rtc: check if __rtc_read_time was successful
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
159
160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161                                                    unsigned long start, unsigned long end)
162 {
163 }
164
165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166 {
167         /*
168          * The metadata used by is_zone_device_page() to determine whether or
169          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170          * the device has been pinned, e.g. by get_user_pages().  WARN if the
171          * page_count() is zero to help detect bad usage of this helper.
172          */
173         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174                 return false;
175
176         return is_zone_device_page(pfn_to_page(pfn));
177 }
178
179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
180 {
181         /*
182          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183          * perspective they are "normal" pages, albeit with slightly different
184          * usage rules.
185          */
186         if (pfn_valid(pfn))
187                 return PageReserved(pfn_to_page(pfn)) &&
188                        !is_zero_pfn(pfn) &&
189                        !kvm_is_zone_device_pfn(pfn);
190
191         return true;
192 }
193
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199         int cpu = get_cpu();
200
201         __this_cpu_write(kvm_running_vcpu, vcpu);
202         preempt_notifier_register(&vcpu->preempt_notifier);
203         kvm_arch_vcpu_load(vcpu, cpu);
204         put_cpu();
205 }
206 EXPORT_SYMBOL_GPL(vcpu_load);
207
208 void vcpu_put(struct kvm_vcpu *vcpu)
209 {
210         preempt_disable();
211         kvm_arch_vcpu_put(vcpu);
212         preempt_notifier_unregister(&vcpu->preempt_notifier);
213         __this_cpu_write(kvm_running_vcpu, NULL);
214         preempt_enable();
215 }
216 EXPORT_SYMBOL_GPL(vcpu_put);
217
218 /* TODO: merge with kvm_arch_vcpu_should_kick */
219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
220 {
221         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
222
223         /*
224          * We need to wait for the VCPU to reenable interrupts and get out of
225          * READING_SHADOW_PAGE_TABLES mode.
226          */
227         if (req & KVM_REQUEST_WAIT)
228                 return mode != OUTSIDE_GUEST_MODE;
229
230         /*
231          * Need to kick a running VCPU, but otherwise there is nothing to do.
232          */
233         return mode == IN_GUEST_MODE;
234 }
235
236 static void ack_flush(void *_completed)
237 {
238 }
239
240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
241 {
242         if (cpumask_empty(cpus))
243                 return false;
244
245         smp_call_function_many(cpus, ack_flush, NULL, wait);
246         return true;
247 }
248
249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
250                                   unsigned int req, struct cpumask *tmp,
251                                   int current_cpu)
252 {
253         int cpu;
254
255         kvm_make_request(req, vcpu);
256
257         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
258                 return;
259
260         /*
261          * Note, the vCPU could get migrated to a different pCPU at any point
262          * after kvm_request_needs_ipi(), which could result in sending an IPI
263          * to the previous pCPU.  But, that's OK because the purpose of the IPI
264          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
265          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
266          * after this point is also OK, as the requirement is only that KVM wait
267          * for vCPUs that were reading SPTEs _before_ any changes were
268          * finalized. See kvm_vcpu_kick() for more details on handling requests.
269          */
270         if (kvm_request_needs_ipi(vcpu, req)) {
271                 cpu = READ_ONCE(vcpu->cpu);
272                 if (cpu != -1 && cpu != current_cpu)
273                         __cpumask_set_cpu(cpu, tmp);
274         }
275 }
276
277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
278                                  unsigned long *vcpu_bitmap)
279 {
280         struct kvm_vcpu *vcpu;
281         struct cpumask *cpus;
282         int i, me;
283         bool called;
284
285         me = get_cpu();
286
287         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
288         cpumask_clear(cpus);
289
290         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
291                 vcpu = kvm_get_vcpu(kvm, i);
292                 if (!vcpu)
293                         continue;
294                 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
295         }
296
297         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
298         put_cpu();
299
300         return called;
301 }
302
303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
304                                       struct kvm_vcpu *except)
305 {
306         struct kvm_vcpu *vcpu;
307         struct cpumask *cpus;
308         unsigned long i;
309         bool called;
310         int me;
311
312         me = get_cpu();
313
314         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
315         cpumask_clear(cpus);
316
317         kvm_for_each_vcpu(i, vcpu, kvm) {
318                 if (vcpu == except)
319                         continue;
320                 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
321         }
322
323         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
324         put_cpu();
325
326         return called;
327 }
328
329 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
330 {
331         return kvm_make_all_cpus_request_except(kvm, req, NULL);
332 }
333 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
334
335 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
336 void kvm_flush_remote_tlbs(struct kvm *kvm)
337 {
338         ++kvm->stat.generic.remote_tlb_flush_requests;
339
340         /*
341          * We want to publish modifications to the page tables before reading
342          * mode. Pairs with a memory barrier in arch-specific code.
343          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
344          * and smp_mb in walk_shadow_page_lockless_begin/end.
345          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
346          *
347          * There is already an smp_mb__after_atomic() before
348          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
349          * barrier here.
350          */
351         if (!kvm_arch_flush_remote_tlb(kvm)
352             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
353                 ++kvm->stat.generic.remote_tlb_flush;
354 }
355 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
356 #endif
357
358 void kvm_reload_remote_mmus(struct kvm *kvm)
359 {
360         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
361 }
362
363 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
364 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
365                                                gfp_t gfp_flags)
366 {
367         gfp_flags |= mc->gfp_zero;
368
369         if (mc->kmem_cache)
370                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
371         else
372                 return (void *)__get_free_page(gfp_flags);
373 }
374
375 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
376 {
377         void *obj;
378
379         if (mc->nobjs >= min)
380                 return 0;
381         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
382                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
383                 if (!obj)
384                         return mc->nobjs >= min ? 0 : -ENOMEM;
385                 mc->objects[mc->nobjs++] = obj;
386         }
387         return 0;
388 }
389
390 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
391 {
392         return mc->nobjs;
393 }
394
395 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
396 {
397         while (mc->nobjs) {
398                 if (mc->kmem_cache)
399                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
400                 else
401                         free_page((unsigned long)mc->objects[--mc->nobjs]);
402         }
403 }
404
405 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
406 {
407         void *p;
408
409         if (WARN_ON(!mc->nobjs))
410                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
411         else
412                 p = mc->objects[--mc->nobjs];
413         BUG_ON(!p);
414         return p;
415 }
416 #endif
417
418 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
419 {
420         mutex_init(&vcpu->mutex);
421         vcpu->cpu = -1;
422         vcpu->kvm = kvm;
423         vcpu->vcpu_id = id;
424         vcpu->pid = NULL;
425 #ifndef __KVM_HAVE_ARCH_WQP
426         rcuwait_init(&vcpu->wait);
427 #endif
428         kvm_async_pf_vcpu_init(vcpu);
429
430         kvm_vcpu_set_in_spin_loop(vcpu, false);
431         kvm_vcpu_set_dy_eligible(vcpu, false);
432         vcpu->preempted = false;
433         vcpu->ready = false;
434         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
435         vcpu->last_used_slot = NULL;
436 }
437
438 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
439 {
440         kvm_dirty_ring_free(&vcpu->dirty_ring);
441         kvm_arch_vcpu_destroy(vcpu);
442
443         /*
444          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
445          * the vcpu->pid pointer, and at destruction time all file descriptors
446          * are already gone.
447          */
448         put_pid(rcu_dereference_protected(vcpu->pid, 1));
449
450         free_page((unsigned long)vcpu->run);
451         kmem_cache_free(kvm_vcpu_cache, vcpu);
452 }
453
454 void kvm_destroy_vcpus(struct kvm *kvm)
455 {
456         unsigned long i;
457         struct kvm_vcpu *vcpu;
458
459         kvm_for_each_vcpu(i, vcpu, kvm) {
460                 kvm_vcpu_destroy(vcpu);
461                 xa_erase(&kvm->vcpu_array, i);
462         }
463
464         atomic_set(&kvm->online_vcpus, 0);
465 }
466 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
467
468 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
469 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
470 {
471         return container_of(mn, struct kvm, mmu_notifier);
472 }
473
474 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
475                                               struct mm_struct *mm,
476                                               unsigned long start, unsigned long end)
477 {
478         struct kvm *kvm = mmu_notifier_to_kvm(mn);
479         int idx;
480
481         idx = srcu_read_lock(&kvm->srcu);
482         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
483         srcu_read_unlock(&kvm->srcu, idx);
484 }
485
486 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
487
488 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
489                              unsigned long end);
490
491 struct kvm_hva_range {
492         unsigned long start;
493         unsigned long end;
494         pte_t pte;
495         hva_handler_t handler;
496         on_lock_fn_t on_lock;
497         bool flush_on_ret;
498         bool may_block;
499 };
500
501 /*
502  * Use a dedicated stub instead of NULL to indicate that there is no callback
503  * function/handler.  The compiler technically can't guarantee that a real
504  * function will have a non-zero address, and so it will generate code to
505  * check for !NULL, whereas comparing against a stub will be elided at compile
506  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
507  */
508 static void kvm_null_fn(void)
509 {
510
511 }
512 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
513
514 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
515 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
516         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
517              node;                                                           \
518              node = interval_tree_iter_next(node, start, last))      \
519
520 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
521                                                   const struct kvm_hva_range *range)
522 {
523         bool ret = false, locked = false;
524         struct kvm_gfn_range gfn_range;
525         struct kvm_memory_slot *slot;
526         struct kvm_memslots *slots;
527         int i, idx;
528
529         if (WARN_ON_ONCE(range->end <= range->start))
530                 return 0;
531
532         /* A null handler is allowed if and only if on_lock() is provided. */
533         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
534                          IS_KVM_NULL_FN(range->handler)))
535                 return 0;
536
537         idx = srcu_read_lock(&kvm->srcu);
538
539         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
540                 struct interval_tree_node *node;
541
542                 slots = __kvm_memslots(kvm, i);
543                 kvm_for_each_memslot_in_hva_range(node, slots,
544                                                   range->start, range->end - 1) {
545                         unsigned long hva_start, hva_end;
546
547                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
548                         hva_start = max(range->start, slot->userspace_addr);
549                         hva_end = min(range->end, slot->userspace_addr +
550                                                   (slot->npages << PAGE_SHIFT));
551
552                         /*
553                          * To optimize for the likely case where the address
554                          * range is covered by zero or one memslots, don't
555                          * bother making these conditional (to avoid writes on
556                          * the second or later invocation of the handler).
557                          */
558                         gfn_range.pte = range->pte;
559                         gfn_range.may_block = range->may_block;
560
561                         /*
562                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
563                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
564                          */
565                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
566                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
567                         gfn_range.slot = slot;
568
569                         if (!locked) {
570                                 locked = true;
571                                 KVM_MMU_LOCK(kvm);
572                                 if (!IS_KVM_NULL_FN(range->on_lock))
573                                         range->on_lock(kvm, range->start, range->end);
574                                 if (IS_KVM_NULL_FN(range->handler))
575                                         break;
576                         }
577                         ret |= range->handler(kvm, &gfn_range);
578                 }
579         }
580
581         if (range->flush_on_ret && ret)
582                 kvm_flush_remote_tlbs(kvm);
583
584         if (locked)
585                 KVM_MMU_UNLOCK(kvm);
586
587         srcu_read_unlock(&kvm->srcu, idx);
588
589         /* The notifiers are averse to booleans. :-( */
590         return (int)ret;
591 }
592
593 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
594                                                 unsigned long start,
595                                                 unsigned long end,
596                                                 pte_t pte,
597                                                 hva_handler_t handler)
598 {
599         struct kvm *kvm = mmu_notifier_to_kvm(mn);
600         const struct kvm_hva_range range = {
601                 .start          = start,
602                 .end            = end,
603                 .pte            = pte,
604                 .handler        = handler,
605                 .on_lock        = (void *)kvm_null_fn,
606                 .flush_on_ret   = true,
607                 .may_block      = false,
608         };
609
610         return __kvm_handle_hva_range(kvm, &range);
611 }
612
613 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
614                                                          unsigned long start,
615                                                          unsigned long end,
616                                                          hva_handler_t handler)
617 {
618         struct kvm *kvm = mmu_notifier_to_kvm(mn);
619         const struct kvm_hva_range range = {
620                 .start          = start,
621                 .end            = end,
622                 .pte            = __pte(0),
623                 .handler        = handler,
624                 .on_lock        = (void *)kvm_null_fn,
625                 .flush_on_ret   = false,
626                 .may_block      = false,
627         };
628
629         return __kvm_handle_hva_range(kvm, &range);
630 }
631 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
632                                         struct mm_struct *mm,
633                                         unsigned long address,
634                                         pte_t pte)
635 {
636         struct kvm *kvm = mmu_notifier_to_kvm(mn);
637
638         trace_kvm_set_spte_hva(address);
639
640         /*
641          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
642          * If mmu_notifier_count is zero, then no in-progress invalidations,
643          * including this one, found a relevant memslot at start(); rechecking
644          * memslots here is unnecessary.  Note, a false positive (count elevated
645          * by a different invalidation) is sub-optimal but functionally ok.
646          */
647         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
648         if (!READ_ONCE(kvm->mmu_notifier_count))
649                 return;
650
651         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
652 }
653
654 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
655                                    unsigned long end)
656 {
657         /*
658          * The count increase must become visible at unlock time as no
659          * spte can be established without taking the mmu_lock and
660          * count is also read inside the mmu_lock critical section.
661          */
662         kvm->mmu_notifier_count++;
663         if (likely(kvm->mmu_notifier_count == 1)) {
664                 kvm->mmu_notifier_range_start = start;
665                 kvm->mmu_notifier_range_end = end;
666         } else {
667                 /*
668                  * Fully tracking multiple concurrent ranges has dimishing
669                  * returns. Keep things simple and just find the minimal range
670                  * which includes the current and new ranges. As there won't be
671                  * enough information to subtract a range after its invalidate
672                  * completes, any ranges invalidated concurrently will
673                  * accumulate and persist until all outstanding invalidates
674                  * complete.
675                  */
676                 kvm->mmu_notifier_range_start =
677                         min(kvm->mmu_notifier_range_start, start);
678                 kvm->mmu_notifier_range_end =
679                         max(kvm->mmu_notifier_range_end, end);
680         }
681 }
682
683 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
684                                         const struct mmu_notifier_range *range)
685 {
686         struct kvm *kvm = mmu_notifier_to_kvm(mn);
687         const struct kvm_hva_range hva_range = {
688                 .start          = range->start,
689                 .end            = range->end,
690                 .pte            = __pte(0),
691                 .handler        = kvm_unmap_gfn_range,
692                 .on_lock        = kvm_inc_notifier_count,
693                 .flush_on_ret   = true,
694                 .may_block      = mmu_notifier_range_blockable(range),
695         };
696
697         trace_kvm_unmap_hva_range(range->start, range->end);
698
699         /*
700          * Prevent memslot modification between range_start() and range_end()
701          * so that conditionally locking provides the same result in both
702          * functions.  Without that guarantee, the mmu_notifier_count
703          * adjustments will be imbalanced.
704          *
705          * Pairs with the decrement in range_end().
706          */
707         spin_lock(&kvm->mn_invalidate_lock);
708         kvm->mn_active_invalidate_count++;
709         spin_unlock(&kvm->mn_invalidate_lock);
710
711         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
712                                           hva_range.may_block);
713
714         __kvm_handle_hva_range(kvm, &hva_range);
715
716         return 0;
717 }
718
719 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
720                                    unsigned long end)
721 {
722         /*
723          * This sequence increase will notify the kvm page fault that
724          * the page that is going to be mapped in the spte could have
725          * been freed.
726          */
727         kvm->mmu_notifier_seq++;
728         smp_wmb();
729         /*
730          * The above sequence increase must be visible before the
731          * below count decrease, which is ensured by the smp_wmb above
732          * in conjunction with the smp_rmb in mmu_notifier_retry().
733          */
734         kvm->mmu_notifier_count--;
735 }
736
737 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
738                                         const struct mmu_notifier_range *range)
739 {
740         struct kvm *kvm = mmu_notifier_to_kvm(mn);
741         const struct kvm_hva_range hva_range = {
742                 .start          = range->start,
743                 .end            = range->end,
744                 .pte            = __pte(0),
745                 .handler        = (void *)kvm_null_fn,
746                 .on_lock        = kvm_dec_notifier_count,
747                 .flush_on_ret   = false,
748                 .may_block      = mmu_notifier_range_blockable(range),
749         };
750         bool wake;
751
752         __kvm_handle_hva_range(kvm, &hva_range);
753
754         /* Pairs with the increment in range_start(). */
755         spin_lock(&kvm->mn_invalidate_lock);
756         wake = (--kvm->mn_active_invalidate_count == 0);
757         spin_unlock(&kvm->mn_invalidate_lock);
758
759         /*
760          * There can only be one waiter, since the wait happens under
761          * slots_lock.
762          */
763         if (wake)
764                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
765
766         BUG_ON(kvm->mmu_notifier_count < 0);
767 }
768
769 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
770                                               struct mm_struct *mm,
771                                               unsigned long start,
772                                               unsigned long end)
773 {
774         trace_kvm_age_hva(start, end);
775
776         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
777 }
778
779 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
780                                         struct mm_struct *mm,
781                                         unsigned long start,
782                                         unsigned long end)
783 {
784         trace_kvm_age_hva(start, end);
785
786         /*
787          * Even though we do not flush TLB, this will still adversely
788          * affect performance on pre-Haswell Intel EPT, where there is
789          * no EPT Access Bit to clear so that we have to tear down EPT
790          * tables instead. If we find this unacceptable, we can always
791          * add a parameter to kvm_age_hva so that it effectively doesn't
792          * do anything on clear_young.
793          *
794          * Also note that currently we never issue secondary TLB flushes
795          * from clear_young, leaving this job up to the regular system
796          * cadence. If we find this inaccurate, we might come up with a
797          * more sophisticated heuristic later.
798          */
799         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
800 }
801
802 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
803                                        struct mm_struct *mm,
804                                        unsigned long address)
805 {
806         trace_kvm_test_age_hva(address);
807
808         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
809                                              kvm_test_age_gfn);
810 }
811
812 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
813                                      struct mm_struct *mm)
814 {
815         struct kvm *kvm = mmu_notifier_to_kvm(mn);
816         int idx;
817
818         idx = srcu_read_lock(&kvm->srcu);
819         kvm_arch_flush_shadow_all(kvm);
820         srcu_read_unlock(&kvm->srcu, idx);
821 }
822
823 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
824         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
825         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
826         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
827         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
828         .clear_young            = kvm_mmu_notifier_clear_young,
829         .test_young             = kvm_mmu_notifier_test_young,
830         .change_pte             = kvm_mmu_notifier_change_pte,
831         .release                = kvm_mmu_notifier_release,
832 };
833
834 static int kvm_init_mmu_notifier(struct kvm *kvm)
835 {
836         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
837         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
838 }
839
840 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
841
842 static int kvm_init_mmu_notifier(struct kvm *kvm)
843 {
844         return 0;
845 }
846
847 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
848
849 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
850 static int kvm_pm_notifier_call(struct notifier_block *bl,
851                                 unsigned long state,
852                                 void *unused)
853 {
854         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
855
856         return kvm_arch_pm_notifier(kvm, state);
857 }
858
859 static void kvm_init_pm_notifier(struct kvm *kvm)
860 {
861         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
862         /* Suspend KVM before we suspend ftrace, RCU, etc. */
863         kvm->pm_notifier.priority = INT_MAX;
864         register_pm_notifier(&kvm->pm_notifier);
865 }
866
867 static void kvm_destroy_pm_notifier(struct kvm *kvm)
868 {
869         unregister_pm_notifier(&kvm->pm_notifier);
870 }
871 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
872 static void kvm_init_pm_notifier(struct kvm *kvm)
873 {
874 }
875
876 static void kvm_destroy_pm_notifier(struct kvm *kvm)
877 {
878 }
879 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
880
881 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
882 {
883         if (!memslot->dirty_bitmap)
884                 return;
885
886         kvfree(memslot->dirty_bitmap);
887         memslot->dirty_bitmap = NULL;
888 }
889
890 /* This does not remove the slot from struct kvm_memslots data structures */
891 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
892 {
893         kvm_destroy_dirty_bitmap(slot);
894
895         kvm_arch_free_memslot(kvm, slot);
896
897         kfree(slot);
898 }
899
900 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
901 {
902         struct hlist_node *idnode;
903         struct kvm_memory_slot *memslot;
904         int bkt;
905
906         /*
907          * The same memslot objects live in both active and inactive sets,
908          * arbitrarily free using index '1' so the second invocation of this
909          * function isn't operating over a structure with dangling pointers
910          * (even though this function isn't actually touching them).
911          */
912         if (!slots->node_idx)
913                 return;
914
915         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
916                 kvm_free_memslot(kvm, memslot);
917 }
918
919 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
920 {
921         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
922         case KVM_STATS_TYPE_INSTANT:
923                 return 0444;
924         case KVM_STATS_TYPE_CUMULATIVE:
925         case KVM_STATS_TYPE_PEAK:
926         default:
927                 return 0644;
928         }
929 }
930
931
932 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
933 {
934         int i;
935         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
936                                       kvm_vcpu_stats_header.num_desc;
937
938         if (!kvm->debugfs_dentry)
939                 return;
940
941         debugfs_remove_recursive(kvm->debugfs_dentry);
942
943         if (kvm->debugfs_stat_data) {
944                 for (i = 0; i < kvm_debugfs_num_entries; i++)
945                         kfree(kvm->debugfs_stat_data[i]);
946                 kfree(kvm->debugfs_stat_data);
947         }
948 }
949
950 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
951 {
952         static DEFINE_MUTEX(kvm_debugfs_lock);
953         struct dentry *dent;
954         char dir_name[ITOA_MAX_LEN * 2];
955         struct kvm_stat_data *stat_data;
956         const struct _kvm_stats_desc *pdesc;
957         int i, ret;
958         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
959                                       kvm_vcpu_stats_header.num_desc;
960
961         if (!debugfs_initialized())
962                 return 0;
963
964         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
965         mutex_lock(&kvm_debugfs_lock);
966         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
967         if (dent) {
968                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
969                 dput(dent);
970                 mutex_unlock(&kvm_debugfs_lock);
971                 return 0;
972         }
973         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
974         mutex_unlock(&kvm_debugfs_lock);
975         if (IS_ERR(dent))
976                 return 0;
977
978         kvm->debugfs_dentry = dent;
979         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
980                                          sizeof(*kvm->debugfs_stat_data),
981                                          GFP_KERNEL_ACCOUNT);
982         if (!kvm->debugfs_stat_data)
983                 return -ENOMEM;
984
985         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
986                 pdesc = &kvm_vm_stats_desc[i];
987                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
988                 if (!stat_data)
989                         return -ENOMEM;
990
991                 stat_data->kvm = kvm;
992                 stat_data->desc = pdesc;
993                 stat_data->kind = KVM_STAT_VM;
994                 kvm->debugfs_stat_data[i] = stat_data;
995                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
996                                     kvm->debugfs_dentry, stat_data,
997                                     &stat_fops_per_vm);
998         }
999
1000         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1001                 pdesc = &kvm_vcpu_stats_desc[i];
1002                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1003                 if (!stat_data)
1004                         return -ENOMEM;
1005
1006                 stat_data->kvm = kvm;
1007                 stat_data->desc = pdesc;
1008                 stat_data->kind = KVM_STAT_VCPU;
1009                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1010                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1011                                     kvm->debugfs_dentry, stat_data,
1012                                     &stat_fops_per_vm);
1013         }
1014
1015         ret = kvm_arch_create_vm_debugfs(kvm);
1016         if (ret) {
1017                 kvm_destroy_vm_debugfs(kvm);
1018                 return i;
1019         }
1020
1021         return 0;
1022 }
1023
1024 /*
1025  * Called after the VM is otherwise initialized, but just before adding it to
1026  * the vm_list.
1027  */
1028 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1029 {
1030         return 0;
1031 }
1032
1033 /*
1034  * Called just after removing the VM from the vm_list, but before doing any
1035  * other destruction.
1036  */
1037 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1038 {
1039 }
1040
1041 /*
1042  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1043  * be setup already, so we can create arch-specific debugfs entries under it.
1044  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1045  * a per-arch destroy interface is not needed.
1046  */
1047 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1048 {
1049         return 0;
1050 }
1051
1052 static struct kvm *kvm_create_vm(unsigned long type)
1053 {
1054         struct kvm *kvm = kvm_arch_alloc_vm();
1055         struct kvm_memslots *slots;
1056         int r = -ENOMEM;
1057         int i, j;
1058
1059         if (!kvm)
1060                 return ERR_PTR(-ENOMEM);
1061
1062         KVM_MMU_LOCK_INIT(kvm);
1063         mmgrab(current->mm);
1064         kvm->mm = current->mm;
1065         kvm_eventfd_init(kvm);
1066         mutex_init(&kvm->lock);
1067         mutex_init(&kvm->irq_lock);
1068         mutex_init(&kvm->slots_lock);
1069         mutex_init(&kvm->slots_arch_lock);
1070         spin_lock_init(&kvm->mn_invalidate_lock);
1071         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1072         xa_init(&kvm->vcpu_array);
1073
1074         INIT_LIST_HEAD(&kvm->gpc_list);
1075         spin_lock_init(&kvm->gpc_lock);
1076
1077         INIT_LIST_HEAD(&kvm->devices);
1078
1079         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1080
1081         if (init_srcu_struct(&kvm->srcu))
1082                 goto out_err_no_srcu;
1083         if (init_srcu_struct(&kvm->irq_srcu))
1084                 goto out_err_no_irq_srcu;
1085
1086         refcount_set(&kvm->users_count, 1);
1087         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1088                 for (j = 0; j < 2; j++) {
1089                         slots = &kvm->__memslots[i][j];
1090
1091                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1092                         slots->hva_tree = RB_ROOT_CACHED;
1093                         slots->gfn_tree = RB_ROOT;
1094                         hash_init(slots->id_hash);
1095                         slots->node_idx = j;
1096
1097                         /* Generations must be different for each address space. */
1098                         slots->generation = i;
1099                 }
1100
1101                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1102         }
1103
1104         for (i = 0; i < KVM_NR_BUSES; i++) {
1105                 rcu_assign_pointer(kvm->buses[i],
1106                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1107                 if (!kvm->buses[i])
1108                         goto out_err_no_arch_destroy_vm;
1109         }
1110
1111         kvm->max_halt_poll_ns = halt_poll_ns;
1112
1113         r = kvm_arch_init_vm(kvm, type);
1114         if (r)
1115                 goto out_err_no_arch_destroy_vm;
1116
1117         r = hardware_enable_all();
1118         if (r)
1119                 goto out_err_no_disable;
1120
1121 #ifdef CONFIG_HAVE_KVM_IRQFD
1122         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1123 #endif
1124
1125         r = kvm_init_mmu_notifier(kvm);
1126         if (r)
1127                 goto out_err_no_mmu_notifier;
1128
1129         r = kvm_arch_post_init_vm(kvm);
1130         if (r)
1131                 goto out_err;
1132
1133         mutex_lock(&kvm_lock);
1134         list_add(&kvm->vm_list, &vm_list);
1135         mutex_unlock(&kvm_lock);
1136
1137         preempt_notifier_inc();
1138         kvm_init_pm_notifier(kvm);
1139
1140         return kvm;
1141
1142 out_err:
1143 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1144         if (kvm->mmu_notifier.ops)
1145                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1146 #endif
1147 out_err_no_mmu_notifier:
1148         hardware_disable_all();
1149 out_err_no_disable:
1150         kvm_arch_destroy_vm(kvm);
1151 out_err_no_arch_destroy_vm:
1152         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1153         for (i = 0; i < KVM_NR_BUSES; i++)
1154                 kfree(kvm_get_bus(kvm, i));
1155         cleanup_srcu_struct(&kvm->irq_srcu);
1156 out_err_no_irq_srcu:
1157         cleanup_srcu_struct(&kvm->srcu);
1158 out_err_no_srcu:
1159         kvm_arch_free_vm(kvm);
1160         mmdrop(current->mm);
1161         return ERR_PTR(r);
1162 }
1163
1164 static void kvm_destroy_devices(struct kvm *kvm)
1165 {
1166         struct kvm_device *dev, *tmp;
1167
1168         /*
1169          * We do not need to take the kvm->lock here, because nobody else
1170          * has a reference to the struct kvm at this point and therefore
1171          * cannot access the devices list anyhow.
1172          */
1173         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1174                 list_del(&dev->vm_node);
1175                 dev->ops->destroy(dev);
1176         }
1177 }
1178
1179 static void kvm_destroy_vm(struct kvm *kvm)
1180 {
1181         int i;
1182         struct mm_struct *mm = kvm->mm;
1183
1184         kvm_destroy_pm_notifier(kvm);
1185         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1186         kvm_destroy_vm_debugfs(kvm);
1187         kvm_arch_sync_events(kvm);
1188         mutex_lock(&kvm_lock);
1189         list_del(&kvm->vm_list);
1190         mutex_unlock(&kvm_lock);
1191         kvm_arch_pre_destroy_vm(kvm);
1192
1193         kvm_free_irq_routing(kvm);
1194         for (i = 0; i < KVM_NR_BUSES; i++) {
1195                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1196
1197                 if (bus)
1198                         kvm_io_bus_destroy(bus);
1199                 kvm->buses[i] = NULL;
1200         }
1201         kvm_coalesced_mmio_free(kvm);
1202 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1203         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1204         /*
1205          * At this point, pending calls to invalidate_range_start()
1206          * have completed but no more MMU notifiers will run, so
1207          * mn_active_invalidate_count may remain unbalanced.
1208          * No threads can be waiting in install_new_memslots as the
1209          * last reference on KVM has been dropped, but freeing
1210          * memslots would deadlock without this manual intervention.
1211          */
1212         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1213         kvm->mn_active_invalidate_count = 0;
1214 #else
1215         kvm_arch_flush_shadow_all(kvm);
1216 #endif
1217         kvm_arch_destroy_vm(kvm);
1218         kvm_destroy_devices(kvm);
1219         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1220                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1221                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1222         }
1223         cleanup_srcu_struct(&kvm->irq_srcu);
1224         cleanup_srcu_struct(&kvm->srcu);
1225         kvm_arch_free_vm(kvm);
1226         preempt_notifier_dec();
1227         hardware_disable_all();
1228         mmdrop(mm);
1229 }
1230
1231 void kvm_get_kvm(struct kvm *kvm)
1232 {
1233         refcount_inc(&kvm->users_count);
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1236
1237 /*
1238  * Make sure the vm is not during destruction, which is a safe version of
1239  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1240  */
1241 bool kvm_get_kvm_safe(struct kvm *kvm)
1242 {
1243         return refcount_inc_not_zero(&kvm->users_count);
1244 }
1245 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1246
1247 void kvm_put_kvm(struct kvm *kvm)
1248 {
1249         if (refcount_dec_and_test(&kvm->users_count))
1250                 kvm_destroy_vm(kvm);
1251 }
1252 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1253
1254 /*
1255  * Used to put a reference that was taken on behalf of an object associated
1256  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1257  * of the new file descriptor fails and the reference cannot be transferred to
1258  * its final owner.  In such cases, the caller is still actively using @kvm and
1259  * will fail miserably if the refcount unexpectedly hits zero.
1260  */
1261 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1262 {
1263         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1264 }
1265 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1266
1267 static int kvm_vm_release(struct inode *inode, struct file *filp)
1268 {
1269         struct kvm *kvm = filp->private_data;
1270
1271         kvm_irqfd_release(kvm);
1272
1273         kvm_put_kvm(kvm);
1274         return 0;
1275 }
1276
1277 /*
1278  * Allocation size is twice as large as the actual dirty bitmap size.
1279  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1280  */
1281 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1282 {
1283         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1284
1285         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1286         if (!memslot->dirty_bitmap)
1287                 return -ENOMEM;
1288
1289         return 0;
1290 }
1291
1292 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1293 {
1294         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1295         int node_idx_inactive = active->node_idx ^ 1;
1296
1297         return &kvm->__memslots[as_id][node_idx_inactive];
1298 }
1299
1300 /*
1301  * Helper to get the address space ID when one of memslot pointers may be NULL.
1302  * This also serves as a sanity that at least one of the pointers is non-NULL,
1303  * and that their address space IDs don't diverge.
1304  */
1305 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1306                                   struct kvm_memory_slot *b)
1307 {
1308         if (WARN_ON_ONCE(!a && !b))
1309                 return 0;
1310
1311         if (!a)
1312                 return b->as_id;
1313         if (!b)
1314                 return a->as_id;
1315
1316         WARN_ON_ONCE(a->as_id != b->as_id);
1317         return a->as_id;
1318 }
1319
1320 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1321                                 struct kvm_memory_slot *slot)
1322 {
1323         struct rb_root *gfn_tree = &slots->gfn_tree;
1324         struct rb_node **node, *parent;
1325         int idx = slots->node_idx;
1326
1327         parent = NULL;
1328         for (node = &gfn_tree->rb_node; *node; ) {
1329                 struct kvm_memory_slot *tmp;
1330
1331                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1332                 parent = *node;
1333                 if (slot->base_gfn < tmp->base_gfn)
1334                         node = &(*node)->rb_left;
1335                 else if (slot->base_gfn > tmp->base_gfn)
1336                         node = &(*node)->rb_right;
1337                 else
1338                         BUG();
1339         }
1340
1341         rb_link_node(&slot->gfn_node[idx], parent, node);
1342         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1343 }
1344
1345 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1346                                struct kvm_memory_slot *slot)
1347 {
1348         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1349 }
1350
1351 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1352                                  struct kvm_memory_slot *old,
1353                                  struct kvm_memory_slot *new)
1354 {
1355         int idx = slots->node_idx;
1356
1357         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1358
1359         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1360                         &slots->gfn_tree);
1361 }
1362
1363 /*
1364  * Replace @old with @new in the inactive memslots.
1365  *
1366  * With NULL @old this simply adds @new.
1367  * With NULL @new this simply removes @old.
1368  *
1369  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1370  * appropriately.
1371  */
1372 static void kvm_replace_memslot(struct kvm *kvm,
1373                                 struct kvm_memory_slot *old,
1374                                 struct kvm_memory_slot *new)
1375 {
1376         int as_id = kvm_memslots_get_as_id(old, new);
1377         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1378         int idx = slots->node_idx;
1379
1380         if (old) {
1381                 hash_del(&old->id_node[idx]);
1382                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1383
1384                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1385                         atomic_long_set(&slots->last_used_slot, (long)new);
1386
1387                 if (!new) {
1388                         kvm_erase_gfn_node(slots, old);
1389                         return;
1390                 }
1391         }
1392
1393         /*
1394          * Initialize @new's hva range.  Do this even when replacing an @old
1395          * slot, kvm_copy_memslot() deliberately does not touch node data.
1396          */
1397         new->hva_node[idx].start = new->userspace_addr;
1398         new->hva_node[idx].last = new->userspace_addr +
1399                                   (new->npages << PAGE_SHIFT) - 1;
1400
1401         /*
1402          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1403          * hva_node needs to be swapped with remove+insert even though hva can't
1404          * change when replacing an existing slot.
1405          */
1406         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1407         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1408
1409         /*
1410          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1411          * switch the node in the gfn tree instead of removing the old and
1412          * inserting the new as two separate operations. Replacement is a
1413          * single O(1) operation versus two O(log(n)) operations for
1414          * remove+insert.
1415          */
1416         if (old && old->base_gfn == new->base_gfn) {
1417                 kvm_replace_gfn_node(slots, old, new);
1418         } else {
1419                 if (old)
1420                         kvm_erase_gfn_node(slots, old);
1421                 kvm_insert_gfn_node(slots, new);
1422         }
1423 }
1424
1425 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1426 {
1427         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1428
1429 #ifdef __KVM_HAVE_READONLY_MEM
1430         valid_flags |= KVM_MEM_READONLY;
1431 #endif
1432
1433         if (mem->flags & ~valid_flags)
1434                 return -EINVAL;
1435
1436         return 0;
1437 }
1438
1439 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1440 {
1441         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1442
1443         /* Grab the generation from the activate memslots. */
1444         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1445
1446         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1447         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1448
1449         /*
1450          * Do not store the new memslots while there are invalidations in
1451          * progress, otherwise the locking in invalidate_range_start and
1452          * invalidate_range_end will be unbalanced.
1453          */
1454         spin_lock(&kvm->mn_invalidate_lock);
1455         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1456         while (kvm->mn_active_invalidate_count) {
1457                 set_current_state(TASK_UNINTERRUPTIBLE);
1458                 spin_unlock(&kvm->mn_invalidate_lock);
1459                 schedule();
1460                 spin_lock(&kvm->mn_invalidate_lock);
1461         }
1462         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1463         rcu_assign_pointer(kvm->memslots[as_id], slots);
1464         spin_unlock(&kvm->mn_invalidate_lock);
1465
1466         /*
1467          * Acquired in kvm_set_memslot. Must be released before synchronize
1468          * SRCU below in order to avoid deadlock with another thread
1469          * acquiring the slots_arch_lock in an srcu critical section.
1470          */
1471         mutex_unlock(&kvm->slots_arch_lock);
1472
1473         synchronize_srcu_expedited(&kvm->srcu);
1474
1475         /*
1476          * Increment the new memslot generation a second time, dropping the
1477          * update in-progress flag and incrementing the generation based on
1478          * the number of address spaces.  This provides a unique and easily
1479          * identifiable generation number while the memslots are in flux.
1480          */
1481         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1482
1483         /*
1484          * Generations must be unique even across address spaces.  We do not need
1485          * a global counter for that, instead the generation space is evenly split
1486          * across address spaces.  For example, with two address spaces, address
1487          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1488          * use generations 1, 3, 5, ...
1489          */
1490         gen += KVM_ADDRESS_SPACE_NUM;
1491
1492         kvm_arch_memslots_updated(kvm, gen);
1493
1494         slots->generation = gen;
1495 }
1496
1497 static int kvm_prepare_memory_region(struct kvm *kvm,
1498                                      const struct kvm_memory_slot *old,
1499                                      struct kvm_memory_slot *new,
1500                                      enum kvm_mr_change change)
1501 {
1502         int r;
1503
1504         /*
1505          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1506          * will be freed on "commit".  If logging is enabled in both old and
1507          * new, reuse the existing bitmap.  If logging is enabled only in the
1508          * new and KVM isn't using a ring buffer, allocate and initialize a
1509          * new bitmap.
1510          */
1511         if (change != KVM_MR_DELETE) {
1512                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1513                         new->dirty_bitmap = NULL;
1514                 else if (old && old->dirty_bitmap)
1515                         new->dirty_bitmap = old->dirty_bitmap;
1516                 else if (!kvm->dirty_ring_size) {
1517                         r = kvm_alloc_dirty_bitmap(new);
1518                         if (r)
1519                                 return r;
1520
1521                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1522                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1523                 }
1524         }
1525
1526         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1527
1528         /* Free the bitmap on failure if it was allocated above. */
1529         if (r && new && new->dirty_bitmap && old && !old->dirty_bitmap)
1530                 kvm_destroy_dirty_bitmap(new);
1531
1532         return r;
1533 }
1534
1535 static void kvm_commit_memory_region(struct kvm *kvm,
1536                                      struct kvm_memory_slot *old,
1537                                      const struct kvm_memory_slot *new,
1538                                      enum kvm_mr_change change)
1539 {
1540         /*
1541          * Update the total number of memslot pages before calling the arch
1542          * hook so that architectures can consume the result directly.
1543          */
1544         if (change == KVM_MR_DELETE)
1545                 kvm->nr_memslot_pages -= old->npages;
1546         else if (change == KVM_MR_CREATE)
1547                 kvm->nr_memslot_pages += new->npages;
1548
1549         kvm_arch_commit_memory_region(kvm, old, new, change);
1550
1551         switch (change) {
1552         case KVM_MR_CREATE:
1553                 /* Nothing more to do. */
1554                 break;
1555         case KVM_MR_DELETE:
1556                 /* Free the old memslot and all its metadata. */
1557                 kvm_free_memslot(kvm, old);
1558                 break;
1559         case KVM_MR_MOVE:
1560         case KVM_MR_FLAGS_ONLY:
1561                 /*
1562                  * Free the dirty bitmap as needed; the below check encompasses
1563                  * both the flags and whether a ring buffer is being used)
1564                  */
1565                 if (old->dirty_bitmap && !new->dirty_bitmap)
1566                         kvm_destroy_dirty_bitmap(old);
1567
1568                 /*
1569                  * The final quirk.  Free the detached, old slot, but only its
1570                  * memory, not any metadata.  Metadata, including arch specific
1571                  * data, may be reused by @new.
1572                  */
1573                 kfree(old);
1574                 break;
1575         default:
1576                 BUG();
1577         }
1578 }
1579
1580 /*
1581  * Activate @new, which must be installed in the inactive slots by the caller,
1582  * by swapping the active slots and then propagating @new to @old once @old is
1583  * unreachable and can be safely modified.
1584  *
1585  * With NULL @old this simply adds @new to @active (while swapping the sets).
1586  * With NULL @new this simply removes @old from @active and frees it
1587  * (while also swapping the sets).
1588  */
1589 static void kvm_activate_memslot(struct kvm *kvm,
1590                                  struct kvm_memory_slot *old,
1591                                  struct kvm_memory_slot *new)
1592 {
1593         int as_id = kvm_memslots_get_as_id(old, new);
1594
1595         kvm_swap_active_memslots(kvm, as_id);
1596
1597         /* Propagate the new memslot to the now inactive memslots. */
1598         kvm_replace_memslot(kvm, old, new);
1599 }
1600
1601 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1602                              const struct kvm_memory_slot *src)
1603 {
1604         dest->base_gfn = src->base_gfn;
1605         dest->npages = src->npages;
1606         dest->dirty_bitmap = src->dirty_bitmap;
1607         dest->arch = src->arch;
1608         dest->userspace_addr = src->userspace_addr;
1609         dest->flags = src->flags;
1610         dest->id = src->id;
1611         dest->as_id = src->as_id;
1612 }
1613
1614 static void kvm_invalidate_memslot(struct kvm *kvm,
1615                                    struct kvm_memory_slot *old,
1616                                    struct kvm_memory_slot *invalid_slot)
1617 {
1618         /*
1619          * Mark the current slot INVALID.  As with all memslot modifications,
1620          * this must be done on an unreachable slot to avoid modifying the
1621          * current slot in the active tree.
1622          */
1623         kvm_copy_memslot(invalid_slot, old);
1624         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1625         kvm_replace_memslot(kvm, old, invalid_slot);
1626
1627         /*
1628          * Activate the slot that is now marked INVALID, but don't propagate
1629          * the slot to the now inactive slots. The slot is either going to be
1630          * deleted or recreated as a new slot.
1631          */
1632         kvm_swap_active_memslots(kvm, old->as_id);
1633
1634         /*
1635          * From this point no new shadow pages pointing to a deleted, or moved,
1636          * memslot will be created.  Validation of sp->gfn happens in:
1637          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1638          *      - kvm_is_visible_gfn (mmu_check_root)
1639          */
1640         kvm_arch_flush_shadow_memslot(kvm, old);
1641
1642         /* Was released by kvm_swap_active_memslots, reacquire. */
1643         mutex_lock(&kvm->slots_arch_lock);
1644
1645         /*
1646          * Copy the arch-specific field of the newly-installed slot back to the
1647          * old slot as the arch data could have changed between releasing
1648          * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1649          * above.  Writers are required to retrieve memslots *after* acquiring
1650          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1651          */
1652         old->arch = invalid_slot->arch;
1653 }
1654
1655 static void kvm_create_memslot(struct kvm *kvm,
1656                                struct kvm_memory_slot *new)
1657 {
1658         /* Add the new memslot to the inactive set and activate. */
1659         kvm_replace_memslot(kvm, NULL, new);
1660         kvm_activate_memslot(kvm, NULL, new);
1661 }
1662
1663 static void kvm_delete_memslot(struct kvm *kvm,
1664                                struct kvm_memory_slot *old,
1665                                struct kvm_memory_slot *invalid_slot)
1666 {
1667         /*
1668          * Remove the old memslot (in the inactive memslots) by passing NULL as
1669          * the "new" slot, and for the invalid version in the active slots.
1670          */
1671         kvm_replace_memslot(kvm, old, NULL);
1672         kvm_activate_memslot(kvm, invalid_slot, NULL);
1673 }
1674
1675 static void kvm_move_memslot(struct kvm *kvm,
1676                              struct kvm_memory_slot *old,
1677                              struct kvm_memory_slot *new,
1678                              struct kvm_memory_slot *invalid_slot)
1679 {
1680         /*
1681          * Replace the old memslot in the inactive slots, and then swap slots
1682          * and replace the current INVALID with the new as well.
1683          */
1684         kvm_replace_memslot(kvm, old, new);
1685         kvm_activate_memslot(kvm, invalid_slot, new);
1686 }
1687
1688 static void kvm_update_flags_memslot(struct kvm *kvm,
1689                                      struct kvm_memory_slot *old,
1690                                      struct kvm_memory_slot *new)
1691 {
1692         /*
1693          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1694          * an intermediate step. Instead, the old memslot is simply replaced
1695          * with a new, updated copy in both memslot sets.
1696          */
1697         kvm_replace_memslot(kvm, old, new);
1698         kvm_activate_memslot(kvm, old, new);
1699 }
1700
1701 static int kvm_set_memslot(struct kvm *kvm,
1702                            struct kvm_memory_slot *old,
1703                            struct kvm_memory_slot *new,
1704                            enum kvm_mr_change change)
1705 {
1706         struct kvm_memory_slot *invalid_slot;
1707         int r;
1708
1709         /*
1710          * Released in kvm_swap_active_memslots.
1711          *
1712          * Must be held from before the current memslots are copied until
1713          * after the new memslots are installed with rcu_assign_pointer,
1714          * then released before the synchronize srcu in kvm_swap_active_memslots.
1715          *
1716          * When modifying memslots outside of the slots_lock, must be held
1717          * before reading the pointer to the current memslots until after all
1718          * changes to those memslots are complete.
1719          *
1720          * These rules ensure that installing new memslots does not lose
1721          * changes made to the previous memslots.
1722          */
1723         mutex_lock(&kvm->slots_arch_lock);
1724
1725         /*
1726          * Invalidate the old slot if it's being deleted or moved.  This is
1727          * done prior to actually deleting/moving the memslot to allow vCPUs to
1728          * continue running by ensuring there are no mappings or shadow pages
1729          * for the memslot when it is deleted/moved.  Without pre-invalidation
1730          * (and without a lock), a window would exist between effecting the
1731          * delete/move and committing the changes in arch code where KVM or a
1732          * guest could access a non-existent memslot.
1733          *
1734          * Modifications are done on a temporary, unreachable slot.  The old
1735          * slot needs to be preserved in case a later step fails and the
1736          * invalidation needs to be reverted.
1737          */
1738         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1739                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1740                 if (!invalid_slot) {
1741                         mutex_unlock(&kvm->slots_arch_lock);
1742                         return -ENOMEM;
1743                 }
1744                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1745         }
1746
1747         r = kvm_prepare_memory_region(kvm, old, new, change);
1748         if (r) {
1749                 /*
1750                  * For DELETE/MOVE, revert the above INVALID change.  No
1751                  * modifications required since the original slot was preserved
1752                  * in the inactive slots.  Changing the active memslots also
1753                  * release slots_arch_lock.
1754                  */
1755                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1756                         kvm_activate_memslot(kvm, invalid_slot, old);
1757                         kfree(invalid_slot);
1758                 } else {
1759                         mutex_unlock(&kvm->slots_arch_lock);
1760                 }
1761                 return r;
1762         }
1763
1764         /*
1765          * For DELETE and MOVE, the working slot is now active as the INVALID
1766          * version of the old slot.  MOVE is particularly special as it reuses
1767          * the old slot and returns a copy of the old slot (in working_slot).
1768          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1769          * old slot is detached but otherwise preserved.
1770          */
1771         if (change == KVM_MR_CREATE)
1772                 kvm_create_memslot(kvm, new);
1773         else if (change == KVM_MR_DELETE)
1774                 kvm_delete_memslot(kvm, old, invalid_slot);
1775         else if (change == KVM_MR_MOVE)
1776                 kvm_move_memslot(kvm, old, new, invalid_slot);
1777         else if (change == KVM_MR_FLAGS_ONLY)
1778                 kvm_update_flags_memslot(kvm, old, new);
1779         else
1780                 BUG();
1781
1782         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1783         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1784                 kfree(invalid_slot);
1785
1786         /*
1787          * No need to refresh new->arch, changes after dropping slots_arch_lock
1788          * will directly hit the final, active memsot.  Architectures are
1789          * responsible for knowing that new->arch may be stale.
1790          */
1791         kvm_commit_memory_region(kvm, old, new, change);
1792
1793         return 0;
1794 }
1795
1796 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1797                                       gfn_t start, gfn_t end)
1798 {
1799         struct kvm_memslot_iter iter;
1800
1801         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1802                 if (iter.slot->id != id)
1803                         return true;
1804         }
1805
1806         return false;
1807 }
1808
1809 /*
1810  * Allocate some memory and give it an address in the guest physical address
1811  * space.
1812  *
1813  * Discontiguous memory is allowed, mostly for framebuffers.
1814  *
1815  * Must be called holding kvm->slots_lock for write.
1816  */
1817 int __kvm_set_memory_region(struct kvm *kvm,
1818                             const struct kvm_userspace_memory_region *mem)
1819 {
1820         struct kvm_memory_slot *old, *new;
1821         struct kvm_memslots *slots;
1822         enum kvm_mr_change change;
1823         unsigned long npages;
1824         gfn_t base_gfn;
1825         int as_id, id;
1826         int r;
1827
1828         r = check_memory_region_flags(mem);
1829         if (r)
1830                 return r;
1831
1832         as_id = mem->slot >> 16;
1833         id = (u16)mem->slot;
1834
1835         /* General sanity checks */
1836         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1837             (mem->memory_size != (unsigned long)mem->memory_size))
1838                 return -EINVAL;
1839         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1840                 return -EINVAL;
1841         /* We can read the guest memory with __xxx_user() later on. */
1842         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1843             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1844              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1845                         mem->memory_size))
1846                 return -EINVAL;
1847         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1848                 return -EINVAL;
1849         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1850                 return -EINVAL;
1851         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1852                 return -EINVAL;
1853
1854         slots = __kvm_memslots(kvm, as_id);
1855
1856         /*
1857          * Note, the old memslot (and the pointer itself!) may be invalidated
1858          * and/or destroyed by kvm_set_memslot().
1859          */
1860         old = id_to_memslot(slots, id);
1861
1862         if (!mem->memory_size) {
1863                 if (!old || !old->npages)
1864                         return -EINVAL;
1865
1866                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1867                         return -EIO;
1868
1869                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1870         }
1871
1872         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1873         npages = (mem->memory_size >> PAGE_SHIFT);
1874
1875         if (!old || !old->npages) {
1876                 change = KVM_MR_CREATE;
1877
1878                 /*
1879                  * To simplify KVM internals, the total number of pages across
1880                  * all memslots must fit in an unsigned long.
1881                  */
1882                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1883                         return -EINVAL;
1884         } else { /* Modify an existing slot. */
1885                 if ((mem->userspace_addr != old->userspace_addr) ||
1886                     (npages != old->npages) ||
1887                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1888                         return -EINVAL;
1889
1890                 if (base_gfn != old->base_gfn)
1891                         change = KVM_MR_MOVE;
1892                 else if (mem->flags != old->flags)
1893                         change = KVM_MR_FLAGS_ONLY;
1894                 else /* Nothing to change. */
1895                         return 0;
1896         }
1897
1898         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
1899             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
1900                 return -EEXIST;
1901
1902         /* Allocate a slot that will persist in the memslot. */
1903         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
1904         if (!new)
1905                 return -ENOMEM;
1906
1907         new->as_id = as_id;
1908         new->id = id;
1909         new->base_gfn = base_gfn;
1910         new->npages = npages;
1911         new->flags = mem->flags;
1912         new->userspace_addr = mem->userspace_addr;
1913
1914         r = kvm_set_memslot(kvm, old, new, change);
1915         if (r)
1916                 kfree(new);
1917         return r;
1918 }
1919 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1920
1921 int kvm_set_memory_region(struct kvm *kvm,
1922                           const struct kvm_userspace_memory_region *mem)
1923 {
1924         int r;
1925
1926         mutex_lock(&kvm->slots_lock);
1927         r = __kvm_set_memory_region(kvm, mem);
1928         mutex_unlock(&kvm->slots_lock);
1929         return r;
1930 }
1931 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1932
1933 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1934                                           struct kvm_userspace_memory_region *mem)
1935 {
1936         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1937                 return -EINVAL;
1938
1939         return kvm_set_memory_region(kvm, mem);
1940 }
1941
1942 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1943 /**
1944  * kvm_get_dirty_log - get a snapshot of dirty pages
1945  * @kvm:        pointer to kvm instance
1946  * @log:        slot id and address to which we copy the log
1947  * @is_dirty:   set to '1' if any dirty pages were found
1948  * @memslot:    set to the associated memslot, always valid on success
1949  */
1950 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1951                       int *is_dirty, struct kvm_memory_slot **memslot)
1952 {
1953         struct kvm_memslots *slots;
1954         int i, as_id, id;
1955         unsigned long n;
1956         unsigned long any = 0;
1957
1958         /* Dirty ring tracking is exclusive to dirty log tracking */
1959         if (kvm->dirty_ring_size)
1960                 return -ENXIO;
1961
1962         *memslot = NULL;
1963         *is_dirty = 0;
1964
1965         as_id = log->slot >> 16;
1966         id = (u16)log->slot;
1967         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1968                 return -EINVAL;
1969
1970         slots = __kvm_memslots(kvm, as_id);
1971         *memslot = id_to_memslot(slots, id);
1972         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1973                 return -ENOENT;
1974
1975         kvm_arch_sync_dirty_log(kvm, *memslot);
1976
1977         n = kvm_dirty_bitmap_bytes(*memslot);
1978
1979         for (i = 0; !any && i < n/sizeof(long); ++i)
1980                 any = (*memslot)->dirty_bitmap[i];
1981
1982         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1983                 return -EFAULT;
1984
1985         if (any)
1986                 *is_dirty = 1;
1987         return 0;
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1990
1991 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1992 /**
1993  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1994  *      and reenable dirty page tracking for the corresponding pages.
1995  * @kvm:        pointer to kvm instance
1996  * @log:        slot id and address to which we copy the log
1997  *
1998  * We need to keep it in mind that VCPU threads can write to the bitmap
1999  * concurrently. So, to avoid losing track of dirty pages we keep the
2000  * following order:
2001  *
2002  *    1. Take a snapshot of the bit and clear it if needed.
2003  *    2. Write protect the corresponding page.
2004  *    3. Copy the snapshot to the userspace.
2005  *    4. Upon return caller flushes TLB's if needed.
2006  *
2007  * Between 2 and 4, the guest may write to the page using the remaining TLB
2008  * entry.  This is not a problem because the page is reported dirty using
2009  * the snapshot taken before and step 4 ensures that writes done after
2010  * exiting to userspace will be logged for the next call.
2011  *
2012  */
2013 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2014 {
2015         struct kvm_memslots *slots;
2016         struct kvm_memory_slot *memslot;
2017         int i, as_id, id;
2018         unsigned long n;
2019         unsigned long *dirty_bitmap;
2020         unsigned long *dirty_bitmap_buffer;
2021         bool flush;
2022
2023         /* Dirty ring tracking is exclusive to dirty log tracking */
2024         if (kvm->dirty_ring_size)
2025                 return -ENXIO;
2026
2027         as_id = log->slot >> 16;
2028         id = (u16)log->slot;
2029         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2030                 return -EINVAL;
2031
2032         slots = __kvm_memslots(kvm, as_id);
2033         memslot = id_to_memslot(slots, id);
2034         if (!memslot || !memslot->dirty_bitmap)
2035                 return -ENOENT;
2036
2037         dirty_bitmap = memslot->dirty_bitmap;
2038
2039         kvm_arch_sync_dirty_log(kvm, memslot);
2040
2041         n = kvm_dirty_bitmap_bytes(memslot);
2042         flush = false;
2043         if (kvm->manual_dirty_log_protect) {
2044                 /*
2045                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2046                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2047                  * is some code duplication between this function and
2048                  * kvm_get_dirty_log, but hopefully all architecture
2049                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2050                  * can be eliminated.
2051                  */
2052                 dirty_bitmap_buffer = dirty_bitmap;
2053         } else {
2054                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2055                 memset(dirty_bitmap_buffer, 0, n);
2056
2057                 KVM_MMU_LOCK(kvm);
2058                 for (i = 0; i < n / sizeof(long); i++) {
2059                         unsigned long mask;
2060                         gfn_t offset;
2061
2062                         if (!dirty_bitmap[i])
2063                                 continue;
2064
2065                         flush = true;
2066                         mask = xchg(&dirty_bitmap[i], 0);
2067                         dirty_bitmap_buffer[i] = mask;
2068
2069                         offset = i * BITS_PER_LONG;
2070                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2071                                                                 offset, mask);
2072                 }
2073                 KVM_MMU_UNLOCK(kvm);
2074         }
2075
2076         if (flush)
2077                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2078
2079         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2080                 return -EFAULT;
2081         return 0;
2082 }
2083
2084
2085 /**
2086  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2087  * @kvm: kvm instance
2088  * @log: slot id and address to which we copy the log
2089  *
2090  * Steps 1-4 below provide general overview of dirty page logging. See
2091  * kvm_get_dirty_log_protect() function description for additional details.
2092  *
2093  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2094  * always flush the TLB (step 4) even if previous step failed  and the dirty
2095  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2096  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2097  * writes will be marked dirty for next log read.
2098  *
2099  *   1. Take a snapshot of the bit and clear it if needed.
2100  *   2. Write protect the corresponding page.
2101  *   3. Copy the snapshot to the userspace.
2102  *   4. Flush TLB's if needed.
2103  */
2104 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2105                                       struct kvm_dirty_log *log)
2106 {
2107         int r;
2108
2109         mutex_lock(&kvm->slots_lock);
2110
2111         r = kvm_get_dirty_log_protect(kvm, log);
2112
2113         mutex_unlock(&kvm->slots_lock);
2114         return r;
2115 }
2116
2117 /**
2118  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2119  *      and reenable dirty page tracking for the corresponding pages.
2120  * @kvm:        pointer to kvm instance
2121  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2122  */
2123 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2124                                        struct kvm_clear_dirty_log *log)
2125 {
2126         struct kvm_memslots *slots;
2127         struct kvm_memory_slot *memslot;
2128         int as_id, id;
2129         gfn_t offset;
2130         unsigned long i, n;
2131         unsigned long *dirty_bitmap;
2132         unsigned long *dirty_bitmap_buffer;
2133         bool flush;
2134
2135         /* Dirty ring tracking is exclusive to dirty log tracking */
2136         if (kvm->dirty_ring_size)
2137                 return -ENXIO;
2138
2139         as_id = log->slot >> 16;
2140         id = (u16)log->slot;
2141         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2142                 return -EINVAL;
2143
2144         if (log->first_page & 63)
2145                 return -EINVAL;
2146
2147         slots = __kvm_memslots(kvm, as_id);
2148         memslot = id_to_memslot(slots, id);
2149         if (!memslot || !memslot->dirty_bitmap)
2150                 return -ENOENT;
2151
2152         dirty_bitmap = memslot->dirty_bitmap;
2153
2154         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2155
2156         if (log->first_page > memslot->npages ||
2157             log->num_pages > memslot->npages - log->first_page ||
2158             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2159             return -EINVAL;
2160
2161         kvm_arch_sync_dirty_log(kvm, memslot);
2162
2163         flush = false;
2164         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2165         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2166                 return -EFAULT;
2167
2168         KVM_MMU_LOCK(kvm);
2169         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2170                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2171              i++, offset += BITS_PER_LONG) {
2172                 unsigned long mask = *dirty_bitmap_buffer++;
2173                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2174                 if (!mask)
2175                         continue;
2176
2177                 mask &= atomic_long_fetch_andnot(mask, p);
2178
2179                 /*
2180                  * mask contains the bits that really have been cleared.  This
2181                  * never includes any bits beyond the length of the memslot (if
2182                  * the length is not aligned to 64 pages), therefore it is not
2183                  * a problem if userspace sets them in log->dirty_bitmap.
2184                 */
2185                 if (mask) {
2186                         flush = true;
2187                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2188                                                                 offset, mask);
2189                 }
2190         }
2191         KVM_MMU_UNLOCK(kvm);
2192
2193         if (flush)
2194                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2195
2196         return 0;
2197 }
2198
2199 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2200                                         struct kvm_clear_dirty_log *log)
2201 {
2202         int r;
2203
2204         mutex_lock(&kvm->slots_lock);
2205
2206         r = kvm_clear_dirty_log_protect(kvm, log);
2207
2208         mutex_unlock(&kvm->slots_lock);
2209         return r;
2210 }
2211 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2212
2213 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2214 {
2215         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2216 }
2217 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2218
2219 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2220 {
2221         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2222         u64 gen = slots->generation;
2223         struct kvm_memory_slot *slot;
2224
2225         /*
2226          * This also protects against using a memslot from a different address space,
2227          * since different address spaces have different generation numbers.
2228          */
2229         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2230                 vcpu->last_used_slot = NULL;
2231                 vcpu->last_used_slot_gen = gen;
2232         }
2233
2234         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2235         if (slot)
2236                 return slot;
2237
2238         /*
2239          * Fall back to searching all memslots. We purposely use
2240          * search_memslots() instead of __gfn_to_memslot() to avoid
2241          * thrashing the VM-wide last_used_slot in kvm_memslots.
2242          */
2243         slot = search_memslots(slots, gfn, false);
2244         if (slot) {
2245                 vcpu->last_used_slot = slot;
2246                 return slot;
2247         }
2248
2249         return NULL;
2250 }
2251 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2252
2253 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2254 {
2255         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2256
2257         return kvm_is_visible_memslot(memslot);
2258 }
2259 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2260
2261 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2262 {
2263         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2264
2265         return kvm_is_visible_memslot(memslot);
2266 }
2267 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2268
2269 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2270 {
2271         struct vm_area_struct *vma;
2272         unsigned long addr, size;
2273
2274         size = PAGE_SIZE;
2275
2276         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2277         if (kvm_is_error_hva(addr))
2278                 return PAGE_SIZE;
2279
2280         mmap_read_lock(current->mm);
2281         vma = find_vma(current->mm, addr);
2282         if (!vma)
2283                 goto out;
2284
2285         size = vma_kernel_pagesize(vma);
2286
2287 out:
2288         mmap_read_unlock(current->mm);
2289
2290         return size;
2291 }
2292
2293 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2294 {
2295         return slot->flags & KVM_MEM_READONLY;
2296 }
2297
2298 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2299                                        gfn_t *nr_pages, bool write)
2300 {
2301         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2302                 return KVM_HVA_ERR_BAD;
2303
2304         if (memslot_is_readonly(slot) && write)
2305                 return KVM_HVA_ERR_RO_BAD;
2306
2307         if (nr_pages)
2308                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2309
2310         return __gfn_to_hva_memslot(slot, gfn);
2311 }
2312
2313 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2314                                      gfn_t *nr_pages)
2315 {
2316         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2317 }
2318
2319 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2320                                         gfn_t gfn)
2321 {
2322         return gfn_to_hva_many(slot, gfn, NULL);
2323 }
2324 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2325
2326 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2327 {
2328         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2329 }
2330 EXPORT_SYMBOL_GPL(gfn_to_hva);
2331
2332 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2333 {
2334         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2335 }
2336 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2337
2338 /*
2339  * Return the hva of a @gfn and the R/W attribute if possible.
2340  *
2341  * @slot: the kvm_memory_slot which contains @gfn
2342  * @gfn: the gfn to be translated
2343  * @writable: used to return the read/write attribute of the @slot if the hva
2344  * is valid and @writable is not NULL
2345  */
2346 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2347                                       gfn_t gfn, bool *writable)
2348 {
2349         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2350
2351         if (!kvm_is_error_hva(hva) && writable)
2352                 *writable = !memslot_is_readonly(slot);
2353
2354         return hva;
2355 }
2356
2357 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2358 {
2359         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2360
2361         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2362 }
2363
2364 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2365 {
2366         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2367
2368         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2369 }
2370
2371 static inline int check_user_page_hwpoison(unsigned long addr)
2372 {
2373         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2374
2375         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2376         return rc == -EHWPOISON;
2377 }
2378
2379 /*
2380  * The fast path to get the writable pfn which will be stored in @pfn,
2381  * true indicates success, otherwise false is returned.  It's also the
2382  * only part that runs if we can in atomic context.
2383  */
2384 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2385                             bool *writable, kvm_pfn_t *pfn)
2386 {
2387         struct page *page[1];
2388
2389         /*
2390          * Fast pin a writable pfn only if it is a write fault request
2391          * or the caller allows to map a writable pfn for a read fault
2392          * request.
2393          */
2394         if (!(write_fault || writable))
2395                 return false;
2396
2397         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2398                 *pfn = page_to_pfn(page[0]);
2399
2400                 if (writable)
2401                         *writable = true;
2402                 return true;
2403         }
2404
2405         return false;
2406 }
2407
2408 /*
2409  * The slow path to get the pfn of the specified host virtual address,
2410  * 1 indicates success, -errno is returned if error is detected.
2411  */
2412 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2413                            bool *writable, kvm_pfn_t *pfn)
2414 {
2415         unsigned int flags = FOLL_HWPOISON;
2416         struct page *page;
2417         int npages = 0;
2418
2419         might_sleep();
2420
2421         if (writable)
2422                 *writable = write_fault;
2423
2424         if (write_fault)
2425                 flags |= FOLL_WRITE;
2426         if (async)
2427                 flags |= FOLL_NOWAIT;
2428
2429         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2430         if (npages != 1)
2431                 return npages;
2432
2433         /* map read fault as writable if possible */
2434         if (unlikely(!write_fault) && writable) {
2435                 struct page *wpage;
2436
2437                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2438                         *writable = true;
2439                         put_page(page);
2440                         page = wpage;
2441                 }
2442         }
2443         *pfn = page_to_pfn(page);
2444         return npages;
2445 }
2446
2447 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2448 {
2449         if (unlikely(!(vma->vm_flags & VM_READ)))
2450                 return false;
2451
2452         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2453                 return false;
2454
2455         return true;
2456 }
2457
2458 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2459 {
2460         if (kvm_is_reserved_pfn(pfn))
2461                 return 1;
2462         return get_page_unless_zero(pfn_to_page(pfn));
2463 }
2464
2465 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2466                                unsigned long addr, bool *async,
2467                                bool write_fault, bool *writable,
2468                                kvm_pfn_t *p_pfn)
2469 {
2470         kvm_pfn_t pfn;
2471         pte_t *ptep;
2472         spinlock_t *ptl;
2473         int r;
2474
2475         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2476         if (r) {
2477                 /*
2478                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2479                  * not call the fault handler, so do it here.
2480                  */
2481                 bool unlocked = false;
2482                 r = fixup_user_fault(current->mm, addr,
2483                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2484                                      &unlocked);
2485                 if (unlocked)
2486                         return -EAGAIN;
2487                 if (r)
2488                         return r;
2489
2490                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2491                 if (r)
2492                         return r;
2493         }
2494
2495         if (write_fault && !pte_write(*ptep)) {
2496                 pfn = KVM_PFN_ERR_RO_FAULT;
2497                 goto out;
2498         }
2499
2500         if (writable)
2501                 *writable = pte_write(*ptep);
2502         pfn = pte_pfn(*ptep);
2503
2504         /*
2505          * Get a reference here because callers of *hva_to_pfn* and
2506          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2507          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2508          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2509          * simply do nothing for reserved pfns.
2510          *
2511          * Whoever called remap_pfn_range is also going to call e.g.
2512          * unmap_mapping_range before the underlying pages are freed,
2513          * causing a call to our MMU notifier.
2514          *
2515          * Certain IO or PFNMAP mappings can be backed with valid
2516          * struct pages, but be allocated without refcounting e.g.,
2517          * tail pages of non-compound higher order allocations, which
2518          * would then underflow the refcount when the caller does the
2519          * required put_page. Don't allow those pages here.
2520          */ 
2521         if (!kvm_try_get_pfn(pfn))
2522                 r = -EFAULT;
2523
2524 out:
2525         pte_unmap_unlock(ptep, ptl);
2526         *p_pfn = pfn;
2527
2528         return r;
2529 }
2530
2531 /*
2532  * Pin guest page in memory and return its pfn.
2533  * @addr: host virtual address which maps memory to the guest
2534  * @atomic: whether this function can sleep
2535  * @async: whether this function need to wait IO complete if the
2536  *         host page is not in the memory
2537  * @write_fault: whether we should get a writable host page
2538  * @writable: whether it allows to map a writable host page for !@write_fault
2539  *
2540  * The function will map a writable host page for these two cases:
2541  * 1): @write_fault = true
2542  * 2): @write_fault = false && @writable, @writable will tell the caller
2543  *     whether the mapping is writable.
2544  */
2545 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2546                      bool write_fault, bool *writable)
2547 {
2548         struct vm_area_struct *vma;
2549         kvm_pfn_t pfn = 0;
2550         int npages, r;
2551
2552         /* we can do it either atomically or asynchronously, not both */
2553         BUG_ON(atomic && async);
2554
2555         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2556                 return pfn;
2557
2558         if (atomic)
2559                 return KVM_PFN_ERR_FAULT;
2560
2561         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2562         if (npages == 1)
2563                 return pfn;
2564
2565         mmap_read_lock(current->mm);
2566         if (npages == -EHWPOISON ||
2567               (!async && check_user_page_hwpoison(addr))) {
2568                 pfn = KVM_PFN_ERR_HWPOISON;
2569                 goto exit;
2570         }
2571
2572 retry:
2573         vma = vma_lookup(current->mm, addr);
2574
2575         if (vma == NULL)
2576                 pfn = KVM_PFN_ERR_FAULT;
2577         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2578                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2579                 if (r == -EAGAIN)
2580                         goto retry;
2581                 if (r < 0)
2582                         pfn = KVM_PFN_ERR_FAULT;
2583         } else {
2584                 if (async && vma_is_valid(vma, write_fault))
2585                         *async = true;
2586                 pfn = KVM_PFN_ERR_FAULT;
2587         }
2588 exit:
2589         mmap_read_unlock(current->mm);
2590         return pfn;
2591 }
2592
2593 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2594                                bool atomic, bool *async, bool write_fault,
2595                                bool *writable, hva_t *hva)
2596 {
2597         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2598
2599         if (hva)
2600                 *hva = addr;
2601
2602         if (addr == KVM_HVA_ERR_RO_BAD) {
2603                 if (writable)
2604                         *writable = false;
2605                 return KVM_PFN_ERR_RO_FAULT;
2606         }
2607
2608         if (kvm_is_error_hva(addr)) {
2609                 if (writable)
2610                         *writable = false;
2611                 return KVM_PFN_NOSLOT;
2612         }
2613
2614         /* Do not map writable pfn in the readonly memslot. */
2615         if (writable && memslot_is_readonly(slot)) {
2616                 *writable = false;
2617                 writable = NULL;
2618         }
2619
2620         return hva_to_pfn(addr, atomic, async, write_fault,
2621                           writable);
2622 }
2623 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2624
2625 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2626                       bool *writable)
2627 {
2628         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2629                                     write_fault, writable, NULL);
2630 }
2631 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2632
2633 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2634 {
2635         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2636 }
2637 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2638
2639 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2640 {
2641         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2642 }
2643 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2644
2645 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2646 {
2647         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2648 }
2649 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2650
2651 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2652 {
2653         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2654 }
2655 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2656
2657 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2658 {
2659         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2660 }
2661 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2662
2663 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2664                             struct page **pages, int nr_pages)
2665 {
2666         unsigned long addr;
2667         gfn_t entry = 0;
2668
2669         addr = gfn_to_hva_many(slot, gfn, &entry);
2670         if (kvm_is_error_hva(addr))
2671                 return -1;
2672
2673         if (entry < nr_pages)
2674                 return 0;
2675
2676         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2677 }
2678 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2679
2680 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2681 {
2682         if (is_error_noslot_pfn(pfn))
2683                 return KVM_ERR_PTR_BAD_PAGE;
2684
2685         if (kvm_is_reserved_pfn(pfn)) {
2686                 WARN_ON(1);
2687                 return KVM_ERR_PTR_BAD_PAGE;
2688         }
2689
2690         return pfn_to_page(pfn);
2691 }
2692
2693 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2694 {
2695         kvm_pfn_t pfn;
2696
2697         pfn = gfn_to_pfn(kvm, gfn);
2698
2699         return kvm_pfn_to_page(pfn);
2700 }
2701 EXPORT_SYMBOL_GPL(gfn_to_page);
2702
2703 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2704 {
2705         if (pfn == 0)
2706                 return;
2707
2708         if (dirty)
2709                 kvm_release_pfn_dirty(pfn);
2710         else
2711                 kvm_release_pfn_clean(pfn);
2712 }
2713
2714 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2715 {
2716         kvm_pfn_t pfn;
2717         void *hva = NULL;
2718         struct page *page = KVM_UNMAPPED_PAGE;
2719
2720         if (!map)
2721                 return -EINVAL;
2722
2723         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2724         if (is_error_noslot_pfn(pfn))
2725                 return -EINVAL;
2726
2727         if (pfn_valid(pfn)) {
2728                 page = pfn_to_page(pfn);
2729                 hva = kmap(page);
2730 #ifdef CONFIG_HAS_IOMEM
2731         } else {
2732                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2733 #endif
2734         }
2735
2736         if (!hva)
2737                 return -EFAULT;
2738
2739         map->page = page;
2740         map->hva = hva;
2741         map->pfn = pfn;
2742         map->gfn = gfn;
2743
2744         return 0;
2745 }
2746 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2747
2748 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2749 {
2750         if (!map)
2751                 return;
2752
2753         if (!map->hva)
2754                 return;
2755
2756         if (map->page != KVM_UNMAPPED_PAGE)
2757                 kunmap(map->page);
2758 #ifdef CONFIG_HAS_IOMEM
2759         else
2760                 memunmap(map->hva);
2761 #endif
2762
2763         if (dirty)
2764                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2765
2766         kvm_release_pfn(map->pfn, dirty);
2767
2768         map->hva = NULL;
2769         map->page = NULL;
2770 }
2771 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2772
2773 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2774 {
2775         kvm_pfn_t pfn;
2776
2777         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2778
2779         return kvm_pfn_to_page(pfn);
2780 }
2781 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2782
2783 void kvm_release_page_clean(struct page *page)
2784 {
2785         WARN_ON(is_error_page(page));
2786
2787         kvm_release_pfn_clean(page_to_pfn(page));
2788 }
2789 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2790
2791 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2792 {
2793         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2794                 put_page(pfn_to_page(pfn));
2795 }
2796 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2797
2798 void kvm_release_page_dirty(struct page *page)
2799 {
2800         WARN_ON(is_error_page(page));
2801
2802         kvm_release_pfn_dirty(page_to_pfn(page));
2803 }
2804 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2805
2806 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2807 {
2808         kvm_set_pfn_dirty(pfn);
2809         kvm_release_pfn_clean(pfn);
2810 }
2811 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2812
2813 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2814 {
2815         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2816                 SetPageDirty(pfn_to_page(pfn));
2817 }
2818 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2819
2820 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2821 {
2822         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2823                 mark_page_accessed(pfn_to_page(pfn));
2824 }
2825 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2826
2827 static int next_segment(unsigned long len, int offset)
2828 {
2829         if (len > PAGE_SIZE - offset)
2830                 return PAGE_SIZE - offset;
2831         else
2832                 return len;
2833 }
2834
2835 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2836                                  void *data, int offset, int len)
2837 {
2838         int r;
2839         unsigned long addr;
2840
2841         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2842         if (kvm_is_error_hva(addr))
2843                 return -EFAULT;
2844         r = __copy_from_user(data, (void __user *)addr + offset, len);
2845         if (r)
2846                 return -EFAULT;
2847         return 0;
2848 }
2849
2850 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2851                         int len)
2852 {
2853         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2854
2855         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2856 }
2857 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2858
2859 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2860                              int offset, int len)
2861 {
2862         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2863
2864         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2865 }
2866 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2867
2868 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2869 {
2870         gfn_t gfn = gpa >> PAGE_SHIFT;
2871         int seg;
2872         int offset = offset_in_page(gpa);
2873         int ret;
2874
2875         while ((seg = next_segment(len, offset)) != 0) {
2876                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2877                 if (ret < 0)
2878                         return ret;
2879                 offset = 0;
2880                 len -= seg;
2881                 data += seg;
2882                 ++gfn;
2883         }
2884         return 0;
2885 }
2886 EXPORT_SYMBOL_GPL(kvm_read_guest);
2887
2888 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2889 {
2890         gfn_t gfn = gpa >> PAGE_SHIFT;
2891         int seg;
2892         int offset = offset_in_page(gpa);
2893         int ret;
2894
2895         while ((seg = next_segment(len, offset)) != 0) {
2896                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2897                 if (ret < 0)
2898                         return ret;
2899                 offset = 0;
2900                 len -= seg;
2901                 data += seg;
2902                 ++gfn;
2903         }
2904         return 0;
2905 }
2906 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2907
2908 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2909                                    void *data, int offset, unsigned long len)
2910 {
2911         int r;
2912         unsigned long addr;
2913
2914         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2915         if (kvm_is_error_hva(addr))
2916                 return -EFAULT;
2917         pagefault_disable();
2918         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2919         pagefault_enable();
2920         if (r)
2921                 return -EFAULT;
2922         return 0;
2923 }
2924
2925 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2926                                void *data, unsigned long len)
2927 {
2928         gfn_t gfn = gpa >> PAGE_SHIFT;
2929         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2930         int offset = offset_in_page(gpa);
2931
2932         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2933 }
2934 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2935
2936 static int __kvm_write_guest_page(struct kvm *kvm,
2937                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2938                                   const void *data, int offset, int len)
2939 {
2940         int r;
2941         unsigned long addr;
2942
2943         addr = gfn_to_hva_memslot(memslot, gfn);
2944         if (kvm_is_error_hva(addr))
2945                 return -EFAULT;
2946         r = __copy_to_user((void __user *)addr + offset, data, len);
2947         if (r)
2948                 return -EFAULT;
2949         mark_page_dirty_in_slot(kvm, memslot, gfn);
2950         return 0;
2951 }
2952
2953 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2954                          const void *data, int offset, int len)
2955 {
2956         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2957
2958         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2959 }
2960 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2961
2962 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2963                               const void *data, int offset, int len)
2964 {
2965         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2966
2967         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2968 }
2969 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2970
2971 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2972                     unsigned long len)
2973 {
2974         gfn_t gfn = gpa >> PAGE_SHIFT;
2975         int seg;
2976         int offset = offset_in_page(gpa);
2977         int ret;
2978
2979         while ((seg = next_segment(len, offset)) != 0) {
2980                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2981                 if (ret < 0)
2982                         return ret;
2983                 offset = 0;
2984                 len -= seg;
2985                 data += seg;
2986                 ++gfn;
2987         }
2988         return 0;
2989 }
2990 EXPORT_SYMBOL_GPL(kvm_write_guest);
2991
2992 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2993                          unsigned long len)
2994 {
2995         gfn_t gfn = gpa >> PAGE_SHIFT;
2996         int seg;
2997         int offset = offset_in_page(gpa);
2998         int ret;
2999
3000         while ((seg = next_segment(len, offset)) != 0) {
3001                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3002                 if (ret < 0)
3003                         return ret;
3004                 offset = 0;
3005                 len -= seg;
3006                 data += seg;
3007                 ++gfn;
3008         }
3009         return 0;
3010 }
3011 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3012
3013 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3014                                        struct gfn_to_hva_cache *ghc,
3015                                        gpa_t gpa, unsigned long len)
3016 {
3017         int offset = offset_in_page(gpa);
3018         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3019         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3020         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3021         gfn_t nr_pages_avail;
3022
3023         /* Update ghc->generation before performing any error checks. */
3024         ghc->generation = slots->generation;
3025
3026         if (start_gfn > end_gfn) {
3027                 ghc->hva = KVM_HVA_ERR_BAD;
3028                 return -EINVAL;
3029         }
3030
3031         /*
3032          * If the requested region crosses two memslots, we still
3033          * verify that the entire region is valid here.
3034          */
3035         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3036                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3037                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3038                                            &nr_pages_avail);
3039                 if (kvm_is_error_hva(ghc->hva))
3040                         return -EFAULT;
3041         }
3042
3043         /* Use the slow path for cross page reads and writes. */
3044         if (nr_pages_needed == 1)
3045                 ghc->hva += offset;
3046         else
3047                 ghc->memslot = NULL;
3048
3049         ghc->gpa = gpa;
3050         ghc->len = len;
3051         return 0;
3052 }
3053
3054 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3055                               gpa_t gpa, unsigned long len)
3056 {
3057         struct kvm_memslots *slots = kvm_memslots(kvm);
3058         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3059 }
3060 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3061
3062 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3063                                   void *data, unsigned int offset,
3064                                   unsigned long len)
3065 {
3066         struct kvm_memslots *slots = kvm_memslots(kvm);
3067         int r;
3068         gpa_t gpa = ghc->gpa + offset;
3069
3070         if (WARN_ON_ONCE(len + offset > ghc->len))
3071                 return -EINVAL;
3072
3073         if (slots->generation != ghc->generation) {
3074                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3075                         return -EFAULT;
3076         }
3077
3078         if (kvm_is_error_hva(ghc->hva))
3079                 return -EFAULT;
3080
3081         if (unlikely(!ghc->memslot))
3082                 return kvm_write_guest(kvm, gpa, data, len);
3083
3084         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3085         if (r)
3086                 return -EFAULT;
3087         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3088
3089         return 0;
3090 }
3091 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3092
3093 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3094                            void *data, unsigned long len)
3095 {
3096         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3097 }
3098 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3099
3100 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3101                                  void *data, unsigned int offset,
3102                                  unsigned long len)
3103 {
3104         struct kvm_memslots *slots = kvm_memslots(kvm);
3105         int r;
3106         gpa_t gpa = ghc->gpa + offset;
3107
3108         if (WARN_ON_ONCE(len + offset > ghc->len))
3109                 return -EINVAL;
3110
3111         if (slots->generation != ghc->generation) {
3112                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3113                         return -EFAULT;
3114         }
3115
3116         if (kvm_is_error_hva(ghc->hva))
3117                 return -EFAULT;
3118
3119         if (unlikely(!ghc->memslot))
3120                 return kvm_read_guest(kvm, gpa, data, len);
3121
3122         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3123         if (r)
3124                 return -EFAULT;
3125
3126         return 0;
3127 }
3128 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3129
3130 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3131                           void *data, unsigned long len)
3132 {
3133         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3134 }
3135 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3136
3137 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3138 {
3139         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3140         gfn_t gfn = gpa >> PAGE_SHIFT;
3141         int seg;
3142         int offset = offset_in_page(gpa);
3143         int ret;
3144
3145         while ((seg = next_segment(len, offset)) != 0) {
3146                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3147                 if (ret < 0)
3148                         return ret;
3149                 offset = 0;
3150                 len -= seg;
3151                 ++gfn;
3152         }
3153         return 0;
3154 }
3155 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3156
3157 void mark_page_dirty_in_slot(struct kvm *kvm,
3158                              const struct kvm_memory_slot *memslot,
3159                              gfn_t gfn)
3160 {
3161         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3162
3163 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3164         if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3165                 return;
3166 #endif
3167
3168         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3169                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3170                 u32 slot = (memslot->as_id << 16) | memslot->id;
3171
3172                 if (kvm->dirty_ring_size)
3173                         kvm_dirty_ring_push(&vcpu->dirty_ring,
3174                                             slot, rel_gfn);
3175                 else
3176                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3177         }
3178 }
3179 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3180
3181 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3182 {
3183         struct kvm_memory_slot *memslot;
3184
3185         memslot = gfn_to_memslot(kvm, gfn);
3186         mark_page_dirty_in_slot(kvm, memslot, gfn);
3187 }
3188 EXPORT_SYMBOL_GPL(mark_page_dirty);
3189
3190 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3191 {
3192         struct kvm_memory_slot *memslot;
3193
3194         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3195         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3196 }
3197 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3198
3199 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3200 {
3201         if (!vcpu->sigset_active)
3202                 return;
3203
3204         /*
3205          * This does a lockless modification of ->real_blocked, which is fine
3206          * because, only current can change ->real_blocked and all readers of
3207          * ->real_blocked don't care as long ->real_blocked is always a subset
3208          * of ->blocked.
3209          */
3210         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3211 }
3212
3213 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3214 {
3215         if (!vcpu->sigset_active)
3216                 return;
3217
3218         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3219         sigemptyset(&current->real_blocked);
3220 }
3221
3222 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3223 {
3224         unsigned int old, val, grow, grow_start;
3225
3226         old = val = vcpu->halt_poll_ns;
3227         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3228         grow = READ_ONCE(halt_poll_ns_grow);
3229         if (!grow)
3230                 goto out;
3231
3232         val *= grow;
3233         if (val < grow_start)
3234                 val = grow_start;
3235
3236         if (val > vcpu->kvm->max_halt_poll_ns)
3237                 val = vcpu->kvm->max_halt_poll_ns;
3238
3239         vcpu->halt_poll_ns = val;
3240 out:
3241         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3242 }
3243
3244 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3245 {
3246         unsigned int old, val, shrink, grow_start;
3247
3248         old = val = vcpu->halt_poll_ns;
3249         shrink = READ_ONCE(halt_poll_ns_shrink);
3250         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3251         if (shrink == 0)
3252                 val = 0;
3253         else
3254                 val /= shrink;
3255
3256         if (val < grow_start)
3257                 val = 0;
3258
3259         vcpu->halt_poll_ns = val;
3260         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3261 }
3262
3263 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3264 {
3265         int ret = -EINTR;
3266         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3267
3268         if (kvm_arch_vcpu_runnable(vcpu)) {
3269                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3270                 goto out;
3271         }
3272         if (kvm_cpu_has_pending_timer(vcpu))
3273                 goto out;
3274         if (signal_pending(current))
3275                 goto out;
3276         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3277                 goto out;
3278
3279         ret = 0;
3280 out:
3281         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3282         return ret;
3283 }
3284
3285 /*
3286  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3287  * pending.  This is mostly used when halting a vCPU, but may also be used
3288  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3289  */
3290 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3291 {
3292         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3293         bool waited = false;
3294
3295         vcpu->stat.generic.blocking = 1;
3296
3297         kvm_arch_vcpu_blocking(vcpu);
3298
3299         prepare_to_rcuwait(wait);
3300         for (;;) {
3301                 set_current_state(TASK_INTERRUPTIBLE);
3302
3303                 if (kvm_vcpu_check_block(vcpu) < 0)
3304                         break;
3305
3306                 waited = true;
3307                 schedule();
3308         }
3309         finish_rcuwait(wait);
3310
3311         kvm_arch_vcpu_unblocking(vcpu);
3312
3313         vcpu->stat.generic.blocking = 0;
3314
3315         return waited;
3316 }
3317
3318 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3319                                           ktime_t end, bool success)
3320 {
3321         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3322         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3323
3324         ++vcpu->stat.generic.halt_attempted_poll;
3325
3326         if (success) {
3327                 ++vcpu->stat.generic.halt_successful_poll;
3328
3329                 if (!vcpu_valid_wakeup(vcpu))
3330                         ++vcpu->stat.generic.halt_poll_invalid;
3331
3332                 stats->halt_poll_success_ns += poll_ns;
3333                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3334         } else {
3335                 stats->halt_poll_fail_ns += poll_ns;
3336                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3337         }
3338 }
3339
3340 /*
3341  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3342  * polling is enabled, busy wait for a short time before blocking to avoid the
3343  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3344  * is halted.
3345  */
3346 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3347 {
3348         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3349         bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3350         ktime_t start, cur, poll_end;
3351         bool waited = false;
3352         u64 halt_ns;
3353
3354         start = cur = poll_end = ktime_get();
3355         if (do_halt_poll) {
3356                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3357
3358                 do {
3359                         /*
3360                          * This sets KVM_REQ_UNHALT if an interrupt
3361                          * arrives.
3362                          */
3363                         if (kvm_vcpu_check_block(vcpu) < 0)
3364                                 goto out;
3365                         cpu_relax();
3366                         poll_end = cur = ktime_get();
3367                 } while (kvm_vcpu_can_poll(cur, stop));
3368         }
3369
3370         waited = kvm_vcpu_block(vcpu);
3371
3372         cur = ktime_get();
3373         if (waited) {
3374                 vcpu->stat.generic.halt_wait_ns +=
3375                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3376                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3377                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3378         }
3379 out:
3380         /* The total time the vCPU was "halted", including polling time. */
3381         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3382
3383         /*
3384          * Note, halt-polling is considered successful so long as the vCPU was
3385          * never actually scheduled out, i.e. even if the wake event arrived
3386          * after of the halt-polling loop itself, but before the full wait.
3387          */
3388         if (do_halt_poll)
3389                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3390
3391         if (halt_poll_allowed) {
3392                 if (!vcpu_valid_wakeup(vcpu)) {
3393                         shrink_halt_poll_ns(vcpu);
3394                 } else if (vcpu->kvm->max_halt_poll_ns) {
3395                         if (halt_ns <= vcpu->halt_poll_ns)
3396                                 ;
3397                         /* we had a long block, shrink polling */
3398                         else if (vcpu->halt_poll_ns &&
3399                                  halt_ns > vcpu->kvm->max_halt_poll_ns)
3400                                 shrink_halt_poll_ns(vcpu);
3401                         /* we had a short halt and our poll time is too small */
3402                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3403                                  halt_ns < vcpu->kvm->max_halt_poll_ns)
3404                                 grow_halt_poll_ns(vcpu);
3405                 } else {
3406                         vcpu->halt_poll_ns = 0;
3407                 }
3408         }
3409
3410         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3411 }
3412 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3413
3414 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3415 {
3416         if (__kvm_vcpu_wake_up(vcpu)) {
3417                 WRITE_ONCE(vcpu->ready, true);
3418                 ++vcpu->stat.generic.halt_wakeup;
3419                 return true;
3420         }
3421
3422         return false;
3423 }
3424 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3425
3426 #ifndef CONFIG_S390
3427 /*
3428  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3429  */
3430 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3431 {
3432         int me, cpu;
3433
3434         if (kvm_vcpu_wake_up(vcpu))
3435                 return;
3436
3437         me = get_cpu();
3438         /*
3439          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3440          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3441          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3442          * within the vCPU thread itself.
3443          */
3444         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3445                 if (vcpu->mode == IN_GUEST_MODE)
3446                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3447                 goto out;
3448         }
3449
3450         /*
3451          * Note, the vCPU could get migrated to a different pCPU at any point
3452          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3453          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3454          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3455          * vCPU also requires it to leave IN_GUEST_MODE.
3456          */
3457         if (kvm_arch_vcpu_should_kick(vcpu)) {
3458                 cpu = READ_ONCE(vcpu->cpu);
3459                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3460                         smp_send_reschedule(cpu);
3461         }
3462 out:
3463         put_cpu();
3464 }
3465 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3466 #endif /* !CONFIG_S390 */
3467
3468 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3469 {
3470         struct pid *pid;
3471         struct task_struct *task = NULL;
3472         int ret = 0;
3473
3474         rcu_read_lock();
3475         pid = rcu_dereference(target->pid);
3476         if (pid)
3477                 task = get_pid_task(pid, PIDTYPE_PID);
3478         rcu_read_unlock();
3479         if (!task)
3480                 return ret;
3481         ret = yield_to(task, 1);
3482         put_task_struct(task);
3483
3484         return ret;
3485 }
3486 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3487
3488 /*
3489  * Helper that checks whether a VCPU is eligible for directed yield.
3490  * Most eligible candidate to yield is decided by following heuristics:
3491  *
3492  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3493  *  (preempted lock holder), indicated by @in_spin_loop.
3494  *  Set at the beginning and cleared at the end of interception/PLE handler.
3495  *
3496  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3497  *  chance last time (mostly it has become eligible now since we have probably
3498  *  yielded to lockholder in last iteration. This is done by toggling
3499  *  @dy_eligible each time a VCPU checked for eligibility.)
3500  *
3501  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3502  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3503  *  burning. Giving priority for a potential lock-holder increases lock
3504  *  progress.
3505  *
3506  *  Since algorithm is based on heuristics, accessing another VCPU data without
3507  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3508  *  and continue with next VCPU and so on.
3509  */
3510 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3511 {
3512 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3513         bool eligible;
3514
3515         eligible = !vcpu->spin_loop.in_spin_loop ||
3516                     vcpu->spin_loop.dy_eligible;
3517
3518         if (vcpu->spin_loop.in_spin_loop)
3519                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3520
3521         return eligible;
3522 #else
3523         return true;
3524 #endif
3525 }
3526
3527 /*
3528  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3529  * a vcpu_load/vcpu_put pair.  However, for most architectures
3530  * kvm_arch_vcpu_runnable does not require vcpu_load.
3531  */
3532 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3533 {
3534         return kvm_arch_vcpu_runnable(vcpu);
3535 }
3536
3537 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3538 {
3539         if (kvm_arch_dy_runnable(vcpu))
3540                 return true;
3541
3542 #ifdef CONFIG_KVM_ASYNC_PF
3543         if (!list_empty_careful(&vcpu->async_pf.done))
3544                 return true;
3545 #endif
3546
3547         return false;
3548 }
3549
3550 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3551 {
3552         return false;
3553 }
3554
3555 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3556 {
3557         struct kvm *kvm = me->kvm;
3558         struct kvm_vcpu *vcpu;
3559         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3560         unsigned long i;
3561         int yielded = 0;
3562         int try = 3;
3563         int pass;
3564
3565         kvm_vcpu_set_in_spin_loop(me, true);
3566         /*
3567          * We boost the priority of a VCPU that is runnable but not
3568          * currently running, because it got preempted by something
3569          * else and called schedule in __vcpu_run.  Hopefully that
3570          * VCPU is holding the lock that we need and will release it.
3571          * We approximate round-robin by starting at the last boosted VCPU.
3572          */
3573         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3574                 kvm_for_each_vcpu(i, vcpu, kvm) {
3575                         if (!pass && i <= last_boosted_vcpu) {
3576                                 i = last_boosted_vcpu;
3577                                 continue;
3578                         } else if (pass && i > last_boosted_vcpu)
3579                                 break;
3580                         if (!READ_ONCE(vcpu->ready))
3581                                 continue;
3582                         if (vcpu == me)
3583                                 continue;
3584                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3585                                 continue;
3586                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3587                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3588                             !kvm_arch_vcpu_in_kernel(vcpu))
3589                                 continue;
3590                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3591                                 continue;
3592
3593                         yielded = kvm_vcpu_yield_to(vcpu);
3594                         if (yielded > 0) {
3595                                 kvm->last_boosted_vcpu = i;
3596                                 break;
3597                         } else if (yielded < 0) {
3598                                 try--;
3599                                 if (!try)
3600                                         break;
3601                         }
3602                 }
3603         }
3604         kvm_vcpu_set_in_spin_loop(me, false);
3605
3606         /* Ensure vcpu is not eligible during next spinloop */
3607         kvm_vcpu_set_dy_eligible(me, false);
3608 }
3609 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3610
3611 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3612 {
3613 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3614         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3615             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3616              kvm->dirty_ring_size / PAGE_SIZE);
3617 #else
3618         return false;
3619 #endif
3620 }
3621
3622 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3623 {
3624         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3625         struct page *page;
3626
3627         if (vmf->pgoff == 0)
3628                 page = virt_to_page(vcpu->run);
3629 #ifdef CONFIG_X86
3630         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3631                 page = virt_to_page(vcpu->arch.pio_data);
3632 #endif
3633 #ifdef CONFIG_KVM_MMIO
3634         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3635                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3636 #endif
3637         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3638                 page = kvm_dirty_ring_get_page(
3639                     &vcpu->dirty_ring,
3640                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3641         else
3642                 return kvm_arch_vcpu_fault(vcpu, vmf);
3643         get_page(page);
3644         vmf->page = page;
3645         return 0;
3646 }
3647
3648 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3649         .fault = kvm_vcpu_fault,
3650 };
3651
3652 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3653 {
3654         struct kvm_vcpu *vcpu = file->private_data;
3655         unsigned long pages = vma_pages(vma);
3656
3657         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3658              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3659             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3660                 return -EINVAL;
3661
3662         vma->vm_ops = &kvm_vcpu_vm_ops;
3663         return 0;
3664 }
3665
3666 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3667 {
3668         struct kvm_vcpu *vcpu = filp->private_data;
3669
3670         kvm_put_kvm(vcpu->kvm);
3671         return 0;
3672 }
3673
3674 static struct file_operations kvm_vcpu_fops = {
3675         .release        = kvm_vcpu_release,
3676         .unlocked_ioctl = kvm_vcpu_ioctl,
3677         .mmap           = kvm_vcpu_mmap,
3678         .llseek         = noop_llseek,
3679         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3680 };
3681
3682 /*
3683  * Allocates an inode for the vcpu.
3684  */
3685 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3686 {
3687         char name[8 + 1 + ITOA_MAX_LEN + 1];
3688
3689         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3690         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3691 }
3692
3693 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3694 {
3695 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3696         struct dentry *debugfs_dentry;
3697         char dir_name[ITOA_MAX_LEN * 2];
3698
3699         if (!debugfs_initialized())
3700                 return;
3701
3702         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3703         debugfs_dentry = debugfs_create_dir(dir_name,
3704                                             vcpu->kvm->debugfs_dentry);
3705
3706         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3707 #endif
3708 }
3709
3710 /*
3711  * Creates some virtual cpus.  Good luck creating more than one.
3712  */
3713 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3714 {
3715         int r;
3716         struct kvm_vcpu *vcpu;
3717         struct page *page;
3718
3719         if (id >= KVM_MAX_VCPU_IDS)
3720                 return -EINVAL;
3721
3722         mutex_lock(&kvm->lock);
3723         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3724                 mutex_unlock(&kvm->lock);
3725                 return -EINVAL;
3726         }
3727
3728         kvm->created_vcpus++;
3729         mutex_unlock(&kvm->lock);
3730
3731         r = kvm_arch_vcpu_precreate(kvm, id);
3732         if (r)
3733                 goto vcpu_decrement;
3734
3735         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3736         if (!vcpu) {
3737                 r = -ENOMEM;
3738                 goto vcpu_decrement;
3739         }
3740
3741         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3742         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3743         if (!page) {
3744                 r = -ENOMEM;
3745                 goto vcpu_free;
3746         }
3747         vcpu->run = page_address(page);
3748
3749         kvm_vcpu_init(vcpu, kvm, id);
3750
3751         r = kvm_arch_vcpu_create(vcpu);
3752         if (r)
3753                 goto vcpu_free_run_page;
3754
3755         if (kvm->dirty_ring_size) {
3756                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3757                                          id, kvm->dirty_ring_size);
3758                 if (r)
3759                         goto arch_vcpu_destroy;
3760         }
3761
3762         mutex_lock(&kvm->lock);
3763         if (kvm_get_vcpu_by_id(kvm, id)) {
3764                 r = -EEXIST;
3765                 goto unlock_vcpu_destroy;
3766         }
3767
3768         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3769         r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3770         BUG_ON(r == -EBUSY);
3771         if (r)
3772                 goto unlock_vcpu_destroy;
3773
3774         /* Fill the stats id string for the vcpu */
3775         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3776                  task_pid_nr(current), id);
3777
3778         /* Now it's all set up, let userspace reach it */
3779         kvm_get_kvm(kvm);
3780         r = create_vcpu_fd(vcpu);
3781         if (r < 0) {
3782                 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3783                 kvm_put_kvm_no_destroy(kvm);
3784                 goto unlock_vcpu_destroy;
3785         }
3786
3787         /*
3788          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3789          * pointer before kvm->online_vcpu's incremented value.
3790          */
3791         smp_wmb();
3792         atomic_inc(&kvm->online_vcpus);
3793
3794         mutex_unlock(&kvm->lock);
3795         kvm_arch_vcpu_postcreate(vcpu);
3796         kvm_create_vcpu_debugfs(vcpu);
3797         return r;
3798
3799 unlock_vcpu_destroy:
3800         mutex_unlock(&kvm->lock);
3801         kvm_dirty_ring_free(&vcpu->dirty_ring);
3802 arch_vcpu_destroy:
3803         kvm_arch_vcpu_destroy(vcpu);
3804 vcpu_free_run_page:
3805         free_page((unsigned long)vcpu->run);
3806 vcpu_free:
3807         kmem_cache_free(kvm_vcpu_cache, vcpu);
3808 vcpu_decrement:
3809         mutex_lock(&kvm->lock);
3810         kvm->created_vcpus--;
3811         mutex_unlock(&kvm->lock);
3812         return r;
3813 }
3814
3815 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3816 {
3817         if (sigset) {
3818                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3819                 vcpu->sigset_active = 1;
3820                 vcpu->sigset = *sigset;
3821         } else
3822                 vcpu->sigset_active = 0;
3823         return 0;
3824 }
3825
3826 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3827                               size_t size, loff_t *offset)
3828 {
3829         struct kvm_vcpu *vcpu = file->private_data;
3830
3831         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3832                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3833                         sizeof(vcpu->stat), user_buffer, size, offset);
3834 }
3835
3836 static const struct file_operations kvm_vcpu_stats_fops = {
3837         .read = kvm_vcpu_stats_read,
3838         .llseek = noop_llseek,
3839 };
3840
3841 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3842 {
3843         int fd;
3844         struct file *file;
3845         char name[15 + ITOA_MAX_LEN + 1];
3846
3847         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3848
3849         fd = get_unused_fd_flags(O_CLOEXEC);
3850         if (fd < 0)
3851                 return fd;
3852
3853         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3854         if (IS_ERR(file)) {
3855                 put_unused_fd(fd);
3856                 return PTR_ERR(file);
3857         }
3858         file->f_mode |= FMODE_PREAD;
3859         fd_install(fd, file);
3860
3861         return fd;
3862 }
3863
3864 static long kvm_vcpu_ioctl(struct file *filp,
3865                            unsigned int ioctl, unsigned long arg)
3866 {
3867         struct kvm_vcpu *vcpu = filp->private_data;
3868         void __user *argp = (void __user *)arg;
3869         int r;
3870         struct kvm_fpu *fpu = NULL;
3871         struct kvm_sregs *kvm_sregs = NULL;
3872
3873         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3874                 return -EIO;
3875
3876         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3877                 return -EINVAL;
3878
3879         /*
3880          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3881          * execution; mutex_lock() would break them.
3882          */
3883         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3884         if (r != -ENOIOCTLCMD)
3885                 return r;
3886
3887         if (mutex_lock_killable(&vcpu->mutex))
3888                 return -EINTR;
3889         switch (ioctl) {
3890         case KVM_RUN: {
3891                 struct pid *oldpid;
3892                 r = -EINVAL;
3893                 if (arg)
3894                         goto out;
3895                 oldpid = rcu_access_pointer(vcpu->pid);
3896                 if (unlikely(oldpid != task_pid(current))) {
3897                         /* The thread running this VCPU changed. */
3898                         struct pid *newpid;
3899
3900                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3901                         if (r)
3902                                 break;
3903
3904                         newpid = get_task_pid(current, PIDTYPE_PID);
3905                         rcu_assign_pointer(vcpu->pid, newpid);
3906                         if (oldpid)
3907                                 synchronize_rcu();
3908                         put_pid(oldpid);
3909                 }
3910                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3911                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3912                 break;
3913         }
3914         case KVM_GET_REGS: {
3915                 struct kvm_regs *kvm_regs;
3916
3917                 r = -ENOMEM;
3918                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3919                 if (!kvm_regs)
3920                         goto out;
3921                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3922                 if (r)
3923                         goto out_free1;
3924                 r = -EFAULT;
3925                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3926                         goto out_free1;
3927                 r = 0;
3928 out_free1:
3929                 kfree(kvm_regs);
3930                 break;
3931         }
3932         case KVM_SET_REGS: {
3933                 struct kvm_regs *kvm_regs;
3934
3935                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3936                 if (IS_ERR(kvm_regs)) {
3937                         r = PTR_ERR(kvm_regs);
3938                         goto out;
3939                 }
3940                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3941                 kfree(kvm_regs);
3942                 break;
3943         }
3944         case KVM_GET_SREGS: {
3945                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3946                                     GFP_KERNEL_ACCOUNT);
3947                 r = -ENOMEM;
3948                 if (!kvm_sregs)
3949                         goto out;
3950                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3951                 if (r)
3952                         goto out;
3953                 r = -EFAULT;
3954                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3955                         goto out;
3956                 r = 0;
3957                 break;
3958         }
3959         case KVM_SET_SREGS: {
3960                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3961                 if (IS_ERR(kvm_sregs)) {
3962                         r = PTR_ERR(kvm_sregs);
3963                         kvm_sregs = NULL;
3964                         goto out;
3965                 }
3966                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3967                 break;
3968         }
3969         case KVM_GET_MP_STATE: {
3970                 struct kvm_mp_state mp_state;
3971
3972                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3973                 if (r)
3974                         goto out;
3975                 r = -EFAULT;
3976                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3977                         goto out;
3978                 r = 0;
3979                 break;
3980         }
3981         case KVM_SET_MP_STATE: {
3982                 struct kvm_mp_state mp_state;
3983
3984                 r = -EFAULT;
3985                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3986                         goto out;
3987                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3988                 break;
3989         }
3990         case KVM_TRANSLATE: {
3991                 struct kvm_translation tr;
3992
3993                 r = -EFAULT;
3994                 if (copy_from_user(&tr, argp, sizeof(tr)))
3995                         goto out;
3996                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3997                 if (r)
3998                         goto out;
3999                 r = -EFAULT;
4000                 if (copy_to_user(argp, &tr, sizeof(tr)))
4001                         goto out;
4002                 r = 0;
4003                 break;
4004         }
4005         case KVM_SET_GUEST_DEBUG: {
4006                 struct kvm_guest_debug dbg;
4007
4008                 r = -EFAULT;
4009                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4010                         goto out;
4011                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4012                 break;
4013         }
4014         case KVM_SET_SIGNAL_MASK: {
4015                 struct kvm_signal_mask __user *sigmask_arg = argp;
4016                 struct kvm_signal_mask kvm_sigmask;
4017                 sigset_t sigset, *p;
4018
4019                 p = NULL;
4020                 if (argp) {
4021                         r = -EFAULT;
4022                         if (copy_from_user(&kvm_sigmask, argp,
4023                                            sizeof(kvm_sigmask)))
4024                                 goto out;
4025                         r = -EINVAL;
4026                         if (kvm_sigmask.len != sizeof(sigset))
4027                                 goto out;
4028                         r = -EFAULT;
4029                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4030                                            sizeof(sigset)))
4031                                 goto out;
4032                         p = &sigset;
4033                 }
4034                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4035                 break;
4036         }
4037         case KVM_GET_FPU: {
4038                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4039                 r = -ENOMEM;
4040                 if (!fpu)
4041                         goto out;
4042                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4043                 if (r)
4044                         goto out;
4045                 r = -EFAULT;
4046                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4047                         goto out;
4048                 r = 0;
4049                 break;
4050         }
4051         case KVM_SET_FPU: {
4052                 fpu = memdup_user(argp, sizeof(*fpu));
4053                 if (IS_ERR(fpu)) {
4054                         r = PTR_ERR(fpu);
4055                         fpu = NULL;
4056                         goto out;
4057                 }
4058                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4059                 break;
4060         }
4061         case KVM_GET_STATS_FD: {
4062                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4063                 break;
4064         }
4065         default:
4066                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4067         }
4068 out:
4069         mutex_unlock(&vcpu->mutex);
4070         kfree(fpu);
4071         kfree(kvm_sregs);
4072         return r;
4073 }
4074
4075 #ifdef CONFIG_KVM_COMPAT
4076 static long kvm_vcpu_compat_ioctl(struct file *filp,
4077                                   unsigned int ioctl, unsigned long arg)
4078 {
4079         struct kvm_vcpu *vcpu = filp->private_data;
4080         void __user *argp = compat_ptr(arg);
4081         int r;
4082
4083         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4084                 return -EIO;
4085
4086         switch (ioctl) {
4087         case KVM_SET_SIGNAL_MASK: {
4088                 struct kvm_signal_mask __user *sigmask_arg = argp;
4089                 struct kvm_signal_mask kvm_sigmask;
4090                 sigset_t sigset;
4091
4092                 if (argp) {
4093                         r = -EFAULT;
4094                         if (copy_from_user(&kvm_sigmask, argp,
4095                                            sizeof(kvm_sigmask)))
4096                                 goto out;
4097                         r = -EINVAL;
4098                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4099                                 goto out;
4100                         r = -EFAULT;
4101                         if (get_compat_sigset(&sigset,
4102                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4103                                 goto out;
4104                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4105                 } else
4106                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4107                 break;
4108         }
4109         default:
4110                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4111         }
4112
4113 out:
4114         return r;
4115 }
4116 #endif
4117
4118 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4119 {
4120         struct kvm_device *dev = filp->private_data;
4121
4122         if (dev->ops->mmap)
4123                 return dev->ops->mmap(dev, vma);
4124
4125         return -ENODEV;
4126 }
4127
4128 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4129                                  int (*accessor)(struct kvm_device *dev,
4130                                                  struct kvm_device_attr *attr),
4131                                  unsigned long arg)
4132 {
4133         struct kvm_device_attr attr;
4134
4135         if (!accessor)
4136                 return -EPERM;
4137
4138         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4139                 return -EFAULT;
4140
4141         return accessor(dev, &attr);
4142 }
4143
4144 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4145                              unsigned long arg)
4146 {
4147         struct kvm_device *dev = filp->private_data;
4148
4149         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4150                 return -EIO;
4151
4152         switch (ioctl) {
4153         case KVM_SET_DEVICE_ATTR:
4154                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4155         case KVM_GET_DEVICE_ATTR:
4156                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4157         case KVM_HAS_DEVICE_ATTR:
4158                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4159         default:
4160                 if (dev->ops->ioctl)
4161                         return dev->ops->ioctl(dev, ioctl, arg);
4162
4163                 return -ENOTTY;
4164         }
4165 }
4166
4167 static int kvm_device_release(struct inode *inode, struct file *filp)
4168 {
4169         struct kvm_device *dev = filp->private_data;
4170         struct kvm *kvm = dev->kvm;
4171
4172         if (dev->ops->release) {
4173                 mutex_lock(&kvm->lock);
4174                 list_del(&dev->vm_node);
4175                 dev->ops->release(dev);
4176                 mutex_unlock(&kvm->lock);
4177         }
4178
4179         kvm_put_kvm(kvm);
4180         return 0;
4181 }
4182
4183 static const struct file_operations kvm_device_fops = {
4184         .unlocked_ioctl = kvm_device_ioctl,
4185         .release = kvm_device_release,
4186         KVM_COMPAT(kvm_device_ioctl),
4187         .mmap = kvm_device_mmap,
4188 };
4189
4190 struct kvm_device *kvm_device_from_filp(struct file *filp)
4191 {
4192         if (filp->f_op != &kvm_device_fops)
4193                 return NULL;
4194
4195         return filp->private_data;
4196 }
4197
4198 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4199 #ifdef CONFIG_KVM_MPIC
4200         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4201         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4202 #endif
4203 };
4204
4205 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4206 {
4207         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4208                 return -ENOSPC;
4209
4210         if (kvm_device_ops_table[type] != NULL)
4211                 return -EEXIST;
4212
4213         kvm_device_ops_table[type] = ops;
4214         return 0;
4215 }
4216
4217 void kvm_unregister_device_ops(u32 type)
4218 {
4219         if (kvm_device_ops_table[type] != NULL)
4220                 kvm_device_ops_table[type] = NULL;
4221 }
4222
4223 static int kvm_ioctl_create_device(struct kvm *kvm,
4224                                    struct kvm_create_device *cd)
4225 {
4226         const struct kvm_device_ops *ops = NULL;
4227         struct kvm_device *dev;
4228         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4229         int type;
4230         int ret;
4231
4232         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4233                 return -ENODEV;
4234
4235         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4236         ops = kvm_device_ops_table[type];
4237         if (ops == NULL)
4238                 return -ENODEV;
4239
4240         if (test)
4241                 return 0;
4242
4243         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4244         if (!dev)
4245                 return -ENOMEM;
4246
4247         dev->ops = ops;
4248         dev->kvm = kvm;
4249
4250         mutex_lock(&kvm->lock);
4251         ret = ops->create(dev, type);
4252         if (ret < 0) {
4253                 mutex_unlock(&kvm->lock);
4254                 kfree(dev);
4255                 return ret;
4256         }
4257         list_add(&dev->vm_node, &kvm->devices);
4258         mutex_unlock(&kvm->lock);
4259
4260         if (ops->init)
4261                 ops->init(dev);
4262
4263         kvm_get_kvm(kvm);
4264         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4265         if (ret < 0) {
4266                 kvm_put_kvm_no_destroy(kvm);
4267                 mutex_lock(&kvm->lock);
4268                 list_del(&dev->vm_node);
4269                 mutex_unlock(&kvm->lock);
4270                 ops->destroy(dev);
4271                 return ret;
4272         }
4273
4274         cd->fd = ret;
4275         return 0;
4276 }
4277
4278 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4279 {
4280         switch (arg) {
4281         case KVM_CAP_USER_MEMORY:
4282         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4283         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4284         case KVM_CAP_INTERNAL_ERROR_DATA:
4285 #ifdef CONFIG_HAVE_KVM_MSI
4286         case KVM_CAP_SIGNAL_MSI:
4287 #endif
4288 #ifdef CONFIG_HAVE_KVM_IRQFD
4289         case KVM_CAP_IRQFD:
4290         case KVM_CAP_IRQFD_RESAMPLE:
4291 #endif
4292         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4293         case KVM_CAP_CHECK_EXTENSION_VM:
4294         case KVM_CAP_ENABLE_CAP_VM:
4295         case KVM_CAP_HALT_POLL:
4296                 return 1;
4297 #ifdef CONFIG_KVM_MMIO
4298         case KVM_CAP_COALESCED_MMIO:
4299                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4300         case KVM_CAP_COALESCED_PIO:
4301                 return 1;
4302 #endif
4303 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4304         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4305                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4306 #endif
4307 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4308         case KVM_CAP_IRQ_ROUTING:
4309                 return KVM_MAX_IRQ_ROUTES;
4310 #endif
4311 #if KVM_ADDRESS_SPACE_NUM > 1
4312         case KVM_CAP_MULTI_ADDRESS_SPACE:
4313                 return KVM_ADDRESS_SPACE_NUM;
4314 #endif
4315         case KVM_CAP_NR_MEMSLOTS:
4316                 return KVM_USER_MEM_SLOTS;
4317         case KVM_CAP_DIRTY_LOG_RING:
4318 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4319                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4320 #else
4321                 return 0;
4322 #endif
4323         case KVM_CAP_BINARY_STATS_FD:
4324                 return 1;
4325         default:
4326                 break;
4327         }
4328         return kvm_vm_ioctl_check_extension(kvm, arg);
4329 }
4330
4331 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4332 {
4333         int r;
4334
4335         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4336                 return -EINVAL;
4337
4338         /* the size should be power of 2 */
4339         if (!size || (size & (size - 1)))
4340                 return -EINVAL;
4341
4342         /* Should be bigger to keep the reserved entries, or a page */
4343         if (size < kvm_dirty_ring_get_rsvd_entries() *
4344             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4345                 return -EINVAL;
4346
4347         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4348             sizeof(struct kvm_dirty_gfn))
4349                 return -E2BIG;
4350
4351         /* We only allow it to set once */
4352         if (kvm->dirty_ring_size)
4353                 return -EINVAL;
4354
4355         mutex_lock(&kvm->lock);
4356
4357         if (kvm->created_vcpus) {
4358                 /* We don't allow to change this value after vcpu created */
4359                 r = -EINVAL;
4360         } else {
4361                 kvm->dirty_ring_size = size;
4362                 r = 0;
4363         }
4364
4365         mutex_unlock(&kvm->lock);
4366         return r;
4367 }
4368
4369 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4370 {
4371         unsigned long i;
4372         struct kvm_vcpu *vcpu;
4373         int cleared = 0;
4374
4375         if (!kvm->dirty_ring_size)
4376                 return -EINVAL;
4377
4378         mutex_lock(&kvm->slots_lock);
4379
4380         kvm_for_each_vcpu(i, vcpu, kvm)
4381                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4382
4383         mutex_unlock(&kvm->slots_lock);
4384
4385         if (cleared)
4386                 kvm_flush_remote_tlbs(kvm);
4387
4388         return cleared;
4389 }
4390
4391 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4392                                                   struct kvm_enable_cap *cap)
4393 {
4394         return -EINVAL;
4395 }
4396
4397 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4398                                            struct kvm_enable_cap *cap)
4399 {
4400         switch (cap->cap) {
4401 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4402         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4403                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4404
4405                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4406                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4407
4408                 if (cap->flags || (cap->args[0] & ~allowed_options))
4409                         return -EINVAL;
4410                 kvm->manual_dirty_log_protect = cap->args[0];
4411                 return 0;
4412         }
4413 #endif
4414         case KVM_CAP_HALT_POLL: {
4415                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4416                         return -EINVAL;
4417
4418                 kvm->max_halt_poll_ns = cap->args[0];
4419                 return 0;
4420         }
4421         case KVM_CAP_DIRTY_LOG_RING:
4422                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4423         default:
4424                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4425         }
4426 }
4427
4428 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4429                               size_t size, loff_t *offset)
4430 {
4431         struct kvm *kvm = file->private_data;
4432
4433         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4434                                 &kvm_vm_stats_desc[0], &kvm->stat,
4435                                 sizeof(kvm->stat), user_buffer, size, offset);
4436 }
4437
4438 static const struct file_operations kvm_vm_stats_fops = {
4439         .read = kvm_vm_stats_read,
4440         .llseek = noop_llseek,
4441 };
4442
4443 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4444 {
4445         int fd;
4446         struct file *file;
4447
4448         fd = get_unused_fd_flags(O_CLOEXEC);
4449         if (fd < 0)
4450                 return fd;
4451
4452         file = anon_inode_getfile("kvm-vm-stats",
4453                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4454         if (IS_ERR(file)) {
4455                 put_unused_fd(fd);
4456                 return PTR_ERR(file);
4457         }
4458         file->f_mode |= FMODE_PREAD;
4459         fd_install(fd, file);
4460
4461         return fd;
4462 }
4463
4464 static long kvm_vm_ioctl(struct file *filp,
4465                            unsigned int ioctl, unsigned long arg)
4466 {
4467         struct kvm *kvm = filp->private_data;
4468         void __user *argp = (void __user *)arg;
4469         int r;
4470
4471         if (kvm->mm != current->mm || kvm->vm_dead)
4472                 return -EIO;
4473         switch (ioctl) {
4474         case KVM_CREATE_VCPU:
4475                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4476                 break;
4477         case KVM_ENABLE_CAP: {
4478                 struct kvm_enable_cap cap;
4479
4480                 r = -EFAULT;
4481                 if (copy_from_user(&cap, argp, sizeof(cap)))
4482                         goto out;
4483                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4484                 break;
4485         }
4486         case KVM_SET_USER_MEMORY_REGION: {
4487                 struct kvm_userspace_memory_region kvm_userspace_mem;
4488
4489                 r = -EFAULT;
4490                 if (copy_from_user(&kvm_userspace_mem, argp,
4491                                                 sizeof(kvm_userspace_mem)))
4492                         goto out;
4493
4494                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4495                 break;
4496         }
4497         case KVM_GET_DIRTY_LOG: {
4498                 struct kvm_dirty_log log;
4499
4500                 r = -EFAULT;
4501                 if (copy_from_user(&log, argp, sizeof(log)))
4502                         goto out;
4503                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4504                 break;
4505         }
4506 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4507         case KVM_CLEAR_DIRTY_LOG: {
4508                 struct kvm_clear_dirty_log log;
4509
4510                 r = -EFAULT;
4511                 if (copy_from_user(&log, argp, sizeof(log)))
4512                         goto out;
4513                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4514                 break;
4515         }
4516 #endif
4517 #ifdef CONFIG_KVM_MMIO
4518         case KVM_REGISTER_COALESCED_MMIO: {
4519                 struct kvm_coalesced_mmio_zone zone;
4520
4521                 r = -EFAULT;
4522                 if (copy_from_user(&zone, argp, sizeof(zone)))
4523                         goto out;
4524                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4525                 break;
4526         }
4527         case KVM_UNREGISTER_COALESCED_MMIO: {
4528                 struct kvm_coalesced_mmio_zone zone;
4529
4530                 r = -EFAULT;
4531                 if (copy_from_user(&zone, argp, sizeof(zone)))
4532                         goto out;
4533                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4534                 break;
4535         }
4536 #endif
4537         case KVM_IRQFD: {
4538                 struct kvm_irqfd data;
4539
4540                 r = -EFAULT;
4541                 if (copy_from_user(&data, argp, sizeof(data)))
4542                         goto out;
4543                 r = kvm_irqfd(kvm, &data);
4544                 break;
4545         }
4546         case KVM_IOEVENTFD: {
4547                 struct kvm_ioeventfd data;
4548
4549                 r = -EFAULT;
4550                 if (copy_from_user(&data, argp, sizeof(data)))
4551                         goto out;
4552                 r = kvm_ioeventfd(kvm, &data);
4553                 break;
4554         }
4555 #ifdef CONFIG_HAVE_KVM_MSI
4556         case KVM_SIGNAL_MSI: {
4557                 struct kvm_msi msi;
4558
4559                 r = -EFAULT;
4560                 if (copy_from_user(&msi, argp, sizeof(msi)))
4561                         goto out;
4562                 r = kvm_send_userspace_msi(kvm, &msi);
4563                 break;
4564         }
4565 #endif
4566 #ifdef __KVM_HAVE_IRQ_LINE
4567         case KVM_IRQ_LINE_STATUS:
4568         case KVM_IRQ_LINE: {
4569                 struct kvm_irq_level irq_event;
4570
4571                 r = -EFAULT;
4572                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4573                         goto out;
4574
4575                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4576                                         ioctl == KVM_IRQ_LINE_STATUS);
4577                 if (r)
4578                         goto out;
4579
4580                 r = -EFAULT;
4581                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4582                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4583                                 goto out;
4584                 }
4585
4586                 r = 0;
4587                 break;
4588         }
4589 #endif
4590 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4591         case KVM_SET_GSI_ROUTING: {
4592                 struct kvm_irq_routing routing;
4593                 struct kvm_irq_routing __user *urouting;
4594                 struct kvm_irq_routing_entry *entries = NULL;
4595
4596                 r = -EFAULT;
4597                 if (copy_from_user(&routing, argp, sizeof(routing)))
4598                         goto out;
4599                 r = -EINVAL;
4600                 if (!kvm_arch_can_set_irq_routing(kvm))
4601                         goto out;
4602                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4603                         goto out;
4604                 if (routing.flags)
4605                         goto out;
4606                 if (routing.nr) {
4607                         urouting = argp;
4608                         entries = vmemdup_user(urouting->entries,
4609                                                array_size(sizeof(*entries),
4610                                                           routing.nr));
4611                         if (IS_ERR(entries)) {
4612                                 r = PTR_ERR(entries);
4613                                 goto out;
4614                         }
4615                 }
4616                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4617                                         routing.flags);
4618                 kvfree(entries);
4619                 break;
4620         }
4621 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4622         case KVM_CREATE_DEVICE: {
4623                 struct kvm_create_device cd;
4624
4625                 r = -EFAULT;
4626                 if (copy_from_user(&cd, argp, sizeof(cd)))
4627                         goto out;
4628
4629                 r = kvm_ioctl_create_device(kvm, &cd);
4630                 if (r)
4631                         goto out;
4632
4633                 r = -EFAULT;
4634                 if (copy_to_user(argp, &cd, sizeof(cd)))
4635                         goto out;
4636
4637                 r = 0;
4638                 break;
4639         }
4640         case KVM_CHECK_EXTENSION:
4641                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4642                 break;
4643         case KVM_RESET_DIRTY_RINGS:
4644                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4645                 break;
4646         case KVM_GET_STATS_FD:
4647                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4648                 break;
4649         default:
4650                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4651         }
4652 out:
4653         return r;
4654 }
4655
4656 #ifdef CONFIG_KVM_COMPAT
4657 struct compat_kvm_dirty_log {
4658         __u32 slot;
4659         __u32 padding1;
4660         union {
4661                 compat_uptr_t dirty_bitmap; /* one bit per page */
4662                 __u64 padding2;
4663         };
4664 };
4665
4666 struct compat_kvm_clear_dirty_log {
4667         __u32 slot;
4668         __u32 num_pages;
4669         __u64 first_page;
4670         union {
4671                 compat_uptr_t dirty_bitmap; /* one bit per page */
4672                 __u64 padding2;
4673         };
4674 };
4675
4676 static long kvm_vm_compat_ioctl(struct file *filp,
4677                            unsigned int ioctl, unsigned long arg)
4678 {
4679         struct kvm *kvm = filp->private_data;
4680         int r;
4681
4682         if (kvm->mm != current->mm || kvm->vm_dead)
4683                 return -EIO;
4684         switch (ioctl) {
4685 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4686         case KVM_CLEAR_DIRTY_LOG: {
4687                 struct compat_kvm_clear_dirty_log compat_log;
4688                 struct kvm_clear_dirty_log log;
4689
4690                 if (copy_from_user(&compat_log, (void __user *)arg,
4691                                    sizeof(compat_log)))
4692                         return -EFAULT;
4693                 log.slot         = compat_log.slot;
4694                 log.num_pages    = compat_log.num_pages;
4695                 log.first_page   = compat_log.first_page;
4696                 log.padding2     = compat_log.padding2;
4697                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4698
4699                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4700                 break;
4701         }
4702 #endif
4703         case KVM_GET_DIRTY_LOG: {
4704                 struct compat_kvm_dirty_log compat_log;
4705                 struct kvm_dirty_log log;
4706
4707                 if (copy_from_user(&compat_log, (void __user *)arg,
4708                                    sizeof(compat_log)))
4709                         return -EFAULT;
4710                 log.slot         = compat_log.slot;
4711                 log.padding1     = compat_log.padding1;
4712                 log.padding2     = compat_log.padding2;
4713                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4714
4715                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4716                 break;
4717         }
4718         default:
4719                 r = kvm_vm_ioctl(filp, ioctl, arg);
4720         }
4721         return r;
4722 }
4723 #endif
4724
4725 static struct file_operations kvm_vm_fops = {
4726         .release        = kvm_vm_release,
4727         .unlocked_ioctl = kvm_vm_ioctl,
4728         .llseek         = noop_llseek,
4729         KVM_COMPAT(kvm_vm_compat_ioctl),
4730 };
4731
4732 bool file_is_kvm(struct file *file)
4733 {
4734         return file && file->f_op == &kvm_vm_fops;
4735 }
4736 EXPORT_SYMBOL_GPL(file_is_kvm);
4737
4738 static int kvm_dev_ioctl_create_vm(unsigned long type)
4739 {
4740         int r;
4741         struct kvm *kvm;
4742         struct file *file;
4743
4744         kvm = kvm_create_vm(type);
4745         if (IS_ERR(kvm))
4746                 return PTR_ERR(kvm);
4747 #ifdef CONFIG_KVM_MMIO
4748         r = kvm_coalesced_mmio_init(kvm);
4749         if (r < 0)
4750                 goto put_kvm;
4751 #endif
4752         r = get_unused_fd_flags(O_CLOEXEC);
4753         if (r < 0)
4754                 goto put_kvm;
4755
4756         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4757                         "kvm-%d", task_pid_nr(current));
4758
4759         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4760         if (IS_ERR(file)) {
4761                 put_unused_fd(r);
4762                 r = PTR_ERR(file);
4763                 goto put_kvm;
4764         }
4765
4766         /*
4767          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4768          * already set, with ->release() being kvm_vm_release().  In error
4769          * cases it will be called by the final fput(file) and will take
4770          * care of doing kvm_put_kvm(kvm).
4771          */
4772         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4773                 put_unused_fd(r);
4774                 fput(file);
4775                 return -ENOMEM;
4776         }
4777         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4778
4779         fd_install(r, file);
4780         return r;
4781
4782 put_kvm:
4783         kvm_put_kvm(kvm);
4784         return r;
4785 }
4786
4787 static long kvm_dev_ioctl(struct file *filp,
4788                           unsigned int ioctl, unsigned long arg)
4789 {
4790         long r = -EINVAL;
4791
4792         switch (ioctl) {
4793         case KVM_GET_API_VERSION:
4794                 if (arg)
4795                         goto out;
4796                 r = KVM_API_VERSION;
4797                 break;
4798         case KVM_CREATE_VM:
4799                 r = kvm_dev_ioctl_create_vm(arg);
4800                 break;
4801         case KVM_CHECK_EXTENSION:
4802                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4803                 break;
4804         case KVM_GET_VCPU_MMAP_SIZE:
4805                 if (arg)
4806                         goto out;
4807                 r = PAGE_SIZE;     /* struct kvm_run */
4808 #ifdef CONFIG_X86
4809                 r += PAGE_SIZE;    /* pio data page */
4810 #endif
4811 #ifdef CONFIG_KVM_MMIO
4812                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4813 #endif
4814                 break;
4815         case KVM_TRACE_ENABLE:
4816         case KVM_TRACE_PAUSE:
4817         case KVM_TRACE_DISABLE:
4818                 r = -EOPNOTSUPP;
4819                 break;
4820         default:
4821                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4822         }
4823 out:
4824         return r;
4825 }
4826
4827 static struct file_operations kvm_chardev_ops = {
4828         .unlocked_ioctl = kvm_dev_ioctl,
4829         .llseek         = noop_llseek,
4830         KVM_COMPAT(kvm_dev_ioctl),
4831 };
4832
4833 static struct miscdevice kvm_dev = {
4834         KVM_MINOR,
4835         "kvm",
4836         &kvm_chardev_ops,
4837 };
4838
4839 static void hardware_enable_nolock(void *junk)
4840 {
4841         int cpu = raw_smp_processor_id();
4842         int r;
4843
4844         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4845                 return;
4846
4847         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4848
4849         r = kvm_arch_hardware_enable();
4850
4851         if (r) {
4852                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4853                 atomic_inc(&hardware_enable_failed);
4854                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4855         }
4856 }
4857
4858 static int kvm_starting_cpu(unsigned int cpu)
4859 {
4860         raw_spin_lock(&kvm_count_lock);
4861         if (kvm_usage_count)
4862                 hardware_enable_nolock(NULL);
4863         raw_spin_unlock(&kvm_count_lock);
4864         return 0;
4865 }
4866
4867 static void hardware_disable_nolock(void *junk)
4868 {
4869         int cpu = raw_smp_processor_id();
4870
4871         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4872                 return;
4873         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4874         kvm_arch_hardware_disable();
4875 }
4876
4877 static int kvm_dying_cpu(unsigned int cpu)
4878 {
4879         raw_spin_lock(&kvm_count_lock);
4880         if (kvm_usage_count)
4881                 hardware_disable_nolock(NULL);
4882         raw_spin_unlock(&kvm_count_lock);
4883         return 0;
4884 }
4885
4886 static void hardware_disable_all_nolock(void)
4887 {
4888         BUG_ON(!kvm_usage_count);
4889
4890         kvm_usage_count--;
4891         if (!kvm_usage_count)
4892                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4893 }
4894
4895 static void hardware_disable_all(void)
4896 {
4897         raw_spin_lock(&kvm_count_lock);
4898         hardware_disable_all_nolock();
4899         raw_spin_unlock(&kvm_count_lock);
4900 }
4901
4902 static int hardware_enable_all(void)
4903 {
4904         int r = 0;
4905
4906         raw_spin_lock(&kvm_count_lock);
4907
4908         kvm_usage_count++;
4909         if (kvm_usage_count == 1) {
4910                 atomic_set(&hardware_enable_failed, 0);
4911                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4912
4913                 if (atomic_read(&hardware_enable_failed)) {
4914                         hardware_disable_all_nolock();
4915                         r = -EBUSY;
4916                 }
4917         }
4918
4919         raw_spin_unlock(&kvm_count_lock);
4920
4921         return r;
4922 }
4923
4924 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4925                       void *v)
4926 {
4927         /*
4928          * Some (well, at least mine) BIOSes hang on reboot if
4929          * in vmx root mode.
4930          *
4931          * And Intel TXT required VMX off for all cpu when system shutdown.
4932          */
4933         pr_info("kvm: exiting hardware virtualization\n");
4934         kvm_rebooting = true;
4935         on_each_cpu(hardware_disable_nolock, NULL, 1);
4936         return NOTIFY_OK;
4937 }
4938
4939 static struct notifier_block kvm_reboot_notifier = {
4940         .notifier_call = kvm_reboot,
4941         .priority = 0,
4942 };
4943
4944 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4945 {
4946         int i;
4947
4948         for (i = 0; i < bus->dev_count; i++) {
4949                 struct kvm_io_device *pos = bus->range[i].dev;
4950
4951                 kvm_iodevice_destructor(pos);
4952         }
4953         kfree(bus);
4954 }
4955
4956 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4957                                  const struct kvm_io_range *r2)
4958 {
4959         gpa_t addr1 = r1->addr;
4960         gpa_t addr2 = r2->addr;
4961
4962         if (addr1 < addr2)
4963                 return -1;
4964
4965         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4966          * accept any overlapping write.  Any order is acceptable for
4967          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4968          * we process all of them.
4969          */
4970         if (r2->len) {
4971                 addr1 += r1->len;
4972                 addr2 += r2->len;
4973         }
4974
4975         if (addr1 > addr2)
4976                 return 1;
4977
4978         return 0;
4979 }
4980
4981 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4982 {
4983         return kvm_io_bus_cmp(p1, p2);
4984 }
4985
4986 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4987                              gpa_t addr, int len)
4988 {
4989         struct kvm_io_range *range, key;
4990         int off;
4991
4992         key = (struct kvm_io_range) {
4993                 .addr = addr,
4994                 .len = len,
4995         };
4996
4997         range = bsearch(&key, bus->range, bus->dev_count,
4998                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4999         if (range == NULL)
5000                 return -ENOENT;
5001
5002         off = range - bus->range;
5003
5004         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5005                 off--;
5006
5007         return off;
5008 }
5009
5010 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5011                               struct kvm_io_range *range, const void *val)
5012 {
5013         int idx;
5014
5015         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5016         if (idx < 0)
5017                 return -EOPNOTSUPP;
5018
5019         while (idx < bus->dev_count &&
5020                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5021                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5022                                         range->len, val))
5023                         return idx;
5024                 idx++;
5025         }
5026
5027         return -EOPNOTSUPP;
5028 }
5029
5030 /* kvm_io_bus_write - called under kvm->slots_lock */
5031 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5032                      int len, const void *val)
5033 {
5034         struct kvm_io_bus *bus;
5035         struct kvm_io_range range;
5036         int r;
5037
5038         range = (struct kvm_io_range) {
5039                 .addr = addr,
5040                 .len = len,
5041         };
5042
5043         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5044         if (!bus)
5045                 return -ENOMEM;
5046         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5047         return r < 0 ? r : 0;
5048 }
5049 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5050
5051 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5052 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5053                             gpa_t addr, int len, const void *val, long cookie)
5054 {
5055         struct kvm_io_bus *bus;
5056         struct kvm_io_range range;
5057
5058         range = (struct kvm_io_range) {
5059                 .addr = addr,
5060                 .len = len,
5061         };
5062
5063         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5064         if (!bus)
5065                 return -ENOMEM;
5066
5067         /* First try the device referenced by cookie. */
5068         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5069             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5070                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5071                                         val))
5072                         return cookie;
5073
5074         /*
5075          * cookie contained garbage; fall back to search and return the
5076          * correct cookie value.
5077          */
5078         return __kvm_io_bus_write(vcpu, bus, &range, val);
5079 }
5080
5081 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5082                              struct kvm_io_range *range, void *val)
5083 {
5084         int idx;
5085
5086         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5087         if (idx < 0)
5088                 return -EOPNOTSUPP;
5089
5090         while (idx < bus->dev_count &&
5091                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5092                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5093                                        range->len, val))
5094                         return idx;
5095                 idx++;
5096         }
5097
5098         return -EOPNOTSUPP;
5099 }
5100
5101 /* kvm_io_bus_read - called under kvm->slots_lock */
5102 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5103                     int len, void *val)
5104 {
5105         struct kvm_io_bus *bus;
5106         struct kvm_io_range range;
5107         int r;
5108
5109         range = (struct kvm_io_range) {
5110                 .addr = addr,
5111                 .len = len,
5112         };
5113
5114         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5115         if (!bus)
5116                 return -ENOMEM;
5117         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5118         return r < 0 ? r : 0;
5119 }
5120
5121 /* Caller must hold slots_lock. */
5122 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5123                             int len, struct kvm_io_device *dev)
5124 {
5125         int i;
5126         struct kvm_io_bus *new_bus, *bus;
5127         struct kvm_io_range range;
5128
5129         bus = kvm_get_bus(kvm, bus_idx);
5130         if (!bus)
5131                 return -ENOMEM;
5132
5133         /* exclude ioeventfd which is limited by maximum fd */
5134         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5135                 return -ENOSPC;
5136
5137         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5138                           GFP_KERNEL_ACCOUNT);
5139         if (!new_bus)
5140                 return -ENOMEM;
5141
5142         range = (struct kvm_io_range) {
5143                 .addr = addr,
5144                 .len = len,
5145                 .dev = dev,
5146         };
5147
5148         for (i = 0; i < bus->dev_count; i++)
5149                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5150                         break;
5151
5152         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5153         new_bus->dev_count++;
5154         new_bus->range[i] = range;
5155         memcpy(new_bus->range + i + 1, bus->range + i,
5156                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5157         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5158         synchronize_srcu_expedited(&kvm->srcu);
5159         kfree(bus);
5160
5161         return 0;
5162 }
5163
5164 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5165                               struct kvm_io_device *dev)
5166 {
5167         int i, j;
5168         struct kvm_io_bus *new_bus, *bus;
5169
5170         lockdep_assert_held(&kvm->slots_lock);
5171
5172         bus = kvm_get_bus(kvm, bus_idx);
5173         if (!bus)
5174                 return 0;
5175
5176         for (i = 0; i < bus->dev_count; i++) {
5177                 if (bus->range[i].dev == dev) {
5178                         break;
5179                 }
5180         }
5181
5182         if (i == bus->dev_count)
5183                 return 0;
5184
5185         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5186                           GFP_KERNEL_ACCOUNT);
5187         if (new_bus) {
5188                 memcpy(new_bus, bus, struct_size(bus, range, i));
5189                 new_bus->dev_count--;
5190                 memcpy(new_bus->range + i, bus->range + i + 1,
5191                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5192         }
5193
5194         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5195         synchronize_srcu_expedited(&kvm->srcu);
5196
5197         /* Destroy the old bus _after_ installing the (null) bus. */
5198         if (!new_bus) {
5199                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5200                 for (j = 0; j < bus->dev_count; j++) {
5201                         if (j == i)
5202                                 continue;
5203                         kvm_iodevice_destructor(bus->range[j].dev);
5204                 }
5205         }
5206
5207         kfree(bus);
5208         return new_bus ? 0 : -ENOMEM;
5209 }
5210
5211 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5212                                          gpa_t addr)
5213 {
5214         struct kvm_io_bus *bus;
5215         int dev_idx, srcu_idx;
5216         struct kvm_io_device *iodev = NULL;
5217
5218         srcu_idx = srcu_read_lock(&kvm->srcu);
5219
5220         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5221         if (!bus)
5222                 goto out_unlock;
5223
5224         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5225         if (dev_idx < 0)
5226                 goto out_unlock;
5227
5228         iodev = bus->range[dev_idx].dev;
5229
5230 out_unlock:
5231         srcu_read_unlock(&kvm->srcu, srcu_idx);
5232
5233         return iodev;
5234 }
5235 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5236
5237 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5238                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5239                            const char *fmt)
5240 {
5241         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5242                                           inode->i_private;
5243
5244         /*
5245          * The debugfs files are a reference to the kvm struct which
5246         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5247         * avoids the race between open and the removal of the debugfs directory.
5248          */
5249         if (!kvm_get_kvm_safe(stat_data->kvm))
5250                 return -ENOENT;
5251
5252         if (simple_attr_open(inode, file, get,
5253                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5254                     ? set : NULL,
5255                     fmt)) {
5256                 kvm_put_kvm(stat_data->kvm);
5257                 return -ENOMEM;
5258         }
5259
5260         return 0;
5261 }
5262
5263 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5264 {
5265         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5266                                           inode->i_private;
5267
5268         simple_attr_release(inode, file);
5269         kvm_put_kvm(stat_data->kvm);
5270
5271         return 0;
5272 }
5273
5274 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5275 {
5276         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5277
5278         return 0;
5279 }
5280
5281 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5282 {
5283         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5284
5285         return 0;
5286 }
5287
5288 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5289 {
5290         unsigned long i;
5291         struct kvm_vcpu *vcpu;
5292
5293         *val = 0;
5294
5295         kvm_for_each_vcpu(i, vcpu, kvm)
5296                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5297
5298         return 0;
5299 }
5300
5301 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5302 {
5303         unsigned long i;
5304         struct kvm_vcpu *vcpu;
5305
5306         kvm_for_each_vcpu(i, vcpu, kvm)
5307                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5308
5309         return 0;
5310 }
5311
5312 static int kvm_stat_data_get(void *data, u64 *val)
5313 {
5314         int r = -EFAULT;
5315         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5316
5317         switch (stat_data->kind) {
5318         case KVM_STAT_VM:
5319                 r = kvm_get_stat_per_vm(stat_data->kvm,
5320                                         stat_data->desc->desc.offset, val);
5321                 break;
5322         case KVM_STAT_VCPU:
5323                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5324                                           stat_data->desc->desc.offset, val);
5325                 break;
5326         }
5327
5328         return r;
5329 }
5330
5331 static int kvm_stat_data_clear(void *data, u64 val)
5332 {
5333         int r = -EFAULT;
5334         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5335
5336         if (val)
5337                 return -EINVAL;
5338
5339         switch (stat_data->kind) {
5340         case KVM_STAT_VM:
5341                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5342                                           stat_data->desc->desc.offset);
5343                 break;
5344         case KVM_STAT_VCPU:
5345                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5346                                             stat_data->desc->desc.offset);
5347                 break;
5348         }
5349
5350         return r;
5351 }
5352
5353 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5354 {
5355         __simple_attr_check_format("%llu\n", 0ull);
5356         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5357                                 kvm_stat_data_clear, "%llu\n");
5358 }
5359
5360 static const struct file_operations stat_fops_per_vm = {
5361         .owner = THIS_MODULE,
5362         .open = kvm_stat_data_open,
5363         .release = kvm_debugfs_release,
5364         .read = simple_attr_read,
5365         .write = simple_attr_write,
5366         .llseek = no_llseek,
5367 };
5368
5369 static int vm_stat_get(void *_offset, u64 *val)
5370 {
5371         unsigned offset = (long)_offset;
5372         struct kvm *kvm;
5373         u64 tmp_val;
5374
5375         *val = 0;
5376         mutex_lock(&kvm_lock);
5377         list_for_each_entry(kvm, &vm_list, vm_list) {
5378                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5379                 *val += tmp_val;
5380         }
5381         mutex_unlock(&kvm_lock);
5382         return 0;
5383 }
5384
5385 static int vm_stat_clear(void *_offset, u64 val)
5386 {
5387         unsigned offset = (long)_offset;
5388         struct kvm *kvm;
5389
5390         if (val)
5391                 return -EINVAL;
5392
5393         mutex_lock(&kvm_lock);
5394         list_for_each_entry(kvm, &vm_list, vm_list) {
5395                 kvm_clear_stat_per_vm(kvm, offset);
5396         }
5397         mutex_unlock(&kvm_lock);
5398
5399         return 0;
5400 }
5401
5402 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5403 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5404
5405 static int vcpu_stat_get(void *_offset, u64 *val)
5406 {
5407         unsigned offset = (long)_offset;
5408         struct kvm *kvm;
5409         u64 tmp_val;
5410
5411         *val = 0;
5412         mutex_lock(&kvm_lock);
5413         list_for_each_entry(kvm, &vm_list, vm_list) {
5414                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5415                 *val += tmp_val;
5416         }
5417         mutex_unlock(&kvm_lock);
5418         return 0;
5419 }
5420
5421 static int vcpu_stat_clear(void *_offset, u64 val)
5422 {
5423         unsigned offset = (long)_offset;
5424         struct kvm *kvm;
5425
5426         if (val)
5427                 return -EINVAL;
5428
5429         mutex_lock(&kvm_lock);
5430         list_for_each_entry(kvm, &vm_list, vm_list) {
5431                 kvm_clear_stat_per_vcpu(kvm, offset);
5432         }
5433         mutex_unlock(&kvm_lock);
5434
5435         return 0;
5436 }
5437
5438 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5439                         "%llu\n");
5440 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5441
5442 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5443 {
5444         struct kobj_uevent_env *env;
5445         unsigned long long created, active;
5446
5447         if (!kvm_dev.this_device || !kvm)
5448                 return;
5449
5450         mutex_lock(&kvm_lock);
5451         if (type == KVM_EVENT_CREATE_VM) {
5452                 kvm_createvm_count++;
5453                 kvm_active_vms++;
5454         } else if (type == KVM_EVENT_DESTROY_VM) {
5455                 kvm_active_vms--;
5456         }
5457         created = kvm_createvm_count;
5458         active = kvm_active_vms;
5459         mutex_unlock(&kvm_lock);
5460
5461         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5462         if (!env)
5463                 return;
5464
5465         add_uevent_var(env, "CREATED=%llu", created);
5466         add_uevent_var(env, "COUNT=%llu", active);
5467
5468         if (type == KVM_EVENT_CREATE_VM) {
5469                 add_uevent_var(env, "EVENT=create");
5470                 kvm->userspace_pid = task_pid_nr(current);
5471         } else if (type == KVM_EVENT_DESTROY_VM) {
5472                 add_uevent_var(env, "EVENT=destroy");
5473         }
5474         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5475
5476         if (kvm->debugfs_dentry) {
5477                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5478
5479                 if (p) {
5480                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5481                         if (!IS_ERR(tmp))
5482                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5483                         kfree(p);
5484                 }
5485         }
5486         /* no need for checks, since we are adding at most only 5 keys */
5487         env->envp[env->envp_idx++] = NULL;
5488         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5489         kfree(env);
5490 }
5491
5492 static void kvm_init_debug(void)
5493 {
5494         const struct file_operations *fops;
5495         const struct _kvm_stats_desc *pdesc;
5496         int i;
5497
5498         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5499
5500         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5501                 pdesc = &kvm_vm_stats_desc[i];
5502                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5503                         fops = &vm_stat_fops;
5504                 else
5505                         fops = &vm_stat_readonly_fops;
5506                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5507                                 kvm_debugfs_dir,
5508                                 (void *)(long)pdesc->desc.offset, fops);
5509         }
5510
5511         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5512                 pdesc = &kvm_vcpu_stats_desc[i];
5513                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5514                         fops = &vcpu_stat_fops;
5515                 else
5516                         fops = &vcpu_stat_readonly_fops;
5517                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5518                                 kvm_debugfs_dir,
5519                                 (void *)(long)pdesc->desc.offset, fops);
5520         }
5521 }
5522
5523 static int kvm_suspend(void)
5524 {
5525         if (kvm_usage_count)
5526                 hardware_disable_nolock(NULL);
5527         return 0;
5528 }
5529
5530 static void kvm_resume(void)
5531 {
5532         if (kvm_usage_count) {
5533 #ifdef CONFIG_LOCKDEP
5534                 WARN_ON(lockdep_is_held(&kvm_count_lock));
5535 #endif
5536                 hardware_enable_nolock(NULL);
5537         }
5538 }
5539
5540 static struct syscore_ops kvm_syscore_ops = {
5541         .suspend = kvm_suspend,
5542         .resume = kvm_resume,
5543 };
5544
5545 static inline
5546 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5547 {
5548         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5549 }
5550
5551 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5552 {
5553         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5554
5555         WRITE_ONCE(vcpu->preempted, false);
5556         WRITE_ONCE(vcpu->ready, false);
5557
5558         __this_cpu_write(kvm_running_vcpu, vcpu);
5559         kvm_arch_sched_in(vcpu, cpu);
5560         kvm_arch_vcpu_load(vcpu, cpu);
5561 }
5562
5563 static void kvm_sched_out(struct preempt_notifier *pn,
5564                           struct task_struct *next)
5565 {
5566         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5567
5568         if (current->on_rq) {
5569                 WRITE_ONCE(vcpu->preempted, true);
5570                 WRITE_ONCE(vcpu->ready, true);
5571         }
5572         kvm_arch_vcpu_put(vcpu);
5573         __this_cpu_write(kvm_running_vcpu, NULL);
5574 }
5575
5576 /**
5577  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5578  *
5579  * We can disable preemption locally around accessing the per-CPU variable,
5580  * and use the resolved vcpu pointer after enabling preemption again,
5581  * because even if the current thread is migrated to another CPU, reading
5582  * the per-CPU value later will give us the same value as we update the
5583  * per-CPU variable in the preempt notifier handlers.
5584  */
5585 struct kvm_vcpu *kvm_get_running_vcpu(void)
5586 {
5587         struct kvm_vcpu *vcpu;
5588
5589         preempt_disable();
5590         vcpu = __this_cpu_read(kvm_running_vcpu);
5591         preempt_enable();
5592
5593         return vcpu;
5594 }
5595 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5596
5597 /**
5598  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5599  */
5600 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5601 {
5602         return &kvm_running_vcpu;
5603 }
5604
5605 #ifdef CONFIG_GUEST_PERF_EVENTS
5606 static unsigned int kvm_guest_state(void)
5607 {
5608         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5609         unsigned int state;
5610
5611         if (!kvm_arch_pmi_in_guest(vcpu))
5612                 return 0;
5613
5614         state = PERF_GUEST_ACTIVE;
5615         if (!kvm_arch_vcpu_in_kernel(vcpu))
5616                 state |= PERF_GUEST_USER;
5617
5618         return state;
5619 }
5620
5621 static unsigned long kvm_guest_get_ip(void)
5622 {
5623         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5624
5625         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5626         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5627                 return 0;
5628
5629         return kvm_arch_vcpu_get_ip(vcpu);
5630 }
5631
5632 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5633         .state                  = kvm_guest_state,
5634         .get_ip                 = kvm_guest_get_ip,
5635         .handle_intel_pt_intr   = NULL,
5636 };
5637
5638 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5639 {
5640         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5641         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5642 }
5643 void kvm_unregister_perf_callbacks(void)
5644 {
5645         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5646 }
5647 #endif
5648
5649 struct kvm_cpu_compat_check {
5650         void *opaque;
5651         int *ret;
5652 };
5653
5654 static void check_processor_compat(void *data)
5655 {
5656         struct kvm_cpu_compat_check *c = data;
5657
5658         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5659 }
5660
5661 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5662                   struct module *module)
5663 {
5664         struct kvm_cpu_compat_check c;
5665         int r;
5666         int cpu;
5667
5668         r = kvm_arch_init(opaque);
5669         if (r)
5670                 goto out_fail;
5671
5672         /*
5673          * kvm_arch_init makes sure there's at most one caller
5674          * for architectures that support multiple implementations,
5675          * like intel and amd on x86.
5676          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5677          * conflicts in case kvm is already setup for another implementation.
5678          */
5679         r = kvm_irqfd_init();
5680         if (r)
5681                 goto out_irqfd;
5682
5683         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5684                 r = -ENOMEM;
5685                 goto out_free_0;
5686         }
5687
5688         r = kvm_arch_hardware_setup(opaque);
5689         if (r < 0)
5690                 goto out_free_1;
5691
5692         c.ret = &r;
5693         c.opaque = opaque;
5694         for_each_online_cpu(cpu) {
5695                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5696                 if (r < 0)
5697                         goto out_free_2;
5698         }
5699
5700         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5701                                       kvm_starting_cpu, kvm_dying_cpu);
5702         if (r)
5703                 goto out_free_2;
5704         register_reboot_notifier(&kvm_reboot_notifier);
5705
5706         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5707         if (!vcpu_align)
5708                 vcpu_align = __alignof__(struct kvm_vcpu);
5709         kvm_vcpu_cache =
5710                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5711                                            SLAB_ACCOUNT,
5712                                            offsetof(struct kvm_vcpu, arch),
5713                                            offsetofend(struct kvm_vcpu, stats_id)
5714                                            - offsetof(struct kvm_vcpu, arch),
5715                                            NULL);
5716         if (!kvm_vcpu_cache) {
5717                 r = -ENOMEM;
5718                 goto out_free_3;
5719         }
5720
5721         for_each_possible_cpu(cpu) {
5722                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5723                                             GFP_KERNEL, cpu_to_node(cpu))) {
5724                         r = -ENOMEM;
5725                         goto out_free_4;
5726                 }
5727         }
5728
5729         r = kvm_async_pf_init();
5730         if (r)
5731                 goto out_free_5;
5732
5733         kvm_chardev_ops.owner = module;
5734         kvm_vm_fops.owner = module;
5735         kvm_vcpu_fops.owner = module;
5736
5737         r = misc_register(&kvm_dev);
5738         if (r) {
5739                 pr_err("kvm: misc device register failed\n");
5740                 goto out_unreg;
5741         }
5742
5743         register_syscore_ops(&kvm_syscore_ops);
5744
5745         kvm_preempt_ops.sched_in = kvm_sched_in;
5746         kvm_preempt_ops.sched_out = kvm_sched_out;
5747
5748         kvm_init_debug();
5749
5750         r = kvm_vfio_ops_init();
5751         WARN_ON(r);
5752
5753         return 0;
5754
5755 out_unreg:
5756         kvm_async_pf_deinit();
5757 out_free_5:
5758         for_each_possible_cpu(cpu)
5759                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5760 out_free_4:
5761         kmem_cache_destroy(kvm_vcpu_cache);
5762 out_free_3:
5763         unregister_reboot_notifier(&kvm_reboot_notifier);
5764         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5765 out_free_2:
5766         kvm_arch_hardware_unsetup();
5767 out_free_1:
5768         free_cpumask_var(cpus_hardware_enabled);
5769 out_free_0:
5770         kvm_irqfd_exit();
5771 out_irqfd:
5772         kvm_arch_exit();
5773 out_fail:
5774         return r;
5775 }
5776 EXPORT_SYMBOL_GPL(kvm_init);
5777
5778 void kvm_exit(void)
5779 {
5780         int cpu;
5781
5782         debugfs_remove_recursive(kvm_debugfs_dir);
5783         misc_deregister(&kvm_dev);
5784         for_each_possible_cpu(cpu)
5785                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5786         kmem_cache_destroy(kvm_vcpu_cache);
5787         kvm_async_pf_deinit();
5788         unregister_syscore_ops(&kvm_syscore_ops);
5789         unregister_reboot_notifier(&kvm_reboot_notifier);
5790         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5791         on_each_cpu(hardware_disable_nolock, NULL, 1);
5792         kvm_arch_hardware_unsetup();
5793         kvm_arch_exit();
5794         kvm_irqfd_exit();
5795         free_cpumask_var(cpus_hardware_enabled);
5796         kvm_vfio_ops_exit();
5797 }
5798 EXPORT_SYMBOL_GPL(kvm_exit);
5799
5800 struct kvm_vm_worker_thread_context {
5801         struct kvm *kvm;
5802         struct task_struct *parent;
5803         struct completion init_done;
5804         kvm_vm_thread_fn_t thread_fn;
5805         uintptr_t data;
5806         int err;
5807 };
5808
5809 static int kvm_vm_worker_thread(void *context)
5810 {
5811         /*
5812          * The init_context is allocated on the stack of the parent thread, so
5813          * we have to locally copy anything that is needed beyond initialization
5814          */
5815         struct kvm_vm_worker_thread_context *init_context = context;
5816         struct kvm *kvm = init_context->kvm;
5817         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5818         uintptr_t data = init_context->data;
5819         int err;
5820
5821         err = kthread_park(current);
5822         /* kthread_park(current) is never supposed to return an error */
5823         WARN_ON(err != 0);
5824         if (err)
5825                 goto init_complete;
5826
5827         err = cgroup_attach_task_all(init_context->parent, current);
5828         if (err) {
5829                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5830                         __func__, err);
5831                 goto init_complete;
5832         }
5833
5834         set_user_nice(current, task_nice(init_context->parent));
5835
5836 init_complete:
5837         init_context->err = err;
5838         complete(&init_context->init_done);
5839         init_context = NULL;
5840
5841         if (err)
5842                 return err;
5843
5844         /* Wait to be woken up by the spawner before proceeding. */
5845         kthread_parkme();
5846
5847         if (!kthread_should_stop())
5848                 err = thread_fn(kvm, data);
5849
5850         return err;
5851 }
5852
5853 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5854                                 uintptr_t data, const char *name,
5855                                 struct task_struct **thread_ptr)
5856 {
5857         struct kvm_vm_worker_thread_context init_context = {};
5858         struct task_struct *thread;
5859
5860         *thread_ptr = NULL;
5861         init_context.kvm = kvm;
5862         init_context.parent = current;
5863         init_context.thread_fn = thread_fn;
5864         init_context.data = data;
5865         init_completion(&init_context.init_done);
5866
5867         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5868                              "%s-%d", name, task_pid_nr(current));
5869         if (IS_ERR(thread))
5870                 return PTR_ERR(thread);
5871
5872         /* kthread_run is never supposed to return NULL */
5873         WARN_ON(thread == NULL);
5874
5875         wait_for_completion(&init_context.init_done);
5876
5877         if (!init_context.err)
5878                 *thread_ptr = thread;
5879
5880         return init_context.err;
5881 }