Merge tag 'x86-splitlock-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "mmu_lock.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 #include <linux/kvm_dirty_ring.h>
68
69 /* Worst case buffer size needed for holding an integer. */
70 #define ITOA_MAX_LEN 12
71
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74
75 /* Architectures should define their poll value according to the halt latency */
76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
77 module_param(halt_poll_ns, uint, 0644);
78 EXPORT_SYMBOL_GPL(halt_poll_ns);
79
80 /* Default doubles per-vcpu halt_poll_ns. */
81 unsigned int halt_poll_ns_grow = 2;
82 module_param(halt_poll_ns_grow, uint, 0644);
83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84
85 /* The start value to grow halt_poll_ns from */
86 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
87 module_param(halt_poll_ns_grow_start, uint, 0644);
88 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
89
90 /* Default resets per-vcpu halt_poll_ns . */
91 unsigned int halt_poll_ns_shrink;
92 module_param(halt_poll_ns_shrink, uint, 0644);
93 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
94
95 /*
96  * Ordering of locks:
97  *
98  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
99  */
100
101 DEFINE_MUTEX(kvm_lock);
102 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
103 LIST_HEAD(vm_list);
104
105 static cpumask_var_t cpus_hardware_enabled;
106 static int kvm_usage_count;
107 static atomic_t hardware_enable_failed;
108
109 static struct kmem_cache *kvm_vcpu_cache;
110
111 static __read_mostly struct preempt_ops kvm_preempt_ops;
112 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
113
114 struct dentry *kvm_debugfs_dir;
115 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
116
117 static int kvm_debugfs_num_entries;
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                                                    unsigned long start, unsigned long end)
160 {
161 }
162
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165         /*
166          * The metadata used by is_zone_device_page() to determine whether or
167          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168          * the device has been pinned, e.g. by get_user_pages().  WARN if the
169          * page_count() is zero to help detect bad usage of this helper.
170          */
171         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172                 return false;
173
174         return is_zone_device_page(pfn_to_page(pfn));
175 }
176
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179         /*
180          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181          * perspective they are "normal" pages, albeit with slightly different
182          * usage rules.
183          */
184         if (pfn_valid(pfn))
185                 return PageReserved(pfn_to_page(pfn)) &&
186                        !is_zero_pfn(pfn) &&
187                        !kvm_is_zone_device_pfn(pfn);
188
189         return true;
190 }
191
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194         struct page *page = pfn_to_page(pfn);
195
196         if (!PageTransCompoundMap(page))
197                 return false;
198
199         return is_transparent_hugepage(compound_head(page));
200 }
201
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207         int cpu = get_cpu();
208
209         __this_cpu_write(kvm_running_vcpu, vcpu);
210         preempt_notifier_register(&vcpu->preempt_notifier);
211         kvm_arch_vcpu_load(vcpu, cpu);
212         put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218         preempt_disable();
219         kvm_arch_vcpu_put(vcpu);
220         preempt_notifier_unregister(&vcpu->preempt_notifier);
221         __this_cpu_write(kvm_running_vcpu, NULL);
222         preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230
231         /*
232          * We need to wait for the VCPU to reenable interrupts and get out of
233          * READING_SHADOW_PAGE_TABLES mode.
234          */
235         if (req & KVM_REQUEST_WAIT)
236                 return mode != OUTSIDE_GUEST_MODE;
237
238         /*
239          * Need to kick a running VCPU, but otherwise there is nothing to do.
240          */
241         return mode == IN_GUEST_MODE;
242 }
243
244 static void ack_flush(void *_completed)
245 {
246 }
247
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250         if (unlikely(!cpus))
251                 cpus = cpu_online_mask;
252
253         if (cpumask_empty(cpus))
254                 return false;
255
256         smp_call_function_many(cpus, ack_flush, NULL, wait);
257         return true;
258 }
259
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261                                  struct kvm_vcpu *except,
262                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264         int i, cpu, me;
265         struct kvm_vcpu *vcpu;
266         bool called;
267
268         me = get_cpu();
269
270         kvm_for_each_vcpu(i, vcpu, kvm) {
271                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272                     vcpu == except)
273                         continue;
274
275                 kvm_make_request(req, vcpu);
276                 cpu = vcpu->cpu;
277
278                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279                         continue;
280
281                 if (tmp != NULL && cpu != -1 && cpu != me &&
282                     kvm_request_needs_ipi(vcpu, req))
283                         __cpumask_set_cpu(cpu, tmp);
284         }
285
286         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287         put_cpu();
288
289         return called;
290 }
291
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293                                       struct kvm_vcpu *except)
294 {
295         cpumask_var_t cpus;
296         bool called;
297
298         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
300         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301
302         free_cpumask_var(cpus);
303         return called;
304 }
305
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308         return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
311
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315         /*
316          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317          * kvm_make_all_cpus_request.
318          */
319         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320
321         /*
322          * We want to publish modifications to the page tables before reading
323          * mode. Pairs with a memory barrier in arch-specific code.
324          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325          * and smp_mb in walk_shadow_page_lockless_begin/end.
326          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327          *
328          * There is already an smp_mb__after_atomic() before
329          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330          * barrier here.
331          */
332         if (!kvm_arch_flush_remote_tlb(kvm)
333             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334                 ++kvm->stat.remote_tlb_flush;
335         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
336 }
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 #endif
339
340 void kvm_reload_remote_mmus(struct kvm *kvm)
341 {
342         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 }
344
345 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
346 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
347                                                gfp_t gfp_flags)
348 {
349         gfp_flags |= mc->gfp_zero;
350
351         if (mc->kmem_cache)
352                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
353         else
354                 return (void *)__get_free_page(gfp_flags);
355 }
356
357 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
358 {
359         void *obj;
360
361         if (mc->nobjs >= min)
362                 return 0;
363         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
364                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
365                 if (!obj)
366                         return mc->nobjs >= min ? 0 : -ENOMEM;
367                 mc->objects[mc->nobjs++] = obj;
368         }
369         return 0;
370 }
371
372 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
373 {
374         return mc->nobjs;
375 }
376
377 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
378 {
379         while (mc->nobjs) {
380                 if (mc->kmem_cache)
381                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
382                 else
383                         free_page((unsigned long)mc->objects[--mc->nobjs]);
384         }
385 }
386
387 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
388 {
389         void *p;
390
391         if (WARN_ON(!mc->nobjs))
392                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
393         else
394                 p = mc->objects[--mc->nobjs];
395         BUG_ON(!p);
396         return p;
397 }
398 #endif
399
400 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
401 {
402         mutex_init(&vcpu->mutex);
403         vcpu->cpu = -1;
404         vcpu->kvm = kvm;
405         vcpu->vcpu_id = id;
406         vcpu->pid = NULL;
407         rcuwait_init(&vcpu->wait);
408         kvm_async_pf_vcpu_init(vcpu);
409
410         vcpu->pre_pcpu = -1;
411         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
412
413         kvm_vcpu_set_in_spin_loop(vcpu, false);
414         kvm_vcpu_set_dy_eligible(vcpu, false);
415         vcpu->preempted = false;
416         vcpu->ready = false;
417         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
418 }
419
420 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
421 {
422         kvm_dirty_ring_free(&vcpu->dirty_ring);
423         kvm_arch_vcpu_destroy(vcpu);
424
425         /*
426          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
427          * the vcpu->pid pointer, and at destruction time all file descriptors
428          * are already gone.
429          */
430         put_pid(rcu_dereference_protected(vcpu->pid, 1));
431
432         free_page((unsigned long)vcpu->run);
433         kmem_cache_free(kvm_vcpu_cache, vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
436
437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
438 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
439 {
440         return container_of(mn, struct kvm, mmu_notifier);
441 }
442
443 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
444                                               struct mm_struct *mm,
445                                               unsigned long start, unsigned long end)
446 {
447         struct kvm *kvm = mmu_notifier_to_kvm(mn);
448         int idx;
449
450         idx = srcu_read_lock(&kvm->srcu);
451         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
452         srcu_read_unlock(&kvm->srcu, idx);
453 }
454
455 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
456
457 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
458                              unsigned long end);
459
460 struct kvm_hva_range {
461         unsigned long start;
462         unsigned long end;
463         pte_t pte;
464         hva_handler_t handler;
465         on_lock_fn_t on_lock;
466         bool flush_on_ret;
467         bool may_block;
468 };
469
470 /*
471  * Use a dedicated stub instead of NULL to indicate that there is no callback
472  * function/handler.  The compiler technically can't guarantee that a real
473  * function will have a non-zero address, and so it will generate code to
474  * check for !NULL, whereas comparing against a stub will be elided at compile
475  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
476  */
477 static void kvm_null_fn(void)
478 {
479
480 }
481 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
482
483 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
484                                                   const struct kvm_hva_range *range)
485 {
486         bool ret = false, locked = false;
487         struct kvm_gfn_range gfn_range;
488         struct kvm_memory_slot *slot;
489         struct kvm_memslots *slots;
490         int i, idx;
491
492         /* A null handler is allowed if and only if on_lock() is provided. */
493         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
494                          IS_KVM_NULL_FN(range->handler)))
495                 return 0;
496
497         idx = srcu_read_lock(&kvm->srcu);
498
499         /* The on_lock() path does not yet support lock elision. */
500         if (!IS_KVM_NULL_FN(range->on_lock)) {
501                 locked = true;
502                 KVM_MMU_LOCK(kvm);
503
504                 range->on_lock(kvm, range->start, range->end);
505
506                 if (IS_KVM_NULL_FN(range->handler))
507                         goto out_unlock;
508         }
509
510         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
511                 slots = __kvm_memslots(kvm, i);
512                 kvm_for_each_memslot(slot, slots) {
513                         unsigned long hva_start, hva_end;
514
515                         hva_start = max(range->start, slot->userspace_addr);
516                         hva_end = min(range->end, slot->userspace_addr +
517                                                   (slot->npages << PAGE_SHIFT));
518                         if (hva_start >= hva_end)
519                                 continue;
520
521                         /*
522                          * To optimize for the likely case where the address
523                          * range is covered by zero or one memslots, don't
524                          * bother making these conditional (to avoid writes on
525                          * the second or later invocation of the handler).
526                          */
527                         gfn_range.pte = range->pte;
528                         gfn_range.may_block = range->may_block;
529
530                         /*
531                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
532                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
533                          */
534                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
535                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
536                         gfn_range.slot = slot;
537
538                         if (!locked) {
539                                 locked = true;
540                                 KVM_MMU_LOCK(kvm);
541                         }
542                         ret |= range->handler(kvm, &gfn_range);
543                 }
544         }
545
546         if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
547                 kvm_flush_remote_tlbs(kvm);
548
549 out_unlock:
550         if (locked)
551                 KVM_MMU_UNLOCK(kvm);
552
553         srcu_read_unlock(&kvm->srcu, idx);
554
555         /* The notifiers are averse to booleans. :-( */
556         return (int)ret;
557 }
558
559 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
560                                                 unsigned long start,
561                                                 unsigned long end,
562                                                 pte_t pte,
563                                                 hva_handler_t handler)
564 {
565         struct kvm *kvm = mmu_notifier_to_kvm(mn);
566         const struct kvm_hva_range range = {
567                 .start          = start,
568                 .end            = end,
569                 .pte            = pte,
570                 .handler        = handler,
571                 .on_lock        = (void *)kvm_null_fn,
572                 .flush_on_ret   = true,
573                 .may_block      = false,
574         };
575
576         return __kvm_handle_hva_range(kvm, &range);
577 }
578
579 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
580                                                          unsigned long start,
581                                                          unsigned long end,
582                                                          hva_handler_t handler)
583 {
584         struct kvm *kvm = mmu_notifier_to_kvm(mn);
585         const struct kvm_hva_range range = {
586                 .start          = start,
587                 .end            = end,
588                 .pte            = __pte(0),
589                 .handler        = handler,
590                 .on_lock        = (void *)kvm_null_fn,
591                 .flush_on_ret   = false,
592                 .may_block      = false,
593         };
594
595         return __kvm_handle_hva_range(kvm, &range);
596 }
597 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
598                                         struct mm_struct *mm,
599                                         unsigned long address,
600                                         pte_t pte)
601 {
602         struct kvm *kvm = mmu_notifier_to_kvm(mn);
603
604         trace_kvm_set_spte_hva(address);
605
606         /*
607          * .change_pte() must be surrounded by .invalidate_range_{start,end}(),
608          * and so always runs with an elevated notifier count.  This obviates
609          * the need to bump the sequence count.
610          */
611         WARN_ON_ONCE(!kvm->mmu_notifier_count);
612
613         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
614 }
615
616 static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
617                                    unsigned long end)
618 {
619         /*
620          * The count increase must become visible at unlock time as no
621          * spte can be established without taking the mmu_lock and
622          * count is also read inside the mmu_lock critical section.
623          */
624         kvm->mmu_notifier_count++;
625         if (likely(kvm->mmu_notifier_count == 1)) {
626                 kvm->mmu_notifier_range_start = start;
627                 kvm->mmu_notifier_range_end = end;
628         } else {
629                 /*
630                  * Fully tracking multiple concurrent ranges has dimishing
631                  * returns. Keep things simple and just find the minimal range
632                  * which includes the current and new ranges. As there won't be
633                  * enough information to subtract a range after its invalidate
634                  * completes, any ranges invalidated concurrently will
635                  * accumulate and persist until all outstanding invalidates
636                  * complete.
637                  */
638                 kvm->mmu_notifier_range_start =
639                         min(kvm->mmu_notifier_range_start, start);
640                 kvm->mmu_notifier_range_end =
641                         max(kvm->mmu_notifier_range_end, end);
642         }
643 }
644
645 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
646                                         const struct mmu_notifier_range *range)
647 {
648         struct kvm *kvm = mmu_notifier_to_kvm(mn);
649         const struct kvm_hva_range hva_range = {
650                 .start          = range->start,
651                 .end            = range->end,
652                 .pte            = __pte(0),
653                 .handler        = kvm_unmap_gfn_range,
654                 .on_lock        = kvm_inc_notifier_count,
655                 .flush_on_ret   = true,
656                 .may_block      = mmu_notifier_range_blockable(range),
657         };
658
659         trace_kvm_unmap_hva_range(range->start, range->end);
660
661         __kvm_handle_hva_range(kvm, &hva_range);
662
663         return 0;
664 }
665
666 static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
667                                    unsigned long end)
668 {
669         /*
670          * This sequence increase will notify the kvm page fault that
671          * the page that is going to be mapped in the spte could have
672          * been freed.
673          */
674         kvm->mmu_notifier_seq++;
675         smp_wmb();
676         /*
677          * The above sequence increase must be visible before the
678          * below count decrease, which is ensured by the smp_wmb above
679          * in conjunction with the smp_rmb in mmu_notifier_retry().
680          */
681         kvm->mmu_notifier_count--;
682 }
683
684 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
685                                         const struct mmu_notifier_range *range)
686 {
687         struct kvm *kvm = mmu_notifier_to_kvm(mn);
688         const struct kvm_hva_range hva_range = {
689                 .start          = range->start,
690                 .end            = range->end,
691                 .pte            = __pte(0),
692                 .handler        = (void *)kvm_null_fn,
693                 .on_lock        = kvm_dec_notifier_count,
694                 .flush_on_ret   = false,
695                 .may_block      = mmu_notifier_range_blockable(range),
696         };
697
698         __kvm_handle_hva_range(kvm, &hva_range);
699
700         BUG_ON(kvm->mmu_notifier_count < 0);
701 }
702
703 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
704                                               struct mm_struct *mm,
705                                               unsigned long start,
706                                               unsigned long end)
707 {
708         trace_kvm_age_hva(start, end);
709
710         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
711 }
712
713 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
714                                         struct mm_struct *mm,
715                                         unsigned long start,
716                                         unsigned long end)
717 {
718         trace_kvm_age_hva(start, end);
719
720         /*
721          * Even though we do not flush TLB, this will still adversely
722          * affect performance on pre-Haswell Intel EPT, where there is
723          * no EPT Access Bit to clear so that we have to tear down EPT
724          * tables instead. If we find this unacceptable, we can always
725          * add a parameter to kvm_age_hva so that it effectively doesn't
726          * do anything on clear_young.
727          *
728          * Also note that currently we never issue secondary TLB flushes
729          * from clear_young, leaving this job up to the regular system
730          * cadence. If we find this inaccurate, we might come up with a
731          * more sophisticated heuristic later.
732          */
733         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
734 }
735
736 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
737                                        struct mm_struct *mm,
738                                        unsigned long address)
739 {
740         trace_kvm_test_age_hva(address);
741
742         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
743                                              kvm_test_age_gfn);
744 }
745
746 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
747                                      struct mm_struct *mm)
748 {
749         struct kvm *kvm = mmu_notifier_to_kvm(mn);
750         int idx;
751
752         idx = srcu_read_lock(&kvm->srcu);
753         kvm_arch_flush_shadow_all(kvm);
754         srcu_read_unlock(&kvm->srcu, idx);
755 }
756
757 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
758         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
759         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
760         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
761         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
762         .clear_young            = kvm_mmu_notifier_clear_young,
763         .test_young             = kvm_mmu_notifier_test_young,
764         .change_pte             = kvm_mmu_notifier_change_pte,
765         .release                = kvm_mmu_notifier_release,
766 };
767
768 static int kvm_init_mmu_notifier(struct kvm *kvm)
769 {
770         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
771         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
772 }
773
774 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
775
776 static int kvm_init_mmu_notifier(struct kvm *kvm)
777 {
778         return 0;
779 }
780
781 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
782
783 static struct kvm_memslots *kvm_alloc_memslots(void)
784 {
785         int i;
786         struct kvm_memslots *slots;
787
788         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
789         if (!slots)
790                 return NULL;
791
792         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
793                 slots->id_to_index[i] = -1;
794
795         return slots;
796 }
797
798 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
799 {
800         if (!memslot->dirty_bitmap)
801                 return;
802
803         kvfree(memslot->dirty_bitmap);
804         memslot->dirty_bitmap = NULL;
805 }
806
807 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
808 {
809         kvm_destroy_dirty_bitmap(slot);
810
811         kvm_arch_free_memslot(kvm, slot);
812
813         slot->flags = 0;
814         slot->npages = 0;
815 }
816
817 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
818 {
819         struct kvm_memory_slot *memslot;
820
821         if (!slots)
822                 return;
823
824         kvm_for_each_memslot(memslot, slots)
825                 kvm_free_memslot(kvm, memslot);
826
827         kvfree(slots);
828 }
829
830 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
831 {
832         int i;
833
834         if (!kvm->debugfs_dentry)
835                 return;
836
837         debugfs_remove_recursive(kvm->debugfs_dentry);
838
839         if (kvm->debugfs_stat_data) {
840                 for (i = 0; i < kvm_debugfs_num_entries; i++)
841                         kfree(kvm->debugfs_stat_data[i]);
842                 kfree(kvm->debugfs_stat_data);
843         }
844 }
845
846 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
847 {
848         char dir_name[ITOA_MAX_LEN * 2];
849         struct kvm_stat_data *stat_data;
850         struct kvm_stats_debugfs_item *p;
851
852         if (!debugfs_initialized())
853                 return 0;
854
855         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
856         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
857
858         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
859                                          sizeof(*kvm->debugfs_stat_data),
860                                          GFP_KERNEL_ACCOUNT);
861         if (!kvm->debugfs_stat_data)
862                 return -ENOMEM;
863
864         for (p = debugfs_entries; p->name; p++) {
865                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
866                 if (!stat_data)
867                         return -ENOMEM;
868
869                 stat_data->kvm = kvm;
870                 stat_data->dbgfs_item = p;
871                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
872                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
873                                     kvm->debugfs_dentry, stat_data,
874                                     &stat_fops_per_vm);
875         }
876         return 0;
877 }
878
879 /*
880  * Called after the VM is otherwise initialized, but just before adding it to
881  * the vm_list.
882  */
883 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
884 {
885         return 0;
886 }
887
888 /*
889  * Called just after removing the VM from the vm_list, but before doing any
890  * other destruction.
891  */
892 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
893 {
894 }
895
896 static struct kvm *kvm_create_vm(unsigned long type)
897 {
898         struct kvm *kvm = kvm_arch_alloc_vm();
899         int r = -ENOMEM;
900         int i;
901
902         if (!kvm)
903                 return ERR_PTR(-ENOMEM);
904
905         KVM_MMU_LOCK_INIT(kvm);
906         mmgrab(current->mm);
907         kvm->mm = current->mm;
908         kvm_eventfd_init(kvm);
909         mutex_init(&kvm->lock);
910         mutex_init(&kvm->irq_lock);
911         mutex_init(&kvm->slots_lock);
912         INIT_LIST_HEAD(&kvm->devices);
913
914         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
915
916         if (init_srcu_struct(&kvm->srcu))
917                 goto out_err_no_srcu;
918         if (init_srcu_struct(&kvm->irq_srcu))
919                 goto out_err_no_irq_srcu;
920
921         refcount_set(&kvm->users_count, 1);
922         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
923                 struct kvm_memslots *slots = kvm_alloc_memslots();
924
925                 if (!slots)
926                         goto out_err_no_arch_destroy_vm;
927                 /* Generations must be different for each address space. */
928                 slots->generation = i;
929                 rcu_assign_pointer(kvm->memslots[i], slots);
930         }
931
932         for (i = 0; i < KVM_NR_BUSES; i++) {
933                 rcu_assign_pointer(kvm->buses[i],
934                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
935                 if (!kvm->buses[i])
936                         goto out_err_no_arch_destroy_vm;
937         }
938
939         kvm->max_halt_poll_ns = halt_poll_ns;
940
941         r = kvm_arch_init_vm(kvm, type);
942         if (r)
943                 goto out_err_no_arch_destroy_vm;
944
945         r = hardware_enable_all();
946         if (r)
947                 goto out_err_no_disable;
948
949 #ifdef CONFIG_HAVE_KVM_IRQFD
950         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
951 #endif
952
953         r = kvm_init_mmu_notifier(kvm);
954         if (r)
955                 goto out_err_no_mmu_notifier;
956
957         r = kvm_arch_post_init_vm(kvm);
958         if (r)
959                 goto out_err;
960
961         mutex_lock(&kvm_lock);
962         list_add(&kvm->vm_list, &vm_list);
963         mutex_unlock(&kvm_lock);
964
965         preempt_notifier_inc();
966
967         return kvm;
968
969 out_err:
970 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
971         if (kvm->mmu_notifier.ops)
972                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
973 #endif
974 out_err_no_mmu_notifier:
975         hardware_disable_all();
976 out_err_no_disable:
977         kvm_arch_destroy_vm(kvm);
978 out_err_no_arch_destroy_vm:
979         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
980         for (i = 0; i < KVM_NR_BUSES; i++)
981                 kfree(kvm_get_bus(kvm, i));
982         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
983                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
984         cleanup_srcu_struct(&kvm->irq_srcu);
985 out_err_no_irq_srcu:
986         cleanup_srcu_struct(&kvm->srcu);
987 out_err_no_srcu:
988         kvm_arch_free_vm(kvm);
989         mmdrop(current->mm);
990         return ERR_PTR(r);
991 }
992
993 static void kvm_destroy_devices(struct kvm *kvm)
994 {
995         struct kvm_device *dev, *tmp;
996
997         /*
998          * We do not need to take the kvm->lock here, because nobody else
999          * has a reference to the struct kvm at this point and therefore
1000          * cannot access the devices list anyhow.
1001          */
1002         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1003                 list_del(&dev->vm_node);
1004                 dev->ops->destroy(dev);
1005         }
1006 }
1007
1008 static void kvm_destroy_vm(struct kvm *kvm)
1009 {
1010         int i;
1011         struct mm_struct *mm = kvm->mm;
1012
1013         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1014         kvm_destroy_vm_debugfs(kvm);
1015         kvm_arch_sync_events(kvm);
1016         mutex_lock(&kvm_lock);
1017         list_del(&kvm->vm_list);
1018         mutex_unlock(&kvm_lock);
1019         kvm_arch_pre_destroy_vm(kvm);
1020
1021         kvm_free_irq_routing(kvm);
1022         for (i = 0; i < KVM_NR_BUSES; i++) {
1023                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1024
1025                 if (bus)
1026                         kvm_io_bus_destroy(bus);
1027                 kvm->buses[i] = NULL;
1028         }
1029         kvm_coalesced_mmio_free(kvm);
1030 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1031         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1032 #else
1033         kvm_arch_flush_shadow_all(kvm);
1034 #endif
1035         kvm_arch_destroy_vm(kvm);
1036         kvm_destroy_devices(kvm);
1037         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1038                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1039         cleanup_srcu_struct(&kvm->irq_srcu);
1040         cleanup_srcu_struct(&kvm->srcu);
1041         kvm_arch_free_vm(kvm);
1042         preempt_notifier_dec();
1043         hardware_disable_all();
1044         mmdrop(mm);
1045 }
1046
1047 void kvm_get_kvm(struct kvm *kvm)
1048 {
1049         refcount_inc(&kvm->users_count);
1050 }
1051 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1052
1053 void kvm_put_kvm(struct kvm *kvm)
1054 {
1055         if (refcount_dec_and_test(&kvm->users_count))
1056                 kvm_destroy_vm(kvm);
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1059
1060 /*
1061  * Used to put a reference that was taken on behalf of an object associated
1062  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1063  * of the new file descriptor fails and the reference cannot be transferred to
1064  * its final owner.  In such cases, the caller is still actively using @kvm and
1065  * will fail miserably if the refcount unexpectedly hits zero.
1066  */
1067 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1068 {
1069         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1072
1073 static int kvm_vm_release(struct inode *inode, struct file *filp)
1074 {
1075         struct kvm *kvm = filp->private_data;
1076
1077         kvm_irqfd_release(kvm);
1078
1079         kvm_put_kvm(kvm);
1080         return 0;
1081 }
1082
1083 /*
1084  * Allocation size is twice as large as the actual dirty bitmap size.
1085  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1086  */
1087 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1088 {
1089         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1090
1091         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1092         if (!memslot->dirty_bitmap)
1093                 return -ENOMEM;
1094
1095         return 0;
1096 }
1097
1098 /*
1099  * Delete a memslot by decrementing the number of used slots and shifting all
1100  * other entries in the array forward one spot.
1101  */
1102 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1103                                       struct kvm_memory_slot *memslot)
1104 {
1105         struct kvm_memory_slot *mslots = slots->memslots;
1106         int i;
1107
1108         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1109                 return;
1110
1111         slots->used_slots--;
1112
1113         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1114                 atomic_set(&slots->lru_slot, 0);
1115
1116         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1117                 mslots[i] = mslots[i + 1];
1118                 slots->id_to_index[mslots[i].id] = i;
1119         }
1120         mslots[i] = *memslot;
1121         slots->id_to_index[memslot->id] = -1;
1122 }
1123
1124 /*
1125  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1126  * the new slot's initial index into the memslots array.
1127  */
1128 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1129 {
1130         return slots->used_slots++;
1131 }
1132
1133 /*
1134  * Move a changed memslot backwards in the array by shifting existing slots
1135  * with a higher GFN toward the front of the array.  Note, the changed memslot
1136  * itself is not preserved in the array, i.e. not swapped at this time, only
1137  * its new index into the array is tracked.  Returns the changed memslot's
1138  * current index into the memslots array.
1139  */
1140 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1141                                             struct kvm_memory_slot *memslot)
1142 {
1143         struct kvm_memory_slot *mslots = slots->memslots;
1144         int i;
1145
1146         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1147             WARN_ON_ONCE(!slots->used_slots))
1148                 return -1;
1149
1150         /*
1151          * Move the target memslot backward in the array by shifting existing
1152          * memslots with a higher GFN (than the target memslot) towards the
1153          * front of the array.
1154          */
1155         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1156                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1157                         break;
1158
1159                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1160
1161                 /* Shift the next memslot forward one and update its index. */
1162                 mslots[i] = mslots[i + 1];
1163                 slots->id_to_index[mslots[i].id] = i;
1164         }
1165         return i;
1166 }
1167
1168 /*
1169  * Move a changed memslot forwards in the array by shifting existing slots with
1170  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1171  * is not preserved in the array, i.e. not swapped at this time, only its new
1172  * index into the array is tracked.  Returns the changed memslot's final index
1173  * into the memslots array.
1174  */
1175 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1176                                            struct kvm_memory_slot *memslot,
1177                                            int start)
1178 {
1179         struct kvm_memory_slot *mslots = slots->memslots;
1180         int i;
1181
1182         for (i = start; i > 0; i--) {
1183                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1184                         break;
1185
1186                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1187
1188                 /* Shift the next memslot back one and update its index. */
1189                 mslots[i] = mslots[i - 1];
1190                 slots->id_to_index[mslots[i].id] = i;
1191         }
1192         return i;
1193 }
1194
1195 /*
1196  * Re-sort memslots based on their GFN to account for an added, deleted, or
1197  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1198  * memslot lookup.
1199  *
1200  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1201  * at memslots[0] has the highest GFN.
1202  *
1203  * The sorting algorithm takes advantage of having initially sorted memslots
1204  * and knowing the position of the changed memslot.  Sorting is also optimized
1205  * by not swapping the updated memslot and instead only shifting other memslots
1206  * and tracking the new index for the update memslot.  Only once its final
1207  * index is known is the updated memslot copied into its position in the array.
1208  *
1209  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1210  *    the end of the array.
1211  *
1212  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1213  *    end of the array and then it forward to its correct location.
1214  *
1215  *  - When moving a memslot, the algorithm first moves the updated memslot
1216  *    backward to handle the scenario where the memslot's GFN was changed to a
1217  *    lower value.  update_memslots() then falls through and runs the same flow
1218  *    as creating a memslot to move the memslot forward to handle the scenario
1219  *    where its GFN was changed to a higher value.
1220  *
1221  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1222  * historical reasons.  Originally, invalid memslots where denoted by having
1223  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1224  * to the end of the array.  The current algorithm uses dedicated logic to
1225  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1226  *
1227  * The other historical motiviation for highest->lowest was to improve the
1228  * performance of memslot lookup.  KVM originally used a linear search starting
1229  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1230  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1231  * single memslot above the 4gb boundary.  As the largest memslot is also the
1232  * most likely to be referenced, sorting it to the front of the array was
1233  * advantageous.  The current binary search starts from the middle of the array
1234  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1235  */
1236 static void update_memslots(struct kvm_memslots *slots,
1237                             struct kvm_memory_slot *memslot,
1238                             enum kvm_mr_change change)
1239 {
1240         int i;
1241
1242         if (change == KVM_MR_DELETE) {
1243                 kvm_memslot_delete(slots, memslot);
1244         } else {
1245                 if (change == KVM_MR_CREATE)
1246                         i = kvm_memslot_insert_back(slots);
1247                 else
1248                         i = kvm_memslot_move_backward(slots, memslot);
1249                 i = kvm_memslot_move_forward(slots, memslot, i);
1250
1251                 /*
1252                  * Copy the memslot to its new position in memslots and update
1253                  * its index accordingly.
1254                  */
1255                 slots->memslots[i] = *memslot;
1256                 slots->id_to_index[memslot->id] = i;
1257         }
1258 }
1259
1260 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1261 {
1262         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1263
1264 #ifdef __KVM_HAVE_READONLY_MEM
1265         valid_flags |= KVM_MEM_READONLY;
1266 #endif
1267
1268         if (mem->flags & ~valid_flags)
1269                 return -EINVAL;
1270
1271         return 0;
1272 }
1273
1274 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1275                 int as_id, struct kvm_memslots *slots)
1276 {
1277         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1278         u64 gen = old_memslots->generation;
1279
1280         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1281         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1282
1283         rcu_assign_pointer(kvm->memslots[as_id], slots);
1284         synchronize_srcu_expedited(&kvm->srcu);
1285
1286         /*
1287          * Increment the new memslot generation a second time, dropping the
1288          * update in-progress flag and incrementing the generation based on
1289          * the number of address spaces.  This provides a unique and easily
1290          * identifiable generation number while the memslots are in flux.
1291          */
1292         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1293
1294         /*
1295          * Generations must be unique even across address spaces.  We do not need
1296          * a global counter for that, instead the generation space is evenly split
1297          * across address spaces.  For example, with two address spaces, address
1298          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1299          * use generations 1, 3, 5, ...
1300          */
1301         gen += KVM_ADDRESS_SPACE_NUM;
1302
1303         kvm_arch_memslots_updated(kvm, gen);
1304
1305         slots->generation = gen;
1306
1307         return old_memslots;
1308 }
1309
1310 /*
1311  * Note, at a minimum, the current number of used slots must be allocated, even
1312  * when deleting a memslot, as we need a complete duplicate of the memslots for
1313  * use when invalidating a memslot prior to deleting/moving the memslot.
1314  */
1315 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1316                                              enum kvm_mr_change change)
1317 {
1318         struct kvm_memslots *slots;
1319         size_t old_size, new_size;
1320
1321         old_size = sizeof(struct kvm_memslots) +
1322                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1323
1324         if (change == KVM_MR_CREATE)
1325                 new_size = old_size + sizeof(struct kvm_memory_slot);
1326         else
1327                 new_size = old_size;
1328
1329         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1330         if (likely(slots))
1331                 memcpy(slots, old, old_size);
1332
1333         return slots;
1334 }
1335
1336 static int kvm_set_memslot(struct kvm *kvm,
1337                            const struct kvm_userspace_memory_region *mem,
1338                            struct kvm_memory_slot *old,
1339                            struct kvm_memory_slot *new, int as_id,
1340                            enum kvm_mr_change change)
1341 {
1342         struct kvm_memory_slot *slot;
1343         struct kvm_memslots *slots;
1344         int r;
1345
1346         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1347         if (!slots)
1348                 return -ENOMEM;
1349
1350         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1351                 /*
1352                  * Note, the INVALID flag needs to be in the appropriate entry
1353                  * in the freshly allocated memslots, not in @old or @new.
1354                  */
1355                 slot = id_to_memslot(slots, old->id);
1356                 slot->flags |= KVM_MEMSLOT_INVALID;
1357
1358                 /*
1359                  * We can re-use the old memslots, the only difference from the
1360                  * newly installed memslots is the invalid flag, which will get
1361                  * dropped by update_memslots anyway.  We'll also revert to the
1362                  * old memslots if preparing the new memory region fails.
1363                  */
1364                 slots = install_new_memslots(kvm, as_id, slots);
1365
1366                 /* From this point no new shadow pages pointing to a deleted,
1367                  * or moved, memslot will be created.
1368                  *
1369                  * validation of sp->gfn happens in:
1370                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1371                  *      - kvm_is_visible_gfn (mmu_check_root)
1372                  */
1373                 kvm_arch_flush_shadow_memslot(kvm, slot);
1374         }
1375
1376         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1377         if (r)
1378                 goto out_slots;
1379
1380         update_memslots(slots, new, change);
1381         slots = install_new_memslots(kvm, as_id, slots);
1382
1383         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1384
1385         kvfree(slots);
1386         return 0;
1387
1388 out_slots:
1389         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1390                 slots = install_new_memslots(kvm, as_id, slots);
1391         kvfree(slots);
1392         return r;
1393 }
1394
1395 static int kvm_delete_memslot(struct kvm *kvm,
1396                               const struct kvm_userspace_memory_region *mem,
1397                               struct kvm_memory_slot *old, int as_id)
1398 {
1399         struct kvm_memory_slot new;
1400         int r;
1401
1402         if (!old->npages)
1403                 return -EINVAL;
1404
1405         memset(&new, 0, sizeof(new));
1406         new.id = old->id;
1407         /*
1408          * This is only for debugging purpose; it should never be referenced
1409          * for a removed memslot.
1410          */
1411         new.as_id = as_id;
1412
1413         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1414         if (r)
1415                 return r;
1416
1417         kvm_free_memslot(kvm, old);
1418         return 0;
1419 }
1420
1421 /*
1422  * Allocate some memory and give it an address in the guest physical address
1423  * space.
1424  *
1425  * Discontiguous memory is allowed, mostly for framebuffers.
1426  *
1427  * Must be called holding kvm->slots_lock for write.
1428  */
1429 int __kvm_set_memory_region(struct kvm *kvm,
1430                             const struct kvm_userspace_memory_region *mem)
1431 {
1432         struct kvm_memory_slot old, new;
1433         struct kvm_memory_slot *tmp;
1434         enum kvm_mr_change change;
1435         int as_id, id;
1436         int r;
1437
1438         r = check_memory_region_flags(mem);
1439         if (r)
1440                 return r;
1441
1442         as_id = mem->slot >> 16;
1443         id = (u16)mem->slot;
1444
1445         /* General sanity checks */
1446         if (mem->memory_size & (PAGE_SIZE - 1))
1447                 return -EINVAL;
1448         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1449                 return -EINVAL;
1450         /* We can read the guest memory with __xxx_user() later on. */
1451         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1452             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1453              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1454                         mem->memory_size))
1455                 return -EINVAL;
1456         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1457                 return -EINVAL;
1458         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1459                 return -EINVAL;
1460
1461         /*
1462          * Make a full copy of the old memslot, the pointer will become stale
1463          * when the memslots are re-sorted by update_memslots(), and the old
1464          * memslot needs to be referenced after calling update_memslots(), e.g.
1465          * to free its resources and for arch specific behavior.
1466          */
1467         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1468         if (tmp) {
1469                 old = *tmp;
1470                 tmp = NULL;
1471         } else {
1472                 memset(&old, 0, sizeof(old));
1473                 old.id = id;
1474         }
1475
1476         if (!mem->memory_size)
1477                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1478
1479         new.as_id = as_id;
1480         new.id = id;
1481         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1482         new.npages = mem->memory_size >> PAGE_SHIFT;
1483         new.flags = mem->flags;
1484         new.userspace_addr = mem->userspace_addr;
1485
1486         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1487                 return -EINVAL;
1488
1489         if (!old.npages) {
1490                 change = KVM_MR_CREATE;
1491                 new.dirty_bitmap = NULL;
1492                 memset(&new.arch, 0, sizeof(new.arch));
1493         } else { /* Modify an existing slot. */
1494                 if ((new.userspace_addr != old.userspace_addr) ||
1495                     (new.npages != old.npages) ||
1496                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1497                         return -EINVAL;
1498
1499                 if (new.base_gfn != old.base_gfn)
1500                         change = KVM_MR_MOVE;
1501                 else if (new.flags != old.flags)
1502                         change = KVM_MR_FLAGS_ONLY;
1503                 else /* Nothing to change. */
1504                         return 0;
1505
1506                 /* Copy dirty_bitmap and arch from the current memslot. */
1507                 new.dirty_bitmap = old.dirty_bitmap;
1508                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1509         }
1510
1511         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1512                 /* Check for overlaps */
1513                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1514                         if (tmp->id == id)
1515                                 continue;
1516                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1517                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1518                                 return -EEXIST;
1519                 }
1520         }
1521
1522         /* Allocate/free page dirty bitmap as needed */
1523         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1524                 new.dirty_bitmap = NULL;
1525         else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1526                 r = kvm_alloc_dirty_bitmap(&new);
1527                 if (r)
1528                         return r;
1529
1530                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1531                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1532         }
1533
1534         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1535         if (r)
1536                 goto out_bitmap;
1537
1538         if (old.dirty_bitmap && !new.dirty_bitmap)
1539                 kvm_destroy_dirty_bitmap(&old);
1540         return 0;
1541
1542 out_bitmap:
1543         if (new.dirty_bitmap && !old.dirty_bitmap)
1544                 kvm_destroy_dirty_bitmap(&new);
1545         return r;
1546 }
1547 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1548
1549 int kvm_set_memory_region(struct kvm *kvm,
1550                           const struct kvm_userspace_memory_region *mem)
1551 {
1552         int r;
1553
1554         mutex_lock(&kvm->slots_lock);
1555         r = __kvm_set_memory_region(kvm, mem);
1556         mutex_unlock(&kvm->slots_lock);
1557         return r;
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1560
1561 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1562                                           struct kvm_userspace_memory_region *mem)
1563 {
1564         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1565                 return -EINVAL;
1566
1567         return kvm_set_memory_region(kvm, mem);
1568 }
1569
1570 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1571 /**
1572  * kvm_get_dirty_log - get a snapshot of dirty pages
1573  * @kvm:        pointer to kvm instance
1574  * @log:        slot id and address to which we copy the log
1575  * @is_dirty:   set to '1' if any dirty pages were found
1576  * @memslot:    set to the associated memslot, always valid on success
1577  */
1578 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1579                       int *is_dirty, struct kvm_memory_slot **memslot)
1580 {
1581         struct kvm_memslots *slots;
1582         int i, as_id, id;
1583         unsigned long n;
1584         unsigned long any = 0;
1585
1586         /* Dirty ring tracking is exclusive to dirty log tracking */
1587         if (kvm->dirty_ring_size)
1588                 return -ENXIO;
1589
1590         *memslot = NULL;
1591         *is_dirty = 0;
1592
1593         as_id = log->slot >> 16;
1594         id = (u16)log->slot;
1595         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1596                 return -EINVAL;
1597
1598         slots = __kvm_memslots(kvm, as_id);
1599         *memslot = id_to_memslot(slots, id);
1600         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1601                 return -ENOENT;
1602
1603         kvm_arch_sync_dirty_log(kvm, *memslot);
1604
1605         n = kvm_dirty_bitmap_bytes(*memslot);
1606
1607         for (i = 0; !any && i < n/sizeof(long); ++i)
1608                 any = (*memslot)->dirty_bitmap[i];
1609
1610         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1611                 return -EFAULT;
1612
1613         if (any)
1614                 *is_dirty = 1;
1615         return 0;
1616 }
1617 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1618
1619 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1620 /**
1621  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1622  *      and reenable dirty page tracking for the corresponding pages.
1623  * @kvm:        pointer to kvm instance
1624  * @log:        slot id and address to which we copy the log
1625  *
1626  * We need to keep it in mind that VCPU threads can write to the bitmap
1627  * concurrently. So, to avoid losing track of dirty pages we keep the
1628  * following order:
1629  *
1630  *    1. Take a snapshot of the bit and clear it if needed.
1631  *    2. Write protect the corresponding page.
1632  *    3. Copy the snapshot to the userspace.
1633  *    4. Upon return caller flushes TLB's if needed.
1634  *
1635  * Between 2 and 4, the guest may write to the page using the remaining TLB
1636  * entry.  This is not a problem because the page is reported dirty using
1637  * the snapshot taken before and step 4 ensures that writes done after
1638  * exiting to userspace will be logged for the next call.
1639  *
1640  */
1641 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1642 {
1643         struct kvm_memslots *slots;
1644         struct kvm_memory_slot *memslot;
1645         int i, as_id, id;
1646         unsigned long n;
1647         unsigned long *dirty_bitmap;
1648         unsigned long *dirty_bitmap_buffer;
1649         bool flush;
1650
1651         /* Dirty ring tracking is exclusive to dirty log tracking */
1652         if (kvm->dirty_ring_size)
1653                 return -ENXIO;
1654
1655         as_id = log->slot >> 16;
1656         id = (u16)log->slot;
1657         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1658                 return -EINVAL;
1659
1660         slots = __kvm_memslots(kvm, as_id);
1661         memslot = id_to_memslot(slots, id);
1662         if (!memslot || !memslot->dirty_bitmap)
1663                 return -ENOENT;
1664
1665         dirty_bitmap = memslot->dirty_bitmap;
1666
1667         kvm_arch_sync_dirty_log(kvm, memslot);
1668
1669         n = kvm_dirty_bitmap_bytes(memslot);
1670         flush = false;
1671         if (kvm->manual_dirty_log_protect) {
1672                 /*
1673                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1674                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1675                  * is some code duplication between this function and
1676                  * kvm_get_dirty_log, but hopefully all architecture
1677                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1678                  * can be eliminated.
1679                  */
1680                 dirty_bitmap_buffer = dirty_bitmap;
1681         } else {
1682                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1683                 memset(dirty_bitmap_buffer, 0, n);
1684
1685                 KVM_MMU_LOCK(kvm);
1686                 for (i = 0; i < n / sizeof(long); i++) {
1687                         unsigned long mask;
1688                         gfn_t offset;
1689
1690                         if (!dirty_bitmap[i])
1691                                 continue;
1692
1693                         flush = true;
1694                         mask = xchg(&dirty_bitmap[i], 0);
1695                         dirty_bitmap_buffer[i] = mask;
1696
1697                         offset = i * BITS_PER_LONG;
1698                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1699                                                                 offset, mask);
1700                 }
1701                 KVM_MMU_UNLOCK(kvm);
1702         }
1703
1704         if (flush)
1705                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1706
1707         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1708                 return -EFAULT;
1709         return 0;
1710 }
1711
1712
1713 /**
1714  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1715  * @kvm: kvm instance
1716  * @log: slot id and address to which we copy the log
1717  *
1718  * Steps 1-4 below provide general overview of dirty page logging. See
1719  * kvm_get_dirty_log_protect() function description for additional details.
1720  *
1721  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1722  * always flush the TLB (step 4) even if previous step failed  and the dirty
1723  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1724  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1725  * writes will be marked dirty for next log read.
1726  *
1727  *   1. Take a snapshot of the bit and clear it if needed.
1728  *   2. Write protect the corresponding page.
1729  *   3. Copy the snapshot to the userspace.
1730  *   4. Flush TLB's if needed.
1731  */
1732 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1733                                       struct kvm_dirty_log *log)
1734 {
1735         int r;
1736
1737         mutex_lock(&kvm->slots_lock);
1738
1739         r = kvm_get_dirty_log_protect(kvm, log);
1740
1741         mutex_unlock(&kvm->slots_lock);
1742         return r;
1743 }
1744
1745 /**
1746  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1747  *      and reenable dirty page tracking for the corresponding pages.
1748  * @kvm:        pointer to kvm instance
1749  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1750  */
1751 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1752                                        struct kvm_clear_dirty_log *log)
1753 {
1754         struct kvm_memslots *slots;
1755         struct kvm_memory_slot *memslot;
1756         int as_id, id;
1757         gfn_t offset;
1758         unsigned long i, n;
1759         unsigned long *dirty_bitmap;
1760         unsigned long *dirty_bitmap_buffer;
1761         bool flush;
1762
1763         /* Dirty ring tracking is exclusive to dirty log tracking */
1764         if (kvm->dirty_ring_size)
1765                 return -ENXIO;
1766
1767         as_id = log->slot >> 16;
1768         id = (u16)log->slot;
1769         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1770                 return -EINVAL;
1771
1772         if (log->first_page & 63)
1773                 return -EINVAL;
1774
1775         slots = __kvm_memslots(kvm, as_id);
1776         memslot = id_to_memslot(slots, id);
1777         if (!memslot || !memslot->dirty_bitmap)
1778                 return -ENOENT;
1779
1780         dirty_bitmap = memslot->dirty_bitmap;
1781
1782         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1783
1784         if (log->first_page > memslot->npages ||
1785             log->num_pages > memslot->npages - log->first_page ||
1786             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1787             return -EINVAL;
1788
1789         kvm_arch_sync_dirty_log(kvm, memslot);
1790
1791         flush = false;
1792         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1793         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1794                 return -EFAULT;
1795
1796         KVM_MMU_LOCK(kvm);
1797         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1798                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1799              i++, offset += BITS_PER_LONG) {
1800                 unsigned long mask = *dirty_bitmap_buffer++;
1801                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1802                 if (!mask)
1803                         continue;
1804
1805                 mask &= atomic_long_fetch_andnot(mask, p);
1806
1807                 /*
1808                  * mask contains the bits that really have been cleared.  This
1809                  * never includes any bits beyond the length of the memslot (if
1810                  * the length is not aligned to 64 pages), therefore it is not
1811                  * a problem if userspace sets them in log->dirty_bitmap.
1812                 */
1813                 if (mask) {
1814                         flush = true;
1815                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1816                                                                 offset, mask);
1817                 }
1818         }
1819         KVM_MMU_UNLOCK(kvm);
1820
1821         if (flush)
1822                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1823
1824         return 0;
1825 }
1826
1827 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1828                                         struct kvm_clear_dirty_log *log)
1829 {
1830         int r;
1831
1832         mutex_lock(&kvm->slots_lock);
1833
1834         r = kvm_clear_dirty_log_protect(kvm, log);
1835
1836         mutex_unlock(&kvm->slots_lock);
1837         return r;
1838 }
1839 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1840
1841 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1842 {
1843         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1844 }
1845 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1846
1847 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1848 {
1849         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1852
1853 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1854 {
1855         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1856
1857         return kvm_is_visible_memslot(memslot);
1858 }
1859 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1860
1861 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1862 {
1863         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1864
1865         return kvm_is_visible_memslot(memslot);
1866 }
1867 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1868
1869 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1870 {
1871         struct vm_area_struct *vma;
1872         unsigned long addr, size;
1873
1874         size = PAGE_SIZE;
1875
1876         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1877         if (kvm_is_error_hva(addr))
1878                 return PAGE_SIZE;
1879
1880         mmap_read_lock(current->mm);
1881         vma = find_vma(current->mm, addr);
1882         if (!vma)
1883                 goto out;
1884
1885         size = vma_kernel_pagesize(vma);
1886
1887 out:
1888         mmap_read_unlock(current->mm);
1889
1890         return size;
1891 }
1892
1893 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1894 {
1895         return slot->flags & KVM_MEM_READONLY;
1896 }
1897
1898 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1899                                        gfn_t *nr_pages, bool write)
1900 {
1901         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1902                 return KVM_HVA_ERR_BAD;
1903
1904         if (memslot_is_readonly(slot) && write)
1905                 return KVM_HVA_ERR_RO_BAD;
1906
1907         if (nr_pages)
1908                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1909
1910         return __gfn_to_hva_memslot(slot, gfn);
1911 }
1912
1913 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1914                                      gfn_t *nr_pages)
1915 {
1916         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1917 }
1918
1919 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1920                                         gfn_t gfn)
1921 {
1922         return gfn_to_hva_many(slot, gfn, NULL);
1923 }
1924 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1925
1926 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1927 {
1928         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1929 }
1930 EXPORT_SYMBOL_GPL(gfn_to_hva);
1931
1932 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1933 {
1934         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1935 }
1936 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1937
1938 /*
1939  * Return the hva of a @gfn and the R/W attribute if possible.
1940  *
1941  * @slot: the kvm_memory_slot which contains @gfn
1942  * @gfn: the gfn to be translated
1943  * @writable: used to return the read/write attribute of the @slot if the hva
1944  * is valid and @writable is not NULL
1945  */
1946 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1947                                       gfn_t gfn, bool *writable)
1948 {
1949         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1950
1951         if (!kvm_is_error_hva(hva) && writable)
1952                 *writable = !memslot_is_readonly(slot);
1953
1954         return hva;
1955 }
1956
1957 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1958 {
1959         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1960
1961         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1962 }
1963
1964 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1965 {
1966         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1967
1968         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1969 }
1970
1971 static inline int check_user_page_hwpoison(unsigned long addr)
1972 {
1973         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1974
1975         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1976         return rc == -EHWPOISON;
1977 }
1978
1979 /*
1980  * The fast path to get the writable pfn which will be stored in @pfn,
1981  * true indicates success, otherwise false is returned.  It's also the
1982  * only part that runs if we can in atomic context.
1983  */
1984 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1985                             bool *writable, kvm_pfn_t *pfn)
1986 {
1987         struct page *page[1];
1988
1989         /*
1990          * Fast pin a writable pfn only if it is a write fault request
1991          * or the caller allows to map a writable pfn for a read fault
1992          * request.
1993          */
1994         if (!(write_fault || writable))
1995                 return false;
1996
1997         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1998                 *pfn = page_to_pfn(page[0]);
1999
2000                 if (writable)
2001                         *writable = true;
2002                 return true;
2003         }
2004
2005         return false;
2006 }
2007
2008 /*
2009  * The slow path to get the pfn of the specified host virtual address,
2010  * 1 indicates success, -errno is returned if error is detected.
2011  */
2012 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2013                            bool *writable, kvm_pfn_t *pfn)
2014 {
2015         unsigned int flags = FOLL_HWPOISON;
2016         struct page *page;
2017         int npages = 0;
2018
2019         might_sleep();
2020
2021         if (writable)
2022                 *writable = write_fault;
2023
2024         if (write_fault)
2025                 flags |= FOLL_WRITE;
2026         if (async)
2027                 flags |= FOLL_NOWAIT;
2028
2029         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2030         if (npages != 1)
2031                 return npages;
2032
2033         /* map read fault as writable if possible */
2034         if (unlikely(!write_fault) && writable) {
2035                 struct page *wpage;
2036
2037                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2038                         *writable = true;
2039                         put_page(page);
2040                         page = wpage;
2041                 }
2042         }
2043         *pfn = page_to_pfn(page);
2044         return npages;
2045 }
2046
2047 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2048 {
2049         if (unlikely(!(vma->vm_flags & VM_READ)))
2050                 return false;
2051
2052         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2053                 return false;
2054
2055         return true;
2056 }
2057
2058 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2059 {
2060         if (kvm_is_reserved_pfn(pfn))
2061                 return 1;
2062         return get_page_unless_zero(pfn_to_page(pfn));
2063 }
2064
2065 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2066                                unsigned long addr, bool *async,
2067                                bool write_fault, bool *writable,
2068                                kvm_pfn_t *p_pfn)
2069 {
2070         kvm_pfn_t pfn;
2071         pte_t *ptep;
2072         spinlock_t *ptl;
2073         int r;
2074
2075         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2076         if (r) {
2077                 /*
2078                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2079                  * not call the fault handler, so do it here.
2080                  */
2081                 bool unlocked = false;
2082                 r = fixup_user_fault(current->mm, addr,
2083                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2084                                      &unlocked);
2085                 if (unlocked)
2086                         return -EAGAIN;
2087                 if (r)
2088                         return r;
2089
2090                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2091                 if (r)
2092                         return r;
2093         }
2094
2095         if (write_fault && !pte_write(*ptep)) {
2096                 pfn = KVM_PFN_ERR_RO_FAULT;
2097                 goto out;
2098         }
2099
2100         if (writable)
2101                 *writable = pte_write(*ptep);
2102         pfn = pte_pfn(*ptep);
2103
2104         /*
2105          * Get a reference here because callers of *hva_to_pfn* and
2106          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2107          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2108          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2109          * simply do nothing for reserved pfns.
2110          *
2111          * Whoever called remap_pfn_range is also going to call e.g.
2112          * unmap_mapping_range before the underlying pages are freed,
2113          * causing a call to our MMU notifier.
2114          *
2115          * Certain IO or PFNMAP mappings can be backed with valid
2116          * struct pages, but be allocated without refcounting e.g.,
2117          * tail pages of non-compound higher order allocations, which
2118          * would then underflow the refcount when the caller does the
2119          * required put_page. Don't allow those pages here.
2120          */ 
2121         if (!kvm_try_get_pfn(pfn))
2122                 r = -EFAULT;
2123
2124 out:
2125         pte_unmap_unlock(ptep, ptl);
2126         *p_pfn = pfn;
2127
2128         return r;
2129 }
2130
2131 /*
2132  * Pin guest page in memory and return its pfn.
2133  * @addr: host virtual address which maps memory to the guest
2134  * @atomic: whether this function can sleep
2135  * @async: whether this function need to wait IO complete if the
2136  *         host page is not in the memory
2137  * @write_fault: whether we should get a writable host page
2138  * @writable: whether it allows to map a writable host page for !@write_fault
2139  *
2140  * The function will map a writable host page for these two cases:
2141  * 1): @write_fault = true
2142  * 2): @write_fault = false && @writable, @writable will tell the caller
2143  *     whether the mapping is writable.
2144  */
2145 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2146                         bool write_fault, bool *writable)
2147 {
2148         struct vm_area_struct *vma;
2149         kvm_pfn_t pfn = 0;
2150         int npages, r;
2151
2152         /* we can do it either atomically or asynchronously, not both */
2153         BUG_ON(atomic && async);
2154
2155         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2156                 return pfn;
2157
2158         if (atomic)
2159                 return KVM_PFN_ERR_FAULT;
2160
2161         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2162         if (npages == 1)
2163                 return pfn;
2164
2165         mmap_read_lock(current->mm);
2166         if (npages == -EHWPOISON ||
2167               (!async && check_user_page_hwpoison(addr))) {
2168                 pfn = KVM_PFN_ERR_HWPOISON;
2169                 goto exit;
2170         }
2171
2172 retry:
2173         vma = find_vma_intersection(current->mm, addr, addr + 1);
2174
2175         if (vma == NULL)
2176                 pfn = KVM_PFN_ERR_FAULT;
2177         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2178                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2179                 if (r == -EAGAIN)
2180                         goto retry;
2181                 if (r < 0)
2182                         pfn = KVM_PFN_ERR_FAULT;
2183         } else {
2184                 if (async && vma_is_valid(vma, write_fault))
2185                         *async = true;
2186                 pfn = KVM_PFN_ERR_FAULT;
2187         }
2188 exit:
2189         mmap_read_unlock(current->mm);
2190         return pfn;
2191 }
2192
2193 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2194                                bool atomic, bool *async, bool write_fault,
2195                                bool *writable, hva_t *hva)
2196 {
2197         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2198
2199         if (hva)
2200                 *hva = addr;
2201
2202         if (addr == KVM_HVA_ERR_RO_BAD) {
2203                 if (writable)
2204                         *writable = false;
2205                 return KVM_PFN_ERR_RO_FAULT;
2206         }
2207
2208         if (kvm_is_error_hva(addr)) {
2209                 if (writable)
2210                         *writable = false;
2211                 return KVM_PFN_NOSLOT;
2212         }
2213
2214         /* Do not map writable pfn in the readonly memslot. */
2215         if (writable && memslot_is_readonly(slot)) {
2216                 *writable = false;
2217                 writable = NULL;
2218         }
2219
2220         return hva_to_pfn(addr, atomic, async, write_fault,
2221                           writable);
2222 }
2223 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2224
2225 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2226                       bool *writable)
2227 {
2228         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2229                                     write_fault, writable, NULL);
2230 }
2231 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2232
2233 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2234 {
2235         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2236 }
2237 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2238
2239 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2240 {
2241         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2242 }
2243 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2244
2245 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2246 {
2247         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2250
2251 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2252 {
2253         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2254 }
2255 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2256
2257 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2258 {
2259         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2260 }
2261 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2262
2263 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2264                             struct page **pages, int nr_pages)
2265 {
2266         unsigned long addr;
2267         gfn_t entry = 0;
2268
2269         addr = gfn_to_hva_many(slot, gfn, &entry);
2270         if (kvm_is_error_hva(addr))
2271                 return -1;
2272
2273         if (entry < nr_pages)
2274                 return 0;
2275
2276         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2277 }
2278 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2279
2280 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2281 {
2282         if (is_error_noslot_pfn(pfn))
2283                 return KVM_ERR_PTR_BAD_PAGE;
2284
2285         if (kvm_is_reserved_pfn(pfn)) {
2286                 WARN_ON(1);
2287                 return KVM_ERR_PTR_BAD_PAGE;
2288         }
2289
2290         return pfn_to_page(pfn);
2291 }
2292
2293 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2294 {
2295         kvm_pfn_t pfn;
2296
2297         pfn = gfn_to_pfn(kvm, gfn);
2298
2299         return kvm_pfn_to_page(pfn);
2300 }
2301 EXPORT_SYMBOL_GPL(gfn_to_page);
2302
2303 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2304 {
2305         if (pfn == 0)
2306                 return;
2307
2308         if (cache)
2309                 cache->pfn = cache->gfn = 0;
2310
2311         if (dirty)
2312                 kvm_release_pfn_dirty(pfn);
2313         else
2314                 kvm_release_pfn_clean(pfn);
2315 }
2316
2317 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2318                                  struct gfn_to_pfn_cache *cache, u64 gen)
2319 {
2320         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2321
2322         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2323         cache->gfn = gfn;
2324         cache->dirty = false;
2325         cache->generation = gen;
2326 }
2327
2328 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2329                          struct kvm_host_map *map,
2330                          struct gfn_to_pfn_cache *cache,
2331                          bool atomic)
2332 {
2333         kvm_pfn_t pfn;
2334         void *hva = NULL;
2335         struct page *page = KVM_UNMAPPED_PAGE;
2336         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2337         u64 gen = slots->generation;
2338
2339         if (!map)
2340                 return -EINVAL;
2341
2342         if (cache) {
2343                 if (!cache->pfn || cache->gfn != gfn ||
2344                         cache->generation != gen) {
2345                         if (atomic)
2346                                 return -EAGAIN;
2347                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2348                 }
2349                 pfn = cache->pfn;
2350         } else {
2351                 if (atomic)
2352                         return -EAGAIN;
2353                 pfn = gfn_to_pfn_memslot(slot, gfn);
2354         }
2355         if (is_error_noslot_pfn(pfn))
2356                 return -EINVAL;
2357
2358         if (pfn_valid(pfn)) {
2359                 page = pfn_to_page(pfn);
2360                 if (atomic)
2361                         hva = kmap_atomic(page);
2362                 else
2363                         hva = kmap(page);
2364 #ifdef CONFIG_HAS_IOMEM
2365         } else if (!atomic) {
2366                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2367         } else {
2368                 return -EINVAL;
2369 #endif
2370         }
2371
2372         if (!hva)
2373                 return -EFAULT;
2374
2375         map->page = page;
2376         map->hva = hva;
2377         map->pfn = pfn;
2378         map->gfn = gfn;
2379
2380         return 0;
2381 }
2382
2383 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2384                 struct gfn_to_pfn_cache *cache, bool atomic)
2385 {
2386         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2387                         cache, atomic);
2388 }
2389 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2390
2391 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2392 {
2393         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2394                 NULL, false);
2395 }
2396 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2397
2398 static void __kvm_unmap_gfn(struct kvm *kvm,
2399                         struct kvm_memory_slot *memslot,
2400                         struct kvm_host_map *map,
2401                         struct gfn_to_pfn_cache *cache,
2402                         bool dirty, bool atomic)
2403 {
2404         if (!map)
2405                 return;
2406
2407         if (!map->hva)
2408                 return;
2409
2410         if (map->page != KVM_UNMAPPED_PAGE) {
2411                 if (atomic)
2412                         kunmap_atomic(map->hva);
2413                 else
2414                         kunmap(map->page);
2415         }
2416 #ifdef CONFIG_HAS_IOMEM
2417         else if (!atomic)
2418                 memunmap(map->hva);
2419         else
2420                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2421 #endif
2422
2423         if (dirty)
2424                 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2425
2426         if (cache)
2427                 cache->dirty |= dirty;
2428         else
2429                 kvm_release_pfn(map->pfn, dirty, NULL);
2430
2431         map->hva = NULL;
2432         map->page = NULL;
2433 }
2434
2435 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2436                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2437 {
2438         __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2439                         cache, dirty, atomic);
2440         return 0;
2441 }
2442 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2443
2444 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2445 {
2446         __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2447                         map, NULL, dirty, false);
2448 }
2449 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2450
2451 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2452 {
2453         kvm_pfn_t pfn;
2454
2455         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2456
2457         return kvm_pfn_to_page(pfn);
2458 }
2459 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2460
2461 void kvm_release_page_clean(struct page *page)
2462 {
2463         WARN_ON(is_error_page(page));
2464
2465         kvm_release_pfn_clean(page_to_pfn(page));
2466 }
2467 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2468
2469 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2470 {
2471         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2472                 put_page(pfn_to_page(pfn));
2473 }
2474 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2475
2476 void kvm_release_page_dirty(struct page *page)
2477 {
2478         WARN_ON(is_error_page(page));
2479
2480         kvm_release_pfn_dirty(page_to_pfn(page));
2481 }
2482 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2483
2484 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2485 {
2486         kvm_set_pfn_dirty(pfn);
2487         kvm_release_pfn_clean(pfn);
2488 }
2489 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2490
2491 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2492 {
2493         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2494                 SetPageDirty(pfn_to_page(pfn));
2495 }
2496 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2497
2498 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2499 {
2500         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2501                 mark_page_accessed(pfn_to_page(pfn));
2502 }
2503 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2504
2505 void kvm_get_pfn(kvm_pfn_t pfn)
2506 {
2507         if (!kvm_is_reserved_pfn(pfn))
2508                 get_page(pfn_to_page(pfn));
2509 }
2510 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2511
2512 static int next_segment(unsigned long len, int offset)
2513 {
2514         if (len > PAGE_SIZE - offset)
2515                 return PAGE_SIZE - offset;
2516         else
2517                 return len;
2518 }
2519
2520 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2521                                  void *data, int offset, int len)
2522 {
2523         int r;
2524         unsigned long addr;
2525
2526         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2527         if (kvm_is_error_hva(addr))
2528                 return -EFAULT;
2529         r = __copy_from_user(data, (void __user *)addr + offset, len);
2530         if (r)
2531                 return -EFAULT;
2532         return 0;
2533 }
2534
2535 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2536                         int len)
2537 {
2538         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2539
2540         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2541 }
2542 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2543
2544 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2545                              int offset, int len)
2546 {
2547         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2548
2549         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2550 }
2551 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2552
2553 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2554 {
2555         gfn_t gfn = gpa >> PAGE_SHIFT;
2556         int seg;
2557         int offset = offset_in_page(gpa);
2558         int ret;
2559
2560         while ((seg = next_segment(len, offset)) != 0) {
2561                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2562                 if (ret < 0)
2563                         return ret;
2564                 offset = 0;
2565                 len -= seg;
2566                 data += seg;
2567                 ++gfn;
2568         }
2569         return 0;
2570 }
2571 EXPORT_SYMBOL_GPL(kvm_read_guest);
2572
2573 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2574 {
2575         gfn_t gfn = gpa >> PAGE_SHIFT;
2576         int seg;
2577         int offset = offset_in_page(gpa);
2578         int ret;
2579
2580         while ((seg = next_segment(len, offset)) != 0) {
2581                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2582                 if (ret < 0)
2583                         return ret;
2584                 offset = 0;
2585                 len -= seg;
2586                 data += seg;
2587                 ++gfn;
2588         }
2589         return 0;
2590 }
2591 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2592
2593 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2594                                    void *data, int offset, unsigned long len)
2595 {
2596         int r;
2597         unsigned long addr;
2598
2599         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2600         if (kvm_is_error_hva(addr))
2601                 return -EFAULT;
2602         pagefault_disable();
2603         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2604         pagefault_enable();
2605         if (r)
2606                 return -EFAULT;
2607         return 0;
2608 }
2609
2610 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2611                                void *data, unsigned long len)
2612 {
2613         gfn_t gfn = gpa >> PAGE_SHIFT;
2614         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2615         int offset = offset_in_page(gpa);
2616
2617         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2618 }
2619 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2620
2621 static int __kvm_write_guest_page(struct kvm *kvm,
2622                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2623                                   const void *data, int offset, int len)
2624 {
2625         int r;
2626         unsigned long addr;
2627
2628         addr = gfn_to_hva_memslot(memslot, gfn);
2629         if (kvm_is_error_hva(addr))
2630                 return -EFAULT;
2631         r = __copy_to_user((void __user *)addr + offset, data, len);
2632         if (r)
2633                 return -EFAULT;
2634         mark_page_dirty_in_slot(kvm, memslot, gfn);
2635         return 0;
2636 }
2637
2638 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2639                          const void *data, int offset, int len)
2640 {
2641         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2642
2643         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2644 }
2645 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2646
2647 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2648                               const void *data, int offset, int len)
2649 {
2650         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2651
2652         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2653 }
2654 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2655
2656 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2657                     unsigned long len)
2658 {
2659         gfn_t gfn = gpa >> PAGE_SHIFT;
2660         int seg;
2661         int offset = offset_in_page(gpa);
2662         int ret;
2663
2664         while ((seg = next_segment(len, offset)) != 0) {
2665                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2666                 if (ret < 0)
2667                         return ret;
2668                 offset = 0;
2669                 len -= seg;
2670                 data += seg;
2671                 ++gfn;
2672         }
2673         return 0;
2674 }
2675 EXPORT_SYMBOL_GPL(kvm_write_guest);
2676
2677 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2678                          unsigned long len)
2679 {
2680         gfn_t gfn = gpa >> PAGE_SHIFT;
2681         int seg;
2682         int offset = offset_in_page(gpa);
2683         int ret;
2684
2685         while ((seg = next_segment(len, offset)) != 0) {
2686                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2687                 if (ret < 0)
2688                         return ret;
2689                 offset = 0;
2690                 len -= seg;
2691                 data += seg;
2692                 ++gfn;
2693         }
2694         return 0;
2695 }
2696 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2697
2698 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2699                                        struct gfn_to_hva_cache *ghc,
2700                                        gpa_t gpa, unsigned long len)
2701 {
2702         int offset = offset_in_page(gpa);
2703         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2704         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2705         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2706         gfn_t nr_pages_avail;
2707
2708         /* Update ghc->generation before performing any error checks. */
2709         ghc->generation = slots->generation;
2710
2711         if (start_gfn > end_gfn) {
2712                 ghc->hva = KVM_HVA_ERR_BAD;
2713                 return -EINVAL;
2714         }
2715
2716         /*
2717          * If the requested region crosses two memslots, we still
2718          * verify that the entire region is valid here.
2719          */
2720         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2721                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2722                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2723                                            &nr_pages_avail);
2724                 if (kvm_is_error_hva(ghc->hva))
2725                         return -EFAULT;
2726         }
2727
2728         /* Use the slow path for cross page reads and writes. */
2729         if (nr_pages_needed == 1)
2730                 ghc->hva += offset;
2731         else
2732                 ghc->memslot = NULL;
2733
2734         ghc->gpa = gpa;
2735         ghc->len = len;
2736         return 0;
2737 }
2738
2739 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2740                               gpa_t gpa, unsigned long len)
2741 {
2742         struct kvm_memslots *slots = kvm_memslots(kvm);
2743         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2744 }
2745 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2746
2747 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2748                                   void *data, unsigned int offset,
2749                                   unsigned long len)
2750 {
2751         struct kvm_memslots *slots = kvm_memslots(kvm);
2752         int r;
2753         gpa_t gpa = ghc->gpa + offset;
2754
2755         BUG_ON(len + offset > ghc->len);
2756
2757         if (slots->generation != ghc->generation) {
2758                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2759                         return -EFAULT;
2760         }
2761
2762         if (kvm_is_error_hva(ghc->hva))
2763                 return -EFAULT;
2764
2765         if (unlikely(!ghc->memslot))
2766                 return kvm_write_guest(kvm, gpa, data, len);
2767
2768         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2769         if (r)
2770                 return -EFAULT;
2771         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2772
2773         return 0;
2774 }
2775 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2776
2777 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2778                            void *data, unsigned long len)
2779 {
2780         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2781 }
2782 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2783
2784 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2785                                  void *data, unsigned int offset,
2786                                  unsigned long len)
2787 {
2788         struct kvm_memslots *slots = kvm_memslots(kvm);
2789         int r;
2790         gpa_t gpa = ghc->gpa + offset;
2791
2792         BUG_ON(len + offset > ghc->len);
2793
2794         if (slots->generation != ghc->generation) {
2795                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2796                         return -EFAULT;
2797         }
2798
2799         if (kvm_is_error_hva(ghc->hva))
2800                 return -EFAULT;
2801
2802         if (unlikely(!ghc->memslot))
2803                 return kvm_read_guest(kvm, gpa, data, len);
2804
2805         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2806         if (r)
2807                 return -EFAULT;
2808
2809         return 0;
2810 }
2811 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2812
2813 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2814                           void *data, unsigned long len)
2815 {
2816         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2817 }
2818 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2819
2820 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2821 {
2822         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2823         gfn_t gfn = gpa >> PAGE_SHIFT;
2824         int seg;
2825         int offset = offset_in_page(gpa);
2826         int ret;
2827
2828         while ((seg = next_segment(len, offset)) != 0) {
2829                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2830                 if (ret < 0)
2831                         return ret;
2832                 offset = 0;
2833                 len -= seg;
2834                 ++gfn;
2835         }
2836         return 0;
2837 }
2838 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2839
2840 void mark_page_dirty_in_slot(struct kvm *kvm,
2841                              struct kvm_memory_slot *memslot,
2842                              gfn_t gfn)
2843 {
2844         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2845                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2846                 u32 slot = (memslot->as_id << 16) | memslot->id;
2847
2848                 if (kvm->dirty_ring_size)
2849                         kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2850                                             slot, rel_gfn);
2851                 else
2852                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
2853         }
2854 }
2855 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2856
2857 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2858 {
2859         struct kvm_memory_slot *memslot;
2860
2861         memslot = gfn_to_memslot(kvm, gfn);
2862         mark_page_dirty_in_slot(kvm, memslot, gfn);
2863 }
2864 EXPORT_SYMBOL_GPL(mark_page_dirty);
2865
2866 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2867 {
2868         struct kvm_memory_slot *memslot;
2869
2870         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2871         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2872 }
2873 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2874
2875 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2876 {
2877         if (!vcpu->sigset_active)
2878                 return;
2879
2880         /*
2881          * This does a lockless modification of ->real_blocked, which is fine
2882          * because, only current can change ->real_blocked and all readers of
2883          * ->real_blocked don't care as long ->real_blocked is always a subset
2884          * of ->blocked.
2885          */
2886         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2887 }
2888
2889 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2890 {
2891         if (!vcpu->sigset_active)
2892                 return;
2893
2894         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2895         sigemptyset(&current->real_blocked);
2896 }
2897
2898 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2899 {
2900         unsigned int old, val, grow, grow_start;
2901
2902         old = val = vcpu->halt_poll_ns;
2903         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2904         grow = READ_ONCE(halt_poll_ns_grow);
2905         if (!grow)
2906                 goto out;
2907
2908         val *= grow;
2909         if (val < grow_start)
2910                 val = grow_start;
2911
2912         if (val > vcpu->kvm->max_halt_poll_ns)
2913                 val = vcpu->kvm->max_halt_poll_ns;
2914
2915         vcpu->halt_poll_ns = val;
2916 out:
2917         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2918 }
2919
2920 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2921 {
2922         unsigned int old, val, shrink;
2923
2924         old = val = vcpu->halt_poll_ns;
2925         shrink = READ_ONCE(halt_poll_ns_shrink);
2926         if (shrink == 0)
2927                 val = 0;
2928         else
2929                 val /= shrink;
2930
2931         vcpu->halt_poll_ns = val;
2932         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2933 }
2934
2935 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2936 {
2937         int ret = -EINTR;
2938         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2939
2940         if (kvm_arch_vcpu_runnable(vcpu)) {
2941                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2942                 goto out;
2943         }
2944         if (kvm_cpu_has_pending_timer(vcpu))
2945                 goto out;
2946         if (signal_pending(current))
2947                 goto out;
2948         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
2949                 goto out;
2950
2951         ret = 0;
2952 out:
2953         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2954         return ret;
2955 }
2956
2957 static inline void
2958 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2959 {
2960         if (waited)
2961                 vcpu->stat.halt_poll_fail_ns += poll_ns;
2962         else
2963                 vcpu->stat.halt_poll_success_ns += poll_ns;
2964 }
2965
2966 /*
2967  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2968  */
2969 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2970 {
2971         ktime_t start, cur, poll_end;
2972         bool waited = false;
2973         u64 block_ns;
2974
2975         kvm_arch_vcpu_blocking(vcpu);
2976
2977         start = cur = poll_end = ktime_get();
2978         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2979                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2980
2981                 ++vcpu->stat.halt_attempted_poll;
2982                 do {
2983                         /*
2984                          * This sets KVM_REQ_UNHALT if an interrupt
2985                          * arrives.
2986                          */
2987                         if (kvm_vcpu_check_block(vcpu) < 0) {
2988                                 ++vcpu->stat.halt_successful_poll;
2989                                 if (!vcpu_valid_wakeup(vcpu))
2990                                         ++vcpu->stat.halt_poll_invalid;
2991                                 goto out;
2992                         }
2993                         poll_end = cur = ktime_get();
2994                 } while (kvm_vcpu_can_poll(cur, stop));
2995         }
2996
2997         prepare_to_rcuwait(&vcpu->wait);
2998         for (;;) {
2999                 set_current_state(TASK_INTERRUPTIBLE);
3000
3001                 if (kvm_vcpu_check_block(vcpu) < 0)
3002                         break;
3003
3004                 waited = true;
3005                 schedule();
3006         }
3007         finish_rcuwait(&vcpu->wait);
3008         cur = ktime_get();
3009 out:
3010         kvm_arch_vcpu_unblocking(vcpu);
3011         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3012
3013         update_halt_poll_stats(
3014                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3015
3016         if (!kvm_arch_no_poll(vcpu)) {
3017                 if (!vcpu_valid_wakeup(vcpu)) {
3018                         shrink_halt_poll_ns(vcpu);
3019                 } else if (vcpu->kvm->max_halt_poll_ns) {
3020                         if (block_ns <= vcpu->halt_poll_ns)
3021                                 ;
3022                         /* we had a long block, shrink polling */
3023                         else if (vcpu->halt_poll_ns &&
3024                                         block_ns > vcpu->kvm->max_halt_poll_ns)
3025                                 shrink_halt_poll_ns(vcpu);
3026                         /* we had a short halt and our poll time is too small */
3027                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3028                                         block_ns < vcpu->kvm->max_halt_poll_ns)
3029                                 grow_halt_poll_ns(vcpu);
3030                 } else {
3031                         vcpu->halt_poll_ns = 0;
3032                 }
3033         }
3034
3035         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3036         kvm_arch_vcpu_block_finish(vcpu);
3037 }
3038 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3039
3040 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3041 {
3042         struct rcuwait *waitp;
3043
3044         waitp = kvm_arch_vcpu_get_wait(vcpu);
3045         if (rcuwait_wake_up(waitp)) {
3046                 WRITE_ONCE(vcpu->ready, true);
3047                 ++vcpu->stat.halt_wakeup;
3048                 return true;
3049         }
3050
3051         return false;
3052 }
3053 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3054
3055 #ifndef CONFIG_S390
3056 /*
3057  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3058  */
3059 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3060 {
3061         int me;
3062         int cpu = vcpu->cpu;
3063
3064         if (kvm_vcpu_wake_up(vcpu))
3065                 return;
3066
3067         me = get_cpu();
3068         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3069                 if (kvm_arch_vcpu_should_kick(vcpu))
3070                         smp_send_reschedule(cpu);
3071         put_cpu();
3072 }
3073 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3074 #endif /* !CONFIG_S390 */
3075
3076 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3077 {
3078         struct pid *pid;
3079         struct task_struct *task = NULL;
3080         int ret = 0;
3081
3082         rcu_read_lock();
3083         pid = rcu_dereference(target->pid);
3084         if (pid)
3085                 task = get_pid_task(pid, PIDTYPE_PID);
3086         rcu_read_unlock();
3087         if (!task)
3088                 return ret;
3089         ret = yield_to(task, 1);
3090         put_task_struct(task);
3091
3092         return ret;
3093 }
3094 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3095
3096 /*
3097  * Helper that checks whether a VCPU is eligible for directed yield.
3098  * Most eligible candidate to yield is decided by following heuristics:
3099  *
3100  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3101  *  (preempted lock holder), indicated by @in_spin_loop.
3102  *  Set at the beginning and cleared at the end of interception/PLE handler.
3103  *
3104  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3105  *  chance last time (mostly it has become eligible now since we have probably
3106  *  yielded to lockholder in last iteration. This is done by toggling
3107  *  @dy_eligible each time a VCPU checked for eligibility.)
3108  *
3109  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3110  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3111  *  burning. Giving priority for a potential lock-holder increases lock
3112  *  progress.
3113  *
3114  *  Since algorithm is based on heuristics, accessing another VCPU data without
3115  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3116  *  and continue with next VCPU and so on.
3117  */
3118 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3119 {
3120 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3121         bool eligible;
3122
3123         eligible = !vcpu->spin_loop.in_spin_loop ||
3124                     vcpu->spin_loop.dy_eligible;
3125
3126         if (vcpu->spin_loop.in_spin_loop)
3127                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3128
3129         return eligible;
3130 #else
3131         return true;
3132 #endif
3133 }
3134
3135 /*
3136  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3137  * a vcpu_load/vcpu_put pair.  However, for most architectures
3138  * kvm_arch_vcpu_runnable does not require vcpu_load.
3139  */
3140 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3141 {
3142         return kvm_arch_vcpu_runnable(vcpu);
3143 }
3144
3145 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3146 {
3147         if (kvm_arch_dy_runnable(vcpu))
3148                 return true;
3149
3150 #ifdef CONFIG_KVM_ASYNC_PF
3151         if (!list_empty_careful(&vcpu->async_pf.done))
3152                 return true;
3153 #endif
3154
3155         return false;
3156 }
3157
3158 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3159 {
3160         return false;
3161 }
3162
3163 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3164 {
3165         struct kvm *kvm = me->kvm;
3166         struct kvm_vcpu *vcpu;
3167         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3168         int yielded = 0;
3169         int try = 3;
3170         int pass;
3171         int i;
3172
3173         kvm_vcpu_set_in_spin_loop(me, true);
3174         /*
3175          * We boost the priority of a VCPU that is runnable but not
3176          * currently running, because it got preempted by something
3177          * else and called schedule in __vcpu_run.  Hopefully that
3178          * VCPU is holding the lock that we need and will release it.
3179          * We approximate round-robin by starting at the last boosted VCPU.
3180          */
3181         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3182                 kvm_for_each_vcpu(i, vcpu, kvm) {
3183                         if (!pass && i <= last_boosted_vcpu) {
3184                                 i = last_boosted_vcpu;
3185                                 continue;
3186                         } else if (pass && i > last_boosted_vcpu)
3187                                 break;
3188                         if (!READ_ONCE(vcpu->ready))
3189                                 continue;
3190                         if (vcpu == me)
3191                                 continue;
3192                         if (rcuwait_active(&vcpu->wait) &&
3193                             !vcpu_dy_runnable(vcpu))
3194                                 continue;
3195                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3196                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3197                             !kvm_arch_vcpu_in_kernel(vcpu))
3198                                 continue;
3199                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3200                                 continue;
3201
3202                         yielded = kvm_vcpu_yield_to(vcpu);
3203                         if (yielded > 0) {
3204                                 kvm->last_boosted_vcpu = i;
3205                                 break;
3206                         } else if (yielded < 0) {
3207                                 try--;
3208                                 if (!try)
3209                                         break;
3210                         }
3211                 }
3212         }
3213         kvm_vcpu_set_in_spin_loop(me, false);
3214
3215         /* Ensure vcpu is not eligible during next spinloop */
3216         kvm_vcpu_set_dy_eligible(me, false);
3217 }
3218 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3219
3220 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3221 {
3222 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3223         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3224             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3225              kvm->dirty_ring_size / PAGE_SIZE);
3226 #else
3227         return false;
3228 #endif
3229 }
3230
3231 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3232 {
3233         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3234         struct page *page;
3235
3236         if (vmf->pgoff == 0)
3237                 page = virt_to_page(vcpu->run);
3238 #ifdef CONFIG_X86
3239         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3240                 page = virt_to_page(vcpu->arch.pio_data);
3241 #endif
3242 #ifdef CONFIG_KVM_MMIO
3243         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3244                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3245 #endif
3246         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3247                 page = kvm_dirty_ring_get_page(
3248                     &vcpu->dirty_ring,
3249                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3250         else
3251                 return kvm_arch_vcpu_fault(vcpu, vmf);
3252         get_page(page);
3253         vmf->page = page;
3254         return 0;
3255 }
3256
3257 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3258         .fault = kvm_vcpu_fault,
3259 };
3260
3261 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3262 {
3263         struct kvm_vcpu *vcpu = file->private_data;
3264         unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3265
3266         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3267              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3268             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3269                 return -EINVAL;
3270
3271         vma->vm_ops = &kvm_vcpu_vm_ops;
3272         return 0;
3273 }
3274
3275 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3276 {
3277         struct kvm_vcpu *vcpu = filp->private_data;
3278
3279         kvm_put_kvm(vcpu->kvm);
3280         return 0;
3281 }
3282
3283 static struct file_operations kvm_vcpu_fops = {
3284         .release        = kvm_vcpu_release,
3285         .unlocked_ioctl = kvm_vcpu_ioctl,
3286         .mmap           = kvm_vcpu_mmap,
3287         .llseek         = noop_llseek,
3288         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3289 };
3290
3291 /*
3292  * Allocates an inode for the vcpu.
3293  */
3294 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3295 {
3296         char name[8 + 1 + ITOA_MAX_LEN + 1];
3297
3298         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3299         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3300 }
3301
3302 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3303 {
3304 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3305         struct dentry *debugfs_dentry;
3306         char dir_name[ITOA_MAX_LEN * 2];
3307
3308         if (!debugfs_initialized())
3309                 return;
3310
3311         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3312         debugfs_dentry = debugfs_create_dir(dir_name,
3313                                             vcpu->kvm->debugfs_dentry);
3314
3315         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3316 #endif
3317 }
3318
3319 /*
3320  * Creates some virtual cpus.  Good luck creating more than one.
3321  */
3322 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3323 {
3324         int r;
3325         struct kvm_vcpu *vcpu;
3326         struct page *page;
3327
3328         if (id >= KVM_MAX_VCPU_ID)
3329                 return -EINVAL;
3330
3331         mutex_lock(&kvm->lock);
3332         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3333                 mutex_unlock(&kvm->lock);
3334                 return -EINVAL;
3335         }
3336
3337         kvm->created_vcpus++;
3338         mutex_unlock(&kvm->lock);
3339
3340         r = kvm_arch_vcpu_precreate(kvm, id);
3341         if (r)
3342                 goto vcpu_decrement;
3343
3344         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3345         if (!vcpu) {
3346                 r = -ENOMEM;
3347                 goto vcpu_decrement;
3348         }
3349
3350         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3351         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3352         if (!page) {
3353                 r = -ENOMEM;
3354                 goto vcpu_free;
3355         }
3356         vcpu->run = page_address(page);
3357
3358         kvm_vcpu_init(vcpu, kvm, id);
3359
3360         r = kvm_arch_vcpu_create(vcpu);
3361         if (r)
3362                 goto vcpu_free_run_page;
3363
3364         if (kvm->dirty_ring_size) {
3365                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3366                                          id, kvm->dirty_ring_size);
3367                 if (r)
3368                         goto arch_vcpu_destroy;
3369         }
3370
3371         mutex_lock(&kvm->lock);
3372         if (kvm_get_vcpu_by_id(kvm, id)) {
3373                 r = -EEXIST;
3374                 goto unlock_vcpu_destroy;
3375         }
3376
3377         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3378         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3379
3380         /* Now it's all set up, let userspace reach it */
3381         kvm_get_kvm(kvm);
3382         r = create_vcpu_fd(vcpu);
3383         if (r < 0) {
3384                 kvm_put_kvm_no_destroy(kvm);
3385                 goto unlock_vcpu_destroy;
3386         }
3387
3388         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3389
3390         /*
3391          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3392          * before kvm->online_vcpu's incremented value.
3393          */
3394         smp_wmb();
3395         atomic_inc(&kvm->online_vcpus);
3396
3397         mutex_unlock(&kvm->lock);
3398         kvm_arch_vcpu_postcreate(vcpu);
3399         kvm_create_vcpu_debugfs(vcpu);
3400         return r;
3401
3402 unlock_vcpu_destroy:
3403         mutex_unlock(&kvm->lock);
3404         kvm_dirty_ring_free(&vcpu->dirty_ring);
3405 arch_vcpu_destroy:
3406         kvm_arch_vcpu_destroy(vcpu);
3407 vcpu_free_run_page:
3408         free_page((unsigned long)vcpu->run);
3409 vcpu_free:
3410         kmem_cache_free(kvm_vcpu_cache, vcpu);
3411 vcpu_decrement:
3412         mutex_lock(&kvm->lock);
3413         kvm->created_vcpus--;
3414         mutex_unlock(&kvm->lock);
3415         return r;
3416 }
3417
3418 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3419 {
3420         if (sigset) {
3421                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3422                 vcpu->sigset_active = 1;
3423                 vcpu->sigset = *sigset;
3424         } else
3425                 vcpu->sigset_active = 0;
3426         return 0;
3427 }
3428
3429 static long kvm_vcpu_ioctl(struct file *filp,
3430                            unsigned int ioctl, unsigned long arg)
3431 {
3432         struct kvm_vcpu *vcpu = filp->private_data;
3433         void __user *argp = (void __user *)arg;
3434         int r;
3435         struct kvm_fpu *fpu = NULL;
3436         struct kvm_sregs *kvm_sregs = NULL;
3437
3438         if (vcpu->kvm->mm != current->mm)
3439                 return -EIO;
3440
3441         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3442                 return -EINVAL;
3443
3444         /*
3445          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3446          * execution; mutex_lock() would break them.
3447          */
3448         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3449         if (r != -ENOIOCTLCMD)
3450                 return r;
3451
3452         if (mutex_lock_killable(&vcpu->mutex))
3453                 return -EINTR;
3454         switch (ioctl) {
3455         case KVM_RUN: {
3456                 struct pid *oldpid;
3457                 r = -EINVAL;
3458                 if (arg)
3459                         goto out;
3460                 oldpid = rcu_access_pointer(vcpu->pid);
3461                 if (unlikely(oldpid != task_pid(current))) {
3462                         /* The thread running this VCPU changed. */
3463                         struct pid *newpid;
3464
3465                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3466                         if (r)
3467                                 break;
3468
3469                         newpid = get_task_pid(current, PIDTYPE_PID);
3470                         rcu_assign_pointer(vcpu->pid, newpid);
3471                         if (oldpid)
3472                                 synchronize_rcu();
3473                         put_pid(oldpid);
3474                 }
3475                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3476                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3477                 break;
3478         }
3479         case KVM_GET_REGS: {
3480                 struct kvm_regs *kvm_regs;
3481
3482                 r = -ENOMEM;
3483                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3484                 if (!kvm_regs)
3485                         goto out;
3486                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3487                 if (r)
3488                         goto out_free1;
3489                 r = -EFAULT;
3490                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3491                         goto out_free1;
3492                 r = 0;
3493 out_free1:
3494                 kfree(kvm_regs);
3495                 break;
3496         }
3497         case KVM_SET_REGS: {
3498                 struct kvm_regs *kvm_regs;
3499
3500                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3501                 if (IS_ERR(kvm_regs)) {
3502                         r = PTR_ERR(kvm_regs);
3503                         goto out;
3504                 }
3505                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3506                 kfree(kvm_regs);
3507                 break;
3508         }
3509         case KVM_GET_SREGS: {
3510                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3511                                     GFP_KERNEL_ACCOUNT);
3512                 r = -ENOMEM;
3513                 if (!kvm_sregs)
3514                         goto out;
3515                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3516                 if (r)
3517                         goto out;
3518                 r = -EFAULT;
3519                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3520                         goto out;
3521                 r = 0;
3522                 break;
3523         }
3524         case KVM_SET_SREGS: {
3525                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3526                 if (IS_ERR(kvm_sregs)) {
3527                         r = PTR_ERR(kvm_sregs);
3528                         kvm_sregs = NULL;
3529                         goto out;
3530                 }
3531                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3532                 break;
3533         }
3534         case KVM_GET_MP_STATE: {
3535                 struct kvm_mp_state mp_state;
3536
3537                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3538                 if (r)
3539                         goto out;
3540                 r = -EFAULT;
3541                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3542                         goto out;
3543                 r = 0;
3544                 break;
3545         }
3546         case KVM_SET_MP_STATE: {
3547                 struct kvm_mp_state mp_state;
3548
3549                 r = -EFAULT;
3550                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3551                         goto out;
3552                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3553                 break;
3554         }
3555         case KVM_TRANSLATE: {
3556                 struct kvm_translation tr;
3557
3558                 r = -EFAULT;
3559                 if (copy_from_user(&tr, argp, sizeof(tr)))
3560                         goto out;
3561                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3562                 if (r)
3563                         goto out;
3564                 r = -EFAULT;
3565                 if (copy_to_user(argp, &tr, sizeof(tr)))
3566                         goto out;
3567                 r = 0;
3568                 break;
3569         }
3570         case KVM_SET_GUEST_DEBUG: {
3571                 struct kvm_guest_debug dbg;
3572
3573                 r = -EFAULT;
3574                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3575                         goto out;
3576                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3577                 break;
3578         }
3579         case KVM_SET_SIGNAL_MASK: {
3580                 struct kvm_signal_mask __user *sigmask_arg = argp;
3581                 struct kvm_signal_mask kvm_sigmask;
3582                 sigset_t sigset, *p;
3583
3584                 p = NULL;
3585                 if (argp) {
3586                         r = -EFAULT;
3587                         if (copy_from_user(&kvm_sigmask, argp,
3588                                            sizeof(kvm_sigmask)))
3589                                 goto out;
3590                         r = -EINVAL;
3591                         if (kvm_sigmask.len != sizeof(sigset))
3592                                 goto out;
3593                         r = -EFAULT;
3594                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3595                                            sizeof(sigset)))
3596                                 goto out;
3597                         p = &sigset;
3598                 }
3599                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3600                 break;
3601         }
3602         case KVM_GET_FPU: {
3603                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3604                 r = -ENOMEM;
3605                 if (!fpu)
3606                         goto out;
3607                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3608                 if (r)
3609                         goto out;
3610                 r = -EFAULT;
3611                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3612                         goto out;
3613                 r = 0;
3614                 break;
3615         }
3616         case KVM_SET_FPU: {
3617                 fpu = memdup_user(argp, sizeof(*fpu));
3618                 if (IS_ERR(fpu)) {
3619                         r = PTR_ERR(fpu);
3620                         fpu = NULL;
3621                         goto out;
3622                 }
3623                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3624                 break;
3625         }
3626         default:
3627                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3628         }
3629 out:
3630         mutex_unlock(&vcpu->mutex);
3631         kfree(fpu);
3632         kfree(kvm_sregs);
3633         return r;
3634 }
3635
3636 #ifdef CONFIG_KVM_COMPAT
3637 static long kvm_vcpu_compat_ioctl(struct file *filp,
3638                                   unsigned int ioctl, unsigned long arg)
3639 {
3640         struct kvm_vcpu *vcpu = filp->private_data;
3641         void __user *argp = compat_ptr(arg);
3642         int r;
3643
3644         if (vcpu->kvm->mm != current->mm)
3645                 return -EIO;
3646
3647         switch (ioctl) {
3648         case KVM_SET_SIGNAL_MASK: {
3649                 struct kvm_signal_mask __user *sigmask_arg = argp;
3650                 struct kvm_signal_mask kvm_sigmask;
3651                 sigset_t sigset;
3652
3653                 if (argp) {
3654                         r = -EFAULT;
3655                         if (copy_from_user(&kvm_sigmask, argp,
3656                                            sizeof(kvm_sigmask)))
3657                                 goto out;
3658                         r = -EINVAL;
3659                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3660                                 goto out;
3661                         r = -EFAULT;
3662                         if (get_compat_sigset(&sigset,
3663                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3664                                 goto out;
3665                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3666                 } else
3667                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3668                 break;
3669         }
3670         default:
3671                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3672         }
3673
3674 out:
3675         return r;
3676 }
3677 #endif
3678
3679 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3680 {
3681         struct kvm_device *dev = filp->private_data;
3682
3683         if (dev->ops->mmap)
3684                 return dev->ops->mmap(dev, vma);
3685
3686         return -ENODEV;
3687 }
3688
3689 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3690                                  int (*accessor)(struct kvm_device *dev,
3691                                                  struct kvm_device_attr *attr),
3692                                  unsigned long arg)
3693 {
3694         struct kvm_device_attr attr;
3695
3696         if (!accessor)
3697                 return -EPERM;
3698
3699         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3700                 return -EFAULT;
3701
3702         return accessor(dev, &attr);
3703 }
3704
3705 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3706                              unsigned long arg)
3707 {
3708         struct kvm_device *dev = filp->private_data;
3709
3710         if (dev->kvm->mm != current->mm)
3711                 return -EIO;
3712
3713         switch (ioctl) {
3714         case KVM_SET_DEVICE_ATTR:
3715                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3716         case KVM_GET_DEVICE_ATTR:
3717                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3718         case KVM_HAS_DEVICE_ATTR:
3719                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3720         default:
3721                 if (dev->ops->ioctl)
3722                         return dev->ops->ioctl(dev, ioctl, arg);
3723
3724                 return -ENOTTY;
3725         }
3726 }
3727
3728 static int kvm_device_release(struct inode *inode, struct file *filp)
3729 {
3730         struct kvm_device *dev = filp->private_data;
3731         struct kvm *kvm = dev->kvm;
3732
3733         if (dev->ops->release) {
3734                 mutex_lock(&kvm->lock);
3735                 list_del(&dev->vm_node);
3736                 dev->ops->release(dev);
3737                 mutex_unlock(&kvm->lock);
3738         }
3739
3740         kvm_put_kvm(kvm);
3741         return 0;
3742 }
3743
3744 static const struct file_operations kvm_device_fops = {
3745         .unlocked_ioctl = kvm_device_ioctl,
3746         .release = kvm_device_release,
3747         KVM_COMPAT(kvm_device_ioctl),
3748         .mmap = kvm_device_mmap,
3749 };
3750
3751 struct kvm_device *kvm_device_from_filp(struct file *filp)
3752 {
3753         if (filp->f_op != &kvm_device_fops)
3754                 return NULL;
3755
3756         return filp->private_data;
3757 }
3758
3759 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3760 #ifdef CONFIG_KVM_MPIC
3761         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3762         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3763 #endif
3764 };
3765
3766 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3767 {
3768         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3769                 return -ENOSPC;
3770
3771         if (kvm_device_ops_table[type] != NULL)
3772                 return -EEXIST;
3773
3774         kvm_device_ops_table[type] = ops;
3775         return 0;
3776 }
3777
3778 void kvm_unregister_device_ops(u32 type)
3779 {
3780         if (kvm_device_ops_table[type] != NULL)
3781                 kvm_device_ops_table[type] = NULL;
3782 }
3783
3784 static int kvm_ioctl_create_device(struct kvm *kvm,
3785                                    struct kvm_create_device *cd)
3786 {
3787         const struct kvm_device_ops *ops = NULL;
3788         struct kvm_device *dev;
3789         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3790         int type;
3791         int ret;
3792
3793         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3794                 return -ENODEV;
3795
3796         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3797         ops = kvm_device_ops_table[type];
3798         if (ops == NULL)
3799                 return -ENODEV;
3800
3801         if (test)
3802                 return 0;
3803
3804         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3805         if (!dev)
3806                 return -ENOMEM;
3807
3808         dev->ops = ops;
3809         dev->kvm = kvm;
3810
3811         mutex_lock(&kvm->lock);
3812         ret = ops->create(dev, type);
3813         if (ret < 0) {
3814                 mutex_unlock(&kvm->lock);
3815                 kfree(dev);
3816                 return ret;
3817         }
3818         list_add(&dev->vm_node, &kvm->devices);
3819         mutex_unlock(&kvm->lock);
3820
3821         if (ops->init)
3822                 ops->init(dev);
3823
3824         kvm_get_kvm(kvm);
3825         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3826         if (ret < 0) {
3827                 kvm_put_kvm_no_destroy(kvm);
3828                 mutex_lock(&kvm->lock);
3829                 list_del(&dev->vm_node);
3830                 mutex_unlock(&kvm->lock);
3831                 ops->destroy(dev);
3832                 return ret;
3833         }
3834
3835         cd->fd = ret;
3836         return 0;
3837 }
3838
3839 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3840 {
3841         switch (arg) {
3842         case KVM_CAP_USER_MEMORY:
3843         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3844         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3845         case KVM_CAP_INTERNAL_ERROR_DATA:
3846 #ifdef CONFIG_HAVE_KVM_MSI
3847         case KVM_CAP_SIGNAL_MSI:
3848 #endif
3849 #ifdef CONFIG_HAVE_KVM_IRQFD
3850         case KVM_CAP_IRQFD:
3851         case KVM_CAP_IRQFD_RESAMPLE:
3852 #endif
3853         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3854         case KVM_CAP_CHECK_EXTENSION_VM:
3855         case KVM_CAP_ENABLE_CAP_VM:
3856         case KVM_CAP_HALT_POLL:
3857                 return 1;
3858 #ifdef CONFIG_KVM_MMIO
3859         case KVM_CAP_COALESCED_MMIO:
3860                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3861         case KVM_CAP_COALESCED_PIO:
3862                 return 1;
3863 #endif
3864 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3865         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3866                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3867 #endif
3868 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3869         case KVM_CAP_IRQ_ROUTING:
3870                 return KVM_MAX_IRQ_ROUTES;
3871 #endif
3872 #if KVM_ADDRESS_SPACE_NUM > 1
3873         case KVM_CAP_MULTI_ADDRESS_SPACE:
3874                 return KVM_ADDRESS_SPACE_NUM;
3875 #endif
3876         case KVM_CAP_NR_MEMSLOTS:
3877                 return KVM_USER_MEM_SLOTS;
3878         case KVM_CAP_DIRTY_LOG_RING:
3879 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3880                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
3881 #else
3882                 return 0;
3883 #endif
3884         default:
3885                 break;
3886         }
3887         return kvm_vm_ioctl_check_extension(kvm, arg);
3888 }
3889
3890 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
3891 {
3892         int r;
3893
3894         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
3895                 return -EINVAL;
3896
3897         /* the size should be power of 2 */
3898         if (!size || (size & (size - 1)))
3899                 return -EINVAL;
3900
3901         /* Should be bigger to keep the reserved entries, or a page */
3902         if (size < kvm_dirty_ring_get_rsvd_entries() *
3903             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
3904                 return -EINVAL;
3905
3906         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
3907             sizeof(struct kvm_dirty_gfn))
3908                 return -E2BIG;
3909
3910         /* We only allow it to set once */
3911         if (kvm->dirty_ring_size)
3912                 return -EINVAL;
3913
3914         mutex_lock(&kvm->lock);
3915
3916         if (kvm->created_vcpus) {
3917                 /* We don't allow to change this value after vcpu created */
3918                 r = -EINVAL;
3919         } else {
3920                 kvm->dirty_ring_size = size;
3921                 r = 0;
3922         }
3923
3924         mutex_unlock(&kvm->lock);
3925         return r;
3926 }
3927
3928 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
3929 {
3930         int i;
3931         struct kvm_vcpu *vcpu;
3932         int cleared = 0;
3933
3934         if (!kvm->dirty_ring_size)
3935                 return -EINVAL;
3936
3937         mutex_lock(&kvm->slots_lock);
3938
3939         kvm_for_each_vcpu(i, vcpu, kvm)
3940                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
3941
3942         mutex_unlock(&kvm->slots_lock);
3943
3944         if (cleared)
3945                 kvm_flush_remote_tlbs(kvm);
3946
3947         return cleared;
3948 }
3949
3950 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3951                                                   struct kvm_enable_cap *cap)
3952 {
3953         return -EINVAL;
3954 }
3955
3956 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3957                                            struct kvm_enable_cap *cap)
3958 {
3959         switch (cap->cap) {
3960 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3961         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3962                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3963
3964                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3965                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3966
3967                 if (cap->flags || (cap->args[0] & ~allowed_options))
3968                         return -EINVAL;
3969                 kvm->manual_dirty_log_protect = cap->args[0];
3970                 return 0;
3971         }
3972 #endif
3973         case KVM_CAP_HALT_POLL: {
3974                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3975                         return -EINVAL;
3976
3977                 kvm->max_halt_poll_ns = cap->args[0];
3978                 return 0;
3979         }
3980         case KVM_CAP_DIRTY_LOG_RING:
3981                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
3982         default:
3983                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3984         }
3985 }
3986
3987 static long kvm_vm_ioctl(struct file *filp,
3988                            unsigned int ioctl, unsigned long arg)
3989 {
3990         struct kvm *kvm = filp->private_data;
3991         void __user *argp = (void __user *)arg;
3992         int r;
3993
3994         if (kvm->mm != current->mm)
3995                 return -EIO;
3996         switch (ioctl) {
3997         case KVM_CREATE_VCPU:
3998                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3999                 break;
4000         case KVM_ENABLE_CAP: {
4001                 struct kvm_enable_cap cap;
4002
4003                 r = -EFAULT;
4004                 if (copy_from_user(&cap, argp, sizeof(cap)))
4005                         goto out;
4006                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4007                 break;
4008         }
4009         case KVM_SET_USER_MEMORY_REGION: {
4010                 struct kvm_userspace_memory_region kvm_userspace_mem;
4011
4012                 r = -EFAULT;
4013                 if (copy_from_user(&kvm_userspace_mem, argp,
4014                                                 sizeof(kvm_userspace_mem)))
4015                         goto out;
4016
4017                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4018                 break;
4019         }
4020         case KVM_GET_DIRTY_LOG: {
4021                 struct kvm_dirty_log log;
4022
4023                 r = -EFAULT;
4024                 if (copy_from_user(&log, argp, sizeof(log)))
4025                         goto out;
4026                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4027                 break;
4028         }
4029 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4030         case KVM_CLEAR_DIRTY_LOG: {
4031                 struct kvm_clear_dirty_log log;
4032
4033                 r = -EFAULT;
4034                 if (copy_from_user(&log, argp, sizeof(log)))
4035                         goto out;
4036                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4037                 break;
4038         }
4039 #endif
4040 #ifdef CONFIG_KVM_MMIO
4041         case KVM_REGISTER_COALESCED_MMIO: {
4042                 struct kvm_coalesced_mmio_zone zone;
4043
4044                 r = -EFAULT;
4045                 if (copy_from_user(&zone, argp, sizeof(zone)))
4046                         goto out;
4047                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4048                 break;
4049         }
4050         case KVM_UNREGISTER_COALESCED_MMIO: {
4051                 struct kvm_coalesced_mmio_zone zone;
4052
4053                 r = -EFAULT;
4054                 if (copy_from_user(&zone, argp, sizeof(zone)))
4055                         goto out;
4056                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4057                 break;
4058         }
4059 #endif
4060         case KVM_IRQFD: {
4061                 struct kvm_irqfd data;
4062
4063                 r = -EFAULT;
4064                 if (copy_from_user(&data, argp, sizeof(data)))
4065                         goto out;
4066                 r = kvm_irqfd(kvm, &data);
4067                 break;
4068         }
4069         case KVM_IOEVENTFD: {
4070                 struct kvm_ioeventfd data;
4071
4072                 r = -EFAULT;
4073                 if (copy_from_user(&data, argp, sizeof(data)))
4074                         goto out;
4075                 r = kvm_ioeventfd(kvm, &data);
4076                 break;
4077         }
4078 #ifdef CONFIG_HAVE_KVM_MSI
4079         case KVM_SIGNAL_MSI: {
4080                 struct kvm_msi msi;
4081
4082                 r = -EFAULT;
4083                 if (copy_from_user(&msi, argp, sizeof(msi)))
4084                         goto out;
4085                 r = kvm_send_userspace_msi(kvm, &msi);
4086                 break;
4087         }
4088 #endif
4089 #ifdef __KVM_HAVE_IRQ_LINE
4090         case KVM_IRQ_LINE_STATUS:
4091         case KVM_IRQ_LINE: {
4092                 struct kvm_irq_level irq_event;
4093
4094                 r = -EFAULT;
4095                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4096                         goto out;
4097
4098                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4099                                         ioctl == KVM_IRQ_LINE_STATUS);
4100                 if (r)
4101                         goto out;
4102
4103                 r = -EFAULT;
4104                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4105                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4106                                 goto out;
4107                 }
4108
4109                 r = 0;
4110                 break;
4111         }
4112 #endif
4113 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4114         case KVM_SET_GSI_ROUTING: {
4115                 struct kvm_irq_routing routing;
4116                 struct kvm_irq_routing __user *urouting;
4117                 struct kvm_irq_routing_entry *entries = NULL;
4118
4119                 r = -EFAULT;
4120                 if (copy_from_user(&routing, argp, sizeof(routing)))
4121                         goto out;
4122                 r = -EINVAL;
4123                 if (!kvm_arch_can_set_irq_routing(kvm))
4124                         goto out;
4125                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4126                         goto out;
4127                 if (routing.flags)
4128                         goto out;
4129                 if (routing.nr) {
4130                         urouting = argp;
4131                         entries = vmemdup_user(urouting->entries,
4132                                                array_size(sizeof(*entries),
4133                                                           routing.nr));
4134                         if (IS_ERR(entries)) {
4135                                 r = PTR_ERR(entries);
4136                                 goto out;
4137                         }
4138                 }
4139                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4140                                         routing.flags);
4141                 kvfree(entries);
4142                 break;
4143         }
4144 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4145         case KVM_CREATE_DEVICE: {
4146                 struct kvm_create_device cd;
4147
4148                 r = -EFAULT;
4149                 if (copy_from_user(&cd, argp, sizeof(cd)))
4150                         goto out;
4151
4152                 r = kvm_ioctl_create_device(kvm, &cd);
4153                 if (r)
4154                         goto out;
4155
4156                 r = -EFAULT;
4157                 if (copy_to_user(argp, &cd, sizeof(cd)))
4158                         goto out;
4159
4160                 r = 0;
4161                 break;
4162         }
4163         case KVM_CHECK_EXTENSION:
4164                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4165                 break;
4166         case KVM_RESET_DIRTY_RINGS:
4167                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4168                 break;
4169         default:
4170                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4171         }
4172 out:
4173         return r;
4174 }
4175
4176 #ifdef CONFIG_KVM_COMPAT
4177 struct compat_kvm_dirty_log {
4178         __u32 slot;
4179         __u32 padding1;
4180         union {
4181                 compat_uptr_t dirty_bitmap; /* one bit per page */
4182                 __u64 padding2;
4183         };
4184 };
4185
4186 static long kvm_vm_compat_ioctl(struct file *filp,
4187                            unsigned int ioctl, unsigned long arg)
4188 {
4189         struct kvm *kvm = filp->private_data;
4190         int r;
4191
4192         if (kvm->mm != current->mm)
4193                 return -EIO;
4194         switch (ioctl) {
4195         case KVM_GET_DIRTY_LOG: {
4196                 struct compat_kvm_dirty_log compat_log;
4197                 struct kvm_dirty_log log;
4198
4199                 if (copy_from_user(&compat_log, (void __user *)arg,
4200                                    sizeof(compat_log)))
4201                         return -EFAULT;
4202                 log.slot         = compat_log.slot;
4203                 log.padding1     = compat_log.padding1;
4204                 log.padding2     = compat_log.padding2;
4205                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4206
4207                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4208                 break;
4209         }
4210         default:
4211                 r = kvm_vm_ioctl(filp, ioctl, arg);
4212         }
4213         return r;
4214 }
4215 #endif
4216
4217 static struct file_operations kvm_vm_fops = {
4218         .release        = kvm_vm_release,
4219         .unlocked_ioctl = kvm_vm_ioctl,
4220         .llseek         = noop_llseek,
4221         KVM_COMPAT(kvm_vm_compat_ioctl),
4222 };
4223
4224 bool file_is_kvm(struct file *file)
4225 {
4226         return file && file->f_op == &kvm_vm_fops;
4227 }
4228 EXPORT_SYMBOL_GPL(file_is_kvm);
4229
4230 static int kvm_dev_ioctl_create_vm(unsigned long type)
4231 {
4232         int r;
4233         struct kvm *kvm;
4234         struct file *file;
4235
4236         kvm = kvm_create_vm(type);
4237         if (IS_ERR(kvm))
4238                 return PTR_ERR(kvm);
4239 #ifdef CONFIG_KVM_MMIO
4240         r = kvm_coalesced_mmio_init(kvm);
4241         if (r < 0)
4242                 goto put_kvm;
4243 #endif
4244         r = get_unused_fd_flags(O_CLOEXEC);
4245         if (r < 0)
4246                 goto put_kvm;
4247
4248         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4249         if (IS_ERR(file)) {
4250                 put_unused_fd(r);
4251                 r = PTR_ERR(file);
4252                 goto put_kvm;
4253         }
4254
4255         /*
4256          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4257          * already set, with ->release() being kvm_vm_release().  In error
4258          * cases it will be called by the final fput(file) and will take
4259          * care of doing kvm_put_kvm(kvm).
4260          */
4261         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4262                 put_unused_fd(r);
4263                 fput(file);
4264                 return -ENOMEM;
4265         }
4266         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4267
4268         fd_install(r, file);
4269         return r;
4270
4271 put_kvm:
4272         kvm_put_kvm(kvm);
4273         return r;
4274 }
4275
4276 static long kvm_dev_ioctl(struct file *filp,
4277                           unsigned int ioctl, unsigned long arg)
4278 {
4279         long r = -EINVAL;
4280
4281         switch (ioctl) {
4282         case KVM_GET_API_VERSION:
4283                 if (arg)
4284                         goto out;
4285                 r = KVM_API_VERSION;
4286                 break;
4287         case KVM_CREATE_VM:
4288                 r = kvm_dev_ioctl_create_vm(arg);
4289                 break;
4290         case KVM_CHECK_EXTENSION:
4291                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4292                 break;
4293         case KVM_GET_VCPU_MMAP_SIZE:
4294                 if (arg)
4295                         goto out;
4296                 r = PAGE_SIZE;     /* struct kvm_run */
4297 #ifdef CONFIG_X86
4298                 r += PAGE_SIZE;    /* pio data page */
4299 #endif
4300 #ifdef CONFIG_KVM_MMIO
4301                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4302 #endif
4303                 break;
4304         case KVM_TRACE_ENABLE:
4305         case KVM_TRACE_PAUSE:
4306         case KVM_TRACE_DISABLE:
4307                 r = -EOPNOTSUPP;
4308                 break;
4309         default:
4310                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4311         }
4312 out:
4313         return r;
4314 }
4315
4316 static struct file_operations kvm_chardev_ops = {
4317         .unlocked_ioctl = kvm_dev_ioctl,
4318         .llseek         = noop_llseek,
4319         KVM_COMPAT(kvm_dev_ioctl),
4320 };
4321
4322 static struct miscdevice kvm_dev = {
4323         KVM_MINOR,
4324         "kvm",
4325         &kvm_chardev_ops,
4326 };
4327
4328 static void hardware_enable_nolock(void *junk)
4329 {
4330         int cpu = raw_smp_processor_id();
4331         int r;
4332
4333         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4334                 return;
4335
4336         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4337
4338         r = kvm_arch_hardware_enable();
4339
4340         if (r) {
4341                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4342                 atomic_inc(&hardware_enable_failed);
4343                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4344         }
4345 }
4346
4347 static int kvm_starting_cpu(unsigned int cpu)
4348 {
4349         raw_spin_lock(&kvm_count_lock);
4350         if (kvm_usage_count)
4351                 hardware_enable_nolock(NULL);
4352         raw_spin_unlock(&kvm_count_lock);
4353         return 0;
4354 }
4355
4356 static void hardware_disable_nolock(void *junk)
4357 {
4358         int cpu = raw_smp_processor_id();
4359
4360         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4361                 return;
4362         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4363         kvm_arch_hardware_disable();
4364 }
4365
4366 static int kvm_dying_cpu(unsigned int cpu)
4367 {
4368         raw_spin_lock(&kvm_count_lock);
4369         if (kvm_usage_count)
4370                 hardware_disable_nolock(NULL);
4371         raw_spin_unlock(&kvm_count_lock);
4372         return 0;
4373 }
4374
4375 static void hardware_disable_all_nolock(void)
4376 {
4377         BUG_ON(!kvm_usage_count);
4378
4379         kvm_usage_count--;
4380         if (!kvm_usage_count)
4381                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4382 }
4383
4384 static void hardware_disable_all(void)
4385 {
4386         raw_spin_lock(&kvm_count_lock);
4387         hardware_disable_all_nolock();
4388         raw_spin_unlock(&kvm_count_lock);
4389 }
4390
4391 static int hardware_enable_all(void)
4392 {
4393         int r = 0;
4394
4395         raw_spin_lock(&kvm_count_lock);
4396
4397         kvm_usage_count++;
4398         if (kvm_usage_count == 1) {
4399                 atomic_set(&hardware_enable_failed, 0);
4400                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4401
4402                 if (atomic_read(&hardware_enable_failed)) {
4403                         hardware_disable_all_nolock();
4404                         r = -EBUSY;
4405                 }
4406         }
4407
4408         raw_spin_unlock(&kvm_count_lock);
4409
4410         return r;
4411 }
4412
4413 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4414                       void *v)
4415 {
4416         /*
4417          * Some (well, at least mine) BIOSes hang on reboot if
4418          * in vmx root mode.
4419          *
4420          * And Intel TXT required VMX off for all cpu when system shutdown.
4421          */
4422         pr_info("kvm: exiting hardware virtualization\n");
4423         kvm_rebooting = true;
4424         on_each_cpu(hardware_disable_nolock, NULL, 1);
4425         return NOTIFY_OK;
4426 }
4427
4428 static struct notifier_block kvm_reboot_notifier = {
4429         .notifier_call = kvm_reboot,
4430         .priority = 0,
4431 };
4432
4433 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4434 {
4435         int i;
4436
4437         for (i = 0; i < bus->dev_count; i++) {
4438                 struct kvm_io_device *pos = bus->range[i].dev;
4439
4440                 kvm_iodevice_destructor(pos);
4441         }
4442         kfree(bus);
4443 }
4444
4445 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4446                                  const struct kvm_io_range *r2)
4447 {
4448         gpa_t addr1 = r1->addr;
4449         gpa_t addr2 = r2->addr;
4450
4451         if (addr1 < addr2)
4452                 return -1;
4453
4454         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4455          * accept any overlapping write.  Any order is acceptable for
4456          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4457          * we process all of them.
4458          */
4459         if (r2->len) {
4460                 addr1 += r1->len;
4461                 addr2 += r2->len;
4462         }
4463
4464         if (addr1 > addr2)
4465                 return 1;
4466
4467         return 0;
4468 }
4469
4470 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4471 {
4472         return kvm_io_bus_cmp(p1, p2);
4473 }
4474
4475 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4476                              gpa_t addr, int len)
4477 {
4478         struct kvm_io_range *range, key;
4479         int off;
4480
4481         key = (struct kvm_io_range) {
4482                 .addr = addr,
4483                 .len = len,
4484         };
4485
4486         range = bsearch(&key, bus->range, bus->dev_count,
4487                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4488         if (range == NULL)
4489                 return -ENOENT;
4490
4491         off = range - bus->range;
4492
4493         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4494                 off--;
4495
4496         return off;
4497 }
4498
4499 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4500                               struct kvm_io_range *range, const void *val)
4501 {
4502         int idx;
4503
4504         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4505         if (idx < 0)
4506                 return -EOPNOTSUPP;
4507
4508         while (idx < bus->dev_count &&
4509                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4510                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4511                                         range->len, val))
4512                         return idx;
4513                 idx++;
4514         }
4515
4516         return -EOPNOTSUPP;
4517 }
4518
4519 /* kvm_io_bus_write - called under kvm->slots_lock */
4520 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4521                      int len, const void *val)
4522 {
4523         struct kvm_io_bus *bus;
4524         struct kvm_io_range range;
4525         int r;
4526
4527         range = (struct kvm_io_range) {
4528                 .addr = addr,
4529                 .len = len,
4530         };
4531
4532         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4533         if (!bus)
4534                 return -ENOMEM;
4535         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4536         return r < 0 ? r : 0;
4537 }
4538 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4539
4540 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4541 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4542                             gpa_t addr, int len, const void *val, long cookie)
4543 {
4544         struct kvm_io_bus *bus;
4545         struct kvm_io_range range;
4546
4547         range = (struct kvm_io_range) {
4548                 .addr = addr,
4549                 .len = len,
4550         };
4551
4552         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4553         if (!bus)
4554                 return -ENOMEM;
4555
4556         /* First try the device referenced by cookie. */
4557         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4558             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4559                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4560                                         val))
4561                         return cookie;
4562
4563         /*
4564          * cookie contained garbage; fall back to search and return the
4565          * correct cookie value.
4566          */
4567         return __kvm_io_bus_write(vcpu, bus, &range, val);
4568 }
4569
4570 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4571                              struct kvm_io_range *range, void *val)
4572 {
4573         int idx;
4574
4575         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4576         if (idx < 0)
4577                 return -EOPNOTSUPP;
4578
4579         while (idx < bus->dev_count &&
4580                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4581                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4582                                        range->len, val))
4583                         return idx;
4584                 idx++;
4585         }
4586
4587         return -EOPNOTSUPP;
4588 }
4589
4590 /* kvm_io_bus_read - called under kvm->slots_lock */
4591 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4592                     int len, void *val)
4593 {
4594         struct kvm_io_bus *bus;
4595         struct kvm_io_range range;
4596         int r;
4597
4598         range = (struct kvm_io_range) {
4599                 .addr = addr,
4600                 .len = len,
4601         };
4602
4603         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4604         if (!bus)
4605                 return -ENOMEM;
4606         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4607         return r < 0 ? r : 0;
4608 }
4609
4610 /* Caller must hold slots_lock. */
4611 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4612                             int len, struct kvm_io_device *dev)
4613 {
4614         int i;
4615         struct kvm_io_bus *new_bus, *bus;
4616         struct kvm_io_range range;
4617
4618         bus = kvm_get_bus(kvm, bus_idx);
4619         if (!bus)
4620                 return -ENOMEM;
4621
4622         /* exclude ioeventfd which is limited by maximum fd */
4623         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4624                 return -ENOSPC;
4625
4626         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4627                           GFP_KERNEL_ACCOUNT);
4628         if (!new_bus)
4629                 return -ENOMEM;
4630
4631         range = (struct kvm_io_range) {
4632                 .addr = addr,
4633                 .len = len,
4634                 .dev = dev,
4635         };
4636
4637         for (i = 0; i < bus->dev_count; i++)
4638                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4639                         break;
4640
4641         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4642         new_bus->dev_count++;
4643         new_bus->range[i] = range;
4644         memcpy(new_bus->range + i + 1, bus->range + i,
4645                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4646         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4647         synchronize_srcu_expedited(&kvm->srcu);
4648         kfree(bus);
4649
4650         return 0;
4651 }
4652
4653 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4654                               struct kvm_io_device *dev)
4655 {
4656         int i, j;
4657         struct kvm_io_bus *new_bus, *bus;
4658
4659         lockdep_assert_held(&kvm->slots_lock);
4660
4661         bus = kvm_get_bus(kvm, bus_idx);
4662         if (!bus)
4663                 return 0;
4664
4665         for (i = 0; i < bus->dev_count; i++) {
4666                 if (bus->range[i].dev == dev) {
4667                         break;
4668                 }
4669         }
4670
4671         if (i == bus->dev_count)
4672                 return 0;
4673
4674         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4675                           GFP_KERNEL_ACCOUNT);
4676         if (new_bus) {
4677                 memcpy(new_bus, bus, struct_size(bus, range, i));
4678                 new_bus->dev_count--;
4679                 memcpy(new_bus->range + i, bus->range + i + 1,
4680                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
4681         }
4682
4683         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4684         synchronize_srcu_expedited(&kvm->srcu);
4685
4686         /* Destroy the old bus _after_ installing the (null) bus. */
4687         if (!new_bus) {
4688                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4689                 for (j = 0; j < bus->dev_count; j++) {
4690                         if (j == i)
4691                                 continue;
4692                         kvm_iodevice_destructor(bus->range[j].dev);
4693                 }
4694         }
4695
4696         kfree(bus);
4697         return new_bus ? 0 : -ENOMEM;
4698 }
4699
4700 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4701                                          gpa_t addr)
4702 {
4703         struct kvm_io_bus *bus;
4704         int dev_idx, srcu_idx;
4705         struct kvm_io_device *iodev = NULL;
4706
4707         srcu_idx = srcu_read_lock(&kvm->srcu);
4708
4709         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4710         if (!bus)
4711                 goto out_unlock;
4712
4713         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4714         if (dev_idx < 0)
4715                 goto out_unlock;
4716
4717         iodev = bus->range[dev_idx].dev;
4718
4719 out_unlock:
4720         srcu_read_unlock(&kvm->srcu, srcu_idx);
4721
4722         return iodev;
4723 }
4724 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4725
4726 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4727                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4728                            const char *fmt)
4729 {
4730         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4731                                           inode->i_private;
4732
4733         /* The debugfs files are a reference to the kvm struct which
4734          * is still valid when kvm_destroy_vm is called.
4735          * To avoid the race between open and the removal of the debugfs
4736          * directory we test against the users count.
4737          */
4738         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4739                 return -ENOENT;
4740
4741         if (simple_attr_open(inode, file, get,
4742                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4743                     ? set : NULL,
4744                     fmt)) {
4745                 kvm_put_kvm(stat_data->kvm);
4746                 return -ENOMEM;
4747         }
4748
4749         return 0;
4750 }
4751
4752 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4753 {
4754         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4755                                           inode->i_private;
4756
4757         simple_attr_release(inode, file);
4758         kvm_put_kvm(stat_data->kvm);
4759
4760         return 0;
4761 }
4762
4763 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4764 {
4765         *val = *(ulong *)((void *)kvm + offset);
4766
4767         return 0;
4768 }
4769
4770 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4771 {
4772         *(ulong *)((void *)kvm + offset) = 0;
4773
4774         return 0;
4775 }
4776
4777 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4778 {
4779         int i;
4780         struct kvm_vcpu *vcpu;
4781
4782         *val = 0;
4783
4784         kvm_for_each_vcpu(i, vcpu, kvm)
4785                 *val += *(u64 *)((void *)vcpu + offset);
4786
4787         return 0;
4788 }
4789
4790 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4791 {
4792         int i;
4793         struct kvm_vcpu *vcpu;
4794
4795         kvm_for_each_vcpu(i, vcpu, kvm)
4796                 *(u64 *)((void *)vcpu + offset) = 0;
4797
4798         return 0;
4799 }
4800
4801 static int kvm_stat_data_get(void *data, u64 *val)
4802 {
4803         int r = -EFAULT;
4804         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4805
4806         switch (stat_data->dbgfs_item->kind) {
4807         case KVM_STAT_VM:
4808                 r = kvm_get_stat_per_vm(stat_data->kvm,
4809                                         stat_data->dbgfs_item->offset, val);
4810                 break;
4811         case KVM_STAT_VCPU:
4812                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4813                                           stat_data->dbgfs_item->offset, val);
4814                 break;
4815         }
4816
4817         return r;
4818 }
4819
4820 static int kvm_stat_data_clear(void *data, u64 val)
4821 {
4822         int r = -EFAULT;
4823         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4824
4825         if (val)
4826                 return -EINVAL;
4827
4828         switch (stat_data->dbgfs_item->kind) {
4829         case KVM_STAT_VM:
4830                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4831                                           stat_data->dbgfs_item->offset);
4832                 break;
4833         case KVM_STAT_VCPU:
4834                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4835                                             stat_data->dbgfs_item->offset);
4836                 break;
4837         }
4838
4839         return r;
4840 }
4841
4842 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4843 {
4844         __simple_attr_check_format("%llu\n", 0ull);
4845         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4846                                 kvm_stat_data_clear, "%llu\n");
4847 }
4848
4849 static const struct file_operations stat_fops_per_vm = {
4850         .owner = THIS_MODULE,
4851         .open = kvm_stat_data_open,
4852         .release = kvm_debugfs_release,
4853         .read = simple_attr_read,
4854         .write = simple_attr_write,
4855         .llseek = no_llseek,
4856 };
4857
4858 static int vm_stat_get(void *_offset, u64 *val)
4859 {
4860         unsigned offset = (long)_offset;
4861         struct kvm *kvm;
4862         u64 tmp_val;
4863
4864         *val = 0;
4865         mutex_lock(&kvm_lock);
4866         list_for_each_entry(kvm, &vm_list, vm_list) {
4867                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4868                 *val += tmp_val;
4869         }
4870         mutex_unlock(&kvm_lock);
4871         return 0;
4872 }
4873
4874 static int vm_stat_clear(void *_offset, u64 val)
4875 {
4876         unsigned offset = (long)_offset;
4877         struct kvm *kvm;
4878
4879         if (val)
4880                 return -EINVAL;
4881
4882         mutex_lock(&kvm_lock);
4883         list_for_each_entry(kvm, &vm_list, vm_list) {
4884                 kvm_clear_stat_per_vm(kvm, offset);
4885         }
4886         mutex_unlock(&kvm_lock);
4887
4888         return 0;
4889 }
4890
4891 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4892
4893 static int vcpu_stat_get(void *_offset, u64 *val)
4894 {
4895         unsigned offset = (long)_offset;
4896         struct kvm *kvm;
4897         u64 tmp_val;
4898
4899         *val = 0;
4900         mutex_lock(&kvm_lock);
4901         list_for_each_entry(kvm, &vm_list, vm_list) {
4902                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4903                 *val += tmp_val;
4904         }
4905         mutex_unlock(&kvm_lock);
4906         return 0;
4907 }
4908
4909 static int vcpu_stat_clear(void *_offset, u64 val)
4910 {
4911         unsigned offset = (long)_offset;
4912         struct kvm *kvm;
4913
4914         if (val)
4915                 return -EINVAL;
4916
4917         mutex_lock(&kvm_lock);
4918         list_for_each_entry(kvm, &vm_list, vm_list) {
4919                 kvm_clear_stat_per_vcpu(kvm, offset);
4920         }
4921         mutex_unlock(&kvm_lock);
4922
4923         return 0;
4924 }
4925
4926 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4927                         "%llu\n");
4928
4929 static const struct file_operations *stat_fops[] = {
4930         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4931         [KVM_STAT_VM]   = &vm_stat_fops,
4932 };
4933
4934 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4935 {
4936         struct kobj_uevent_env *env;
4937         unsigned long long created, active;
4938
4939         if (!kvm_dev.this_device || !kvm)
4940                 return;
4941
4942         mutex_lock(&kvm_lock);
4943         if (type == KVM_EVENT_CREATE_VM) {
4944                 kvm_createvm_count++;
4945                 kvm_active_vms++;
4946         } else if (type == KVM_EVENT_DESTROY_VM) {
4947                 kvm_active_vms--;
4948         }
4949         created = kvm_createvm_count;
4950         active = kvm_active_vms;
4951         mutex_unlock(&kvm_lock);
4952
4953         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4954         if (!env)
4955                 return;
4956
4957         add_uevent_var(env, "CREATED=%llu", created);
4958         add_uevent_var(env, "COUNT=%llu", active);
4959
4960         if (type == KVM_EVENT_CREATE_VM) {
4961                 add_uevent_var(env, "EVENT=create");
4962                 kvm->userspace_pid = task_pid_nr(current);
4963         } else if (type == KVM_EVENT_DESTROY_VM) {
4964                 add_uevent_var(env, "EVENT=destroy");
4965         }
4966         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4967
4968         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4969                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4970
4971                 if (p) {
4972                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4973                         if (!IS_ERR(tmp))
4974                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4975                         kfree(p);
4976                 }
4977         }
4978         /* no need for checks, since we are adding at most only 5 keys */
4979         env->envp[env->envp_idx++] = NULL;
4980         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4981         kfree(env);
4982 }
4983
4984 static void kvm_init_debug(void)
4985 {
4986         struct kvm_stats_debugfs_item *p;
4987
4988         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4989
4990         kvm_debugfs_num_entries = 0;
4991         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4992                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4993                                     kvm_debugfs_dir, (void *)(long)p->offset,
4994                                     stat_fops[p->kind]);
4995         }
4996 }
4997
4998 static int kvm_suspend(void)
4999 {
5000         if (kvm_usage_count)
5001                 hardware_disable_nolock(NULL);
5002         return 0;
5003 }
5004
5005 static void kvm_resume(void)
5006 {
5007         if (kvm_usage_count) {
5008 #ifdef CONFIG_LOCKDEP
5009                 WARN_ON(lockdep_is_held(&kvm_count_lock));
5010 #endif
5011                 hardware_enable_nolock(NULL);
5012         }
5013 }
5014
5015 static struct syscore_ops kvm_syscore_ops = {
5016         .suspend = kvm_suspend,
5017         .resume = kvm_resume,
5018 };
5019
5020 static inline
5021 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5022 {
5023         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5024 }
5025
5026 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5027 {
5028         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5029
5030         WRITE_ONCE(vcpu->preempted, false);
5031         WRITE_ONCE(vcpu->ready, false);
5032
5033         __this_cpu_write(kvm_running_vcpu, vcpu);
5034         kvm_arch_sched_in(vcpu, cpu);
5035         kvm_arch_vcpu_load(vcpu, cpu);
5036 }
5037
5038 static void kvm_sched_out(struct preempt_notifier *pn,
5039                           struct task_struct *next)
5040 {
5041         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5042
5043         if (current->on_rq) {
5044                 WRITE_ONCE(vcpu->preempted, true);
5045                 WRITE_ONCE(vcpu->ready, true);
5046         }
5047         kvm_arch_vcpu_put(vcpu);
5048         __this_cpu_write(kvm_running_vcpu, NULL);
5049 }
5050
5051 /**
5052  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5053  *
5054  * We can disable preemption locally around accessing the per-CPU variable,
5055  * and use the resolved vcpu pointer after enabling preemption again,
5056  * because even if the current thread is migrated to another CPU, reading
5057  * the per-CPU value later will give us the same value as we update the
5058  * per-CPU variable in the preempt notifier handlers.
5059  */
5060 struct kvm_vcpu *kvm_get_running_vcpu(void)
5061 {
5062         struct kvm_vcpu *vcpu;
5063
5064         preempt_disable();
5065         vcpu = __this_cpu_read(kvm_running_vcpu);
5066         preempt_enable();
5067
5068         return vcpu;
5069 }
5070 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5071
5072 /**
5073  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5074  */
5075 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5076 {
5077         return &kvm_running_vcpu;
5078 }
5079
5080 struct kvm_cpu_compat_check {
5081         void *opaque;
5082         int *ret;
5083 };
5084
5085 static void check_processor_compat(void *data)
5086 {
5087         struct kvm_cpu_compat_check *c = data;
5088
5089         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5090 }
5091
5092 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5093                   struct module *module)
5094 {
5095         struct kvm_cpu_compat_check c;
5096         int r;
5097         int cpu;
5098
5099         r = kvm_arch_init(opaque);
5100         if (r)
5101                 goto out_fail;
5102
5103         /*
5104          * kvm_arch_init makes sure there's at most one caller
5105          * for architectures that support multiple implementations,
5106          * like intel and amd on x86.
5107          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5108          * conflicts in case kvm is already setup for another implementation.
5109          */
5110         r = kvm_irqfd_init();
5111         if (r)
5112                 goto out_irqfd;
5113
5114         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5115                 r = -ENOMEM;
5116                 goto out_free_0;
5117         }
5118
5119         r = kvm_arch_hardware_setup(opaque);
5120         if (r < 0)
5121                 goto out_free_1;
5122
5123         c.ret = &r;
5124         c.opaque = opaque;
5125         for_each_online_cpu(cpu) {
5126                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5127                 if (r < 0)
5128                         goto out_free_2;
5129         }
5130
5131         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5132                                       kvm_starting_cpu, kvm_dying_cpu);
5133         if (r)
5134                 goto out_free_2;
5135         register_reboot_notifier(&kvm_reboot_notifier);
5136
5137         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5138         if (!vcpu_align)
5139                 vcpu_align = __alignof__(struct kvm_vcpu);
5140         kvm_vcpu_cache =
5141                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5142                                            SLAB_ACCOUNT,
5143                                            offsetof(struct kvm_vcpu, arch),
5144                                            sizeof_field(struct kvm_vcpu, arch),
5145                                            NULL);
5146         if (!kvm_vcpu_cache) {
5147                 r = -ENOMEM;
5148                 goto out_free_3;
5149         }
5150
5151         r = kvm_async_pf_init();
5152         if (r)
5153                 goto out_free;
5154
5155         kvm_chardev_ops.owner = module;
5156         kvm_vm_fops.owner = module;
5157         kvm_vcpu_fops.owner = module;
5158
5159         r = misc_register(&kvm_dev);
5160         if (r) {
5161                 pr_err("kvm: misc device register failed\n");
5162                 goto out_unreg;
5163         }
5164
5165         register_syscore_ops(&kvm_syscore_ops);
5166
5167         kvm_preempt_ops.sched_in = kvm_sched_in;
5168         kvm_preempt_ops.sched_out = kvm_sched_out;
5169
5170         kvm_init_debug();
5171
5172         r = kvm_vfio_ops_init();
5173         WARN_ON(r);
5174
5175         return 0;
5176
5177 out_unreg:
5178         kvm_async_pf_deinit();
5179 out_free:
5180         kmem_cache_destroy(kvm_vcpu_cache);
5181 out_free_3:
5182         unregister_reboot_notifier(&kvm_reboot_notifier);
5183         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5184 out_free_2:
5185         kvm_arch_hardware_unsetup();
5186 out_free_1:
5187         free_cpumask_var(cpus_hardware_enabled);
5188 out_free_0:
5189         kvm_irqfd_exit();
5190 out_irqfd:
5191         kvm_arch_exit();
5192 out_fail:
5193         return r;
5194 }
5195 EXPORT_SYMBOL_GPL(kvm_init);
5196
5197 void kvm_exit(void)
5198 {
5199         debugfs_remove_recursive(kvm_debugfs_dir);
5200         misc_deregister(&kvm_dev);
5201         kmem_cache_destroy(kvm_vcpu_cache);
5202         kvm_async_pf_deinit();
5203         unregister_syscore_ops(&kvm_syscore_ops);
5204         unregister_reboot_notifier(&kvm_reboot_notifier);
5205         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5206         on_each_cpu(hardware_disable_nolock, NULL, 1);
5207         kvm_arch_hardware_unsetup();
5208         kvm_arch_exit();
5209         kvm_irqfd_exit();
5210         free_cpumask_var(cpus_hardware_enabled);
5211         kvm_vfio_ops_exit();
5212 }
5213 EXPORT_SYMBOL_GPL(kvm_exit);
5214
5215 struct kvm_vm_worker_thread_context {
5216         struct kvm *kvm;
5217         struct task_struct *parent;
5218         struct completion init_done;
5219         kvm_vm_thread_fn_t thread_fn;
5220         uintptr_t data;
5221         int err;
5222 };
5223
5224 static int kvm_vm_worker_thread(void *context)
5225 {
5226         /*
5227          * The init_context is allocated on the stack of the parent thread, so
5228          * we have to locally copy anything that is needed beyond initialization
5229          */
5230         struct kvm_vm_worker_thread_context *init_context = context;
5231         struct kvm *kvm = init_context->kvm;
5232         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5233         uintptr_t data = init_context->data;
5234         int err;
5235
5236         err = kthread_park(current);
5237         /* kthread_park(current) is never supposed to return an error */
5238         WARN_ON(err != 0);
5239         if (err)
5240                 goto init_complete;
5241
5242         err = cgroup_attach_task_all(init_context->parent, current);
5243         if (err) {
5244                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5245                         __func__, err);
5246                 goto init_complete;
5247         }
5248
5249         set_user_nice(current, task_nice(init_context->parent));
5250
5251 init_complete:
5252         init_context->err = err;
5253         complete(&init_context->init_done);
5254         init_context = NULL;
5255
5256         if (err)
5257                 return err;
5258
5259         /* Wait to be woken up by the spawner before proceeding. */
5260         kthread_parkme();
5261
5262         if (!kthread_should_stop())
5263                 err = thread_fn(kvm, data);
5264
5265         return err;
5266 }
5267
5268 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5269                                 uintptr_t data, const char *name,
5270                                 struct task_struct **thread_ptr)
5271 {
5272         struct kvm_vm_worker_thread_context init_context = {};
5273         struct task_struct *thread;
5274
5275         *thread_ptr = NULL;
5276         init_context.kvm = kvm;
5277         init_context.parent = current;
5278         init_context.thread_fn = thread_fn;
5279         init_context.data = data;
5280         init_completion(&init_context.init_done);
5281
5282         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5283                              "%s-%d", name, task_pid_nr(current));
5284         if (IS_ERR(thread))
5285                 return PTR_ERR(thread);
5286
5287         /* kthread_run is never supposed to return NULL */
5288         WARN_ON(thread == NULL);
5289
5290         wait_for_completion(&init_context.init_done);
5291
5292         if (!init_context.err)
5293                 *thread_ptr = thread;
5294
5295         return init_context.err;
5296 }