d3172450050184fa5b492cb9023e908c6f18e01d
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
159
160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161                                                    unsigned long start, unsigned long end)
162 {
163 }
164
165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166 {
167         /*
168          * The metadata used by is_zone_device_page() to determine whether or
169          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170          * the device has been pinned, e.g. by get_user_pages().  WARN if the
171          * page_count() is zero to help detect bad usage of this helper.
172          */
173         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174                 return false;
175
176         return is_zone_device_page(pfn_to_page(pfn));
177 }
178
179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
180 {
181         /*
182          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183          * perspective they are "normal" pages, albeit with slightly different
184          * usage rules.
185          */
186         if (pfn_valid(pfn))
187                 return PageReserved(pfn_to_page(pfn)) &&
188                        !is_zero_pfn(pfn) &&
189                        !kvm_is_zone_device_pfn(pfn);
190
191         return true;
192 }
193
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199         int cpu = get_cpu();
200
201         __this_cpu_write(kvm_running_vcpu, vcpu);
202         preempt_notifier_register(&vcpu->preempt_notifier);
203         kvm_arch_vcpu_load(vcpu, cpu);
204         put_cpu();
205 }
206 EXPORT_SYMBOL_GPL(vcpu_load);
207
208 void vcpu_put(struct kvm_vcpu *vcpu)
209 {
210         preempt_disable();
211         kvm_arch_vcpu_put(vcpu);
212         preempt_notifier_unregister(&vcpu->preempt_notifier);
213         __this_cpu_write(kvm_running_vcpu, NULL);
214         preempt_enable();
215 }
216 EXPORT_SYMBOL_GPL(vcpu_put);
217
218 /* TODO: merge with kvm_arch_vcpu_should_kick */
219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
220 {
221         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
222
223         /*
224          * We need to wait for the VCPU to reenable interrupts and get out of
225          * READING_SHADOW_PAGE_TABLES mode.
226          */
227         if (req & KVM_REQUEST_WAIT)
228                 return mode != OUTSIDE_GUEST_MODE;
229
230         /*
231          * Need to kick a running VCPU, but otherwise there is nothing to do.
232          */
233         return mode == IN_GUEST_MODE;
234 }
235
236 static void ack_flush(void *_completed)
237 {
238 }
239
240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
241 {
242         if (cpumask_empty(cpus))
243                 return false;
244
245         smp_call_function_many(cpus, ack_flush, NULL, wait);
246         return true;
247 }
248
249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
250                                   unsigned int req, struct cpumask *tmp,
251                                   int current_cpu)
252 {
253         int cpu;
254
255         kvm_make_request(req, vcpu);
256
257         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
258                 return;
259
260         /*
261          * Note, the vCPU could get migrated to a different pCPU at any point
262          * after kvm_request_needs_ipi(), which could result in sending an IPI
263          * to the previous pCPU.  But, that's OK because the purpose of the IPI
264          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
265          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
266          * after this point is also OK, as the requirement is only that KVM wait
267          * for vCPUs that were reading SPTEs _before_ any changes were
268          * finalized. See kvm_vcpu_kick() for more details on handling requests.
269          */
270         if (kvm_request_needs_ipi(vcpu, req)) {
271                 cpu = READ_ONCE(vcpu->cpu);
272                 if (cpu != -1 && cpu != current_cpu)
273                         __cpumask_set_cpu(cpu, tmp);
274         }
275 }
276
277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
278                                  unsigned long *vcpu_bitmap)
279 {
280         struct kvm_vcpu *vcpu;
281         struct cpumask *cpus;
282         int i, me;
283         bool called;
284
285         me = get_cpu();
286
287         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
288         cpumask_clear(cpus);
289
290         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
291                 vcpu = kvm_get_vcpu(kvm, i);
292                 if (!vcpu)
293                         continue;
294                 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
295         }
296
297         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
298         put_cpu();
299
300         return called;
301 }
302
303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
304                                       struct kvm_vcpu *except)
305 {
306         struct kvm_vcpu *vcpu;
307         struct cpumask *cpus;
308         bool called;
309         int i, me;
310
311         me = get_cpu();
312
313         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
314         cpumask_clear(cpus);
315
316         kvm_for_each_vcpu(i, vcpu, kvm) {
317                 if (vcpu == except)
318                         continue;
319                 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
320         }
321
322         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
323         put_cpu();
324
325         return called;
326 }
327
328 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
329 {
330         return kvm_make_all_cpus_request_except(kvm, req, NULL);
331 }
332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
333
334 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
335 void kvm_flush_remote_tlbs(struct kvm *kvm)
336 {
337         ++kvm->stat.generic.remote_tlb_flush_requests;
338
339         /*
340          * We want to publish modifications to the page tables before reading
341          * mode. Pairs with a memory barrier in arch-specific code.
342          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
343          * and smp_mb in walk_shadow_page_lockless_begin/end.
344          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
345          *
346          * There is already an smp_mb__after_atomic() before
347          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
348          * barrier here.
349          */
350         if (!kvm_arch_flush_remote_tlb(kvm)
351             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
352                 ++kvm->stat.generic.remote_tlb_flush;
353 }
354 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
355 #endif
356
357 void kvm_reload_remote_mmus(struct kvm *kvm)
358 {
359         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
360 }
361
362 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
363 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
364                                                gfp_t gfp_flags)
365 {
366         gfp_flags |= mc->gfp_zero;
367
368         if (mc->kmem_cache)
369                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
370         else
371                 return (void *)__get_free_page(gfp_flags);
372 }
373
374 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
375 {
376         void *obj;
377
378         if (mc->nobjs >= min)
379                 return 0;
380         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
381                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
382                 if (!obj)
383                         return mc->nobjs >= min ? 0 : -ENOMEM;
384                 mc->objects[mc->nobjs++] = obj;
385         }
386         return 0;
387 }
388
389 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
390 {
391         return mc->nobjs;
392 }
393
394 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
395 {
396         while (mc->nobjs) {
397                 if (mc->kmem_cache)
398                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
399                 else
400                         free_page((unsigned long)mc->objects[--mc->nobjs]);
401         }
402 }
403
404 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
405 {
406         void *p;
407
408         if (WARN_ON(!mc->nobjs))
409                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
410         else
411                 p = mc->objects[--mc->nobjs];
412         BUG_ON(!p);
413         return p;
414 }
415 #endif
416
417 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
418 {
419         mutex_init(&vcpu->mutex);
420         vcpu->cpu = -1;
421         vcpu->kvm = kvm;
422         vcpu->vcpu_id = id;
423         vcpu->pid = NULL;
424         rcuwait_init(&vcpu->wait);
425         kvm_async_pf_vcpu_init(vcpu);
426
427         vcpu->pre_pcpu = -1;
428         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
429
430         kvm_vcpu_set_in_spin_loop(vcpu, false);
431         kvm_vcpu_set_dy_eligible(vcpu, false);
432         vcpu->preempted = false;
433         vcpu->ready = false;
434         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
435         vcpu->last_used_slot = 0;
436 }
437
438 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
439 {
440         kvm_dirty_ring_free(&vcpu->dirty_ring);
441         kvm_arch_vcpu_destroy(vcpu);
442
443         /*
444          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
445          * the vcpu->pid pointer, and at destruction time all file descriptors
446          * are already gone.
447          */
448         put_pid(rcu_dereference_protected(vcpu->pid, 1));
449
450         free_page((unsigned long)vcpu->run);
451         kmem_cache_free(kvm_vcpu_cache, vcpu);
452 }
453 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
454
455 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
456 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
457 {
458         return container_of(mn, struct kvm, mmu_notifier);
459 }
460
461 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
462                                               struct mm_struct *mm,
463                                               unsigned long start, unsigned long end)
464 {
465         struct kvm *kvm = mmu_notifier_to_kvm(mn);
466         int idx;
467
468         idx = srcu_read_lock(&kvm->srcu);
469         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
470         srcu_read_unlock(&kvm->srcu, idx);
471 }
472
473 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
474
475 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
476                              unsigned long end);
477
478 struct kvm_hva_range {
479         unsigned long start;
480         unsigned long end;
481         pte_t pte;
482         hva_handler_t handler;
483         on_lock_fn_t on_lock;
484         bool flush_on_ret;
485         bool may_block;
486 };
487
488 /*
489  * Use a dedicated stub instead of NULL to indicate that there is no callback
490  * function/handler.  The compiler technically can't guarantee that a real
491  * function will have a non-zero address, and so it will generate code to
492  * check for !NULL, whereas comparing against a stub will be elided at compile
493  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
494  */
495 static void kvm_null_fn(void)
496 {
497
498 }
499 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
500
501 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
502                                                   const struct kvm_hva_range *range)
503 {
504         bool ret = false, locked = false;
505         struct kvm_gfn_range gfn_range;
506         struct kvm_memory_slot *slot;
507         struct kvm_memslots *slots;
508         int i, idx;
509
510         /* A null handler is allowed if and only if on_lock() is provided. */
511         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
512                          IS_KVM_NULL_FN(range->handler)))
513                 return 0;
514
515         idx = srcu_read_lock(&kvm->srcu);
516
517         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
518                 slots = __kvm_memslots(kvm, i);
519                 kvm_for_each_memslot(slot, slots) {
520                         unsigned long hva_start, hva_end;
521
522                         hva_start = max(range->start, slot->userspace_addr);
523                         hva_end = min(range->end, slot->userspace_addr +
524                                                   (slot->npages << PAGE_SHIFT));
525                         if (hva_start >= hva_end)
526                                 continue;
527
528                         /*
529                          * To optimize for the likely case where the address
530                          * range is covered by zero or one memslots, don't
531                          * bother making these conditional (to avoid writes on
532                          * the second or later invocation of the handler).
533                          */
534                         gfn_range.pte = range->pte;
535                         gfn_range.may_block = range->may_block;
536
537                         /*
538                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
539                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
540                          */
541                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
542                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
543                         gfn_range.slot = slot;
544
545                         if (!locked) {
546                                 locked = true;
547                                 KVM_MMU_LOCK(kvm);
548                                 if (!IS_KVM_NULL_FN(range->on_lock))
549                                         range->on_lock(kvm, range->start, range->end);
550                                 if (IS_KVM_NULL_FN(range->handler))
551                                         break;
552                         }
553                         ret |= range->handler(kvm, &gfn_range);
554                 }
555         }
556
557         if (range->flush_on_ret && ret)
558                 kvm_flush_remote_tlbs(kvm);
559
560         if (locked)
561                 KVM_MMU_UNLOCK(kvm);
562
563         srcu_read_unlock(&kvm->srcu, idx);
564
565         /* The notifiers are averse to booleans. :-( */
566         return (int)ret;
567 }
568
569 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
570                                                 unsigned long start,
571                                                 unsigned long end,
572                                                 pte_t pte,
573                                                 hva_handler_t handler)
574 {
575         struct kvm *kvm = mmu_notifier_to_kvm(mn);
576         const struct kvm_hva_range range = {
577                 .start          = start,
578                 .end            = end,
579                 .pte            = pte,
580                 .handler        = handler,
581                 .on_lock        = (void *)kvm_null_fn,
582                 .flush_on_ret   = true,
583                 .may_block      = false,
584         };
585
586         return __kvm_handle_hva_range(kvm, &range);
587 }
588
589 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
590                                                          unsigned long start,
591                                                          unsigned long end,
592                                                          hva_handler_t handler)
593 {
594         struct kvm *kvm = mmu_notifier_to_kvm(mn);
595         const struct kvm_hva_range range = {
596                 .start          = start,
597                 .end            = end,
598                 .pte            = __pte(0),
599                 .handler        = handler,
600                 .on_lock        = (void *)kvm_null_fn,
601                 .flush_on_ret   = false,
602                 .may_block      = false,
603         };
604
605         return __kvm_handle_hva_range(kvm, &range);
606 }
607 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
608                                         struct mm_struct *mm,
609                                         unsigned long address,
610                                         pte_t pte)
611 {
612         struct kvm *kvm = mmu_notifier_to_kvm(mn);
613
614         trace_kvm_set_spte_hva(address);
615
616         /*
617          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
618          * If mmu_notifier_count is zero, then no in-progress invalidations,
619          * including this one, found a relevant memslot at start(); rechecking
620          * memslots here is unnecessary.  Note, a false positive (count elevated
621          * by a different invalidation) is sub-optimal but functionally ok.
622          */
623         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
624         if (!READ_ONCE(kvm->mmu_notifier_count))
625                 return;
626
627         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
628 }
629
630 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
631                                    unsigned long end)
632 {
633         /*
634          * The count increase must become visible at unlock time as no
635          * spte can be established without taking the mmu_lock and
636          * count is also read inside the mmu_lock critical section.
637          */
638         kvm->mmu_notifier_count++;
639         if (likely(kvm->mmu_notifier_count == 1)) {
640                 kvm->mmu_notifier_range_start = start;
641                 kvm->mmu_notifier_range_end = end;
642         } else {
643                 /*
644                  * Fully tracking multiple concurrent ranges has dimishing
645                  * returns. Keep things simple and just find the minimal range
646                  * which includes the current and new ranges. As there won't be
647                  * enough information to subtract a range after its invalidate
648                  * completes, any ranges invalidated concurrently will
649                  * accumulate and persist until all outstanding invalidates
650                  * complete.
651                  */
652                 kvm->mmu_notifier_range_start =
653                         min(kvm->mmu_notifier_range_start, start);
654                 kvm->mmu_notifier_range_end =
655                         max(kvm->mmu_notifier_range_end, end);
656         }
657 }
658
659 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
660                                         const struct mmu_notifier_range *range)
661 {
662         struct kvm *kvm = mmu_notifier_to_kvm(mn);
663         const struct kvm_hva_range hva_range = {
664                 .start          = range->start,
665                 .end            = range->end,
666                 .pte            = __pte(0),
667                 .handler        = kvm_unmap_gfn_range,
668                 .on_lock        = kvm_inc_notifier_count,
669                 .flush_on_ret   = true,
670                 .may_block      = mmu_notifier_range_blockable(range),
671         };
672
673         trace_kvm_unmap_hva_range(range->start, range->end);
674
675         /*
676          * Prevent memslot modification between range_start() and range_end()
677          * so that conditionally locking provides the same result in both
678          * functions.  Without that guarantee, the mmu_notifier_count
679          * adjustments will be imbalanced.
680          *
681          * Pairs with the decrement in range_end().
682          */
683         spin_lock(&kvm->mn_invalidate_lock);
684         kvm->mn_active_invalidate_count++;
685         spin_unlock(&kvm->mn_invalidate_lock);
686
687         __kvm_handle_hva_range(kvm, &hva_range);
688
689         return 0;
690 }
691
692 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
693                                    unsigned long end)
694 {
695         /*
696          * This sequence increase will notify the kvm page fault that
697          * the page that is going to be mapped in the spte could have
698          * been freed.
699          */
700         kvm->mmu_notifier_seq++;
701         smp_wmb();
702         /*
703          * The above sequence increase must be visible before the
704          * below count decrease, which is ensured by the smp_wmb above
705          * in conjunction with the smp_rmb in mmu_notifier_retry().
706          */
707         kvm->mmu_notifier_count--;
708 }
709
710 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
711                                         const struct mmu_notifier_range *range)
712 {
713         struct kvm *kvm = mmu_notifier_to_kvm(mn);
714         const struct kvm_hva_range hva_range = {
715                 .start          = range->start,
716                 .end            = range->end,
717                 .pte            = __pte(0),
718                 .handler        = (void *)kvm_null_fn,
719                 .on_lock        = kvm_dec_notifier_count,
720                 .flush_on_ret   = false,
721                 .may_block      = mmu_notifier_range_blockable(range),
722         };
723         bool wake;
724
725         __kvm_handle_hva_range(kvm, &hva_range);
726
727         /* Pairs with the increment in range_start(). */
728         spin_lock(&kvm->mn_invalidate_lock);
729         wake = (--kvm->mn_active_invalidate_count == 0);
730         spin_unlock(&kvm->mn_invalidate_lock);
731
732         /*
733          * There can only be one waiter, since the wait happens under
734          * slots_lock.
735          */
736         if (wake)
737                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
738
739         BUG_ON(kvm->mmu_notifier_count < 0);
740 }
741
742 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
743                                               struct mm_struct *mm,
744                                               unsigned long start,
745                                               unsigned long end)
746 {
747         trace_kvm_age_hva(start, end);
748
749         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
750 }
751
752 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
753                                         struct mm_struct *mm,
754                                         unsigned long start,
755                                         unsigned long end)
756 {
757         trace_kvm_age_hva(start, end);
758
759         /*
760          * Even though we do not flush TLB, this will still adversely
761          * affect performance on pre-Haswell Intel EPT, where there is
762          * no EPT Access Bit to clear so that we have to tear down EPT
763          * tables instead. If we find this unacceptable, we can always
764          * add a parameter to kvm_age_hva so that it effectively doesn't
765          * do anything on clear_young.
766          *
767          * Also note that currently we never issue secondary TLB flushes
768          * from clear_young, leaving this job up to the regular system
769          * cadence. If we find this inaccurate, we might come up with a
770          * more sophisticated heuristic later.
771          */
772         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
773 }
774
775 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
776                                        struct mm_struct *mm,
777                                        unsigned long address)
778 {
779         trace_kvm_test_age_hva(address);
780
781         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
782                                              kvm_test_age_gfn);
783 }
784
785 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
786                                      struct mm_struct *mm)
787 {
788         struct kvm *kvm = mmu_notifier_to_kvm(mn);
789         int idx;
790
791         idx = srcu_read_lock(&kvm->srcu);
792         kvm_arch_flush_shadow_all(kvm);
793         srcu_read_unlock(&kvm->srcu, idx);
794 }
795
796 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
797         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
798         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
799         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
800         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
801         .clear_young            = kvm_mmu_notifier_clear_young,
802         .test_young             = kvm_mmu_notifier_test_young,
803         .change_pte             = kvm_mmu_notifier_change_pte,
804         .release                = kvm_mmu_notifier_release,
805 };
806
807 static int kvm_init_mmu_notifier(struct kvm *kvm)
808 {
809         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
810         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
811 }
812
813 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
814
815 static int kvm_init_mmu_notifier(struct kvm *kvm)
816 {
817         return 0;
818 }
819
820 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
821
822 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
823 static int kvm_pm_notifier_call(struct notifier_block *bl,
824                                 unsigned long state,
825                                 void *unused)
826 {
827         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
828
829         return kvm_arch_pm_notifier(kvm, state);
830 }
831
832 static void kvm_init_pm_notifier(struct kvm *kvm)
833 {
834         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
835         /* Suspend KVM before we suspend ftrace, RCU, etc. */
836         kvm->pm_notifier.priority = INT_MAX;
837         register_pm_notifier(&kvm->pm_notifier);
838 }
839
840 static void kvm_destroy_pm_notifier(struct kvm *kvm)
841 {
842         unregister_pm_notifier(&kvm->pm_notifier);
843 }
844 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
845 static void kvm_init_pm_notifier(struct kvm *kvm)
846 {
847 }
848
849 static void kvm_destroy_pm_notifier(struct kvm *kvm)
850 {
851 }
852 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
853
854 static struct kvm_memslots *kvm_alloc_memslots(void)
855 {
856         int i;
857         struct kvm_memslots *slots;
858
859         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
860         if (!slots)
861                 return NULL;
862
863         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
864                 slots->id_to_index[i] = -1;
865
866         return slots;
867 }
868
869 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
870 {
871         if (!memslot->dirty_bitmap)
872                 return;
873
874         kvfree(memslot->dirty_bitmap);
875         memslot->dirty_bitmap = NULL;
876 }
877
878 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
879 {
880         kvm_destroy_dirty_bitmap(slot);
881
882         kvm_arch_free_memslot(kvm, slot);
883
884         slot->flags = 0;
885         slot->npages = 0;
886 }
887
888 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
889 {
890         struct kvm_memory_slot *memslot;
891
892         if (!slots)
893                 return;
894
895         kvm_for_each_memslot(memslot, slots)
896                 kvm_free_memslot(kvm, memslot);
897
898         kvfree(slots);
899 }
900
901 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
902 {
903         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
904         case KVM_STATS_TYPE_INSTANT:
905                 return 0444;
906         case KVM_STATS_TYPE_CUMULATIVE:
907         case KVM_STATS_TYPE_PEAK:
908         default:
909                 return 0644;
910         }
911 }
912
913
914 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
915 {
916         int i;
917         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
918                                       kvm_vcpu_stats_header.num_desc;
919
920         if (!kvm->debugfs_dentry)
921                 return;
922
923         debugfs_remove_recursive(kvm->debugfs_dentry);
924
925         if (kvm->debugfs_stat_data) {
926                 for (i = 0; i < kvm_debugfs_num_entries; i++)
927                         kfree(kvm->debugfs_stat_data[i]);
928                 kfree(kvm->debugfs_stat_data);
929         }
930 }
931
932 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
933 {
934         static DEFINE_MUTEX(kvm_debugfs_lock);
935         struct dentry *dent;
936         char dir_name[ITOA_MAX_LEN * 2];
937         struct kvm_stat_data *stat_data;
938         const struct _kvm_stats_desc *pdesc;
939         int i, ret;
940         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
941                                       kvm_vcpu_stats_header.num_desc;
942
943         if (!debugfs_initialized())
944                 return 0;
945
946         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
947         mutex_lock(&kvm_debugfs_lock);
948         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
949         if (dent) {
950                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
951                 dput(dent);
952                 mutex_unlock(&kvm_debugfs_lock);
953                 return 0;
954         }
955         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
956         mutex_unlock(&kvm_debugfs_lock);
957         if (IS_ERR(dent))
958                 return 0;
959
960         kvm->debugfs_dentry = dent;
961         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
962                                          sizeof(*kvm->debugfs_stat_data),
963                                          GFP_KERNEL_ACCOUNT);
964         if (!kvm->debugfs_stat_data)
965                 return -ENOMEM;
966
967         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
968                 pdesc = &kvm_vm_stats_desc[i];
969                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
970                 if (!stat_data)
971                         return -ENOMEM;
972
973                 stat_data->kvm = kvm;
974                 stat_data->desc = pdesc;
975                 stat_data->kind = KVM_STAT_VM;
976                 kvm->debugfs_stat_data[i] = stat_data;
977                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
978                                     kvm->debugfs_dentry, stat_data,
979                                     &stat_fops_per_vm);
980         }
981
982         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
983                 pdesc = &kvm_vcpu_stats_desc[i];
984                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
985                 if (!stat_data)
986                         return -ENOMEM;
987
988                 stat_data->kvm = kvm;
989                 stat_data->desc = pdesc;
990                 stat_data->kind = KVM_STAT_VCPU;
991                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
992                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
993                                     kvm->debugfs_dentry, stat_data,
994                                     &stat_fops_per_vm);
995         }
996
997         ret = kvm_arch_create_vm_debugfs(kvm);
998         if (ret) {
999                 kvm_destroy_vm_debugfs(kvm);
1000                 return i;
1001         }
1002
1003         return 0;
1004 }
1005
1006 /*
1007  * Called after the VM is otherwise initialized, but just before adding it to
1008  * the vm_list.
1009  */
1010 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1011 {
1012         return 0;
1013 }
1014
1015 /*
1016  * Called just after removing the VM from the vm_list, but before doing any
1017  * other destruction.
1018  */
1019 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1020 {
1021 }
1022
1023 /*
1024  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1025  * be setup already, so we can create arch-specific debugfs entries under it.
1026  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1027  * a per-arch destroy interface is not needed.
1028  */
1029 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1030 {
1031         return 0;
1032 }
1033
1034 static struct kvm *kvm_create_vm(unsigned long type)
1035 {
1036         struct kvm *kvm = kvm_arch_alloc_vm();
1037         int r = -ENOMEM;
1038         int i;
1039
1040         if (!kvm)
1041                 return ERR_PTR(-ENOMEM);
1042
1043         KVM_MMU_LOCK_INIT(kvm);
1044         mmgrab(current->mm);
1045         kvm->mm = current->mm;
1046         kvm_eventfd_init(kvm);
1047         mutex_init(&kvm->lock);
1048         mutex_init(&kvm->irq_lock);
1049         mutex_init(&kvm->slots_lock);
1050         mutex_init(&kvm->slots_arch_lock);
1051         spin_lock_init(&kvm->mn_invalidate_lock);
1052         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1053
1054         INIT_LIST_HEAD(&kvm->devices);
1055
1056         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1057
1058         if (init_srcu_struct(&kvm->srcu))
1059                 goto out_err_no_srcu;
1060         if (init_srcu_struct(&kvm->irq_srcu))
1061                 goto out_err_no_irq_srcu;
1062
1063         refcount_set(&kvm->users_count, 1);
1064         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1065                 struct kvm_memslots *slots = kvm_alloc_memslots();
1066
1067                 if (!slots)
1068                         goto out_err_no_arch_destroy_vm;
1069                 /* Generations must be different for each address space. */
1070                 slots->generation = i;
1071                 rcu_assign_pointer(kvm->memslots[i], slots);
1072         }
1073
1074         for (i = 0; i < KVM_NR_BUSES; i++) {
1075                 rcu_assign_pointer(kvm->buses[i],
1076                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1077                 if (!kvm->buses[i])
1078                         goto out_err_no_arch_destroy_vm;
1079         }
1080
1081         kvm->max_halt_poll_ns = halt_poll_ns;
1082
1083         r = kvm_arch_init_vm(kvm, type);
1084         if (r)
1085                 goto out_err_no_arch_destroy_vm;
1086
1087         r = hardware_enable_all();
1088         if (r)
1089                 goto out_err_no_disable;
1090
1091 #ifdef CONFIG_HAVE_KVM_IRQFD
1092         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1093 #endif
1094
1095         r = kvm_init_mmu_notifier(kvm);
1096         if (r)
1097                 goto out_err_no_mmu_notifier;
1098
1099         r = kvm_arch_post_init_vm(kvm);
1100         if (r)
1101                 goto out_err;
1102
1103         mutex_lock(&kvm_lock);
1104         list_add(&kvm->vm_list, &vm_list);
1105         mutex_unlock(&kvm_lock);
1106
1107         preempt_notifier_inc();
1108         kvm_init_pm_notifier(kvm);
1109
1110         return kvm;
1111
1112 out_err:
1113 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1114         if (kvm->mmu_notifier.ops)
1115                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1116 #endif
1117 out_err_no_mmu_notifier:
1118         hardware_disable_all();
1119 out_err_no_disable:
1120         kvm_arch_destroy_vm(kvm);
1121 out_err_no_arch_destroy_vm:
1122         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1123         for (i = 0; i < KVM_NR_BUSES; i++)
1124                 kfree(kvm_get_bus(kvm, i));
1125         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1126                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1127         cleanup_srcu_struct(&kvm->irq_srcu);
1128 out_err_no_irq_srcu:
1129         cleanup_srcu_struct(&kvm->srcu);
1130 out_err_no_srcu:
1131         kvm_arch_free_vm(kvm);
1132         mmdrop(current->mm);
1133         return ERR_PTR(r);
1134 }
1135
1136 static void kvm_destroy_devices(struct kvm *kvm)
1137 {
1138         struct kvm_device *dev, *tmp;
1139
1140         /*
1141          * We do not need to take the kvm->lock here, because nobody else
1142          * has a reference to the struct kvm at this point and therefore
1143          * cannot access the devices list anyhow.
1144          */
1145         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1146                 list_del(&dev->vm_node);
1147                 dev->ops->destroy(dev);
1148         }
1149 }
1150
1151 static void kvm_destroy_vm(struct kvm *kvm)
1152 {
1153         int i;
1154         struct mm_struct *mm = kvm->mm;
1155
1156         kvm_destroy_pm_notifier(kvm);
1157         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1158         kvm_destroy_vm_debugfs(kvm);
1159         kvm_arch_sync_events(kvm);
1160         mutex_lock(&kvm_lock);
1161         list_del(&kvm->vm_list);
1162         mutex_unlock(&kvm_lock);
1163         kvm_arch_pre_destroy_vm(kvm);
1164
1165         kvm_free_irq_routing(kvm);
1166         for (i = 0; i < KVM_NR_BUSES; i++) {
1167                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1168
1169                 if (bus)
1170                         kvm_io_bus_destroy(bus);
1171                 kvm->buses[i] = NULL;
1172         }
1173         kvm_coalesced_mmio_free(kvm);
1174 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1175         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1176         /*
1177          * At this point, pending calls to invalidate_range_start()
1178          * have completed but no more MMU notifiers will run, so
1179          * mn_active_invalidate_count may remain unbalanced.
1180          * No threads can be waiting in install_new_memslots as the
1181          * last reference on KVM has been dropped, but freeing
1182          * memslots would deadlock without this manual intervention.
1183          */
1184         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1185         kvm->mn_active_invalidate_count = 0;
1186 #else
1187         kvm_arch_flush_shadow_all(kvm);
1188 #endif
1189         kvm_arch_destroy_vm(kvm);
1190         kvm_destroy_devices(kvm);
1191         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1192                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1193         cleanup_srcu_struct(&kvm->irq_srcu);
1194         cleanup_srcu_struct(&kvm->srcu);
1195         kvm_arch_free_vm(kvm);
1196         preempt_notifier_dec();
1197         hardware_disable_all();
1198         mmdrop(mm);
1199 }
1200
1201 void kvm_get_kvm(struct kvm *kvm)
1202 {
1203         refcount_inc(&kvm->users_count);
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1206
1207 /*
1208  * Make sure the vm is not during destruction, which is a safe version of
1209  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1210  */
1211 bool kvm_get_kvm_safe(struct kvm *kvm)
1212 {
1213         return refcount_inc_not_zero(&kvm->users_count);
1214 }
1215 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1216
1217 void kvm_put_kvm(struct kvm *kvm)
1218 {
1219         if (refcount_dec_and_test(&kvm->users_count))
1220                 kvm_destroy_vm(kvm);
1221 }
1222 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1223
1224 /*
1225  * Used to put a reference that was taken on behalf of an object associated
1226  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1227  * of the new file descriptor fails and the reference cannot be transferred to
1228  * its final owner.  In such cases, the caller is still actively using @kvm and
1229  * will fail miserably if the refcount unexpectedly hits zero.
1230  */
1231 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1232 {
1233         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1236
1237 static int kvm_vm_release(struct inode *inode, struct file *filp)
1238 {
1239         struct kvm *kvm = filp->private_data;
1240
1241         kvm_irqfd_release(kvm);
1242
1243         kvm_put_kvm(kvm);
1244         return 0;
1245 }
1246
1247 /*
1248  * Allocation size is twice as large as the actual dirty bitmap size.
1249  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1250  */
1251 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1252 {
1253         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1254
1255         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1256         if (!memslot->dirty_bitmap)
1257                 return -ENOMEM;
1258
1259         return 0;
1260 }
1261
1262 /*
1263  * Delete a memslot by decrementing the number of used slots and shifting all
1264  * other entries in the array forward one spot.
1265  */
1266 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1267                                       struct kvm_memory_slot *memslot)
1268 {
1269         struct kvm_memory_slot *mslots = slots->memslots;
1270         int i;
1271
1272         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1273                 return;
1274
1275         slots->used_slots--;
1276
1277         if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1278                 atomic_set(&slots->last_used_slot, 0);
1279
1280         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1281                 mslots[i] = mslots[i + 1];
1282                 slots->id_to_index[mslots[i].id] = i;
1283         }
1284         mslots[i] = *memslot;
1285         slots->id_to_index[memslot->id] = -1;
1286 }
1287
1288 /*
1289  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1290  * the new slot's initial index into the memslots array.
1291  */
1292 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1293 {
1294         return slots->used_slots++;
1295 }
1296
1297 /*
1298  * Move a changed memslot backwards in the array by shifting existing slots
1299  * with a higher GFN toward the front of the array.  Note, the changed memslot
1300  * itself is not preserved in the array, i.e. not swapped at this time, only
1301  * its new index into the array is tracked.  Returns the changed memslot's
1302  * current index into the memslots array.
1303  */
1304 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1305                                             struct kvm_memory_slot *memslot)
1306 {
1307         struct kvm_memory_slot *mslots = slots->memslots;
1308         int i;
1309
1310         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1311             WARN_ON_ONCE(!slots->used_slots))
1312                 return -1;
1313
1314         /*
1315          * Move the target memslot backward in the array by shifting existing
1316          * memslots with a higher GFN (than the target memslot) towards the
1317          * front of the array.
1318          */
1319         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1320                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1321                         break;
1322
1323                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1324
1325                 /* Shift the next memslot forward one and update its index. */
1326                 mslots[i] = mslots[i + 1];
1327                 slots->id_to_index[mslots[i].id] = i;
1328         }
1329         return i;
1330 }
1331
1332 /*
1333  * Move a changed memslot forwards in the array by shifting existing slots with
1334  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1335  * is not preserved in the array, i.e. not swapped at this time, only its new
1336  * index into the array is tracked.  Returns the changed memslot's final index
1337  * into the memslots array.
1338  */
1339 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1340                                            struct kvm_memory_slot *memslot,
1341                                            int start)
1342 {
1343         struct kvm_memory_slot *mslots = slots->memslots;
1344         int i;
1345
1346         for (i = start; i > 0; i--) {
1347                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1348                         break;
1349
1350                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1351
1352                 /* Shift the next memslot back one and update its index. */
1353                 mslots[i] = mslots[i - 1];
1354                 slots->id_to_index[mslots[i].id] = i;
1355         }
1356         return i;
1357 }
1358
1359 /*
1360  * Re-sort memslots based on their GFN to account for an added, deleted, or
1361  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1362  * memslot lookup.
1363  *
1364  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1365  * at memslots[0] has the highest GFN.
1366  *
1367  * The sorting algorithm takes advantage of having initially sorted memslots
1368  * and knowing the position of the changed memslot.  Sorting is also optimized
1369  * by not swapping the updated memslot and instead only shifting other memslots
1370  * and tracking the new index for the update memslot.  Only once its final
1371  * index is known is the updated memslot copied into its position in the array.
1372  *
1373  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1374  *    the end of the array.
1375  *
1376  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1377  *    end of the array and then it forward to its correct location.
1378  *
1379  *  - When moving a memslot, the algorithm first moves the updated memslot
1380  *    backward to handle the scenario where the memslot's GFN was changed to a
1381  *    lower value.  update_memslots() then falls through and runs the same flow
1382  *    as creating a memslot to move the memslot forward to handle the scenario
1383  *    where its GFN was changed to a higher value.
1384  *
1385  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1386  * historical reasons.  Originally, invalid memslots where denoted by having
1387  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1388  * to the end of the array.  The current algorithm uses dedicated logic to
1389  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1390  *
1391  * The other historical motiviation for highest->lowest was to improve the
1392  * performance of memslot lookup.  KVM originally used a linear search starting
1393  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1394  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1395  * single memslot above the 4gb boundary.  As the largest memslot is also the
1396  * most likely to be referenced, sorting it to the front of the array was
1397  * advantageous.  The current binary search starts from the middle of the array
1398  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1399  */
1400 static void update_memslots(struct kvm_memslots *slots,
1401                             struct kvm_memory_slot *memslot,
1402                             enum kvm_mr_change change)
1403 {
1404         int i;
1405
1406         if (change == KVM_MR_DELETE) {
1407                 kvm_memslot_delete(slots, memslot);
1408         } else {
1409                 if (change == KVM_MR_CREATE)
1410                         i = kvm_memslot_insert_back(slots);
1411                 else
1412                         i = kvm_memslot_move_backward(slots, memslot);
1413                 i = kvm_memslot_move_forward(slots, memslot, i);
1414
1415                 /*
1416                  * Copy the memslot to its new position in memslots and update
1417                  * its index accordingly.
1418                  */
1419                 slots->memslots[i] = *memslot;
1420                 slots->id_to_index[memslot->id] = i;
1421         }
1422 }
1423
1424 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1425 {
1426         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1427
1428 #ifdef __KVM_HAVE_READONLY_MEM
1429         valid_flags |= KVM_MEM_READONLY;
1430 #endif
1431
1432         if (mem->flags & ~valid_flags)
1433                 return -EINVAL;
1434
1435         return 0;
1436 }
1437
1438 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1439                 int as_id, struct kvm_memslots *slots)
1440 {
1441         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1442         u64 gen = old_memslots->generation;
1443
1444         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1445         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1446
1447         /*
1448          * Do not store the new memslots while there are invalidations in
1449          * progress, otherwise the locking in invalidate_range_start and
1450          * invalidate_range_end will be unbalanced.
1451          */
1452         spin_lock(&kvm->mn_invalidate_lock);
1453         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1454         while (kvm->mn_active_invalidate_count) {
1455                 set_current_state(TASK_UNINTERRUPTIBLE);
1456                 spin_unlock(&kvm->mn_invalidate_lock);
1457                 schedule();
1458                 spin_lock(&kvm->mn_invalidate_lock);
1459         }
1460         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1461         rcu_assign_pointer(kvm->memslots[as_id], slots);
1462         spin_unlock(&kvm->mn_invalidate_lock);
1463
1464         /*
1465          * Acquired in kvm_set_memslot. Must be released before synchronize
1466          * SRCU below in order to avoid deadlock with another thread
1467          * acquiring the slots_arch_lock in an srcu critical section.
1468          */
1469         mutex_unlock(&kvm->slots_arch_lock);
1470
1471         synchronize_srcu_expedited(&kvm->srcu);
1472
1473         /*
1474          * Increment the new memslot generation a second time, dropping the
1475          * update in-progress flag and incrementing the generation based on
1476          * the number of address spaces.  This provides a unique and easily
1477          * identifiable generation number while the memslots are in flux.
1478          */
1479         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1480
1481         /*
1482          * Generations must be unique even across address spaces.  We do not need
1483          * a global counter for that, instead the generation space is evenly split
1484          * across address spaces.  For example, with two address spaces, address
1485          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1486          * use generations 1, 3, 5, ...
1487          */
1488         gen += KVM_ADDRESS_SPACE_NUM;
1489
1490         kvm_arch_memslots_updated(kvm, gen);
1491
1492         slots->generation = gen;
1493
1494         return old_memslots;
1495 }
1496
1497 static size_t kvm_memslots_size(int slots)
1498 {
1499         return sizeof(struct kvm_memslots) +
1500                (sizeof(struct kvm_memory_slot) * slots);
1501 }
1502
1503 static void kvm_copy_memslots(struct kvm_memslots *to,
1504                               struct kvm_memslots *from)
1505 {
1506         memcpy(to, from, kvm_memslots_size(from->used_slots));
1507 }
1508
1509 /*
1510  * Note, at a minimum, the current number of used slots must be allocated, even
1511  * when deleting a memslot, as we need a complete duplicate of the memslots for
1512  * use when invalidating a memslot prior to deleting/moving the memslot.
1513  */
1514 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1515                                              enum kvm_mr_change change)
1516 {
1517         struct kvm_memslots *slots;
1518         size_t new_size;
1519
1520         if (change == KVM_MR_CREATE)
1521                 new_size = kvm_memslots_size(old->used_slots + 1);
1522         else
1523                 new_size = kvm_memslots_size(old->used_slots);
1524
1525         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1526         if (likely(slots))
1527                 kvm_copy_memslots(slots, old);
1528
1529         return slots;
1530 }
1531
1532 static int kvm_set_memslot(struct kvm *kvm,
1533                            const struct kvm_userspace_memory_region *mem,
1534                            struct kvm_memory_slot *old,
1535                            struct kvm_memory_slot *new, int as_id,
1536                            enum kvm_mr_change change)
1537 {
1538         struct kvm_memory_slot *slot;
1539         struct kvm_memslots *slots;
1540         int r;
1541
1542         /*
1543          * Released in install_new_memslots.
1544          *
1545          * Must be held from before the current memslots are copied until
1546          * after the new memslots are installed with rcu_assign_pointer,
1547          * then released before the synchronize srcu in install_new_memslots.
1548          *
1549          * When modifying memslots outside of the slots_lock, must be held
1550          * before reading the pointer to the current memslots until after all
1551          * changes to those memslots are complete.
1552          *
1553          * These rules ensure that installing new memslots does not lose
1554          * changes made to the previous memslots.
1555          */
1556         mutex_lock(&kvm->slots_arch_lock);
1557
1558         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1559         if (!slots) {
1560                 mutex_unlock(&kvm->slots_arch_lock);
1561                 return -ENOMEM;
1562         }
1563
1564         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1565                 /*
1566                  * Note, the INVALID flag needs to be in the appropriate entry
1567                  * in the freshly allocated memslots, not in @old or @new.
1568                  */
1569                 slot = id_to_memslot(slots, old->id);
1570                 slot->flags |= KVM_MEMSLOT_INVALID;
1571
1572                 /*
1573                  * We can re-use the memory from the old memslots.
1574                  * It will be overwritten with a copy of the new memslots
1575                  * after reacquiring the slots_arch_lock below.
1576                  */
1577                 slots = install_new_memslots(kvm, as_id, slots);
1578
1579                 /* From this point no new shadow pages pointing to a deleted,
1580                  * or moved, memslot will be created.
1581                  *
1582                  * validation of sp->gfn happens in:
1583                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1584                  *      - kvm_is_visible_gfn (mmu_check_root)
1585                  */
1586                 kvm_arch_flush_shadow_memslot(kvm, slot);
1587
1588                 /* Released in install_new_memslots. */
1589                 mutex_lock(&kvm->slots_arch_lock);
1590
1591                 /*
1592                  * The arch-specific fields of the memslots could have changed
1593                  * between releasing the slots_arch_lock in
1594                  * install_new_memslots and here, so get a fresh copy of the
1595                  * slots.
1596                  */
1597                 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1598         }
1599
1600         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1601         if (r)
1602                 goto out_slots;
1603
1604         update_memslots(slots, new, change);
1605         slots = install_new_memslots(kvm, as_id, slots);
1606
1607         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1608
1609         kvfree(slots);
1610         return 0;
1611
1612 out_slots:
1613         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1614                 slot = id_to_memslot(slots, old->id);
1615                 slot->flags &= ~KVM_MEMSLOT_INVALID;
1616                 slots = install_new_memslots(kvm, as_id, slots);
1617         } else {
1618                 mutex_unlock(&kvm->slots_arch_lock);
1619         }
1620         kvfree(slots);
1621         return r;
1622 }
1623
1624 static int kvm_delete_memslot(struct kvm *kvm,
1625                               const struct kvm_userspace_memory_region *mem,
1626                               struct kvm_memory_slot *old, int as_id)
1627 {
1628         struct kvm_memory_slot new;
1629         int r;
1630
1631         if (!old->npages)
1632                 return -EINVAL;
1633
1634         memset(&new, 0, sizeof(new));
1635         new.id = old->id;
1636         /*
1637          * This is only for debugging purpose; it should never be referenced
1638          * for a removed memslot.
1639          */
1640         new.as_id = as_id;
1641
1642         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1643         if (r)
1644                 return r;
1645
1646         kvm_free_memslot(kvm, old);
1647         return 0;
1648 }
1649
1650 /*
1651  * Allocate some memory and give it an address in the guest physical address
1652  * space.
1653  *
1654  * Discontiguous memory is allowed, mostly for framebuffers.
1655  *
1656  * Must be called holding kvm->slots_lock for write.
1657  */
1658 int __kvm_set_memory_region(struct kvm *kvm,
1659                             const struct kvm_userspace_memory_region *mem)
1660 {
1661         struct kvm_memory_slot old, new;
1662         struct kvm_memory_slot *tmp;
1663         enum kvm_mr_change change;
1664         int as_id, id;
1665         int r;
1666
1667         r = check_memory_region_flags(mem);
1668         if (r)
1669                 return r;
1670
1671         as_id = mem->slot >> 16;
1672         id = (u16)mem->slot;
1673
1674         /* General sanity checks */
1675         if (mem->memory_size & (PAGE_SIZE - 1))
1676                 return -EINVAL;
1677         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1678                 return -EINVAL;
1679         /* We can read the guest memory with __xxx_user() later on. */
1680         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1681             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1682              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1683                         mem->memory_size))
1684                 return -EINVAL;
1685         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1686                 return -EINVAL;
1687         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1688                 return -EINVAL;
1689
1690         /*
1691          * Make a full copy of the old memslot, the pointer will become stale
1692          * when the memslots are re-sorted by update_memslots(), and the old
1693          * memslot needs to be referenced after calling update_memslots(), e.g.
1694          * to free its resources and for arch specific behavior.
1695          */
1696         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1697         if (tmp) {
1698                 old = *tmp;
1699                 tmp = NULL;
1700         } else {
1701                 memset(&old, 0, sizeof(old));
1702                 old.id = id;
1703         }
1704
1705         if (!mem->memory_size)
1706                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1707
1708         new.as_id = as_id;
1709         new.id = id;
1710         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1711         new.npages = mem->memory_size >> PAGE_SHIFT;
1712         new.flags = mem->flags;
1713         new.userspace_addr = mem->userspace_addr;
1714
1715         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1716                 return -EINVAL;
1717
1718         if (!old.npages) {
1719                 change = KVM_MR_CREATE;
1720                 new.dirty_bitmap = NULL;
1721                 memset(&new.arch, 0, sizeof(new.arch));
1722         } else { /* Modify an existing slot. */
1723                 if ((new.userspace_addr != old.userspace_addr) ||
1724                     (new.npages != old.npages) ||
1725                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1726                         return -EINVAL;
1727
1728                 if (new.base_gfn != old.base_gfn)
1729                         change = KVM_MR_MOVE;
1730                 else if (new.flags != old.flags)
1731                         change = KVM_MR_FLAGS_ONLY;
1732                 else /* Nothing to change. */
1733                         return 0;
1734
1735                 /* Copy dirty_bitmap and arch from the current memslot. */
1736                 new.dirty_bitmap = old.dirty_bitmap;
1737                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1738         }
1739
1740         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1741                 /* Check for overlaps */
1742                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1743                         if (tmp->id == id)
1744                                 continue;
1745                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1746                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1747                                 return -EEXIST;
1748                 }
1749         }
1750
1751         /* Allocate/free page dirty bitmap as needed */
1752         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1753                 new.dirty_bitmap = NULL;
1754         else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1755                 r = kvm_alloc_dirty_bitmap(&new);
1756                 if (r)
1757                         return r;
1758
1759                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1760                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1761         }
1762
1763         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1764         if (r)
1765                 goto out_bitmap;
1766
1767         if (old.dirty_bitmap && !new.dirty_bitmap)
1768                 kvm_destroy_dirty_bitmap(&old);
1769         return 0;
1770
1771 out_bitmap:
1772         if (new.dirty_bitmap && !old.dirty_bitmap)
1773                 kvm_destroy_dirty_bitmap(&new);
1774         return r;
1775 }
1776 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1777
1778 int kvm_set_memory_region(struct kvm *kvm,
1779                           const struct kvm_userspace_memory_region *mem)
1780 {
1781         int r;
1782
1783         mutex_lock(&kvm->slots_lock);
1784         r = __kvm_set_memory_region(kvm, mem);
1785         mutex_unlock(&kvm->slots_lock);
1786         return r;
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1789
1790 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1791                                           struct kvm_userspace_memory_region *mem)
1792 {
1793         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1794                 return -EINVAL;
1795
1796         return kvm_set_memory_region(kvm, mem);
1797 }
1798
1799 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1800 /**
1801  * kvm_get_dirty_log - get a snapshot of dirty pages
1802  * @kvm:        pointer to kvm instance
1803  * @log:        slot id and address to which we copy the log
1804  * @is_dirty:   set to '1' if any dirty pages were found
1805  * @memslot:    set to the associated memslot, always valid on success
1806  */
1807 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1808                       int *is_dirty, struct kvm_memory_slot **memslot)
1809 {
1810         struct kvm_memslots *slots;
1811         int i, as_id, id;
1812         unsigned long n;
1813         unsigned long any = 0;
1814
1815         /* Dirty ring tracking is exclusive to dirty log tracking */
1816         if (kvm->dirty_ring_size)
1817                 return -ENXIO;
1818
1819         *memslot = NULL;
1820         *is_dirty = 0;
1821
1822         as_id = log->slot >> 16;
1823         id = (u16)log->slot;
1824         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1825                 return -EINVAL;
1826
1827         slots = __kvm_memslots(kvm, as_id);
1828         *memslot = id_to_memslot(slots, id);
1829         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1830                 return -ENOENT;
1831
1832         kvm_arch_sync_dirty_log(kvm, *memslot);
1833
1834         n = kvm_dirty_bitmap_bytes(*memslot);
1835
1836         for (i = 0; !any && i < n/sizeof(long); ++i)
1837                 any = (*memslot)->dirty_bitmap[i];
1838
1839         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1840                 return -EFAULT;
1841
1842         if (any)
1843                 *is_dirty = 1;
1844         return 0;
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1847
1848 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1849 /**
1850  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1851  *      and reenable dirty page tracking for the corresponding pages.
1852  * @kvm:        pointer to kvm instance
1853  * @log:        slot id and address to which we copy the log
1854  *
1855  * We need to keep it in mind that VCPU threads can write to the bitmap
1856  * concurrently. So, to avoid losing track of dirty pages we keep the
1857  * following order:
1858  *
1859  *    1. Take a snapshot of the bit and clear it if needed.
1860  *    2. Write protect the corresponding page.
1861  *    3. Copy the snapshot to the userspace.
1862  *    4. Upon return caller flushes TLB's if needed.
1863  *
1864  * Between 2 and 4, the guest may write to the page using the remaining TLB
1865  * entry.  This is not a problem because the page is reported dirty using
1866  * the snapshot taken before and step 4 ensures that writes done after
1867  * exiting to userspace will be logged for the next call.
1868  *
1869  */
1870 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1871 {
1872         struct kvm_memslots *slots;
1873         struct kvm_memory_slot *memslot;
1874         int i, as_id, id;
1875         unsigned long n;
1876         unsigned long *dirty_bitmap;
1877         unsigned long *dirty_bitmap_buffer;
1878         bool flush;
1879
1880         /* Dirty ring tracking is exclusive to dirty log tracking */
1881         if (kvm->dirty_ring_size)
1882                 return -ENXIO;
1883
1884         as_id = log->slot >> 16;
1885         id = (u16)log->slot;
1886         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1887                 return -EINVAL;
1888
1889         slots = __kvm_memslots(kvm, as_id);
1890         memslot = id_to_memslot(slots, id);
1891         if (!memslot || !memslot->dirty_bitmap)
1892                 return -ENOENT;
1893
1894         dirty_bitmap = memslot->dirty_bitmap;
1895
1896         kvm_arch_sync_dirty_log(kvm, memslot);
1897
1898         n = kvm_dirty_bitmap_bytes(memslot);
1899         flush = false;
1900         if (kvm->manual_dirty_log_protect) {
1901                 /*
1902                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1903                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1904                  * is some code duplication between this function and
1905                  * kvm_get_dirty_log, but hopefully all architecture
1906                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1907                  * can be eliminated.
1908                  */
1909                 dirty_bitmap_buffer = dirty_bitmap;
1910         } else {
1911                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1912                 memset(dirty_bitmap_buffer, 0, n);
1913
1914                 KVM_MMU_LOCK(kvm);
1915                 for (i = 0; i < n / sizeof(long); i++) {
1916                         unsigned long mask;
1917                         gfn_t offset;
1918
1919                         if (!dirty_bitmap[i])
1920                                 continue;
1921
1922                         flush = true;
1923                         mask = xchg(&dirty_bitmap[i], 0);
1924                         dirty_bitmap_buffer[i] = mask;
1925
1926                         offset = i * BITS_PER_LONG;
1927                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1928                                                                 offset, mask);
1929                 }
1930                 KVM_MMU_UNLOCK(kvm);
1931         }
1932
1933         if (flush)
1934                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1935
1936         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1937                 return -EFAULT;
1938         return 0;
1939 }
1940
1941
1942 /**
1943  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1944  * @kvm: kvm instance
1945  * @log: slot id and address to which we copy the log
1946  *
1947  * Steps 1-4 below provide general overview of dirty page logging. See
1948  * kvm_get_dirty_log_protect() function description for additional details.
1949  *
1950  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1951  * always flush the TLB (step 4) even if previous step failed  and the dirty
1952  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1953  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1954  * writes will be marked dirty for next log read.
1955  *
1956  *   1. Take a snapshot of the bit and clear it if needed.
1957  *   2. Write protect the corresponding page.
1958  *   3. Copy the snapshot to the userspace.
1959  *   4. Flush TLB's if needed.
1960  */
1961 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1962                                       struct kvm_dirty_log *log)
1963 {
1964         int r;
1965
1966         mutex_lock(&kvm->slots_lock);
1967
1968         r = kvm_get_dirty_log_protect(kvm, log);
1969
1970         mutex_unlock(&kvm->slots_lock);
1971         return r;
1972 }
1973
1974 /**
1975  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1976  *      and reenable dirty page tracking for the corresponding pages.
1977  * @kvm:        pointer to kvm instance
1978  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1979  */
1980 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1981                                        struct kvm_clear_dirty_log *log)
1982 {
1983         struct kvm_memslots *slots;
1984         struct kvm_memory_slot *memslot;
1985         int as_id, id;
1986         gfn_t offset;
1987         unsigned long i, n;
1988         unsigned long *dirty_bitmap;
1989         unsigned long *dirty_bitmap_buffer;
1990         bool flush;
1991
1992         /* Dirty ring tracking is exclusive to dirty log tracking */
1993         if (kvm->dirty_ring_size)
1994                 return -ENXIO;
1995
1996         as_id = log->slot >> 16;
1997         id = (u16)log->slot;
1998         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1999                 return -EINVAL;
2000
2001         if (log->first_page & 63)
2002                 return -EINVAL;
2003
2004         slots = __kvm_memslots(kvm, as_id);
2005         memslot = id_to_memslot(slots, id);
2006         if (!memslot || !memslot->dirty_bitmap)
2007                 return -ENOENT;
2008
2009         dirty_bitmap = memslot->dirty_bitmap;
2010
2011         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2012
2013         if (log->first_page > memslot->npages ||
2014             log->num_pages > memslot->npages - log->first_page ||
2015             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2016             return -EINVAL;
2017
2018         kvm_arch_sync_dirty_log(kvm, memslot);
2019
2020         flush = false;
2021         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2022         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2023                 return -EFAULT;
2024
2025         KVM_MMU_LOCK(kvm);
2026         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2027                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2028              i++, offset += BITS_PER_LONG) {
2029                 unsigned long mask = *dirty_bitmap_buffer++;
2030                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2031                 if (!mask)
2032                         continue;
2033
2034                 mask &= atomic_long_fetch_andnot(mask, p);
2035
2036                 /*
2037                  * mask contains the bits that really have been cleared.  This
2038                  * never includes any bits beyond the length of the memslot (if
2039                  * the length is not aligned to 64 pages), therefore it is not
2040                  * a problem if userspace sets them in log->dirty_bitmap.
2041                 */
2042                 if (mask) {
2043                         flush = true;
2044                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2045                                                                 offset, mask);
2046                 }
2047         }
2048         KVM_MMU_UNLOCK(kvm);
2049
2050         if (flush)
2051                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2052
2053         return 0;
2054 }
2055
2056 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2057                                         struct kvm_clear_dirty_log *log)
2058 {
2059         int r;
2060
2061         mutex_lock(&kvm->slots_lock);
2062
2063         r = kvm_clear_dirty_log_protect(kvm, log);
2064
2065         mutex_unlock(&kvm->slots_lock);
2066         return r;
2067 }
2068 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2069
2070 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2071 {
2072         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2073 }
2074 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2075
2076 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2077 {
2078         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2079         struct kvm_memory_slot *slot;
2080         int slot_index;
2081
2082         slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2083         if (slot)
2084                 return slot;
2085
2086         /*
2087          * Fall back to searching all memslots. We purposely use
2088          * search_memslots() instead of __gfn_to_memslot() to avoid
2089          * thrashing the VM-wide last_used_index in kvm_memslots.
2090          */
2091         slot = search_memslots(slots, gfn, &slot_index);
2092         if (slot) {
2093                 vcpu->last_used_slot = slot_index;
2094                 return slot;
2095         }
2096
2097         return NULL;
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2100
2101 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2102 {
2103         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2104
2105         return kvm_is_visible_memslot(memslot);
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2108
2109 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2110 {
2111         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2112
2113         return kvm_is_visible_memslot(memslot);
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2116
2117 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2118 {
2119         struct vm_area_struct *vma;
2120         unsigned long addr, size;
2121
2122         size = PAGE_SIZE;
2123
2124         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2125         if (kvm_is_error_hva(addr))
2126                 return PAGE_SIZE;
2127
2128         mmap_read_lock(current->mm);
2129         vma = find_vma(current->mm, addr);
2130         if (!vma)
2131                 goto out;
2132
2133         size = vma_kernel_pagesize(vma);
2134
2135 out:
2136         mmap_read_unlock(current->mm);
2137
2138         return size;
2139 }
2140
2141 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2142 {
2143         return slot->flags & KVM_MEM_READONLY;
2144 }
2145
2146 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2147                                        gfn_t *nr_pages, bool write)
2148 {
2149         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2150                 return KVM_HVA_ERR_BAD;
2151
2152         if (memslot_is_readonly(slot) && write)
2153                 return KVM_HVA_ERR_RO_BAD;
2154
2155         if (nr_pages)
2156                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2157
2158         return __gfn_to_hva_memslot(slot, gfn);
2159 }
2160
2161 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2162                                      gfn_t *nr_pages)
2163 {
2164         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2165 }
2166
2167 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2168                                         gfn_t gfn)
2169 {
2170         return gfn_to_hva_many(slot, gfn, NULL);
2171 }
2172 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2173
2174 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2175 {
2176         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2177 }
2178 EXPORT_SYMBOL_GPL(gfn_to_hva);
2179
2180 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2181 {
2182         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2183 }
2184 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2185
2186 /*
2187  * Return the hva of a @gfn and the R/W attribute if possible.
2188  *
2189  * @slot: the kvm_memory_slot which contains @gfn
2190  * @gfn: the gfn to be translated
2191  * @writable: used to return the read/write attribute of the @slot if the hva
2192  * is valid and @writable is not NULL
2193  */
2194 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2195                                       gfn_t gfn, bool *writable)
2196 {
2197         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2198
2199         if (!kvm_is_error_hva(hva) && writable)
2200                 *writable = !memslot_is_readonly(slot);
2201
2202         return hva;
2203 }
2204
2205 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2206 {
2207         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2208
2209         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2210 }
2211
2212 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2213 {
2214         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2215
2216         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2217 }
2218
2219 static inline int check_user_page_hwpoison(unsigned long addr)
2220 {
2221         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2222
2223         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2224         return rc == -EHWPOISON;
2225 }
2226
2227 /*
2228  * The fast path to get the writable pfn which will be stored in @pfn,
2229  * true indicates success, otherwise false is returned.  It's also the
2230  * only part that runs if we can in atomic context.
2231  */
2232 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2233                             bool *writable, kvm_pfn_t *pfn)
2234 {
2235         struct page *page[1];
2236
2237         /*
2238          * Fast pin a writable pfn only if it is a write fault request
2239          * or the caller allows to map a writable pfn for a read fault
2240          * request.
2241          */
2242         if (!(write_fault || writable))
2243                 return false;
2244
2245         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2246                 *pfn = page_to_pfn(page[0]);
2247
2248                 if (writable)
2249                         *writable = true;
2250                 return true;
2251         }
2252
2253         return false;
2254 }
2255
2256 /*
2257  * The slow path to get the pfn of the specified host virtual address,
2258  * 1 indicates success, -errno is returned if error is detected.
2259  */
2260 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2261                            bool *writable, kvm_pfn_t *pfn)
2262 {
2263         unsigned int flags = FOLL_HWPOISON;
2264         struct page *page;
2265         int npages = 0;
2266
2267         might_sleep();
2268
2269         if (writable)
2270                 *writable = write_fault;
2271
2272         if (write_fault)
2273                 flags |= FOLL_WRITE;
2274         if (async)
2275                 flags |= FOLL_NOWAIT;
2276
2277         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2278         if (npages != 1)
2279                 return npages;
2280
2281         /* map read fault as writable if possible */
2282         if (unlikely(!write_fault) && writable) {
2283                 struct page *wpage;
2284
2285                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2286                         *writable = true;
2287                         put_page(page);
2288                         page = wpage;
2289                 }
2290         }
2291         *pfn = page_to_pfn(page);
2292         return npages;
2293 }
2294
2295 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2296 {
2297         if (unlikely(!(vma->vm_flags & VM_READ)))
2298                 return false;
2299
2300         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2301                 return false;
2302
2303         return true;
2304 }
2305
2306 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2307 {
2308         if (kvm_is_reserved_pfn(pfn))
2309                 return 1;
2310         return get_page_unless_zero(pfn_to_page(pfn));
2311 }
2312
2313 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2314                                unsigned long addr, bool *async,
2315                                bool write_fault, bool *writable,
2316                                kvm_pfn_t *p_pfn)
2317 {
2318         kvm_pfn_t pfn;
2319         pte_t *ptep;
2320         spinlock_t *ptl;
2321         int r;
2322
2323         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2324         if (r) {
2325                 /*
2326                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2327                  * not call the fault handler, so do it here.
2328                  */
2329                 bool unlocked = false;
2330                 r = fixup_user_fault(current->mm, addr,
2331                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2332                                      &unlocked);
2333                 if (unlocked)
2334                         return -EAGAIN;
2335                 if (r)
2336                         return r;
2337
2338                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2339                 if (r)
2340                         return r;
2341         }
2342
2343         if (write_fault && !pte_write(*ptep)) {
2344                 pfn = KVM_PFN_ERR_RO_FAULT;
2345                 goto out;
2346         }
2347
2348         if (writable)
2349                 *writable = pte_write(*ptep);
2350         pfn = pte_pfn(*ptep);
2351
2352         /*
2353          * Get a reference here because callers of *hva_to_pfn* and
2354          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2355          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2356          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2357          * simply do nothing for reserved pfns.
2358          *
2359          * Whoever called remap_pfn_range is also going to call e.g.
2360          * unmap_mapping_range before the underlying pages are freed,
2361          * causing a call to our MMU notifier.
2362          *
2363          * Certain IO or PFNMAP mappings can be backed with valid
2364          * struct pages, but be allocated without refcounting e.g.,
2365          * tail pages of non-compound higher order allocations, which
2366          * would then underflow the refcount when the caller does the
2367          * required put_page. Don't allow those pages here.
2368          */ 
2369         if (!kvm_try_get_pfn(pfn))
2370                 r = -EFAULT;
2371
2372 out:
2373         pte_unmap_unlock(ptep, ptl);
2374         *p_pfn = pfn;
2375
2376         return r;
2377 }
2378
2379 /*
2380  * Pin guest page in memory and return its pfn.
2381  * @addr: host virtual address which maps memory to the guest
2382  * @atomic: whether this function can sleep
2383  * @async: whether this function need to wait IO complete if the
2384  *         host page is not in the memory
2385  * @write_fault: whether we should get a writable host page
2386  * @writable: whether it allows to map a writable host page for !@write_fault
2387  *
2388  * The function will map a writable host page for these two cases:
2389  * 1): @write_fault = true
2390  * 2): @write_fault = false && @writable, @writable will tell the caller
2391  *     whether the mapping is writable.
2392  */
2393 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2394                         bool write_fault, bool *writable)
2395 {
2396         struct vm_area_struct *vma;
2397         kvm_pfn_t pfn = 0;
2398         int npages, r;
2399
2400         /* we can do it either atomically or asynchronously, not both */
2401         BUG_ON(atomic && async);
2402
2403         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2404                 return pfn;
2405
2406         if (atomic)
2407                 return KVM_PFN_ERR_FAULT;
2408
2409         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2410         if (npages == 1)
2411                 return pfn;
2412
2413         mmap_read_lock(current->mm);
2414         if (npages == -EHWPOISON ||
2415               (!async && check_user_page_hwpoison(addr))) {
2416                 pfn = KVM_PFN_ERR_HWPOISON;
2417                 goto exit;
2418         }
2419
2420 retry:
2421         vma = vma_lookup(current->mm, addr);
2422
2423         if (vma == NULL)
2424                 pfn = KVM_PFN_ERR_FAULT;
2425         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2426                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2427                 if (r == -EAGAIN)
2428                         goto retry;
2429                 if (r < 0)
2430                         pfn = KVM_PFN_ERR_FAULT;
2431         } else {
2432                 if (async && vma_is_valid(vma, write_fault))
2433                         *async = true;
2434                 pfn = KVM_PFN_ERR_FAULT;
2435         }
2436 exit:
2437         mmap_read_unlock(current->mm);
2438         return pfn;
2439 }
2440
2441 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2442                                bool atomic, bool *async, bool write_fault,
2443                                bool *writable, hva_t *hva)
2444 {
2445         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2446
2447         if (hva)
2448                 *hva = addr;
2449
2450         if (addr == KVM_HVA_ERR_RO_BAD) {
2451                 if (writable)
2452                         *writable = false;
2453                 return KVM_PFN_ERR_RO_FAULT;
2454         }
2455
2456         if (kvm_is_error_hva(addr)) {
2457                 if (writable)
2458                         *writable = false;
2459                 return KVM_PFN_NOSLOT;
2460         }
2461
2462         /* Do not map writable pfn in the readonly memslot. */
2463         if (writable && memslot_is_readonly(slot)) {
2464                 *writable = false;
2465                 writable = NULL;
2466         }
2467
2468         return hva_to_pfn(addr, atomic, async, write_fault,
2469                           writable);
2470 }
2471 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2472
2473 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2474                       bool *writable)
2475 {
2476         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2477                                     write_fault, writable, NULL);
2478 }
2479 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2480
2481 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2482 {
2483         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2484 }
2485 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2486
2487 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2488 {
2489         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2490 }
2491 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2492
2493 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2494 {
2495         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2496 }
2497 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2498
2499 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2500 {
2501         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2502 }
2503 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2504
2505 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2506 {
2507         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2508 }
2509 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2510
2511 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2512                             struct page **pages, int nr_pages)
2513 {
2514         unsigned long addr;
2515         gfn_t entry = 0;
2516
2517         addr = gfn_to_hva_many(slot, gfn, &entry);
2518         if (kvm_is_error_hva(addr))
2519                 return -1;
2520
2521         if (entry < nr_pages)
2522                 return 0;
2523
2524         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2525 }
2526 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2527
2528 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2529 {
2530         if (is_error_noslot_pfn(pfn))
2531                 return KVM_ERR_PTR_BAD_PAGE;
2532
2533         if (kvm_is_reserved_pfn(pfn)) {
2534                 WARN_ON(1);
2535                 return KVM_ERR_PTR_BAD_PAGE;
2536         }
2537
2538         return pfn_to_page(pfn);
2539 }
2540
2541 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2542 {
2543         kvm_pfn_t pfn;
2544
2545         pfn = gfn_to_pfn(kvm, gfn);
2546
2547         return kvm_pfn_to_page(pfn);
2548 }
2549 EXPORT_SYMBOL_GPL(gfn_to_page);
2550
2551 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2552 {
2553         if (pfn == 0)
2554                 return;
2555
2556         if (cache)
2557                 cache->pfn = cache->gfn = 0;
2558
2559         if (dirty)
2560                 kvm_release_pfn_dirty(pfn);
2561         else
2562                 kvm_release_pfn_clean(pfn);
2563 }
2564
2565 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2566                                  struct gfn_to_pfn_cache *cache, u64 gen)
2567 {
2568         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2569
2570         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2571         cache->gfn = gfn;
2572         cache->dirty = false;
2573         cache->generation = gen;
2574 }
2575
2576 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2577                          struct kvm_host_map *map,
2578                          struct gfn_to_pfn_cache *cache,
2579                          bool atomic)
2580 {
2581         kvm_pfn_t pfn;
2582         void *hva = NULL;
2583         struct page *page = KVM_UNMAPPED_PAGE;
2584         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2585         u64 gen = slots->generation;
2586
2587         if (!map)
2588                 return -EINVAL;
2589
2590         if (cache) {
2591                 if (!cache->pfn || cache->gfn != gfn ||
2592                         cache->generation != gen) {
2593                         if (atomic)
2594                                 return -EAGAIN;
2595                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2596                 }
2597                 pfn = cache->pfn;
2598         } else {
2599                 if (atomic)
2600                         return -EAGAIN;
2601                 pfn = gfn_to_pfn_memslot(slot, gfn);
2602         }
2603         if (is_error_noslot_pfn(pfn))
2604                 return -EINVAL;
2605
2606         if (pfn_valid(pfn)) {
2607                 page = pfn_to_page(pfn);
2608                 if (atomic)
2609                         hva = kmap_atomic(page);
2610                 else
2611                         hva = kmap(page);
2612 #ifdef CONFIG_HAS_IOMEM
2613         } else if (!atomic) {
2614                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2615         } else {
2616                 return -EINVAL;
2617 #endif
2618         }
2619
2620         if (!hva)
2621                 return -EFAULT;
2622
2623         map->page = page;
2624         map->hva = hva;
2625         map->pfn = pfn;
2626         map->gfn = gfn;
2627
2628         return 0;
2629 }
2630
2631 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2632                 struct gfn_to_pfn_cache *cache, bool atomic)
2633 {
2634         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2635                         cache, atomic);
2636 }
2637 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2638
2639 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2640 {
2641         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2642                 NULL, false);
2643 }
2644 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2645
2646 static void __kvm_unmap_gfn(struct kvm *kvm,
2647                         struct kvm_memory_slot *memslot,
2648                         struct kvm_host_map *map,
2649                         struct gfn_to_pfn_cache *cache,
2650                         bool dirty, bool atomic)
2651 {
2652         if (!map)
2653                 return;
2654
2655         if (!map->hva)
2656                 return;
2657
2658         if (map->page != KVM_UNMAPPED_PAGE) {
2659                 if (atomic)
2660                         kunmap_atomic(map->hva);
2661                 else
2662                         kunmap(map->page);
2663         }
2664 #ifdef CONFIG_HAS_IOMEM
2665         else if (!atomic)
2666                 memunmap(map->hva);
2667         else
2668                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2669 #endif
2670
2671         if (dirty)
2672                 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2673
2674         if (cache)
2675                 cache->dirty |= dirty;
2676         else
2677                 kvm_release_pfn(map->pfn, dirty, NULL);
2678
2679         map->hva = NULL;
2680         map->page = NULL;
2681 }
2682
2683 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2684                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2685 {
2686         __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2687                         cache, dirty, atomic);
2688         return 0;
2689 }
2690 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2691
2692 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2693 {
2694         __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2695                         map, NULL, dirty, false);
2696 }
2697 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2698
2699 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2700 {
2701         kvm_pfn_t pfn;
2702
2703         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2704
2705         return kvm_pfn_to_page(pfn);
2706 }
2707 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2708
2709 void kvm_release_page_clean(struct page *page)
2710 {
2711         WARN_ON(is_error_page(page));
2712
2713         kvm_release_pfn_clean(page_to_pfn(page));
2714 }
2715 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2716
2717 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2718 {
2719         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2720                 put_page(pfn_to_page(pfn));
2721 }
2722 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2723
2724 void kvm_release_page_dirty(struct page *page)
2725 {
2726         WARN_ON(is_error_page(page));
2727
2728         kvm_release_pfn_dirty(page_to_pfn(page));
2729 }
2730 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2731
2732 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2733 {
2734         kvm_set_pfn_dirty(pfn);
2735         kvm_release_pfn_clean(pfn);
2736 }
2737 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2738
2739 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2740 {
2741         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2742                 SetPageDirty(pfn_to_page(pfn));
2743 }
2744 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2745
2746 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2747 {
2748         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2749                 mark_page_accessed(pfn_to_page(pfn));
2750 }
2751 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2752
2753 static int next_segment(unsigned long len, int offset)
2754 {
2755         if (len > PAGE_SIZE - offset)
2756                 return PAGE_SIZE - offset;
2757         else
2758                 return len;
2759 }
2760
2761 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2762                                  void *data, int offset, int len)
2763 {
2764         int r;
2765         unsigned long addr;
2766
2767         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2768         if (kvm_is_error_hva(addr))
2769                 return -EFAULT;
2770         r = __copy_from_user(data, (void __user *)addr + offset, len);
2771         if (r)
2772                 return -EFAULT;
2773         return 0;
2774 }
2775
2776 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2777                         int len)
2778 {
2779         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2780
2781         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2782 }
2783 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2784
2785 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2786                              int offset, int len)
2787 {
2788         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2789
2790         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2791 }
2792 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2793
2794 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2795 {
2796         gfn_t gfn = gpa >> PAGE_SHIFT;
2797         int seg;
2798         int offset = offset_in_page(gpa);
2799         int ret;
2800
2801         while ((seg = next_segment(len, offset)) != 0) {
2802                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2803                 if (ret < 0)
2804                         return ret;
2805                 offset = 0;
2806                 len -= seg;
2807                 data += seg;
2808                 ++gfn;
2809         }
2810         return 0;
2811 }
2812 EXPORT_SYMBOL_GPL(kvm_read_guest);
2813
2814 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2815 {
2816         gfn_t gfn = gpa >> PAGE_SHIFT;
2817         int seg;
2818         int offset = offset_in_page(gpa);
2819         int ret;
2820
2821         while ((seg = next_segment(len, offset)) != 0) {
2822                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2823                 if (ret < 0)
2824                         return ret;
2825                 offset = 0;
2826                 len -= seg;
2827                 data += seg;
2828                 ++gfn;
2829         }
2830         return 0;
2831 }
2832 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2833
2834 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2835                                    void *data, int offset, unsigned long len)
2836 {
2837         int r;
2838         unsigned long addr;
2839
2840         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2841         if (kvm_is_error_hva(addr))
2842                 return -EFAULT;
2843         pagefault_disable();
2844         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2845         pagefault_enable();
2846         if (r)
2847                 return -EFAULT;
2848         return 0;
2849 }
2850
2851 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2852                                void *data, unsigned long len)
2853 {
2854         gfn_t gfn = gpa >> PAGE_SHIFT;
2855         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2856         int offset = offset_in_page(gpa);
2857
2858         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2859 }
2860 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2861
2862 static int __kvm_write_guest_page(struct kvm *kvm,
2863                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2864                                   const void *data, int offset, int len)
2865 {
2866         int r;
2867         unsigned long addr;
2868
2869         addr = gfn_to_hva_memslot(memslot, gfn);
2870         if (kvm_is_error_hva(addr))
2871                 return -EFAULT;
2872         r = __copy_to_user((void __user *)addr + offset, data, len);
2873         if (r)
2874                 return -EFAULT;
2875         mark_page_dirty_in_slot(kvm, memslot, gfn);
2876         return 0;
2877 }
2878
2879 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2880                          const void *data, int offset, int len)
2881 {
2882         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2883
2884         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2885 }
2886 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2887
2888 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2889                               const void *data, int offset, int len)
2890 {
2891         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2892
2893         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2894 }
2895 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2896
2897 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2898                     unsigned long len)
2899 {
2900         gfn_t gfn = gpa >> PAGE_SHIFT;
2901         int seg;
2902         int offset = offset_in_page(gpa);
2903         int ret;
2904
2905         while ((seg = next_segment(len, offset)) != 0) {
2906                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2907                 if (ret < 0)
2908                         return ret;
2909                 offset = 0;
2910                 len -= seg;
2911                 data += seg;
2912                 ++gfn;
2913         }
2914         return 0;
2915 }
2916 EXPORT_SYMBOL_GPL(kvm_write_guest);
2917
2918 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2919                          unsigned long len)
2920 {
2921         gfn_t gfn = gpa >> PAGE_SHIFT;
2922         int seg;
2923         int offset = offset_in_page(gpa);
2924         int ret;
2925
2926         while ((seg = next_segment(len, offset)) != 0) {
2927                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2928                 if (ret < 0)
2929                         return ret;
2930                 offset = 0;
2931                 len -= seg;
2932                 data += seg;
2933                 ++gfn;
2934         }
2935         return 0;
2936 }
2937 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2938
2939 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2940                                        struct gfn_to_hva_cache *ghc,
2941                                        gpa_t gpa, unsigned long len)
2942 {
2943         int offset = offset_in_page(gpa);
2944         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2945         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2946         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2947         gfn_t nr_pages_avail;
2948
2949         /* Update ghc->generation before performing any error checks. */
2950         ghc->generation = slots->generation;
2951
2952         if (start_gfn > end_gfn) {
2953                 ghc->hva = KVM_HVA_ERR_BAD;
2954                 return -EINVAL;
2955         }
2956
2957         /*
2958          * If the requested region crosses two memslots, we still
2959          * verify that the entire region is valid here.
2960          */
2961         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2962                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2963                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2964                                            &nr_pages_avail);
2965                 if (kvm_is_error_hva(ghc->hva))
2966                         return -EFAULT;
2967         }
2968
2969         /* Use the slow path for cross page reads and writes. */
2970         if (nr_pages_needed == 1)
2971                 ghc->hva += offset;
2972         else
2973                 ghc->memslot = NULL;
2974
2975         ghc->gpa = gpa;
2976         ghc->len = len;
2977         return 0;
2978 }
2979
2980 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2981                               gpa_t gpa, unsigned long len)
2982 {
2983         struct kvm_memslots *slots = kvm_memslots(kvm);
2984         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2985 }
2986 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2987
2988 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2989                                   void *data, unsigned int offset,
2990                                   unsigned long len)
2991 {
2992         struct kvm_memslots *slots = kvm_memslots(kvm);
2993         int r;
2994         gpa_t gpa = ghc->gpa + offset;
2995
2996         BUG_ON(len + offset > ghc->len);
2997
2998         if (slots->generation != ghc->generation) {
2999                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3000                         return -EFAULT;
3001         }
3002
3003         if (kvm_is_error_hva(ghc->hva))
3004                 return -EFAULT;
3005
3006         if (unlikely(!ghc->memslot))
3007                 return kvm_write_guest(kvm, gpa, data, len);
3008
3009         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3010         if (r)
3011                 return -EFAULT;
3012         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3013
3014         return 0;
3015 }
3016 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3017
3018 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3019                            void *data, unsigned long len)
3020 {
3021         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3022 }
3023 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3024
3025 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3026                                  void *data, unsigned int offset,
3027                                  unsigned long len)
3028 {
3029         struct kvm_memslots *slots = kvm_memslots(kvm);
3030         int r;
3031         gpa_t gpa = ghc->gpa + offset;
3032
3033         BUG_ON(len + offset > ghc->len);
3034
3035         if (slots->generation != ghc->generation) {
3036                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3037                         return -EFAULT;
3038         }
3039
3040         if (kvm_is_error_hva(ghc->hva))
3041                 return -EFAULT;
3042
3043         if (unlikely(!ghc->memslot))
3044                 return kvm_read_guest(kvm, gpa, data, len);
3045
3046         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3047         if (r)
3048                 return -EFAULT;
3049
3050         return 0;
3051 }
3052 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3053
3054 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3055                           void *data, unsigned long len)
3056 {
3057         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3058 }
3059 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3060
3061 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3062 {
3063         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3064         gfn_t gfn = gpa >> PAGE_SHIFT;
3065         int seg;
3066         int offset = offset_in_page(gpa);
3067         int ret;
3068
3069         while ((seg = next_segment(len, offset)) != 0) {
3070                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3071                 if (ret < 0)
3072                         return ret;
3073                 offset = 0;
3074                 len -= seg;
3075                 ++gfn;
3076         }
3077         return 0;
3078 }
3079 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3080
3081 void mark_page_dirty_in_slot(struct kvm *kvm,
3082                              struct kvm_memory_slot *memslot,
3083                              gfn_t gfn)
3084 {
3085         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3086                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3087                 u32 slot = (memslot->as_id << 16) | memslot->id;
3088
3089                 if (kvm->dirty_ring_size)
3090                         kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3091                                             slot, rel_gfn);
3092                 else
3093                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3094         }
3095 }
3096 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3097
3098 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3099 {
3100         struct kvm_memory_slot *memslot;
3101
3102         memslot = gfn_to_memslot(kvm, gfn);
3103         mark_page_dirty_in_slot(kvm, memslot, gfn);
3104 }
3105 EXPORT_SYMBOL_GPL(mark_page_dirty);
3106
3107 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3108 {
3109         struct kvm_memory_slot *memslot;
3110
3111         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3112         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3113 }
3114 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3115
3116 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3117 {
3118         if (!vcpu->sigset_active)
3119                 return;
3120
3121         /*
3122          * This does a lockless modification of ->real_blocked, which is fine
3123          * because, only current can change ->real_blocked and all readers of
3124          * ->real_blocked don't care as long ->real_blocked is always a subset
3125          * of ->blocked.
3126          */
3127         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3128 }
3129
3130 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3131 {
3132         if (!vcpu->sigset_active)
3133                 return;
3134
3135         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3136         sigemptyset(&current->real_blocked);
3137 }
3138
3139 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3140 {
3141         unsigned int old, val, grow, grow_start;
3142
3143         old = val = vcpu->halt_poll_ns;
3144         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3145         grow = READ_ONCE(halt_poll_ns_grow);
3146         if (!grow)
3147                 goto out;
3148
3149         val *= grow;
3150         if (val < grow_start)
3151                 val = grow_start;
3152
3153         if (val > vcpu->kvm->max_halt_poll_ns)
3154                 val = vcpu->kvm->max_halt_poll_ns;
3155
3156         vcpu->halt_poll_ns = val;
3157 out:
3158         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3159 }
3160
3161 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3162 {
3163         unsigned int old, val, shrink, grow_start;
3164
3165         old = val = vcpu->halt_poll_ns;
3166         shrink = READ_ONCE(halt_poll_ns_shrink);
3167         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3168         if (shrink == 0)
3169                 val = 0;
3170         else
3171                 val /= shrink;
3172
3173         if (val < grow_start)
3174                 val = 0;
3175
3176         vcpu->halt_poll_ns = val;
3177         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3178 }
3179
3180 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3181 {
3182         int ret = -EINTR;
3183         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3184
3185         if (kvm_arch_vcpu_runnable(vcpu)) {
3186                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3187                 goto out;
3188         }
3189         if (kvm_cpu_has_pending_timer(vcpu))
3190                 goto out;
3191         if (signal_pending(current))
3192                 goto out;
3193         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3194                 goto out;
3195
3196         ret = 0;
3197 out:
3198         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3199         return ret;
3200 }
3201
3202 static inline void
3203 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3204 {
3205         if (waited)
3206                 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3207         else
3208                 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3209 }
3210
3211 /*
3212  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3213  */
3214 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3215 {
3216         ktime_t start, cur, poll_end;
3217         bool waited = false;
3218         u64 block_ns;
3219
3220         kvm_arch_vcpu_blocking(vcpu);
3221
3222         start = cur = poll_end = ktime_get();
3223         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3224                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3225
3226                 ++vcpu->stat.generic.halt_attempted_poll;
3227                 do {
3228                         /*
3229                          * This sets KVM_REQ_UNHALT if an interrupt
3230                          * arrives.
3231                          */
3232                         if (kvm_vcpu_check_block(vcpu) < 0) {
3233                                 ++vcpu->stat.generic.halt_successful_poll;
3234                                 if (!vcpu_valid_wakeup(vcpu))
3235                                         ++vcpu->stat.generic.halt_poll_invalid;
3236
3237                                 KVM_STATS_LOG_HIST_UPDATE(
3238                                       vcpu->stat.generic.halt_poll_success_hist,
3239                                       ktime_to_ns(ktime_get()) -
3240                                       ktime_to_ns(start));
3241                                 goto out;
3242                         }
3243                         cpu_relax();
3244                         poll_end = cur = ktime_get();
3245                 } while (kvm_vcpu_can_poll(cur, stop));
3246
3247                 KVM_STATS_LOG_HIST_UPDATE(
3248                                 vcpu->stat.generic.halt_poll_fail_hist,
3249                                 ktime_to_ns(ktime_get()) - ktime_to_ns(start));
3250         }
3251
3252
3253         prepare_to_rcuwait(&vcpu->wait);
3254         for (;;) {
3255                 set_current_state(TASK_INTERRUPTIBLE);
3256
3257                 if (kvm_vcpu_check_block(vcpu) < 0)
3258                         break;
3259
3260                 waited = true;
3261                 schedule();
3262         }
3263         finish_rcuwait(&vcpu->wait);
3264         cur = ktime_get();
3265         if (waited) {
3266                 vcpu->stat.generic.halt_wait_ns +=
3267                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3268                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3269                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3270         }
3271 out:
3272         kvm_arch_vcpu_unblocking(vcpu);
3273         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3274
3275         update_halt_poll_stats(
3276                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3277
3278         if (!kvm_arch_no_poll(vcpu)) {
3279                 if (!vcpu_valid_wakeup(vcpu)) {
3280                         shrink_halt_poll_ns(vcpu);
3281                 } else if (vcpu->kvm->max_halt_poll_ns) {
3282                         if (block_ns <= vcpu->halt_poll_ns)
3283                                 ;
3284                         /* we had a long block, shrink polling */
3285                         else if (vcpu->halt_poll_ns &&
3286                                         block_ns > vcpu->kvm->max_halt_poll_ns)
3287                                 shrink_halt_poll_ns(vcpu);
3288                         /* we had a short halt and our poll time is too small */
3289                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3290                                         block_ns < vcpu->kvm->max_halt_poll_ns)
3291                                 grow_halt_poll_ns(vcpu);
3292                 } else {
3293                         vcpu->halt_poll_ns = 0;
3294                 }
3295         }
3296
3297         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3298         kvm_arch_vcpu_block_finish(vcpu);
3299 }
3300 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3301
3302 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3303 {
3304         struct rcuwait *waitp;
3305
3306         waitp = kvm_arch_vcpu_get_wait(vcpu);
3307         if (rcuwait_wake_up(waitp)) {
3308                 WRITE_ONCE(vcpu->ready, true);
3309                 ++vcpu->stat.generic.halt_wakeup;
3310                 return true;
3311         }
3312
3313         return false;
3314 }
3315 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3316
3317 #ifndef CONFIG_S390
3318 /*
3319  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3320  */
3321 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3322 {
3323         int me, cpu;
3324
3325         if (kvm_vcpu_wake_up(vcpu))
3326                 return;
3327
3328         /*
3329          * Note, the vCPU could get migrated to a different pCPU at any point
3330          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3331          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3332          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3333          * vCPU also requires it to leave IN_GUEST_MODE.
3334          */
3335         me = get_cpu();
3336         if (kvm_arch_vcpu_should_kick(vcpu)) {
3337                 cpu = READ_ONCE(vcpu->cpu);
3338                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3339                         smp_send_reschedule(cpu);
3340         }
3341         put_cpu();
3342 }
3343 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3344 #endif /* !CONFIG_S390 */
3345
3346 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3347 {
3348         struct pid *pid;
3349         struct task_struct *task = NULL;
3350         int ret = 0;
3351
3352         rcu_read_lock();
3353         pid = rcu_dereference(target->pid);
3354         if (pid)
3355                 task = get_pid_task(pid, PIDTYPE_PID);
3356         rcu_read_unlock();
3357         if (!task)
3358                 return ret;
3359         ret = yield_to(task, 1);
3360         put_task_struct(task);
3361
3362         return ret;
3363 }
3364 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3365
3366 /*
3367  * Helper that checks whether a VCPU is eligible for directed yield.
3368  * Most eligible candidate to yield is decided by following heuristics:
3369  *
3370  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3371  *  (preempted lock holder), indicated by @in_spin_loop.
3372  *  Set at the beginning and cleared at the end of interception/PLE handler.
3373  *
3374  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3375  *  chance last time (mostly it has become eligible now since we have probably
3376  *  yielded to lockholder in last iteration. This is done by toggling
3377  *  @dy_eligible each time a VCPU checked for eligibility.)
3378  *
3379  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3380  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3381  *  burning. Giving priority for a potential lock-holder increases lock
3382  *  progress.
3383  *
3384  *  Since algorithm is based on heuristics, accessing another VCPU data without
3385  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3386  *  and continue with next VCPU and so on.
3387  */
3388 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3389 {
3390 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3391         bool eligible;
3392
3393         eligible = !vcpu->spin_loop.in_spin_loop ||
3394                     vcpu->spin_loop.dy_eligible;
3395
3396         if (vcpu->spin_loop.in_spin_loop)
3397                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3398
3399         return eligible;
3400 #else
3401         return true;
3402 #endif
3403 }
3404
3405 /*
3406  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3407  * a vcpu_load/vcpu_put pair.  However, for most architectures
3408  * kvm_arch_vcpu_runnable does not require vcpu_load.
3409  */
3410 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3411 {
3412         return kvm_arch_vcpu_runnable(vcpu);
3413 }
3414
3415 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3416 {
3417         if (kvm_arch_dy_runnable(vcpu))
3418                 return true;
3419
3420 #ifdef CONFIG_KVM_ASYNC_PF
3421         if (!list_empty_careful(&vcpu->async_pf.done))
3422                 return true;
3423 #endif
3424
3425         return false;
3426 }
3427
3428 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3429 {
3430         return false;
3431 }
3432
3433 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3434 {
3435         struct kvm *kvm = me->kvm;
3436         struct kvm_vcpu *vcpu;
3437         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3438         int yielded = 0;
3439         int try = 3;
3440         int pass;
3441         int i;
3442
3443         kvm_vcpu_set_in_spin_loop(me, true);
3444         /*
3445          * We boost the priority of a VCPU that is runnable but not
3446          * currently running, because it got preempted by something
3447          * else and called schedule in __vcpu_run.  Hopefully that
3448          * VCPU is holding the lock that we need and will release it.
3449          * We approximate round-robin by starting at the last boosted VCPU.
3450          */
3451         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3452                 kvm_for_each_vcpu(i, vcpu, kvm) {
3453                         if (!pass && i <= last_boosted_vcpu) {
3454                                 i = last_boosted_vcpu;
3455                                 continue;
3456                         } else if (pass && i > last_boosted_vcpu)
3457                                 break;
3458                         if (!READ_ONCE(vcpu->ready))
3459                                 continue;
3460                         if (vcpu == me)
3461                                 continue;
3462                         if (rcuwait_active(&vcpu->wait) &&
3463                             !vcpu_dy_runnable(vcpu))
3464                                 continue;
3465                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3466                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3467                             !kvm_arch_vcpu_in_kernel(vcpu))
3468                                 continue;
3469                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3470                                 continue;
3471
3472                         yielded = kvm_vcpu_yield_to(vcpu);
3473                         if (yielded > 0) {
3474                                 kvm->last_boosted_vcpu = i;
3475                                 break;
3476                         } else if (yielded < 0) {
3477                                 try--;
3478                                 if (!try)
3479                                         break;
3480                         }
3481                 }
3482         }
3483         kvm_vcpu_set_in_spin_loop(me, false);
3484
3485         /* Ensure vcpu is not eligible during next spinloop */
3486         kvm_vcpu_set_dy_eligible(me, false);
3487 }
3488 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3489
3490 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3491 {
3492 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3493         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3494             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3495              kvm->dirty_ring_size / PAGE_SIZE);
3496 #else
3497         return false;
3498 #endif
3499 }
3500
3501 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3502 {
3503         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3504         struct page *page;
3505
3506         if (vmf->pgoff == 0)
3507                 page = virt_to_page(vcpu->run);
3508 #ifdef CONFIG_X86
3509         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3510                 page = virt_to_page(vcpu->arch.pio_data);
3511 #endif
3512 #ifdef CONFIG_KVM_MMIO
3513         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3514                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3515 #endif
3516         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3517                 page = kvm_dirty_ring_get_page(
3518                     &vcpu->dirty_ring,
3519                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3520         else
3521                 return kvm_arch_vcpu_fault(vcpu, vmf);
3522         get_page(page);
3523         vmf->page = page;
3524         return 0;
3525 }
3526
3527 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3528         .fault = kvm_vcpu_fault,
3529 };
3530
3531 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3532 {
3533         struct kvm_vcpu *vcpu = file->private_data;
3534         unsigned long pages = vma_pages(vma);
3535
3536         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3537              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3538             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3539                 return -EINVAL;
3540
3541         vma->vm_ops = &kvm_vcpu_vm_ops;
3542         return 0;
3543 }
3544
3545 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3546 {
3547         struct kvm_vcpu *vcpu = filp->private_data;
3548
3549         kvm_put_kvm(vcpu->kvm);
3550         return 0;
3551 }
3552
3553 static struct file_operations kvm_vcpu_fops = {
3554         .release        = kvm_vcpu_release,
3555         .unlocked_ioctl = kvm_vcpu_ioctl,
3556         .mmap           = kvm_vcpu_mmap,
3557         .llseek         = noop_llseek,
3558         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3559 };
3560
3561 /*
3562  * Allocates an inode for the vcpu.
3563  */
3564 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3565 {
3566         char name[8 + 1 + ITOA_MAX_LEN + 1];
3567
3568         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3569         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3570 }
3571
3572 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3573 {
3574 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3575         struct dentry *debugfs_dentry;
3576         char dir_name[ITOA_MAX_LEN * 2];
3577
3578         if (!debugfs_initialized())
3579                 return;
3580
3581         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3582         debugfs_dentry = debugfs_create_dir(dir_name,
3583                                             vcpu->kvm->debugfs_dentry);
3584
3585         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3586 #endif
3587 }
3588
3589 /*
3590  * Creates some virtual cpus.  Good luck creating more than one.
3591  */
3592 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3593 {
3594         int r;
3595         struct kvm_vcpu *vcpu;
3596         struct page *page;
3597
3598         if (id >= KVM_MAX_VCPU_IDS)
3599                 return -EINVAL;
3600
3601         mutex_lock(&kvm->lock);
3602         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3603                 mutex_unlock(&kvm->lock);
3604                 return -EINVAL;
3605         }
3606
3607         kvm->created_vcpus++;
3608         mutex_unlock(&kvm->lock);
3609
3610         r = kvm_arch_vcpu_precreate(kvm, id);
3611         if (r)
3612                 goto vcpu_decrement;
3613
3614         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3615         if (!vcpu) {
3616                 r = -ENOMEM;
3617                 goto vcpu_decrement;
3618         }
3619
3620         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3621         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3622         if (!page) {
3623                 r = -ENOMEM;
3624                 goto vcpu_free;
3625         }
3626         vcpu->run = page_address(page);
3627
3628         kvm_vcpu_init(vcpu, kvm, id);
3629
3630         r = kvm_arch_vcpu_create(vcpu);
3631         if (r)
3632                 goto vcpu_free_run_page;
3633
3634         if (kvm->dirty_ring_size) {
3635                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3636                                          id, kvm->dirty_ring_size);
3637                 if (r)
3638                         goto arch_vcpu_destroy;
3639         }
3640
3641         mutex_lock(&kvm->lock);
3642         if (kvm_get_vcpu_by_id(kvm, id)) {
3643                 r = -EEXIST;
3644                 goto unlock_vcpu_destroy;
3645         }
3646
3647         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3648         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3649
3650         /* Fill the stats id string for the vcpu */
3651         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3652                  task_pid_nr(current), id);
3653
3654         /* Now it's all set up, let userspace reach it */
3655         kvm_get_kvm(kvm);
3656         r = create_vcpu_fd(vcpu);
3657         if (r < 0) {
3658                 kvm_put_kvm_no_destroy(kvm);
3659                 goto unlock_vcpu_destroy;
3660         }
3661
3662         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3663
3664         /*
3665          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3666          * before kvm->online_vcpu's incremented value.
3667          */
3668         smp_wmb();
3669         atomic_inc(&kvm->online_vcpus);
3670
3671         mutex_unlock(&kvm->lock);
3672         kvm_arch_vcpu_postcreate(vcpu);
3673         kvm_create_vcpu_debugfs(vcpu);
3674         return r;
3675
3676 unlock_vcpu_destroy:
3677         mutex_unlock(&kvm->lock);
3678         kvm_dirty_ring_free(&vcpu->dirty_ring);
3679 arch_vcpu_destroy:
3680         kvm_arch_vcpu_destroy(vcpu);
3681 vcpu_free_run_page:
3682         free_page((unsigned long)vcpu->run);
3683 vcpu_free:
3684         kmem_cache_free(kvm_vcpu_cache, vcpu);
3685 vcpu_decrement:
3686         mutex_lock(&kvm->lock);
3687         kvm->created_vcpus--;
3688         mutex_unlock(&kvm->lock);
3689         return r;
3690 }
3691
3692 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3693 {
3694         if (sigset) {
3695                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3696                 vcpu->sigset_active = 1;
3697                 vcpu->sigset = *sigset;
3698         } else
3699                 vcpu->sigset_active = 0;
3700         return 0;
3701 }
3702
3703 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3704                               size_t size, loff_t *offset)
3705 {
3706         struct kvm_vcpu *vcpu = file->private_data;
3707
3708         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3709                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3710                         sizeof(vcpu->stat), user_buffer, size, offset);
3711 }
3712
3713 static const struct file_operations kvm_vcpu_stats_fops = {
3714         .read = kvm_vcpu_stats_read,
3715         .llseek = noop_llseek,
3716 };
3717
3718 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3719 {
3720         int fd;
3721         struct file *file;
3722         char name[15 + ITOA_MAX_LEN + 1];
3723
3724         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3725
3726         fd = get_unused_fd_flags(O_CLOEXEC);
3727         if (fd < 0)
3728                 return fd;
3729
3730         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3731         if (IS_ERR(file)) {
3732                 put_unused_fd(fd);
3733                 return PTR_ERR(file);
3734         }
3735         file->f_mode |= FMODE_PREAD;
3736         fd_install(fd, file);
3737
3738         return fd;
3739 }
3740
3741 static long kvm_vcpu_ioctl(struct file *filp,
3742                            unsigned int ioctl, unsigned long arg)
3743 {
3744         struct kvm_vcpu *vcpu = filp->private_data;
3745         void __user *argp = (void __user *)arg;
3746         int r;
3747         struct kvm_fpu *fpu = NULL;
3748         struct kvm_sregs *kvm_sregs = NULL;
3749
3750         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3751                 return -EIO;
3752
3753         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3754                 return -EINVAL;
3755
3756         /*
3757          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3758          * execution; mutex_lock() would break them.
3759          */
3760         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3761         if (r != -ENOIOCTLCMD)
3762                 return r;
3763
3764         if (mutex_lock_killable(&vcpu->mutex))
3765                 return -EINTR;
3766         switch (ioctl) {
3767         case KVM_RUN: {
3768                 struct pid *oldpid;
3769                 r = -EINVAL;
3770                 if (arg)
3771                         goto out;
3772                 oldpid = rcu_access_pointer(vcpu->pid);
3773                 if (unlikely(oldpid != task_pid(current))) {
3774                         /* The thread running this VCPU changed. */
3775                         struct pid *newpid;
3776
3777                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3778                         if (r)
3779                                 break;
3780
3781                         newpid = get_task_pid(current, PIDTYPE_PID);
3782                         rcu_assign_pointer(vcpu->pid, newpid);
3783                         if (oldpid)
3784                                 synchronize_rcu();
3785                         put_pid(oldpid);
3786                 }
3787                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3788                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3789                 break;
3790         }
3791         case KVM_GET_REGS: {
3792                 struct kvm_regs *kvm_regs;
3793
3794                 r = -ENOMEM;
3795                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3796                 if (!kvm_regs)
3797                         goto out;
3798                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3799                 if (r)
3800                         goto out_free1;
3801                 r = -EFAULT;
3802                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3803                         goto out_free1;
3804                 r = 0;
3805 out_free1:
3806                 kfree(kvm_regs);
3807                 break;
3808         }
3809         case KVM_SET_REGS: {
3810                 struct kvm_regs *kvm_regs;
3811
3812                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3813                 if (IS_ERR(kvm_regs)) {
3814                         r = PTR_ERR(kvm_regs);
3815                         goto out;
3816                 }
3817                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3818                 kfree(kvm_regs);
3819                 break;
3820         }
3821         case KVM_GET_SREGS: {
3822                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3823                                     GFP_KERNEL_ACCOUNT);
3824                 r = -ENOMEM;
3825                 if (!kvm_sregs)
3826                         goto out;
3827                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3828                 if (r)
3829                         goto out;
3830                 r = -EFAULT;
3831                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3832                         goto out;
3833                 r = 0;
3834                 break;
3835         }
3836         case KVM_SET_SREGS: {
3837                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3838                 if (IS_ERR(kvm_sregs)) {
3839                         r = PTR_ERR(kvm_sregs);
3840                         kvm_sregs = NULL;
3841                         goto out;
3842                 }
3843                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3844                 break;
3845         }
3846         case KVM_GET_MP_STATE: {
3847                 struct kvm_mp_state mp_state;
3848
3849                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3850                 if (r)
3851                         goto out;
3852                 r = -EFAULT;
3853                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3854                         goto out;
3855                 r = 0;
3856                 break;
3857         }
3858         case KVM_SET_MP_STATE: {
3859                 struct kvm_mp_state mp_state;
3860
3861                 r = -EFAULT;
3862                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3863                         goto out;
3864                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3865                 break;
3866         }
3867         case KVM_TRANSLATE: {
3868                 struct kvm_translation tr;
3869
3870                 r = -EFAULT;
3871                 if (copy_from_user(&tr, argp, sizeof(tr)))
3872                         goto out;
3873                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3874                 if (r)
3875                         goto out;
3876                 r = -EFAULT;
3877                 if (copy_to_user(argp, &tr, sizeof(tr)))
3878                         goto out;
3879                 r = 0;
3880                 break;
3881         }
3882         case KVM_SET_GUEST_DEBUG: {
3883                 struct kvm_guest_debug dbg;
3884
3885                 r = -EFAULT;
3886                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3887                         goto out;
3888                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3889                 break;
3890         }
3891         case KVM_SET_SIGNAL_MASK: {
3892                 struct kvm_signal_mask __user *sigmask_arg = argp;
3893                 struct kvm_signal_mask kvm_sigmask;
3894                 sigset_t sigset, *p;
3895
3896                 p = NULL;
3897                 if (argp) {
3898                         r = -EFAULT;
3899                         if (copy_from_user(&kvm_sigmask, argp,
3900                                            sizeof(kvm_sigmask)))
3901                                 goto out;
3902                         r = -EINVAL;
3903                         if (kvm_sigmask.len != sizeof(sigset))
3904                                 goto out;
3905                         r = -EFAULT;
3906                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3907                                            sizeof(sigset)))
3908                                 goto out;
3909                         p = &sigset;
3910                 }
3911                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3912                 break;
3913         }
3914         case KVM_GET_FPU: {
3915                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3916                 r = -ENOMEM;
3917                 if (!fpu)
3918                         goto out;
3919                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3920                 if (r)
3921                         goto out;
3922                 r = -EFAULT;
3923                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3924                         goto out;
3925                 r = 0;
3926                 break;
3927         }
3928         case KVM_SET_FPU: {
3929                 fpu = memdup_user(argp, sizeof(*fpu));
3930                 if (IS_ERR(fpu)) {
3931                         r = PTR_ERR(fpu);
3932                         fpu = NULL;
3933                         goto out;
3934                 }
3935                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3936                 break;
3937         }
3938         case KVM_GET_STATS_FD: {
3939                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3940                 break;
3941         }
3942         default:
3943                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3944         }
3945 out:
3946         mutex_unlock(&vcpu->mutex);
3947         kfree(fpu);
3948         kfree(kvm_sregs);
3949         return r;
3950 }
3951
3952 #ifdef CONFIG_KVM_COMPAT
3953 static long kvm_vcpu_compat_ioctl(struct file *filp,
3954                                   unsigned int ioctl, unsigned long arg)
3955 {
3956         struct kvm_vcpu *vcpu = filp->private_data;
3957         void __user *argp = compat_ptr(arg);
3958         int r;
3959
3960         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3961                 return -EIO;
3962
3963         switch (ioctl) {
3964         case KVM_SET_SIGNAL_MASK: {
3965                 struct kvm_signal_mask __user *sigmask_arg = argp;
3966                 struct kvm_signal_mask kvm_sigmask;
3967                 sigset_t sigset;
3968
3969                 if (argp) {
3970                         r = -EFAULT;
3971                         if (copy_from_user(&kvm_sigmask, argp,
3972                                            sizeof(kvm_sigmask)))
3973                                 goto out;
3974                         r = -EINVAL;
3975                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3976                                 goto out;
3977                         r = -EFAULT;
3978                         if (get_compat_sigset(&sigset,
3979                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3980                                 goto out;
3981                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3982                 } else
3983                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3984                 break;
3985         }
3986         default:
3987                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3988         }
3989
3990 out:
3991         return r;
3992 }
3993 #endif
3994
3995 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3996 {
3997         struct kvm_device *dev = filp->private_data;
3998
3999         if (dev->ops->mmap)
4000                 return dev->ops->mmap(dev, vma);
4001
4002         return -ENODEV;
4003 }
4004
4005 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4006                                  int (*accessor)(struct kvm_device *dev,
4007                                                  struct kvm_device_attr *attr),
4008                                  unsigned long arg)
4009 {
4010         struct kvm_device_attr attr;
4011
4012         if (!accessor)
4013                 return -EPERM;
4014
4015         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4016                 return -EFAULT;
4017
4018         return accessor(dev, &attr);
4019 }
4020
4021 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4022                              unsigned long arg)
4023 {
4024         struct kvm_device *dev = filp->private_data;
4025
4026         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4027                 return -EIO;
4028
4029         switch (ioctl) {
4030         case KVM_SET_DEVICE_ATTR:
4031                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4032         case KVM_GET_DEVICE_ATTR:
4033                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4034         case KVM_HAS_DEVICE_ATTR:
4035                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4036         default:
4037                 if (dev->ops->ioctl)
4038                         return dev->ops->ioctl(dev, ioctl, arg);
4039
4040                 return -ENOTTY;
4041         }
4042 }
4043
4044 static int kvm_device_release(struct inode *inode, struct file *filp)
4045 {
4046         struct kvm_device *dev = filp->private_data;
4047         struct kvm *kvm = dev->kvm;
4048
4049         if (dev->ops->release) {
4050                 mutex_lock(&kvm->lock);
4051                 list_del(&dev->vm_node);
4052                 dev->ops->release(dev);
4053                 mutex_unlock(&kvm->lock);
4054         }
4055
4056         kvm_put_kvm(kvm);
4057         return 0;
4058 }
4059
4060 static const struct file_operations kvm_device_fops = {
4061         .unlocked_ioctl = kvm_device_ioctl,
4062         .release = kvm_device_release,
4063         KVM_COMPAT(kvm_device_ioctl),
4064         .mmap = kvm_device_mmap,
4065 };
4066
4067 struct kvm_device *kvm_device_from_filp(struct file *filp)
4068 {
4069         if (filp->f_op != &kvm_device_fops)
4070                 return NULL;
4071
4072         return filp->private_data;
4073 }
4074
4075 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4076 #ifdef CONFIG_KVM_MPIC
4077         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4078         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4079 #endif
4080 };
4081
4082 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4083 {
4084         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4085                 return -ENOSPC;
4086
4087         if (kvm_device_ops_table[type] != NULL)
4088                 return -EEXIST;
4089
4090         kvm_device_ops_table[type] = ops;
4091         return 0;
4092 }
4093
4094 void kvm_unregister_device_ops(u32 type)
4095 {
4096         if (kvm_device_ops_table[type] != NULL)
4097                 kvm_device_ops_table[type] = NULL;
4098 }
4099
4100 static int kvm_ioctl_create_device(struct kvm *kvm,
4101                                    struct kvm_create_device *cd)
4102 {
4103         const struct kvm_device_ops *ops = NULL;
4104         struct kvm_device *dev;
4105         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4106         int type;
4107         int ret;
4108
4109         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4110                 return -ENODEV;
4111
4112         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4113         ops = kvm_device_ops_table[type];
4114         if (ops == NULL)
4115                 return -ENODEV;
4116
4117         if (test)
4118                 return 0;
4119
4120         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4121         if (!dev)
4122                 return -ENOMEM;
4123
4124         dev->ops = ops;
4125         dev->kvm = kvm;
4126
4127         mutex_lock(&kvm->lock);
4128         ret = ops->create(dev, type);
4129         if (ret < 0) {
4130                 mutex_unlock(&kvm->lock);
4131                 kfree(dev);
4132                 return ret;
4133         }
4134         list_add(&dev->vm_node, &kvm->devices);
4135         mutex_unlock(&kvm->lock);
4136
4137         if (ops->init)
4138                 ops->init(dev);
4139
4140         kvm_get_kvm(kvm);
4141         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4142         if (ret < 0) {
4143                 kvm_put_kvm_no_destroy(kvm);
4144                 mutex_lock(&kvm->lock);
4145                 list_del(&dev->vm_node);
4146                 mutex_unlock(&kvm->lock);
4147                 ops->destroy(dev);
4148                 return ret;
4149         }
4150
4151         cd->fd = ret;
4152         return 0;
4153 }
4154
4155 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4156 {
4157         switch (arg) {
4158         case KVM_CAP_USER_MEMORY:
4159         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4160         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4161         case KVM_CAP_INTERNAL_ERROR_DATA:
4162 #ifdef CONFIG_HAVE_KVM_MSI
4163         case KVM_CAP_SIGNAL_MSI:
4164 #endif
4165 #ifdef CONFIG_HAVE_KVM_IRQFD
4166         case KVM_CAP_IRQFD:
4167         case KVM_CAP_IRQFD_RESAMPLE:
4168 #endif
4169         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4170         case KVM_CAP_CHECK_EXTENSION_VM:
4171         case KVM_CAP_ENABLE_CAP_VM:
4172         case KVM_CAP_HALT_POLL:
4173                 return 1;
4174 #ifdef CONFIG_KVM_MMIO
4175         case KVM_CAP_COALESCED_MMIO:
4176                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4177         case KVM_CAP_COALESCED_PIO:
4178                 return 1;
4179 #endif
4180 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4181         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4182                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4183 #endif
4184 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4185         case KVM_CAP_IRQ_ROUTING:
4186                 return KVM_MAX_IRQ_ROUTES;
4187 #endif
4188 #if KVM_ADDRESS_SPACE_NUM > 1
4189         case KVM_CAP_MULTI_ADDRESS_SPACE:
4190                 return KVM_ADDRESS_SPACE_NUM;
4191 #endif
4192         case KVM_CAP_NR_MEMSLOTS:
4193                 return KVM_USER_MEM_SLOTS;
4194         case KVM_CAP_DIRTY_LOG_RING:
4195 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4196                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4197 #else
4198                 return 0;
4199 #endif
4200         case KVM_CAP_BINARY_STATS_FD:
4201                 return 1;
4202         default:
4203                 break;
4204         }
4205         return kvm_vm_ioctl_check_extension(kvm, arg);
4206 }
4207
4208 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4209 {
4210         int r;
4211
4212         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4213                 return -EINVAL;
4214
4215         /* the size should be power of 2 */
4216         if (!size || (size & (size - 1)))
4217                 return -EINVAL;
4218
4219         /* Should be bigger to keep the reserved entries, or a page */
4220         if (size < kvm_dirty_ring_get_rsvd_entries() *
4221             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4222                 return -EINVAL;
4223
4224         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4225             sizeof(struct kvm_dirty_gfn))
4226                 return -E2BIG;
4227
4228         /* We only allow it to set once */
4229         if (kvm->dirty_ring_size)
4230                 return -EINVAL;
4231
4232         mutex_lock(&kvm->lock);
4233
4234         if (kvm->created_vcpus) {
4235                 /* We don't allow to change this value after vcpu created */
4236                 r = -EINVAL;
4237         } else {
4238                 kvm->dirty_ring_size = size;
4239                 r = 0;
4240         }
4241
4242         mutex_unlock(&kvm->lock);
4243         return r;
4244 }
4245
4246 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4247 {
4248         int i;
4249         struct kvm_vcpu *vcpu;
4250         int cleared = 0;
4251
4252         if (!kvm->dirty_ring_size)
4253                 return -EINVAL;
4254
4255         mutex_lock(&kvm->slots_lock);
4256
4257         kvm_for_each_vcpu(i, vcpu, kvm)
4258                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4259
4260         mutex_unlock(&kvm->slots_lock);
4261
4262         if (cleared)
4263                 kvm_flush_remote_tlbs(kvm);
4264
4265         return cleared;
4266 }
4267
4268 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4269                                                   struct kvm_enable_cap *cap)
4270 {
4271         return -EINVAL;
4272 }
4273
4274 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4275                                            struct kvm_enable_cap *cap)
4276 {
4277         switch (cap->cap) {
4278 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4279         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4280                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4281
4282                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4283                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4284
4285                 if (cap->flags || (cap->args[0] & ~allowed_options))
4286                         return -EINVAL;
4287                 kvm->manual_dirty_log_protect = cap->args[0];
4288                 return 0;
4289         }
4290 #endif
4291         case KVM_CAP_HALT_POLL: {
4292                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4293                         return -EINVAL;
4294
4295                 kvm->max_halt_poll_ns = cap->args[0];
4296                 return 0;
4297         }
4298         case KVM_CAP_DIRTY_LOG_RING:
4299                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4300         default:
4301                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4302         }
4303 }
4304
4305 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4306                               size_t size, loff_t *offset)
4307 {
4308         struct kvm *kvm = file->private_data;
4309
4310         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4311                                 &kvm_vm_stats_desc[0], &kvm->stat,
4312                                 sizeof(kvm->stat), user_buffer, size, offset);
4313 }
4314
4315 static const struct file_operations kvm_vm_stats_fops = {
4316         .read = kvm_vm_stats_read,
4317         .llseek = noop_llseek,
4318 };
4319
4320 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4321 {
4322         int fd;
4323         struct file *file;
4324
4325         fd = get_unused_fd_flags(O_CLOEXEC);
4326         if (fd < 0)
4327                 return fd;
4328
4329         file = anon_inode_getfile("kvm-vm-stats",
4330                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4331         if (IS_ERR(file)) {
4332                 put_unused_fd(fd);
4333                 return PTR_ERR(file);
4334         }
4335         file->f_mode |= FMODE_PREAD;
4336         fd_install(fd, file);
4337
4338         return fd;
4339 }
4340
4341 static long kvm_vm_ioctl(struct file *filp,
4342                            unsigned int ioctl, unsigned long arg)
4343 {
4344         struct kvm *kvm = filp->private_data;
4345         void __user *argp = (void __user *)arg;
4346         int r;
4347
4348         if (kvm->mm != current->mm || kvm->vm_dead)
4349                 return -EIO;
4350         switch (ioctl) {
4351         case KVM_CREATE_VCPU:
4352                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4353                 break;
4354         case KVM_ENABLE_CAP: {
4355                 struct kvm_enable_cap cap;
4356
4357                 r = -EFAULT;
4358                 if (copy_from_user(&cap, argp, sizeof(cap)))
4359                         goto out;
4360                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4361                 break;
4362         }
4363         case KVM_SET_USER_MEMORY_REGION: {
4364                 struct kvm_userspace_memory_region kvm_userspace_mem;
4365
4366                 r = -EFAULT;
4367                 if (copy_from_user(&kvm_userspace_mem, argp,
4368                                                 sizeof(kvm_userspace_mem)))
4369                         goto out;
4370
4371                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4372                 break;
4373         }
4374         case KVM_GET_DIRTY_LOG: {
4375                 struct kvm_dirty_log log;
4376
4377                 r = -EFAULT;
4378                 if (copy_from_user(&log, argp, sizeof(log)))
4379                         goto out;
4380                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4381                 break;
4382         }
4383 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4384         case KVM_CLEAR_DIRTY_LOG: {
4385                 struct kvm_clear_dirty_log log;
4386
4387                 r = -EFAULT;
4388                 if (copy_from_user(&log, argp, sizeof(log)))
4389                         goto out;
4390                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4391                 break;
4392         }
4393 #endif
4394 #ifdef CONFIG_KVM_MMIO
4395         case KVM_REGISTER_COALESCED_MMIO: {
4396                 struct kvm_coalesced_mmio_zone zone;
4397
4398                 r = -EFAULT;
4399                 if (copy_from_user(&zone, argp, sizeof(zone)))
4400                         goto out;
4401                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4402                 break;
4403         }
4404         case KVM_UNREGISTER_COALESCED_MMIO: {
4405                 struct kvm_coalesced_mmio_zone zone;
4406
4407                 r = -EFAULT;
4408                 if (copy_from_user(&zone, argp, sizeof(zone)))
4409                         goto out;
4410                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4411                 break;
4412         }
4413 #endif
4414         case KVM_IRQFD: {
4415                 struct kvm_irqfd data;
4416
4417                 r = -EFAULT;
4418                 if (copy_from_user(&data, argp, sizeof(data)))
4419                         goto out;
4420                 r = kvm_irqfd(kvm, &data);
4421                 break;
4422         }
4423         case KVM_IOEVENTFD: {
4424                 struct kvm_ioeventfd data;
4425
4426                 r = -EFAULT;
4427                 if (copy_from_user(&data, argp, sizeof(data)))
4428                         goto out;
4429                 r = kvm_ioeventfd(kvm, &data);
4430                 break;
4431         }
4432 #ifdef CONFIG_HAVE_KVM_MSI
4433         case KVM_SIGNAL_MSI: {
4434                 struct kvm_msi msi;
4435
4436                 r = -EFAULT;
4437                 if (copy_from_user(&msi, argp, sizeof(msi)))
4438                         goto out;
4439                 r = kvm_send_userspace_msi(kvm, &msi);
4440                 break;
4441         }
4442 #endif
4443 #ifdef __KVM_HAVE_IRQ_LINE
4444         case KVM_IRQ_LINE_STATUS:
4445         case KVM_IRQ_LINE: {
4446                 struct kvm_irq_level irq_event;
4447
4448                 r = -EFAULT;
4449                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4450                         goto out;
4451
4452                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4453                                         ioctl == KVM_IRQ_LINE_STATUS);
4454                 if (r)
4455                         goto out;
4456
4457                 r = -EFAULT;
4458                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4459                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4460                                 goto out;
4461                 }
4462
4463                 r = 0;
4464                 break;
4465         }
4466 #endif
4467 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4468         case KVM_SET_GSI_ROUTING: {
4469                 struct kvm_irq_routing routing;
4470                 struct kvm_irq_routing __user *urouting;
4471                 struct kvm_irq_routing_entry *entries = NULL;
4472
4473                 r = -EFAULT;
4474                 if (copy_from_user(&routing, argp, sizeof(routing)))
4475                         goto out;
4476                 r = -EINVAL;
4477                 if (!kvm_arch_can_set_irq_routing(kvm))
4478                         goto out;
4479                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4480                         goto out;
4481                 if (routing.flags)
4482                         goto out;
4483                 if (routing.nr) {
4484                         urouting = argp;
4485                         entries = vmemdup_user(urouting->entries,
4486                                                array_size(sizeof(*entries),
4487                                                           routing.nr));
4488                         if (IS_ERR(entries)) {
4489                                 r = PTR_ERR(entries);
4490                                 goto out;
4491                         }
4492                 }
4493                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4494                                         routing.flags);
4495                 kvfree(entries);
4496                 break;
4497         }
4498 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4499         case KVM_CREATE_DEVICE: {
4500                 struct kvm_create_device cd;
4501
4502                 r = -EFAULT;
4503                 if (copy_from_user(&cd, argp, sizeof(cd)))
4504                         goto out;
4505
4506                 r = kvm_ioctl_create_device(kvm, &cd);
4507                 if (r)
4508                         goto out;
4509
4510                 r = -EFAULT;
4511                 if (copy_to_user(argp, &cd, sizeof(cd)))
4512                         goto out;
4513
4514                 r = 0;
4515                 break;
4516         }
4517         case KVM_CHECK_EXTENSION:
4518                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4519                 break;
4520         case KVM_RESET_DIRTY_RINGS:
4521                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4522                 break;
4523         case KVM_GET_STATS_FD:
4524                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4525                 break;
4526         default:
4527                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4528         }
4529 out:
4530         return r;
4531 }
4532
4533 #ifdef CONFIG_KVM_COMPAT
4534 struct compat_kvm_dirty_log {
4535         __u32 slot;
4536         __u32 padding1;
4537         union {
4538                 compat_uptr_t dirty_bitmap; /* one bit per page */
4539                 __u64 padding2;
4540         };
4541 };
4542
4543 struct compat_kvm_clear_dirty_log {
4544         __u32 slot;
4545         __u32 num_pages;
4546         __u64 first_page;
4547         union {
4548                 compat_uptr_t dirty_bitmap; /* one bit per page */
4549                 __u64 padding2;
4550         };
4551 };
4552
4553 static long kvm_vm_compat_ioctl(struct file *filp,
4554                            unsigned int ioctl, unsigned long arg)
4555 {
4556         struct kvm *kvm = filp->private_data;
4557         int r;
4558
4559         if (kvm->mm != current->mm || kvm->vm_dead)
4560                 return -EIO;
4561         switch (ioctl) {
4562 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4563         case KVM_CLEAR_DIRTY_LOG: {
4564                 struct compat_kvm_clear_dirty_log compat_log;
4565                 struct kvm_clear_dirty_log log;
4566
4567                 if (copy_from_user(&compat_log, (void __user *)arg,
4568                                    sizeof(compat_log)))
4569                         return -EFAULT;
4570                 log.slot         = compat_log.slot;
4571                 log.num_pages    = compat_log.num_pages;
4572                 log.first_page   = compat_log.first_page;
4573                 log.padding2     = compat_log.padding2;
4574                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4575
4576                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4577                 break;
4578         }
4579 #endif
4580         case KVM_GET_DIRTY_LOG: {
4581                 struct compat_kvm_dirty_log compat_log;
4582                 struct kvm_dirty_log log;
4583
4584                 if (copy_from_user(&compat_log, (void __user *)arg,
4585                                    sizeof(compat_log)))
4586                         return -EFAULT;
4587                 log.slot         = compat_log.slot;
4588                 log.padding1     = compat_log.padding1;
4589                 log.padding2     = compat_log.padding2;
4590                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4591
4592                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4593                 break;
4594         }
4595         default:
4596                 r = kvm_vm_ioctl(filp, ioctl, arg);
4597         }
4598         return r;
4599 }
4600 #endif
4601
4602 static struct file_operations kvm_vm_fops = {
4603         .release        = kvm_vm_release,
4604         .unlocked_ioctl = kvm_vm_ioctl,
4605         .llseek         = noop_llseek,
4606         KVM_COMPAT(kvm_vm_compat_ioctl),
4607 };
4608
4609 bool file_is_kvm(struct file *file)
4610 {
4611         return file && file->f_op == &kvm_vm_fops;
4612 }
4613 EXPORT_SYMBOL_GPL(file_is_kvm);
4614
4615 static int kvm_dev_ioctl_create_vm(unsigned long type)
4616 {
4617         int r;
4618         struct kvm *kvm;
4619         struct file *file;
4620
4621         kvm = kvm_create_vm(type);
4622         if (IS_ERR(kvm))
4623                 return PTR_ERR(kvm);
4624 #ifdef CONFIG_KVM_MMIO
4625         r = kvm_coalesced_mmio_init(kvm);
4626         if (r < 0)
4627                 goto put_kvm;
4628 #endif
4629         r = get_unused_fd_flags(O_CLOEXEC);
4630         if (r < 0)
4631                 goto put_kvm;
4632
4633         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4634                         "kvm-%d", task_pid_nr(current));
4635
4636         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4637         if (IS_ERR(file)) {
4638                 put_unused_fd(r);
4639                 r = PTR_ERR(file);
4640                 goto put_kvm;
4641         }
4642
4643         /*
4644          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4645          * already set, with ->release() being kvm_vm_release().  In error
4646          * cases it will be called by the final fput(file) and will take
4647          * care of doing kvm_put_kvm(kvm).
4648          */
4649         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4650                 put_unused_fd(r);
4651                 fput(file);
4652                 return -ENOMEM;
4653         }
4654         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4655
4656         fd_install(r, file);
4657         return r;
4658
4659 put_kvm:
4660         kvm_put_kvm(kvm);
4661         return r;
4662 }
4663
4664 static long kvm_dev_ioctl(struct file *filp,
4665                           unsigned int ioctl, unsigned long arg)
4666 {
4667         long r = -EINVAL;
4668
4669         switch (ioctl) {
4670         case KVM_GET_API_VERSION:
4671                 if (arg)
4672                         goto out;
4673                 r = KVM_API_VERSION;
4674                 break;
4675         case KVM_CREATE_VM:
4676                 r = kvm_dev_ioctl_create_vm(arg);
4677                 break;
4678         case KVM_CHECK_EXTENSION:
4679                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4680                 break;
4681         case KVM_GET_VCPU_MMAP_SIZE:
4682                 if (arg)
4683                         goto out;
4684                 r = PAGE_SIZE;     /* struct kvm_run */
4685 #ifdef CONFIG_X86
4686                 r += PAGE_SIZE;    /* pio data page */
4687 #endif
4688 #ifdef CONFIG_KVM_MMIO
4689                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4690 #endif
4691                 break;
4692         case KVM_TRACE_ENABLE:
4693         case KVM_TRACE_PAUSE:
4694         case KVM_TRACE_DISABLE:
4695                 r = -EOPNOTSUPP;
4696                 break;
4697         default:
4698                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4699         }
4700 out:
4701         return r;
4702 }
4703
4704 static struct file_operations kvm_chardev_ops = {
4705         .unlocked_ioctl = kvm_dev_ioctl,
4706         .llseek         = noop_llseek,
4707         KVM_COMPAT(kvm_dev_ioctl),
4708 };
4709
4710 static struct miscdevice kvm_dev = {
4711         KVM_MINOR,
4712         "kvm",
4713         &kvm_chardev_ops,
4714 };
4715
4716 static void hardware_enable_nolock(void *junk)
4717 {
4718         int cpu = raw_smp_processor_id();
4719         int r;
4720
4721         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4722                 return;
4723
4724         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4725
4726         r = kvm_arch_hardware_enable();
4727
4728         if (r) {
4729                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4730                 atomic_inc(&hardware_enable_failed);
4731                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4732         }
4733 }
4734
4735 static int kvm_starting_cpu(unsigned int cpu)
4736 {
4737         raw_spin_lock(&kvm_count_lock);
4738         if (kvm_usage_count)
4739                 hardware_enable_nolock(NULL);
4740         raw_spin_unlock(&kvm_count_lock);
4741         return 0;
4742 }
4743
4744 static void hardware_disable_nolock(void *junk)
4745 {
4746         int cpu = raw_smp_processor_id();
4747
4748         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4749                 return;
4750         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4751         kvm_arch_hardware_disable();
4752 }
4753
4754 static int kvm_dying_cpu(unsigned int cpu)
4755 {
4756         raw_spin_lock(&kvm_count_lock);
4757         if (kvm_usage_count)
4758                 hardware_disable_nolock(NULL);
4759         raw_spin_unlock(&kvm_count_lock);
4760         return 0;
4761 }
4762
4763 static void hardware_disable_all_nolock(void)
4764 {
4765         BUG_ON(!kvm_usage_count);
4766
4767         kvm_usage_count--;
4768         if (!kvm_usage_count)
4769                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4770 }
4771
4772 static void hardware_disable_all(void)
4773 {
4774         raw_spin_lock(&kvm_count_lock);
4775         hardware_disable_all_nolock();
4776         raw_spin_unlock(&kvm_count_lock);
4777 }
4778
4779 static int hardware_enable_all(void)
4780 {
4781         int r = 0;
4782
4783         raw_spin_lock(&kvm_count_lock);
4784
4785         kvm_usage_count++;
4786         if (kvm_usage_count == 1) {
4787                 atomic_set(&hardware_enable_failed, 0);
4788                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4789
4790                 if (atomic_read(&hardware_enable_failed)) {
4791                         hardware_disable_all_nolock();
4792                         r = -EBUSY;
4793                 }
4794         }
4795
4796         raw_spin_unlock(&kvm_count_lock);
4797
4798         return r;
4799 }
4800
4801 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4802                       void *v)
4803 {
4804         /*
4805          * Some (well, at least mine) BIOSes hang on reboot if
4806          * in vmx root mode.
4807          *
4808          * And Intel TXT required VMX off for all cpu when system shutdown.
4809          */
4810         pr_info("kvm: exiting hardware virtualization\n");
4811         kvm_rebooting = true;
4812         on_each_cpu(hardware_disable_nolock, NULL, 1);
4813         return NOTIFY_OK;
4814 }
4815
4816 static struct notifier_block kvm_reboot_notifier = {
4817         .notifier_call = kvm_reboot,
4818         .priority = 0,
4819 };
4820
4821 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4822 {
4823         int i;
4824
4825         for (i = 0; i < bus->dev_count; i++) {
4826                 struct kvm_io_device *pos = bus->range[i].dev;
4827
4828                 kvm_iodevice_destructor(pos);
4829         }
4830         kfree(bus);
4831 }
4832
4833 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4834                                  const struct kvm_io_range *r2)
4835 {
4836         gpa_t addr1 = r1->addr;
4837         gpa_t addr2 = r2->addr;
4838
4839         if (addr1 < addr2)
4840                 return -1;
4841
4842         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4843          * accept any overlapping write.  Any order is acceptable for
4844          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4845          * we process all of them.
4846          */
4847         if (r2->len) {
4848                 addr1 += r1->len;
4849                 addr2 += r2->len;
4850         }
4851
4852         if (addr1 > addr2)
4853                 return 1;
4854
4855         return 0;
4856 }
4857
4858 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4859 {
4860         return kvm_io_bus_cmp(p1, p2);
4861 }
4862
4863 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4864                              gpa_t addr, int len)
4865 {
4866         struct kvm_io_range *range, key;
4867         int off;
4868
4869         key = (struct kvm_io_range) {
4870                 .addr = addr,
4871                 .len = len,
4872         };
4873
4874         range = bsearch(&key, bus->range, bus->dev_count,
4875                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4876         if (range == NULL)
4877                 return -ENOENT;
4878
4879         off = range - bus->range;
4880
4881         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4882                 off--;
4883
4884         return off;
4885 }
4886
4887 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4888                               struct kvm_io_range *range, const void *val)
4889 {
4890         int idx;
4891
4892         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4893         if (idx < 0)
4894                 return -EOPNOTSUPP;
4895
4896         while (idx < bus->dev_count &&
4897                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4898                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4899                                         range->len, val))
4900                         return idx;
4901                 idx++;
4902         }
4903
4904         return -EOPNOTSUPP;
4905 }
4906
4907 /* kvm_io_bus_write - called under kvm->slots_lock */
4908 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4909                      int len, const void *val)
4910 {
4911         struct kvm_io_bus *bus;
4912         struct kvm_io_range range;
4913         int r;
4914
4915         range = (struct kvm_io_range) {
4916                 .addr = addr,
4917                 .len = len,
4918         };
4919
4920         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4921         if (!bus)
4922                 return -ENOMEM;
4923         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4924         return r < 0 ? r : 0;
4925 }
4926 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4927
4928 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4929 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4930                             gpa_t addr, int len, const void *val, long cookie)
4931 {
4932         struct kvm_io_bus *bus;
4933         struct kvm_io_range range;
4934
4935         range = (struct kvm_io_range) {
4936                 .addr = addr,
4937                 .len = len,
4938         };
4939
4940         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4941         if (!bus)
4942                 return -ENOMEM;
4943
4944         /* First try the device referenced by cookie. */
4945         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4946             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4947                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4948                                         val))
4949                         return cookie;
4950
4951         /*
4952          * cookie contained garbage; fall back to search and return the
4953          * correct cookie value.
4954          */
4955         return __kvm_io_bus_write(vcpu, bus, &range, val);
4956 }
4957
4958 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4959                              struct kvm_io_range *range, void *val)
4960 {
4961         int idx;
4962
4963         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4964         if (idx < 0)
4965                 return -EOPNOTSUPP;
4966
4967         while (idx < bus->dev_count &&
4968                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4969                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4970                                        range->len, val))
4971                         return idx;
4972                 idx++;
4973         }
4974
4975         return -EOPNOTSUPP;
4976 }
4977
4978 /* kvm_io_bus_read - called under kvm->slots_lock */
4979 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4980                     int len, void *val)
4981 {
4982         struct kvm_io_bus *bus;
4983         struct kvm_io_range range;
4984         int r;
4985
4986         range = (struct kvm_io_range) {
4987                 .addr = addr,
4988                 .len = len,
4989         };
4990
4991         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4992         if (!bus)
4993                 return -ENOMEM;
4994         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4995         return r < 0 ? r : 0;
4996 }
4997
4998 /* Caller must hold slots_lock. */
4999 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5000                             int len, struct kvm_io_device *dev)
5001 {
5002         int i;
5003         struct kvm_io_bus *new_bus, *bus;
5004         struct kvm_io_range range;
5005
5006         bus = kvm_get_bus(kvm, bus_idx);
5007         if (!bus)
5008                 return -ENOMEM;
5009
5010         /* exclude ioeventfd which is limited by maximum fd */
5011         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5012                 return -ENOSPC;
5013
5014         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5015                           GFP_KERNEL_ACCOUNT);
5016         if (!new_bus)
5017                 return -ENOMEM;
5018
5019         range = (struct kvm_io_range) {
5020                 .addr = addr,
5021                 .len = len,
5022                 .dev = dev,
5023         };
5024
5025         for (i = 0; i < bus->dev_count; i++)
5026                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5027                         break;
5028
5029         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5030         new_bus->dev_count++;
5031         new_bus->range[i] = range;
5032         memcpy(new_bus->range + i + 1, bus->range + i,
5033                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5034         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5035         synchronize_srcu_expedited(&kvm->srcu);
5036         kfree(bus);
5037
5038         return 0;
5039 }
5040
5041 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5042                               struct kvm_io_device *dev)
5043 {
5044         int i, j;
5045         struct kvm_io_bus *new_bus, *bus;
5046
5047         lockdep_assert_held(&kvm->slots_lock);
5048
5049         bus = kvm_get_bus(kvm, bus_idx);
5050         if (!bus)
5051                 return 0;
5052
5053         for (i = 0; i < bus->dev_count; i++) {
5054                 if (bus->range[i].dev == dev) {
5055                         break;
5056                 }
5057         }
5058
5059         if (i == bus->dev_count)
5060                 return 0;
5061
5062         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5063                           GFP_KERNEL_ACCOUNT);
5064         if (new_bus) {
5065                 memcpy(new_bus, bus, struct_size(bus, range, i));
5066                 new_bus->dev_count--;
5067                 memcpy(new_bus->range + i, bus->range + i + 1,
5068                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5069         }
5070
5071         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5072         synchronize_srcu_expedited(&kvm->srcu);
5073
5074         /* Destroy the old bus _after_ installing the (null) bus. */
5075         if (!new_bus) {
5076                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5077                 for (j = 0; j < bus->dev_count; j++) {
5078                         if (j == i)
5079                                 continue;
5080                         kvm_iodevice_destructor(bus->range[j].dev);
5081                 }
5082         }
5083
5084         kfree(bus);
5085         return new_bus ? 0 : -ENOMEM;
5086 }
5087
5088 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5089                                          gpa_t addr)
5090 {
5091         struct kvm_io_bus *bus;
5092         int dev_idx, srcu_idx;
5093         struct kvm_io_device *iodev = NULL;
5094
5095         srcu_idx = srcu_read_lock(&kvm->srcu);
5096
5097         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5098         if (!bus)
5099                 goto out_unlock;
5100
5101         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5102         if (dev_idx < 0)
5103                 goto out_unlock;
5104
5105         iodev = bus->range[dev_idx].dev;
5106
5107 out_unlock:
5108         srcu_read_unlock(&kvm->srcu, srcu_idx);
5109
5110         return iodev;
5111 }
5112 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5113
5114 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5115                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5116                            const char *fmt)
5117 {
5118         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5119                                           inode->i_private;
5120
5121         /*
5122          * The debugfs files are a reference to the kvm struct which
5123         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5124         * avoids the race between open and the removal of the debugfs directory.
5125          */
5126         if (!kvm_get_kvm_safe(stat_data->kvm))
5127                 return -ENOENT;
5128
5129         if (simple_attr_open(inode, file, get,
5130                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5131                     ? set : NULL,
5132                     fmt)) {
5133                 kvm_put_kvm(stat_data->kvm);
5134                 return -ENOMEM;
5135         }
5136
5137         return 0;
5138 }
5139
5140 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5141 {
5142         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5143                                           inode->i_private;
5144
5145         simple_attr_release(inode, file);
5146         kvm_put_kvm(stat_data->kvm);
5147
5148         return 0;
5149 }
5150
5151 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5152 {
5153         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5154
5155         return 0;
5156 }
5157
5158 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5159 {
5160         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5161
5162         return 0;
5163 }
5164
5165 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5166 {
5167         int i;
5168         struct kvm_vcpu *vcpu;
5169
5170         *val = 0;
5171
5172         kvm_for_each_vcpu(i, vcpu, kvm)
5173                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5174
5175         return 0;
5176 }
5177
5178 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5179 {
5180         int i;
5181         struct kvm_vcpu *vcpu;
5182
5183         kvm_for_each_vcpu(i, vcpu, kvm)
5184                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5185
5186         return 0;
5187 }
5188
5189 static int kvm_stat_data_get(void *data, u64 *val)
5190 {
5191         int r = -EFAULT;
5192         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5193
5194         switch (stat_data->kind) {
5195         case KVM_STAT_VM:
5196                 r = kvm_get_stat_per_vm(stat_data->kvm,
5197                                         stat_data->desc->desc.offset, val);
5198                 break;
5199         case KVM_STAT_VCPU:
5200                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5201                                           stat_data->desc->desc.offset, val);
5202                 break;
5203         }
5204
5205         return r;
5206 }
5207
5208 static int kvm_stat_data_clear(void *data, u64 val)
5209 {
5210         int r = -EFAULT;
5211         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5212
5213         if (val)
5214                 return -EINVAL;
5215
5216         switch (stat_data->kind) {
5217         case KVM_STAT_VM:
5218                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5219                                           stat_data->desc->desc.offset);
5220                 break;
5221         case KVM_STAT_VCPU:
5222                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5223                                             stat_data->desc->desc.offset);
5224                 break;
5225         }
5226
5227         return r;
5228 }
5229
5230 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5231 {
5232         __simple_attr_check_format("%llu\n", 0ull);
5233         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5234                                 kvm_stat_data_clear, "%llu\n");
5235 }
5236
5237 static const struct file_operations stat_fops_per_vm = {
5238         .owner = THIS_MODULE,
5239         .open = kvm_stat_data_open,
5240         .release = kvm_debugfs_release,
5241         .read = simple_attr_read,
5242         .write = simple_attr_write,
5243         .llseek = no_llseek,
5244 };
5245
5246 static int vm_stat_get(void *_offset, u64 *val)
5247 {
5248         unsigned offset = (long)_offset;
5249         struct kvm *kvm;
5250         u64 tmp_val;
5251
5252         *val = 0;
5253         mutex_lock(&kvm_lock);
5254         list_for_each_entry(kvm, &vm_list, vm_list) {
5255                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5256                 *val += tmp_val;
5257         }
5258         mutex_unlock(&kvm_lock);
5259         return 0;
5260 }
5261
5262 static int vm_stat_clear(void *_offset, u64 val)
5263 {
5264         unsigned offset = (long)_offset;
5265         struct kvm *kvm;
5266
5267         if (val)
5268                 return -EINVAL;
5269
5270         mutex_lock(&kvm_lock);
5271         list_for_each_entry(kvm, &vm_list, vm_list) {
5272                 kvm_clear_stat_per_vm(kvm, offset);
5273         }
5274         mutex_unlock(&kvm_lock);
5275
5276         return 0;
5277 }
5278
5279 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5280 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5281
5282 static int vcpu_stat_get(void *_offset, u64 *val)
5283 {
5284         unsigned offset = (long)_offset;
5285         struct kvm *kvm;
5286         u64 tmp_val;
5287
5288         *val = 0;
5289         mutex_lock(&kvm_lock);
5290         list_for_each_entry(kvm, &vm_list, vm_list) {
5291                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5292                 *val += tmp_val;
5293         }
5294         mutex_unlock(&kvm_lock);
5295         return 0;
5296 }
5297
5298 static int vcpu_stat_clear(void *_offset, u64 val)
5299 {
5300         unsigned offset = (long)_offset;
5301         struct kvm *kvm;
5302
5303         if (val)
5304                 return -EINVAL;
5305
5306         mutex_lock(&kvm_lock);
5307         list_for_each_entry(kvm, &vm_list, vm_list) {
5308                 kvm_clear_stat_per_vcpu(kvm, offset);
5309         }
5310         mutex_unlock(&kvm_lock);
5311
5312         return 0;
5313 }
5314
5315 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5316                         "%llu\n");
5317 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5318
5319 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5320 {
5321         struct kobj_uevent_env *env;
5322         unsigned long long created, active;
5323
5324         if (!kvm_dev.this_device || !kvm)
5325                 return;
5326
5327         mutex_lock(&kvm_lock);
5328         if (type == KVM_EVENT_CREATE_VM) {
5329                 kvm_createvm_count++;
5330                 kvm_active_vms++;
5331         } else if (type == KVM_EVENT_DESTROY_VM) {
5332                 kvm_active_vms--;
5333         }
5334         created = kvm_createvm_count;
5335         active = kvm_active_vms;
5336         mutex_unlock(&kvm_lock);
5337
5338         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5339         if (!env)
5340                 return;
5341
5342         add_uevent_var(env, "CREATED=%llu", created);
5343         add_uevent_var(env, "COUNT=%llu", active);
5344
5345         if (type == KVM_EVENT_CREATE_VM) {
5346                 add_uevent_var(env, "EVENT=create");
5347                 kvm->userspace_pid = task_pid_nr(current);
5348         } else if (type == KVM_EVENT_DESTROY_VM) {
5349                 add_uevent_var(env, "EVENT=destroy");
5350         }
5351         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5352
5353         if (kvm->debugfs_dentry) {
5354                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5355
5356                 if (p) {
5357                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5358                         if (!IS_ERR(tmp))
5359                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5360                         kfree(p);
5361                 }
5362         }
5363         /* no need for checks, since we are adding at most only 5 keys */
5364         env->envp[env->envp_idx++] = NULL;
5365         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5366         kfree(env);
5367 }
5368
5369 static void kvm_init_debug(void)
5370 {
5371         const struct file_operations *fops;
5372         const struct _kvm_stats_desc *pdesc;
5373         int i;
5374
5375         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5376
5377         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5378                 pdesc = &kvm_vm_stats_desc[i];
5379                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5380                         fops = &vm_stat_fops;
5381                 else
5382                         fops = &vm_stat_readonly_fops;
5383                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5384                                 kvm_debugfs_dir,
5385                                 (void *)(long)pdesc->desc.offset, fops);
5386         }
5387
5388         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5389                 pdesc = &kvm_vcpu_stats_desc[i];
5390                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5391                         fops = &vcpu_stat_fops;
5392                 else
5393                         fops = &vcpu_stat_readonly_fops;
5394                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5395                                 kvm_debugfs_dir,
5396                                 (void *)(long)pdesc->desc.offset, fops);
5397         }
5398 }
5399
5400 static int kvm_suspend(void)
5401 {
5402         if (kvm_usage_count)
5403                 hardware_disable_nolock(NULL);
5404         return 0;
5405 }
5406
5407 static void kvm_resume(void)
5408 {
5409         if (kvm_usage_count) {
5410 #ifdef CONFIG_LOCKDEP
5411                 WARN_ON(lockdep_is_held(&kvm_count_lock));
5412 #endif
5413                 hardware_enable_nolock(NULL);
5414         }
5415 }
5416
5417 static struct syscore_ops kvm_syscore_ops = {
5418         .suspend = kvm_suspend,
5419         .resume = kvm_resume,
5420 };
5421
5422 static inline
5423 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5424 {
5425         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5426 }
5427
5428 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5429 {
5430         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5431
5432         WRITE_ONCE(vcpu->preempted, false);
5433         WRITE_ONCE(vcpu->ready, false);
5434
5435         __this_cpu_write(kvm_running_vcpu, vcpu);
5436         kvm_arch_sched_in(vcpu, cpu);
5437         kvm_arch_vcpu_load(vcpu, cpu);
5438 }
5439
5440 static void kvm_sched_out(struct preempt_notifier *pn,
5441                           struct task_struct *next)
5442 {
5443         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5444
5445         if (current->on_rq) {
5446                 WRITE_ONCE(vcpu->preempted, true);
5447                 WRITE_ONCE(vcpu->ready, true);
5448         }
5449         kvm_arch_vcpu_put(vcpu);
5450         __this_cpu_write(kvm_running_vcpu, NULL);
5451 }
5452
5453 /**
5454  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5455  *
5456  * We can disable preemption locally around accessing the per-CPU variable,
5457  * and use the resolved vcpu pointer after enabling preemption again,
5458  * because even if the current thread is migrated to another CPU, reading
5459  * the per-CPU value later will give us the same value as we update the
5460  * per-CPU variable in the preempt notifier handlers.
5461  */
5462 struct kvm_vcpu *kvm_get_running_vcpu(void)
5463 {
5464         struct kvm_vcpu *vcpu;
5465
5466         preempt_disable();
5467         vcpu = __this_cpu_read(kvm_running_vcpu);
5468         preempt_enable();
5469
5470         return vcpu;
5471 }
5472 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5473
5474 /**
5475  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5476  */
5477 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5478 {
5479         return &kvm_running_vcpu;
5480 }
5481
5482 struct kvm_cpu_compat_check {
5483         void *opaque;
5484         int *ret;
5485 };
5486
5487 static void check_processor_compat(void *data)
5488 {
5489         struct kvm_cpu_compat_check *c = data;
5490
5491         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5492 }
5493
5494 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5495                   struct module *module)
5496 {
5497         struct kvm_cpu_compat_check c;
5498         int r;
5499         int cpu;
5500
5501         r = kvm_arch_init(opaque);
5502         if (r)
5503                 goto out_fail;
5504
5505         /*
5506          * kvm_arch_init makes sure there's at most one caller
5507          * for architectures that support multiple implementations,
5508          * like intel and amd on x86.
5509          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5510          * conflicts in case kvm is already setup for another implementation.
5511          */
5512         r = kvm_irqfd_init();
5513         if (r)
5514                 goto out_irqfd;
5515
5516         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5517                 r = -ENOMEM;
5518                 goto out_free_0;
5519         }
5520
5521         r = kvm_arch_hardware_setup(opaque);
5522         if (r < 0)
5523                 goto out_free_1;
5524
5525         c.ret = &r;
5526         c.opaque = opaque;
5527         for_each_online_cpu(cpu) {
5528                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5529                 if (r < 0)
5530                         goto out_free_2;
5531         }
5532
5533         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5534                                       kvm_starting_cpu, kvm_dying_cpu);
5535         if (r)
5536                 goto out_free_2;
5537         register_reboot_notifier(&kvm_reboot_notifier);
5538
5539         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5540         if (!vcpu_align)
5541                 vcpu_align = __alignof__(struct kvm_vcpu);
5542         kvm_vcpu_cache =
5543                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5544                                            SLAB_ACCOUNT,
5545                                            offsetof(struct kvm_vcpu, arch),
5546                                            offsetofend(struct kvm_vcpu, stats_id)
5547                                            - offsetof(struct kvm_vcpu, arch),
5548                                            NULL);
5549         if (!kvm_vcpu_cache) {
5550                 r = -ENOMEM;
5551                 goto out_free_3;
5552         }
5553
5554         for_each_possible_cpu(cpu) {
5555                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5556                                             GFP_KERNEL, cpu_to_node(cpu))) {
5557                         r = -ENOMEM;
5558                         goto out_free_4;
5559                 }
5560         }
5561
5562         r = kvm_async_pf_init();
5563         if (r)
5564                 goto out_free_5;
5565
5566         kvm_chardev_ops.owner = module;
5567         kvm_vm_fops.owner = module;
5568         kvm_vcpu_fops.owner = module;
5569
5570         r = misc_register(&kvm_dev);
5571         if (r) {
5572                 pr_err("kvm: misc device register failed\n");
5573                 goto out_unreg;
5574         }
5575
5576         register_syscore_ops(&kvm_syscore_ops);
5577
5578         kvm_preempt_ops.sched_in = kvm_sched_in;
5579         kvm_preempt_ops.sched_out = kvm_sched_out;
5580
5581         kvm_init_debug();
5582
5583         r = kvm_vfio_ops_init();
5584         WARN_ON(r);
5585
5586         return 0;
5587
5588 out_unreg:
5589         kvm_async_pf_deinit();
5590 out_free_5:
5591         for_each_possible_cpu(cpu)
5592                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5593 out_free_4:
5594         kmem_cache_destroy(kvm_vcpu_cache);
5595 out_free_3:
5596         unregister_reboot_notifier(&kvm_reboot_notifier);
5597         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5598 out_free_2:
5599         kvm_arch_hardware_unsetup();
5600 out_free_1:
5601         free_cpumask_var(cpus_hardware_enabled);
5602 out_free_0:
5603         kvm_irqfd_exit();
5604 out_irqfd:
5605         kvm_arch_exit();
5606 out_fail:
5607         return r;
5608 }
5609 EXPORT_SYMBOL_GPL(kvm_init);
5610
5611 void kvm_exit(void)
5612 {
5613         int cpu;
5614
5615         debugfs_remove_recursive(kvm_debugfs_dir);
5616         misc_deregister(&kvm_dev);
5617         for_each_possible_cpu(cpu)
5618                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5619         kmem_cache_destroy(kvm_vcpu_cache);
5620         kvm_async_pf_deinit();
5621         unregister_syscore_ops(&kvm_syscore_ops);
5622         unregister_reboot_notifier(&kvm_reboot_notifier);
5623         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5624         on_each_cpu(hardware_disable_nolock, NULL, 1);
5625         kvm_arch_hardware_unsetup();
5626         kvm_arch_exit();
5627         kvm_irqfd_exit();
5628         free_cpumask_var(cpus_hardware_enabled);
5629         kvm_vfio_ops_exit();
5630 }
5631 EXPORT_SYMBOL_GPL(kvm_exit);
5632
5633 struct kvm_vm_worker_thread_context {
5634         struct kvm *kvm;
5635         struct task_struct *parent;
5636         struct completion init_done;
5637         kvm_vm_thread_fn_t thread_fn;
5638         uintptr_t data;
5639         int err;
5640 };
5641
5642 static int kvm_vm_worker_thread(void *context)
5643 {
5644         /*
5645          * The init_context is allocated on the stack of the parent thread, so
5646          * we have to locally copy anything that is needed beyond initialization
5647          */
5648         struct kvm_vm_worker_thread_context *init_context = context;
5649         struct kvm *kvm = init_context->kvm;
5650         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5651         uintptr_t data = init_context->data;
5652         int err;
5653
5654         err = kthread_park(current);
5655         /* kthread_park(current) is never supposed to return an error */
5656         WARN_ON(err != 0);
5657         if (err)
5658                 goto init_complete;
5659
5660         err = cgroup_attach_task_all(init_context->parent, current);
5661         if (err) {
5662                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5663                         __func__, err);
5664                 goto init_complete;
5665         }
5666
5667         set_user_nice(current, task_nice(init_context->parent));
5668
5669 init_complete:
5670         init_context->err = err;
5671         complete(&init_context->init_done);
5672         init_context = NULL;
5673
5674         if (err)
5675                 return err;
5676
5677         /* Wait to be woken up by the spawner before proceeding. */
5678         kthread_parkme();
5679
5680         if (!kthread_should_stop())
5681                 err = thread_fn(kvm, data);
5682
5683         return err;
5684 }
5685
5686 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5687                                 uintptr_t data, const char *name,
5688                                 struct task_struct **thread_ptr)
5689 {
5690         struct kvm_vm_worker_thread_context init_context = {};
5691         struct task_struct *thread;
5692
5693         *thread_ptr = NULL;
5694         init_context.kvm = kvm;
5695         init_context.parent = current;
5696         init_context.thread_fn = thread_fn;
5697         init_context.data = data;
5698         init_completion(&init_context.init_done);
5699
5700         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5701                              "%s-%d", name, task_pid_nr(current));
5702         if (IS_ERR(thread))
5703                 return PTR_ERR(thread);
5704
5705         /* kthread_run is never supposed to return NULL */
5706         WARN_ON(thread == NULL);
5707
5708         wait_for_completion(&init_context.init_done);
5709
5710         if (!init_context.err)
5711                 *thread_ptr = thread;
5712
5713         return init_context.err;
5714 }