KVM: Remove redundant argument to kvm_arch_vcpu_ioctl_run
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94  * Ordering of locks:
95  *
96  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 static struct kmem_cache *kvm_vcpu_cache;
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations stat_fops_per_vm;
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133                                 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137         return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
140                         .open           = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                 unsigned long start, unsigned long end, bool blockable)
160 {
161         return 0;
162 }
163
164 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165 {
166         /*
167          * The metadata used by is_zone_device_page() to determine whether or
168          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
169          * the device has been pinned, e.g. by get_user_pages().  WARN if the
170          * page_count() is zero to help detect bad usage of this helper.
171          */
172         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173                 return false;
174
175         return is_zone_device_page(pfn_to_page(pfn));
176 }
177
178 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
179 {
180         /*
181          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
182          * perspective they are "normal" pages, albeit with slightly different
183          * usage rules.
184          */
185         if (pfn_valid(pfn))
186                 return PageReserved(pfn_to_page(pfn)) &&
187                        !is_zero_pfn(pfn) &&
188                        !kvm_is_zone_device_pfn(pfn);
189
190         return true;
191 }
192
193 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
194 {
195         struct page *page = pfn_to_page(pfn);
196
197         if (!PageTransCompoundMap(page))
198                 return false;
199
200         return is_transparent_hugepage(compound_head(page));
201 }
202
203 /*
204  * Switches to specified vcpu, until a matching vcpu_put()
205  */
206 void vcpu_load(struct kvm_vcpu *vcpu)
207 {
208         int cpu = get_cpu();
209
210         __this_cpu_write(kvm_running_vcpu, vcpu);
211         preempt_notifier_register(&vcpu->preempt_notifier);
212         kvm_arch_vcpu_load(vcpu, cpu);
213         put_cpu();
214 }
215 EXPORT_SYMBOL_GPL(vcpu_load);
216
217 void vcpu_put(struct kvm_vcpu *vcpu)
218 {
219         preempt_disable();
220         kvm_arch_vcpu_put(vcpu);
221         preempt_notifier_unregister(&vcpu->preempt_notifier);
222         __this_cpu_write(kvm_running_vcpu, NULL);
223         preempt_enable();
224 }
225 EXPORT_SYMBOL_GPL(vcpu_put);
226
227 /* TODO: merge with kvm_arch_vcpu_should_kick */
228 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
229 {
230         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231
232         /*
233          * We need to wait for the VCPU to reenable interrupts and get out of
234          * READING_SHADOW_PAGE_TABLES mode.
235          */
236         if (req & KVM_REQUEST_WAIT)
237                 return mode != OUTSIDE_GUEST_MODE;
238
239         /*
240          * Need to kick a running VCPU, but otherwise there is nothing to do.
241          */
242         return mode == IN_GUEST_MODE;
243 }
244
245 static void ack_flush(void *_completed)
246 {
247 }
248
249 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250 {
251         if (unlikely(!cpus))
252                 cpus = cpu_online_mask;
253
254         if (cpumask_empty(cpus))
255                 return false;
256
257         smp_call_function_many(cpus, ack_flush, NULL, wait);
258         return true;
259 }
260
261 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
262                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264         int i, cpu, me;
265         struct kvm_vcpu *vcpu;
266         bool called;
267
268         me = get_cpu();
269
270         kvm_for_each_vcpu(i, vcpu, kvm) {
271                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
272                         continue;
273
274                 kvm_make_request(req, vcpu);
275                 cpu = vcpu->cpu;
276
277                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278                         continue;
279
280                 if (tmp != NULL && cpu != -1 && cpu != me &&
281                     kvm_request_needs_ipi(vcpu, req))
282                         __cpumask_set_cpu(cpu, tmp);
283         }
284
285         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286         put_cpu();
287
288         return called;
289 }
290
291 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
292 {
293         cpumask_var_t cpus;
294         bool called;
295
296         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
297
298         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
299
300         free_cpumask_var(cpus);
301         return called;
302 }
303
304 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
305 void kvm_flush_remote_tlbs(struct kvm *kvm)
306 {
307         /*
308          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
309          * kvm_make_all_cpus_request.
310          */
311         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
312
313         /*
314          * We want to publish modifications to the page tables before reading
315          * mode. Pairs with a memory barrier in arch-specific code.
316          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
317          * and smp_mb in walk_shadow_page_lockless_begin/end.
318          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
319          *
320          * There is already an smp_mb__after_atomic() before
321          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
322          * barrier here.
323          */
324         if (!kvm_arch_flush_remote_tlb(kvm)
325             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
326                 ++kvm->stat.remote_tlb_flush;
327         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
328 }
329 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
330 #endif
331
332 void kvm_reload_remote_mmus(struct kvm *kvm)
333 {
334         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
335 }
336
337 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
338 {
339         mutex_init(&vcpu->mutex);
340         vcpu->cpu = -1;
341         vcpu->kvm = kvm;
342         vcpu->vcpu_id = id;
343         vcpu->pid = NULL;
344         init_swait_queue_head(&vcpu->wq);
345         kvm_async_pf_vcpu_init(vcpu);
346
347         vcpu->pre_pcpu = -1;
348         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
349
350         kvm_vcpu_set_in_spin_loop(vcpu, false);
351         kvm_vcpu_set_dy_eligible(vcpu, false);
352         vcpu->preempted = false;
353         vcpu->ready = false;
354         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
355 }
356
357 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
358 {
359         kvm_arch_vcpu_destroy(vcpu);
360
361         /*
362          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
363          * the vcpu->pid pointer, and at destruction time all file descriptors
364          * are already gone.
365          */
366         put_pid(rcu_dereference_protected(vcpu->pid, 1));
367
368         free_page((unsigned long)vcpu->run);
369         kmem_cache_free(kvm_vcpu_cache, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
372
373 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
374 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
375 {
376         return container_of(mn, struct kvm, mmu_notifier);
377 }
378
379 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
380                                         struct mm_struct *mm,
381                                         unsigned long address,
382                                         pte_t pte)
383 {
384         struct kvm *kvm = mmu_notifier_to_kvm(mn);
385         int idx;
386
387         idx = srcu_read_lock(&kvm->srcu);
388         spin_lock(&kvm->mmu_lock);
389         kvm->mmu_notifier_seq++;
390
391         if (kvm_set_spte_hva(kvm, address, pte))
392                 kvm_flush_remote_tlbs(kvm);
393
394         spin_unlock(&kvm->mmu_lock);
395         srcu_read_unlock(&kvm->srcu, idx);
396 }
397
398 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
399                                         const struct mmu_notifier_range *range)
400 {
401         struct kvm *kvm = mmu_notifier_to_kvm(mn);
402         int need_tlb_flush = 0, idx;
403         int ret;
404
405         idx = srcu_read_lock(&kvm->srcu);
406         spin_lock(&kvm->mmu_lock);
407         /*
408          * The count increase must become visible at unlock time as no
409          * spte can be established without taking the mmu_lock and
410          * count is also read inside the mmu_lock critical section.
411          */
412         kvm->mmu_notifier_count++;
413         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
414         need_tlb_flush |= kvm->tlbs_dirty;
415         /* we've to flush the tlb before the pages can be freed */
416         if (need_tlb_flush)
417                 kvm_flush_remote_tlbs(kvm);
418
419         spin_unlock(&kvm->mmu_lock);
420
421         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
422                                         range->end,
423                                         mmu_notifier_range_blockable(range));
424
425         srcu_read_unlock(&kvm->srcu, idx);
426
427         return ret;
428 }
429
430 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
431                                         const struct mmu_notifier_range *range)
432 {
433         struct kvm *kvm = mmu_notifier_to_kvm(mn);
434
435         spin_lock(&kvm->mmu_lock);
436         /*
437          * This sequence increase will notify the kvm page fault that
438          * the page that is going to be mapped in the spte could have
439          * been freed.
440          */
441         kvm->mmu_notifier_seq++;
442         smp_wmb();
443         /*
444          * The above sequence increase must be visible before the
445          * below count decrease, which is ensured by the smp_wmb above
446          * in conjunction with the smp_rmb in mmu_notifier_retry().
447          */
448         kvm->mmu_notifier_count--;
449         spin_unlock(&kvm->mmu_lock);
450
451         BUG_ON(kvm->mmu_notifier_count < 0);
452 }
453
454 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
455                                               struct mm_struct *mm,
456                                               unsigned long start,
457                                               unsigned long end)
458 {
459         struct kvm *kvm = mmu_notifier_to_kvm(mn);
460         int young, idx;
461
462         idx = srcu_read_lock(&kvm->srcu);
463         spin_lock(&kvm->mmu_lock);
464
465         young = kvm_age_hva(kvm, start, end);
466         if (young)
467                 kvm_flush_remote_tlbs(kvm);
468
469         spin_unlock(&kvm->mmu_lock);
470         srcu_read_unlock(&kvm->srcu, idx);
471
472         return young;
473 }
474
475 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
476                                         struct mm_struct *mm,
477                                         unsigned long start,
478                                         unsigned long end)
479 {
480         struct kvm *kvm = mmu_notifier_to_kvm(mn);
481         int young, idx;
482
483         idx = srcu_read_lock(&kvm->srcu);
484         spin_lock(&kvm->mmu_lock);
485         /*
486          * Even though we do not flush TLB, this will still adversely
487          * affect performance on pre-Haswell Intel EPT, where there is
488          * no EPT Access Bit to clear so that we have to tear down EPT
489          * tables instead. If we find this unacceptable, we can always
490          * add a parameter to kvm_age_hva so that it effectively doesn't
491          * do anything on clear_young.
492          *
493          * Also note that currently we never issue secondary TLB flushes
494          * from clear_young, leaving this job up to the regular system
495          * cadence. If we find this inaccurate, we might come up with a
496          * more sophisticated heuristic later.
497          */
498         young = kvm_age_hva(kvm, start, end);
499         spin_unlock(&kvm->mmu_lock);
500         srcu_read_unlock(&kvm->srcu, idx);
501
502         return young;
503 }
504
505 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
506                                        struct mm_struct *mm,
507                                        unsigned long address)
508 {
509         struct kvm *kvm = mmu_notifier_to_kvm(mn);
510         int young, idx;
511
512         idx = srcu_read_lock(&kvm->srcu);
513         spin_lock(&kvm->mmu_lock);
514         young = kvm_test_age_hva(kvm, address);
515         spin_unlock(&kvm->mmu_lock);
516         srcu_read_unlock(&kvm->srcu, idx);
517
518         return young;
519 }
520
521 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
522                                      struct mm_struct *mm)
523 {
524         struct kvm *kvm = mmu_notifier_to_kvm(mn);
525         int idx;
526
527         idx = srcu_read_lock(&kvm->srcu);
528         kvm_arch_flush_shadow_all(kvm);
529         srcu_read_unlock(&kvm->srcu, idx);
530 }
531
532 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
533         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
534         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
535         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
536         .clear_young            = kvm_mmu_notifier_clear_young,
537         .test_young             = kvm_mmu_notifier_test_young,
538         .change_pte             = kvm_mmu_notifier_change_pte,
539         .release                = kvm_mmu_notifier_release,
540 };
541
542 static int kvm_init_mmu_notifier(struct kvm *kvm)
543 {
544         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
545         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
546 }
547
548 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
549
550 static int kvm_init_mmu_notifier(struct kvm *kvm)
551 {
552         return 0;
553 }
554
555 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
556
557 static struct kvm_memslots *kvm_alloc_memslots(void)
558 {
559         int i;
560         struct kvm_memslots *slots;
561
562         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
563         if (!slots)
564                 return NULL;
565
566         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
567                 slots->id_to_index[i] = -1;
568
569         return slots;
570 }
571
572 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
573 {
574         if (!memslot->dirty_bitmap)
575                 return;
576
577         kvfree(memslot->dirty_bitmap);
578         memslot->dirty_bitmap = NULL;
579 }
580
581 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
582 {
583         kvm_destroy_dirty_bitmap(slot);
584
585         kvm_arch_free_memslot(kvm, slot);
586
587         slot->flags = 0;
588         slot->npages = 0;
589 }
590
591 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
592 {
593         struct kvm_memory_slot *memslot;
594
595         if (!slots)
596                 return;
597
598         kvm_for_each_memslot(memslot, slots)
599                 kvm_free_memslot(kvm, memslot);
600
601         kvfree(slots);
602 }
603
604 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
605 {
606         int i;
607
608         if (!kvm->debugfs_dentry)
609                 return;
610
611         debugfs_remove_recursive(kvm->debugfs_dentry);
612
613         if (kvm->debugfs_stat_data) {
614                 for (i = 0; i < kvm_debugfs_num_entries; i++)
615                         kfree(kvm->debugfs_stat_data[i]);
616                 kfree(kvm->debugfs_stat_data);
617         }
618 }
619
620 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
621 {
622         char dir_name[ITOA_MAX_LEN * 2];
623         struct kvm_stat_data *stat_data;
624         struct kvm_stats_debugfs_item *p;
625
626         if (!debugfs_initialized())
627                 return 0;
628
629         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
630         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
631
632         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
633                                          sizeof(*kvm->debugfs_stat_data),
634                                          GFP_KERNEL_ACCOUNT);
635         if (!kvm->debugfs_stat_data)
636                 return -ENOMEM;
637
638         for (p = debugfs_entries; p->name; p++) {
639                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
640                 if (!stat_data)
641                         return -ENOMEM;
642
643                 stat_data->kvm = kvm;
644                 stat_data->dbgfs_item = p;
645                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
646                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
647                                     kvm->debugfs_dentry, stat_data,
648                                     &stat_fops_per_vm);
649         }
650         return 0;
651 }
652
653 /*
654  * Called after the VM is otherwise initialized, but just before adding it to
655  * the vm_list.
656  */
657 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
658 {
659         return 0;
660 }
661
662 /*
663  * Called just after removing the VM from the vm_list, but before doing any
664  * other destruction.
665  */
666 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
667 {
668 }
669
670 static struct kvm *kvm_create_vm(unsigned long type)
671 {
672         struct kvm *kvm = kvm_arch_alloc_vm();
673         int r = -ENOMEM;
674         int i;
675
676         if (!kvm)
677                 return ERR_PTR(-ENOMEM);
678
679         spin_lock_init(&kvm->mmu_lock);
680         mmgrab(current->mm);
681         kvm->mm = current->mm;
682         kvm_eventfd_init(kvm);
683         mutex_init(&kvm->lock);
684         mutex_init(&kvm->irq_lock);
685         mutex_init(&kvm->slots_lock);
686         INIT_LIST_HEAD(&kvm->devices);
687
688         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
689
690         if (init_srcu_struct(&kvm->srcu))
691                 goto out_err_no_srcu;
692         if (init_srcu_struct(&kvm->irq_srcu))
693                 goto out_err_no_irq_srcu;
694
695         refcount_set(&kvm->users_count, 1);
696         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
697                 struct kvm_memslots *slots = kvm_alloc_memslots();
698
699                 if (!slots)
700                         goto out_err_no_arch_destroy_vm;
701                 /* Generations must be different for each address space. */
702                 slots->generation = i;
703                 rcu_assign_pointer(kvm->memslots[i], slots);
704         }
705
706         for (i = 0; i < KVM_NR_BUSES; i++) {
707                 rcu_assign_pointer(kvm->buses[i],
708                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
709                 if (!kvm->buses[i])
710                         goto out_err_no_arch_destroy_vm;
711         }
712
713         r = kvm_arch_init_vm(kvm, type);
714         if (r)
715                 goto out_err_no_arch_destroy_vm;
716
717         r = hardware_enable_all();
718         if (r)
719                 goto out_err_no_disable;
720
721 #ifdef CONFIG_HAVE_KVM_IRQFD
722         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
723 #endif
724
725         r = kvm_init_mmu_notifier(kvm);
726         if (r)
727                 goto out_err_no_mmu_notifier;
728
729         r = kvm_arch_post_init_vm(kvm);
730         if (r)
731                 goto out_err;
732
733         mutex_lock(&kvm_lock);
734         list_add(&kvm->vm_list, &vm_list);
735         mutex_unlock(&kvm_lock);
736
737         preempt_notifier_inc();
738
739         return kvm;
740
741 out_err:
742 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
743         if (kvm->mmu_notifier.ops)
744                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
745 #endif
746 out_err_no_mmu_notifier:
747         hardware_disable_all();
748 out_err_no_disable:
749         kvm_arch_destroy_vm(kvm);
750 out_err_no_arch_destroy_vm:
751         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
752         for (i = 0; i < KVM_NR_BUSES; i++)
753                 kfree(kvm_get_bus(kvm, i));
754         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
755                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
756         cleanup_srcu_struct(&kvm->irq_srcu);
757 out_err_no_irq_srcu:
758         cleanup_srcu_struct(&kvm->srcu);
759 out_err_no_srcu:
760         kvm_arch_free_vm(kvm);
761         mmdrop(current->mm);
762         return ERR_PTR(r);
763 }
764
765 static void kvm_destroy_devices(struct kvm *kvm)
766 {
767         struct kvm_device *dev, *tmp;
768
769         /*
770          * We do not need to take the kvm->lock here, because nobody else
771          * has a reference to the struct kvm at this point and therefore
772          * cannot access the devices list anyhow.
773          */
774         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
775                 list_del(&dev->vm_node);
776                 dev->ops->destroy(dev);
777         }
778 }
779
780 static void kvm_destroy_vm(struct kvm *kvm)
781 {
782         int i;
783         struct mm_struct *mm = kvm->mm;
784
785         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
786         kvm_destroy_vm_debugfs(kvm);
787         kvm_arch_sync_events(kvm);
788         mutex_lock(&kvm_lock);
789         list_del(&kvm->vm_list);
790         mutex_unlock(&kvm_lock);
791         kvm_arch_pre_destroy_vm(kvm);
792
793         kvm_free_irq_routing(kvm);
794         for (i = 0; i < KVM_NR_BUSES; i++) {
795                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
796
797                 if (bus)
798                         kvm_io_bus_destroy(bus);
799                 kvm->buses[i] = NULL;
800         }
801         kvm_coalesced_mmio_free(kvm);
802 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
803         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
804 #else
805         kvm_arch_flush_shadow_all(kvm);
806 #endif
807         kvm_arch_destroy_vm(kvm);
808         kvm_destroy_devices(kvm);
809         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
810                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
811         cleanup_srcu_struct(&kvm->irq_srcu);
812         cleanup_srcu_struct(&kvm->srcu);
813         kvm_arch_free_vm(kvm);
814         preempt_notifier_dec();
815         hardware_disable_all();
816         mmdrop(mm);
817 }
818
819 void kvm_get_kvm(struct kvm *kvm)
820 {
821         refcount_inc(&kvm->users_count);
822 }
823 EXPORT_SYMBOL_GPL(kvm_get_kvm);
824
825 void kvm_put_kvm(struct kvm *kvm)
826 {
827         if (refcount_dec_and_test(&kvm->users_count))
828                 kvm_destroy_vm(kvm);
829 }
830 EXPORT_SYMBOL_GPL(kvm_put_kvm);
831
832 /*
833  * Used to put a reference that was taken on behalf of an object associated
834  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
835  * of the new file descriptor fails and the reference cannot be transferred to
836  * its final owner.  In such cases, the caller is still actively using @kvm and
837  * will fail miserably if the refcount unexpectedly hits zero.
838  */
839 void kvm_put_kvm_no_destroy(struct kvm *kvm)
840 {
841         WARN_ON(refcount_dec_and_test(&kvm->users_count));
842 }
843 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
844
845 static int kvm_vm_release(struct inode *inode, struct file *filp)
846 {
847         struct kvm *kvm = filp->private_data;
848
849         kvm_irqfd_release(kvm);
850
851         kvm_put_kvm(kvm);
852         return 0;
853 }
854
855 /*
856  * Allocation size is twice as large as the actual dirty bitmap size.
857  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
858  */
859 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
860 {
861         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
862
863         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
864         if (!memslot->dirty_bitmap)
865                 return -ENOMEM;
866
867         return 0;
868 }
869
870 /*
871  * Delete a memslot by decrementing the number of used slots and shifting all
872  * other entries in the array forward one spot.
873  */
874 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
875                                       struct kvm_memory_slot *memslot)
876 {
877         struct kvm_memory_slot *mslots = slots->memslots;
878         int i;
879
880         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
881                 return;
882
883         slots->used_slots--;
884
885         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
886                 atomic_set(&slots->lru_slot, 0);
887
888         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
889                 mslots[i] = mslots[i + 1];
890                 slots->id_to_index[mslots[i].id] = i;
891         }
892         mslots[i] = *memslot;
893         slots->id_to_index[memslot->id] = -1;
894 }
895
896 /*
897  * "Insert" a new memslot by incrementing the number of used slots.  Returns
898  * the new slot's initial index into the memslots array.
899  */
900 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
901 {
902         return slots->used_slots++;
903 }
904
905 /*
906  * Move a changed memslot backwards in the array by shifting existing slots
907  * with a higher GFN toward the front of the array.  Note, the changed memslot
908  * itself is not preserved in the array, i.e. not swapped at this time, only
909  * its new index into the array is tracked.  Returns the changed memslot's
910  * current index into the memslots array.
911  */
912 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
913                                             struct kvm_memory_slot *memslot)
914 {
915         struct kvm_memory_slot *mslots = slots->memslots;
916         int i;
917
918         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
919             WARN_ON_ONCE(!slots->used_slots))
920                 return -1;
921
922         /*
923          * Move the target memslot backward in the array by shifting existing
924          * memslots with a higher GFN (than the target memslot) towards the
925          * front of the array.
926          */
927         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
928                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
929                         break;
930
931                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
932
933                 /* Shift the next memslot forward one and update its index. */
934                 mslots[i] = mslots[i + 1];
935                 slots->id_to_index[mslots[i].id] = i;
936         }
937         return i;
938 }
939
940 /*
941  * Move a changed memslot forwards in the array by shifting existing slots with
942  * a lower GFN toward the back of the array.  Note, the changed memslot itself
943  * is not preserved in the array, i.e. not swapped at this time, only its new
944  * index into the array is tracked.  Returns the changed memslot's final index
945  * into the memslots array.
946  */
947 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
948                                            struct kvm_memory_slot *memslot,
949                                            int start)
950 {
951         struct kvm_memory_slot *mslots = slots->memslots;
952         int i;
953
954         for (i = start; i > 0; i--) {
955                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
956                         break;
957
958                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
959
960                 /* Shift the next memslot back one and update its index. */
961                 mslots[i] = mslots[i - 1];
962                 slots->id_to_index[mslots[i].id] = i;
963         }
964         return i;
965 }
966
967 /*
968  * Re-sort memslots based on their GFN to account for an added, deleted, or
969  * moved memslot.  Sorting memslots by GFN allows using a binary search during
970  * memslot lookup.
971  *
972  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
973  * at memslots[0] has the highest GFN.
974  *
975  * The sorting algorithm takes advantage of having initially sorted memslots
976  * and knowing the position of the changed memslot.  Sorting is also optimized
977  * by not swapping the updated memslot and instead only shifting other memslots
978  * and tracking the new index for the update memslot.  Only once its final
979  * index is known is the updated memslot copied into its position in the array.
980  *
981  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
982  *    the end of the array.
983  *
984  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
985  *    end of the array and then it forward to its correct location.
986  *
987  *  - When moving a memslot, the algorithm first moves the updated memslot
988  *    backward to handle the scenario where the memslot's GFN was changed to a
989  *    lower value.  update_memslots() then falls through and runs the same flow
990  *    as creating a memslot to move the memslot forward to handle the scenario
991  *    where its GFN was changed to a higher value.
992  *
993  * Note, slots are sorted from highest->lowest instead of lowest->highest for
994  * historical reasons.  Originally, invalid memslots where denoted by having
995  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
996  * to the end of the array.  The current algorithm uses dedicated logic to
997  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
998  *
999  * The other historical motiviation for highest->lowest was to improve the
1000  * performance of memslot lookup.  KVM originally used a linear search starting
1001  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1002  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1003  * single memslot above the 4gb boundary.  As the largest memslot is also the
1004  * most likely to be referenced, sorting it to the front of the array was
1005  * advantageous.  The current binary search starts from the middle of the array
1006  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1007  */
1008 static void update_memslots(struct kvm_memslots *slots,
1009                             struct kvm_memory_slot *memslot,
1010                             enum kvm_mr_change change)
1011 {
1012         int i;
1013
1014         if (change == KVM_MR_DELETE) {
1015                 kvm_memslot_delete(slots, memslot);
1016         } else {
1017                 if (change == KVM_MR_CREATE)
1018                         i = kvm_memslot_insert_back(slots);
1019                 else
1020                         i = kvm_memslot_move_backward(slots, memslot);
1021                 i = kvm_memslot_move_forward(slots, memslot, i);
1022
1023                 /*
1024                  * Copy the memslot to its new position in memslots and update
1025                  * its index accordingly.
1026                  */
1027                 slots->memslots[i] = *memslot;
1028                 slots->id_to_index[memslot->id] = i;
1029         }
1030 }
1031
1032 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1033 {
1034         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1035
1036 #ifdef __KVM_HAVE_READONLY_MEM
1037         valid_flags |= KVM_MEM_READONLY;
1038 #endif
1039
1040         if (mem->flags & ~valid_flags)
1041                 return -EINVAL;
1042
1043         return 0;
1044 }
1045
1046 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1047                 int as_id, struct kvm_memslots *slots)
1048 {
1049         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1050         u64 gen = old_memslots->generation;
1051
1052         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1053         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1054
1055         rcu_assign_pointer(kvm->memslots[as_id], slots);
1056         synchronize_srcu_expedited(&kvm->srcu);
1057
1058         /*
1059          * Increment the new memslot generation a second time, dropping the
1060          * update in-progress flag and incrementing the generation based on
1061          * the number of address spaces.  This provides a unique and easily
1062          * identifiable generation number while the memslots are in flux.
1063          */
1064         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1065
1066         /*
1067          * Generations must be unique even across address spaces.  We do not need
1068          * a global counter for that, instead the generation space is evenly split
1069          * across address spaces.  For example, with two address spaces, address
1070          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1071          * use generations 1, 3, 5, ...
1072          */
1073         gen += KVM_ADDRESS_SPACE_NUM;
1074
1075         kvm_arch_memslots_updated(kvm, gen);
1076
1077         slots->generation = gen;
1078
1079         return old_memslots;
1080 }
1081
1082 /*
1083  * Note, at a minimum, the current number of used slots must be allocated, even
1084  * when deleting a memslot, as we need a complete duplicate of the memslots for
1085  * use when invalidating a memslot prior to deleting/moving the memslot.
1086  */
1087 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1088                                              enum kvm_mr_change change)
1089 {
1090         struct kvm_memslots *slots;
1091         size_t old_size, new_size;
1092
1093         old_size = sizeof(struct kvm_memslots) +
1094                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1095
1096         if (change == KVM_MR_CREATE)
1097                 new_size = old_size + sizeof(struct kvm_memory_slot);
1098         else
1099                 new_size = old_size;
1100
1101         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1102         if (likely(slots))
1103                 memcpy(slots, old, old_size);
1104
1105         return slots;
1106 }
1107
1108 static int kvm_set_memslot(struct kvm *kvm,
1109                            const struct kvm_userspace_memory_region *mem,
1110                            struct kvm_memory_slot *old,
1111                            struct kvm_memory_slot *new, int as_id,
1112                            enum kvm_mr_change change)
1113 {
1114         struct kvm_memory_slot *slot;
1115         struct kvm_memslots *slots;
1116         int r;
1117
1118         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1119         if (!slots)
1120                 return -ENOMEM;
1121
1122         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1123                 /*
1124                  * Note, the INVALID flag needs to be in the appropriate entry
1125                  * in the freshly allocated memslots, not in @old or @new.
1126                  */
1127                 slot = id_to_memslot(slots, old->id);
1128                 slot->flags |= KVM_MEMSLOT_INVALID;
1129
1130                 /*
1131                  * We can re-use the old memslots, the only difference from the
1132                  * newly installed memslots is the invalid flag, which will get
1133                  * dropped by update_memslots anyway.  We'll also revert to the
1134                  * old memslots if preparing the new memory region fails.
1135                  */
1136                 slots = install_new_memslots(kvm, as_id, slots);
1137
1138                 /* From this point no new shadow pages pointing to a deleted,
1139                  * or moved, memslot will be created.
1140                  *
1141                  * validation of sp->gfn happens in:
1142                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1143                  *      - kvm_is_visible_gfn (mmu_check_root)
1144                  */
1145                 kvm_arch_flush_shadow_memslot(kvm, slot);
1146         }
1147
1148         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1149         if (r)
1150                 goto out_slots;
1151
1152         update_memslots(slots, new, change);
1153         slots = install_new_memslots(kvm, as_id, slots);
1154
1155         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1156
1157         kvfree(slots);
1158         return 0;
1159
1160 out_slots:
1161         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1162                 slots = install_new_memslots(kvm, as_id, slots);
1163         kvfree(slots);
1164         return r;
1165 }
1166
1167 static int kvm_delete_memslot(struct kvm *kvm,
1168                               const struct kvm_userspace_memory_region *mem,
1169                               struct kvm_memory_slot *old, int as_id)
1170 {
1171         struct kvm_memory_slot new;
1172         int r;
1173
1174         if (!old->npages)
1175                 return -EINVAL;
1176
1177         memset(&new, 0, sizeof(new));
1178         new.id = old->id;
1179
1180         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1181         if (r)
1182                 return r;
1183
1184         kvm_free_memslot(kvm, old);
1185         return 0;
1186 }
1187
1188 /*
1189  * Allocate some memory and give it an address in the guest physical address
1190  * space.
1191  *
1192  * Discontiguous memory is allowed, mostly for framebuffers.
1193  *
1194  * Must be called holding kvm->slots_lock for write.
1195  */
1196 int __kvm_set_memory_region(struct kvm *kvm,
1197                             const struct kvm_userspace_memory_region *mem)
1198 {
1199         struct kvm_memory_slot old, new;
1200         struct kvm_memory_slot *tmp;
1201         enum kvm_mr_change change;
1202         int as_id, id;
1203         int r;
1204
1205         r = check_memory_region_flags(mem);
1206         if (r)
1207                 return r;
1208
1209         as_id = mem->slot >> 16;
1210         id = (u16)mem->slot;
1211
1212         /* General sanity checks */
1213         if (mem->memory_size & (PAGE_SIZE - 1))
1214                 return -EINVAL;
1215         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1216                 return -EINVAL;
1217         /* We can read the guest memory with __xxx_user() later on. */
1218         if ((id < KVM_USER_MEM_SLOTS) &&
1219             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1220              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1221                         mem->memory_size)))
1222                 return -EINVAL;
1223         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1224                 return -EINVAL;
1225         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1226                 return -EINVAL;
1227
1228         /*
1229          * Make a full copy of the old memslot, the pointer will become stale
1230          * when the memslots are re-sorted by update_memslots(), and the old
1231          * memslot needs to be referenced after calling update_memslots(), e.g.
1232          * to free its resources and for arch specific behavior.
1233          */
1234         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1235         if (tmp) {
1236                 old = *tmp;
1237                 tmp = NULL;
1238         } else {
1239                 memset(&old, 0, sizeof(old));
1240                 old.id = id;
1241         }
1242
1243         if (!mem->memory_size)
1244                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1245
1246         new.id = id;
1247         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1248         new.npages = mem->memory_size >> PAGE_SHIFT;
1249         new.flags = mem->flags;
1250         new.userspace_addr = mem->userspace_addr;
1251
1252         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1253                 return -EINVAL;
1254
1255         if (!old.npages) {
1256                 change = KVM_MR_CREATE;
1257                 new.dirty_bitmap = NULL;
1258                 memset(&new.arch, 0, sizeof(new.arch));
1259         } else { /* Modify an existing slot. */
1260                 if ((new.userspace_addr != old.userspace_addr) ||
1261                     (new.npages != old.npages) ||
1262                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1263                         return -EINVAL;
1264
1265                 if (new.base_gfn != old.base_gfn)
1266                         change = KVM_MR_MOVE;
1267                 else if (new.flags != old.flags)
1268                         change = KVM_MR_FLAGS_ONLY;
1269                 else /* Nothing to change. */
1270                         return 0;
1271
1272                 /* Copy dirty_bitmap and arch from the current memslot. */
1273                 new.dirty_bitmap = old.dirty_bitmap;
1274                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1275         }
1276
1277         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1278                 /* Check for overlaps */
1279                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1280                         if (tmp->id == id)
1281                                 continue;
1282                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1283                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1284                                 return -EEXIST;
1285                 }
1286         }
1287
1288         /* Allocate/free page dirty bitmap as needed */
1289         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1290                 new.dirty_bitmap = NULL;
1291         else if (!new.dirty_bitmap) {
1292                 r = kvm_alloc_dirty_bitmap(&new);
1293                 if (r)
1294                         return r;
1295
1296                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1297                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1298         }
1299
1300         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1301         if (r)
1302                 goto out_bitmap;
1303
1304         if (old.dirty_bitmap && !new.dirty_bitmap)
1305                 kvm_destroy_dirty_bitmap(&old);
1306         return 0;
1307
1308 out_bitmap:
1309         if (new.dirty_bitmap && !old.dirty_bitmap)
1310                 kvm_destroy_dirty_bitmap(&new);
1311         return r;
1312 }
1313 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1314
1315 int kvm_set_memory_region(struct kvm *kvm,
1316                           const struct kvm_userspace_memory_region *mem)
1317 {
1318         int r;
1319
1320         mutex_lock(&kvm->slots_lock);
1321         r = __kvm_set_memory_region(kvm, mem);
1322         mutex_unlock(&kvm->slots_lock);
1323         return r;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1326
1327 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1328                                           struct kvm_userspace_memory_region *mem)
1329 {
1330         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1331                 return -EINVAL;
1332
1333         return kvm_set_memory_region(kvm, mem);
1334 }
1335
1336 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1337 /**
1338  * kvm_get_dirty_log - get a snapshot of dirty pages
1339  * @kvm:        pointer to kvm instance
1340  * @log:        slot id and address to which we copy the log
1341  * @is_dirty:   set to '1' if any dirty pages were found
1342  * @memslot:    set to the associated memslot, always valid on success
1343  */
1344 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1345                       int *is_dirty, struct kvm_memory_slot **memslot)
1346 {
1347         struct kvm_memslots *slots;
1348         int i, as_id, id;
1349         unsigned long n;
1350         unsigned long any = 0;
1351
1352         *memslot = NULL;
1353         *is_dirty = 0;
1354
1355         as_id = log->slot >> 16;
1356         id = (u16)log->slot;
1357         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1358                 return -EINVAL;
1359
1360         slots = __kvm_memslots(kvm, as_id);
1361         *memslot = id_to_memslot(slots, id);
1362         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1363                 return -ENOENT;
1364
1365         kvm_arch_sync_dirty_log(kvm, *memslot);
1366
1367         n = kvm_dirty_bitmap_bytes(*memslot);
1368
1369         for (i = 0; !any && i < n/sizeof(long); ++i)
1370                 any = (*memslot)->dirty_bitmap[i];
1371
1372         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1373                 return -EFAULT;
1374
1375         if (any)
1376                 *is_dirty = 1;
1377         return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1380
1381 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1382 /**
1383  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1384  *      and reenable dirty page tracking for the corresponding pages.
1385  * @kvm:        pointer to kvm instance
1386  * @log:        slot id and address to which we copy the log
1387  *
1388  * We need to keep it in mind that VCPU threads can write to the bitmap
1389  * concurrently. So, to avoid losing track of dirty pages we keep the
1390  * following order:
1391  *
1392  *    1. Take a snapshot of the bit and clear it if needed.
1393  *    2. Write protect the corresponding page.
1394  *    3. Copy the snapshot to the userspace.
1395  *    4. Upon return caller flushes TLB's if needed.
1396  *
1397  * Between 2 and 4, the guest may write to the page using the remaining TLB
1398  * entry.  This is not a problem because the page is reported dirty using
1399  * the snapshot taken before and step 4 ensures that writes done after
1400  * exiting to userspace will be logged for the next call.
1401  *
1402  */
1403 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1404 {
1405         struct kvm_memslots *slots;
1406         struct kvm_memory_slot *memslot;
1407         int i, as_id, id;
1408         unsigned long n;
1409         unsigned long *dirty_bitmap;
1410         unsigned long *dirty_bitmap_buffer;
1411         bool flush;
1412
1413         as_id = log->slot >> 16;
1414         id = (u16)log->slot;
1415         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1416                 return -EINVAL;
1417
1418         slots = __kvm_memslots(kvm, as_id);
1419         memslot = id_to_memslot(slots, id);
1420         if (!memslot || !memslot->dirty_bitmap)
1421                 return -ENOENT;
1422
1423         dirty_bitmap = memslot->dirty_bitmap;
1424
1425         kvm_arch_sync_dirty_log(kvm, memslot);
1426
1427         n = kvm_dirty_bitmap_bytes(memslot);
1428         flush = false;
1429         if (kvm->manual_dirty_log_protect) {
1430                 /*
1431                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1432                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1433                  * is some code duplication between this function and
1434                  * kvm_get_dirty_log, but hopefully all architecture
1435                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1436                  * can be eliminated.
1437                  */
1438                 dirty_bitmap_buffer = dirty_bitmap;
1439         } else {
1440                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1441                 memset(dirty_bitmap_buffer, 0, n);
1442
1443                 spin_lock(&kvm->mmu_lock);
1444                 for (i = 0; i < n / sizeof(long); i++) {
1445                         unsigned long mask;
1446                         gfn_t offset;
1447
1448                         if (!dirty_bitmap[i])
1449                                 continue;
1450
1451                         flush = true;
1452                         mask = xchg(&dirty_bitmap[i], 0);
1453                         dirty_bitmap_buffer[i] = mask;
1454
1455                         offset = i * BITS_PER_LONG;
1456                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1457                                                                 offset, mask);
1458                 }
1459                 spin_unlock(&kvm->mmu_lock);
1460         }
1461
1462         if (flush)
1463                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1464
1465         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1466                 return -EFAULT;
1467         return 0;
1468 }
1469
1470
1471 /**
1472  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1473  * @kvm: kvm instance
1474  * @log: slot id and address to which we copy the log
1475  *
1476  * Steps 1-4 below provide general overview of dirty page logging. See
1477  * kvm_get_dirty_log_protect() function description for additional details.
1478  *
1479  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1480  * always flush the TLB (step 4) even if previous step failed  and the dirty
1481  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1482  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1483  * writes will be marked dirty for next log read.
1484  *
1485  *   1. Take a snapshot of the bit and clear it if needed.
1486  *   2. Write protect the corresponding page.
1487  *   3. Copy the snapshot to the userspace.
1488  *   4. Flush TLB's if needed.
1489  */
1490 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1491                                       struct kvm_dirty_log *log)
1492 {
1493         int r;
1494
1495         mutex_lock(&kvm->slots_lock);
1496
1497         r = kvm_get_dirty_log_protect(kvm, log);
1498
1499         mutex_unlock(&kvm->slots_lock);
1500         return r;
1501 }
1502
1503 /**
1504  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1505  *      and reenable dirty page tracking for the corresponding pages.
1506  * @kvm:        pointer to kvm instance
1507  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1508  */
1509 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1510                                        struct kvm_clear_dirty_log *log)
1511 {
1512         struct kvm_memslots *slots;
1513         struct kvm_memory_slot *memslot;
1514         int as_id, id;
1515         gfn_t offset;
1516         unsigned long i, n;
1517         unsigned long *dirty_bitmap;
1518         unsigned long *dirty_bitmap_buffer;
1519         bool flush;
1520
1521         as_id = log->slot >> 16;
1522         id = (u16)log->slot;
1523         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1524                 return -EINVAL;
1525
1526         if (log->first_page & 63)
1527                 return -EINVAL;
1528
1529         slots = __kvm_memslots(kvm, as_id);
1530         memslot = id_to_memslot(slots, id);
1531         if (!memslot || !memslot->dirty_bitmap)
1532                 return -ENOENT;
1533
1534         dirty_bitmap = memslot->dirty_bitmap;
1535
1536         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1537
1538         if (log->first_page > memslot->npages ||
1539             log->num_pages > memslot->npages - log->first_page ||
1540             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1541             return -EINVAL;
1542
1543         kvm_arch_sync_dirty_log(kvm, memslot);
1544
1545         flush = false;
1546         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1547         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1548                 return -EFAULT;
1549
1550         spin_lock(&kvm->mmu_lock);
1551         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1552                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1553              i++, offset += BITS_PER_LONG) {
1554                 unsigned long mask = *dirty_bitmap_buffer++;
1555                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1556                 if (!mask)
1557                         continue;
1558
1559                 mask &= atomic_long_fetch_andnot(mask, p);
1560
1561                 /*
1562                  * mask contains the bits that really have been cleared.  This
1563                  * never includes any bits beyond the length of the memslot (if
1564                  * the length is not aligned to 64 pages), therefore it is not
1565                  * a problem if userspace sets them in log->dirty_bitmap.
1566                 */
1567                 if (mask) {
1568                         flush = true;
1569                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1570                                                                 offset, mask);
1571                 }
1572         }
1573         spin_unlock(&kvm->mmu_lock);
1574
1575         if (flush)
1576                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1577
1578         return 0;
1579 }
1580
1581 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1582                                         struct kvm_clear_dirty_log *log)
1583 {
1584         int r;
1585
1586         mutex_lock(&kvm->slots_lock);
1587
1588         r = kvm_clear_dirty_log_protect(kvm, log);
1589
1590         mutex_unlock(&kvm->slots_lock);
1591         return r;
1592 }
1593 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1594
1595 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1596 {
1597         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1598 }
1599 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1600
1601 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1602 {
1603         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1604 }
1605
1606 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1607 {
1608         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1609
1610         return kvm_is_visible_memslot(memslot);
1611 }
1612 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1613
1614 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1615 {
1616         struct vm_area_struct *vma;
1617         unsigned long addr, size;
1618
1619         size = PAGE_SIZE;
1620
1621         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1622         if (kvm_is_error_hva(addr))
1623                 return PAGE_SIZE;
1624
1625         down_read(&current->mm->mmap_sem);
1626         vma = find_vma(current->mm, addr);
1627         if (!vma)
1628                 goto out;
1629
1630         size = vma_kernel_pagesize(vma);
1631
1632 out:
1633         up_read(&current->mm->mmap_sem);
1634
1635         return size;
1636 }
1637
1638 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1639 {
1640         return slot->flags & KVM_MEM_READONLY;
1641 }
1642
1643 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1644                                        gfn_t *nr_pages, bool write)
1645 {
1646         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1647                 return KVM_HVA_ERR_BAD;
1648
1649         if (memslot_is_readonly(slot) && write)
1650                 return KVM_HVA_ERR_RO_BAD;
1651
1652         if (nr_pages)
1653                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1654
1655         return __gfn_to_hva_memslot(slot, gfn);
1656 }
1657
1658 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1659                                      gfn_t *nr_pages)
1660 {
1661         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1662 }
1663
1664 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1665                                         gfn_t gfn)
1666 {
1667         return gfn_to_hva_many(slot, gfn, NULL);
1668 }
1669 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1670
1671 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1672 {
1673         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1674 }
1675 EXPORT_SYMBOL_GPL(gfn_to_hva);
1676
1677 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1678 {
1679         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1682
1683 /*
1684  * Return the hva of a @gfn and the R/W attribute if possible.
1685  *
1686  * @slot: the kvm_memory_slot which contains @gfn
1687  * @gfn: the gfn to be translated
1688  * @writable: used to return the read/write attribute of the @slot if the hva
1689  * is valid and @writable is not NULL
1690  */
1691 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1692                                       gfn_t gfn, bool *writable)
1693 {
1694         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1695
1696         if (!kvm_is_error_hva(hva) && writable)
1697                 *writable = !memslot_is_readonly(slot);
1698
1699         return hva;
1700 }
1701
1702 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1703 {
1704         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1705
1706         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1707 }
1708
1709 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1710 {
1711         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1712
1713         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1714 }
1715
1716 static inline int check_user_page_hwpoison(unsigned long addr)
1717 {
1718         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1719
1720         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1721         return rc == -EHWPOISON;
1722 }
1723
1724 /*
1725  * The fast path to get the writable pfn which will be stored in @pfn,
1726  * true indicates success, otherwise false is returned.  It's also the
1727  * only part that runs if we can in atomic context.
1728  */
1729 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1730                             bool *writable, kvm_pfn_t *pfn)
1731 {
1732         struct page *page[1];
1733         int npages;
1734
1735         /*
1736          * Fast pin a writable pfn only if it is a write fault request
1737          * or the caller allows to map a writable pfn for a read fault
1738          * request.
1739          */
1740         if (!(write_fault || writable))
1741                 return false;
1742
1743         npages = __get_user_pages_fast(addr, 1, 1, page);
1744         if (npages == 1) {
1745                 *pfn = page_to_pfn(page[0]);
1746
1747                 if (writable)
1748                         *writable = true;
1749                 return true;
1750         }
1751
1752         return false;
1753 }
1754
1755 /*
1756  * The slow path to get the pfn of the specified host virtual address,
1757  * 1 indicates success, -errno is returned if error is detected.
1758  */
1759 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1760                            bool *writable, kvm_pfn_t *pfn)
1761 {
1762         unsigned int flags = FOLL_HWPOISON;
1763         struct page *page;
1764         int npages = 0;
1765
1766         might_sleep();
1767
1768         if (writable)
1769                 *writable = write_fault;
1770
1771         if (write_fault)
1772                 flags |= FOLL_WRITE;
1773         if (async)
1774                 flags |= FOLL_NOWAIT;
1775
1776         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1777         if (npages != 1)
1778                 return npages;
1779
1780         /* map read fault as writable if possible */
1781         if (unlikely(!write_fault) && writable) {
1782                 struct page *wpage;
1783
1784                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1785                         *writable = true;
1786                         put_page(page);
1787                         page = wpage;
1788                 }
1789         }
1790         *pfn = page_to_pfn(page);
1791         return npages;
1792 }
1793
1794 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1795 {
1796         if (unlikely(!(vma->vm_flags & VM_READ)))
1797                 return false;
1798
1799         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1800                 return false;
1801
1802         return true;
1803 }
1804
1805 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1806                                unsigned long addr, bool *async,
1807                                bool write_fault, bool *writable,
1808                                kvm_pfn_t *p_pfn)
1809 {
1810         unsigned long pfn;
1811         int r;
1812
1813         r = follow_pfn(vma, addr, &pfn);
1814         if (r) {
1815                 /*
1816                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1817                  * not call the fault handler, so do it here.
1818                  */
1819                 bool unlocked = false;
1820                 r = fixup_user_fault(current, current->mm, addr,
1821                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1822                                      &unlocked);
1823                 if (unlocked)
1824                         return -EAGAIN;
1825                 if (r)
1826                         return r;
1827
1828                 r = follow_pfn(vma, addr, &pfn);
1829                 if (r)
1830                         return r;
1831
1832         }
1833
1834         if (writable)
1835                 *writable = true;
1836
1837         /*
1838          * Get a reference here because callers of *hva_to_pfn* and
1839          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1840          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1841          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1842          * simply do nothing for reserved pfns.
1843          *
1844          * Whoever called remap_pfn_range is also going to call e.g.
1845          * unmap_mapping_range before the underlying pages are freed,
1846          * causing a call to our MMU notifier.
1847          */ 
1848         kvm_get_pfn(pfn);
1849
1850         *p_pfn = pfn;
1851         return 0;
1852 }
1853
1854 /*
1855  * Pin guest page in memory and return its pfn.
1856  * @addr: host virtual address which maps memory to the guest
1857  * @atomic: whether this function can sleep
1858  * @async: whether this function need to wait IO complete if the
1859  *         host page is not in the memory
1860  * @write_fault: whether we should get a writable host page
1861  * @writable: whether it allows to map a writable host page for !@write_fault
1862  *
1863  * The function will map a writable host page for these two cases:
1864  * 1): @write_fault = true
1865  * 2): @write_fault = false && @writable, @writable will tell the caller
1866  *     whether the mapping is writable.
1867  */
1868 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1869                         bool write_fault, bool *writable)
1870 {
1871         struct vm_area_struct *vma;
1872         kvm_pfn_t pfn = 0;
1873         int npages, r;
1874
1875         /* we can do it either atomically or asynchronously, not both */
1876         BUG_ON(atomic && async);
1877
1878         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1879                 return pfn;
1880
1881         if (atomic)
1882                 return KVM_PFN_ERR_FAULT;
1883
1884         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1885         if (npages == 1)
1886                 return pfn;
1887
1888         down_read(&current->mm->mmap_sem);
1889         if (npages == -EHWPOISON ||
1890               (!async && check_user_page_hwpoison(addr))) {
1891                 pfn = KVM_PFN_ERR_HWPOISON;
1892                 goto exit;
1893         }
1894
1895 retry:
1896         vma = find_vma_intersection(current->mm, addr, addr + 1);
1897
1898         if (vma == NULL)
1899                 pfn = KVM_PFN_ERR_FAULT;
1900         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1901                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1902                 if (r == -EAGAIN)
1903                         goto retry;
1904                 if (r < 0)
1905                         pfn = KVM_PFN_ERR_FAULT;
1906         } else {
1907                 if (async && vma_is_valid(vma, write_fault))
1908                         *async = true;
1909                 pfn = KVM_PFN_ERR_FAULT;
1910         }
1911 exit:
1912         up_read(&current->mm->mmap_sem);
1913         return pfn;
1914 }
1915
1916 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1917                                bool atomic, bool *async, bool write_fault,
1918                                bool *writable)
1919 {
1920         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1921
1922         if (addr == KVM_HVA_ERR_RO_BAD) {
1923                 if (writable)
1924                         *writable = false;
1925                 return KVM_PFN_ERR_RO_FAULT;
1926         }
1927
1928         if (kvm_is_error_hva(addr)) {
1929                 if (writable)
1930                         *writable = false;
1931                 return KVM_PFN_NOSLOT;
1932         }
1933
1934         /* Do not map writable pfn in the readonly memslot. */
1935         if (writable && memslot_is_readonly(slot)) {
1936                 *writable = false;
1937                 writable = NULL;
1938         }
1939
1940         return hva_to_pfn(addr, atomic, async, write_fault,
1941                           writable);
1942 }
1943 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1944
1945 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1946                       bool *writable)
1947 {
1948         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1949                                     write_fault, writable);
1950 }
1951 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1952
1953 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1954 {
1955         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1956 }
1957 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1958
1959 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1960 {
1961         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1962 }
1963 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1964
1965 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1966 {
1967         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1968 }
1969 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1970
1971 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1972 {
1973         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1974 }
1975 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1976
1977 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1978 {
1979         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1982
1983 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1984                             struct page **pages, int nr_pages)
1985 {
1986         unsigned long addr;
1987         gfn_t entry = 0;
1988
1989         addr = gfn_to_hva_many(slot, gfn, &entry);
1990         if (kvm_is_error_hva(addr))
1991                 return -1;
1992
1993         if (entry < nr_pages)
1994                 return 0;
1995
1996         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1997 }
1998 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1999
2000 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2001 {
2002         if (is_error_noslot_pfn(pfn))
2003                 return KVM_ERR_PTR_BAD_PAGE;
2004
2005         if (kvm_is_reserved_pfn(pfn)) {
2006                 WARN_ON(1);
2007                 return KVM_ERR_PTR_BAD_PAGE;
2008         }
2009
2010         return pfn_to_page(pfn);
2011 }
2012
2013 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2014 {
2015         kvm_pfn_t pfn;
2016
2017         pfn = gfn_to_pfn(kvm, gfn);
2018
2019         return kvm_pfn_to_page(pfn);
2020 }
2021 EXPORT_SYMBOL_GPL(gfn_to_page);
2022
2023 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2024 {
2025         if (pfn == 0)
2026                 return;
2027
2028         if (cache)
2029                 cache->pfn = cache->gfn = 0;
2030
2031         if (dirty)
2032                 kvm_release_pfn_dirty(pfn);
2033         else
2034                 kvm_release_pfn_clean(pfn);
2035 }
2036
2037 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2038                                  struct gfn_to_pfn_cache *cache, u64 gen)
2039 {
2040         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2041
2042         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2043         cache->gfn = gfn;
2044         cache->dirty = false;
2045         cache->generation = gen;
2046 }
2047
2048 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2049                          struct kvm_host_map *map,
2050                          struct gfn_to_pfn_cache *cache,
2051                          bool atomic)
2052 {
2053         kvm_pfn_t pfn;
2054         void *hva = NULL;
2055         struct page *page = KVM_UNMAPPED_PAGE;
2056         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2057         u64 gen = slots->generation;
2058
2059         if (!map)
2060                 return -EINVAL;
2061
2062         if (cache) {
2063                 if (!cache->pfn || cache->gfn != gfn ||
2064                         cache->generation != gen) {
2065                         if (atomic)
2066                                 return -EAGAIN;
2067                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2068                 }
2069                 pfn = cache->pfn;
2070         } else {
2071                 if (atomic)
2072                         return -EAGAIN;
2073                 pfn = gfn_to_pfn_memslot(slot, gfn);
2074         }
2075         if (is_error_noslot_pfn(pfn))
2076                 return -EINVAL;
2077
2078         if (pfn_valid(pfn)) {
2079                 page = pfn_to_page(pfn);
2080                 if (atomic)
2081                         hva = kmap_atomic(page);
2082                 else
2083                         hva = kmap(page);
2084 #ifdef CONFIG_HAS_IOMEM
2085         } else if (!atomic) {
2086                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2087         } else {
2088                 return -EINVAL;
2089 #endif
2090         }
2091
2092         if (!hva)
2093                 return -EFAULT;
2094
2095         map->page = page;
2096         map->hva = hva;
2097         map->pfn = pfn;
2098         map->gfn = gfn;
2099
2100         return 0;
2101 }
2102
2103 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2104                 struct gfn_to_pfn_cache *cache, bool atomic)
2105 {
2106         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2107                         cache, atomic);
2108 }
2109 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2110
2111 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2112 {
2113         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2114                 NULL, false);
2115 }
2116 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2117
2118 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2119                         struct kvm_host_map *map,
2120                         struct gfn_to_pfn_cache *cache,
2121                         bool dirty, bool atomic)
2122 {
2123         if (!map)
2124                 return;
2125
2126         if (!map->hva)
2127                 return;
2128
2129         if (map->page != KVM_UNMAPPED_PAGE) {
2130                 if (atomic)
2131                         kunmap_atomic(map->hva);
2132                 else
2133                         kunmap(map->page);
2134         }
2135 #ifdef CONFIG_HAS_IOMEM
2136         else if (!atomic)
2137                 memunmap(map->hva);
2138         else
2139                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2140 #endif
2141
2142         if (dirty)
2143                 mark_page_dirty_in_slot(memslot, map->gfn);
2144
2145         if (cache)
2146                 cache->dirty |= dirty;
2147         else
2148                 kvm_release_pfn(map->pfn, dirty, NULL);
2149
2150         map->hva = NULL;
2151         map->page = NULL;
2152 }
2153
2154 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2155                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2156 {
2157         __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2158                         cache, dirty, atomic);
2159         return 0;
2160 }
2161 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2162
2163 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2164 {
2165         __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2166                         dirty, false);
2167 }
2168 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2169
2170 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2171 {
2172         kvm_pfn_t pfn;
2173
2174         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2175
2176         return kvm_pfn_to_page(pfn);
2177 }
2178 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2179
2180 void kvm_release_page_clean(struct page *page)
2181 {
2182         WARN_ON(is_error_page(page));
2183
2184         kvm_release_pfn_clean(page_to_pfn(page));
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2187
2188 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2189 {
2190         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2191                 put_page(pfn_to_page(pfn));
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2194
2195 void kvm_release_page_dirty(struct page *page)
2196 {
2197         WARN_ON(is_error_page(page));
2198
2199         kvm_release_pfn_dirty(page_to_pfn(page));
2200 }
2201 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2202
2203 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2204 {
2205         kvm_set_pfn_dirty(pfn);
2206         kvm_release_pfn_clean(pfn);
2207 }
2208 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2209
2210 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2211 {
2212         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2213                 SetPageDirty(pfn_to_page(pfn));
2214 }
2215 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2216
2217 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2218 {
2219         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2220                 mark_page_accessed(pfn_to_page(pfn));
2221 }
2222 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2223
2224 void kvm_get_pfn(kvm_pfn_t pfn)
2225 {
2226         if (!kvm_is_reserved_pfn(pfn))
2227                 get_page(pfn_to_page(pfn));
2228 }
2229 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2230
2231 static int next_segment(unsigned long len, int offset)
2232 {
2233         if (len > PAGE_SIZE - offset)
2234                 return PAGE_SIZE - offset;
2235         else
2236                 return len;
2237 }
2238
2239 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2240                                  void *data, int offset, int len)
2241 {
2242         int r;
2243         unsigned long addr;
2244
2245         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2246         if (kvm_is_error_hva(addr))
2247                 return -EFAULT;
2248         r = __copy_from_user(data, (void __user *)addr + offset, len);
2249         if (r)
2250                 return -EFAULT;
2251         return 0;
2252 }
2253
2254 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2255                         int len)
2256 {
2257         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2258
2259         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2260 }
2261 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2262
2263 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2264                              int offset, int len)
2265 {
2266         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2267
2268         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2269 }
2270 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2271
2272 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2273 {
2274         gfn_t gfn = gpa >> PAGE_SHIFT;
2275         int seg;
2276         int offset = offset_in_page(gpa);
2277         int ret;
2278
2279         while ((seg = next_segment(len, offset)) != 0) {
2280                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2281                 if (ret < 0)
2282                         return ret;
2283                 offset = 0;
2284                 len -= seg;
2285                 data += seg;
2286                 ++gfn;
2287         }
2288         return 0;
2289 }
2290 EXPORT_SYMBOL_GPL(kvm_read_guest);
2291
2292 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2293 {
2294         gfn_t gfn = gpa >> PAGE_SHIFT;
2295         int seg;
2296         int offset = offset_in_page(gpa);
2297         int ret;
2298
2299         while ((seg = next_segment(len, offset)) != 0) {
2300                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2301                 if (ret < 0)
2302                         return ret;
2303                 offset = 0;
2304                 len -= seg;
2305                 data += seg;
2306                 ++gfn;
2307         }
2308         return 0;
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2311
2312 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2313                                    void *data, int offset, unsigned long len)
2314 {
2315         int r;
2316         unsigned long addr;
2317
2318         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2319         if (kvm_is_error_hva(addr))
2320                 return -EFAULT;
2321         pagefault_disable();
2322         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2323         pagefault_enable();
2324         if (r)
2325                 return -EFAULT;
2326         return 0;
2327 }
2328
2329 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2330                                void *data, unsigned long len)
2331 {
2332         gfn_t gfn = gpa >> PAGE_SHIFT;
2333         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2334         int offset = offset_in_page(gpa);
2335
2336         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2339
2340 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2341                                   const void *data, int offset, int len)
2342 {
2343         int r;
2344         unsigned long addr;
2345
2346         addr = gfn_to_hva_memslot(memslot, gfn);
2347         if (kvm_is_error_hva(addr))
2348                 return -EFAULT;
2349         r = __copy_to_user((void __user *)addr + offset, data, len);
2350         if (r)
2351                 return -EFAULT;
2352         mark_page_dirty_in_slot(memslot, gfn);
2353         return 0;
2354 }
2355
2356 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2357                          const void *data, int offset, int len)
2358 {
2359         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2360
2361         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2364
2365 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2366                               const void *data, int offset, int len)
2367 {
2368         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2369
2370         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2371 }
2372 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2373
2374 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2375                     unsigned long len)
2376 {
2377         gfn_t gfn = gpa >> PAGE_SHIFT;
2378         int seg;
2379         int offset = offset_in_page(gpa);
2380         int ret;
2381
2382         while ((seg = next_segment(len, offset)) != 0) {
2383                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2384                 if (ret < 0)
2385                         return ret;
2386                 offset = 0;
2387                 len -= seg;
2388                 data += seg;
2389                 ++gfn;
2390         }
2391         return 0;
2392 }
2393 EXPORT_SYMBOL_GPL(kvm_write_guest);
2394
2395 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2396                          unsigned long len)
2397 {
2398         gfn_t gfn = gpa >> PAGE_SHIFT;
2399         int seg;
2400         int offset = offset_in_page(gpa);
2401         int ret;
2402
2403         while ((seg = next_segment(len, offset)) != 0) {
2404                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2405                 if (ret < 0)
2406                         return ret;
2407                 offset = 0;
2408                 len -= seg;
2409                 data += seg;
2410                 ++gfn;
2411         }
2412         return 0;
2413 }
2414 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2415
2416 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2417                                        struct gfn_to_hva_cache *ghc,
2418                                        gpa_t gpa, unsigned long len)
2419 {
2420         int offset = offset_in_page(gpa);
2421         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2422         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2423         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2424         gfn_t nr_pages_avail;
2425
2426         /* Update ghc->generation before performing any error checks. */
2427         ghc->generation = slots->generation;
2428
2429         if (start_gfn > end_gfn) {
2430                 ghc->hva = KVM_HVA_ERR_BAD;
2431                 return -EINVAL;
2432         }
2433
2434         /*
2435          * If the requested region crosses two memslots, we still
2436          * verify that the entire region is valid here.
2437          */
2438         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2439                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2440                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2441                                            &nr_pages_avail);
2442                 if (kvm_is_error_hva(ghc->hva))
2443                         return -EFAULT;
2444         }
2445
2446         /* Use the slow path for cross page reads and writes. */
2447         if (nr_pages_needed == 1)
2448                 ghc->hva += offset;
2449         else
2450                 ghc->memslot = NULL;
2451
2452         ghc->gpa = gpa;
2453         ghc->len = len;
2454         return 0;
2455 }
2456
2457 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2458                               gpa_t gpa, unsigned long len)
2459 {
2460         struct kvm_memslots *slots = kvm_memslots(kvm);
2461         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2462 }
2463 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2464
2465 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2466                                   void *data, unsigned int offset,
2467                                   unsigned long len)
2468 {
2469         struct kvm_memslots *slots = kvm_memslots(kvm);
2470         int r;
2471         gpa_t gpa = ghc->gpa + offset;
2472
2473         BUG_ON(len + offset > ghc->len);
2474
2475         if (slots->generation != ghc->generation) {
2476                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2477                         return -EFAULT;
2478         }
2479
2480         if (kvm_is_error_hva(ghc->hva))
2481                 return -EFAULT;
2482
2483         if (unlikely(!ghc->memslot))
2484                 return kvm_write_guest(kvm, gpa, data, len);
2485
2486         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2487         if (r)
2488                 return -EFAULT;
2489         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2490
2491         return 0;
2492 }
2493 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2494
2495 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2496                            void *data, unsigned long len)
2497 {
2498         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2499 }
2500 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2501
2502 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2503                            void *data, unsigned long len)
2504 {
2505         struct kvm_memslots *slots = kvm_memslots(kvm);
2506         int r;
2507
2508         BUG_ON(len > ghc->len);
2509
2510         if (slots->generation != ghc->generation) {
2511                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2512                         return -EFAULT;
2513         }
2514
2515         if (kvm_is_error_hva(ghc->hva))
2516                 return -EFAULT;
2517
2518         if (unlikely(!ghc->memslot))
2519                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2520
2521         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2522         if (r)
2523                 return -EFAULT;
2524
2525         return 0;
2526 }
2527 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2528
2529 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2530 {
2531         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2532
2533         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2534 }
2535 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2536
2537 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2538 {
2539         gfn_t gfn = gpa >> PAGE_SHIFT;
2540         int seg;
2541         int offset = offset_in_page(gpa);
2542         int ret;
2543
2544         while ((seg = next_segment(len, offset)) != 0) {
2545                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2546                 if (ret < 0)
2547                         return ret;
2548                 offset = 0;
2549                 len -= seg;
2550                 ++gfn;
2551         }
2552         return 0;
2553 }
2554 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2555
2556 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2557                                     gfn_t gfn)
2558 {
2559         if (memslot && memslot->dirty_bitmap) {
2560                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2561
2562                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2563         }
2564 }
2565
2566 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2567 {
2568         struct kvm_memory_slot *memslot;
2569
2570         memslot = gfn_to_memslot(kvm, gfn);
2571         mark_page_dirty_in_slot(memslot, gfn);
2572 }
2573 EXPORT_SYMBOL_GPL(mark_page_dirty);
2574
2575 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2576 {
2577         struct kvm_memory_slot *memslot;
2578
2579         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2580         mark_page_dirty_in_slot(memslot, gfn);
2581 }
2582 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2583
2584 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2585 {
2586         if (!vcpu->sigset_active)
2587                 return;
2588
2589         /*
2590          * This does a lockless modification of ->real_blocked, which is fine
2591          * because, only current can change ->real_blocked and all readers of
2592          * ->real_blocked don't care as long ->real_blocked is always a subset
2593          * of ->blocked.
2594          */
2595         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2596 }
2597
2598 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2599 {
2600         if (!vcpu->sigset_active)
2601                 return;
2602
2603         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2604         sigemptyset(&current->real_blocked);
2605 }
2606
2607 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2608 {
2609         unsigned int old, val, grow, grow_start;
2610
2611         old = val = vcpu->halt_poll_ns;
2612         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2613         grow = READ_ONCE(halt_poll_ns_grow);
2614         if (!grow)
2615                 goto out;
2616
2617         val *= grow;
2618         if (val < grow_start)
2619                 val = grow_start;
2620
2621         if (val > halt_poll_ns)
2622                 val = halt_poll_ns;
2623
2624         vcpu->halt_poll_ns = val;
2625 out:
2626         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2627 }
2628
2629 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2630 {
2631         unsigned int old, val, shrink;
2632
2633         old = val = vcpu->halt_poll_ns;
2634         shrink = READ_ONCE(halt_poll_ns_shrink);
2635         if (shrink == 0)
2636                 val = 0;
2637         else
2638                 val /= shrink;
2639
2640         vcpu->halt_poll_ns = val;
2641         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2642 }
2643
2644 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2645 {
2646         int ret = -EINTR;
2647         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2648
2649         if (kvm_arch_vcpu_runnable(vcpu)) {
2650                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2651                 goto out;
2652         }
2653         if (kvm_cpu_has_pending_timer(vcpu))
2654                 goto out;
2655         if (signal_pending(current))
2656                 goto out;
2657
2658         ret = 0;
2659 out:
2660         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2661         return ret;
2662 }
2663
2664 /*
2665  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2666  */
2667 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2668 {
2669         ktime_t start, cur;
2670         DECLARE_SWAITQUEUE(wait);
2671         bool waited = false;
2672         u64 block_ns;
2673
2674         kvm_arch_vcpu_blocking(vcpu);
2675
2676         start = cur = ktime_get();
2677         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2678                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2679
2680                 ++vcpu->stat.halt_attempted_poll;
2681                 do {
2682                         /*
2683                          * This sets KVM_REQ_UNHALT if an interrupt
2684                          * arrives.
2685                          */
2686                         if (kvm_vcpu_check_block(vcpu) < 0) {
2687                                 ++vcpu->stat.halt_successful_poll;
2688                                 if (!vcpu_valid_wakeup(vcpu))
2689                                         ++vcpu->stat.halt_poll_invalid;
2690                                 goto out;
2691                         }
2692                         cur = ktime_get();
2693                 } while (single_task_running() && ktime_before(cur, stop));
2694         }
2695
2696         for (;;) {
2697                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2698
2699                 if (kvm_vcpu_check_block(vcpu) < 0)
2700                         break;
2701
2702                 waited = true;
2703                 schedule();
2704         }
2705
2706         finish_swait(&vcpu->wq, &wait);
2707         cur = ktime_get();
2708 out:
2709         kvm_arch_vcpu_unblocking(vcpu);
2710         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2711
2712         if (!kvm_arch_no_poll(vcpu)) {
2713                 if (!vcpu_valid_wakeup(vcpu)) {
2714                         shrink_halt_poll_ns(vcpu);
2715                 } else if (halt_poll_ns) {
2716                         if (block_ns <= vcpu->halt_poll_ns)
2717                                 ;
2718                         /* we had a long block, shrink polling */
2719                         else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2720                                 shrink_halt_poll_ns(vcpu);
2721                         /* we had a short halt and our poll time is too small */
2722                         else if (vcpu->halt_poll_ns < halt_poll_ns &&
2723                                 block_ns < halt_poll_ns)
2724                                 grow_halt_poll_ns(vcpu);
2725                 } else {
2726                         vcpu->halt_poll_ns = 0;
2727                 }
2728         }
2729
2730         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2731         kvm_arch_vcpu_block_finish(vcpu);
2732 }
2733 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2734
2735 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2736 {
2737         struct swait_queue_head *wqp;
2738
2739         wqp = kvm_arch_vcpu_wq(vcpu);
2740         if (swq_has_sleeper(wqp)) {
2741                 swake_up_one(wqp);
2742                 WRITE_ONCE(vcpu->ready, true);
2743                 ++vcpu->stat.halt_wakeup;
2744                 return true;
2745         }
2746
2747         return false;
2748 }
2749 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2750
2751 #ifndef CONFIG_S390
2752 /*
2753  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2754  */
2755 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2756 {
2757         int me;
2758         int cpu = vcpu->cpu;
2759
2760         if (kvm_vcpu_wake_up(vcpu))
2761                 return;
2762
2763         me = get_cpu();
2764         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2765                 if (kvm_arch_vcpu_should_kick(vcpu))
2766                         smp_send_reschedule(cpu);
2767         put_cpu();
2768 }
2769 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2770 #endif /* !CONFIG_S390 */
2771
2772 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2773 {
2774         struct pid *pid;
2775         struct task_struct *task = NULL;
2776         int ret = 0;
2777
2778         rcu_read_lock();
2779         pid = rcu_dereference(target->pid);
2780         if (pid)
2781                 task = get_pid_task(pid, PIDTYPE_PID);
2782         rcu_read_unlock();
2783         if (!task)
2784                 return ret;
2785         ret = yield_to(task, 1);
2786         put_task_struct(task);
2787
2788         return ret;
2789 }
2790 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2791
2792 /*
2793  * Helper that checks whether a VCPU is eligible for directed yield.
2794  * Most eligible candidate to yield is decided by following heuristics:
2795  *
2796  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2797  *  (preempted lock holder), indicated by @in_spin_loop.
2798  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2799  *
2800  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2801  *  chance last time (mostly it has become eligible now since we have probably
2802  *  yielded to lockholder in last iteration. This is done by toggling
2803  *  @dy_eligible each time a VCPU checked for eligibility.)
2804  *
2805  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2806  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2807  *  burning. Giving priority for a potential lock-holder increases lock
2808  *  progress.
2809  *
2810  *  Since algorithm is based on heuristics, accessing another VCPU data without
2811  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2812  *  and continue with next VCPU and so on.
2813  */
2814 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2815 {
2816 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2817         bool eligible;
2818
2819         eligible = !vcpu->spin_loop.in_spin_loop ||
2820                     vcpu->spin_loop.dy_eligible;
2821
2822         if (vcpu->spin_loop.in_spin_loop)
2823                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2824
2825         return eligible;
2826 #else
2827         return true;
2828 #endif
2829 }
2830
2831 /*
2832  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2833  * a vcpu_load/vcpu_put pair.  However, for most architectures
2834  * kvm_arch_vcpu_runnable does not require vcpu_load.
2835  */
2836 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2837 {
2838         return kvm_arch_vcpu_runnable(vcpu);
2839 }
2840
2841 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2842 {
2843         if (kvm_arch_dy_runnable(vcpu))
2844                 return true;
2845
2846 #ifdef CONFIG_KVM_ASYNC_PF
2847         if (!list_empty_careful(&vcpu->async_pf.done))
2848                 return true;
2849 #endif
2850
2851         return false;
2852 }
2853
2854 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2855 {
2856         struct kvm *kvm = me->kvm;
2857         struct kvm_vcpu *vcpu;
2858         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2859         int yielded = 0;
2860         int try = 3;
2861         int pass;
2862         int i;
2863
2864         kvm_vcpu_set_in_spin_loop(me, true);
2865         /*
2866          * We boost the priority of a VCPU that is runnable but not
2867          * currently running, because it got preempted by something
2868          * else and called schedule in __vcpu_run.  Hopefully that
2869          * VCPU is holding the lock that we need and will release it.
2870          * We approximate round-robin by starting at the last boosted VCPU.
2871          */
2872         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2873                 kvm_for_each_vcpu(i, vcpu, kvm) {
2874                         if (!pass && i <= last_boosted_vcpu) {
2875                                 i = last_boosted_vcpu;
2876                                 continue;
2877                         } else if (pass && i > last_boosted_vcpu)
2878                                 break;
2879                         if (!READ_ONCE(vcpu->ready))
2880                                 continue;
2881                         if (vcpu == me)
2882                                 continue;
2883                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2884                                 continue;
2885                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2886                                 !kvm_arch_vcpu_in_kernel(vcpu))
2887                                 continue;
2888                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2889                                 continue;
2890
2891                         yielded = kvm_vcpu_yield_to(vcpu);
2892                         if (yielded > 0) {
2893                                 kvm->last_boosted_vcpu = i;
2894                                 break;
2895                         } else if (yielded < 0) {
2896                                 try--;
2897                                 if (!try)
2898                                         break;
2899                         }
2900                 }
2901         }
2902         kvm_vcpu_set_in_spin_loop(me, false);
2903
2904         /* Ensure vcpu is not eligible during next spinloop */
2905         kvm_vcpu_set_dy_eligible(me, false);
2906 }
2907 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2908
2909 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2910 {
2911         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2912         struct page *page;
2913
2914         if (vmf->pgoff == 0)
2915                 page = virt_to_page(vcpu->run);
2916 #ifdef CONFIG_X86
2917         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2918                 page = virt_to_page(vcpu->arch.pio_data);
2919 #endif
2920 #ifdef CONFIG_KVM_MMIO
2921         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2922                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2923 #endif
2924         else
2925                 return kvm_arch_vcpu_fault(vcpu, vmf);
2926         get_page(page);
2927         vmf->page = page;
2928         return 0;
2929 }
2930
2931 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2932         .fault = kvm_vcpu_fault,
2933 };
2934
2935 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2936 {
2937         vma->vm_ops = &kvm_vcpu_vm_ops;
2938         return 0;
2939 }
2940
2941 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2942 {
2943         struct kvm_vcpu *vcpu = filp->private_data;
2944
2945         debugfs_remove_recursive(vcpu->debugfs_dentry);
2946         kvm_put_kvm(vcpu->kvm);
2947         return 0;
2948 }
2949
2950 static struct file_operations kvm_vcpu_fops = {
2951         .release        = kvm_vcpu_release,
2952         .unlocked_ioctl = kvm_vcpu_ioctl,
2953         .mmap           = kvm_vcpu_mmap,
2954         .llseek         = noop_llseek,
2955         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2956 };
2957
2958 /*
2959  * Allocates an inode for the vcpu.
2960  */
2961 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2962 {
2963         char name[8 + 1 + ITOA_MAX_LEN + 1];
2964
2965         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2966         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2967 }
2968
2969 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2970 {
2971 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2972         char dir_name[ITOA_MAX_LEN * 2];
2973
2974         if (!debugfs_initialized())
2975                 return;
2976
2977         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2978         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2979                                                   vcpu->kvm->debugfs_dentry);
2980
2981         kvm_arch_create_vcpu_debugfs(vcpu);
2982 #endif
2983 }
2984
2985 /*
2986  * Creates some virtual cpus.  Good luck creating more than one.
2987  */
2988 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2989 {
2990         int r;
2991         struct kvm_vcpu *vcpu;
2992         struct page *page;
2993
2994         if (id >= KVM_MAX_VCPU_ID)
2995                 return -EINVAL;
2996
2997         mutex_lock(&kvm->lock);
2998         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2999                 mutex_unlock(&kvm->lock);
3000                 return -EINVAL;
3001         }
3002
3003         kvm->created_vcpus++;
3004         mutex_unlock(&kvm->lock);
3005
3006         r = kvm_arch_vcpu_precreate(kvm, id);
3007         if (r)
3008                 goto vcpu_decrement;
3009
3010         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3011         if (!vcpu) {
3012                 r = -ENOMEM;
3013                 goto vcpu_decrement;
3014         }
3015
3016         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3017         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3018         if (!page) {
3019                 r = -ENOMEM;
3020                 goto vcpu_free;
3021         }
3022         vcpu->run = page_address(page);
3023
3024         kvm_vcpu_init(vcpu, kvm, id);
3025
3026         r = kvm_arch_vcpu_create(vcpu);
3027         if (r)
3028                 goto vcpu_free_run_page;
3029
3030         mutex_lock(&kvm->lock);
3031         if (kvm_get_vcpu_by_id(kvm, id)) {
3032                 r = -EEXIST;
3033                 goto unlock_vcpu_destroy;
3034         }
3035
3036         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3037         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3038
3039         /* Now it's all set up, let userspace reach it */
3040         kvm_get_kvm(kvm);
3041         r = create_vcpu_fd(vcpu);
3042         if (r < 0) {
3043                 kvm_put_kvm_no_destroy(kvm);
3044                 goto unlock_vcpu_destroy;
3045         }
3046
3047         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3048
3049         /*
3050          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3051          * before kvm->online_vcpu's incremented value.
3052          */
3053         smp_wmb();
3054         atomic_inc(&kvm->online_vcpus);
3055
3056         mutex_unlock(&kvm->lock);
3057         kvm_arch_vcpu_postcreate(vcpu);
3058         kvm_create_vcpu_debugfs(vcpu);
3059         return r;
3060
3061 unlock_vcpu_destroy:
3062         mutex_unlock(&kvm->lock);
3063         kvm_arch_vcpu_destroy(vcpu);
3064 vcpu_free_run_page:
3065         free_page((unsigned long)vcpu->run);
3066 vcpu_free:
3067         kmem_cache_free(kvm_vcpu_cache, vcpu);
3068 vcpu_decrement:
3069         mutex_lock(&kvm->lock);
3070         kvm->created_vcpus--;
3071         mutex_unlock(&kvm->lock);
3072         return r;
3073 }
3074
3075 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3076 {
3077         if (sigset) {
3078                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3079                 vcpu->sigset_active = 1;
3080                 vcpu->sigset = *sigset;
3081         } else
3082                 vcpu->sigset_active = 0;
3083         return 0;
3084 }
3085
3086 static long kvm_vcpu_ioctl(struct file *filp,
3087                            unsigned int ioctl, unsigned long arg)
3088 {
3089         struct kvm_vcpu *vcpu = filp->private_data;
3090         void __user *argp = (void __user *)arg;
3091         int r;
3092         struct kvm_fpu *fpu = NULL;
3093         struct kvm_sregs *kvm_sregs = NULL;
3094
3095         if (vcpu->kvm->mm != current->mm)
3096                 return -EIO;
3097
3098         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3099                 return -EINVAL;
3100
3101         /*
3102          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3103          * execution; mutex_lock() would break them.
3104          */
3105         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3106         if (r != -ENOIOCTLCMD)
3107                 return r;
3108
3109         if (mutex_lock_killable(&vcpu->mutex))
3110                 return -EINTR;
3111         switch (ioctl) {
3112         case KVM_RUN: {
3113                 struct pid *oldpid;
3114                 r = -EINVAL;
3115                 if (arg)
3116                         goto out;
3117                 oldpid = rcu_access_pointer(vcpu->pid);
3118                 if (unlikely(oldpid != task_pid(current))) {
3119                         /* The thread running this VCPU changed. */
3120                         struct pid *newpid;
3121
3122                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3123                         if (r)
3124                                 break;
3125
3126                         newpid = get_task_pid(current, PIDTYPE_PID);
3127                         rcu_assign_pointer(vcpu->pid, newpid);
3128                         if (oldpid)
3129                                 synchronize_rcu();
3130                         put_pid(oldpid);
3131                 }
3132                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3133                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3134                 break;
3135         }
3136         case KVM_GET_REGS: {
3137                 struct kvm_regs *kvm_regs;
3138
3139                 r = -ENOMEM;
3140                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3141                 if (!kvm_regs)
3142                         goto out;
3143                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3144                 if (r)
3145                         goto out_free1;
3146                 r = -EFAULT;
3147                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3148                         goto out_free1;
3149                 r = 0;
3150 out_free1:
3151                 kfree(kvm_regs);
3152                 break;
3153         }
3154         case KVM_SET_REGS: {
3155                 struct kvm_regs *kvm_regs;
3156
3157                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3158                 if (IS_ERR(kvm_regs)) {
3159                         r = PTR_ERR(kvm_regs);
3160                         goto out;
3161                 }
3162                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3163                 kfree(kvm_regs);
3164                 break;
3165         }
3166         case KVM_GET_SREGS: {
3167                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3168                                     GFP_KERNEL_ACCOUNT);
3169                 r = -ENOMEM;
3170                 if (!kvm_sregs)
3171                         goto out;
3172                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3173                 if (r)
3174                         goto out;
3175                 r = -EFAULT;
3176                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3177                         goto out;
3178                 r = 0;
3179                 break;
3180         }
3181         case KVM_SET_SREGS: {
3182                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3183                 if (IS_ERR(kvm_sregs)) {
3184                         r = PTR_ERR(kvm_sregs);
3185                         kvm_sregs = NULL;
3186                         goto out;
3187                 }
3188                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3189                 break;
3190         }
3191         case KVM_GET_MP_STATE: {
3192                 struct kvm_mp_state mp_state;
3193
3194                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3195                 if (r)
3196                         goto out;
3197                 r = -EFAULT;
3198                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3199                         goto out;
3200                 r = 0;
3201                 break;
3202         }
3203         case KVM_SET_MP_STATE: {
3204                 struct kvm_mp_state mp_state;
3205
3206                 r = -EFAULT;
3207                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3208                         goto out;
3209                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3210                 break;
3211         }
3212         case KVM_TRANSLATE: {
3213                 struct kvm_translation tr;
3214
3215                 r = -EFAULT;
3216                 if (copy_from_user(&tr, argp, sizeof(tr)))
3217                         goto out;
3218                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3219                 if (r)
3220                         goto out;
3221                 r = -EFAULT;
3222                 if (copy_to_user(argp, &tr, sizeof(tr)))
3223                         goto out;
3224                 r = 0;
3225                 break;
3226         }
3227         case KVM_SET_GUEST_DEBUG: {
3228                 struct kvm_guest_debug dbg;
3229
3230                 r = -EFAULT;
3231                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3232                         goto out;
3233                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3234                 break;
3235         }
3236         case KVM_SET_SIGNAL_MASK: {
3237                 struct kvm_signal_mask __user *sigmask_arg = argp;
3238                 struct kvm_signal_mask kvm_sigmask;
3239                 sigset_t sigset, *p;
3240
3241                 p = NULL;
3242                 if (argp) {
3243                         r = -EFAULT;
3244                         if (copy_from_user(&kvm_sigmask, argp,
3245                                            sizeof(kvm_sigmask)))
3246                                 goto out;
3247                         r = -EINVAL;
3248                         if (kvm_sigmask.len != sizeof(sigset))
3249                                 goto out;
3250                         r = -EFAULT;
3251                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3252                                            sizeof(sigset)))
3253                                 goto out;
3254                         p = &sigset;
3255                 }
3256                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3257                 break;
3258         }
3259         case KVM_GET_FPU: {
3260                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3261                 r = -ENOMEM;
3262                 if (!fpu)
3263                         goto out;
3264                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3265                 if (r)
3266                         goto out;
3267                 r = -EFAULT;
3268                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3269                         goto out;
3270                 r = 0;
3271                 break;
3272         }
3273         case KVM_SET_FPU: {
3274                 fpu = memdup_user(argp, sizeof(*fpu));
3275                 if (IS_ERR(fpu)) {
3276                         r = PTR_ERR(fpu);
3277                         fpu = NULL;
3278                         goto out;
3279                 }
3280                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3281                 break;
3282         }
3283         default:
3284                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3285         }
3286 out:
3287         mutex_unlock(&vcpu->mutex);
3288         kfree(fpu);
3289         kfree(kvm_sregs);
3290         return r;
3291 }
3292
3293 #ifdef CONFIG_KVM_COMPAT
3294 static long kvm_vcpu_compat_ioctl(struct file *filp,
3295                                   unsigned int ioctl, unsigned long arg)
3296 {
3297         struct kvm_vcpu *vcpu = filp->private_data;
3298         void __user *argp = compat_ptr(arg);
3299         int r;
3300
3301         if (vcpu->kvm->mm != current->mm)
3302                 return -EIO;
3303
3304         switch (ioctl) {
3305         case KVM_SET_SIGNAL_MASK: {
3306                 struct kvm_signal_mask __user *sigmask_arg = argp;
3307                 struct kvm_signal_mask kvm_sigmask;
3308                 sigset_t sigset;
3309
3310                 if (argp) {
3311                         r = -EFAULT;
3312                         if (copy_from_user(&kvm_sigmask, argp,
3313                                            sizeof(kvm_sigmask)))
3314                                 goto out;
3315                         r = -EINVAL;
3316                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3317                                 goto out;
3318                         r = -EFAULT;
3319                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3320                                 goto out;
3321                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3322                 } else
3323                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3324                 break;
3325         }
3326         default:
3327                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3328         }
3329
3330 out:
3331         return r;
3332 }
3333 #endif
3334
3335 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3336 {
3337         struct kvm_device *dev = filp->private_data;
3338
3339         if (dev->ops->mmap)
3340                 return dev->ops->mmap(dev, vma);
3341
3342         return -ENODEV;
3343 }
3344
3345 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3346                                  int (*accessor)(struct kvm_device *dev,
3347                                                  struct kvm_device_attr *attr),
3348                                  unsigned long arg)
3349 {
3350         struct kvm_device_attr attr;
3351
3352         if (!accessor)
3353                 return -EPERM;
3354
3355         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3356                 return -EFAULT;
3357
3358         return accessor(dev, &attr);
3359 }
3360
3361 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3362                              unsigned long arg)
3363 {
3364         struct kvm_device *dev = filp->private_data;
3365
3366         if (dev->kvm->mm != current->mm)
3367                 return -EIO;
3368
3369         switch (ioctl) {
3370         case KVM_SET_DEVICE_ATTR:
3371                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3372         case KVM_GET_DEVICE_ATTR:
3373                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3374         case KVM_HAS_DEVICE_ATTR:
3375                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3376         default:
3377                 if (dev->ops->ioctl)
3378                         return dev->ops->ioctl(dev, ioctl, arg);
3379
3380                 return -ENOTTY;
3381         }
3382 }
3383
3384 static int kvm_device_release(struct inode *inode, struct file *filp)
3385 {
3386         struct kvm_device *dev = filp->private_data;
3387         struct kvm *kvm = dev->kvm;
3388
3389         if (dev->ops->release) {
3390                 mutex_lock(&kvm->lock);
3391                 list_del(&dev->vm_node);
3392                 dev->ops->release(dev);
3393                 mutex_unlock(&kvm->lock);
3394         }
3395
3396         kvm_put_kvm(kvm);
3397         return 0;
3398 }
3399
3400 static const struct file_operations kvm_device_fops = {
3401         .unlocked_ioctl = kvm_device_ioctl,
3402         .release = kvm_device_release,
3403         KVM_COMPAT(kvm_device_ioctl),
3404         .mmap = kvm_device_mmap,
3405 };
3406
3407 struct kvm_device *kvm_device_from_filp(struct file *filp)
3408 {
3409         if (filp->f_op != &kvm_device_fops)
3410                 return NULL;
3411
3412         return filp->private_data;
3413 }
3414
3415 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3416 #ifdef CONFIG_KVM_MPIC
3417         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3418         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3419 #endif
3420 };
3421
3422 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3423 {
3424         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3425                 return -ENOSPC;
3426
3427         if (kvm_device_ops_table[type] != NULL)
3428                 return -EEXIST;
3429
3430         kvm_device_ops_table[type] = ops;
3431         return 0;
3432 }
3433
3434 void kvm_unregister_device_ops(u32 type)
3435 {
3436         if (kvm_device_ops_table[type] != NULL)
3437                 kvm_device_ops_table[type] = NULL;
3438 }
3439
3440 static int kvm_ioctl_create_device(struct kvm *kvm,
3441                                    struct kvm_create_device *cd)
3442 {
3443         const struct kvm_device_ops *ops = NULL;
3444         struct kvm_device *dev;
3445         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3446         int type;
3447         int ret;
3448
3449         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3450                 return -ENODEV;
3451
3452         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3453         ops = kvm_device_ops_table[type];
3454         if (ops == NULL)
3455                 return -ENODEV;
3456
3457         if (test)
3458                 return 0;
3459
3460         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3461         if (!dev)
3462                 return -ENOMEM;
3463
3464         dev->ops = ops;
3465         dev->kvm = kvm;
3466
3467         mutex_lock(&kvm->lock);
3468         ret = ops->create(dev, type);
3469         if (ret < 0) {
3470                 mutex_unlock(&kvm->lock);
3471                 kfree(dev);
3472                 return ret;
3473         }
3474         list_add(&dev->vm_node, &kvm->devices);
3475         mutex_unlock(&kvm->lock);
3476
3477         if (ops->init)
3478                 ops->init(dev);
3479
3480         kvm_get_kvm(kvm);
3481         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3482         if (ret < 0) {
3483                 kvm_put_kvm_no_destroy(kvm);
3484                 mutex_lock(&kvm->lock);
3485                 list_del(&dev->vm_node);
3486                 mutex_unlock(&kvm->lock);
3487                 ops->destroy(dev);
3488                 return ret;
3489         }
3490
3491         cd->fd = ret;
3492         return 0;
3493 }
3494
3495 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3496 {
3497         switch (arg) {
3498         case KVM_CAP_USER_MEMORY:
3499         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3500         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3501         case KVM_CAP_INTERNAL_ERROR_DATA:
3502 #ifdef CONFIG_HAVE_KVM_MSI
3503         case KVM_CAP_SIGNAL_MSI:
3504 #endif
3505 #ifdef CONFIG_HAVE_KVM_IRQFD
3506         case KVM_CAP_IRQFD:
3507         case KVM_CAP_IRQFD_RESAMPLE:
3508 #endif
3509         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3510         case KVM_CAP_CHECK_EXTENSION_VM:
3511         case KVM_CAP_ENABLE_CAP_VM:
3512                 return 1;
3513 #ifdef CONFIG_KVM_MMIO
3514         case KVM_CAP_COALESCED_MMIO:
3515                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3516         case KVM_CAP_COALESCED_PIO:
3517                 return 1;
3518 #endif
3519 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3520         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3521                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3522 #endif
3523 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3524         case KVM_CAP_IRQ_ROUTING:
3525                 return KVM_MAX_IRQ_ROUTES;
3526 #endif
3527 #if KVM_ADDRESS_SPACE_NUM > 1
3528         case KVM_CAP_MULTI_ADDRESS_SPACE:
3529                 return KVM_ADDRESS_SPACE_NUM;
3530 #endif
3531         case KVM_CAP_NR_MEMSLOTS:
3532                 return KVM_USER_MEM_SLOTS;
3533         default:
3534                 break;
3535         }
3536         return kvm_vm_ioctl_check_extension(kvm, arg);
3537 }
3538
3539 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3540                                                   struct kvm_enable_cap *cap)
3541 {
3542         return -EINVAL;
3543 }
3544
3545 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3546                                            struct kvm_enable_cap *cap)
3547 {
3548         switch (cap->cap) {
3549 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3550         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3551                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3552
3553                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3554                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3555
3556                 if (cap->flags || (cap->args[0] & ~allowed_options))
3557                         return -EINVAL;
3558                 kvm->manual_dirty_log_protect = cap->args[0];
3559                 return 0;
3560         }
3561 #endif
3562         default:
3563                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3564         }
3565 }
3566
3567 static long kvm_vm_ioctl(struct file *filp,
3568                            unsigned int ioctl, unsigned long arg)
3569 {
3570         struct kvm *kvm = filp->private_data;
3571         void __user *argp = (void __user *)arg;
3572         int r;
3573
3574         if (kvm->mm != current->mm)
3575                 return -EIO;
3576         switch (ioctl) {
3577         case KVM_CREATE_VCPU:
3578                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3579                 break;
3580         case KVM_ENABLE_CAP: {
3581                 struct kvm_enable_cap cap;
3582
3583                 r = -EFAULT;
3584                 if (copy_from_user(&cap, argp, sizeof(cap)))
3585                         goto out;
3586                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3587                 break;
3588         }
3589         case KVM_SET_USER_MEMORY_REGION: {
3590                 struct kvm_userspace_memory_region kvm_userspace_mem;
3591
3592                 r = -EFAULT;
3593                 if (copy_from_user(&kvm_userspace_mem, argp,
3594                                                 sizeof(kvm_userspace_mem)))
3595                         goto out;
3596
3597                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3598                 break;
3599         }
3600         case KVM_GET_DIRTY_LOG: {
3601                 struct kvm_dirty_log log;
3602
3603                 r = -EFAULT;
3604                 if (copy_from_user(&log, argp, sizeof(log)))
3605                         goto out;
3606                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3607                 break;
3608         }
3609 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3610         case KVM_CLEAR_DIRTY_LOG: {
3611                 struct kvm_clear_dirty_log log;
3612
3613                 r = -EFAULT;
3614                 if (copy_from_user(&log, argp, sizeof(log)))
3615                         goto out;
3616                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3617                 break;
3618         }
3619 #endif
3620 #ifdef CONFIG_KVM_MMIO
3621         case KVM_REGISTER_COALESCED_MMIO: {
3622                 struct kvm_coalesced_mmio_zone zone;
3623
3624                 r = -EFAULT;
3625                 if (copy_from_user(&zone, argp, sizeof(zone)))
3626                         goto out;
3627                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3628                 break;
3629         }
3630         case KVM_UNREGISTER_COALESCED_MMIO: {
3631                 struct kvm_coalesced_mmio_zone zone;
3632
3633                 r = -EFAULT;
3634                 if (copy_from_user(&zone, argp, sizeof(zone)))
3635                         goto out;
3636                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3637                 break;
3638         }
3639 #endif
3640         case KVM_IRQFD: {
3641                 struct kvm_irqfd data;
3642
3643                 r = -EFAULT;
3644                 if (copy_from_user(&data, argp, sizeof(data)))
3645                         goto out;
3646                 r = kvm_irqfd(kvm, &data);
3647                 break;
3648         }
3649         case KVM_IOEVENTFD: {
3650                 struct kvm_ioeventfd data;
3651
3652                 r = -EFAULT;
3653                 if (copy_from_user(&data, argp, sizeof(data)))
3654                         goto out;
3655                 r = kvm_ioeventfd(kvm, &data);
3656                 break;
3657         }
3658 #ifdef CONFIG_HAVE_KVM_MSI
3659         case KVM_SIGNAL_MSI: {
3660                 struct kvm_msi msi;
3661
3662                 r = -EFAULT;
3663                 if (copy_from_user(&msi, argp, sizeof(msi)))
3664                         goto out;
3665                 r = kvm_send_userspace_msi(kvm, &msi);
3666                 break;
3667         }
3668 #endif
3669 #ifdef __KVM_HAVE_IRQ_LINE
3670         case KVM_IRQ_LINE_STATUS:
3671         case KVM_IRQ_LINE: {
3672                 struct kvm_irq_level irq_event;
3673
3674                 r = -EFAULT;
3675                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3676                         goto out;
3677
3678                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3679                                         ioctl == KVM_IRQ_LINE_STATUS);
3680                 if (r)
3681                         goto out;
3682
3683                 r = -EFAULT;
3684                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3685                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3686                                 goto out;
3687                 }
3688
3689                 r = 0;
3690                 break;
3691         }
3692 #endif
3693 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3694         case KVM_SET_GSI_ROUTING: {
3695                 struct kvm_irq_routing routing;
3696                 struct kvm_irq_routing __user *urouting;
3697                 struct kvm_irq_routing_entry *entries = NULL;
3698
3699                 r = -EFAULT;
3700                 if (copy_from_user(&routing, argp, sizeof(routing)))
3701                         goto out;
3702                 r = -EINVAL;
3703                 if (!kvm_arch_can_set_irq_routing(kvm))
3704                         goto out;
3705                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3706                         goto out;
3707                 if (routing.flags)
3708                         goto out;
3709                 if (routing.nr) {
3710                         r = -ENOMEM;
3711                         entries = vmalloc(array_size(sizeof(*entries),
3712                                                      routing.nr));
3713                         if (!entries)
3714                                 goto out;
3715                         r = -EFAULT;
3716                         urouting = argp;
3717                         if (copy_from_user(entries, urouting->entries,
3718                                            routing.nr * sizeof(*entries)))
3719                                 goto out_free_irq_routing;
3720                 }
3721                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3722                                         routing.flags);
3723 out_free_irq_routing:
3724                 vfree(entries);
3725                 break;
3726         }
3727 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3728         case KVM_CREATE_DEVICE: {
3729                 struct kvm_create_device cd;
3730
3731                 r = -EFAULT;
3732                 if (copy_from_user(&cd, argp, sizeof(cd)))
3733                         goto out;
3734
3735                 r = kvm_ioctl_create_device(kvm, &cd);
3736                 if (r)
3737                         goto out;
3738
3739                 r = -EFAULT;
3740                 if (copy_to_user(argp, &cd, sizeof(cd)))
3741                         goto out;
3742
3743                 r = 0;
3744                 break;
3745         }
3746         case KVM_CHECK_EXTENSION:
3747                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3748                 break;
3749         default:
3750                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3751         }
3752 out:
3753         return r;
3754 }
3755
3756 #ifdef CONFIG_KVM_COMPAT
3757 struct compat_kvm_dirty_log {
3758         __u32 slot;
3759         __u32 padding1;
3760         union {
3761                 compat_uptr_t dirty_bitmap; /* one bit per page */
3762                 __u64 padding2;
3763         };
3764 };
3765
3766 static long kvm_vm_compat_ioctl(struct file *filp,
3767                            unsigned int ioctl, unsigned long arg)
3768 {
3769         struct kvm *kvm = filp->private_data;
3770         int r;
3771
3772         if (kvm->mm != current->mm)
3773                 return -EIO;
3774         switch (ioctl) {
3775         case KVM_GET_DIRTY_LOG: {
3776                 struct compat_kvm_dirty_log compat_log;
3777                 struct kvm_dirty_log log;
3778
3779                 if (copy_from_user(&compat_log, (void __user *)arg,
3780                                    sizeof(compat_log)))
3781                         return -EFAULT;
3782                 log.slot         = compat_log.slot;
3783                 log.padding1     = compat_log.padding1;
3784                 log.padding2     = compat_log.padding2;
3785                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3786
3787                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3788                 break;
3789         }
3790         default:
3791                 r = kvm_vm_ioctl(filp, ioctl, arg);
3792         }
3793         return r;
3794 }
3795 #endif
3796
3797 static struct file_operations kvm_vm_fops = {
3798         .release        = kvm_vm_release,
3799         .unlocked_ioctl = kvm_vm_ioctl,
3800         .llseek         = noop_llseek,
3801         KVM_COMPAT(kvm_vm_compat_ioctl),
3802 };
3803
3804 static int kvm_dev_ioctl_create_vm(unsigned long type)
3805 {
3806         int r;
3807         struct kvm *kvm;
3808         struct file *file;
3809
3810         kvm = kvm_create_vm(type);
3811         if (IS_ERR(kvm))
3812                 return PTR_ERR(kvm);
3813 #ifdef CONFIG_KVM_MMIO
3814         r = kvm_coalesced_mmio_init(kvm);
3815         if (r < 0)
3816                 goto put_kvm;
3817 #endif
3818         r = get_unused_fd_flags(O_CLOEXEC);
3819         if (r < 0)
3820                 goto put_kvm;
3821
3822         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3823         if (IS_ERR(file)) {
3824                 put_unused_fd(r);
3825                 r = PTR_ERR(file);
3826                 goto put_kvm;
3827         }
3828
3829         /*
3830          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3831          * already set, with ->release() being kvm_vm_release().  In error
3832          * cases it will be called by the final fput(file) and will take
3833          * care of doing kvm_put_kvm(kvm).
3834          */
3835         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3836                 put_unused_fd(r);
3837                 fput(file);
3838                 return -ENOMEM;
3839         }
3840         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3841
3842         fd_install(r, file);
3843         return r;
3844
3845 put_kvm:
3846         kvm_put_kvm(kvm);
3847         return r;
3848 }
3849
3850 static long kvm_dev_ioctl(struct file *filp,
3851                           unsigned int ioctl, unsigned long arg)
3852 {
3853         long r = -EINVAL;
3854
3855         switch (ioctl) {
3856         case KVM_GET_API_VERSION:
3857                 if (arg)
3858                         goto out;
3859                 r = KVM_API_VERSION;
3860                 break;
3861         case KVM_CREATE_VM:
3862                 r = kvm_dev_ioctl_create_vm(arg);
3863                 break;
3864         case KVM_CHECK_EXTENSION:
3865                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3866                 break;
3867         case KVM_GET_VCPU_MMAP_SIZE:
3868                 if (arg)
3869                         goto out;
3870                 r = PAGE_SIZE;     /* struct kvm_run */
3871 #ifdef CONFIG_X86
3872                 r += PAGE_SIZE;    /* pio data page */
3873 #endif
3874 #ifdef CONFIG_KVM_MMIO
3875                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3876 #endif
3877                 break;
3878         case KVM_TRACE_ENABLE:
3879         case KVM_TRACE_PAUSE:
3880         case KVM_TRACE_DISABLE:
3881                 r = -EOPNOTSUPP;
3882                 break;
3883         default:
3884                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3885         }
3886 out:
3887         return r;
3888 }
3889
3890 static struct file_operations kvm_chardev_ops = {
3891         .unlocked_ioctl = kvm_dev_ioctl,
3892         .llseek         = noop_llseek,
3893         KVM_COMPAT(kvm_dev_ioctl),
3894 };
3895
3896 static struct miscdevice kvm_dev = {
3897         KVM_MINOR,
3898         "kvm",
3899         &kvm_chardev_ops,
3900 };
3901
3902 static void hardware_enable_nolock(void *junk)
3903 {
3904         int cpu = raw_smp_processor_id();
3905         int r;
3906
3907         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3908                 return;
3909
3910         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3911
3912         r = kvm_arch_hardware_enable();
3913
3914         if (r) {
3915                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3916                 atomic_inc(&hardware_enable_failed);
3917                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3918         }
3919 }
3920
3921 static int kvm_starting_cpu(unsigned int cpu)
3922 {
3923         raw_spin_lock(&kvm_count_lock);
3924         if (kvm_usage_count)
3925                 hardware_enable_nolock(NULL);
3926         raw_spin_unlock(&kvm_count_lock);
3927         return 0;
3928 }
3929
3930 static void hardware_disable_nolock(void *junk)
3931 {
3932         int cpu = raw_smp_processor_id();
3933
3934         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3935                 return;
3936         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3937         kvm_arch_hardware_disable();
3938 }
3939
3940 static int kvm_dying_cpu(unsigned int cpu)
3941 {
3942         raw_spin_lock(&kvm_count_lock);
3943         if (kvm_usage_count)
3944                 hardware_disable_nolock(NULL);
3945         raw_spin_unlock(&kvm_count_lock);
3946         return 0;
3947 }
3948
3949 static void hardware_disable_all_nolock(void)
3950 {
3951         BUG_ON(!kvm_usage_count);
3952
3953         kvm_usage_count--;
3954         if (!kvm_usage_count)
3955                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3956 }
3957
3958 static void hardware_disable_all(void)
3959 {
3960         raw_spin_lock(&kvm_count_lock);
3961         hardware_disable_all_nolock();
3962         raw_spin_unlock(&kvm_count_lock);
3963 }
3964
3965 static int hardware_enable_all(void)
3966 {
3967         int r = 0;
3968
3969         raw_spin_lock(&kvm_count_lock);
3970
3971         kvm_usage_count++;
3972         if (kvm_usage_count == 1) {
3973                 atomic_set(&hardware_enable_failed, 0);
3974                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3975
3976                 if (atomic_read(&hardware_enable_failed)) {
3977                         hardware_disable_all_nolock();
3978                         r = -EBUSY;
3979                 }
3980         }
3981
3982         raw_spin_unlock(&kvm_count_lock);
3983
3984         return r;
3985 }
3986
3987 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3988                       void *v)
3989 {
3990         /*
3991          * Some (well, at least mine) BIOSes hang on reboot if
3992          * in vmx root mode.
3993          *
3994          * And Intel TXT required VMX off for all cpu when system shutdown.
3995          */
3996         pr_info("kvm: exiting hardware virtualization\n");
3997         kvm_rebooting = true;
3998         on_each_cpu(hardware_disable_nolock, NULL, 1);
3999         return NOTIFY_OK;
4000 }
4001
4002 static struct notifier_block kvm_reboot_notifier = {
4003         .notifier_call = kvm_reboot,
4004         .priority = 0,
4005 };
4006
4007 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4008 {
4009         int i;
4010
4011         for (i = 0; i < bus->dev_count; i++) {
4012                 struct kvm_io_device *pos = bus->range[i].dev;
4013
4014                 kvm_iodevice_destructor(pos);
4015         }
4016         kfree(bus);
4017 }
4018
4019 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4020                                  const struct kvm_io_range *r2)
4021 {
4022         gpa_t addr1 = r1->addr;
4023         gpa_t addr2 = r2->addr;
4024
4025         if (addr1 < addr2)
4026                 return -1;
4027
4028         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4029          * accept any overlapping write.  Any order is acceptable for
4030          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4031          * we process all of them.
4032          */
4033         if (r2->len) {
4034                 addr1 += r1->len;
4035                 addr2 += r2->len;
4036         }
4037
4038         if (addr1 > addr2)
4039                 return 1;
4040
4041         return 0;
4042 }
4043
4044 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4045 {
4046         return kvm_io_bus_cmp(p1, p2);
4047 }
4048
4049 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4050                              gpa_t addr, int len)
4051 {
4052         struct kvm_io_range *range, key;
4053         int off;
4054
4055         key = (struct kvm_io_range) {
4056                 .addr = addr,
4057                 .len = len,
4058         };
4059
4060         range = bsearch(&key, bus->range, bus->dev_count,
4061                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4062         if (range == NULL)
4063                 return -ENOENT;
4064
4065         off = range - bus->range;
4066
4067         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4068                 off--;
4069
4070         return off;
4071 }
4072
4073 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4074                               struct kvm_io_range *range, const void *val)
4075 {
4076         int idx;
4077
4078         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4079         if (idx < 0)
4080                 return -EOPNOTSUPP;
4081
4082         while (idx < bus->dev_count &&
4083                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4084                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4085                                         range->len, val))
4086                         return idx;
4087                 idx++;
4088         }
4089
4090         return -EOPNOTSUPP;
4091 }
4092
4093 /* kvm_io_bus_write - called under kvm->slots_lock */
4094 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4095                      int len, const void *val)
4096 {
4097         struct kvm_io_bus *bus;
4098         struct kvm_io_range range;
4099         int r;
4100
4101         range = (struct kvm_io_range) {
4102                 .addr = addr,
4103                 .len = len,
4104         };
4105
4106         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4107         if (!bus)
4108                 return -ENOMEM;
4109         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4110         return r < 0 ? r : 0;
4111 }
4112 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4113
4114 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4115 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4116                             gpa_t addr, int len, const void *val, long cookie)
4117 {
4118         struct kvm_io_bus *bus;
4119         struct kvm_io_range range;
4120
4121         range = (struct kvm_io_range) {
4122                 .addr = addr,
4123                 .len = len,
4124         };
4125
4126         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4127         if (!bus)
4128                 return -ENOMEM;
4129
4130         /* First try the device referenced by cookie. */
4131         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4132             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4133                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4134                                         val))
4135                         return cookie;
4136
4137         /*
4138          * cookie contained garbage; fall back to search and return the
4139          * correct cookie value.
4140          */
4141         return __kvm_io_bus_write(vcpu, bus, &range, val);
4142 }
4143
4144 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4145                              struct kvm_io_range *range, void *val)
4146 {
4147         int idx;
4148
4149         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4150         if (idx < 0)
4151                 return -EOPNOTSUPP;
4152
4153         while (idx < bus->dev_count &&
4154                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4155                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4156                                        range->len, val))
4157                         return idx;
4158                 idx++;
4159         }
4160
4161         return -EOPNOTSUPP;
4162 }
4163
4164 /* kvm_io_bus_read - called under kvm->slots_lock */
4165 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4166                     int len, void *val)
4167 {
4168         struct kvm_io_bus *bus;
4169         struct kvm_io_range range;
4170         int r;
4171
4172         range = (struct kvm_io_range) {
4173                 .addr = addr,
4174                 .len = len,
4175         };
4176
4177         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4178         if (!bus)
4179                 return -ENOMEM;
4180         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4181         return r < 0 ? r : 0;
4182 }
4183
4184 /* Caller must hold slots_lock. */
4185 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4186                             int len, struct kvm_io_device *dev)
4187 {
4188         int i;
4189         struct kvm_io_bus *new_bus, *bus;
4190         struct kvm_io_range range;
4191
4192         bus = kvm_get_bus(kvm, bus_idx);
4193         if (!bus)
4194                 return -ENOMEM;
4195
4196         /* exclude ioeventfd which is limited by maximum fd */
4197         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4198                 return -ENOSPC;
4199
4200         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4201                           GFP_KERNEL_ACCOUNT);
4202         if (!new_bus)
4203                 return -ENOMEM;
4204
4205         range = (struct kvm_io_range) {
4206                 .addr = addr,
4207                 .len = len,
4208                 .dev = dev,
4209         };
4210
4211         for (i = 0; i < bus->dev_count; i++)
4212                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4213                         break;
4214
4215         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4216         new_bus->dev_count++;
4217         new_bus->range[i] = range;
4218         memcpy(new_bus->range + i + 1, bus->range + i,
4219                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4220         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4221         synchronize_srcu_expedited(&kvm->srcu);
4222         kfree(bus);
4223
4224         return 0;
4225 }
4226
4227 /* Caller must hold slots_lock. */
4228 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4229                                struct kvm_io_device *dev)
4230 {
4231         int i;
4232         struct kvm_io_bus *new_bus, *bus;
4233
4234         bus = kvm_get_bus(kvm, bus_idx);
4235         if (!bus)
4236                 return;
4237
4238         for (i = 0; i < bus->dev_count; i++)
4239                 if (bus->range[i].dev == dev) {
4240                         break;
4241                 }
4242
4243         if (i == bus->dev_count)
4244                 return;
4245
4246         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4247                           GFP_KERNEL_ACCOUNT);
4248         if (!new_bus)  {
4249                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4250                 goto broken;
4251         }
4252
4253         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4254         new_bus->dev_count--;
4255         memcpy(new_bus->range + i, bus->range + i + 1,
4256                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4257
4258 broken:
4259         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4260         synchronize_srcu_expedited(&kvm->srcu);
4261         kfree(bus);
4262         return;
4263 }
4264
4265 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4266                                          gpa_t addr)
4267 {
4268         struct kvm_io_bus *bus;
4269         int dev_idx, srcu_idx;
4270         struct kvm_io_device *iodev = NULL;
4271
4272         srcu_idx = srcu_read_lock(&kvm->srcu);
4273
4274         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4275         if (!bus)
4276                 goto out_unlock;
4277
4278         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4279         if (dev_idx < 0)
4280                 goto out_unlock;
4281
4282         iodev = bus->range[dev_idx].dev;
4283
4284 out_unlock:
4285         srcu_read_unlock(&kvm->srcu, srcu_idx);
4286
4287         return iodev;
4288 }
4289 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4290
4291 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4292                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4293                            const char *fmt)
4294 {
4295         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4296                                           inode->i_private;
4297
4298         /* The debugfs files are a reference to the kvm struct which
4299          * is still valid when kvm_destroy_vm is called.
4300          * To avoid the race between open and the removal of the debugfs
4301          * directory we test against the users count.
4302          */
4303         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4304                 return -ENOENT;
4305
4306         if (simple_attr_open(inode, file, get,
4307                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4308                     ? set : NULL,
4309                     fmt)) {
4310                 kvm_put_kvm(stat_data->kvm);
4311                 return -ENOMEM;
4312         }
4313
4314         return 0;
4315 }
4316
4317 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4318 {
4319         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4320                                           inode->i_private;
4321
4322         simple_attr_release(inode, file);
4323         kvm_put_kvm(stat_data->kvm);
4324
4325         return 0;
4326 }
4327
4328 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4329 {
4330         *val = *(ulong *)((void *)kvm + offset);
4331
4332         return 0;
4333 }
4334
4335 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4336 {
4337         *(ulong *)((void *)kvm + offset) = 0;
4338
4339         return 0;
4340 }
4341
4342 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4343 {
4344         int i;
4345         struct kvm_vcpu *vcpu;
4346
4347         *val = 0;
4348
4349         kvm_for_each_vcpu(i, vcpu, kvm)
4350                 *val += *(u64 *)((void *)vcpu + offset);
4351
4352         return 0;
4353 }
4354
4355 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4356 {
4357         int i;
4358         struct kvm_vcpu *vcpu;
4359
4360         kvm_for_each_vcpu(i, vcpu, kvm)
4361                 *(u64 *)((void *)vcpu + offset) = 0;
4362
4363         return 0;
4364 }
4365
4366 static int kvm_stat_data_get(void *data, u64 *val)
4367 {
4368         int r = -EFAULT;
4369         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4370
4371         switch (stat_data->dbgfs_item->kind) {
4372         case KVM_STAT_VM:
4373                 r = kvm_get_stat_per_vm(stat_data->kvm,
4374                                         stat_data->dbgfs_item->offset, val);
4375                 break;
4376         case KVM_STAT_VCPU:
4377                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4378                                           stat_data->dbgfs_item->offset, val);
4379                 break;
4380         }
4381
4382         return r;
4383 }
4384
4385 static int kvm_stat_data_clear(void *data, u64 val)
4386 {
4387         int r = -EFAULT;
4388         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4389
4390         if (val)
4391                 return -EINVAL;
4392
4393         switch (stat_data->dbgfs_item->kind) {
4394         case KVM_STAT_VM:
4395                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4396                                           stat_data->dbgfs_item->offset);
4397                 break;
4398         case KVM_STAT_VCPU:
4399                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4400                                             stat_data->dbgfs_item->offset);
4401                 break;
4402         }
4403
4404         return r;
4405 }
4406
4407 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4408 {
4409         __simple_attr_check_format("%llu\n", 0ull);
4410         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4411                                 kvm_stat_data_clear, "%llu\n");
4412 }
4413
4414 static const struct file_operations stat_fops_per_vm = {
4415         .owner = THIS_MODULE,
4416         .open = kvm_stat_data_open,
4417         .release = kvm_debugfs_release,
4418         .read = simple_attr_read,
4419         .write = simple_attr_write,
4420         .llseek = no_llseek,
4421 };
4422
4423 static int vm_stat_get(void *_offset, u64 *val)
4424 {
4425         unsigned offset = (long)_offset;
4426         struct kvm *kvm;
4427         u64 tmp_val;
4428
4429         *val = 0;
4430         mutex_lock(&kvm_lock);
4431         list_for_each_entry(kvm, &vm_list, vm_list) {
4432                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4433                 *val += tmp_val;
4434         }
4435         mutex_unlock(&kvm_lock);
4436         return 0;
4437 }
4438
4439 static int vm_stat_clear(void *_offset, u64 val)
4440 {
4441         unsigned offset = (long)_offset;
4442         struct kvm *kvm;
4443
4444         if (val)
4445                 return -EINVAL;
4446
4447         mutex_lock(&kvm_lock);
4448         list_for_each_entry(kvm, &vm_list, vm_list) {
4449                 kvm_clear_stat_per_vm(kvm, offset);
4450         }
4451         mutex_unlock(&kvm_lock);
4452
4453         return 0;
4454 }
4455
4456 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4457
4458 static int vcpu_stat_get(void *_offset, u64 *val)
4459 {
4460         unsigned offset = (long)_offset;
4461         struct kvm *kvm;
4462         u64 tmp_val;
4463
4464         *val = 0;
4465         mutex_lock(&kvm_lock);
4466         list_for_each_entry(kvm, &vm_list, vm_list) {
4467                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4468                 *val += tmp_val;
4469         }
4470         mutex_unlock(&kvm_lock);
4471         return 0;
4472 }
4473
4474 static int vcpu_stat_clear(void *_offset, u64 val)
4475 {
4476         unsigned offset = (long)_offset;
4477         struct kvm *kvm;
4478
4479         if (val)
4480                 return -EINVAL;
4481
4482         mutex_lock(&kvm_lock);
4483         list_for_each_entry(kvm, &vm_list, vm_list) {
4484                 kvm_clear_stat_per_vcpu(kvm, offset);
4485         }
4486         mutex_unlock(&kvm_lock);
4487
4488         return 0;
4489 }
4490
4491 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4492                         "%llu\n");
4493
4494 static const struct file_operations *stat_fops[] = {
4495         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4496         [KVM_STAT_VM]   = &vm_stat_fops,
4497 };
4498
4499 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4500 {
4501         struct kobj_uevent_env *env;
4502         unsigned long long created, active;
4503
4504         if (!kvm_dev.this_device || !kvm)
4505                 return;
4506
4507         mutex_lock(&kvm_lock);
4508         if (type == KVM_EVENT_CREATE_VM) {
4509                 kvm_createvm_count++;
4510                 kvm_active_vms++;
4511         } else if (type == KVM_EVENT_DESTROY_VM) {
4512                 kvm_active_vms--;
4513         }
4514         created = kvm_createvm_count;
4515         active = kvm_active_vms;
4516         mutex_unlock(&kvm_lock);
4517
4518         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4519         if (!env)
4520                 return;
4521
4522         add_uevent_var(env, "CREATED=%llu", created);
4523         add_uevent_var(env, "COUNT=%llu", active);
4524
4525         if (type == KVM_EVENT_CREATE_VM) {
4526                 add_uevent_var(env, "EVENT=create");
4527                 kvm->userspace_pid = task_pid_nr(current);
4528         } else if (type == KVM_EVENT_DESTROY_VM) {
4529                 add_uevent_var(env, "EVENT=destroy");
4530         }
4531         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4532
4533         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4534                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4535
4536                 if (p) {
4537                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4538                         if (!IS_ERR(tmp))
4539                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4540                         kfree(p);
4541                 }
4542         }
4543         /* no need for checks, since we are adding at most only 5 keys */
4544         env->envp[env->envp_idx++] = NULL;
4545         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4546         kfree(env);
4547 }
4548
4549 static void kvm_init_debug(void)
4550 {
4551         struct kvm_stats_debugfs_item *p;
4552
4553         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4554
4555         kvm_debugfs_num_entries = 0;
4556         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4557                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4558                                     kvm_debugfs_dir, (void *)(long)p->offset,
4559                                     stat_fops[p->kind]);
4560         }
4561 }
4562
4563 static int kvm_suspend(void)
4564 {
4565         if (kvm_usage_count)
4566                 hardware_disable_nolock(NULL);
4567         return 0;
4568 }
4569
4570 static void kvm_resume(void)
4571 {
4572         if (kvm_usage_count) {
4573 #ifdef CONFIG_LOCKDEP
4574                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4575 #endif
4576                 hardware_enable_nolock(NULL);
4577         }
4578 }
4579
4580 static struct syscore_ops kvm_syscore_ops = {
4581         .suspend = kvm_suspend,
4582         .resume = kvm_resume,
4583 };
4584
4585 static inline
4586 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4587 {
4588         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4589 }
4590
4591 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4592 {
4593         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4594
4595         WRITE_ONCE(vcpu->preempted, false);
4596         WRITE_ONCE(vcpu->ready, false);
4597
4598         __this_cpu_write(kvm_running_vcpu, vcpu);
4599         kvm_arch_sched_in(vcpu, cpu);
4600         kvm_arch_vcpu_load(vcpu, cpu);
4601 }
4602
4603 static void kvm_sched_out(struct preempt_notifier *pn,
4604                           struct task_struct *next)
4605 {
4606         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4607
4608         if (current->state == TASK_RUNNING) {
4609                 WRITE_ONCE(vcpu->preempted, true);
4610                 WRITE_ONCE(vcpu->ready, true);
4611         }
4612         kvm_arch_vcpu_put(vcpu);
4613         __this_cpu_write(kvm_running_vcpu, NULL);
4614 }
4615
4616 /**
4617  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4618  *
4619  * We can disable preemption locally around accessing the per-CPU variable,
4620  * and use the resolved vcpu pointer after enabling preemption again,
4621  * because even if the current thread is migrated to another CPU, reading
4622  * the per-CPU value later will give us the same value as we update the
4623  * per-CPU variable in the preempt notifier handlers.
4624  */
4625 struct kvm_vcpu *kvm_get_running_vcpu(void)
4626 {
4627         struct kvm_vcpu *vcpu;
4628
4629         preempt_disable();
4630         vcpu = __this_cpu_read(kvm_running_vcpu);
4631         preempt_enable();
4632
4633         return vcpu;
4634 }
4635
4636 /**
4637  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4638  */
4639 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4640 {
4641         return &kvm_running_vcpu;
4642 }
4643
4644 struct kvm_cpu_compat_check {
4645         void *opaque;
4646         int *ret;
4647 };
4648
4649 static void check_processor_compat(void *data)
4650 {
4651         struct kvm_cpu_compat_check *c = data;
4652
4653         *c->ret = kvm_arch_check_processor_compat(c->opaque);
4654 }
4655
4656 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4657                   struct module *module)
4658 {
4659         struct kvm_cpu_compat_check c;
4660         int r;
4661         int cpu;
4662
4663         r = kvm_arch_init(opaque);
4664         if (r)
4665                 goto out_fail;
4666
4667         /*
4668          * kvm_arch_init makes sure there's at most one caller
4669          * for architectures that support multiple implementations,
4670          * like intel and amd on x86.
4671          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4672          * conflicts in case kvm is already setup for another implementation.
4673          */
4674         r = kvm_irqfd_init();
4675         if (r)
4676                 goto out_irqfd;
4677
4678         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4679                 r = -ENOMEM;
4680                 goto out_free_0;
4681         }
4682
4683         r = kvm_arch_hardware_setup(opaque);
4684         if (r < 0)
4685                 goto out_free_1;
4686
4687         c.ret = &r;
4688         c.opaque = opaque;
4689         for_each_online_cpu(cpu) {
4690                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4691                 if (r < 0)
4692                         goto out_free_2;
4693         }
4694
4695         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4696                                       kvm_starting_cpu, kvm_dying_cpu);
4697         if (r)
4698                 goto out_free_2;
4699         register_reboot_notifier(&kvm_reboot_notifier);
4700
4701         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4702         if (!vcpu_align)
4703                 vcpu_align = __alignof__(struct kvm_vcpu);
4704         kvm_vcpu_cache =
4705                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4706                                            SLAB_ACCOUNT,
4707                                            offsetof(struct kvm_vcpu, arch),
4708                                            sizeof_field(struct kvm_vcpu, arch),
4709                                            NULL);
4710         if (!kvm_vcpu_cache) {
4711                 r = -ENOMEM;
4712                 goto out_free_3;
4713         }
4714
4715         r = kvm_async_pf_init();
4716         if (r)
4717                 goto out_free;
4718
4719         kvm_chardev_ops.owner = module;
4720         kvm_vm_fops.owner = module;
4721         kvm_vcpu_fops.owner = module;
4722
4723         r = misc_register(&kvm_dev);
4724         if (r) {
4725                 pr_err("kvm: misc device register failed\n");
4726                 goto out_unreg;
4727         }
4728
4729         register_syscore_ops(&kvm_syscore_ops);
4730
4731         kvm_preempt_ops.sched_in = kvm_sched_in;
4732         kvm_preempt_ops.sched_out = kvm_sched_out;
4733
4734         kvm_init_debug();
4735
4736         r = kvm_vfio_ops_init();
4737         WARN_ON(r);
4738
4739         return 0;
4740
4741 out_unreg:
4742         kvm_async_pf_deinit();
4743 out_free:
4744         kmem_cache_destroy(kvm_vcpu_cache);
4745 out_free_3:
4746         unregister_reboot_notifier(&kvm_reboot_notifier);
4747         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4748 out_free_2:
4749         kvm_arch_hardware_unsetup();
4750 out_free_1:
4751         free_cpumask_var(cpus_hardware_enabled);
4752 out_free_0:
4753         kvm_irqfd_exit();
4754 out_irqfd:
4755         kvm_arch_exit();
4756 out_fail:
4757         return r;
4758 }
4759 EXPORT_SYMBOL_GPL(kvm_init);
4760
4761 void kvm_exit(void)
4762 {
4763         debugfs_remove_recursive(kvm_debugfs_dir);
4764         misc_deregister(&kvm_dev);
4765         kmem_cache_destroy(kvm_vcpu_cache);
4766         kvm_async_pf_deinit();
4767         unregister_syscore_ops(&kvm_syscore_ops);
4768         unregister_reboot_notifier(&kvm_reboot_notifier);
4769         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4770         on_each_cpu(hardware_disable_nolock, NULL, 1);
4771         kvm_arch_hardware_unsetup();
4772         kvm_arch_exit();
4773         kvm_irqfd_exit();
4774         free_cpumask_var(cpus_hardware_enabled);
4775         kvm_vfio_ops_exit();
4776 }
4777 EXPORT_SYMBOL_GPL(kvm_exit);
4778
4779 struct kvm_vm_worker_thread_context {
4780         struct kvm *kvm;
4781         struct task_struct *parent;
4782         struct completion init_done;
4783         kvm_vm_thread_fn_t thread_fn;
4784         uintptr_t data;
4785         int err;
4786 };
4787
4788 static int kvm_vm_worker_thread(void *context)
4789 {
4790         /*
4791          * The init_context is allocated on the stack of the parent thread, so
4792          * we have to locally copy anything that is needed beyond initialization
4793          */
4794         struct kvm_vm_worker_thread_context *init_context = context;
4795         struct kvm *kvm = init_context->kvm;
4796         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4797         uintptr_t data = init_context->data;
4798         int err;
4799
4800         err = kthread_park(current);
4801         /* kthread_park(current) is never supposed to return an error */
4802         WARN_ON(err != 0);
4803         if (err)
4804                 goto init_complete;
4805
4806         err = cgroup_attach_task_all(init_context->parent, current);
4807         if (err) {
4808                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4809                         __func__, err);
4810                 goto init_complete;
4811         }
4812
4813         set_user_nice(current, task_nice(init_context->parent));
4814
4815 init_complete:
4816         init_context->err = err;
4817         complete(&init_context->init_done);
4818         init_context = NULL;
4819
4820         if (err)
4821                 return err;
4822
4823         /* Wait to be woken up by the spawner before proceeding. */
4824         kthread_parkme();
4825
4826         if (!kthread_should_stop())
4827                 err = thread_fn(kvm, data);
4828
4829         return err;
4830 }
4831
4832 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4833                                 uintptr_t data, const char *name,
4834                                 struct task_struct **thread_ptr)
4835 {
4836         struct kvm_vm_worker_thread_context init_context = {};
4837         struct task_struct *thread;
4838
4839         *thread_ptr = NULL;
4840         init_context.kvm = kvm;
4841         init_context.parent = current;
4842         init_context.thread_fn = thread_fn;
4843         init_context.data = data;
4844         init_completion(&init_context.init_done);
4845
4846         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4847                              "%s-%d", name, task_pid_nr(current));
4848         if (IS_ERR(thread))
4849                 return PTR_ERR(thread);
4850
4851         /* kthread_run is never supposed to return NULL */
4852         WARN_ON(thread == NULL);
4853
4854         wait_for_completion(&init_context.init_done);
4855
4856         if (!init_context.err)
4857                 *thread_ptr = thread;
4858
4859         return init_context.err;
4860 }