = raw_smp_processor_id();
3519         int r;
3520
3521         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3522                 return;
3523
3524         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3525
3526         r = kvm_arch_hardware_enable();
3527
3528         if (r) {
3529                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3530                 atomic_inc(&hardware_enable_failed);
3531                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3532         }
3533 }
3534
3535 static int kvm_starting_cpu(unsigned int cpu)
3536 {
3537         raw_spin_lock(&kvm_count_lock);
3538         if (kvm_usage_count)
3539                 hardware_enable_nolock(NULL);
3540         raw_spin_unlock(&kvm_count_lock);
3541         return 0;
3542 }
3543
3544 static void hardware_disable_nolock(void *junk)
3545 {
3546         int cpu = raw_smp_processor_id();
3547
3548         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3549                 return;
3550         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3551         kvm_arch_hardware_disable();
3552 }
3553
3554 static int kvm_dying_cpu(unsigned int cpu)
3555 {
3556         raw_spin_lock(&kvm_count_lock);
3557         if (kvm_usage_count)
3558                 hardware_disable_nolock(NULL);
3559         raw_spin_unlock(&kvm_count_lock);
3560         return 0;
3561 }
3562
3563 static void hardware_disable_all_nolock(void)
3564 {
3565         BUG_ON(!kvm_usage_count);
3566
3567         kvm_usage_count--;
3568         if (!kvm_usage_count)
3569                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3570 }
3571
3572 static void hardware_disable_all(void)
3573 {
3574         raw_spin_lock(&kvm_count_lock);
3575         hardware_disable_all_nolock();
3576         raw_spin_unlock(&kvm_count_lock);
3577 }
3578
3579 static int hardware_enable_all(void)
3580 {
3581         int r = 0;
3582
3583         raw_spin_lock(&kvm_count_lock);
3584
3585         kvm_usage_count++;
3586         if (kvm_usage_count == 1) {
3587                 atomic_set(&hardware_enable_failed, 0);
3588                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3589
3590                 if (atomic_read(&hardware_enable_failed)) {
3591                         hardware_disable_all_nolock();
3592                         r = -EBUSY;
3593                 }
3594         }
3595
3596         raw_spin_unlock(&kvm_count_lock);
3597
3598         return r;
3599 }
3600
3601 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3602                       void *v)
3603 {
3604         /*
3605          * Some (well, at least mine) BIOSes hang on reboot if
3606          * in vmx root mode.
3607          *
3608          * And Intel TXT required VMX off for all cpu when system shutdown.
3609          */
3610         pr_info("kvm: exiting hardware virtualization\n");
3611         kvm_rebooting = true;
3612         on_each_cpu(hardware_disable_nolock, NULL, 1);
3613         return NOTIFY_OK;
3614 }
3615
3616 static struct notifier_block kvm_reboot_notifier = {
3617         .notifier_call = kvm_reboot,
3618         .priority = 0,
3619 };
3620
3621 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3622 {
3623         int i;
3624
3625         for (i = 0; i < bus->dev_count; i++) {
3626                 struct kvm_io_device *pos = bus->range[i].dev;
3627
3628                 kvm_iodevice_destructor(pos);
3629         }
3630         kfree(bus);
3631 }
3632
3633 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3634                                  const struct kvm_io_range *r2)
3635 {
3636         gpa_t addr1 = r1->addr;
3637         gpa_t addr2 = r2->addr;
3638
3639         if (addr1 < addr2)
3640                 return -1;
3641
3642         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3643          * accept any overlapping write.  Any order is acceptable for
3644          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3645          * we process all of them.
3646          */
3647         if (r2->len) {
3648                 addr1 += r1->len;
3649                 addr2 += r2->len;
3650         }
3651
3652         if (addr1 > addr2)
3653                 return 1;
3654
3655         return 0;
3656 }
3657
3658 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3659 {
3660         return kvm_io_bus_cmp(p1, p2);
3661 }
3662
3663 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3664                              gpa_t addr, int len)
3665 {
3666         struct kvm_io_range *range, key;
3667         int off;
3668
3669         key = (struct kvm_io_range) {
3670                 .addr = addr,
3671                 .len = len,
3672         };
3673
3674         range = bsearch(&key, bus->range, bus->dev_count,
3675                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3676         if (range == NULL)
3677                 return -ENOENT;
3678
3679         off = range - bus->range;
3680
3681         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3682                 off--;
3683
3684         return off;
3685 }
3686
3687 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3688                               struct kvm_io_range *range, const void *val)
3689 {
3690         int idx;
3691
3692         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3693         if (idx < 0)
3694                 return -EOPNOTSUPP;
3695
3696         while (idx < bus->dev_count &&
3697                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3698                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3699                                         range->len, val))
3700                         return idx;
3701                 idx++;
3702         }
3703
3704         return -EOPNOTSUPP;
3705 }
3706
3707 /* kvm_io_bus_write - called under kvm->slots_lock */
3708 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3709                      int len, const void *val)
3710 {
3711         struct kvm_io_bus *bus;
3712         struct kvm_io_range range;
3713         int r;
3714
3715         range = (struct kvm_io_range) {
3716                 .addr = addr,
3717                 .len = len,
3718         };
3719
3720         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3721         if (!bus)
3722                 return -ENOMEM;
3723         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3724         return r < 0 ? r : 0;
3725 }
3726 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3727
3728 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3729 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3730                             gpa_t addr, int len, const void *val, long cookie)
3731 {
3732         struct kvm_io_bus *bus;
3733         struct kvm_io_range range;
3734
3735         range = (struct kvm_io_range) {
3736                 .addr = addr,
3737                 .len = len,
3738         };
3739
3740         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3741         if (!bus)
3742                 return -ENOMEM;
3743
3744         /* First try the device referenced by cookie. */
3745         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3746             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3747                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3748                                         val))
3749                         return cookie;
3750
3751         /*
3752          * cookie contained garbage; fall back to search and return the
3753          * correct cookie value.
3754          */
3755         return __kvm_io_bus_write(vcpu, bus, &range, val);
3756 }
3757
3758 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3759                              struct kvm_io_range *range, void *val)
3760 {
3761         int idx;
3762
3763         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3764         if (idx < 0)
3765                 return -EOPNOTSUPP;
3766
3767         while (idx < bus->dev_count &&
3768                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3769                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3770                                        range->len, val))
3771                         return idx;
3772                 idx++;
3773         }
3774
3775         return -EOPNOTSUPP;
3776 }
3777
3778 /* kvm_io_bus_read - called under kvm->slots_lock */
3779 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3780                     int len, void *val)
3781 {
3782         struct kvm_io_bus *bus;
3783         struct kvm_io_range range;
3784         int r;
3785
3786         range = (struct kvm_io_range) {
3787                 .addr = addr,
3788                 .len = len,
3789         };
3790
3791         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3792         if (!bus)
3793                 return -ENOMEM;
3794         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3795         return r < 0 ? r : 0;
3796 }
3797
3798 /* Caller must hold slots_lock. */
3799 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3800                             int len, struct kvm_io_device *dev)
3801 {
3802         int i;
3803         struct kvm_io_bus *new_bus, *bus;
3804         struct kvm_io_range range;
3805
3806         bus = kvm_get_bus(kvm, bus_idx);
3807         if (!bus)
3808                 return -ENOMEM;
3809
3810         /* exclude ioeventfd which is limited by maximum fd */
3811         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3812                 return -ENOSPC;
3813
3814         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3815                           GFP_KERNEL_ACCOUNT);
3816         if (!new_bus)
3817                 return -ENOMEM;
3818
3819         range = (struct kvm_io_range) {
3820                 .addr = addr,
3821                 .len = len,
3822                 .dev = dev,
3823         };
3824
3825         for (i = 0; i < bus->dev_count; i++)
3826                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3827                         break;
3828
3829         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3830         new_bus->dev_count++;
3831         new_bus->range[i] = range;
3832         memcpy(new_bus->range + i + 1, bus->range + i,
3833                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3834         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3835         synchronize_srcu_expedited(&kvm->srcu);
3836         kfree(bus);
3837
3838         return 0;
3839 }
3840
3841 /* Caller must hold slots_lock. */
3842 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3843                                struct kvm_io_device *dev)
3844 {
3845         int i;
3846         struct kvm_io_bus *new_bus, *bus;
3847
3848         bus = kvm_get_bus(kvm, bus_idx);
3849         if (!bus)
3850                 return;
3851
3852         for (i = 0; i < bus->dev_count; i++)
3853                 if (bus->range[i].dev == dev) {
3854                         break;
3855                 }
3856
3857         if (i == bus->dev_count)
3858                 return;
3859
3860         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3861                           GFP_KERNEL_ACCOUNT);
3862         if (!new_bus)  {
3863                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3864                 goto broken;
3865         }
3866
3867         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3868         new_bus->dev_count--;
3869         memcpy(new_bus->range + i, bus->range + i + 1,
3870                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3871
3872 broken:
3873         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3874         synchronize_srcu_expedited(&kvm->srcu);
3875         kfree(bus);
3876         return;
3877 }
3878
3879 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3880                                          gpa_t addr)
3881 {
3882         struct kvm_io_bus *bus;
3883         int dev_idx, srcu_idx;
3884         struct kvm_io_device *iodev = NULL;
3885
3886         srcu_idx = srcu_read_lock(&kvm->srcu);
3887
3888         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3889         if (!bus)
3890                 goto out_unlock;
3891
3892         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3893         if (dev_idx < 0)
3894                 goto out_unlock;
3895
3896         iodev = bus->range[dev_idx].dev;
3897
3898 out_unlock:
3899         srcu_read_unlock(&kvm->srcu, srcu_idx);
3900
3901         return iodev;
3902 }
3903 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3904
3905 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3906                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3907                            const char *fmt)
3908 {
3909         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3910                                           inode->i_private;
3911
3912         /* The debugfs files are a reference to the kvm struct which
3913          * is still valid when kvm_destroy_vm is called.
3914          * To avoid the race between open and the removal of the debugfs
3915          * directory we test against the users count.
3916          */
3917         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3918                 return -ENOENT;
3919
3920         if (simple_attr_open(inode, file, get, set, fmt)) {
3921                 kvm_put_kvm(stat_data->kvm);
3922                 return -ENOMEM;
3923         }
3924
3925         return 0;
3926 }
3927
3928 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3929 {
3930         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3931                                           inode->i_private;
3932
3933         simple_attr_release(inode, file);
3934         kvm_put_kvm(stat_data->kvm);
3935
3936         return 0;
3937 }
3938
3939 static int vm_stat_get_per_vm(void *data, u64 *val)
3940 {
3941         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3942
3943         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3944
3945         return 0;
3946 }
3947
3948 static int vm_stat_clear_per_vm(void *data, u64 val)
3949 {
3950         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3951
3952         if (val)
3953                 return -EINVAL;
3954
3955         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3956
3957         return 0;
3958 }
3959
3960 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3961 {
3962         __simple_attr_check_format("%llu\n", 0ull);
3963         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3964                                 vm_stat_clear_per_vm, "%llu\n");
3965 }
3966
3967 static const struct file_operations vm_stat_get_per_vm_fops = {
3968         .owner   = THIS_MODULE,
3969         .open    = vm_stat_get_per_vm_open,
3970         .release = kvm_debugfs_release,
3971         .read    = simple_attr_read,
3972         .write   = simple_attr_write,
3973         .llseek  = no_llseek,
3974 };
3975
3976 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3977 {
3978         int i;
3979         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3980         struct kvm_vcpu *vcpu;
3981
3982         *val = 0;
3983
3984         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3985                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3986
3987         return 0;
3988 }
3989
3990 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3991 {
3992         int i;
3993         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3994         struct kvm_vcpu *vcpu;
3995
3996         if (val)
3997                 return -EINVAL;
3998
3999         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4000                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4001
4002         return 0;
4003 }
4004
4005 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4006 {
4007         __simple_attr_check_format("%llu\n", 0ull);
4008         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4009                                  vcpu_stat_clear_per_vm, "%llu\n");
4010 }
4011
4012 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4013         .owner   = THIS_MODULE,
4014         .open    = vcpu_stat_get_per_vm_open,
4015         .release = kvm_debugfs_release,
4016         .read    = simple_attr_read,
4017         .write   = simple_attr_write,
4018         .llseek  = no_llseek,
4019 };
4020
4021 static const struct file_operations *stat_fops_per_vm[] = {
4022         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4023         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4024 };
4025
4026 static int vm_stat_get(void *_offset, u64 *val)
4027 {
4028         unsigned offset = (long)_offset;
4029         struct kvm *kvm;
4030         struct kvm_stat_data stat_tmp = {.offset = offset};
4031         u64 tmp_val;
4032
4033         *val = 0;
4034         spin_lock(&kvm_lock);
4035         list_for_each_entry(kvm, &vm_list, vm_list) {
4036                 stat_tmp.kvm = kvm;
4037                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4038                 *val += tmp_val;
4039         }
4040         spin_unlock(&kvm_lock);
4041         return 0;
4042 }
4043
4044 static int vm_stat_clear(void *_offset, u64 val)
4045 {
4046         unsigned offset = (long)_offset;
4047         struct kvm *kvm;
4048         struct kvm_stat_data stat_tmp = {.offset = offset};
4049
4050         if (val)
4051                 return -EINVAL;
4052
4053         spin_lock(&kvm_lock);
4054         list_for_each_entry(kvm, &vm_list, vm_list) {
4055                 stat_tmp.kvm = kvm;
4056                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4057         }
4058         spin_unlock(&kvm_lock);
4059
4060         return 0;
4061 }
4062
4063 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4064
4065 static int vcpu_stat_get(void *_offset, u64 *val)
4066 {
4067         unsigned offset = (long)_offset;
4068         struct kvm *kvm;
4069         struct kvm_stat_data stat_tmp = {.offset = offset};
4070         u64 tmp_val;
4071
4072         *val = 0;
4073         spin_lock(&kvm_lock);
4074         list_for_each_entry(kvm, &vm_list, vm_list) {
4075                 stat_tmp.kvm = kvm;
4076                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4077                 *val += tmp_val;
4078         }
4079         spin_unlock(&kvm_lock);
4080         return 0;
4081 }
4082
4083 static int vcpu_stat_clear(void *_offset, u64 val)
4084 {
4085         unsigned offset = (long)_offset;
4086         struct kvm *kvm;
4087         struct kvm_stat_data stat_tmp = {.offset = offset};
4088
4089         if (val)
4090                 return -EINVAL;
4091
4092         spin_lock(&kvm_lock);
4093         list_for_each_entry(kvm, &vm_list, vm_list) {
4094                 stat_tmp.kvm = kvm;
4095                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4096         }
4097         spin_unlock(&kvm_lock);
4098
4099         return 0;
4100 }
4101
4102 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4103                         "%llu\n");
4104
4105 static const struct file_operations *stat_fops[] = {
4106         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4107         [KVM_STAT_VM]   = &vm_stat_fops,
4108 };
4109
4110 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4111 {
4112         struct kobj_uevent_env *env;
4113         unsigned long long created, active;
4114
4115         if (!kvm_dev.this_device || !kvm)
4116                 return;
4117
4118         spin_lock(&kvm_lock);
4119         if (type == KVM_EVENT_CREATE_VM) {
4120                 kvm_createvm_count++;
4121                 kvm_active_vms++;
4122         } else if (type == KVM_EVENT_DESTROY_VM) {
4123                 kvm_active_vms--;
4124         }
4125         created = kvm_createvm_count;
4126         active = kvm_active_vms;
4127         spin_unlock(&kvm_lock);
4128
4129         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4130         if (!env)
4131                 return;
4132
4133         add_uevent_var(env, "CREATED=%llu", created);
4134         add_uevent_var(env, "COUNT=%llu", active);
4135
4136         if (type == KVM_EVENT_CREATE_VM) {
4137                 add_uevent_var(env, "EVENT=create");
4138                 kvm->userspace_pid = task_pid_nr(current);
4139         } else if (type == KVM_EVENT_DESTROY_VM) {
4140                 add_uevent_var(env, "EVENT=destroy");
4141         }
4142         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4143
4144         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4145                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4146
4147                 if (p) {
4148                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4149                         if (!IS_ERR(tmp))
4150                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4151                         kfree(p);
4152                 }
4153         }
4154         /* no need for checks, since we are adding at most only 5 keys */
4155         env->envp[env->envp_idx++] = NULL;
4156         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4157         kfree(env);
4158 }
4159
4160 static void kvm_init_debug(void)
4161 {
4162         struct kvm_stats_debugfs_item *p;
4163
4164         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4165
4166         kvm_debugfs_num_entries = 0;
4167         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4168                 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4169                                     (void *)(long)p->offset,
4170                                     stat_fops[p->kind]);
4171         }
4172 }
4173
4174 static int kvm_suspend(void)
4175 {
4176         if (kvm_usage_count)
4177                 hardware_disable_nolock(NULL);
4178         return 0;
4179 }
4180
4181 static void kvm_resume(void)
4182 {
4183         if (kvm_usage_count) {
4184                 lockdep_assert_held(&kvm_count_lock);
4185                 hardware_enable_nolock(NULL);
4186         }
4187 }
4188
4189 static struct syscore_ops kvm_syscore_ops = {
4190         .suspend = kvm_suspend,
4191         .resume = kvm_resume,
4192 };
4193
4194 static inline
4195 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4196 {
4197         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4198 }
4199
4200 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4201 {
4202         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4203
4204         if (vcpu->preempted)
4205                 vcpu->preempted = false;
4206
4207         kvm_arch_sched_in(vcpu, cpu);
4208
4209         kvm_arch_vcpu_load(vcpu, cpu);
4210 }
4211
4212 static void kvm_sched_out(struct preempt_notifier *pn,
4213                           struct task_struct *next)
4214 {
4215         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4216
4217         if (current->state == TASK_RUNNING)
4218                 vcpu->preempted = true;
4219         kvm_arch_vcpu_put(vcpu);
4220 }
4221
4222 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4223                   struct module *module)
4224 {
4225         int r;
4226         int cpu;
4227
4228         r = kvm_arch_init(opaque);
4229         if (r)
4230                 goto out_fail;
4231
4232         /*
4233          * kvm_arch_init makes sure there's at most one caller
4234          * for architectures that support multiple implementations,
4235          * like intel and amd on x86.
4236          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4237          * conflicts in case kvm is already setup for another implementation.
4238          */
4239         r = kvm_irqfd_init();
4240         if (r)
4241                 goto out_irqfd;
4242
4243         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4244                 r = -ENOMEM;
4245                 goto out_free_0;
4246         }
4247
4248         r = kvm_arch_hardware_setup();
4249         if (r < 0)
4250                 goto out_free_0a;
4251
4252         for_each_online_cpu(cpu) {
4253                 smp_call_function_single(cpu,
4254                                 kvm_arch_check_processor_compat,
4255                                 &r, 1);
4256                 if (r < 0)
4257                         goto out_free_1;
4258         }
4259
4260         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4261                                       kvm_starting_cpu, kvm_dying_cpu);
4262         if (r)
4263                 goto out_free_2;
4264         register_reboot_notifier(&kvm_reboot_notifier);
4265
4266         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4267         if (!vcpu_align)
4268                 vcpu_align = __alignof__(struct kvm_vcpu);
4269         kvm_vcpu_cache =
4270                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4271                                            SLAB_ACCOUNT,
4272                                            offsetof(struct kvm_vcpu, arch),
4273                                            sizeof_field(struct kvm_vcpu, arch),
4274                                            NULL);
4275         if (!kvm_vcpu_cache) {
4276                 r = -ENOMEM;
4277                 goto out_free_3;
4278         }
4279
4280         r = kvm_async_pf_init();
4281         if (r)
4282                 goto out_free;
4283
4284         kvm_chardev_ops.owner = module;
4285         kvm_vm_fops.owner = module;
4286         kvm_vcpu_fops.owner = module;
4287
4288         r = misc_register(&kvm_dev);
4289         if (r) {
4290                 pr_err("kvm: misc device register failed\n");
4291                 goto out_unreg;
4292         }
4293
4294         register_syscore_ops(&kvm_syscore_ops);
4295
4296         kvm_preempt_ops.sched_in = kvm_sched_in;
4297         kvm_preempt_ops.sched_out = kvm_sched_out;
4298
4299         kvm_init_debug();
4300
4301         r = kvm_vfio_ops_init();
4302         WARN_ON(r);
4303
4304         return 0;
4305
4306 out_unreg:
4307         kvm_async_pf_deinit();
4308 out_free:
4309         kmem_cache_destroy(kvm_vcpu_cache);
4310 out_free_3:
4311         unregister_reboot_notifier(&kvm_reboot_notifier);
4312         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4313 out_free_2:
4314 out_free_1:
4315         kvm_arch_hardware_unsetup();
4316 out_free_0a:
4317         free_cpumask_var(cpus_hardware_enabled);
4318 out_free_0:
4319         kvm_irqfd_exit();
4320 out_irqfd:
4321         kvm_arch_exit();
4322 out_fail:
4323         return r;
4324 }
4325 EXPORT_SYMBOL_GPL(kvm_init);
4326
4327 void kvm_exit(void)
4328 {
4329         debugfs_remove_recursive(kvm_debugfs_dir);
4330         misc_deregister(&kvm_dev);
4331         kmem_cache_destroy(kvm_vcpu_cache);
4332         kvm_async_pf_deinit();
4333         unregister_syscore_ops(&kvm_syscore_ops);
4334         unregister_reboot_notifier(&kvm_reboot_notifier);
4335         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4336         on_each_cpu(hardware_disable_nolock, NULL, 1);
4337         kvm_arch_hardware_unsetup();
4338         kvm_arch_exit();
4339         kvm_irqfd_exit();
4340         free_cpumask_var(cpus_hardware_enabled);
4341         kvm_vfio_ops_exit();
4342 }
4343 EXPORT_SYMBOL_GPL(kvm_exit);