Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129
130 static bool largepages_enabled = true;
131
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139                 unsigned long start, unsigned long end)
140 {
141 }
142
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
144 {
145         if (pfn_valid(pfn))
146                 return PageReserved(pfn_to_page(pfn));
147
148         return true;
149 }
150
151 /*
152  * Switches to specified vcpu, until a matching vcpu_put()
153  */
154 int vcpu_load(struct kvm_vcpu *vcpu)
155 {
156         int cpu;
157
158         if (mutex_lock_killable(&vcpu->mutex))
159                 return -EINTR;
160         cpu = get_cpu();
161         preempt_notifier_register(&vcpu->preempt_notifier);
162         kvm_arch_vcpu_load(vcpu, cpu);
163         put_cpu();
164         return 0;
165 }
166 EXPORT_SYMBOL_GPL(vcpu_load);
167
168 void vcpu_put(struct kvm_vcpu *vcpu)
169 {
170         preempt_disable();
171         kvm_arch_vcpu_put(vcpu);
172         preempt_notifier_unregister(&vcpu->preempt_notifier);
173         preempt_enable();
174         mutex_unlock(&vcpu->mutex);
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183         /*
184          * We need to wait for the VCPU to reenable interrupts and get out of
185          * READING_SHADOW_PAGE_TABLES mode.
186          */
187         if (req & KVM_REQUEST_WAIT)
188                 return mode != OUTSIDE_GUEST_MODE;
189
190         /*
191          * Need to kick a running VCPU, but otherwise there is nothing to do.
192          */
193         return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202         if (unlikely(!cpus))
203                 cpus = cpu_online_mask;
204
205         if (cpumask_empty(cpus))
206                 return false;
207
208         smp_call_function_many(cpus, ack_flush, NULL, wait);
209         return true;
210 }
211
212 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
213 {
214         int i, cpu, me;
215         cpumask_var_t cpus;
216         bool called;
217         struct kvm_vcpu *vcpu;
218
219         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
220
221         me = get_cpu();
222         kvm_for_each_vcpu(i, vcpu, kvm) {
223                 kvm_make_request(req, vcpu);
224                 cpu = vcpu->cpu;
225
226                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
227                         continue;
228
229                 if (cpus != NULL && cpu != -1 && cpu != me &&
230                     kvm_request_needs_ipi(vcpu, req))
231                         __cpumask_set_cpu(cpu, cpus);
232         }
233         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
234         put_cpu();
235         free_cpumask_var(cpus);
236         return called;
237 }
238
239 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
240 void kvm_flush_remote_tlbs(struct kvm *kvm)
241 {
242         /*
243          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
244          * kvm_make_all_cpus_request.
245          */
246         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
247
248         /*
249          * We want to publish modifications to the page tables before reading
250          * mode. Pairs with a memory barrier in arch-specific code.
251          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
252          * and smp_mb in walk_shadow_page_lockless_begin/end.
253          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
254          *
255          * There is already an smp_mb__after_atomic() before
256          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
257          * barrier here.
258          */
259         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
260                 ++kvm->stat.remote_tlb_flush;
261         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
262 }
263 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
264 #endif
265
266 void kvm_reload_remote_mmus(struct kvm *kvm)
267 {
268         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
269 }
270
271 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
272 {
273         struct page *page;
274         int r;
275
276         mutex_init(&vcpu->mutex);
277         vcpu->cpu = -1;
278         vcpu->kvm = kvm;
279         vcpu->vcpu_id = id;
280         vcpu->pid = NULL;
281         init_swait_queue_head(&vcpu->wq);
282         kvm_async_pf_vcpu_init(vcpu);
283
284         vcpu->pre_pcpu = -1;
285         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
286
287         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
288         if (!page) {
289                 r = -ENOMEM;
290                 goto fail;
291         }
292         vcpu->run = page_address(page);
293
294         kvm_vcpu_set_in_spin_loop(vcpu, false);
295         kvm_vcpu_set_dy_eligible(vcpu, false);
296         vcpu->preempted = false;
297
298         r = kvm_arch_vcpu_init(vcpu);
299         if (r < 0)
300                 goto fail_free_run;
301         return 0;
302
303 fail_free_run:
304         free_page((unsigned long)vcpu->run);
305 fail:
306         return r;
307 }
308 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
309
310 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
311 {
312         /*
313          * no need for rcu_read_lock as VCPU_RUN is the only place that
314          * will change the vcpu->pid pointer and on uninit all file
315          * descriptors are already gone.
316          */
317         put_pid(rcu_dereference_protected(vcpu->pid, 1));
318         kvm_arch_vcpu_uninit(vcpu);
319         free_page((unsigned long)vcpu->run);
320 }
321 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
322
323 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
324 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
325 {
326         return container_of(mn, struct kvm, mmu_notifier);
327 }
328
329 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
330                                         struct mm_struct *mm,
331                                         unsigned long address,
332                                         pte_t pte)
333 {
334         struct kvm *kvm = mmu_notifier_to_kvm(mn);
335         int idx;
336
337         idx = srcu_read_lock(&kvm->srcu);
338         spin_lock(&kvm->mmu_lock);
339         kvm->mmu_notifier_seq++;
340         kvm_set_spte_hva(kvm, address, pte);
341         spin_unlock(&kvm->mmu_lock);
342         srcu_read_unlock(&kvm->srcu, idx);
343 }
344
345 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
346                                                     struct mm_struct *mm,
347                                                     unsigned long start,
348                                                     unsigned long end)
349 {
350         struct kvm *kvm = mmu_notifier_to_kvm(mn);
351         int need_tlb_flush = 0, idx;
352
353         idx = srcu_read_lock(&kvm->srcu);
354         spin_lock(&kvm->mmu_lock);
355         /*
356          * The count increase must become visible at unlock time as no
357          * spte can be established without taking the mmu_lock and
358          * count is also read inside the mmu_lock critical section.
359          */
360         kvm->mmu_notifier_count++;
361         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
362         need_tlb_flush |= kvm->tlbs_dirty;
363         /* we've to flush the tlb before the pages can be freed */
364         if (need_tlb_flush)
365                 kvm_flush_remote_tlbs(kvm);
366
367         spin_unlock(&kvm->mmu_lock);
368
369         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
370
371         srcu_read_unlock(&kvm->srcu, idx);
372 }
373
374 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
375                                                   struct mm_struct *mm,
376                                                   unsigned long start,
377                                                   unsigned long end)
378 {
379         struct kvm *kvm = mmu_notifier_to_kvm(mn);
380
381         spin_lock(&kvm->mmu_lock);
382         /*
383          * This sequence increase will notify the kvm page fault that
384          * the page that is going to be mapped in the spte could have
385          * been freed.
386          */
387         kvm->mmu_notifier_seq++;
388         smp_wmb();
389         /*
390          * The above sequence increase must be visible before the
391          * below count decrease, which is ensured by the smp_wmb above
392          * in conjunction with the smp_rmb in mmu_notifier_retry().
393          */
394         kvm->mmu_notifier_count--;
395         spin_unlock(&kvm->mmu_lock);
396
397         BUG_ON(kvm->mmu_notifier_count < 0);
398 }
399
400 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
401                                               struct mm_struct *mm,
402                                               unsigned long start,
403                                               unsigned long end)
404 {
405         struct kvm *kvm = mmu_notifier_to_kvm(mn);
406         int young, idx;
407
408         idx = srcu_read_lock(&kvm->srcu);
409         spin_lock(&kvm->mmu_lock);
410
411         young = kvm_age_hva(kvm, start, end);
412         if (young)
413                 kvm_flush_remote_tlbs(kvm);
414
415         spin_unlock(&kvm->mmu_lock);
416         srcu_read_unlock(&kvm->srcu, idx);
417
418         return young;
419 }
420
421 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
422                                         struct mm_struct *mm,
423                                         unsigned long start,
424                                         unsigned long end)
425 {
426         struct kvm *kvm = mmu_notifier_to_kvm(mn);
427         int young, idx;
428
429         idx = srcu_read_lock(&kvm->srcu);
430         spin_lock(&kvm->mmu_lock);
431         /*
432          * Even though we do not flush TLB, this will still adversely
433          * affect performance on pre-Haswell Intel EPT, where there is
434          * no EPT Access Bit to clear so that we have to tear down EPT
435          * tables instead. If we find this unacceptable, we can always
436          * add a parameter to kvm_age_hva so that it effectively doesn't
437          * do anything on clear_young.
438          *
439          * Also note that currently we never issue secondary TLB flushes
440          * from clear_young, leaving this job up to the regular system
441          * cadence. If we find this inaccurate, we might come up with a
442          * more sophisticated heuristic later.
443          */
444         young = kvm_age_hva(kvm, start, end);
445         spin_unlock(&kvm->mmu_lock);
446         srcu_read_unlock(&kvm->srcu, idx);
447
448         return young;
449 }
450
451 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
452                                        struct mm_struct *mm,
453                                        unsigned long address)
454 {
455         struct kvm *kvm = mmu_notifier_to_kvm(mn);
456         int young, idx;
457
458         idx = srcu_read_lock(&kvm->srcu);
459         spin_lock(&kvm->mmu_lock);
460         young = kvm_test_age_hva(kvm, address);
461         spin_unlock(&kvm->mmu_lock);
462         srcu_read_unlock(&kvm->srcu, idx);
463
464         return young;
465 }
466
467 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
468                                      struct mm_struct *mm)
469 {
470         struct kvm *kvm = mmu_notifier_to_kvm(mn);
471         int idx;
472
473         idx = srcu_read_lock(&kvm->srcu);
474         kvm_arch_flush_shadow_all(kvm);
475         srcu_read_unlock(&kvm->srcu, idx);
476 }
477
478 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
479         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
480         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
481         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
482         .clear_young            = kvm_mmu_notifier_clear_young,
483         .test_young             = kvm_mmu_notifier_test_young,
484         .change_pte             = kvm_mmu_notifier_change_pte,
485         .release                = kvm_mmu_notifier_release,
486 };
487
488 static int kvm_init_mmu_notifier(struct kvm *kvm)
489 {
490         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
491         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
492 }
493
494 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
495
496 static int kvm_init_mmu_notifier(struct kvm *kvm)
497 {
498         return 0;
499 }
500
501 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
502
503 static struct kvm_memslots *kvm_alloc_memslots(void)
504 {
505         int i;
506         struct kvm_memslots *slots;
507
508         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
509         if (!slots)
510                 return NULL;
511
512         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
513                 slots->id_to_index[i] = slots->memslots[i].id = i;
514
515         return slots;
516 }
517
518 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
519 {
520         if (!memslot->dirty_bitmap)
521                 return;
522
523         kvfree(memslot->dirty_bitmap);
524         memslot->dirty_bitmap = NULL;
525 }
526
527 /*
528  * Free any memory in @free but not in @dont.
529  */
530 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
531                               struct kvm_memory_slot *dont)
532 {
533         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
534                 kvm_destroy_dirty_bitmap(free);
535
536         kvm_arch_free_memslot(kvm, free, dont);
537
538         free->npages = 0;
539 }
540
541 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
542 {
543         struct kvm_memory_slot *memslot;
544
545         if (!slots)
546                 return;
547
548         kvm_for_each_memslot(memslot, slots)
549                 kvm_free_memslot(kvm, memslot, NULL);
550
551         kvfree(slots);
552 }
553
554 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
555 {
556         int i;
557
558         if (!kvm->debugfs_dentry)
559                 return;
560
561         debugfs_remove_recursive(kvm->debugfs_dentry);
562
563         if (kvm->debugfs_stat_data) {
564                 for (i = 0; i < kvm_debugfs_num_entries; i++)
565                         kfree(kvm->debugfs_stat_data[i]);
566                 kfree(kvm->debugfs_stat_data);
567         }
568 }
569
570 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
571 {
572         char dir_name[ITOA_MAX_LEN * 2];
573         struct kvm_stat_data *stat_data;
574         struct kvm_stats_debugfs_item *p;
575
576         if (!debugfs_initialized())
577                 return 0;
578
579         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
580         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
581                                                  kvm_debugfs_dir);
582         if (!kvm->debugfs_dentry)
583                 return -ENOMEM;
584
585         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
586                                          sizeof(*kvm->debugfs_stat_data),
587                                          GFP_KERNEL);
588         if (!kvm->debugfs_stat_data)
589                 return -ENOMEM;
590
591         for (p = debugfs_entries; p->name; p++) {
592                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
593                 if (!stat_data)
594                         return -ENOMEM;
595
596                 stat_data->kvm = kvm;
597                 stat_data->offset = p->offset;
598                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
599                 if (!debugfs_create_file(p->name, 0644,
600                                          kvm->debugfs_dentry,
601                                          stat_data,
602                                          stat_fops_per_vm[p->kind]))
603                         return -ENOMEM;
604         }
605         return 0;
606 }
607
608 static struct kvm *kvm_create_vm(unsigned long type)
609 {
610         int r, i;
611         struct kvm *kvm = kvm_arch_alloc_vm();
612
613         if (!kvm)
614                 return ERR_PTR(-ENOMEM);
615
616         spin_lock_init(&kvm->mmu_lock);
617         mmgrab(current->mm);
618         kvm->mm = current->mm;
619         kvm_eventfd_init(kvm);
620         mutex_init(&kvm->lock);
621         mutex_init(&kvm->irq_lock);
622         mutex_init(&kvm->slots_lock);
623         refcount_set(&kvm->users_count, 1);
624         INIT_LIST_HEAD(&kvm->devices);
625
626         r = kvm_arch_init_vm(kvm, type);
627         if (r)
628                 goto out_err_no_disable;
629
630         r = hardware_enable_all();
631         if (r)
632                 goto out_err_no_disable;
633
634 #ifdef CONFIG_HAVE_KVM_IRQFD
635         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
636 #endif
637
638         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
639
640         r = -ENOMEM;
641         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
642                 struct kvm_memslots *slots = kvm_alloc_memslots();
643                 if (!slots)
644                         goto out_err_no_srcu;
645                 /*
646                  * Generations must be different for each address space.
647                  * Init kvm generation close to the maximum to easily test the
648                  * code of handling generation number wrap-around.
649                  */
650                 slots->generation = i * 2 - 150;
651                 rcu_assign_pointer(kvm->memslots[i], slots);
652         }
653
654         if (init_srcu_struct(&kvm->srcu))
655                 goto out_err_no_srcu;
656         if (init_srcu_struct(&kvm->irq_srcu))
657                 goto out_err_no_irq_srcu;
658         for (i = 0; i < KVM_NR_BUSES; i++) {
659                 rcu_assign_pointer(kvm->buses[i],
660                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
661                 if (!kvm->buses[i])
662                         goto out_err;
663         }
664
665         r = kvm_init_mmu_notifier(kvm);
666         if (r)
667                 goto out_err;
668
669         spin_lock(&kvm_lock);
670         list_add(&kvm->vm_list, &vm_list);
671         spin_unlock(&kvm_lock);
672
673         preempt_notifier_inc();
674
675         return kvm;
676
677 out_err:
678         cleanup_srcu_struct(&kvm->irq_srcu);
679 out_err_no_irq_srcu:
680         cleanup_srcu_struct(&kvm->srcu);
681 out_err_no_srcu:
682         hardware_disable_all();
683 out_err_no_disable:
684         refcount_set(&kvm->users_count, 0);
685         for (i = 0; i < KVM_NR_BUSES; i++)
686                 kfree(kvm_get_bus(kvm, i));
687         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
688                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
689         kvm_arch_free_vm(kvm);
690         mmdrop(current->mm);
691         return ERR_PTR(r);
692 }
693
694 static void kvm_destroy_devices(struct kvm *kvm)
695 {
696         struct kvm_device *dev, *tmp;
697
698         /*
699          * We do not need to take the kvm->lock here, because nobody else
700          * has a reference to the struct kvm at this point and therefore
701          * cannot access the devices list anyhow.
702          */
703         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
704                 list_del(&dev->vm_node);
705                 dev->ops->destroy(dev);
706         }
707 }
708
709 static void kvm_destroy_vm(struct kvm *kvm)
710 {
711         int i;
712         struct mm_struct *mm = kvm->mm;
713
714         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
715         kvm_destroy_vm_debugfs(kvm);
716         kvm_arch_sync_events(kvm);
717         spin_lock(&kvm_lock);
718         list_del(&kvm->vm_list);
719         spin_unlock(&kvm_lock);
720         kvm_free_irq_routing(kvm);
721         for (i = 0; i < KVM_NR_BUSES; i++) {
722                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
723
724                 if (bus)
725                         kvm_io_bus_destroy(bus);
726                 kvm->buses[i] = NULL;
727         }
728         kvm_coalesced_mmio_free(kvm);
729 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
730         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
731 #else
732         kvm_arch_flush_shadow_all(kvm);
733 #endif
734         kvm_arch_destroy_vm(kvm);
735         kvm_destroy_devices(kvm);
736         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
737                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
738         cleanup_srcu_struct(&kvm->irq_srcu);
739         cleanup_srcu_struct(&kvm->srcu);
740         kvm_arch_free_vm(kvm);
741         preempt_notifier_dec();
742         hardware_disable_all();
743         mmdrop(mm);
744 }
745
746 void kvm_get_kvm(struct kvm *kvm)
747 {
748         refcount_inc(&kvm->users_count);
749 }
750 EXPORT_SYMBOL_GPL(kvm_get_kvm);
751
752 void kvm_put_kvm(struct kvm *kvm)
753 {
754         if (refcount_dec_and_test(&kvm->users_count))
755                 kvm_destroy_vm(kvm);
756 }
757 EXPORT_SYMBOL_GPL(kvm_put_kvm);
758
759
760 static int kvm_vm_release(struct inode *inode, struct file *filp)
761 {
762         struct kvm *kvm = filp->private_data;
763
764         kvm_irqfd_release(kvm);
765
766         kvm_put_kvm(kvm);
767         return 0;
768 }
769
770 /*
771  * Allocation size is twice as large as the actual dirty bitmap size.
772  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
773  */
774 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
775 {
776         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
777
778         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
779         if (!memslot->dirty_bitmap)
780                 return -ENOMEM;
781
782         return 0;
783 }
784
785 /*
786  * Insert memslot and re-sort memslots based on their GFN,
787  * so binary search could be used to lookup GFN.
788  * Sorting algorithm takes advantage of having initially
789  * sorted array and known changed memslot position.
790  */
791 static void update_memslots(struct kvm_memslots *slots,
792                             struct kvm_memory_slot *new)
793 {
794         int id = new->id;
795         int i = slots->id_to_index[id];
796         struct kvm_memory_slot *mslots = slots->memslots;
797
798         WARN_ON(mslots[i].id != id);
799         if (!new->npages) {
800                 WARN_ON(!mslots[i].npages);
801                 if (mslots[i].npages)
802                         slots->used_slots--;
803         } else {
804                 if (!mslots[i].npages)
805                         slots->used_slots++;
806         }
807
808         while (i < KVM_MEM_SLOTS_NUM - 1 &&
809                new->base_gfn <= mslots[i + 1].base_gfn) {
810                 if (!mslots[i + 1].npages)
811                         break;
812                 mslots[i] = mslots[i + 1];
813                 slots->id_to_index[mslots[i].id] = i;
814                 i++;
815         }
816
817         /*
818          * The ">=" is needed when creating a slot with base_gfn == 0,
819          * so that it moves before all those with base_gfn == npages == 0.
820          *
821          * On the other hand, if new->npages is zero, the above loop has
822          * already left i pointing to the beginning of the empty part of
823          * mslots, and the ">=" would move the hole backwards in this
824          * case---which is wrong.  So skip the loop when deleting a slot.
825          */
826         if (new->npages) {
827                 while (i > 0 &&
828                        new->base_gfn >= mslots[i - 1].base_gfn) {
829                         mslots[i] = mslots[i - 1];
830                         slots->id_to_index[mslots[i].id] = i;
831                         i--;
832                 }
833         } else
834                 WARN_ON_ONCE(i != slots->used_slots);
835
836         mslots[i] = *new;
837         slots->id_to_index[mslots[i].id] = i;
838 }
839
840 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
841 {
842         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
843
844 #ifdef __KVM_HAVE_READONLY_MEM
845         valid_flags |= KVM_MEM_READONLY;
846 #endif
847
848         if (mem->flags & ~valid_flags)
849                 return -EINVAL;
850
851         return 0;
852 }
853
854 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
855                 int as_id, struct kvm_memslots *slots)
856 {
857         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
858
859         /*
860          * Set the low bit in the generation, which disables SPTE caching
861          * until the end of synchronize_srcu_expedited.
862          */
863         WARN_ON(old_memslots->generation & 1);
864         slots->generation = old_memslots->generation + 1;
865
866         rcu_assign_pointer(kvm->memslots[as_id], slots);
867         synchronize_srcu_expedited(&kvm->srcu);
868
869         /*
870          * Increment the new memslot generation a second time. This prevents
871          * vm exits that race with memslot updates from caching a memslot
872          * generation that will (potentially) be valid forever.
873          *
874          * Generations must be unique even across address spaces.  We do not need
875          * a global counter for that, instead the generation space is evenly split
876          * across address spaces.  For example, with two address spaces, address
877          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
878          * use generations 2, 6, 10, 14, ...
879          */
880         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
881
882         kvm_arch_memslots_updated(kvm, slots);
883
884         return old_memslots;
885 }
886
887 /*
888  * Allocate some memory and give it an address in the guest physical address
889  * space.
890  *
891  * Discontiguous memory is allowed, mostly for framebuffers.
892  *
893  * Must be called holding kvm->slots_lock for write.
894  */
895 int __kvm_set_memory_region(struct kvm *kvm,
896                             const struct kvm_userspace_memory_region *mem)
897 {
898         int r;
899         gfn_t base_gfn;
900         unsigned long npages;
901         struct kvm_memory_slot *slot;
902         struct kvm_memory_slot old, new;
903         struct kvm_memslots *slots = NULL, *old_memslots;
904         int as_id, id;
905         enum kvm_mr_change change;
906
907         r = check_memory_region_flags(mem);
908         if (r)
909                 goto out;
910
911         r = -EINVAL;
912         as_id = mem->slot >> 16;
913         id = (u16)mem->slot;
914
915         /* General sanity checks */
916         if (mem->memory_size & (PAGE_SIZE - 1))
917                 goto out;
918         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
919                 goto out;
920         /* We can read the guest memory with __xxx_user() later on. */
921         if ((id < KVM_USER_MEM_SLOTS) &&
922             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
923              !access_ok(VERIFY_WRITE,
924                         (void __user *)(unsigned long)mem->userspace_addr,
925                         mem->memory_size)))
926                 goto out;
927         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
928                 goto out;
929         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
930                 goto out;
931
932         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
933         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
934         npages = mem->memory_size >> PAGE_SHIFT;
935
936         if (npages > KVM_MEM_MAX_NR_PAGES)
937                 goto out;
938
939         new = old = *slot;
940
941         new.id = id;
942         new.base_gfn = base_gfn;
943         new.npages = npages;
944         new.flags = mem->flags;
945
946         if (npages) {
947                 if (!old.npages)
948                         change = KVM_MR_CREATE;
949                 else { /* Modify an existing slot. */
950                         if ((mem->userspace_addr != old.userspace_addr) ||
951                             (npages != old.npages) ||
952                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
953                                 goto out;
954
955                         if (base_gfn != old.base_gfn)
956                                 change = KVM_MR_MOVE;
957                         else if (new.flags != old.flags)
958                                 change = KVM_MR_FLAGS_ONLY;
959                         else { /* Nothing to change. */
960                                 r = 0;
961                                 goto out;
962                         }
963                 }
964         } else {
965                 if (!old.npages)
966                         goto out;
967
968                 change = KVM_MR_DELETE;
969                 new.base_gfn = 0;
970                 new.flags = 0;
971         }
972
973         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
974                 /* Check for overlaps */
975                 r = -EEXIST;
976                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
977                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
978                             (slot->id == id))
979                                 continue;
980                         if (!((base_gfn + npages <= slot->base_gfn) ||
981                               (base_gfn >= slot->base_gfn + slot->npages)))
982                                 goto out;
983                 }
984         }
985
986         /* Free page dirty bitmap if unneeded */
987         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
988                 new.dirty_bitmap = NULL;
989
990         r = -ENOMEM;
991         if (change == KVM_MR_CREATE) {
992                 new.userspace_addr = mem->userspace_addr;
993
994                 if (kvm_arch_create_memslot(kvm, &new, npages))
995                         goto out_free;
996         }
997
998         /* Allocate page dirty bitmap if needed */
999         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1000                 if (kvm_create_dirty_bitmap(&new) < 0)
1001                         goto out_free;
1002         }
1003
1004         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1005         if (!slots)
1006                 goto out_free;
1007         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1008
1009         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1010                 slot = id_to_memslot(slots, id);
1011                 slot->flags |= KVM_MEMSLOT_INVALID;
1012
1013                 old_memslots = install_new_memslots(kvm, as_id, slots);
1014
1015                 /* From this point no new shadow pages pointing to a deleted,
1016                  * or moved, memslot will be created.
1017                  *
1018                  * validation of sp->gfn happens in:
1019                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1020                  *      - kvm_is_visible_gfn (mmu_check_roots)
1021                  */
1022                 kvm_arch_flush_shadow_memslot(kvm, slot);
1023
1024                 /*
1025                  * We can re-use the old_memslots from above, the only difference
1026                  * from the currently installed memslots is the invalid flag.  This
1027                  * will get overwritten by update_memslots anyway.
1028                  */
1029                 slots = old_memslots;
1030         }
1031
1032         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1033         if (r)
1034                 goto out_slots;
1035
1036         /* actual memory is freed via old in kvm_free_memslot below */
1037         if (change == KVM_MR_DELETE) {
1038                 new.dirty_bitmap = NULL;
1039                 memset(&new.arch, 0, sizeof(new.arch));
1040         }
1041
1042         update_memslots(slots, &new);
1043         old_memslots = install_new_memslots(kvm, as_id, slots);
1044
1045         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1046
1047         kvm_free_memslot(kvm, &old, &new);
1048         kvfree(old_memslots);
1049         return 0;
1050
1051 out_slots:
1052         kvfree(slots);
1053 out_free:
1054         kvm_free_memslot(kvm, &new, &old);
1055 out:
1056         return r;
1057 }
1058 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1059
1060 int kvm_set_memory_region(struct kvm *kvm,
1061                           const struct kvm_userspace_memory_region *mem)
1062 {
1063         int r;
1064
1065         mutex_lock(&kvm->slots_lock);
1066         r = __kvm_set_memory_region(kvm, mem);
1067         mutex_unlock(&kvm->slots_lock);
1068         return r;
1069 }
1070 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1071
1072 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1073                                           struct kvm_userspace_memory_region *mem)
1074 {
1075         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1076                 return -EINVAL;
1077
1078         return kvm_set_memory_region(kvm, mem);
1079 }
1080
1081 int kvm_get_dirty_log(struct kvm *kvm,
1082                         struct kvm_dirty_log *log, int *is_dirty)
1083 {
1084         struct kvm_memslots *slots;
1085         struct kvm_memory_slot *memslot;
1086         int i, as_id, id;
1087         unsigned long n;
1088         unsigned long any = 0;
1089
1090         as_id = log->slot >> 16;
1091         id = (u16)log->slot;
1092         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1093                 return -EINVAL;
1094
1095         slots = __kvm_memslots(kvm, as_id);
1096         memslot = id_to_memslot(slots, id);
1097         if (!memslot->dirty_bitmap)
1098                 return -ENOENT;
1099
1100         n = kvm_dirty_bitmap_bytes(memslot);
1101
1102         for (i = 0; !any && i < n/sizeof(long); ++i)
1103                 any = memslot->dirty_bitmap[i];
1104
1105         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1106                 return -EFAULT;
1107
1108         if (any)
1109                 *is_dirty = 1;
1110         return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1113
1114 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1115 /**
1116  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1117  *      are dirty write protect them for next write.
1118  * @kvm:        pointer to kvm instance
1119  * @log:        slot id and address to which we copy the log
1120  * @is_dirty:   flag set if any page is dirty
1121  *
1122  * We need to keep it in mind that VCPU threads can write to the bitmap
1123  * concurrently. So, to avoid losing track of dirty pages we keep the
1124  * following order:
1125  *
1126  *    1. Take a snapshot of the bit and clear it if needed.
1127  *    2. Write protect the corresponding page.
1128  *    3. Copy the snapshot to the userspace.
1129  *    4. Upon return caller flushes TLB's if needed.
1130  *
1131  * Between 2 and 4, the guest may write to the page using the remaining TLB
1132  * entry.  This is not a problem because the page is reported dirty using
1133  * the snapshot taken before and step 4 ensures that writes done after
1134  * exiting to userspace will be logged for the next call.
1135  *
1136  */
1137 int kvm_get_dirty_log_protect(struct kvm *kvm,
1138                         struct kvm_dirty_log *log, bool *is_dirty)
1139 {
1140         struct kvm_memslots *slots;
1141         struct kvm_memory_slot *memslot;
1142         int i, as_id, id;
1143         unsigned long n;
1144         unsigned long *dirty_bitmap;
1145         unsigned long *dirty_bitmap_buffer;
1146
1147         as_id = log->slot >> 16;
1148         id = (u16)log->slot;
1149         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1150                 return -EINVAL;
1151
1152         slots = __kvm_memslots(kvm, as_id);
1153         memslot = id_to_memslot(slots, id);
1154
1155         dirty_bitmap = memslot->dirty_bitmap;
1156         if (!dirty_bitmap)
1157                 return -ENOENT;
1158
1159         n = kvm_dirty_bitmap_bytes(memslot);
1160
1161         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1162         memset(dirty_bitmap_buffer, 0, n);
1163
1164         spin_lock(&kvm->mmu_lock);
1165         *is_dirty = false;
1166         for (i = 0; i < n / sizeof(long); i++) {
1167                 unsigned long mask;
1168                 gfn_t offset;
1169
1170                 if (!dirty_bitmap[i])
1171                         continue;
1172
1173                 *is_dirty = true;
1174
1175                 mask = xchg(&dirty_bitmap[i], 0);
1176                 dirty_bitmap_buffer[i] = mask;
1177
1178                 if (mask) {
1179                         offset = i * BITS_PER_LONG;
1180                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1181                                                                 offset, mask);
1182                 }
1183         }
1184
1185         spin_unlock(&kvm->mmu_lock);
1186         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1187                 return -EFAULT;
1188         return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1191 #endif
1192
1193 bool kvm_largepages_enabled(void)
1194 {
1195         return largepages_enabled;
1196 }
1197
1198 void kvm_disable_largepages(void)
1199 {
1200         largepages_enabled = false;
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1203
1204 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1205 {
1206         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1207 }
1208 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1209
1210 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1211 {
1212         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1213 }
1214
1215 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1216 {
1217         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1218
1219         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1220               memslot->flags & KVM_MEMSLOT_INVALID)
1221                 return false;
1222
1223         return true;
1224 }
1225 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1226
1227 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1228 {
1229         struct vm_area_struct *vma;
1230         unsigned long addr, size;
1231
1232         size = PAGE_SIZE;
1233
1234         addr = gfn_to_hva(kvm, gfn);
1235         if (kvm_is_error_hva(addr))
1236                 return PAGE_SIZE;
1237
1238         down_read(&current->mm->mmap_sem);
1239         vma = find_vma(current->mm, addr);
1240         if (!vma)
1241                 goto out;
1242
1243         size = vma_kernel_pagesize(vma);
1244
1245 out:
1246         up_read(&current->mm->mmap_sem);
1247
1248         return size;
1249 }
1250
1251 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1252 {
1253         return slot->flags & KVM_MEM_READONLY;
1254 }
1255
1256 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1257                                        gfn_t *nr_pages, bool write)
1258 {
1259         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1260                 return KVM_HVA_ERR_BAD;
1261
1262         if (memslot_is_readonly(slot) && write)
1263                 return KVM_HVA_ERR_RO_BAD;
1264
1265         if (nr_pages)
1266                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1267
1268         return __gfn_to_hva_memslot(slot, gfn);
1269 }
1270
1271 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1272                                      gfn_t *nr_pages)
1273 {
1274         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1275 }
1276
1277 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1278                                         gfn_t gfn)
1279 {
1280         return gfn_to_hva_many(slot, gfn, NULL);
1281 }
1282 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1283
1284 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1285 {
1286         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1287 }
1288 EXPORT_SYMBOL_GPL(gfn_to_hva);
1289
1290 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1291 {
1292         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1295
1296 /*
1297  * If writable is set to false, the hva returned by this function is only
1298  * allowed to be read.
1299  */
1300 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1301                                       gfn_t gfn, bool *writable)
1302 {
1303         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1304
1305         if (!kvm_is_error_hva(hva) && writable)
1306                 *writable = !memslot_is_readonly(slot);
1307
1308         return hva;
1309 }
1310
1311 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1312 {
1313         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1314
1315         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1316 }
1317
1318 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1319 {
1320         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1321
1322         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1323 }
1324
1325 static inline int check_user_page_hwpoison(unsigned long addr)
1326 {
1327         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1328
1329         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1330         return rc == -EHWPOISON;
1331 }
1332
1333 /*
1334  * The atomic path to get the writable pfn which will be stored in @pfn,
1335  * true indicates success, otherwise false is returned.
1336  */
1337 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1338                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1339 {
1340         struct page *page[1];
1341         int npages;
1342
1343         if (!(async || atomic))
1344                 return false;
1345
1346         /*
1347          * Fast pin a writable pfn only if it is a write fault request
1348          * or the caller allows to map a writable pfn for a read fault
1349          * request.
1350          */
1351         if (!(write_fault || writable))
1352                 return false;
1353
1354         npages = __get_user_pages_fast(addr, 1, 1, page);
1355         if (npages == 1) {
1356                 *pfn = page_to_pfn(page[0]);
1357
1358                 if (writable)
1359                         *writable = true;
1360                 return true;
1361         }
1362
1363         return false;
1364 }
1365
1366 /*
1367  * The slow path to get the pfn of the specified host virtual address,
1368  * 1 indicates success, -errno is returned if error is detected.
1369  */
1370 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1371                            bool *writable, kvm_pfn_t *pfn)
1372 {
1373         unsigned int flags = FOLL_HWPOISON;
1374         struct page *page;
1375         int npages = 0;
1376
1377         might_sleep();
1378
1379         if (writable)
1380                 *writable = write_fault;
1381
1382         if (write_fault)
1383                 flags |= FOLL_WRITE;
1384         if (async)
1385                 flags |= FOLL_NOWAIT;
1386
1387         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1388         if (npages != 1)
1389                 return npages;
1390
1391         /* map read fault as writable if possible */
1392         if (unlikely(!write_fault) && writable) {
1393                 struct page *wpage;
1394
1395                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1396                         *writable = true;
1397                         put_page(page);
1398                         page = wpage;
1399                 }
1400         }
1401         *pfn = page_to_pfn(page);
1402         return npages;
1403 }
1404
1405 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1406 {
1407         if (unlikely(!(vma->vm_flags & VM_READ)))
1408                 return false;
1409
1410         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1411                 return false;
1412
1413         return true;
1414 }
1415
1416 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1417                                unsigned long addr, bool *async,
1418                                bool write_fault, kvm_pfn_t *p_pfn)
1419 {
1420         unsigned long pfn;
1421         int r;
1422
1423         r = follow_pfn(vma, addr, &pfn);
1424         if (r) {
1425                 /*
1426                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1427                  * not call the fault handler, so do it here.
1428                  */
1429                 bool unlocked = false;
1430                 r = fixup_user_fault(current, current->mm, addr,
1431                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1432                                      &unlocked);
1433                 if (unlocked)
1434                         return -EAGAIN;
1435                 if (r)
1436                         return r;
1437
1438                 r = follow_pfn(vma, addr, &pfn);
1439                 if (r)
1440                         return r;
1441
1442         }
1443
1444
1445         /*
1446          * Get a reference here because callers of *hva_to_pfn* and
1447          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1448          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1449          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1450          * simply do nothing for reserved pfns.
1451          *
1452          * Whoever called remap_pfn_range is also going to call e.g.
1453          * unmap_mapping_range before the underlying pages are freed,
1454          * causing a call to our MMU notifier.
1455          */ 
1456         kvm_get_pfn(pfn);
1457
1458         *p_pfn = pfn;
1459         return 0;
1460 }
1461
1462 /*
1463  * Pin guest page in memory and return its pfn.
1464  * @addr: host virtual address which maps memory to the guest
1465  * @atomic: whether this function can sleep
1466  * @async: whether this function need to wait IO complete if the
1467  *         host page is not in the memory
1468  * @write_fault: whether we should get a writable host page
1469  * @writable: whether it allows to map a writable host page for !@write_fault
1470  *
1471  * The function will map a writable host page for these two cases:
1472  * 1): @write_fault = true
1473  * 2): @write_fault = false && @writable, @writable will tell the caller
1474  *     whether the mapping is writable.
1475  */
1476 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1477                         bool write_fault, bool *writable)
1478 {
1479         struct vm_area_struct *vma;
1480         kvm_pfn_t pfn = 0;
1481         int npages, r;
1482
1483         /* we can do it either atomically or asynchronously, not both */
1484         BUG_ON(atomic && async);
1485
1486         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1487                 return pfn;
1488
1489         if (atomic)
1490                 return KVM_PFN_ERR_FAULT;
1491
1492         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1493         if (npages == 1)
1494                 return pfn;
1495
1496         down_read(&current->mm->mmap_sem);
1497         if (npages == -EHWPOISON ||
1498               (!async && check_user_page_hwpoison(addr))) {
1499                 pfn = KVM_PFN_ERR_HWPOISON;
1500                 goto exit;
1501         }
1502
1503 retry:
1504         vma = find_vma_intersection(current->mm, addr, addr + 1);
1505
1506         if (vma == NULL)
1507                 pfn = KVM_PFN_ERR_FAULT;
1508         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1509                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1510                 if (r == -EAGAIN)
1511                         goto retry;
1512                 if (r < 0)
1513                         pfn = KVM_PFN_ERR_FAULT;
1514         } else {
1515                 if (async && vma_is_valid(vma, write_fault))
1516                         *async = true;
1517                 pfn = KVM_PFN_ERR_FAULT;
1518         }
1519 exit:
1520         up_read(&current->mm->mmap_sem);
1521         return pfn;
1522 }
1523
1524 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1525                                bool atomic, bool *async, bool write_fault,
1526                                bool *writable)
1527 {
1528         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1529
1530         if (addr == KVM_HVA_ERR_RO_BAD) {
1531                 if (writable)
1532                         *writable = false;
1533                 return KVM_PFN_ERR_RO_FAULT;
1534         }
1535
1536         if (kvm_is_error_hva(addr)) {
1537                 if (writable)
1538                         *writable = false;
1539                 return KVM_PFN_NOSLOT;
1540         }
1541
1542         /* Do not map writable pfn in the readonly memslot. */
1543         if (writable && memslot_is_readonly(slot)) {
1544                 *writable = false;
1545                 writable = NULL;
1546         }
1547
1548         return hva_to_pfn(addr, atomic, async, write_fault,
1549                           writable);
1550 }
1551 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1552
1553 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1554                       bool *writable)
1555 {
1556         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1557                                     write_fault, writable);
1558 }
1559 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1560
1561 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1562 {
1563         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1564 }
1565 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1566
1567 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1568 {
1569         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1570 }
1571 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1572
1573 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1574 {
1575         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1576 }
1577 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1578
1579 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1580 {
1581         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1582 }
1583 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1584
1585 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1586 {
1587         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1588 }
1589 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1590
1591 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1592 {
1593         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1594 }
1595 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1596
1597 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1598                             struct page **pages, int nr_pages)
1599 {
1600         unsigned long addr;
1601         gfn_t entry = 0;
1602
1603         addr = gfn_to_hva_many(slot, gfn, &entry);
1604         if (kvm_is_error_hva(addr))
1605                 return -1;
1606
1607         if (entry < nr_pages)
1608                 return 0;
1609
1610         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1611 }
1612 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1613
1614 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1615 {
1616         if (is_error_noslot_pfn(pfn))
1617                 return KVM_ERR_PTR_BAD_PAGE;
1618
1619         if (kvm_is_reserved_pfn(pfn)) {
1620                 WARN_ON(1);
1621                 return KVM_ERR_PTR_BAD_PAGE;
1622         }
1623
1624         return pfn_to_page(pfn);
1625 }
1626
1627 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1628 {
1629         kvm_pfn_t pfn;
1630
1631         pfn = gfn_to_pfn(kvm, gfn);
1632
1633         return kvm_pfn_to_page(pfn);
1634 }
1635 EXPORT_SYMBOL_GPL(gfn_to_page);
1636
1637 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1638 {
1639         kvm_pfn_t pfn;
1640
1641         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1642
1643         return kvm_pfn_to_page(pfn);
1644 }
1645 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1646
1647 void kvm_release_page_clean(struct page *page)
1648 {
1649         WARN_ON(is_error_page(page));
1650
1651         kvm_release_pfn_clean(page_to_pfn(page));
1652 }
1653 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1654
1655 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1656 {
1657         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1658                 put_page(pfn_to_page(pfn));
1659 }
1660 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1661
1662 void kvm_release_page_dirty(struct page *page)
1663 {
1664         WARN_ON(is_error_page(page));
1665
1666         kvm_release_pfn_dirty(page_to_pfn(page));
1667 }
1668 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1669
1670 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1671 {
1672         kvm_set_pfn_dirty(pfn);
1673         kvm_release_pfn_clean(pfn);
1674 }
1675 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1676
1677 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1678 {
1679         if (!kvm_is_reserved_pfn(pfn)) {
1680                 struct page *page = pfn_to_page(pfn);
1681
1682                 if (!PageReserved(page))
1683                         SetPageDirty(page);
1684         }
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1687
1688 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1689 {
1690         if (!kvm_is_reserved_pfn(pfn))
1691                 mark_page_accessed(pfn_to_page(pfn));
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1694
1695 void kvm_get_pfn(kvm_pfn_t pfn)
1696 {
1697         if (!kvm_is_reserved_pfn(pfn))
1698                 get_page(pfn_to_page(pfn));
1699 }
1700 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1701
1702 static int next_segment(unsigned long len, int offset)
1703 {
1704         if (len > PAGE_SIZE - offset)
1705                 return PAGE_SIZE - offset;
1706         else
1707                 return len;
1708 }
1709
1710 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1711                                  void *data, int offset, int len)
1712 {
1713         int r;
1714         unsigned long addr;
1715
1716         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1717         if (kvm_is_error_hva(addr))
1718                 return -EFAULT;
1719         r = __copy_from_user(data, (void __user *)addr + offset, len);
1720         if (r)
1721                 return -EFAULT;
1722         return 0;
1723 }
1724
1725 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1726                         int len)
1727 {
1728         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1729
1730         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1731 }
1732 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1733
1734 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1735                              int offset, int len)
1736 {
1737         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1738
1739         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1740 }
1741 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1742
1743 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1744 {
1745         gfn_t gfn = gpa >> PAGE_SHIFT;
1746         int seg;
1747         int offset = offset_in_page(gpa);
1748         int ret;
1749
1750         while ((seg = next_segment(len, offset)) != 0) {
1751                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1752                 if (ret < 0)
1753                         return ret;
1754                 offset = 0;
1755                 len -= seg;
1756                 data += seg;
1757                 ++gfn;
1758         }
1759         return 0;
1760 }
1761 EXPORT_SYMBOL_GPL(kvm_read_guest);
1762
1763 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1764 {
1765         gfn_t gfn = gpa >> PAGE_SHIFT;
1766         int seg;
1767         int offset = offset_in_page(gpa);
1768         int ret;
1769
1770         while ((seg = next_segment(len, offset)) != 0) {
1771                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1772                 if (ret < 0)
1773                         return ret;
1774                 offset = 0;
1775                 len -= seg;
1776                 data += seg;
1777                 ++gfn;
1778         }
1779         return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1782
1783 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1784                                    void *data, int offset, unsigned long len)
1785 {
1786         int r;
1787         unsigned long addr;
1788
1789         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1790         if (kvm_is_error_hva(addr))
1791                 return -EFAULT;
1792         pagefault_disable();
1793         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1794         pagefault_enable();
1795         if (r)
1796                 return -EFAULT;
1797         return 0;
1798 }
1799
1800 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1801                           unsigned long len)
1802 {
1803         gfn_t gfn = gpa >> PAGE_SHIFT;
1804         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1805         int offset = offset_in_page(gpa);
1806
1807         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1808 }
1809 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1810
1811 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1812                                void *data, unsigned long len)
1813 {
1814         gfn_t gfn = gpa >> PAGE_SHIFT;
1815         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1816         int offset = offset_in_page(gpa);
1817
1818         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1819 }
1820 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1821
1822 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1823                                   const void *data, int offset, int len)
1824 {
1825         int r;
1826         unsigned long addr;
1827
1828         addr = gfn_to_hva_memslot(memslot, gfn);
1829         if (kvm_is_error_hva(addr))
1830                 return -EFAULT;
1831         r = __copy_to_user((void __user *)addr + offset, data, len);
1832         if (r)
1833                 return -EFAULT;
1834         mark_page_dirty_in_slot(memslot, gfn);
1835         return 0;
1836 }
1837
1838 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1839                          const void *data, int offset, int len)
1840 {
1841         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1842
1843         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1846
1847 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1848                               const void *data, int offset, int len)
1849 {
1850         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1851
1852         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1853 }
1854 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1855
1856 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1857                     unsigned long len)
1858 {
1859         gfn_t gfn = gpa >> PAGE_SHIFT;
1860         int seg;
1861         int offset = offset_in_page(gpa);
1862         int ret;
1863
1864         while ((seg = next_segment(len, offset)) != 0) {
1865                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1866                 if (ret < 0)
1867                         return ret;
1868                 offset = 0;
1869                 len -= seg;
1870                 data += seg;
1871                 ++gfn;
1872         }
1873         return 0;
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_write_guest);
1876
1877 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1878                          unsigned long len)
1879 {
1880         gfn_t gfn = gpa >> PAGE_SHIFT;
1881         int seg;
1882         int offset = offset_in_page(gpa);
1883         int ret;
1884
1885         while ((seg = next_segment(len, offset)) != 0) {
1886                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1887                 if (ret < 0)
1888                         return ret;
1889                 offset = 0;
1890                 len -= seg;
1891                 data += seg;
1892                 ++gfn;
1893         }
1894         return 0;
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1897
1898 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1899                                        struct gfn_to_hva_cache *ghc,
1900                                        gpa_t gpa, unsigned long len)
1901 {
1902         int offset = offset_in_page(gpa);
1903         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1904         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1905         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1906         gfn_t nr_pages_avail;
1907
1908         ghc->gpa = gpa;
1909         ghc->generation = slots->generation;
1910         ghc->len = len;
1911         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1912         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1913         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1914                 ghc->hva += offset;
1915         } else {
1916                 /*
1917                  * If the requested region crosses two memslots, we still
1918                  * verify that the entire region is valid here.
1919                  */
1920                 while (start_gfn <= end_gfn) {
1921                         nr_pages_avail = 0;
1922                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1923                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1924                                                    &nr_pages_avail);
1925                         if (kvm_is_error_hva(ghc->hva))
1926                                 return -EFAULT;
1927                         start_gfn += nr_pages_avail;
1928                 }
1929                 /* Use the slow path for cross page reads and writes. */
1930                 ghc->memslot = NULL;
1931         }
1932         return 0;
1933 }
1934
1935 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1936                               gpa_t gpa, unsigned long len)
1937 {
1938         struct kvm_memslots *slots = kvm_memslots(kvm);
1939         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1942
1943 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1944                            void *data, int offset, unsigned long len)
1945 {
1946         struct kvm_memslots *slots = kvm_memslots(kvm);
1947         int r;
1948         gpa_t gpa = ghc->gpa + offset;
1949
1950         BUG_ON(len + offset > ghc->len);
1951
1952         if (slots->generation != ghc->generation)
1953                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1954
1955         if (unlikely(!ghc->memslot))
1956                 return kvm_write_guest(kvm, gpa, data, len);
1957
1958         if (kvm_is_error_hva(ghc->hva))
1959                 return -EFAULT;
1960
1961         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1962         if (r)
1963                 return -EFAULT;
1964         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1965
1966         return 0;
1967 }
1968 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1969
1970 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1971                            void *data, unsigned long len)
1972 {
1973         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1976
1977 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1978                            void *data, unsigned long len)
1979 {
1980         struct kvm_memslots *slots = kvm_memslots(kvm);
1981         int r;
1982
1983         BUG_ON(len > ghc->len);
1984
1985         if (slots->generation != ghc->generation)
1986                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1987
1988         if (unlikely(!ghc->memslot))
1989                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1990
1991         if (kvm_is_error_hva(ghc->hva))
1992                 return -EFAULT;
1993
1994         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1995         if (r)
1996                 return -EFAULT;
1997
1998         return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2001
2002 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2003 {
2004         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2005
2006         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2007 }
2008 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2009
2010 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2011 {
2012         gfn_t gfn = gpa >> PAGE_SHIFT;
2013         int seg;
2014         int offset = offset_in_page(gpa);
2015         int ret;
2016
2017         while ((seg = next_segment(len, offset)) != 0) {
2018                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2019                 if (ret < 0)
2020                         return ret;
2021                 offset = 0;
2022                 len -= seg;
2023                 ++gfn;
2024         }
2025         return 0;
2026 }
2027 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2028
2029 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2030                                     gfn_t gfn)
2031 {
2032         if (memslot && memslot->dirty_bitmap) {
2033                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2034
2035                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2036         }
2037 }
2038
2039 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2040 {
2041         struct kvm_memory_slot *memslot;
2042
2043         memslot = gfn_to_memslot(kvm, gfn);
2044         mark_page_dirty_in_slot(memslot, gfn);
2045 }
2046 EXPORT_SYMBOL_GPL(mark_page_dirty);
2047
2048 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2049 {
2050         struct kvm_memory_slot *memslot;
2051
2052         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2053         mark_page_dirty_in_slot(memslot, gfn);
2054 }
2055 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2056
2057 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2058 {
2059         if (!vcpu->sigset_active)
2060                 return;
2061
2062         /*
2063          * This does a lockless modification of ->real_blocked, which is fine
2064          * because, only current can change ->real_blocked and all readers of
2065          * ->real_blocked don't care as long ->real_blocked is always a subset
2066          * of ->blocked.
2067          */
2068         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2069 }
2070
2071 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2072 {
2073         if (!vcpu->sigset_active)
2074                 return;
2075
2076         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2077         sigemptyset(&current->real_blocked);
2078 }
2079
2080 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2081 {
2082         unsigned int old, val, grow;
2083
2084         old = val = vcpu->halt_poll_ns;
2085         grow = READ_ONCE(halt_poll_ns_grow);
2086         /* 10us base */
2087         if (val == 0 && grow)
2088                 val = 10000;
2089         else
2090                 val *= grow;
2091
2092         if (val > halt_poll_ns)
2093                 val = halt_poll_ns;
2094
2095         vcpu->halt_poll_ns = val;
2096         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2097 }
2098
2099 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2100 {
2101         unsigned int old, val, shrink;
2102
2103         old = val = vcpu->halt_poll_ns;
2104         shrink = READ_ONCE(halt_poll_ns_shrink);
2105         if (shrink == 0)
2106                 val = 0;
2107         else
2108                 val /= shrink;
2109
2110         vcpu->halt_poll_ns = val;
2111         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2112 }
2113
2114 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2115 {
2116         if (kvm_arch_vcpu_runnable(vcpu)) {
2117                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2118                 return -EINTR;
2119         }
2120         if (kvm_cpu_has_pending_timer(vcpu))
2121                 return -EINTR;
2122         if (signal_pending(current))
2123                 return -EINTR;
2124
2125         return 0;
2126 }
2127
2128 /*
2129  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2130  */
2131 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2132 {
2133         ktime_t start, cur;
2134         DECLARE_SWAITQUEUE(wait);
2135         bool waited = false;
2136         u64 block_ns;
2137
2138         start = cur = ktime_get();
2139         if (vcpu->halt_poll_ns) {
2140                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2141
2142                 ++vcpu->stat.halt_attempted_poll;
2143                 do {
2144                         /*
2145                          * This sets KVM_REQ_UNHALT if an interrupt
2146                          * arrives.
2147                          */
2148                         if (kvm_vcpu_check_block(vcpu) < 0) {
2149                                 ++vcpu->stat.halt_successful_poll;
2150                                 if (!vcpu_valid_wakeup(vcpu))
2151                                         ++vcpu->stat.halt_poll_invalid;
2152                                 goto out;
2153                         }
2154                         cur = ktime_get();
2155                 } while (single_task_running() && ktime_before(cur, stop));
2156         }
2157
2158         kvm_arch_vcpu_blocking(vcpu);
2159
2160         for (;;) {
2161                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2162
2163                 if (kvm_vcpu_check_block(vcpu) < 0)
2164                         break;
2165
2166                 waited = true;
2167                 schedule();
2168         }
2169
2170         finish_swait(&vcpu->wq, &wait);
2171         cur = ktime_get();
2172
2173         kvm_arch_vcpu_unblocking(vcpu);
2174 out:
2175         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2176
2177         if (!vcpu_valid_wakeup(vcpu))
2178                 shrink_halt_poll_ns(vcpu);
2179         else if (halt_poll_ns) {
2180                 if (block_ns <= vcpu->halt_poll_ns)
2181                         ;
2182                 /* we had a long block, shrink polling */
2183                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2184                         shrink_halt_poll_ns(vcpu);
2185                 /* we had a short halt and our poll time is too small */
2186                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2187                         block_ns < halt_poll_ns)
2188                         grow_halt_poll_ns(vcpu);
2189         } else
2190                 vcpu->halt_poll_ns = 0;
2191
2192         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2193         kvm_arch_vcpu_block_finish(vcpu);
2194 }
2195 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2196
2197 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2198 {
2199         struct swait_queue_head *wqp;
2200
2201         wqp = kvm_arch_vcpu_wq(vcpu);
2202         if (swq_has_sleeper(wqp)) {
2203                 swake_up(wqp);
2204                 ++vcpu->stat.halt_wakeup;
2205                 return true;
2206         }
2207
2208         return false;
2209 }
2210 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2211
2212 #ifndef CONFIG_S390
2213 /*
2214  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2215  */
2216 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2217 {
2218         int me;
2219         int cpu = vcpu->cpu;
2220
2221         if (kvm_vcpu_wake_up(vcpu))
2222                 return;
2223
2224         me = get_cpu();
2225         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2226                 if (kvm_arch_vcpu_should_kick(vcpu))
2227                         smp_send_reschedule(cpu);
2228         put_cpu();
2229 }
2230 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2231 #endif /* !CONFIG_S390 */
2232
2233 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2234 {
2235         struct pid *pid;
2236         struct task_struct *task = NULL;
2237         int ret = 0;
2238
2239         rcu_read_lock();
2240         pid = rcu_dereference(target->pid);
2241         if (pid)
2242                 task = get_pid_task(pid, PIDTYPE_PID);
2243         rcu_read_unlock();
2244         if (!task)
2245                 return ret;
2246         ret = yield_to(task, 1);
2247         put_task_struct(task);
2248
2249         return ret;
2250 }
2251 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2252
2253 /*
2254  * Helper that checks whether a VCPU is eligible for directed yield.
2255  * Most eligible candidate to yield is decided by following heuristics:
2256  *
2257  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2258  *  (preempted lock holder), indicated by @in_spin_loop.
2259  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2260  *
2261  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2262  *  chance last time (mostly it has become eligible now since we have probably
2263  *  yielded to lockholder in last iteration. This is done by toggling
2264  *  @dy_eligible each time a VCPU checked for eligibility.)
2265  *
2266  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2267  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2268  *  burning. Giving priority for a potential lock-holder increases lock
2269  *  progress.
2270  *
2271  *  Since algorithm is based on heuristics, accessing another VCPU data without
2272  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2273  *  and continue with next VCPU and so on.
2274  */
2275 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2276 {
2277 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2278         bool eligible;
2279
2280         eligible = !vcpu->spin_loop.in_spin_loop ||
2281                     vcpu->spin_loop.dy_eligible;
2282
2283         if (vcpu->spin_loop.in_spin_loop)
2284                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2285
2286         return eligible;
2287 #else
2288         return true;
2289 #endif
2290 }
2291
2292 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2293 {
2294         struct kvm *kvm = me->kvm;
2295         struct kvm_vcpu *vcpu;
2296         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2297         int yielded = 0;
2298         int try = 3;
2299         int pass;
2300         int i;
2301
2302         kvm_vcpu_set_in_spin_loop(me, true);
2303         /*
2304          * We boost the priority of a VCPU that is runnable but not
2305          * currently running, because it got preempted by something
2306          * else and called schedule in __vcpu_run.  Hopefully that
2307          * VCPU is holding the lock that we need and will release it.
2308          * We approximate round-robin by starting at the last boosted VCPU.
2309          */
2310         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2311                 kvm_for_each_vcpu(i, vcpu, kvm) {
2312                         if (!pass && i <= last_boosted_vcpu) {
2313                                 i = last_boosted_vcpu;
2314                                 continue;
2315                         } else if (pass && i > last_boosted_vcpu)
2316                                 break;
2317                         if (!READ_ONCE(vcpu->preempted))
2318                                 continue;
2319                         if (vcpu == me)
2320                                 continue;
2321                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2322                                 continue;
2323                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2324                                 continue;
2325                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2326                                 continue;
2327
2328                         yielded = kvm_vcpu_yield_to(vcpu);
2329                         if (yielded > 0) {
2330                                 kvm->last_boosted_vcpu = i;
2331                                 break;
2332                         } else if (yielded < 0) {
2333                                 try--;
2334                                 if (!try)
2335                                         break;
2336                         }
2337                 }
2338         }
2339         kvm_vcpu_set_in_spin_loop(me, false);
2340
2341         /* Ensure vcpu is not eligible during next spinloop */
2342         kvm_vcpu_set_dy_eligible(me, false);
2343 }
2344 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2345
2346 static int kvm_vcpu_fault(struct vm_fault *vmf)
2347 {
2348         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2349         struct page *page;
2350
2351         if (vmf->pgoff == 0)
2352                 page = virt_to_page(vcpu->run);
2353 #ifdef CONFIG_X86
2354         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2355                 page = virt_to_page(vcpu->arch.pio_data);
2356 #endif
2357 #ifdef CONFIG_KVM_MMIO
2358         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2359                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2360 #endif
2361         else
2362                 return kvm_arch_vcpu_fault(vcpu, vmf);
2363         get_page(page);
2364         vmf->page = page;
2365         return 0;
2366 }
2367
2368 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2369         .fault = kvm_vcpu_fault,
2370 };
2371
2372 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2373 {
2374         vma->vm_ops = &kvm_vcpu_vm_ops;
2375         return 0;
2376 }
2377
2378 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2379 {
2380         struct kvm_vcpu *vcpu = filp->private_data;
2381
2382         debugfs_remove_recursive(vcpu->debugfs_dentry);
2383         kvm_put_kvm(vcpu->kvm);
2384         return 0;
2385 }
2386
2387 static struct file_operations kvm_vcpu_fops = {
2388         .release        = kvm_vcpu_release,
2389         .unlocked_ioctl = kvm_vcpu_ioctl,
2390 #ifdef CONFIG_KVM_COMPAT
2391         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2392 #endif
2393         .mmap           = kvm_vcpu_mmap,
2394         .llseek         = noop_llseek,
2395 };
2396
2397 /*
2398  * Allocates an inode for the vcpu.
2399  */
2400 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2401 {
2402         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2403 }
2404
2405 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2406 {
2407         char dir_name[ITOA_MAX_LEN * 2];
2408         int ret;
2409
2410         if (!kvm_arch_has_vcpu_debugfs())
2411                 return 0;
2412
2413         if (!debugfs_initialized())
2414                 return 0;
2415
2416         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2417         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2418                                                                 vcpu->kvm->debugfs_dentry);
2419         if (!vcpu->debugfs_dentry)
2420                 return -ENOMEM;
2421
2422         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2423         if (ret < 0) {
2424                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2425                 return ret;
2426         }
2427
2428         return 0;
2429 }
2430
2431 /*
2432  * Creates some virtual cpus.  Good luck creating more than one.
2433  */
2434 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2435 {
2436         int r;
2437         struct kvm_vcpu *vcpu;
2438
2439         if (id >= KVM_MAX_VCPU_ID)
2440                 return -EINVAL;
2441
2442         mutex_lock(&kvm->lock);
2443         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2444                 mutex_unlock(&kvm->lock);
2445                 return -EINVAL;
2446         }
2447
2448         kvm->created_vcpus++;
2449         mutex_unlock(&kvm->lock);
2450
2451         vcpu = kvm_arch_vcpu_create(kvm, id);
2452         if (IS_ERR(vcpu)) {
2453                 r = PTR_ERR(vcpu);
2454                 goto vcpu_decrement;
2455         }
2456
2457         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2458
2459         r = kvm_arch_vcpu_setup(vcpu);
2460         if (r)
2461                 goto vcpu_destroy;
2462
2463         r = kvm_create_vcpu_debugfs(vcpu);
2464         if (r)
2465                 goto vcpu_destroy;
2466
2467         mutex_lock(&kvm->lock);
2468         if (kvm_get_vcpu_by_id(kvm, id)) {
2469                 r = -EEXIST;
2470                 goto unlock_vcpu_destroy;
2471         }
2472
2473         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2474
2475         /* Now it's all set up, let userspace reach it */
2476         kvm_get_kvm(kvm);
2477         r = create_vcpu_fd(vcpu);
2478         if (r < 0) {
2479                 kvm_put_kvm(kvm);
2480                 goto unlock_vcpu_destroy;
2481         }
2482
2483         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2484
2485         /*
2486          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2487          * before kvm->online_vcpu's incremented value.
2488          */
2489         smp_wmb();
2490         atomic_inc(&kvm->online_vcpus);
2491
2492         mutex_unlock(&kvm->lock);
2493         kvm_arch_vcpu_postcreate(vcpu);
2494         return r;
2495
2496 unlock_vcpu_destroy:
2497         mutex_unlock(&kvm->lock);
2498         debugfs_remove_recursive(vcpu->debugfs_dentry);
2499 vcpu_destroy:
2500         kvm_arch_vcpu_destroy(vcpu);
2501 vcpu_decrement:
2502         mutex_lock(&kvm->lock);
2503         kvm->created_vcpus--;
2504         mutex_unlock(&kvm->lock);
2505         return r;
2506 }
2507
2508 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2509 {
2510         if (sigset) {
2511                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2512                 vcpu->sigset_active = 1;
2513                 vcpu->sigset = *sigset;
2514         } else
2515                 vcpu->sigset_active = 0;
2516         return 0;
2517 }
2518
2519 static long kvm_vcpu_ioctl(struct file *filp,
2520                            unsigned int ioctl, unsigned long arg)
2521 {
2522         struct kvm_vcpu *vcpu = filp->private_data;
2523         void __user *argp = (void __user *)arg;
2524         int r;
2525         struct kvm_fpu *fpu = NULL;
2526         struct kvm_sregs *kvm_sregs = NULL;
2527
2528         if (vcpu->kvm->mm != current->mm)
2529                 return -EIO;
2530
2531         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2532                 return -EINVAL;
2533
2534 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2535         /*
2536          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2537          * so vcpu_load() would break it.
2538          */
2539         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2540                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2541 #endif
2542
2543
2544         r = vcpu_load(vcpu);
2545         if (r)
2546                 return r;
2547         switch (ioctl) {
2548         case KVM_RUN: {
2549                 struct pid *oldpid;
2550                 r = -EINVAL;
2551                 if (arg)
2552                         goto out;
2553                 oldpid = rcu_access_pointer(vcpu->pid);
2554                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2555                         /* The thread running this VCPU changed. */
2556                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2557
2558                         rcu_assign_pointer(vcpu->pid, newpid);
2559                         if (oldpid)
2560                                 synchronize_rcu();
2561                         put_pid(oldpid);
2562                 }
2563                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2564                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2565                 break;
2566         }
2567         case KVM_GET_REGS: {
2568                 struct kvm_regs *kvm_regs;
2569
2570                 r = -ENOMEM;
2571                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2572                 if (!kvm_regs)
2573                         goto out;
2574                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2575                 if (r)
2576                         goto out_free1;
2577                 r = -EFAULT;
2578                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2579                         goto out_free1;
2580                 r = 0;
2581 out_free1:
2582                 kfree(kvm_regs);
2583                 break;
2584         }
2585         case KVM_SET_REGS: {
2586                 struct kvm_regs *kvm_regs;
2587
2588                 r = -ENOMEM;
2589                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2590                 if (IS_ERR(kvm_regs)) {
2591                         r = PTR_ERR(kvm_regs);
2592                         goto out;
2593                 }
2594                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2595                 kfree(kvm_regs);
2596                 break;
2597         }
2598         case KVM_GET_SREGS: {
2599                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2600                 r = -ENOMEM;
2601                 if (!kvm_sregs)
2602                         goto out;
2603                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2604                 if (r)
2605                         goto out;
2606                 r = -EFAULT;
2607                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2608                         goto out;
2609                 r = 0;
2610                 break;
2611         }
2612         case KVM_SET_SREGS: {
2613                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2614                 if (IS_ERR(kvm_sregs)) {
2615                         r = PTR_ERR(kvm_sregs);
2616                         kvm_sregs = NULL;
2617                         goto out;
2618                 }
2619                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2620                 break;
2621         }
2622         case KVM_GET_MP_STATE: {
2623                 struct kvm_mp_state mp_state;
2624
2625                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2626                 if (r)
2627                         goto out;
2628                 r = -EFAULT;
2629                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2630                         goto out;
2631                 r = 0;
2632                 break;
2633         }
2634         case KVM_SET_MP_STATE: {
2635                 struct kvm_mp_state mp_state;
2636
2637                 r = -EFAULT;
2638                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2639                         goto out;
2640                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2641                 break;
2642         }
2643         case KVM_TRANSLATE: {
2644                 struct kvm_translation tr;
2645
2646                 r = -EFAULT;
2647                 if (copy_from_user(&tr, argp, sizeof(tr)))
2648                         goto out;
2649                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2650                 if (r)
2651                         goto out;
2652                 r = -EFAULT;
2653                 if (copy_to_user(argp, &tr, sizeof(tr)))
2654                         goto out;
2655                 r = 0;
2656                 break;
2657         }
2658         case KVM_SET_GUEST_DEBUG: {
2659                 struct kvm_guest_debug dbg;
2660
2661                 r = -EFAULT;
2662                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2663                         goto out;
2664                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2665                 break;
2666         }
2667         case KVM_SET_SIGNAL_MASK: {
2668                 struct kvm_signal_mask __user *sigmask_arg = argp;
2669                 struct kvm_signal_mask kvm_sigmask;
2670                 sigset_t sigset, *p;
2671
2672                 p = NULL;
2673                 if (argp) {
2674                         r = -EFAULT;
2675                         if (copy_from_user(&kvm_sigmask, argp,
2676                                            sizeof(kvm_sigmask)))
2677                                 goto out;
2678                         r = -EINVAL;
2679                         if (kvm_sigmask.len != sizeof(sigset))
2680                                 goto out;
2681                         r = -EFAULT;
2682                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2683                                            sizeof(sigset)))
2684                                 goto out;
2685                         p = &sigset;
2686                 }
2687                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2688                 break;
2689         }
2690         case KVM_GET_FPU: {
2691                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2692                 r = -ENOMEM;
2693                 if (!fpu)
2694                         goto out;
2695                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2696                 if (r)
2697                         goto out;
2698                 r = -EFAULT;
2699                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2700                         goto out;
2701                 r = 0;
2702                 break;
2703         }
2704         case KVM_SET_FPU: {
2705                 fpu = memdup_user(argp, sizeof(*fpu));
2706                 if (IS_ERR(fpu)) {
2707                         r = PTR_ERR(fpu);
2708                         fpu = NULL;
2709                         goto out;
2710                 }
2711                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2712                 break;
2713         }
2714         default:
2715                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2716         }
2717 out:
2718         vcpu_put(vcpu);
2719         kfree(fpu);
2720         kfree(kvm_sregs);
2721         return r;
2722 }
2723
2724 #ifdef CONFIG_KVM_COMPAT
2725 static long kvm_vcpu_compat_ioctl(struct file *filp,
2726                                   unsigned int ioctl, unsigned long arg)
2727 {
2728         struct kvm_vcpu *vcpu = filp->private_data;
2729         void __user *argp = compat_ptr(arg);
2730         int r;
2731
2732         if (vcpu->kvm->mm != current->mm)
2733                 return -EIO;
2734
2735         switch (ioctl) {
2736         case KVM_SET_SIGNAL_MASK: {
2737                 struct kvm_signal_mask __user *sigmask_arg = argp;
2738                 struct kvm_signal_mask kvm_sigmask;
2739                 sigset_t sigset;
2740
2741                 if (argp) {
2742                         r = -EFAULT;
2743                         if (copy_from_user(&kvm_sigmask, argp,
2744                                            sizeof(kvm_sigmask)))
2745                                 goto out;
2746                         r = -EINVAL;
2747                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2748                                 goto out;
2749                         r = -EFAULT;
2750                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2751                                 goto out;
2752                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2753                 } else
2754                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2755                 break;
2756         }
2757         default:
2758                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2759         }
2760
2761 out:
2762         return r;
2763 }
2764 #endif
2765
2766 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2767                                  int (*accessor)(struct kvm_device *dev,
2768                                                  struct kvm_device_attr *attr),
2769                                  unsigned long arg)
2770 {
2771         struct kvm_device_attr attr;
2772
2773         if (!accessor)
2774                 return -EPERM;
2775
2776         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2777                 return -EFAULT;
2778
2779         return accessor(dev, &attr);
2780 }
2781
2782 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2783                              unsigned long arg)
2784 {
2785         struct kvm_device *dev = filp->private_data;
2786
2787         switch (ioctl) {
2788         case KVM_SET_DEVICE_ATTR:
2789                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2790         case KVM_GET_DEVICE_ATTR:
2791                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2792         case KVM_HAS_DEVICE_ATTR:
2793                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2794         default:
2795                 if (dev->ops->ioctl)
2796                         return dev->ops->ioctl(dev, ioctl, arg);
2797
2798                 return -ENOTTY;
2799         }
2800 }
2801
2802 static int kvm_device_release(struct inode *inode, struct file *filp)
2803 {
2804         struct kvm_device *dev = filp->private_data;
2805         struct kvm *kvm = dev->kvm;
2806
2807         kvm_put_kvm(kvm);
2808         return 0;
2809 }
2810
2811 static const struct file_operations kvm_device_fops = {
2812         .unlocked_ioctl = kvm_device_ioctl,
2813 #ifdef CONFIG_KVM_COMPAT
2814         .compat_ioctl = kvm_device_ioctl,
2815 #endif
2816         .release = kvm_device_release,
2817 };
2818
2819 struct kvm_device *kvm_device_from_filp(struct file *filp)
2820 {
2821         if (filp->f_op != &kvm_device_fops)
2822                 return NULL;
2823
2824         return filp->private_data;
2825 }
2826
2827 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2828 #ifdef CONFIG_KVM_MPIC
2829         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2830         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2831 #endif
2832 };
2833
2834 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2835 {
2836         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2837                 return -ENOSPC;
2838
2839         if (kvm_device_ops_table[type] != NULL)
2840                 return -EEXIST;
2841
2842         kvm_device_ops_table[type] = ops;
2843         return 0;
2844 }
2845
2846 void kvm_unregister_device_ops(u32 type)
2847 {
2848         if (kvm_device_ops_table[type] != NULL)
2849                 kvm_device_ops_table[type] = NULL;
2850 }
2851
2852 static int kvm_ioctl_create_device(struct kvm *kvm,
2853                                    struct kvm_create_device *cd)
2854 {
2855         struct kvm_device_ops *ops = NULL;
2856         struct kvm_device *dev;
2857         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2858         int ret;
2859
2860         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2861                 return -ENODEV;
2862
2863         ops = kvm_device_ops_table[cd->type];
2864         if (ops == NULL)
2865                 return -ENODEV;
2866
2867         if (test)
2868                 return 0;
2869
2870         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2871         if (!dev)
2872                 return -ENOMEM;
2873
2874         dev->ops = ops;
2875         dev->kvm = kvm;
2876
2877         mutex_lock(&kvm->lock);
2878         ret = ops->create(dev, cd->type);
2879         if (ret < 0) {
2880                 mutex_unlock(&kvm->lock);
2881                 kfree(dev);
2882                 return ret;
2883         }
2884         list_add(&dev->vm_node, &kvm->devices);
2885         mutex_unlock(&kvm->lock);
2886
2887         if (ops->init)
2888                 ops->init(dev);
2889
2890         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2891         if (ret < 0) {
2892                 mutex_lock(&kvm->lock);
2893                 list_del(&dev->vm_node);
2894                 mutex_unlock(&kvm->lock);
2895                 ops->destroy(dev);
2896                 return ret;
2897         }
2898
2899         kvm_get_kvm(kvm);
2900         cd->fd = ret;
2901         return 0;
2902 }
2903
2904 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2905 {
2906         switch (arg) {
2907         case KVM_CAP_USER_MEMORY:
2908         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2909         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2910         case KVM_CAP_INTERNAL_ERROR_DATA:
2911 #ifdef CONFIG_HAVE_KVM_MSI
2912         case KVM_CAP_SIGNAL_MSI:
2913 #endif
2914 #ifdef CONFIG_HAVE_KVM_IRQFD
2915         case KVM_CAP_IRQFD:
2916         case KVM_CAP_IRQFD_RESAMPLE:
2917 #endif
2918         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2919         case KVM_CAP_CHECK_EXTENSION_VM:
2920                 return 1;
2921 #ifdef CONFIG_KVM_MMIO
2922         case KVM_CAP_COALESCED_MMIO:
2923                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2924 #endif
2925 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2926         case KVM_CAP_IRQ_ROUTING:
2927                 return KVM_MAX_IRQ_ROUTES;
2928 #endif
2929 #if KVM_ADDRESS_SPACE_NUM > 1
2930         case KVM_CAP_MULTI_ADDRESS_SPACE:
2931                 return KVM_ADDRESS_SPACE_NUM;
2932 #endif
2933         case KVM_CAP_MAX_VCPU_ID:
2934                 return KVM_MAX_VCPU_ID;
2935         default:
2936                 break;
2937         }
2938         return kvm_vm_ioctl_check_extension(kvm, arg);
2939 }
2940
2941 static long kvm_vm_ioctl(struct file *filp,
2942                            unsigned int ioctl, unsigned long arg)
2943 {
2944         struct kvm *kvm = filp->private_data;
2945         void __user *argp = (void __user *)arg;
2946         int r;
2947
2948         if (kvm->mm != current->mm)
2949                 return -EIO;
2950         switch (ioctl) {
2951         case KVM_CREATE_VCPU:
2952                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2953                 break;
2954         case KVM_SET_USER_MEMORY_REGION: {
2955                 struct kvm_userspace_memory_region kvm_userspace_mem;
2956
2957                 r = -EFAULT;
2958                 if (copy_from_user(&kvm_userspace_mem, argp,
2959                                                 sizeof(kvm_userspace_mem)))
2960                         goto out;
2961
2962                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2963                 break;
2964         }
2965         case KVM_GET_DIRTY_LOG: {
2966                 struct kvm_dirty_log log;
2967
2968                 r = -EFAULT;
2969                 if (copy_from_user(&log, argp, sizeof(log)))
2970                         goto out;
2971                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2972                 break;
2973         }
2974 #ifdef CONFIG_KVM_MMIO
2975         case KVM_REGISTER_COALESCED_MMIO: {
2976                 struct kvm_coalesced_mmio_zone zone;
2977
2978                 r = -EFAULT;
2979                 if (copy_from_user(&zone, argp, sizeof(zone)))
2980                         goto out;
2981                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2982                 break;
2983         }
2984         case KVM_UNREGISTER_COALESCED_MMIO: {
2985                 struct kvm_coalesced_mmio_zone zone;
2986
2987                 r = -EFAULT;
2988                 if (copy_from_user(&zone, argp, sizeof(zone)))
2989                         goto out;
2990                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2991                 break;
2992         }
2993 #endif
2994         case KVM_IRQFD: {
2995                 struct kvm_irqfd data;
2996
2997                 r = -EFAULT;
2998                 if (copy_from_user(&data, argp, sizeof(data)))
2999                         goto out;
3000                 r = kvm_irqfd(kvm, &data);
3001                 break;
3002         }
3003         case KVM_IOEVENTFD: {
3004                 struct kvm_ioeventfd data;
3005
3006                 r = -EFAULT;
3007                 if (copy_from_user(&data, argp, sizeof(data)))
3008                         goto out;
3009                 r = kvm_ioeventfd(kvm, &data);
3010                 break;
3011         }
3012 #ifdef CONFIG_HAVE_KVM_MSI
3013         case KVM_SIGNAL_MSI: {
3014                 struct kvm_msi msi;
3015
3016                 r = -EFAULT;
3017                 if (copy_from_user(&msi, argp, sizeof(msi)))
3018                         goto out;
3019                 r = kvm_send_userspace_msi(kvm, &msi);
3020                 break;
3021         }
3022 #endif
3023 #ifdef __KVM_HAVE_IRQ_LINE
3024         case KVM_IRQ_LINE_STATUS:
3025         case KVM_IRQ_LINE: {
3026                 struct kvm_irq_level irq_event;
3027
3028                 r = -EFAULT;
3029                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3030                         goto out;
3031
3032                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3033                                         ioctl == KVM_IRQ_LINE_STATUS);
3034                 if (r)
3035                         goto out;
3036
3037                 r = -EFAULT;
3038                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3039                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3040                                 goto out;
3041                 }
3042
3043                 r = 0;
3044                 break;
3045         }
3046 #endif
3047 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3048         case KVM_SET_GSI_ROUTING: {
3049                 struct kvm_irq_routing routing;
3050                 struct kvm_irq_routing __user *urouting;
3051                 struct kvm_irq_routing_entry *entries = NULL;
3052
3053                 r = -EFAULT;
3054                 if (copy_from_user(&routing, argp, sizeof(routing)))
3055                         goto out;
3056                 r = -EINVAL;
3057                 if (!kvm_arch_can_set_irq_routing(kvm))
3058                         goto out;
3059                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3060                         goto out;
3061                 if (routing.flags)
3062                         goto out;
3063                 if (routing.nr) {
3064                         r = -ENOMEM;
3065                         entries = vmalloc(routing.nr * sizeof(*entries));
3066                         if (!entries)
3067                                 goto out;
3068                         r = -EFAULT;
3069                         urouting = argp;
3070                         if (copy_from_user(entries, urouting->entries,
3071                                            routing.nr * sizeof(*entries)))
3072                                 goto out_free_irq_routing;
3073                 }
3074                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3075                                         routing.flags);
3076 out_free_irq_routing:
3077                 vfree(entries);
3078                 break;
3079         }
3080 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3081         case KVM_CREATE_DEVICE: {
3082                 struct kvm_create_device cd;
3083
3084                 r = -EFAULT;
3085                 if (copy_from_user(&cd, argp, sizeof(cd)))
3086                         goto out;
3087
3088                 r = kvm_ioctl_create_device(kvm, &cd);
3089                 if (r)
3090                         goto out;
3091
3092                 r = -EFAULT;
3093                 if (copy_to_user(argp, &cd, sizeof(cd)))
3094                         goto out;
3095
3096                 r = 0;
3097                 break;
3098         }
3099         case KVM_CHECK_EXTENSION:
3100                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3101                 break;
3102         default:
3103                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3104         }
3105 out:
3106         return r;
3107 }
3108
3109 #ifdef CONFIG_KVM_COMPAT
3110 struct compat_kvm_dirty_log {
3111         __u32 slot;
3112         __u32 padding1;
3113         union {
3114                 compat_uptr_t dirty_bitmap; /* one bit per page */
3115                 __u64 padding2;
3116         };
3117 };
3118
3119 static long kvm_vm_compat_ioctl(struct file *filp,
3120                            unsigned int ioctl, unsigned long arg)
3121 {
3122         struct kvm *kvm = filp->private_data;
3123         int r;
3124
3125         if (kvm->mm != current->mm)
3126                 return -EIO;
3127         switch (ioctl) {
3128         case KVM_GET_DIRTY_LOG: {
3129                 struct compat_kvm_dirty_log compat_log;
3130                 struct kvm_dirty_log log;
3131
3132                 if (copy_from_user(&compat_log, (void __user *)arg,
3133                                    sizeof(compat_log)))
3134                         return -EFAULT;
3135                 log.slot         = compat_log.slot;
3136                 log.padding1     = compat_log.padding1;
3137                 log.padding2     = compat_log.padding2;
3138                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3139
3140                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3141                 break;
3142         }
3143         default:
3144                 r = kvm_vm_ioctl(filp, ioctl, arg);
3145         }
3146         return r;
3147 }
3148 #endif
3149
3150 static struct file_operations kvm_vm_fops = {
3151         .release        = kvm_vm_release,
3152         .unlocked_ioctl = kvm_vm_ioctl,
3153 #ifdef CONFIG_KVM_COMPAT
3154         .compat_ioctl   = kvm_vm_compat_ioctl,
3155 #endif
3156         .llseek         = noop_llseek,
3157 };
3158
3159 static int kvm_dev_ioctl_create_vm(unsigned long type)
3160 {
3161         int r;
3162         struct kvm *kvm;
3163         struct file *file;
3164
3165         kvm = kvm_create_vm(type);
3166         if (IS_ERR(kvm))
3167                 return PTR_ERR(kvm);
3168 #ifdef CONFIG_KVM_MMIO
3169         r = kvm_coalesced_mmio_init(kvm);
3170         if (r < 0) {
3171                 kvm_put_kvm(kvm);
3172                 return r;
3173         }
3174 #endif
3175         r = get_unused_fd_flags(O_CLOEXEC);
3176         if (r < 0) {
3177                 kvm_put_kvm(kvm);
3178                 return r;
3179         }
3180         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3181         if (IS_ERR(file)) {
3182                 put_unused_fd(r);
3183                 kvm_put_kvm(kvm);
3184                 return PTR_ERR(file);
3185         }
3186
3187         /*
3188          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3189          * already set, with ->release() being kvm_vm_release().  In error
3190          * cases it will be called by the final fput(file) and will take
3191          * care of doing kvm_put_kvm(kvm).
3192          */
3193         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3194                 put_unused_fd(r);
3195                 fput(file);
3196                 return -ENOMEM;
3197         }
3198         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3199
3200         fd_install(r, file);
3201         return r;
3202 }
3203
3204 static long kvm_dev_ioctl(struct file *filp,
3205                           unsigned int ioctl, unsigned long arg)
3206 {
3207         long r = -EINVAL;
3208
3209         switch (ioctl) {
3210         case KVM_GET_API_VERSION:
3211                 if (arg)
3212                         goto out;
3213                 r = KVM_API_VERSION;
3214                 break;
3215         case KVM_CREATE_VM:
3216                 r = kvm_dev_ioctl_create_vm(arg);
3217                 break;
3218         case KVM_CHECK_EXTENSION:
3219                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3220                 break;
3221         case KVM_GET_VCPU_MMAP_SIZE:
3222                 if (arg)
3223                         goto out;
3224                 r = PAGE_SIZE;     /* struct kvm_run */
3225 #ifdef CONFIG_X86
3226                 r += PAGE_SIZE;    /* pio data page */
3227 #endif
3228 #ifdef CONFIG_KVM_MMIO
3229                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3230 #endif
3231                 break;
3232         case KVM_TRACE_ENABLE:
3233         case KVM_TRACE_PAUSE:
3234         case KVM_TRACE_DISABLE:
3235                 r = -EOPNOTSUPP;
3236                 break;
3237         default:
3238                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3239         }
3240 out:
3241         return r;
3242 }
3243
3244 static struct file_operations kvm_chardev_ops = {
3245         .unlocked_ioctl = kvm_dev_ioctl,
3246         .compat_ioctl   = kvm_dev_ioctl,
3247         .llseek         = noop_llseek,
3248 };
3249
3250 static struct miscdevice kvm_dev = {
3251         KVM_MINOR,
3252         "kvm",
3253         &kvm_chardev_ops,
3254 };
3255
3256 static void hardware_enable_nolock(void *junk)
3257 {
3258         int cpu = raw_smp_processor_id();
3259         int r;
3260
3261         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3262                 return;
3263
3264         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3265
3266         r = kvm_arch_hardware_enable();
3267
3268         if (r) {
3269                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3270                 atomic_inc(&hardware_enable_failed);
3271                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3272         }
3273 }
3274
3275 static int kvm_starting_cpu(unsigned int cpu)
3276 {
3277         raw_spin_lock(&kvm_count_lock);
3278         if (kvm_usage_count)
3279                 hardware_enable_nolock(NULL);
3280         raw_spin_unlock(&kvm_count_lock);
3281         return 0;
3282 }
3283
3284 static void hardware_disable_nolock(void *junk)
3285 {
3286         int cpu = raw_smp_processor_id();
3287
3288         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3289                 return;
3290         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3291         kvm_arch_hardware_disable();
3292 }
3293
3294 static int kvm_dying_cpu(unsigned int cpu)
3295 {
3296         raw_spin_lock(&kvm_count_lock);
3297         if (kvm_usage_count)
3298                 hardware_disable_nolock(NULL);
3299         raw_spin_unlock(&kvm_count_lock);
3300         return 0;
3301 }
3302
3303 static void hardware_disable_all_nolock(void)
3304 {
3305         BUG_ON(!kvm_usage_count);
3306
3307         kvm_usage_count--;
3308         if (!kvm_usage_count)
3309                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3310 }
3311
3312 static void hardware_disable_all(void)
3313 {
3314         raw_spin_lock(&kvm_count_lock);
3315         hardware_disable_all_nolock();
3316         raw_spin_unlock(&kvm_count_lock);
3317 }
3318
3319 static int hardware_enable_all(void)
3320 {
3321         int r = 0;
3322
3323         raw_spin_lock(&kvm_count_lock);
3324
3325         kvm_usage_count++;
3326         if (kvm_usage_count == 1) {
3327                 atomic_set(&hardware_enable_failed, 0);
3328                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3329
3330                 if (atomic_read(&hardware_enable_failed)) {
3331                         hardware_disable_all_nolock();
3332                         r = -EBUSY;
3333                 }
3334         }
3335
3336         raw_spin_unlock(&kvm_count_lock);
3337
3338         return r;
3339 }
3340
3341 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3342                       void *v)
3343 {
3344         /*
3345          * Some (well, at least mine) BIOSes hang on reboot if
3346          * in vmx root mode.
3347          *
3348          * And Intel TXT required VMX off for all cpu when system shutdown.
3349          */
3350         pr_info("kvm: exiting hardware virtualization\n");
3351         kvm_rebooting = true;
3352         on_each_cpu(hardware_disable_nolock, NULL, 1);
3353         return NOTIFY_OK;
3354 }
3355
3356 static struct notifier_block kvm_reboot_notifier = {
3357         .notifier_call = kvm_reboot,
3358         .priority = 0,
3359 };
3360
3361 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3362 {
3363         int i;
3364
3365         for (i = 0; i < bus->dev_count; i++) {
3366                 struct kvm_io_device *pos = bus->range[i].dev;
3367
3368                 kvm_iodevice_destructor(pos);
3369         }
3370         kfree(bus);
3371 }
3372
3373 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3374                                  const struct kvm_io_range *r2)
3375 {
3376         gpa_t addr1 = r1->addr;
3377         gpa_t addr2 = r2->addr;
3378
3379         if (addr1 < addr2)
3380                 return -1;
3381
3382         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3383          * accept any overlapping write.  Any order is acceptable for
3384          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3385          * we process all of them.
3386          */
3387         if (r2->len) {
3388                 addr1 += r1->len;
3389                 addr2 += r2->len;
3390         }
3391
3392         if (addr1 > addr2)
3393                 return 1;
3394
3395         return 0;
3396 }
3397
3398 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3399 {
3400         return kvm_io_bus_cmp(p1, p2);
3401 }
3402
3403 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3404                           gpa_t addr, int len)
3405 {
3406         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3407                 .addr = addr,
3408                 .len = len,
3409                 .dev = dev,
3410         };
3411
3412         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3413                 kvm_io_bus_sort_cmp, NULL);
3414
3415         return 0;
3416 }
3417
3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3419                              gpa_t addr, int len)
3420 {
3421         struct kvm_io_range *range, key;
3422         int off;
3423
3424         key = (struct kvm_io_range) {
3425                 .addr = addr,
3426                 .len = len,
3427         };
3428
3429         range = bsearch(&key, bus->range, bus->dev_count,
3430                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3431         if (range == NULL)
3432                 return -ENOENT;
3433
3434         off = range - bus->range;
3435
3436         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3437                 off--;
3438
3439         return off;
3440 }
3441
3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3443                               struct kvm_io_range *range, const void *val)
3444 {
3445         int idx;
3446
3447         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3448         if (idx < 0)
3449                 return -EOPNOTSUPP;
3450
3451         while (idx < bus->dev_count &&
3452                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3453                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3454                                         range->len, val))
3455                         return idx;
3456                 idx++;
3457         }
3458
3459         return -EOPNOTSUPP;
3460 }
3461
3462 /* kvm_io_bus_write - called under kvm->slots_lock */
3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3464                      int len, const void *val)
3465 {
3466         struct kvm_io_bus *bus;
3467         struct kvm_io_range range;
3468         int r;
3469
3470         range = (struct kvm_io_range) {
3471                 .addr = addr,
3472                 .len = len,
3473         };
3474
3475         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3476         if (!bus)
3477                 return -ENOMEM;
3478         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3479         return r < 0 ? r : 0;
3480 }
3481
3482 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3483 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3484                             gpa_t addr, int len, const void *val, long cookie)
3485 {
3486         struct kvm_io_bus *bus;
3487         struct kvm_io_range range;
3488
3489         range = (struct kvm_io_range) {
3490                 .addr = addr,
3491                 .len = len,
3492         };
3493
3494         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3495         if (!bus)
3496                 return -ENOMEM;
3497
3498         /* First try the device referenced by cookie. */
3499         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3500             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3501                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3502                                         val))
3503                         return cookie;
3504
3505         /*
3506          * cookie contained garbage; fall back to search and return the
3507          * correct cookie value.
3508          */
3509         return __kvm_io_bus_write(vcpu, bus, &range, val);
3510 }
3511
3512 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3513                              struct kvm_io_range *range, void *val)
3514 {
3515         int idx;
3516
3517         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3518         if (idx < 0)
3519                 return -EOPNOTSUPP;
3520
3521         while (idx < bus->dev_count &&
3522                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3523                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3524                                        range->len, val))
3525                         return idx;
3526                 idx++;
3527         }
3528
3529         return -EOPNOTSUPP;
3530 }
3531 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3532
3533 /* kvm_io_bus_read - called under kvm->slots_lock */
3534 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3535                     int len, void *val)
3536 {
3537         struct kvm_io_bus *bus;
3538         struct kvm_io_range range;
3539         int r;
3540
3541         range = (struct kvm_io_range) {
3542                 .addr = addr,
3543                 .len = len,
3544         };
3545
3546         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3547         if (!bus)
3548                 return -ENOMEM;
3549         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3550         return r < 0 ? r : 0;
3551 }
3552
3553
3554 /* Caller must hold slots_lock. */
3555 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3556                             int len, struct kvm_io_device *dev)
3557 {
3558         struct kvm_io_bus *new_bus, *bus;
3559
3560         bus = kvm_get_bus(kvm, bus_idx);
3561         if (!bus)
3562                 return -ENOMEM;
3563
3564         /* exclude ioeventfd which is limited by maximum fd */
3565         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3566                 return -ENOSPC;
3567
3568         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3569                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3570         if (!new_bus)
3571                 return -ENOMEM;
3572         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3573                sizeof(struct kvm_io_range)));
3574         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3575         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3576         synchronize_srcu_expedited(&kvm->srcu);
3577         kfree(bus);
3578
3579         return 0;
3580 }
3581
3582 /* Caller must hold slots_lock. */
3583 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3584                                struct kvm_io_device *dev)
3585 {
3586         int i;
3587         struct kvm_io_bus *new_bus, *bus;
3588
3589         bus = kvm_get_bus(kvm, bus_idx);
3590         if (!bus)
3591                 return;
3592
3593         for (i = 0; i < bus->dev_count; i++)
3594                 if (bus->range[i].dev == dev) {
3595                         break;
3596                 }
3597
3598         if (i == bus->dev_count)
3599                 return;
3600
3601         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3602                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3603         if (!new_bus)  {
3604                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3605                 goto broken;
3606         }
3607
3608         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3609         new_bus->dev_count--;
3610         memcpy(new_bus->range + i, bus->range + i + 1,
3611                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3612
3613 broken:
3614         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3615         synchronize_srcu_expedited(&kvm->srcu);
3616         kfree(bus);
3617         return;
3618 }
3619
3620 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3621                                          gpa_t addr)
3622 {
3623         struct kvm_io_bus *bus;
3624         int dev_idx, srcu_idx;
3625         struct kvm_io_device *iodev = NULL;
3626
3627         srcu_idx = srcu_read_lock(&kvm->srcu);
3628
3629         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3630         if (!bus)
3631                 goto out_unlock;
3632
3633         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3634         if (dev_idx < 0)
3635                 goto out_unlock;
3636
3637         iodev = bus->range[dev_idx].dev;
3638
3639 out_unlock:
3640         srcu_read_unlock(&kvm->srcu, srcu_idx);
3641
3642         return iodev;
3643 }
3644 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3645
3646 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3647                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3648                            const char *fmt)
3649 {
3650         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3651                                           inode->i_private;
3652
3653         /* The debugfs files are a reference to the kvm struct which
3654          * is still valid when kvm_destroy_vm is called.
3655          * To avoid the race between open and the removal of the debugfs
3656          * directory we test against the users count.
3657          */
3658         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3659                 return -ENOENT;
3660
3661         if (simple_attr_open(inode, file, get, set, fmt)) {
3662                 kvm_put_kvm(stat_data->kvm);
3663                 return -ENOMEM;
3664         }
3665
3666         return 0;
3667 }
3668
3669 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3670 {
3671         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3672                                           inode->i_private;
3673
3674         simple_attr_release(inode, file);
3675         kvm_put_kvm(stat_data->kvm);
3676
3677         return 0;
3678 }
3679
3680 static int vm_stat_get_per_vm(void *data, u64 *val)
3681 {
3682         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3683
3684         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3685
3686         return 0;
3687 }
3688
3689 static int vm_stat_clear_per_vm(void *data, u64 val)
3690 {
3691         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3692
3693         if (val)
3694                 return -EINVAL;
3695
3696         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3697
3698         return 0;
3699 }
3700
3701 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3702 {
3703         __simple_attr_check_format("%llu\n", 0ull);
3704         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3705                                 vm_stat_clear_per_vm, "%llu\n");
3706 }
3707
3708 static const struct file_operations vm_stat_get_per_vm_fops = {
3709         .owner   = THIS_MODULE,
3710         .open    = vm_stat_get_per_vm_open,
3711         .release = kvm_debugfs_release,
3712         .read    = simple_attr_read,
3713         .write   = simple_attr_write,
3714         .llseek  = no_llseek,
3715 };
3716
3717 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3718 {
3719         int i;
3720         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3721         struct kvm_vcpu *vcpu;
3722
3723         *val = 0;
3724
3725         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3726                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3727
3728         return 0;
3729 }
3730
3731 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3732 {
3733         int i;
3734         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3735         struct kvm_vcpu *vcpu;
3736
3737         if (val)
3738                 return -EINVAL;
3739
3740         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3741                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3742
3743         return 0;
3744 }
3745
3746 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3747 {
3748         __simple_attr_check_format("%llu\n", 0ull);
3749         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3750                                  vcpu_stat_clear_per_vm, "%llu\n");
3751 }
3752
3753 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3754         .owner   = THIS_MODULE,
3755         .open    = vcpu_stat_get_per_vm_open,
3756         .release = kvm_debugfs_release,
3757         .read    = simple_attr_read,
3758         .write   = simple_attr_write,
3759         .llseek  = no_llseek,
3760 };
3761
3762 static const struct file_operations *stat_fops_per_vm[] = {
3763         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3764         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3765 };
3766
3767 static int vm_stat_get(void *_offset, u64 *val)
3768 {
3769         unsigned offset = (long)_offset;
3770         struct kvm *kvm;
3771         struct kvm_stat_data stat_tmp = {.offset = offset};
3772         u64 tmp_val;
3773
3774         *val = 0;
3775         spin_lock(&kvm_lock);
3776         list_for_each_entry(kvm, &vm_list, vm_list) {
3777                 stat_tmp.kvm = kvm;
3778                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3779                 *val += tmp_val;
3780         }
3781         spin_unlock(&kvm_lock);
3782         return 0;
3783 }
3784
3785 static int vm_stat_clear(void *_offset, u64 val)
3786 {
3787         unsigned offset = (long)_offset;
3788         struct kvm *kvm;
3789         struct kvm_stat_data stat_tmp = {.offset = offset};
3790
3791         if (val)
3792                 return -EINVAL;
3793
3794         spin_lock(&kvm_lock);
3795         list_for_each_entry(kvm, &vm_list, vm_list) {
3796                 stat_tmp.kvm = kvm;
3797                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3798         }
3799         spin_unlock(&kvm_lock);
3800
3801         return 0;
3802 }
3803
3804 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3805
3806 static int vcpu_stat_get(void *_offset, u64 *val)
3807 {
3808         unsigned offset = (long)_offset;
3809         struct kvm *kvm;
3810         struct kvm_stat_data stat_tmp = {.offset = offset};
3811         u64 tmp_val;
3812
3813         *val = 0;
3814         spin_lock(&kvm_lock);
3815         list_for_each_entry(kvm, &vm_list, vm_list) {
3816                 stat_tmp.kvm = kvm;
3817                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3818                 *val += tmp_val;
3819         }
3820         spin_unlock(&kvm_lock);
3821         return 0;
3822 }
3823
3824 static int vcpu_stat_clear(void *_offset, u64 val)
3825 {
3826         unsigned offset = (long)_offset;
3827         struct kvm *kvm;
3828         struct kvm_stat_data stat_tmp = {.offset = offset};
3829
3830         if (val)
3831                 return -EINVAL;
3832
3833         spin_lock(&kvm_lock);
3834         list_for_each_entry(kvm, &vm_list, vm_list) {
3835                 stat_tmp.kvm = kvm;
3836                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3837         }
3838         spin_unlock(&kvm_lock);
3839
3840         return 0;
3841 }
3842
3843 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3844                         "%llu\n");
3845
3846 static const struct file_operations *stat_fops[] = {
3847         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3848         [KVM_STAT_VM]   = &vm_stat_fops,
3849 };
3850
3851 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3852 {
3853         struct kobj_uevent_env *env;
3854         unsigned long long created, active;
3855
3856         if (!kvm_dev.this_device || !kvm)
3857                 return;
3858
3859         spin_lock(&kvm_lock);
3860         if (type == KVM_EVENT_CREATE_VM) {
3861                 kvm_createvm_count++;
3862                 kvm_active_vms++;
3863         } else if (type == KVM_EVENT_DESTROY_VM) {
3864                 kvm_active_vms--;
3865         }
3866         created = kvm_createvm_count;
3867         active = kvm_active_vms;
3868         spin_unlock(&kvm_lock);
3869
3870         env = kzalloc(sizeof(*env), GFP_KERNEL);
3871         if (!env)
3872                 return;
3873
3874         add_uevent_var(env, "CREATED=%llu", created);
3875         add_uevent_var(env, "COUNT=%llu", active);
3876
3877         if (type == KVM_EVENT_CREATE_VM) {
3878                 add_uevent_var(env, "EVENT=create");
3879                 kvm->userspace_pid = task_pid_nr(current);
3880         } else if (type == KVM_EVENT_DESTROY_VM) {
3881                 add_uevent_var(env, "EVENT=destroy");
3882         }
3883         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3884
3885         if (kvm->debugfs_dentry) {
3886                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3887
3888                 if (p) {
3889                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3890                         if (!IS_ERR(tmp))
3891                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3892                         kfree(p);
3893                 }
3894         }
3895         /* no need for checks, since we are adding at most only 5 keys */
3896         env->envp[env->envp_idx++] = NULL;
3897         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3898         kfree(env);
3899 }
3900
3901 static int kvm_init_debug(void)
3902 {
3903         int r = -EEXIST;
3904         struct kvm_stats_debugfs_item *p;
3905
3906         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3907         if (kvm_debugfs_dir == NULL)
3908                 goto out;
3909
3910         kvm_debugfs_num_entries = 0;
3911         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3912                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3913                                          (void *)(long)p->offset,
3914                                          stat_fops[p->kind]))
3915                         goto out_dir;
3916         }
3917
3918         return 0;
3919
3920 out_dir:
3921         debugfs_remove_recursive(kvm_debugfs_dir);
3922 out:
3923         return r;
3924 }
3925
3926 static int kvm_suspend(void)
3927 {
3928         if (kvm_usage_count)
3929                 hardware_disable_nolock(NULL);
3930         return 0;
3931 }
3932
3933 static void kvm_resume(void)
3934 {
3935         if (kvm_usage_count) {
3936                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3937                 hardware_enable_nolock(NULL);
3938         }
3939 }
3940
3941 static struct syscore_ops kvm_syscore_ops = {
3942         .suspend = kvm_suspend,
3943         .resume = kvm_resume,
3944 };
3945
3946 static inline
3947 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3948 {
3949         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3950 }
3951
3952 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3953 {
3954         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3955
3956         if (vcpu->preempted)
3957                 vcpu->preempted = false;
3958
3959         kvm_arch_sched_in(vcpu, cpu);
3960
3961         kvm_arch_vcpu_load(vcpu, cpu);
3962 }
3963
3964 static void kvm_sched_out(struct preempt_notifier *pn,
3965                           struct task_struct *next)
3966 {
3967         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3968
3969         if (current->state == TASK_RUNNING)
3970                 vcpu->preempted = true;
3971         kvm_arch_vcpu_put(vcpu);
3972 }
3973
3974 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3975                   struct module *module)
3976 {
3977         int r;
3978         int cpu;
3979
3980         r = kvm_arch_init(opaque);
3981         if (r)
3982                 goto out_fail;
3983
3984         /*
3985          * kvm_arch_init makes sure there's at most one caller
3986          * for architectures that support multiple implementations,
3987          * like intel and amd on x86.
3988          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3989          * conflicts in case kvm is already setup for another implementation.
3990          */
3991         r = kvm_irqfd_init();
3992         if (r)
3993                 goto out_irqfd;
3994
3995         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3996                 r = -ENOMEM;
3997                 goto out_free_0;
3998         }
3999
4000         r = kvm_arch_hardware_setup();
4001         if (r < 0)
4002                 goto out_free_0a;
4003
4004         for_each_online_cpu(cpu) {
4005                 smp_call_function_single(cpu,
4006                                 kvm_arch_check_processor_compat,
4007                                 &r, 1);
4008                 if (r < 0)
4009                         goto out_free_1;
4010         }
4011
4012         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4013                                       kvm_starting_cpu, kvm_dying_cpu);
4014         if (r)
4015                 goto out_free_2;
4016         register_reboot_notifier(&kvm_reboot_notifier);
4017
4018         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4019         if (!vcpu_align)
4020                 vcpu_align = __alignof__(struct kvm_vcpu);
4021         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4022                                            SLAB_ACCOUNT, NULL);
4023         if (!kvm_vcpu_cache) {
4024                 r = -ENOMEM;
4025                 goto out_free_3;
4026         }
4027
4028         r = kvm_async_pf_init();
4029         if (r)
4030                 goto out_free;
4031
4032         kvm_chardev_ops.owner = module;
4033         kvm_vm_fops.owner = module;
4034         kvm_vcpu_fops.owner = module;
4035
4036         r = misc_register(&kvm_dev);
4037         if (r) {
4038                 pr_err("kvm: misc device register failed\n");
4039                 goto out_unreg;
4040         }
4041
4042         register_syscore_ops(&kvm_syscore_ops);
4043
4044         kvm_preempt_ops.sched_in = kvm_sched_in;
4045         kvm_preempt_ops.sched_out = kvm_sched_out;
4046
4047         r = kvm_init_debug();
4048         if (r) {
4049                 pr_err("kvm: create debugfs files failed\n");
4050                 goto out_undebugfs;
4051         }
4052
4053         r = kvm_vfio_ops_init();
4054         WARN_ON(r);
4055
4056         return 0;
4057
4058 out_undebugfs:
4059         unregister_syscore_ops(&kvm_syscore_ops);
4060         misc_deregister(&kvm_dev);
4061 out_unreg:
4062         kvm_async_pf_deinit();
4063 out_free:
4064         kmem_cache_destroy(kvm_vcpu_cache);
4065 out_free_3:
4066         unregister_reboot_notifier(&kvm_reboot_notifier);
4067         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4068 out_free_2:
4069 out_free_1:
4070         kvm_arch_hardware_unsetup();
4071 out_free_0a:
4072         free_cpumask_var(cpus_hardware_enabled);
4073 out_free_0:
4074         kvm_irqfd_exit();
4075 out_irqfd:
4076         kvm_arch_exit();
4077 out_fail:
4078         return r;
4079 }
4080 EXPORT_SYMBOL_GPL(kvm_init);
4081
4082 void kvm_exit(void)
4083 {
4084         debugfs_remove_recursive(kvm_debugfs_dir);
4085         misc_deregister(&kvm_dev);
4086         kmem_cache_destroy(kvm_vcpu_cache);
4087         kvm_async_pf_deinit();
4088         unregister_syscore_ops(&kvm_syscore_ops);
4089         unregister_reboot_notifier(&kvm_reboot_notifier);
4090         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4091         on_each_cpu(hardware_disable_nolock, NULL, 1);
4092         kvm_arch_hardware_unsetup();
4093         kvm_arch_exit();
4094         kvm_irqfd_exit();
4095         free_cpumask_var(cpus_hardware_enabled);
4096         kvm_vfio_ops_exit();
4097 }
4098 EXPORT_SYMBOL_GPL(kvm_exit);