KVM: leverage change to adjust slots->used_slots in update_memslots()
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122                                 unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134
135 static bool largepages_enabled = true;
136
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144                 unsigned long start, unsigned long end, bool blockable)
145 {
146         return 0;
147 }
148
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151         if (pfn_valid(pfn))
152                 return PageReserved(pfn_to_page(pfn));
153
154         return true;
155 }
156
157 /*
158  * Switches to specified vcpu, until a matching vcpu_put()
159  */
160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162         int cpu = get_cpu();
163         preempt_notifier_register(&vcpu->preempt_notifier);
164         kvm_arch_vcpu_load(vcpu, cpu);
165         put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171         preempt_disable();
172         kvm_arch_vcpu_put(vcpu);
173         preempt_notifier_unregister(&vcpu->preempt_notifier);
174         preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183         /*
184          * We need to wait for the VCPU to reenable interrupts and get out of
185          * READING_SHADOW_PAGE_TABLES mode.
186          */
187         if (req & KVM_REQUEST_WAIT)
188                 return mode != OUTSIDE_GUEST_MODE;
189
190         /*
191          * Need to kick a running VCPU, but otherwise there is nothing to do.
192          */
193         return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202         if (unlikely(!cpus))
203                 cpus = cpu_online_mask;
204
205         if (cpumask_empty(cpus))
206                 return false;
207
208         smp_call_function_many(cpus, ack_flush, NULL, wait);
209         return true;
210 }
211
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215         int i, cpu, me;
216         struct kvm_vcpu *vcpu;
217         bool called;
218
219         me = get_cpu();
220
221         kvm_for_each_vcpu(i, vcpu, kvm) {
222                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
223                         continue;
224
225                 kvm_make_request(req, vcpu);
226                 cpu = vcpu->cpu;
227
228                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229                         continue;
230
231                 if (tmp != NULL && cpu != -1 && cpu != me &&
232                     kvm_request_needs_ipi(vcpu, req))
233                         __cpumask_set_cpu(cpu, tmp);
234         }
235
236         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237         put_cpu();
238
239         return called;
240 }
241
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244         cpumask_var_t cpus;
245         bool called;
246
247         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
248
249         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
250
251         free_cpumask_var(cpus);
252         return called;
253 }
254
255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
256 void kvm_flush_remote_tlbs(struct kvm *kvm)
257 {
258         /*
259          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260          * kvm_make_all_cpus_request.
261          */
262         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
263
264         /*
265          * We want to publish modifications to the page tables before reading
266          * mode. Pairs with a memory barrier in arch-specific code.
267          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268          * and smp_mb in walk_shadow_page_lockless_begin/end.
269          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
270          *
271          * There is already an smp_mb__after_atomic() before
272          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
273          * barrier here.
274          */
275         if (!kvm_arch_flush_remote_tlb(kvm)
276             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277                 ++kvm->stat.remote_tlb_flush;
278         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290         struct page *page;
291         int r;
292
293         mutex_init(&vcpu->mutex);
294         vcpu->cpu = -1;
295         vcpu->kvm = kvm;
296         vcpu->vcpu_id = id;
297         vcpu->pid = NULL;
298         init_swait_queue_head(&vcpu->wq);
299         kvm_async_pf_vcpu_init(vcpu);
300
301         vcpu->pre_pcpu = -1;
302         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303
304         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305         if (!page) {
306                 r = -ENOMEM;
307                 goto fail;
308         }
309         vcpu->run = page_address(page);
310
311         kvm_vcpu_set_in_spin_loop(vcpu, false);
312         kvm_vcpu_set_dy_eligible(vcpu, false);
313         vcpu->preempted = false;
314
315         r = kvm_arch_vcpu_init(vcpu);
316         if (r < 0)
317                 goto fail_free_run;
318         return 0;
319
320 fail_free_run:
321         free_page((unsigned long)vcpu->run);
322 fail:
323         return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329         /*
330          * no need for rcu_read_lock as VCPU_RUN is the only place that
331          * will change the vcpu->pid pointer and on uninit all file
332          * descriptors are already gone.
333          */
334         put_pid(rcu_dereference_protected(vcpu->pid, 1));
335         kvm_arch_vcpu_uninit(vcpu);
336         free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343         return container_of(mn, struct kvm, mmu_notifier);
344 }
345
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347                                         struct mm_struct *mm,
348                                         unsigned long address,
349                                         pte_t pte)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352         int idx;
353
354         idx = srcu_read_lock(&kvm->srcu);
355         spin_lock(&kvm->mmu_lock);
356         kvm->mmu_notifier_seq++;
357         kvm_set_spte_hva(kvm, address, pte);
358         spin_unlock(&kvm->mmu_lock);
359         srcu_read_unlock(&kvm->srcu, idx);
360 }
361
362 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
363                                                     struct mm_struct *mm,
364                                                     unsigned long start,
365                                                     unsigned long end,
366                                                     bool blockable)
367 {
368         struct kvm *kvm = mmu_notifier_to_kvm(mn);
369         int need_tlb_flush = 0, idx;
370         int ret;
371
372         idx = srcu_read_lock(&kvm->srcu);
373         spin_lock(&kvm->mmu_lock);
374         /*
375          * The count increase must become visible at unlock time as no
376          * spte can be established without taking the mmu_lock and
377          * count is also read inside the mmu_lock critical section.
378          */
379         kvm->mmu_notifier_count++;
380         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
381         need_tlb_flush |= kvm->tlbs_dirty;
382         /* we've to flush the tlb before the pages can be freed */
383         if (need_tlb_flush)
384                 kvm_flush_remote_tlbs(kvm);
385
386         spin_unlock(&kvm->mmu_lock);
387
388         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, start, end, blockable);
389
390         srcu_read_unlock(&kvm->srcu, idx);
391
392         return ret;
393 }
394
395 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
396                                                   struct mm_struct *mm,
397                                                   unsigned long start,
398                                                   unsigned long end)
399 {
400         struct kvm *kvm = mmu_notifier_to_kvm(mn);
401
402         spin_lock(&kvm->mmu_lock);
403         /*
404          * This sequence increase will notify the kvm page fault that
405          * the page that is going to be mapped in the spte could have
406          * been freed.
407          */
408         kvm->mmu_notifier_seq++;
409         smp_wmb();
410         /*
411          * The above sequence increase must be visible before the
412          * below count decrease, which is ensured by the smp_wmb above
413          * in conjunction with the smp_rmb in mmu_notifier_retry().
414          */
415         kvm->mmu_notifier_count--;
416         spin_unlock(&kvm->mmu_lock);
417
418         BUG_ON(kvm->mmu_notifier_count < 0);
419 }
420
421 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
422                                               struct mm_struct *mm,
423                                               unsigned long start,
424                                               unsigned long end)
425 {
426         struct kvm *kvm = mmu_notifier_to_kvm(mn);
427         int young, idx;
428
429         idx = srcu_read_lock(&kvm->srcu);
430         spin_lock(&kvm->mmu_lock);
431
432         young = kvm_age_hva(kvm, start, end);
433         if (young)
434                 kvm_flush_remote_tlbs(kvm);
435
436         spin_unlock(&kvm->mmu_lock);
437         srcu_read_unlock(&kvm->srcu, idx);
438
439         return young;
440 }
441
442 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
443                                         struct mm_struct *mm,
444                                         unsigned long start,
445                                         unsigned long end)
446 {
447         struct kvm *kvm = mmu_notifier_to_kvm(mn);
448         int young, idx;
449
450         idx = srcu_read_lock(&kvm->srcu);
451         spin_lock(&kvm->mmu_lock);
452         /*
453          * Even though we do not flush TLB, this will still adversely
454          * affect performance on pre-Haswell Intel EPT, where there is
455          * no EPT Access Bit to clear so that we have to tear down EPT
456          * tables instead. If we find this unacceptable, we can always
457          * add a parameter to kvm_age_hva so that it effectively doesn't
458          * do anything on clear_young.
459          *
460          * Also note that currently we never issue secondary TLB flushes
461          * from clear_young, leaving this job up to the regular system
462          * cadence. If we find this inaccurate, we might come up with a
463          * more sophisticated heuristic later.
464          */
465         young = kvm_age_hva(kvm, start, end);
466         spin_unlock(&kvm->mmu_lock);
467         srcu_read_unlock(&kvm->srcu, idx);
468
469         return young;
470 }
471
472 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
473                                        struct mm_struct *mm,
474                                        unsigned long address)
475 {
476         struct kvm *kvm = mmu_notifier_to_kvm(mn);
477         int young, idx;
478
479         idx = srcu_read_lock(&kvm->srcu);
480         spin_lock(&kvm->mmu_lock);
481         young = kvm_test_age_hva(kvm, address);
482         spin_unlock(&kvm->mmu_lock);
483         srcu_read_unlock(&kvm->srcu, idx);
484
485         return young;
486 }
487
488 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
489                                      struct mm_struct *mm)
490 {
491         struct kvm *kvm = mmu_notifier_to_kvm(mn);
492         int idx;
493
494         idx = srcu_read_lock(&kvm->srcu);
495         kvm_arch_flush_shadow_all(kvm);
496         srcu_read_unlock(&kvm->srcu, idx);
497 }
498
499 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
500         .flags                  = MMU_INVALIDATE_DOES_NOT_BLOCK,
501         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
502         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
503         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
504         .clear_young            = kvm_mmu_notifier_clear_young,
505         .test_young             = kvm_mmu_notifier_test_young,
506         .change_pte             = kvm_mmu_notifier_change_pte,
507         .release                = kvm_mmu_notifier_release,
508 };
509
510 static int kvm_init_mmu_notifier(struct kvm *kvm)
511 {
512         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
513         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
514 }
515
516 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
517
518 static int kvm_init_mmu_notifier(struct kvm *kvm)
519 {
520         return 0;
521 }
522
523 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
524
525 static struct kvm_memslots *kvm_alloc_memslots(void)
526 {
527         int i;
528         struct kvm_memslots *slots;
529
530         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
531         if (!slots)
532                 return NULL;
533
534         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
535                 slots->id_to_index[i] = slots->memslots[i].id = i;
536
537         return slots;
538 }
539
540 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
541 {
542         if (!memslot->dirty_bitmap)
543                 return;
544
545         kvfree(memslot->dirty_bitmap);
546         memslot->dirty_bitmap = NULL;
547 }
548
549 /*
550  * Free any memory in @free but not in @dont.
551  */
552 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
553                               struct kvm_memory_slot *dont)
554 {
555         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
556                 kvm_destroy_dirty_bitmap(free);
557
558         kvm_arch_free_memslot(kvm, free, dont);
559
560         free->npages = 0;
561 }
562
563 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
564 {
565         struct kvm_memory_slot *memslot;
566
567         if (!slots)
568                 return;
569
570         kvm_for_each_memslot(memslot, slots)
571                 kvm_free_memslot(kvm, memslot, NULL);
572
573         kvfree(slots);
574 }
575
576 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
577 {
578         int i;
579
580         if (!kvm->debugfs_dentry)
581                 return;
582
583         debugfs_remove_recursive(kvm->debugfs_dentry);
584
585         if (kvm->debugfs_stat_data) {
586                 for (i = 0; i < kvm_debugfs_num_entries; i++)
587                         kfree(kvm->debugfs_stat_data[i]);
588                 kfree(kvm->debugfs_stat_data);
589         }
590 }
591
592 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
593 {
594         char dir_name[ITOA_MAX_LEN * 2];
595         struct kvm_stat_data *stat_data;
596         struct kvm_stats_debugfs_item *p;
597
598         if (!debugfs_initialized())
599                 return 0;
600
601         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
602         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
603
604         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
605                                          sizeof(*kvm->debugfs_stat_data),
606                                          GFP_KERNEL);
607         if (!kvm->debugfs_stat_data)
608                 return -ENOMEM;
609
610         for (p = debugfs_entries; p->name; p++) {
611                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
612                 if (!stat_data)
613                         return -ENOMEM;
614
615                 stat_data->kvm = kvm;
616                 stat_data->offset = p->offset;
617                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
618                 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
619                                     stat_data, stat_fops_per_vm[p->kind]);
620         }
621         return 0;
622 }
623
624 static struct kvm *kvm_create_vm(unsigned long type)
625 {
626         int r, i;
627         struct kvm *kvm = kvm_arch_alloc_vm();
628
629         if (!kvm)
630                 return ERR_PTR(-ENOMEM);
631
632         spin_lock_init(&kvm->mmu_lock);
633         mmgrab(current->mm);
634         kvm->mm = current->mm;
635         kvm_eventfd_init(kvm);
636         mutex_init(&kvm->lock);
637         mutex_init(&kvm->irq_lock);
638         mutex_init(&kvm->slots_lock);
639         refcount_set(&kvm->users_count, 1);
640         INIT_LIST_HEAD(&kvm->devices);
641
642         r = kvm_arch_init_vm(kvm, type);
643         if (r)
644                 goto out_err_no_disable;
645
646         r = hardware_enable_all();
647         if (r)
648                 goto out_err_no_disable;
649
650 #ifdef CONFIG_HAVE_KVM_IRQFD
651         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
652 #endif
653
654         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
655
656         r = -ENOMEM;
657         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
658                 struct kvm_memslots *slots = kvm_alloc_memslots();
659                 if (!slots)
660                         goto out_err_no_srcu;
661                 /*
662                  * Generations must be different for each address space.
663                  * Init kvm generation close to the maximum to easily test the
664                  * code of handling generation number wrap-around.
665                  */
666                 slots->generation = i * 2 - 150;
667                 rcu_assign_pointer(kvm->memslots[i], slots);
668         }
669
670         if (init_srcu_struct(&kvm->srcu))
671                 goto out_err_no_srcu;
672         if (init_srcu_struct(&kvm->irq_srcu))
673                 goto out_err_no_irq_srcu;
674         for (i = 0; i < KVM_NR_BUSES; i++) {
675                 rcu_assign_pointer(kvm->buses[i],
676                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
677                 if (!kvm->buses[i])
678                         goto out_err;
679         }
680
681         r = kvm_init_mmu_notifier(kvm);
682         if (r)
683                 goto out_err;
684
685         spin_lock(&kvm_lock);
686         list_add(&kvm->vm_list, &vm_list);
687         spin_unlock(&kvm_lock);
688
689         preempt_notifier_inc();
690
691         return kvm;
692
693 out_err:
694         cleanup_srcu_struct(&kvm->irq_srcu);
695 out_err_no_irq_srcu:
696         cleanup_srcu_struct(&kvm->srcu);
697 out_err_no_srcu:
698         hardware_disable_all();
699 out_err_no_disable:
700         refcount_set(&kvm->users_count, 0);
701         for (i = 0; i < KVM_NR_BUSES; i++)
702                 kfree(kvm_get_bus(kvm, i));
703         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
704                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
705         kvm_arch_free_vm(kvm);
706         mmdrop(current->mm);
707         return ERR_PTR(r);
708 }
709
710 static void kvm_destroy_devices(struct kvm *kvm)
711 {
712         struct kvm_device *dev, *tmp;
713
714         /*
715          * We do not need to take the kvm->lock here, because nobody else
716          * has a reference to the struct kvm at this point and therefore
717          * cannot access the devices list anyhow.
718          */
719         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
720                 list_del(&dev->vm_node);
721                 dev->ops->destroy(dev);
722         }
723 }
724
725 static void kvm_destroy_vm(struct kvm *kvm)
726 {
727         int i;
728         struct mm_struct *mm = kvm->mm;
729
730         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
731         kvm_destroy_vm_debugfs(kvm);
732         kvm_arch_sync_events(kvm);
733         spin_lock(&kvm_lock);
734         list_del(&kvm->vm_list);
735         spin_unlock(&kvm_lock);
736         kvm_free_irq_routing(kvm);
737         for (i = 0; i < KVM_NR_BUSES; i++) {
738                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
739
740                 if (bus)
741                         kvm_io_bus_destroy(bus);
742                 kvm->buses[i] = NULL;
743         }
744         kvm_coalesced_mmio_free(kvm);
745 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
746         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
747 #else
748         kvm_arch_flush_shadow_all(kvm);
749 #endif
750         kvm_arch_destroy_vm(kvm);
751         kvm_destroy_devices(kvm);
752         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
753                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
754         cleanup_srcu_struct(&kvm->irq_srcu);
755         cleanup_srcu_struct(&kvm->srcu);
756         kvm_arch_free_vm(kvm);
757         preempt_notifier_dec();
758         hardware_disable_all();
759         mmdrop(mm);
760 }
761
762 void kvm_get_kvm(struct kvm *kvm)
763 {
764         refcount_inc(&kvm->users_count);
765 }
766 EXPORT_SYMBOL_GPL(kvm_get_kvm);
767
768 void kvm_put_kvm(struct kvm *kvm)
769 {
770         if (refcount_dec_and_test(&kvm->users_count))
771                 kvm_destroy_vm(kvm);
772 }
773 EXPORT_SYMBOL_GPL(kvm_put_kvm);
774
775
776 static int kvm_vm_release(struct inode *inode, struct file *filp)
777 {
778         struct kvm *kvm = filp->private_data;
779
780         kvm_irqfd_release(kvm);
781
782         kvm_put_kvm(kvm);
783         return 0;
784 }
785
786 /*
787  * Allocation size is twice as large as the actual dirty bitmap size.
788  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
789  */
790 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
791 {
792         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
793
794         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
795         if (!memslot->dirty_bitmap)
796                 return -ENOMEM;
797
798         return 0;
799 }
800
801 /*
802  * Insert memslot and re-sort memslots based on their GFN,
803  * so binary search could be used to lookup GFN.
804  * Sorting algorithm takes advantage of having initially
805  * sorted array and known changed memslot position.
806  */
807 static void update_memslots(struct kvm_memslots *slots,
808                             struct kvm_memory_slot *new,
809                             enum kvm_mr_change change)
810 {
811         int id = new->id;
812         int i = slots->id_to_index[id];
813         struct kvm_memory_slot *mslots = slots->memslots;
814
815         WARN_ON(mslots[i].id != id);
816         switch (change) {
817         case KVM_MR_CREATE:
818                 slots->used_slots++;
819                 WARN_ON(mslots[i].npages || !new->npages);
820                 break;
821         case KVM_MR_DELETE:
822                 slots->used_slots--;
823                 WARN_ON(new->npages || !mslots[i].npages);
824                 break;
825         default:
826                 break;
827         }
828
829         while (i < KVM_MEM_SLOTS_NUM - 1 &&
830                new->base_gfn <= mslots[i + 1].base_gfn) {
831                 if (!mslots[i + 1].npages)
832                         break;
833                 mslots[i] = mslots[i + 1];
834                 slots->id_to_index[mslots[i].id] = i;
835                 i++;
836         }
837
838         /*
839          * The ">=" is needed when creating a slot with base_gfn == 0,
840          * so that it moves before all those with base_gfn == npages == 0.
841          *
842          * On the other hand, if new->npages is zero, the above loop has
843          * already left i pointing to the beginning of the empty part of
844          * mslots, and the ">=" would move the hole backwards in this
845          * case---which is wrong.  So skip the loop when deleting a slot.
846          */
847         if (new->npages) {
848                 while (i > 0 &&
849                        new->base_gfn >= mslots[i - 1].base_gfn) {
850                         mslots[i] = mslots[i - 1];
851                         slots->id_to_index[mslots[i].id] = i;
852                         i--;
853                 }
854         } else
855                 WARN_ON_ONCE(i != slots->used_slots);
856
857         mslots[i] = *new;
858         slots->id_to_index[mslots[i].id] = i;
859 }
860
861 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
862 {
863         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
864
865 #ifdef __KVM_HAVE_READONLY_MEM
866         valid_flags |= KVM_MEM_READONLY;
867 #endif
868
869         if (mem->flags & ~valid_flags)
870                 return -EINVAL;
871
872         return 0;
873 }
874
875 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
876                 int as_id, struct kvm_memslots *slots)
877 {
878         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
879
880         /*
881          * Set the low bit in the generation, which disables SPTE caching
882          * until the end of synchronize_srcu_expedited.
883          */
884         WARN_ON(old_memslots->generation & 1);
885         slots->generation = old_memslots->generation + 1;
886
887         rcu_assign_pointer(kvm->memslots[as_id], slots);
888         synchronize_srcu_expedited(&kvm->srcu);
889
890         /*
891          * Increment the new memslot generation a second time. This prevents
892          * vm exits that race with memslot updates from caching a memslot
893          * generation that will (potentially) be valid forever.
894          *
895          * Generations must be unique even across address spaces.  We do not need
896          * a global counter for that, instead the generation space is evenly split
897          * across address spaces.  For example, with two address spaces, address
898          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
899          * use generations 2, 6, 10, 14, ...
900          */
901         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
902
903         kvm_arch_memslots_updated(kvm, slots);
904
905         return old_memslots;
906 }
907
908 /*
909  * Allocate some memory and give it an address in the guest physical address
910  * space.
911  *
912  * Discontiguous memory is allowed, mostly for framebuffers.
913  *
914  * Must be called holding kvm->slots_lock for write.
915  */
916 int __kvm_set_memory_region(struct kvm *kvm,
917                             const struct kvm_userspace_memory_region *mem)
918 {
919         int r;
920         gfn_t base_gfn;
921         unsigned long npages;
922         struct kvm_memory_slot *slot;
923         struct kvm_memory_slot old, new;
924         struct kvm_memslots *slots = NULL, *old_memslots;
925         int as_id, id;
926         enum kvm_mr_change change;
927
928         r = check_memory_region_flags(mem);
929         if (r)
930                 goto out;
931
932         r = -EINVAL;
933         as_id = mem->slot >> 16;
934         id = (u16)mem->slot;
935
936         /* General sanity checks */
937         if (mem->memory_size & (PAGE_SIZE - 1))
938                 goto out;
939         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
940                 goto out;
941         /* We can read the guest memory with __xxx_user() later on. */
942         if ((id < KVM_USER_MEM_SLOTS) &&
943             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
944              !access_ok(VERIFY_WRITE,
945                         (void __user *)(unsigned long)mem->userspace_addr,
946                         mem->memory_size)))
947                 goto out;
948         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
949                 goto out;
950         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
951                 goto out;
952
953         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
954         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
955         npages = mem->memory_size >> PAGE_SHIFT;
956
957         if (npages > KVM_MEM_MAX_NR_PAGES)
958                 goto out;
959
960         new = old = *slot;
961
962         new.id = id;
963         new.base_gfn = base_gfn;
964         new.npages = npages;
965         new.flags = mem->flags;
966
967         if (npages) {
968                 if (!old.npages)
969                         change = KVM_MR_CREATE;
970                 else { /* Modify an existing slot. */
971                         if ((mem->userspace_addr != old.userspace_addr) ||
972                             (npages != old.npages) ||
973                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
974                                 goto out;
975
976                         if (base_gfn != old.base_gfn)
977                                 change = KVM_MR_MOVE;
978                         else if (new.flags != old.flags)
979                                 change = KVM_MR_FLAGS_ONLY;
980                         else { /* Nothing to change. */
981                                 r = 0;
982                                 goto out;
983                         }
984                 }
985         } else {
986                 if (!old.npages)
987                         goto out;
988
989                 change = KVM_MR_DELETE;
990                 new.base_gfn = 0;
991                 new.flags = 0;
992         }
993
994         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
995                 /* Check for overlaps */
996                 r = -EEXIST;
997                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
998                         if (slot->id == id)
999                                 continue;
1000                         if (!((base_gfn + npages <= slot->base_gfn) ||
1001                               (base_gfn >= slot->base_gfn + slot->npages)))
1002                                 goto out;
1003                 }
1004         }
1005
1006         /* Free page dirty bitmap if unneeded */
1007         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1008                 new.dirty_bitmap = NULL;
1009
1010         r = -ENOMEM;
1011         if (change == KVM_MR_CREATE) {
1012                 new.userspace_addr = mem->userspace_addr;
1013
1014                 if (kvm_arch_create_memslot(kvm, &new, npages))
1015                         goto out_free;
1016         }
1017
1018         /* Allocate page dirty bitmap if needed */
1019         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1020                 if (kvm_create_dirty_bitmap(&new) < 0)
1021                         goto out_free;
1022         }
1023
1024         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1025         if (!slots)
1026                 goto out_free;
1027         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1028
1029         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1030                 slot = id_to_memslot(slots, id);
1031                 slot->flags |= KVM_MEMSLOT_INVALID;
1032
1033                 old_memslots = install_new_memslots(kvm, as_id, slots);
1034
1035                 /* From this point no new shadow pages pointing to a deleted,
1036                  * or moved, memslot will be created.
1037                  *
1038                  * validation of sp->gfn happens in:
1039                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1040                  *      - kvm_is_visible_gfn (mmu_check_roots)
1041                  */
1042                 kvm_arch_flush_shadow_memslot(kvm, slot);
1043
1044                 /*
1045                  * We can re-use the old_memslots from above, the only difference
1046                  * from the currently installed memslots is the invalid flag.  This
1047                  * will get overwritten by update_memslots anyway.
1048                  */
1049                 slots = old_memslots;
1050         }
1051
1052         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1053         if (r)
1054                 goto out_slots;
1055
1056         /* actual memory is freed via old in kvm_free_memslot below */
1057         if (change == KVM_MR_DELETE) {
1058                 new.dirty_bitmap = NULL;
1059                 memset(&new.arch, 0, sizeof(new.arch));
1060         }
1061
1062         update_memslots(slots, &new, change);
1063         old_memslots = install_new_memslots(kvm, as_id, slots);
1064
1065         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1066
1067         kvm_free_memslot(kvm, &old, &new);
1068         kvfree(old_memslots);
1069         return 0;
1070
1071 out_slots:
1072         kvfree(slots);
1073 out_free:
1074         kvm_free_memslot(kvm, &new, &old);
1075 out:
1076         return r;
1077 }
1078 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1079
1080 int kvm_set_memory_region(struct kvm *kvm,
1081                           const struct kvm_userspace_memory_region *mem)
1082 {
1083         int r;
1084
1085         mutex_lock(&kvm->slots_lock);
1086         r = __kvm_set_memory_region(kvm, mem);
1087         mutex_unlock(&kvm->slots_lock);
1088         return r;
1089 }
1090 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1091
1092 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1093                                           struct kvm_userspace_memory_region *mem)
1094 {
1095         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1096                 return -EINVAL;
1097
1098         return kvm_set_memory_region(kvm, mem);
1099 }
1100
1101 int kvm_get_dirty_log(struct kvm *kvm,
1102                         struct kvm_dirty_log *log, int *is_dirty)
1103 {
1104         struct kvm_memslots *slots;
1105         struct kvm_memory_slot *memslot;
1106         int i, as_id, id;
1107         unsigned long n;
1108         unsigned long any = 0;
1109
1110         as_id = log->slot >> 16;
1111         id = (u16)log->slot;
1112         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1113                 return -EINVAL;
1114
1115         slots = __kvm_memslots(kvm, as_id);
1116         memslot = id_to_memslot(slots, id);
1117         if (!memslot->dirty_bitmap)
1118                 return -ENOENT;
1119
1120         n = kvm_dirty_bitmap_bytes(memslot);
1121
1122         for (i = 0; !any && i < n/sizeof(long); ++i)
1123                 any = memslot->dirty_bitmap[i];
1124
1125         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1126                 return -EFAULT;
1127
1128         if (any)
1129                 *is_dirty = 1;
1130         return 0;
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1133
1134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1135 /**
1136  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1137  *      are dirty write protect them for next write.
1138  * @kvm:        pointer to kvm instance
1139  * @log:        slot id and address to which we copy the log
1140  * @is_dirty:   flag set if any page is dirty
1141  *
1142  * We need to keep it in mind that VCPU threads can write to the bitmap
1143  * concurrently. So, to avoid losing track of dirty pages we keep the
1144  * following order:
1145  *
1146  *    1. Take a snapshot of the bit and clear it if needed.
1147  *    2. Write protect the corresponding page.
1148  *    3. Copy the snapshot to the userspace.
1149  *    4. Upon return caller flushes TLB's if needed.
1150  *
1151  * Between 2 and 4, the guest may write to the page using the remaining TLB
1152  * entry.  This is not a problem because the page is reported dirty using
1153  * the snapshot taken before and step 4 ensures that writes done after
1154  * exiting to userspace will be logged for the next call.
1155  *
1156  */
1157 int kvm_get_dirty_log_protect(struct kvm *kvm,
1158                         struct kvm_dirty_log *log, bool *is_dirty)
1159 {
1160         struct kvm_memslots *slots;
1161         struct kvm_memory_slot *memslot;
1162         int i, as_id, id;
1163         unsigned long n;
1164         unsigned long *dirty_bitmap;
1165         unsigned long *dirty_bitmap_buffer;
1166
1167         as_id = log->slot >> 16;
1168         id = (u16)log->slot;
1169         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1170                 return -EINVAL;
1171
1172         slots = __kvm_memslots(kvm, as_id);
1173         memslot = id_to_memslot(slots, id);
1174
1175         dirty_bitmap = memslot->dirty_bitmap;
1176         if (!dirty_bitmap)
1177                 return -ENOENT;
1178
1179         n = kvm_dirty_bitmap_bytes(memslot);
1180
1181         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1182         memset(dirty_bitmap_buffer, 0, n);
1183
1184         spin_lock(&kvm->mmu_lock);
1185         *is_dirty = false;
1186         for (i = 0; i < n / sizeof(long); i++) {
1187                 unsigned long mask;
1188                 gfn_t offset;
1189
1190                 if (!dirty_bitmap[i])
1191                         continue;
1192
1193                 *is_dirty = true;
1194
1195                 mask = xchg(&dirty_bitmap[i], 0);
1196                 dirty_bitmap_buffer[i] = mask;
1197
1198                 if (mask) {
1199                         offset = i * BITS_PER_LONG;
1200                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1201                                                                 offset, mask);
1202                 }
1203         }
1204
1205         spin_unlock(&kvm->mmu_lock);
1206         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1207                 return -EFAULT;
1208         return 0;
1209 }
1210 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1211 #endif
1212
1213 bool kvm_largepages_enabled(void)
1214 {
1215         return largepages_enabled;
1216 }
1217
1218 void kvm_disable_largepages(void)
1219 {
1220         largepages_enabled = false;
1221 }
1222 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1223
1224 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1225 {
1226         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1227 }
1228 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1229
1230 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1231 {
1232         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1233 }
1234
1235 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1236 {
1237         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1238
1239         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1240               memslot->flags & KVM_MEMSLOT_INVALID)
1241                 return false;
1242
1243         return true;
1244 }
1245 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1246
1247 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1248 {
1249         struct vm_area_struct *vma;
1250         unsigned long addr, size;
1251
1252         size = PAGE_SIZE;
1253
1254         addr = gfn_to_hva(kvm, gfn);
1255         if (kvm_is_error_hva(addr))
1256                 return PAGE_SIZE;
1257
1258         down_read(&current->mm->mmap_sem);
1259         vma = find_vma(current->mm, addr);
1260         if (!vma)
1261                 goto out;
1262
1263         size = vma_kernel_pagesize(vma);
1264
1265 out:
1266         up_read(&current->mm->mmap_sem);
1267
1268         return size;
1269 }
1270
1271 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1272 {
1273         return slot->flags & KVM_MEM_READONLY;
1274 }
1275
1276 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1277                                        gfn_t *nr_pages, bool write)
1278 {
1279         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1280                 return KVM_HVA_ERR_BAD;
1281
1282         if (memslot_is_readonly(slot) && write)
1283                 return KVM_HVA_ERR_RO_BAD;
1284
1285         if (nr_pages)
1286                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1287
1288         return __gfn_to_hva_memslot(slot, gfn);
1289 }
1290
1291 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1292                                      gfn_t *nr_pages)
1293 {
1294         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1295 }
1296
1297 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1298                                         gfn_t gfn)
1299 {
1300         return gfn_to_hva_many(slot, gfn, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1303
1304 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1305 {
1306         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(gfn_to_hva);
1309
1310 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1311 {
1312         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1313 }
1314 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1315
1316 /*
1317  * If writable is set to false, the hva returned by this function is only
1318  * allowed to be read.
1319  */
1320 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1321                                       gfn_t gfn, bool *writable)
1322 {
1323         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1324
1325         if (!kvm_is_error_hva(hva) && writable)
1326                 *writable = !memslot_is_readonly(slot);
1327
1328         return hva;
1329 }
1330
1331 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1332 {
1333         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1334
1335         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1336 }
1337
1338 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1339 {
1340         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1341
1342         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1343 }
1344
1345 static inline int check_user_page_hwpoison(unsigned long addr)
1346 {
1347         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1348
1349         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1350         return rc == -EHWPOISON;
1351 }
1352
1353 /*
1354  * The fast path to get the writable pfn which will be stored in @pfn,
1355  * true indicates success, otherwise false is returned.  It's also the
1356  * only part that runs if we can are in atomic context.
1357  */
1358 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1359                             bool *writable, kvm_pfn_t *pfn)
1360 {
1361         struct page *page[1];
1362         int npages;
1363
1364         /*
1365          * Fast pin a writable pfn only if it is a write fault request
1366          * or the caller allows to map a writable pfn for a read fault
1367          * request.
1368          */
1369         if (!(write_fault || writable))
1370                 return false;
1371
1372         npages = __get_user_pages_fast(addr, 1, 1, page);
1373         if (npages == 1) {
1374                 *pfn = page_to_pfn(page[0]);
1375
1376                 if (writable)
1377                         *writable = true;
1378                 return true;
1379         }
1380
1381         return false;
1382 }
1383
1384 /*
1385  * The slow path to get the pfn of the specified host virtual address,
1386  * 1 indicates success, -errno is returned if error is detected.
1387  */
1388 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1389                            bool *writable, kvm_pfn_t *pfn)
1390 {
1391         unsigned int flags = FOLL_HWPOISON;
1392         struct page *page;
1393         int npages = 0;
1394
1395         might_sleep();
1396
1397         if (writable)
1398                 *writable = write_fault;
1399
1400         if (write_fault)
1401                 flags |= FOLL_WRITE;
1402         if (async)
1403                 flags |= FOLL_NOWAIT;
1404
1405         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1406         if (npages != 1)
1407                 return npages;
1408
1409         /* map read fault as writable if possible */
1410         if (unlikely(!write_fault) && writable) {
1411                 struct page *wpage;
1412
1413                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1414                         *writable = true;
1415                         put_page(page);
1416                         page = wpage;
1417                 }
1418         }
1419         *pfn = page_to_pfn(page);
1420         return npages;
1421 }
1422
1423 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1424 {
1425         if (unlikely(!(vma->vm_flags & VM_READ)))
1426                 return false;
1427
1428         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1429                 return false;
1430
1431         return true;
1432 }
1433
1434 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1435                                unsigned long addr, bool *async,
1436                                bool write_fault, bool *writable,
1437                                kvm_pfn_t *p_pfn)
1438 {
1439         unsigned long pfn;
1440         int r;
1441
1442         r = follow_pfn(vma, addr, &pfn);
1443         if (r) {
1444                 /*
1445                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1446                  * not call the fault handler, so do it here.
1447                  */
1448                 bool unlocked = false;
1449                 r = fixup_user_fault(current, current->mm, addr,
1450                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1451                                      &unlocked);
1452                 if (unlocked)
1453                         return -EAGAIN;
1454                 if (r)
1455                         return r;
1456
1457                 r = follow_pfn(vma, addr, &pfn);
1458                 if (r)
1459                         return r;
1460
1461         }
1462
1463         if (writable)
1464                 *writable = true;
1465
1466         /*
1467          * Get a reference here because callers of *hva_to_pfn* and
1468          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1469          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1470          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1471          * simply do nothing for reserved pfns.
1472          *
1473          * Whoever called remap_pfn_range is also going to call e.g.
1474          * unmap_mapping_range before the underlying pages are freed,
1475          * causing a call to our MMU notifier.
1476          */ 
1477         kvm_get_pfn(pfn);
1478
1479         *p_pfn = pfn;
1480         return 0;
1481 }
1482
1483 /*
1484  * Pin guest page in memory and return its pfn.
1485  * @addr: host virtual address which maps memory to the guest
1486  * @atomic: whether this function can sleep
1487  * @async: whether this function need to wait IO complete if the
1488  *         host page is not in the memory
1489  * @write_fault: whether we should get a writable host page
1490  * @writable: whether it allows to map a writable host page for !@write_fault
1491  *
1492  * The function will map a writable host page for these two cases:
1493  * 1): @write_fault = true
1494  * 2): @write_fault = false && @writable, @writable will tell the caller
1495  *     whether the mapping is writable.
1496  */
1497 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1498                         bool write_fault, bool *writable)
1499 {
1500         struct vm_area_struct *vma;
1501         kvm_pfn_t pfn = 0;
1502         int npages, r;
1503
1504         /* we can do it either atomically or asynchronously, not both */
1505         BUG_ON(atomic && async);
1506
1507         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1508                 return pfn;
1509
1510         if (atomic)
1511                 return KVM_PFN_ERR_FAULT;
1512
1513         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1514         if (npages == 1)
1515                 return pfn;
1516
1517         down_read(&current->mm->mmap_sem);
1518         if (npages == -EHWPOISON ||
1519               (!async && check_user_page_hwpoison(addr))) {
1520                 pfn = KVM_PFN_ERR_HWPOISON;
1521                 goto exit;
1522         }
1523
1524 retry:
1525         vma = find_vma_intersection(current->mm, addr, addr + 1);
1526
1527         if (vma == NULL)
1528                 pfn = KVM_PFN_ERR_FAULT;
1529         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1530                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1531                 if (r == -EAGAIN)
1532                         goto retry;
1533                 if (r < 0)
1534                         pfn = KVM_PFN_ERR_FAULT;
1535         } else {
1536                 if (async && vma_is_valid(vma, write_fault))
1537                         *async = true;
1538                 pfn = KVM_PFN_ERR_FAULT;
1539         }
1540 exit:
1541         up_read(&current->mm->mmap_sem);
1542         return pfn;
1543 }
1544
1545 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1546                                bool atomic, bool *async, bool write_fault,
1547                                bool *writable)
1548 {
1549         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1550
1551         if (addr == KVM_HVA_ERR_RO_BAD) {
1552                 if (writable)
1553                         *writable = false;
1554                 return KVM_PFN_ERR_RO_FAULT;
1555         }
1556
1557         if (kvm_is_error_hva(addr)) {
1558                 if (writable)
1559                         *writable = false;
1560                 return KVM_PFN_NOSLOT;
1561         }
1562
1563         /* Do not map writable pfn in the readonly memslot. */
1564         if (writable && memslot_is_readonly(slot)) {
1565                 *writable = false;
1566                 writable = NULL;
1567         }
1568
1569         return hva_to_pfn(addr, atomic, async, write_fault,
1570                           writable);
1571 }
1572 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1573
1574 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1575                       bool *writable)
1576 {
1577         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1578                                     write_fault, writable);
1579 }
1580 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1581
1582 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1583 {
1584         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1585 }
1586 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1587
1588 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1589 {
1590         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1591 }
1592 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1593
1594 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1595 {
1596         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1597 }
1598 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1599
1600 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1601 {
1602         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1603 }
1604 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1605
1606 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1607 {
1608         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1609 }
1610 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1611
1612 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1613 {
1614         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1617
1618 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1619                             struct page **pages, int nr_pages)
1620 {
1621         unsigned long addr;
1622         gfn_t entry = 0;
1623
1624         addr = gfn_to_hva_many(slot, gfn, &entry);
1625         if (kvm_is_error_hva(addr))
1626                 return -1;
1627
1628         if (entry < nr_pages)
1629                 return 0;
1630
1631         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1632 }
1633 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1634
1635 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1636 {
1637         if (is_error_noslot_pfn(pfn))
1638                 return KVM_ERR_PTR_BAD_PAGE;
1639
1640         if (kvm_is_reserved_pfn(pfn)) {
1641                 WARN_ON(1);
1642                 return KVM_ERR_PTR_BAD_PAGE;
1643         }
1644
1645         return pfn_to_page(pfn);
1646 }
1647
1648 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1649 {
1650         kvm_pfn_t pfn;
1651
1652         pfn = gfn_to_pfn(kvm, gfn);
1653
1654         return kvm_pfn_to_page(pfn);
1655 }
1656 EXPORT_SYMBOL_GPL(gfn_to_page);
1657
1658 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1659 {
1660         kvm_pfn_t pfn;
1661
1662         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1663
1664         return kvm_pfn_to_page(pfn);
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1667
1668 void kvm_release_page_clean(struct page *page)
1669 {
1670         WARN_ON(is_error_page(page));
1671
1672         kvm_release_pfn_clean(page_to_pfn(page));
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1675
1676 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1677 {
1678         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1679                 put_page(pfn_to_page(pfn));
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1682
1683 void kvm_release_page_dirty(struct page *page)
1684 {
1685         WARN_ON(is_error_page(page));
1686
1687         kvm_release_pfn_dirty(page_to_pfn(page));
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1690
1691 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1692 {
1693         kvm_set_pfn_dirty(pfn);
1694         kvm_release_pfn_clean(pfn);
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1697
1698 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1699 {
1700         if (!kvm_is_reserved_pfn(pfn)) {
1701                 struct page *page = pfn_to_page(pfn);
1702
1703                 if (!PageReserved(page))
1704                         SetPageDirty(page);
1705         }
1706 }
1707 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1708
1709 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1710 {
1711         if (!kvm_is_reserved_pfn(pfn))
1712                 mark_page_accessed(pfn_to_page(pfn));
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1715
1716 void kvm_get_pfn(kvm_pfn_t pfn)
1717 {
1718         if (!kvm_is_reserved_pfn(pfn))
1719                 get_page(pfn_to_page(pfn));
1720 }
1721 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1722
1723 static int next_segment(unsigned long len, int offset)
1724 {
1725         if (len > PAGE_SIZE - offset)
1726                 return PAGE_SIZE - offset;
1727         else
1728                 return len;
1729 }
1730
1731 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1732                                  void *data, int offset, int len)
1733 {
1734         int r;
1735         unsigned long addr;
1736
1737         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1738         if (kvm_is_error_hva(addr))
1739                 return -EFAULT;
1740         r = __copy_from_user(data, (void __user *)addr + offset, len);
1741         if (r)
1742                 return -EFAULT;
1743         return 0;
1744 }
1745
1746 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1747                         int len)
1748 {
1749         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1750
1751         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1754
1755 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1756                              int offset, int len)
1757 {
1758         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1759
1760         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1763
1764 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1765 {
1766         gfn_t gfn = gpa >> PAGE_SHIFT;
1767         int seg;
1768         int offset = offset_in_page(gpa);
1769         int ret;
1770
1771         while ((seg = next_segment(len, offset)) != 0) {
1772                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1773                 if (ret < 0)
1774                         return ret;
1775                 offset = 0;
1776                 len -= seg;
1777                 data += seg;
1778                 ++gfn;
1779         }
1780         return 0;
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_read_guest);
1783
1784 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1785 {
1786         gfn_t gfn = gpa >> PAGE_SHIFT;
1787         int seg;
1788         int offset = offset_in_page(gpa);
1789         int ret;
1790
1791         while ((seg = next_segment(len, offset)) != 0) {
1792                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1793                 if (ret < 0)
1794                         return ret;
1795                 offset = 0;
1796                 len -= seg;
1797                 data += seg;
1798                 ++gfn;
1799         }
1800         return 0;
1801 }
1802 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1803
1804 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1805                                    void *data, int offset, unsigned long len)
1806 {
1807         int r;
1808         unsigned long addr;
1809
1810         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1811         if (kvm_is_error_hva(addr))
1812                 return -EFAULT;
1813         pagefault_disable();
1814         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1815         pagefault_enable();
1816         if (r)
1817                 return -EFAULT;
1818         return 0;
1819 }
1820
1821 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1822                           unsigned long len)
1823 {
1824         gfn_t gfn = gpa >> PAGE_SHIFT;
1825         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1826         int offset = offset_in_page(gpa);
1827
1828         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1829 }
1830 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1831
1832 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1833                                void *data, unsigned long len)
1834 {
1835         gfn_t gfn = gpa >> PAGE_SHIFT;
1836         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1837         int offset = offset_in_page(gpa);
1838
1839         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1842
1843 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1844                                   const void *data, int offset, int len)
1845 {
1846         int r;
1847         unsigned long addr;
1848
1849         addr = gfn_to_hva_memslot(memslot, gfn);
1850         if (kvm_is_error_hva(addr))
1851                 return -EFAULT;
1852         r = __copy_to_user((void __user *)addr + offset, data, len);
1853         if (r)
1854                 return -EFAULT;
1855         mark_page_dirty_in_slot(memslot, gfn);
1856         return 0;
1857 }
1858
1859 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1860                          const void *data, int offset, int len)
1861 {
1862         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1863
1864         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1865 }
1866 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1867
1868 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1869                               const void *data, int offset, int len)
1870 {
1871         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1872
1873         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1876
1877 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1878                     unsigned long len)
1879 {
1880         gfn_t gfn = gpa >> PAGE_SHIFT;
1881         int seg;
1882         int offset = offset_in_page(gpa);
1883         int ret;
1884
1885         while ((seg = next_segment(len, offset)) != 0) {
1886                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1887                 if (ret < 0)
1888                         return ret;
1889                 offset = 0;
1890                 len -= seg;
1891                 data += seg;
1892                 ++gfn;
1893         }
1894         return 0;
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_write_guest);
1897
1898 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1899                          unsigned long len)
1900 {
1901         gfn_t gfn = gpa >> PAGE_SHIFT;
1902         int seg;
1903         int offset = offset_in_page(gpa);
1904         int ret;
1905
1906         while ((seg = next_segment(len, offset)) != 0) {
1907                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1908                 if (ret < 0)
1909                         return ret;
1910                 offset = 0;
1911                 len -= seg;
1912                 data += seg;
1913                 ++gfn;
1914         }
1915         return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1918
1919 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1920                                        struct gfn_to_hva_cache *ghc,
1921                                        gpa_t gpa, unsigned long len)
1922 {
1923         int offset = offset_in_page(gpa);
1924         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1925         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1926         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1927         gfn_t nr_pages_avail;
1928
1929         ghc->gpa = gpa;
1930         ghc->generation = slots->generation;
1931         ghc->len = len;
1932         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1933         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1934         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1935                 ghc->hva += offset;
1936         } else {
1937                 /*
1938                  * If the requested region crosses two memslots, we still
1939                  * verify that the entire region is valid here.
1940                  */
1941                 while (start_gfn <= end_gfn) {
1942                         nr_pages_avail = 0;
1943                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1944                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1945                                                    &nr_pages_avail);
1946                         if (kvm_is_error_hva(ghc->hva))
1947                                 return -EFAULT;
1948                         start_gfn += nr_pages_avail;
1949                 }
1950                 /* Use the slow path for cross page reads and writes. */
1951                 ghc->memslot = NULL;
1952         }
1953         return 0;
1954 }
1955
1956 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1957                               gpa_t gpa, unsigned long len)
1958 {
1959         struct kvm_memslots *slots = kvm_memslots(kvm);
1960         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1961 }
1962 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1963
1964 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1965                            void *data, int offset, unsigned long len)
1966 {
1967         struct kvm_memslots *slots = kvm_memslots(kvm);
1968         int r;
1969         gpa_t gpa = ghc->gpa + offset;
1970
1971         BUG_ON(len + offset > ghc->len);
1972
1973         if (slots->generation != ghc->generation)
1974                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1975
1976         if (unlikely(!ghc->memslot))
1977                 return kvm_write_guest(kvm, gpa, data, len);
1978
1979         if (kvm_is_error_hva(ghc->hva))
1980                 return -EFAULT;
1981
1982         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1983         if (r)
1984                 return -EFAULT;
1985         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1986
1987         return 0;
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1990
1991 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1992                            void *data, unsigned long len)
1993 {
1994         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1997
1998 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1999                            void *data, unsigned long len)
2000 {
2001         struct kvm_memslots *slots = kvm_memslots(kvm);
2002         int r;
2003
2004         BUG_ON(len > ghc->len);
2005
2006         if (slots->generation != ghc->generation)
2007                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2008
2009         if (unlikely(!ghc->memslot))
2010                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2011
2012         if (kvm_is_error_hva(ghc->hva))
2013                 return -EFAULT;
2014
2015         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2016         if (r)
2017                 return -EFAULT;
2018
2019         return 0;
2020 }
2021 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2022
2023 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2024 {
2025         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2026
2027         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2028 }
2029 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2030
2031 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2032 {
2033         gfn_t gfn = gpa >> PAGE_SHIFT;
2034         int seg;
2035         int offset = offset_in_page(gpa);
2036         int ret;
2037
2038         while ((seg = next_segment(len, offset)) != 0) {
2039                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2040                 if (ret < 0)
2041                         return ret;
2042                 offset = 0;
2043                 len -= seg;
2044                 ++gfn;
2045         }
2046         return 0;
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2049
2050 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2051                                     gfn_t gfn)
2052 {
2053         if (memslot && memslot->dirty_bitmap) {
2054                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2055
2056                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2057         }
2058 }
2059
2060 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2061 {
2062         struct kvm_memory_slot *memslot;
2063
2064         memslot = gfn_to_memslot(kvm, gfn);
2065         mark_page_dirty_in_slot(memslot, gfn);
2066 }
2067 EXPORT_SYMBOL_GPL(mark_page_dirty);
2068
2069 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2070 {
2071         struct kvm_memory_slot *memslot;
2072
2073         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2074         mark_page_dirty_in_slot(memslot, gfn);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2077
2078 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2079 {
2080         if (!vcpu->sigset_active)
2081                 return;
2082
2083         /*
2084          * This does a lockless modification of ->real_blocked, which is fine
2085          * because, only current can change ->real_blocked and all readers of
2086          * ->real_blocked don't care as long ->real_blocked is always a subset
2087          * of ->blocked.
2088          */
2089         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2090 }
2091
2092 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2093 {
2094         if (!vcpu->sigset_active)
2095                 return;
2096
2097         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2098         sigemptyset(&current->real_blocked);
2099 }
2100
2101 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2102 {
2103         unsigned int old, val, grow;
2104
2105         old = val = vcpu->halt_poll_ns;
2106         grow = READ_ONCE(halt_poll_ns_grow);
2107         /* 10us base */
2108         if (val == 0 && grow)
2109                 val = 10000;
2110         else
2111                 val *= grow;
2112
2113         if (val > halt_poll_ns)
2114                 val = halt_poll_ns;
2115
2116         vcpu->halt_poll_ns = val;
2117         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2118 }
2119
2120 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2121 {
2122         unsigned int old, val, shrink;
2123
2124         old = val = vcpu->halt_poll_ns;
2125         shrink = READ_ONCE(halt_poll_ns_shrink);
2126         if (shrink == 0)
2127                 val = 0;
2128         else
2129                 val /= shrink;
2130
2131         vcpu->halt_poll_ns = val;
2132         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2133 }
2134
2135 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2136 {
2137         int ret = -EINTR;
2138         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2139
2140         if (kvm_arch_vcpu_runnable(vcpu)) {
2141                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2142                 goto out;
2143         }
2144         if (kvm_cpu_has_pending_timer(vcpu))
2145                 goto out;
2146         if (signal_pending(current))
2147                 goto out;
2148
2149         ret = 0;
2150 out:
2151         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2152         return ret;
2153 }
2154
2155 /*
2156  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2157  */
2158 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2159 {
2160         ktime_t start, cur;
2161         DECLARE_SWAITQUEUE(wait);
2162         bool waited = false;
2163         u64 block_ns;
2164
2165         start = cur = ktime_get();
2166         if (vcpu->halt_poll_ns) {
2167                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2168
2169                 ++vcpu->stat.halt_attempted_poll;
2170                 do {
2171                         /*
2172                          * This sets KVM_REQ_UNHALT if an interrupt
2173                          * arrives.
2174                          */
2175                         if (kvm_vcpu_check_block(vcpu) < 0) {
2176                                 ++vcpu->stat.halt_successful_poll;
2177                                 if (!vcpu_valid_wakeup(vcpu))
2178                                         ++vcpu->stat.halt_poll_invalid;
2179                                 goto out;
2180                         }
2181                         cur = ktime_get();
2182                 } while (single_task_running() && ktime_before(cur, stop));
2183         }
2184
2185         kvm_arch_vcpu_blocking(vcpu);
2186
2187         for (;;) {
2188                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2189
2190                 if (kvm_vcpu_check_block(vcpu) < 0)
2191                         break;
2192
2193                 waited = true;
2194                 schedule();
2195         }
2196
2197         finish_swait(&vcpu->wq, &wait);
2198         cur = ktime_get();
2199
2200         kvm_arch_vcpu_unblocking(vcpu);
2201 out:
2202         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2203
2204         if (!vcpu_valid_wakeup(vcpu))
2205                 shrink_halt_poll_ns(vcpu);
2206         else if (halt_poll_ns) {
2207                 if (block_ns <= vcpu->halt_poll_ns)
2208                         ;
2209                 /* we had a long block, shrink polling */
2210                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2211                         shrink_halt_poll_ns(vcpu);
2212                 /* we had a short halt and our poll time is too small */
2213                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2214                         block_ns < halt_poll_ns)
2215                         grow_halt_poll_ns(vcpu);
2216         } else
2217                 vcpu->halt_poll_ns = 0;
2218
2219         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2220         kvm_arch_vcpu_block_finish(vcpu);
2221 }
2222 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2223
2224 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2225 {
2226         struct swait_queue_head *wqp;
2227
2228         wqp = kvm_arch_vcpu_wq(vcpu);
2229         if (swq_has_sleeper(wqp)) {
2230                 swake_up_one(wqp);
2231                 ++vcpu->stat.halt_wakeup;
2232                 return true;
2233         }
2234
2235         return false;
2236 }
2237 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2238
2239 #ifndef CONFIG_S390
2240 /*
2241  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2242  */
2243 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2244 {
2245         int me;
2246         int cpu = vcpu->cpu;
2247
2248         if (kvm_vcpu_wake_up(vcpu))
2249                 return;
2250
2251         me = get_cpu();
2252         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2253                 if (kvm_arch_vcpu_should_kick(vcpu))
2254                         smp_send_reschedule(cpu);
2255         put_cpu();
2256 }
2257 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2258 #endif /* !CONFIG_S390 */
2259
2260 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2261 {
2262         struct pid *pid;
2263         struct task_struct *task = NULL;
2264         int ret = 0;
2265
2266         rcu_read_lock();
2267         pid = rcu_dereference(target->pid);
2268         if (pid)
2269                 task = get_pid_task(pid, PIDTYPE_PID);
2270         rcu_read_unlock();
2271         if (!task)
2272                 return ret;
2273         ret = yield_to(task, 1);
2274         put_task_struct(task);
2275
2276         return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2279
2280 /*
2281  * Helper that checks whether a VCPU is eligible for directed yield.
2282  * Most eligible candidate to yield is decided by following heuristics:
2283  *
2284  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2285  *  (preempted lock holder), indicated by @in_spin_loop.
2286  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2287  *
2288  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2289  *  chance last time (mostly it has become eligible now since we have probably
2290  *  yielded to lockholder in last iteration. This is done by toggling
2291  *  @dy_eligible each time a VCPU checked for eligibility.)
2292  *
2293  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2294  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2295  *  burning. Giving priority for a potential lock-holder increases lock
2296  *  progress.
2297  *
2298  *  Since algorithm is based on heuristics, accessing another VCPU data without
2299  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2300  *  and continue with next VCPU and so on.
2301  */
2302 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2303 {
2304 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2305         bool eligible;
2306
2307         eligible = !vcpu->spin_loop.in_spin_loop ||
2308                     vcpu->spin_loop.dy_eligible;
2309
2310         if (vcpu->spin_loop.in_spin_loop)
2311                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2312
2313         return eligible;
2314 #else
2315         return true;
2316 #endif
2317 }
2318
2319 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2320 {
2321         struct kvm *kvm = me->kvm;
2322         struct kvm_vcpu *vcpu;
2323         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2324         int yielded = 0;
2325         int try = 3;
2326         int pass;
2327         int i;
2328
2329         kvm_vcpu_set_in_spin_loop(me, true);
2330         /*
2331          * We boost the priority of a VCPU that is runnable but not
2332          * currently running, because it got preempted by something
2333          * else and called schedule in __vcpu_run.  Hopefully that
2334          * VCPU is holding the lock that we need and will release it.
2335          * We approximate round-robin by starting at the last boosted VCPU.
2336          */
2337         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2338                 kvm_for_each_vcpu(i, vcpu, kvm) {
2339                         if (!pass && i <= last_boosted_vcpu) {
2340                                 i = last_boosted_vcpu;
2341                                 continue;
2342                         } else if (pass && i > last_boosted_vcpu)
2343                                 break;
2344                         if (!READ_ONCE(vcpu->preempted))
2345                                 continue;
2346                         if (vcpu == me)
2347                                 continue;
2348                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2349                                 continue;
2350                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2351                                 continue;
2352                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2353                                 continue;
2354
2355                         yielded = kvm_vcpu_yield_to(vcpu);
2356                         if (yielded > 0) {
2357                                 kvm->last_boosted_vcpu = i;
2358                                 break;
2359                         } else if (yielded < 0) {
2360                                 try--;
2361                                 if (!try)
2362                                         break;
2363                         }
2364                 }
2365         }
2366         kvm_vcpu_set_in_spin_loop(me, false);
2367
2368         /* Ensure vcpu is not eligible during next spinloop */
2369         kvm_vcpu_set_dy_eligible(me, false);
2370 }
2371 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2372
2373 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2374 {
2375         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2376         struct page *page;
2377
2378         if (vmf->pgoff == 0)
2379                 page = virt_to_page(vcpu->run);
2380 #ifdef CONFIG_X86
2381         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2382                 page = virt_to_page(vcpu->arch.pio_data);
2383 #endif
2384 #ifdef CONFIG_KVM_MMIO
2385         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2386                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2387 #endif
2388         else
2389                 return kvm_arch_vcpu_fault(vcpu, vmf);
2390         get_page(page);
2391         vmf->page = page;
2392         return 0;
2393 }
2394
2395 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2396         .fault = kvm_vcpu_fault,
2397 };
2398
2399 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2400 {
2401         vma->vm_ops = &kvm_vcpu_vm_ops;
2402         return 0;
2403 }
2404
2405 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2406 {
2407         struct kvm_vcpu *vcpu = filp->private_data;
2408
2409         debugfs_remove_recursive(vcpu->debugfs_dentry);
2410         kvm_put_kvm(vcpu->kvm);
2411         return 0;
2412 }
2413
2414 static struct file_operations kvm_vcpu_fops = {
2415         .release        = kvm_vcpu_release,
2416         .unlocked_ioctl = kvm_vcpu_ioctl,
2417         .mmap           = kvm_vcpu_mmap,
2418         .llseek         = noop_llseek,
2419         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2420 };
2421
2422 /*
2423  * Allocates an inode for the vcpu.
2424  */
2425 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2426 {
2427         char name[8 + 1 + ITOA_MAX_LEN + 1];
2428
2429         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2430         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2431 }
2432
2433 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2434 {
2435         char dir_name[ITOA_MAX_LEN * 2];
2436         int ret;
2437
2438         if (!kvm_arch_has_vcpu_debugfs())
2439                 return 0;
2440
2441         if (!debugfs_initialized())
2442                 return 0;
2443
2444         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2445         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2446                                                                 vcpu->kvm->debugfs_dentry);
2447         if (!vcpu->debugfs_dentry)
2448                 return -ENOMEM;
2449
2450         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2451         if (ret < 0) {
2452                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2453                 return ret;
2454         }
2455
2456         return 0;
2457 }
2458
2459 /*
2460  * Creates some virtual cpus.  Good luck creating more than one.
2461  */
2462 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2463 {
2464         int r;
2465         struct kvm_vcpu *vcpu;
2466
2467         if (id >= KVM_MAX_VCPU_ID)
2468                 return -EINVAL;
2469
2470         mutex_lock(&kvm->lock);
2471         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2472                 mutex_unlock(&kvm->lock);
2473                 return -EINVAL;
2474         }
2475
2476         kvm->created_vcpus++;
2477         mutex_unlock(&kvm->lock);
2478
2479         vcpu = kvm_arch_vcpu_create(kvm, id);
2480         if (IS_ERR(vcpu)) {
2481                 r = PTR_ERR(vcpu);
2482                 goto vcpu_decrement;
2483         }
2484
2485         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2486
2487         r = kvm_arch_vcpu_setup(vcpu);
2488         if (r)
2489                 goto vcpu_destroy;
2490
2491         r = kvm_create_vcpu_debugfs(vcpu);
2492         if (r)
2493                 goto vcpu_destroy;
2494
2495         mutex_lock(&kvm->lock);
2496         if (kvm_get_vcpu_by_id(kvm, id)) {
2497                 r = -EEXIST;
2498                 goto unlock_vcpu_destroy;
2499         }
2500
2501         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2502
2503         /* Now it's all set up, let userspace reach it */
2504         kvm_get_kvm(kvm);
2505         r = create_vcpu_fd(vcpu);
2506         if (r < 0) {
2507                 kvm_put_kvm(kvm);
2508                 goto unlock_vcpu_destroy;
2509         }
2510
2511         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2512
2513         /*
2514          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2515          * before kvm->online_vcpu's incremented value.
2516          */
2517         smp_wmb();
2518         atomic_inc(&kvm->online_vcpus);
2519
2520         mutex_unlock(&kvm->lock);
2521         kvm_arch_vcpu_postcreate(vcpu);
2522         return r;
2523
2524 unlock_vcpu_destroy:
2525         mutex_unlock(&kvm->lock);
2526         debugfs_remove_recursive(vcpu->debugfs_dentry);
2527 vcpu_destroy:
2528         kvm_arch_vcpu_destroy(vcpu);
2529 vcpu_decrement:
2530         mutex_lock(&kvm->lock);
2531         kvm->created_vcpus--;
2532         mutex_unlock(&kvm->lock);
2533         return r;
2534 }
2535
2536 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2537 {
2538         if (sigset) {
2539                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2540                 vcpu->sigset_active = 1;
2541                 vcpu->sigset = *sigset;
2542         } else
2543                 vcpu->sigset_active = 0;
2544         return 0;
2545 }
2546
2547 static long kvm_vcpu_ioctl(struct file *filp,
2548                            unsigned int ioctl, unsigned long arg)
2549 {
2550         struct kvm_vcpu *vcpu = filp->private_data;
2551         void __user *argp = (void __user *)arg;
2552         int r;
2553         struct kvm_fpu *fpu = NULL;
2554         struct kvm_sregs *kvm_sregs = NULL;
2555
2556         if (vcpu->kvm->mm != current->mm)
2557                 return -EIO;
2558
2559         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2560                 return -EINVAL;
2561
2562         /*
2563          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2564          * execution; mutex_lock() would break them.
2565          */
2566         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2567         if (r != -ENOIOCTLCMD)
2568                 return r;
2569
2570         if (mutex_lock_killable(&vcpu->mutex))
2571                 return -EINTR;
2572         switch (ioctl) {
2573         case KVM_RUN: {
2574                 struct pid *oldpid;
2575                 r = -EINVAL;
2576                 if (arg)
2577                         goto out;
2578                 oldpid = rcu_access_pointer(vcpu->pid);
2579                 if (unlikely(oldpid != task_pid(current))) {
2580                         /* The thread running this VCPU changed. */
2581                         struct pid *newpid;
2582
2583                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2584                         if (r)
2585                                 break;
2586
2587                         newpid = get_task_pid(current, PIDTYPE_PID);
2588                         rcu_assign_pointer(vcpu->pid, newpid);
2589                         if (oldpid)
2590                                 synchronize_rcu();
2591                         put_pid(oldpid);
2592                 }
2593                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2594                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2595                 break;
2596         }
2597         case KVM_GET_REGS: {
2598                 struct kvm_regs *kvm_regs;
2599
2600                 r = -ENOMEM;
2601                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2602                 if (!kvm_regs)
2603                         goto out;
2604                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2605                 if (r)
2606                         goto out_free1;
2607                 r = -EFAULT;
2608                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2609                         goto out_free1;
2610                 r = 0;
2611 out_free1:
2612                 kfree(kvm_regs);
2613                 break;
2614         }
2615         case KVM_SET_REGS: {
2616                 struct kvm_regs *kvm_regs;
2617
2618                 r = -ENOMEM;
2619                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2620                 if (IS_ERR(kvm_regs)) {
2621                         r = PTR_ERR(kvm_regs);
2622                         goto out;
2623                 }
2624                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2625                 kfree(kvm_regs);
2626                 break;
2627         }
2628         case KVM_GET_SREGS: {
2629                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2630                 r = -ENOMEM;
2631                 if (!kvm_sregs)
2632                         goto out;
2633                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2634                 if (r)
2635                         goto out;
2636                 r = -EFAULT;
2637                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2638                         goto out;
2639                 r = 0;
2640                 break;
2641         }
2642         case KVM_SET_SREGS: {
2643                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2644                 if (IS_ERR(kvm_sregs)) {
2645                         r = PTR_ERR(kvm_sregs);
2646                         kvm_sregs = NULL;
2647                         goto out;
2648                 }
2649                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2650                 break;
2651         }
2652         case KVM_GET_MP_STATE: {
2653                 struct kvm_mp_state mp_state;
2654
2655                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2656                 if (r)
2657                         goto out;
2658                 r = -EFAULT;
2659                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2660                         goto out;
2661                 r = 0;
2662                 break;
2663         }
2664         case KVM_SET_MP_STATE: {
2665                 struct kvm_mp_state mp_state;
2666
2667                 r = -EFAULT;
2668                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2669                         goto out;
2670                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2671                 break;
2672         }
2673         case KVM_TRANSLATE: {
2674                 struct kvm_translation tr;
2675
2676                 r = -EFAULT;
2677                 if (copy_from_user(&tr, argp, sizeof(tr)))
2678                         goto out;
2679                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2680                 if (r)
2681                         goto out;
2682                 r = -EFAULT;
2683                 if (copy_to_user(argp, &tr, sizeof(tr)))
2684                         goto out;
2685                 r = 0;
2686                 break;
2687         }
2688         case KVM_SET_GUEST_DEBUG: {
2689                 struct kvm_guest_debug dbg;
2690
2691                 r = -EFAULT;
2692                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2693                         goto out;
2694                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2695                 break;
2696         }
2697         case KVM_SET_SIGNAL_MASK: {
2698                 struct kvm_signal_mask __user *sigmask_arg = argp;
2699                 struct kvm_signal_mask kvm_sigmask;
2700                 sigset_t sigset, *p;
2701
2702                 p = NULL;
2703                 if (argp) {
2704                         r = -EFAULT;
2705                         if (copy_from_user(&kvm_sigmask, argp,
2706                                            sizeof(kvm_sigmask)))
2707                                 goto out;
2708                         r = -EINVAL;
2709                         if (kvm_sigmask.len != sizeof(sigset))
2710                                 goto out;
2711                         r = -EFAULT;
2712                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2713                                            sizeof(sigset)))
2714                                 goto out;
2715                         p = &sigset;
2716                 }
2717                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2718                 break;
2719         }
2720         case KVM_GET_FPU: {
2721                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2722                 r = -ENOMEM;
2723                 if (!fpu)
2724                         goto out;
2725                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2726                 if (r)
2727                         goto out;
2728                 r = -EFAULT;
2729                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2730                         goto out;
2731                 r = 0;
2732                 break;
2733         }
2734         case KVM_SET_FPU: {
2735                 fpu = memdup_user(argp, sizeof(*fpu));
2736                 if (IS_ERR(fpu)) {
2737                         r = PTR_ERR(fpu);
2738                         fpu = NULL;
2739                         goto out;
2740                 }
2741                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2742                 break;
2743         }
2744         default:
2745                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2746         }
2747 out:
2748         mutex_unlock(&vcpu->mutex);
2749         kfree(fpu);
2750         kfree(kvm_sregs);
2751         return r;
2752 }
2753
2754 #ifdef CONFIG_KVM_COMPAT
2755 static long kvm_vcpu_compat_ioctl(struct file *filp,
2756                                   unsigned int ioctl, unsigned long arg)
2757 {
2758         struct kvm_vcpu *vcpu = filp->private_data;
2759         void __user *argp = compat_ptr(arg);
2760         int r;
2761
2762         if (vcpu->kvm->mm != current->mm)
2763                 return -EIO;
2764
2765         switch (ioctl) {
2766         case KVM_SET_SIGNAL_MASK: {
2767                 struct kvm_signal_mask __user *sigmask_arg = argp;
2768                 struct kvm_signal_mask kvm_sigmask;
2769                 sigset_t sigset;
2770
2771                 if (argp) {
2772                         r = -EFAULT;
2773                         if (copy_from_user(&kvm_sigmask, argp,
2774                                            sizeof(kvm_sigmask)))
2775                                 goto out;
2776                         r = -EINVAL;
2777                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2778                                 goto out;
2779                         r = -EFAULT;
2780                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2781                                 goto out;
2782                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2783                 } else
2784                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2785                 break;
2786         }
2787         default:
2788                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2789         }
2790
2791 out:
2792         return r;
2793 }
2794 #endif
2795
2796 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2797                                  int (*accessor)(struct kvm_device *dev,
2798                                                  struct kvm_device_attr *attr),
2799                                  unsigned long arg)
2800 {
2801         struct kvm_device_attr attr;
2802
2803         if (!accessor)
2804                 return -EPERM;
2805
2806         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2807                 return -EFAULT;
2808
2809         return accessor(dev, &attr);
2810 }
2811
2812 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2813                              unsigned long arg)
2814 {
2815         struct kvm_device *dev = filp->private_data;
2816
2817         switch (ioctl) {
2818         case KVM_SET_DEVICE_ATTR:
2819                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2820         case KVM_GET_DEVICE_ATTR:
2821                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2822         case KVM_HAS_DEVICE_ATTR:
2823                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2824         default:
2825                 if (dev->ops->ioctl)
2826                         return dev->ops->ioctl(dev, ioctl, arg);
2827
2828                 return -ENOTTY;
2829         }
2830 }
2831
2832 static int kvm_device_release(struct inode *inode, struct file *filp)
2833 {
2834         struct kvm_device *dev = filp->private_data;
2835         struct kvm *kvm = dev->kvm;
2836
2837         kvm_put_kvm(kvm);
2838         return 0;
2839 }
2840
2841 static const struct file_operations kvm_device_fops = {
2842         .unlocked_ioctl = kvm_device_ioctl,
2843         .release = kvm_device_release,
2844         KVM_COMPAT(kvm_device_ioctl),
2845 };
2846
2847 struct kvm_device *kvm_device_from_filp(struct file *filp)
2848 {
2849         if (filp->f_op != &kvm_device_fops)
2850                 return NULL;
2851
2852         return filp->private_data;
2853 }
2854
2855 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2856 #ifdef CONFIG_KVM_MPIC
2857         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2858         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2859 #endif
2860 };
2861
2862 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2863 {
2864         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2865                 return -ENOSPC;
2866
2867         if (kvm_device_ops_table[type] != NULL)
2868                 return -EEXIST;
2869
2870         kvm_device_ops_table[type] = ops;
2871         return 0;
2872 }
2873
2874 void kvm_unregister_device_ops(u32 type)
2875 {
2876         if (kvm_device_ops_table[type] != NULL)
2877                 kvm_device_ops_table[type] = NULL;
2878 }
2879
2880 static int kvm_ioctl_create_device(struct kvm *kvm,
2881                                    struct kvm_create_device *cd)
2882 {
2883         struct kvm_device_ops *ops = NULL;
2884         struct kvm_device *dev;
2885         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2886         int ret;
2887
2888         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2889                 return -ENODEV;
2890
2891         ops = kvm_device_ops_table[cd->type];
2892         if (ops == NULL)
2893                 return -ENODEV;
2894
2895         if (test)
2896                 return 0;
2897
2898         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2899         if (!dev)
2900                 return -ENOMEM;
2901
2902         dev->ops = ops;
2903         dev->kvm = kvm;
2904
2905         mutex_lock(&kvm->lock);
2906         ret = ops->create(dev, cd->type);
2907         if (ret < 0) {
2908                 mutex_unlock(&kvm->lock);
2909                 kfree(dev);
2910                 return ret;
2911         }
2912         list_add(&dev->vm_node, &kvm->devices);
2913         mutex_unlock(&kvm->lock);
2914
2915         if (ops->init)
2916                 ops->init(dev);
2917
2918         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2919         if (ret < 0) {
2920                 mutex_lock(&kvm->lock);
2921                 list_del(&dev->vm_node);
2922                 mutex_unlock(&kvm->lock);
2923                 ops->destroy(dev);
2924                 return ret;
2925         }
2926
2927         kvm_get_kvm(kvm);
2928         cd->fd = ret;
2929         return 0;
2930 }
2931
2932 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2933 {
2934         switch (arg) {
2935         case KVM_CAP_USER_MEMORY:
2936         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2937         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2938         case KVM_CAP_INTERNAL_ERROR_DATA:
2939 #ifdef CONFIG_HAVE_KVM_MSI
2940         case KVM_CAP_SIGNAL_MSI:
2941 #endif
2942 #ifdef CONFIG_HAVE_KVM_IRQFD
2943         case KVM_CAP_IRQFD:
2944         case KVM_CAP_IRQFD_RESAMPLE:
2945 #endif
2946         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2947         case KVM_CAP_CHECK_EXTENSION_VM:
2948                 return 1;
2949 #ifdef CONFIG_KVM_MMIO
2950         case KVM_CAP_COALESCED_MMIO:
2951                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2952 #endif
2953 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2954         case KVM_CAP_IRQ_ROUTING:
2955                 return KVM_MAX_IRQ_ROUTES;
2956 #endif
2957 #if KVM_ADDRESS_SPACE_NUM > 1
2958         case KVM_CAP_MULTI_ADDRESS_SPACE:
2959                 return KVM_ADDRESS_SPACE_NUM;
2960 #endif
2961         case KVM_CAP_MAX_VCPU_ID:
2962                 return KVM_MAX_VCPU_ID;
2963         default:
2964                 break;
2965         }
2966         return kvm_vm_ioctl_check_extension(kvm, arg);
2967 }
2968
2969 static long kvm_vm_ioctl(struct file *filp,
2970                            unsigned int ioctl, unsigned long arg)
2971 {
2972         struct kvm *kvm = filp->private_data;
2973         void __user *argp = (void __user *)arg;
2974         int r;
2975
2976         if (kvm->mm != current->mm)
2977                 return -EIO;
2978         switch (ioctl) {
2979         case KVM_CREATE_VCPU:
2980                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2981                 break;
2982         case KVM_SET_USER_MEMORY_REGION: {
2983                 struct kvm_userspace_memory_region kvm_userspace_mem;
2984
2985                 r = -EFAULT;
2986                 if (copy_from_user(&kvm_userspace_mem, argp,
2987                                                 sizeof(kvm_userspace_mem)))
2988                         goto out;
2989
2990                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2991                 break;
2992         }
2993         case KVM_GET_DIRTY_LOG: {
2994                 struct kvm_dirty_log log;
2995
2996                 r = -EFAULT;
2997                 if (copy_from_user(&log, argp, sizeof(log)))
2998                         goto out;
2999                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3000                 break;
3001         }
3002 #ifdef CONFIG_KVM_MMIO
3003         case KVM_REGISTER_COALESCED_MMIO: {
3004                 struct kvm_coalesced_mmio_zone zone;
3005
3006                 r = -EFAULT;
3007                 if (copy_from_user(&zone, argp, sizeof(zone)))
3008                         goto out;
3009                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3010                 break;
3011         }
3012         case KVM_UNREGISTER_COALESCED_MMIO: {
3013                 struct kvm_coalesced_mmio_zone zone;
3014
3015                 r = -EFAULT;
3016                 if (copy_from_user(&zone, argp, sizeof(zone)))
3017                         goto out;
3018                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3019                 break;
3020         }
3021 #endif
3022         case KVM_IRQFD: {
3023                 struct kvm_irqfd data;
3024
3025                 r = -EFAULT;
3026                 if (copy_from_user(&data, argp, sizeof(data)))
3027                         goto out;
3028                 r = kvm_irqfd(kvm, &data);
3029                 break;
3030         }
3031         case KVM_IOEVENTFD: {
3032                 struct kvm_ioeventfd data;
3033
3034                 r = -EFAULT;
3035                 if (copy_from_user(&data, argp, sizeof(data)))
3036                         goto out;
3037                 r = kvm_ioeventfd(kvm, &data);
3038                 break;
3039         }
3040 #ifdef CONFIG_HAVE_KVM_MSI
3041         case KVM_SIGNAL_MSI: {
3042                 struct kvm_msi msi;
3043
3044                 r = -EFAULT;
3045                 if (copy_from_user(&msi, argp, sizeof(msi)))
3046                         goto out;
3047                 r = kvm_send_userspace_msi(kvm, &msi);
3048                 break;
3049         }
3050 #endif
3051 #ifdef __KVM_HAVE_IRQ_LINE
3052         case KVM_IRQ_LINE_STATUS:
3053         case KVM_IRQ_LINE: {
3054                 struct kvm_irq_level irq_event;
3055
3056                 r = -EFAULT;
3057                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3058                         goto out;
3059
3060                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3061                                         ioctl == KVM_IRQ_LINE_STATUS);
3062                 if (r)
3063                         goto out;
3064
3065                 r = -EFAULT;
3066                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3067                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3068                                 goto out;
3069                 }
3070
3071                 r = 0;
3072                 break;
3073         }
3074 #endif
3075 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3076         case KVM_SET_GSI_ROUTING: {
3077                 struct kvm_irq_routing routing;
3078                 struct kvm_irq_routing __user *urouting;
3079                 struct kvm_irq_routing_entry *entries = NULL;
3080
3081                 r = -EFAULT;
3082                 if (copy_from_user(&routing, argp, sizeof(routing)))
3083                         goto out;
3084                 r = -EINVAL;
3085                 if (!kvm_arch_can_set_irq_routing(kvm))
3086                         goto out;
3087                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3088                         goto out;
3089                 if (routing.flags)
3090                         goto out;
3091                 if (routing.nr) {
3092                         r = -ENOMEM;
3093                         entries = vmalloc(array_size(sizeof(*entries),
3094                                                      routing.nr));
3095                         if (!entries)
3096                                 goto out;
3097                         r = -EFAULT;
3098                         urouting = argp;
3099                         if (copy_from_user(entries, urouting->entries,
3100                                            routing.nr * sizeof(*entries)))
3101                                 goto out_free_irq_routing;
3102                 }
3103                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3104                                         routing.flags);
3105 out_free_irq_routing:
3106                 vfree(entries);
3107                 break;
3108         }
3109 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3110         case KVM_CREATE_DEVICE: {
3111                 struct kvm_create_device cd;
3112
3113                 r = -EFAULT;
3114                 if (copy_from_user(&cd, argp, sizeof(cd)))
3115                         goto out;
3116
3117                 r = kvm_ioctl_create_device(kvm, &cd);
3118                 if (r)
3119                         goto out;
3120
3121                 r = -EFAULT;
3122                 if (copy_to_user(argp, &cd, sizeof(cd)))
3123                         goto out;
3124
3125                 r = 0;
3126                 break;
3127         }
3128         case KVM_CHECK_EXTENSION:
3129                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3130                 break;
3131         default:
3132                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3133         }
3134 out:
3135         return r;
3136 }
3137
3138 #ifdef CONFIG_KVM_COMPAT
3139 struct compat_kvm_dirty_log {
3140         __u32 slot;
3141         __u32 padding1;
3142         union {
3143                 compat_uptr_t dirty_bitmap; /* one bit per page */
3144                 __u64 padding2;
3145         };
3146 };
3147
3148 static long kvm_vm_compat_ioctl(struct file *filp,
3149                            unsigned int ioctl, unsigned long arg)
3150 {
3151         struct kvm *kvm = filp->private_data;
3152         int r;
3153
3154         if (kvm->mm != current->mm)
3155                 return -EIO;
3156         switch (ioctl) {
3157         case KVM_GET_DIRTY_LOG: {
3158                 struct compat_kvm_dirty_log compat_log;
3159                 struct kvm_dirty_log log;
3160
3161                 if (copy_from_user(&compat_log, (void __user *)arg,
3162                                    sizeof(compat_log)))
3163                         return -EFAULT;
3164                 log.slot         = compat_log.slot;
3165                 log.padding1     = compat_log.padding1;
3166                 log.padding2     = compat_log.padding2;
3167                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3168
3169                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3170                 break;
3171         }
3172         default:
3173                 r = kvm_vm_ioctl(filp, ioctl, arg);
3174         }
3175         return r;
3176 }
3177 #endif
3178
3179 static struct file_operations kvm_vm_fops = {
3180         .release        = kvm_vm_release,
3181         .unlocked_ioctl = kvm_vm_ioctl,
3182         .llseek         = noop_llseek,
3183         KVM_COMPAT(kvm_vm_compat_ioctl),
3184 };
3185
3186 static int kvm_dev_ioctl_create_vm(unsigned long type)
3187 {
3188         int r;
3189         struct kvm *kvm;
3190         struct file *file;
3191
3192         kvm = kvm_create_vm(type);
3193         if (IS_ERR(kvm))
3194                 return PTR_ERR(kvm);
3195 #ifdef CONFIG_KVM_MMIO
3196         r = kvm_coalesced_mmio_init(kvm);
3197         if (r < 0)
3198                 goto put_kvm;
3199 #endif
3200         r = get_unused_fd_flags(O_CLOEXEC);
3201         if (r < 0)
3202                 goto put_kvm;
3203
3204         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3205         if (IS_ERR(file)) {
3206                 put_unused_fd(r);
3207                 r = PTR_ERR(file);
3208                 goto put_kvm;
3209         }
3210
3211         /*
3212          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3213          * already set, with ->release() being kvm_vm_release().  In error
3214          * cases it will be called by the final fput(file) and will take
3215          * care of doing kvm_put_kvm(kvm).
3216          */
3217         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3218                 put_unused_fd(r);
3219                 fput(file);
3220                 return -ENOMEM;
3221         }
3222         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3223
3224         fd_install(r, file);
3225         return r;
3226
3227 put_kvm:
3228         kvm_put_kvm(kvm);
3229         return r;
3230 }
3231
3232 static long kvm_dev_ioctl(struct file *filp,
3233                           unsigned int ioctl, unsigned long arg)
3234 {
3235         long r = -EINVAL;
3236
3237         switch (ioctl) {
3238         case KVM_GET_API_VERSION:
3239                 if (arg)
3240                         goto out;
3241                 r = KVM_API_VERSION;
3242                 break;
3243         case KVM_CREATE_VM:
3244                 r = kvm_dev_ioctl_create_vm(arg);
3245                 break;
3246         case KVM_CHECK_EXTENSION:
3247                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3248                 break;
3249         case KVM_GET_VCPU_MMAP_SIZE:
3250                 if (arg)
3251                         goto out;
3252                 r = PAGE_SIZE;     /* struct kvm_run */
3253 #ifdef CONFIG_X86
3254                 r += PAGE_SIZE;    /* pio data page */
3255 #endif
3256 #ifdef CONFIG_KVM_MMIO
3257                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3258 #endif
3259                 break;
3260         case KVM_TRACE_ENABLE:
3261         case KVM_TRACE_PAUSE:
3262         case KVM_TRACE_DISABLE:
3263                 r = -EOPNOTSUPP;
3264                 break;
3265         default:
3266                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3267         }
3268 out:
3269         return r;
3270 }
3271
3272 static struct file_operations kvm_chardev_ops = {
3273         .unlocked_ioctl = kvm_dev_ioctl,
3274         .llseek         = noop_llseek,
3275         KVM_COMPAT(kvm_dev_ioctl),
3276 };
3277
3278 static struct miscdevice kvm_dev = {
3279         KVM_MINOR,
3280         "kvm",
3281         &kvm_chardev_ops,
3282 };
3283
3284 static void hardware_enable_nolock(void *junk)
3285 {
3286         int cpu = raw_smp_processor_id();
3287         int r;
3288
3289         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3290                 return;
3291
3292         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3293
3294         r = kvm_arch_hardware_enable();
3295
3296         if (r) {
3297                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3298                 atomic_inc(&hardware_enable_failed);
3299                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3300         }
3301 }
3302
3303 static int kvm_starting_cpu(unsigned int cpu)
3304 {
3305         raw_spin_lock(&kvm_count_lock);
3306         if (kvm_usage_count)
3307                 hardware_enable_nolock(NULL);
3308         raw_spin_unlock(&kvm_count_lock);
3309         return 0;
3310 }
3311
3312 static void hardware_disable_nolock(void *junk)
3313 {
3314         int cpu = raw_smp_processor_id();
3315
3316         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3317                 return;
3318         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3319         kvm_arch_hardware_disable();
3320 }
3321
3322 static int kvm_dying_cpu(unsigned int cpu)
3323 {
3324         raw_spin_lock(&kvm_count_lock);
3325         if (kvm_usage_count)
3326                 hardware_disable_nolock(NULL);
3327         raw_spin_unlock(&kvm_count_lock);
3328         return 0;
3329 }
3330
3331 static void hardware_disable_all_nolock(void)
3332 {
3333         BUG_ON(!kvm_usage_count);
3334
3335         kvm_usage_count--;
3336         if (!kvm_usage_count)
3337                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3338 }
3339
3340 static void hardware_disable_all(void)
3341 {
3342         raw_spin_lock(&kvm_count_lock);
3343         hardware_disable_all_nolock();
3344         raw_spin_unlock(&kvm_count_lock);
3345 }
3346
3347 static int hardware_enable_all(void)
3348 {
3349         int r = 0;
3350
3351         raw_spin_lock(&kvm_count_lock);
3352
3353         kvm_usage_count++;
3354         if (kvm_usage_count == 1) {
3355                 atomic_set(&hardware_enable_failed, 0);
3356                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3357
3358                 if (atomic_read(&hardware_enable_failed)) {
3359                         hardware_disable_all_nolock();
3360                         r = -EBUSY;
3361                 }
3362         }
3363
3364         raw_spin_unlock(&kvm_count_lock);
3365
3366         return r;
3367 }
3368
3369 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3370                       void *v)
3371 {
3372         /*
3373          * Some (well, at least mine) BIOSes hang on reboot if
3374          * in vmx root mode.
3375          *
3376          * And Intel TXT required VMX off for all cpu when system shutdown.
3377          */
3378         pr_info("kvm: exiting hardware virtualization\n");
3379         kvm_rebooting = true;
3380         on_each_cpu(hardware_disable_nolock, NULL, 1);
3381         return NOTIFY_OK;
3382 }
3383
3384 static struct notifier_block kvm_reboot_notifier = {
3385         .notifier_call = kvm_reboot,
3386         .priority = 0,
3387 };
3388
3389 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3390 {
3391         int i;
3392
3393         for (i = 0; i < bus->dev_count; i++) {
3394                 struct kvm_io_device *pos = bus->range[i].dev;
3395
3396                 kvm_iodevice_destructor(pos);
3397         }
3398         kfree(bus);
3399 }
3400
3401 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3402                                  const struct kvm_io_range *r2)
3403 {
3404         gpa_t addr1 = r1->addr;
3405         gpa_t addr2 = r2->addr;
3406
3407         if (addr1 < addr2)
3408                 return -1;
3409
3410         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3411          * accept any overlapping write.  Any order is acceptable for
3412          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3413          * we process all of them.
3414          */
3415         if (r2->len) {
3416                 addr1 += r1->len;
3417                 addr2 += r2->len;
3418         }
3419
3420         if (addr1 > addr2)
3421                 return 1;
3422
3423         return 0;
3424 }
3425
3426 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3427 {
3428         return kvm_io_bus_cmp(p1, p2);
3429 }
3430
3431 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3432                              gpa_t addr, int len)
3433 {
3434         struct kvm_io_range *range, key;
3435         int off;
3436
3437         key = (struct kvm_io_range) {
3438                 .addr = addr,
3439                 .len = len,
3440         };
3441
3442         range = bsearch(&key, bus->range, bus->dev_count,
3443                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3444         if (range == NULL)
3445                 return -ENOENT;
3446
3447         off = range - bus->range;
3448
3449         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3450                 off--;
3451
3452         return off;
3453 }
3454
3455 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3456                               struct kvm_io_range *range, const void *val)
3457 {
3458         int idx;
3459
3460         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3461         if (idx < 0)
3462                 return -EOPNOTSUPP;
3463
3464         while (idx < bus->dev_count &&
3465                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3466                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3467                                         range->len, val))
3468                         return idx;
3469                 idx++;
3470         }
3471
3472         return -EOPNOTSUPP;
3473 }
3474
3475 /* kvm_io_bus_write - called under kvm->slots_lock */
3476 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3477                      int len, const void *val)
3478 {
3479         struct kvm_io_bus *bus;
3480         struct kvm_io_range range;
3481         int r;
3482
3483         range = (struct kvm_io_range) {
3484                 .addr = addr,
3485                 .len = len,
3486         };
3487
3488         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3489         if (!bus)
3490                 return -ENOMEM;
3491         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3492         return r < 0 ? r : 0;
3493 }
3494
3495 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3496 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3497                             gpa_t addr, int len, const void *val, long cookie)
3498 {
3499         struct kvm_io_bus *bus;
3500         struct kvm_io_range range;
3501
3502         range = (struct kvm_io_range) {
3503                 .addr = addr,
3504                 .len = len,
3505         };
3506
3507         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3508         if (!bus)
3509                 return -ENOMEM;
3510
3511         /* First try the device referenced by cookie. */
3512         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3513             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3514                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3515                                         val))
3516                         return cookie;
3517
3518         /*
3519          * cookie contained garbage; fall back to search and return the
3520          * correct cookie value.
3521          */
3522         return __kvm_io_bus_write(vcpu, bus, &range, val);
3523 }
3524
3525 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3526                              struct kvm_io_range *range, void *val)
3527 {
3528         int idx;
3529
3530         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3531         if (idx < 0)
3532                 return -EOPNOTSUPP;
3533
3534         while (idx < bus->dev_count &&
3535                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3536                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3537                                        range->len, val))
3538                         return idx;
3539                 idx++;
3540         }
3541
3542         return -EOPNOTSUPP;
3543 }
3544 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3545
3546 /* kvm_io_bus_read - called under kvm->slots_lock */
3547 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3548                     int len, void *val)
3549 {
3550         struct kvm_io_bus *bus;
3551         struct kvm_io_range range;
3552         int r;
3553
3554         range = (struct kvm_io_range) {
3555                 .addr = addr,
3556                 .len = len,
3557         };
3558
3559         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3560         if (!bus)
3561                 return -ENOMEM;
3562         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3563         return r < 0 ? r : 0;
3564 }
3565
3566
3567 /* Caller must hold slots_lock. */
3568 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3569                             int len, struct kvm_io_device *dev)
3570 {
3571         int i;
3572         struct kvm_io_bus *new_bus, *bus;
3573         struct kvm_io_range range;
3574
3575         bus = kvm_get_bus(kvm, bus_idx);
3576         if (!bus)
3577                 return -ENOMEM;
3578
3579         /* exclude ioeventfd which is limited by maximum fd */
3580         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3581                 return -ENOSPC;
3582
3583         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3584                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3585         if (!new_bus)
3586                 return -ENOMEM;
3587
3588         range = (struct kvm_io_range) {
3589                 .addr = addr,
3590                 .len = len,
3591                 .dev = dev,
3592         };
3593
3594         for (i = 0; i < bus->dev_count; i++)
3595                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3596                         break;
3597
3598         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3599         new_bus->dev_count++;
3600         new_bus->range[i] = range;
3601         memcpy(new_bus->range + i + 1, bus->range + i,
3602                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3603         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3604         synchronize_srcu_expedited(&kvm->srcu);
3605         kfree(bus);
3606
3607         return 0;
3608 }
3609
3610 /* Caller must hold slots_lock. */
3611 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3612                                struct kvm_io_device *dev)
3613 {
3614         int i;
3615         struct kvm_io_bus *new_bus, *bus;
3616
3617         bus = kvm_get_bus(kvm, bus_idx);
3618         if (!bus)
3619                 return;
3620
3621         for (i = 0; i < bus->dev_count; i++)
3622                 if (bus->range[i].dev == dev) {
3623                         break;
3624                 }
3625
3626         if (i == bus->dev_count)
3627                 return;
3628
3629         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3630                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3631         if (!new_bus)  {
3632                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3633                 goto broken;
3634         }
3635
3636         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3637         new_bus->dev_count--;
3638         memcpy(new_bus->range + i, bus->range + i + 1,
3639                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3640
3641 broken:
3642         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3643         synchronize_srcu_expedited(&kvm->srcu);
3644         kfree(bus);
3645         return;
3646 }
3647
3648 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3649                                          gpa_t addr)
3650 {
3651         struct kvm_io_bus *bus;
3652         int dev_idx, srcu_idx;
3653         struct kvm_io_device *iodev = NULL;
3654
3655         srcu_idx = srcu_read_lock(&kvm->srcu);
3656
3657         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3658         if (!bus)
3659                 goto out_unlock;
3660
3661         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3662         if (dev_idx < 0)
3663                 goto out_unlock;
3664
3665         iodev = bus->range[dev_idx].dev;
3666
3667 out_unlock:
3668         srcu_read_unlock(&kvm->srcu, srcu_idx);
3669
3670         return iodev;
3671 }
3672 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3673
3674 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3675                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3676                            const char *fmt)
3677 {
3678         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3679                                           inode->i_private;
3680
3681         /* The debugfs files are a reference to the kvm struct which
3682          * is still valid when kvm_destroy_vm is called.
3683          * To avoid the race between open and the removal of the debugfs
3684          * directory we test against the users count.
3685          */
3686         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3687                 return -ENOENT;
3688
3689         if (simple_attr_open(inode, file, get, set, fmt)) {
3690                 kvm_put_kvm(stat_data->kvm);
3691                 return -ENOMEM;
3692         }
3693
3694         return 0;
3695 }
3696
3697 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3698 {
3699         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3700                                           inode->i_private;
3701
3702         simple_attr_release(inode, file);
3703         kvm_put_kvm(stat_data->kvm);
3704
3705         return 0;
3706 }
3707
3708 static int vm_stat_get_per_vm(void *data, u64 *val)
3709 {
3710         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3711
3712         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3713
3714         return 0;
3715 }
3716
3717 static int vm_stat_clear_per_vm(void *data, u64 val)
3718 {
3719         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3720
3721         if (val)
3722                 return -EINVAL;
3723
3724         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3725
3726         return 0;
3727 }
3728
3729 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3730 {
3731         __simple_attr_check_format("%llu\n", 0ull);
3732         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3733                                 vm_stat_clear_per_vm, "%llu\n");
3734 }
3735
3736 static const struct file_operations vm_stat_get_per_vm_fops = {
3737         .owner   = THIS_MODULE,
3738         .open    = vm_stat_get_per_vm_open,
3739         .release = kvm_debugfs_release,
3740         .read    = simple_attr_read,
3741         .write   = simple_attr_write,
3742         .llseek  = no_llseek,
3743 };
3744
3745 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3746 {
3747         int i;
3748         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3749         struct kvm_vcpu *vcpu;
3750
3751         *val = 0;
3752
3753         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3754                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3755
3756         return 0;
3757 }
3758
3759 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3760 {
3761         int i;
3762         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3763         struct kvm_vcpu *vcpu;
3764
3765         if (val)
3766                 return -EINVAL;
3767
3768         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3769                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3770
3771         return 0;
3772 }
3773
3774 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3775 {
3776         __simple_attr_check_format("%llu\n", 0ull);
3777         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3778                                  vcpu_stat_clear_per_vm, "%llu\n");
3779 }
3780
3781 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3782         .owner   = THIS_MODULE,
3783         .open    = vcpu_stat_get_per_vm_open,
3784         .release = kvm_debugfs_release,
3785         .read    = simple_attr_read,
3786         .write   = simple_attr_write,
3787         .llseek  = no_llseek,
3788 };
3789
3790 static const struct file_operations *stat_fops_per_vm[] = {
3791         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3792         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3793 };
3794
3795 static int vm_stat_get(void *_offset, u64 *val)
3796 {
3797         unsigned offset = (long)_offset;
3798         struct kvm *kvm;
3799         struct kvm_stat_data stat_tmp = {.offset = offset};
3800         u64 tmp_val;
3801
3802         *val = 0;
3803         spin_lock(&kvm_lock);
3804         list_for_each_entry(kvm, &vm_list, vm_list) {
3805                 stat_tmp.kvm = kvm;
3806                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3807                 *val += tmp_val;
3808         }
3809         spin_unlock(&kvm_lock);
3810         return 0;
3811 }
3812
3813 static int vm_stat_clear(void *_offset, u64 val)
3814 {
3815         unsigned offset = (long)_offset;
3816         struct kvm *kvm;
3817         struct kvm_stat_data stat_tmp = {.offset = offset};
3818
3819         if (val)
3820                 return -EINVAL;
3821
3822         spin_lock(&kvm_lock);
3823         list_for_each_entry(kvm, &vm_list, vm_list) {
3824                 stat_tmp.kvm = kvm;
3825                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3826         }
3827         spin_unlock(&kvm_lock);
3828
3829         return 0;
3830 }
3831
3832 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3833
3834 static int vcpu_stat_get(void *_offset, u64 *val)
3835 {
3836         unsigned offset = (long)_offset;
3837         struct kvm *kvm;
3838         struct kvm_stat_data stat_tmp = {.offset = offset};
3839         u64 tmp_val;
3840
3841         *val = 0;
3842         spin_lock(&kvm_lock);
3843         list_for_each_entry(kvm, &vm_list, vm_list) {
3844                 stat_tmp.kvm = kvm;
3845                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3846                 *val += tmp_val;
3847         }
3848         spin_unlock(&kvm_lock);
3849         return 0;
3850 }
3851
3852 static int vcpu_stat_clear(void *_offset, u64 val)
3853 {
3854         unsigned offset = (long)_offset;
3855         struct kvm *kvm;
3856         struct kvm_stat_data stat_tmp = {.offset = offset};
3857
3858         if (val)
3859                 return -EINVAL;
3860
3861         spin_lock(&kvm_lock);
3862         list_for_each_entry(kvm, &vm_list, vm_list) {
3863                 stat_tmp.kvm = kvm;
3864                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3865         }
3866         spin_unlock(&kvm_lock);
3867
3868         return 0;
3869 }
3870
3871 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3872                         "%llu\n");
3873
3874 static const struct file_operations *stat_fops[] = {
3875         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3876         [KVM_STAT_VM]   = &vm_stat_fops,
3877 };
3878
3879 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3880 {
3881         struct kobj_uevent_env *env;
3882         unsigned long long created, active;
3883
3884         if (!kvm_dev.this_device || !kvm)
3885                 return;
3886
3887         spin_lock(&kvm_lock);
3888         if (type == KVM_EVENT_CREATE_VM) {
3889                 kvm_createvm_count++;
3890                 kvm_active_vms++;
3891         } else if (type == KVM_EVENT_DESTROY_VM) {
3892                 kvm_active_vms--;
3893         }
3894         created = kvm_createvm_count;
3895         active = kvm_active_vms;
3896         spin_unlock(&kvm_lock);
3897
3898         env = kzalloc(sizeof(*env), GFP_KERNEL);
3899         if (!env)
3900                 return;
3901
3902         add_uevent_var(env, "CREATED=%llu", created);
3903         add_uevent_var(env, "COUNT=%llu", active);
3904
3905         if (type == KVM_EVENT_CREATE_VM) {
3906                 add_uevent_var(env, "EVENT=create");
3907                 kvm->userspace_pid = task_pid_nr(current);
3908         } else if (type == KVM_EVENT_DESTROY_VM) {
3909                 add_uevent_var(env, "EVENT=destroy");
3910         }
3911         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3912
3913         if (kvm->debugfs_dentry) {
3914                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3915
3916                 if (p) {
3917                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3918                         if (!IS_ERR(tmp))
3919                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3920                         kfree(p);
3921                 }
3922         }
3923         /* no need for checks, since we are adding at most only 5 keys */
3924         env->envp[env->envp_idx++] = NULL;
3925         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3926         kfree(env);
3927 }
3928
3929 static void kvm_init_debug(void)
3930 {
3931         struct kvm_stats_debugfs_item *p;
3932
3933         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3934
3935         kvm_debugfs_num_entries = 0;
3936         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3937                 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3938                                     (void *)(long)p->offset,
3939                                     stat_fops[p->kind]);
3940         }
3941 }
3942
3943 static int kvm_suspend(void)
3944 {
3945         if (kvm_usage_count)
3946                 hardware_disable_nolock(NULL);
3947         return 0;
3948 }
3949
3950 static void kvm_resume(void)
3951 {
3952         if (kvm_usage_count) {
3953                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3954                 hardware_enable_nolock(NULL);
3955         }
3956 }
3957
3958 static struct syscore_ops kvm_syscore_ops = {
3959         .suspend = kvm_suspend,
3960         .resume = kvm_resume,
3961 };
3962
3963 static inline
3964 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3965 {
3966         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3967 }
3968
3969 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3970 {
3971         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3972
3973         if (vcpu->preempted)
3974                 vcpu->preempted = false;
3975
3976         kvm_arch_sched_in(vcpu, cpu);
3977
3978         kvm_arch_vcpu_load(vcpu, cpu);
3979 }
3980
3981 static void kvm_sched_out(struct preempt_notifier *pn,
3982                           struct task_struct *next)
3983 {
3984         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3985
3986         if (current->state == TASK_RUNNING)
3987                 vcpu->preempted = true;
3988         kvm_arch_vcpu_put(vcpu);
3989 }
3990
3991 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3992                   struct module *module)
3993 {
3994         int r;
3995         int cpu;
3996
3997         r = kvm_arch_init(opaque);
3998         if (r)
3999                 goto out_fail;
4000
4001         /*
4002          * kvm_arch_init makes sure there's at most one caller
4003          * for architectures that support multiple implementations,
4004          * like intel and amd on x86.
4005          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4006          * conflicts in case kvm is already setup for another implementation.
4007          */
4008         r = kvm_irqfd_init();
4009         if (r)
4010                 goto out_irqfd;
4011
4012         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4013                 r = -ENOMEM;
4014                 goto out_free_0;
4015         }
4016
4017         r = kvm_arch_hardware_setup();
4018         if (r < 0)
4019                 goto out_free_0a;
4020
4021         for_each_online_cpu(cpu) {
4022                 smp_call_function_single(cpu,
4023                                 kvm_arch_check_processor_compat,
4024                                 &r, 1);
4025                 if (r < 0)
4026                         goto out_free_1;
4027         }
4028
4029         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4030                                       kvm_starting_cpu, kvm_dying_cpu);
4031         if (r)
4032                 goto out_free_2;
4033         register_reboot_notifier(&kvm_reboot_notifier);
4034
4035         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4036         if (!vcpu_align)
4037                 vcpu_align = __alignof__(struct kvm_vcpu);
4038         kvm_vcpu_cache =
4039                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4040                                            SLAB_ACCOUNT,
4041                                            offsetof(struct kvm_vcpu, arch),
4042                                            sizeof_field(struct kvm_vcpu, arch),
4043                                            NULL);
4044         if (!kvm_vcpu_cache) {
4045                 r = -ENOMEM;
4046                 goto out_free_3;
4047         }
4048
4049         r = kvm_async_pf_init();
4050         if (r)
4051                 goto out_free;
4052
4053         kvm_chardev_ops.owner = module;
4054         kvm_vm_fops.owner = module;
4055         kvm_vcpu_fops.owner = module;
4056
4057         r = misc_register(&kvm_dev);
4058         if (r) {
4059                 pr_err("kvm: misc device register failed\n");
4060                 goto out_unreg;
4061         }
4062
4063         register_syscore_ops(&kvm_syscore_ops);
4064
4065         kvm_preempt_ops.sched_in = kvm_sched_in;
4066         kvm_preempt_ops.sched_out = kvm_sched_out;
4067
4068         kvm_init_debug();
4069
4070         r = kvm_vfio_ops_init();
4071         WARN_ON(r);
4072
4073         return 0;
4074
4075 out_unreg:
4076         kvm_async_pf_deinit();
4077 out_free:
4078         kmem_cache_destroy(kvm_vcpu_cache);
4079 out_free_3:
4080         unregister_reboot_notifier(&kvm_reboot_notifier);
4081         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4082 out_free_2:
4083 out_free_1:
4084         kvm_arch_hardware_unsetup();
4085 out_free_0a:
4086         free_cpumask_var(cpus_hardware_enabled);
4087 out_free_0:
4088         kvm_irqfd_exit();
4089 out_irqfd:
4090         kvm_arch_exit();
4091 out_fail:
4092         return r;
4093 }
4094 EXPORT_SYMBOL_GPL(kvm_init);
4095
4096 void kvm_exit(void)
4097 {
4098         debugfs_remove_recursive(kvm_debugfs_dir);
4099         misc_deregister(&kvm_dev);
4100         kmem_cache_destroy(kvm_vcpu_cache);
4101         kvm_async_pf_deinit();
4102         unregister_syscore_ops(&kvm_syscore_ops);
4103         unregister_reboot_notifier(&kvm_reboot_notifier);
4104         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4105         on_each_cpu(hardware_disable_nolock, NULL, 1);
4106         kvm_arch_hardware_unsetup();
4107         kvm_arch_exit();
4108         kvm_irqfd_exit();
4109         free_cpumask_var(cpus_hardware_enabled);
4110         kvm_vfio_ops_exit();
4111 }
4112 EXPORT_SYMBOL_GPL(kvm_exit);