Merge branch 'kvm-5.16-fixes' into kvm-master
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
159
160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161                                                    unsigned long start, unsigned long end)
162 {
163 }
164
165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166 {
167         /*
168          * The metadata used by is_zone_device_page() to determine whether or
169          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170          * the device has been pinned, e.g. by get_user_pages().  WARN if the
171          * page_count() is zero to help detect bad usage of this helper.
172          */
173         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174                 return false;
175
176         return is_zone_device_page(pfn_to_page(pfn));
177 }
178
179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
180 {
181         /*
182          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183          * perspective they are "normal" pages, albeit with slightly different
184          * usage rules.
185          */
186         if (pfn_valid(pfn))
187                 return PageReserved(pfn_to_page(pfn)) &&
188                        !is_zero_pfn(pfn) &&
189                        !kvm_is_zone_device_pfn(pfn);
190
191         return true;
192 }
193
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199         int cpu = get_cpu();
200
201         __this_cpu_write(kvm_running_vcpu, vcpu);
202         preempt_notifier_register(&vcpu->preempt_notifier);
203         kvm_arch_vcpu_load(vcpu, cpu);
204         put_cpu();
205 }
206 EXPORT_SYMBOL_GPL(vcpu_load);
207
208 void vcpu_put(struct kvm_vcpu *vcpu)
209 {
210         preempt_disable();
211         kvm_arch_vcpu_put(vcpu);
212         preempt_notifier_unregister(&vcpu->preempt_notifier);
213         __this_cpu_write(kvm_running_vcpu, NULL);
214         preempt_enable();
215 }
216 EXPORT_SYMBOL_GPL(vcpu_put);
217
218 /* TODO: merge with kvm_arch_vcpu_should_kick */
219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
220 {
221         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
222
223         /*
224          * We need to wait for the VCPU to reenable interrupts and get out of
225          * READING_SHADOW_PAGE_TABLES mode.
226          */
227         if (req & KVM_REQUEST_WAIT)
228                 return mode != OUTSIDE_GUEST_MODE;
229
230         /*
231          * Need to kick a running VCPU, but otherwise there is nothing to do.
232          */
233         return mode == IN_GUEST_MODE;
234 }
235
236 static void ack_flush(void *_completed)
237 {
238 }
239
240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
241 {
242         if (cpumask_empty(cpus))
243                 return false;
244
245         smp_call_function_many(cpus, ack_flush, NULL, wait);
246         return true;
247 }
248
249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
250                                   unsigned int req, struct cpumask *tmp,
251                                   int current_cpu)
252 {
253         int cpu;
254
255         kvm_make_request(req, vcpu);
256
257         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
258                 return;
259
260         /*
261          * Note, the vCPU could get migrated to a different pCPU at any point
262          * after kvm_request_needs_ipi(), which could result in sending an IPI
263          * to the previous pCPU.  But, that's OK because the purpose of the IPI
264          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
265          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
266          * after this point is also OK, as the requirement is only that KVM wait
267          * for vCPUs that were reading SPTEs _before_ any changes were
268          * finalized. See kvm_vcpu_kick() for more details on handling requests.
269          */
270         if (kvm_request_needs_ipi(vcpu, req)) {
271                 cpu = READ_ONCE(vcpu->cpu);
272                 if (cpu != -1 && cpu != current_cpu)
273                         __cpumask_set_cpu(cpu, tmp);
274         }
275 }
276
277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
278                                  unsigned long *vcpu_bitmap)
279 {
280         struct kvm_vcpu *vcpu;
281         struct cpumask *cpus;
282         int i, me;
283         bool called;
284
285         me = get_cpu();
286
287         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
288         cpumask_clear(cpus);
289
290         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
291                 vcpu = kvm_get_vcpu(kvm, i);
292                 if (!vcpu)
293                         continue;
294                 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
295         }
296
297         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
298         put_cpu();
299
300         return called;
301 }
302
303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
304                                       struct kvm_vcpu *except)
305 {
306         struct kvm_vcpu *vcpu;
307         struct cpumask *cpus;
308         bool called;
309         int i, me;
310
311         me = get_cpu();
312
313         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
314         cpumask_clear(cpus);
315
316         kvm_for_each_vcpu(i, vcpu, kvm) {
317                 if (vcpu == except)
318                         continue;
319                 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
320         }
321
322         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
323         put_cpu();
324
325         return called;
326 }
327
328 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
329 {
330         return kvm_make_all_cpus_request_except(kvm, req, NULL);
331 }
332 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
333
334 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
335 void kvm_flush_remote_tlbs(struct kvm *kvm)
336 {
337         ++kvm->stat.generic.remote_tlb_flush_requests;
338
339         /*
340          * We want to publish modifications to the page tables before reading
341          * mode. Pairs with a memory barrier in arch-specific code.
342          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
343          * and smp_mb in walk_shadow_page_lockless_begin/end.
344          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
345          *
346          * There is already an smp_mb__after_atomic() before
347          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
348          * barrier here.
349          */
350         if (!kvm_arch_flush_remote_tlb(kvm)
351             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
352                 ++kvm->stat.generic.remote_tlb_flush;
353 }
354 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
355 #endif
356
357 void kvm_reload_remote_mmus(struct kvm *kvm)
358 {
359         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
360 }
361
362 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
363 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
364                                                gfp_t gfp_flags)
365 {
366         gfp_flags |= mc->gfp_zero;
367
368         if (mc->kmem_cache)
369                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
370         else
371                 return (void *)__get_free_page(gfp_flags);
372 }
373
374 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
375 {
376         void *obj;
377
378         if (mc->nobjs >= min)
379                 return 0;
380         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
381                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
382                 if (!obj)
383                         return mc->nobjs >= min ? 0 : -ENOMEM;
384                 mc->objects[mc->nobjs++] = obj;
385         }
386         return 0;
387 }
388
389 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
390 {
391         return mc->nobjs;
392 }
393
394 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
395 {
396         while (mc->nobjs) {
397                 if (mc->kmem_cache)
398                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
399                 else
400                         free_page((unsigned long)mc->objects[--mc->nobjs]);
401         }
402 }
403
404 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
405 {
406         void *p;
407
408         if (WARN_ON(!mc->nobjs))
409                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
410         else
411                 p = mc->objects[--mc->nobjs];
412         BUG_ON(!p);
413         return p;
414 }
415 #endif
416
417 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
418 {
419         mutex_init(&vcpu->mutex);
420         vcpu->cpu = -1;
421         vcpu->kvm = kvm;
422         vcpu->vcpu_id = id;
423         vcpu->pid = NULL;
424         rcuwait_init(&vcpu->wait);
425         kvm_async_pf_vcpu_init(vcpu);
426
427         vcpu->pre_pcpu = -1;
428         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
429
430         kvm_vcpu_set_in_spin_loop(vcpu, false);
431         kvm_vcpu_set_dy_eligible(vcpu, false);
432         vcpu->preempted = false;
433         vcpu->ready = false;
434         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
435         vcpu->last_used_slot = 0;
436 }
437
438 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
439 {
440         kvm_dirty_ring_free(&vcpu->dirty_ring);
441         kvm_arch_vcpu_destroy(vcpu);
442
443         /*
444          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
445          * the vcpu->pid pointer, and at destruction time all file descriptors
446          * are already gone.
447          */
448         put_pid(rcu_dereference_protected(vcpu->pid, 1));
449
450         free_page((unsigned long)vcpu->run);
451         kmem_cache_free(kvm_vcpu_cache, vcpu);
452 }
453 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
454
455 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
456 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
457 {
458         return container_of(mn, struct kvm, mmu_notifier);
459 }
460
461 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
462                                               struct mm_struct *mm,
463                                               unsigned long start, unsigned long end)
464 {
465         struct kvm *kvm = mmu_notifier_to_kvm(mn);
466         int idx;
467
468         idx = srcu_read_lock(&kvm->srcu);
469         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
470         srcu_read_unlock(&kvm->srcu, idx);
471 }
472
473 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
474
475 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
476                              unsigned long end);
477
478 struct kvm_hva_range {
479         unsigned long start;
480         unsigned long end;
481         pte_t pte;
482         hva_handler_t handler;
483         on_lock_fn_t on_lock;
484         bool flush_on_ret;
485         bool may_block;
486 };
487
488 /*
489  * Use a dedicated stub instead of NULL to indicate that there is no callback
490  * function/handler.  The compiler technically can't guarantee that a real
491  * function will have a non-zero address, and so it will generate code to
492  * check for !NULL, whereas comparing against a stub will be elided at compile
493  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
494  */
495 static void kvm_null_fn(void)
496 {
497
498 }
499 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
500
501 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
502                                                   const struct kvm_hva_range *range)
503 {
504         bool ret = false, locked = false;
505         struct kvm_gfn_range gfn_range;
506         struct kvm_memory_slot *slot;
507         struct kvm_memslots *slots;
508         int i, idx;
509
510         /* A null handler is allowed if and only if on_lock() is provided. */
511         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
512                          IS_KVM_NULL_FN(range->handler)))
513                 return 0;
514
515         idx = srcu_read_lock(&kvm->srcu);
516
517         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
518                 slots = __kvm_memslots(kvm, i);
519                 kvm_for_each_memslot(slot, slots) {
520                         unsigned long hva_start, hva_end;
521
522                         hva_start = max(range->start, slot->userspace_addr);
523                         hva_end = min(range->end, slot->userspace_addr +
524                                                   (slot->npages << PAGE_SHIFT));
525                         if (hva_start >= hva_end)
526                                 continue;
527
528                         /*
529                          * To optimize for the likely case where the address
530                          * range is covered by zero or one memslots, don't
531                          * bother making these conditional (to avoid writes on
532                          * the second or later invocation of the handler).
533                          */
534                         gfn_range.pte = range->pte;
535                         gfn_range.may_block = range->may_block;
536
537                         /*
538                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
539                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
540                          */
541                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
542                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
543                         gfn_range.slot = slot;
544
545                         if (!locked) {
546                                 locked = true;
547                                 KVM_MMU_LOCK(kvm);
548                                 if (!IS_KVM_NULL_FN(range->on_lock))
549                                         range->on_lock(kvm, range->start, range->end);
550                                 if (IS_KVM_NULL_FN(range->handler))
551                                         break;
552                         }
553                         ret |= range->handler(kvm, &gfn_range);
554                 }
555         }
556
557         if (range->flush_on_ret && ret)
558                 kvm_flush_remote_tlbs(kvm);
559
560         if (locked)
561                 KVM_MMU_UNLOCK(kvm);
562
563         srcu_read_unlock(&kvm->srcu, idx);
564
565         /* The notifiers are averse to booleans. :-( */
566         return (int)ret;
567 }
568
569 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
570                                                 unsigned long start,
571                                                 unsigned long end,
572                                                 pte_t pte,
573                                                 hva_handler_t handler)
574 {
575         struct kvm *kvm = mmu_notifier_to_kvm(mn);
576         const struct kvm_hva_range range = {
577                 .start          = start,
578                 .end            = end,
579                 .pte            = pte,
580                 .handler        = handler,
581                 .on_lock        = (void *)kvm_null_fn,
582                 .flush_on_ret   = true,
583                 .may_block      = false,
584         };
585
586         return __kvm_handle_hva_range(kvm, &range);
587 }
588
589 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
590                                                          unsigned long start,
591                                                          unsigned long end,
592                                                          hva_handler_t handler)
593 {
594         struct kvm *kvm = mmu_notifier_to_kvm(mn);
595         const struct kvm_hva_range range = {
596                 .start          = start,
597                 .end            = end,
598                 .pte            = __pte(0),
599                 .handler        = handler,
600                 .on_lock        = (void *)kvm_null_fn,
601                 .flush_on_ret   = false,
602                 .may_block      = false,
603         };
604
605         return __kvm_handle_hva_range(kvm, &range);
606 }
607 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
608                                         struct mm_struct *mm,
609                                         unsigned long address,
610                                         pte_t pte)
611 {
612         struct kvm *kvm = mmu_notifier_to_kvm(mn);
613
614         trace_kvm_set_spte_hva(address);
615
616         /*
617          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
618          * If mmu_notifier_count is zero, then no in-progress invalidations,
619          * including this one, found a relevant memslot at start(); rechecking
620          * memslots here is unnecessary.  Note, a false positive (count elevated
621          * by a different invalidation) is sub-optimal but functionally ok.
622          */
623         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
624         if (!READ_ONCE(kvm->mmu_notifier_count))
625                 return;
626
627         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
628 }
629
630 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
631                                    unsigned long end)
632 {
633         /*
634          * The count increase must become visible at unlock time as no
635          * spte can be established without taking the mmu_lock and
636          * count is also read inside the mmu_lock critical section.
637          */
638         kvm->mmu_notifier_count++;
639         if (likely(kvm->mmu_notifier_count == 1)) {
640                 kvm->mmu_notifier_range_start = start;
641                 kvm->mmu_notifier_range_end = end;
642         } else {
643                 /*
644                  * Fully tracking multiple concurrent ranges has dimishing
645                  * returns. Keep things simple and just find the minimal range
646                  * which includes the current and new ranges. As there won't be
647                  * enough information to subtract a range after its invalidate
648                  * completes, any ranges invalidated concurrently will
649                  * accumulate and persist until all outstanding invalidates
650                  * complete.
651                  */
652                 kvm->mmu_notifier_range_start =
653                         min(kvm->mmu_notifier_range_start, start);
654                 kvm->mmu_notifier_range_end =
655                         max(kvm->mmu_notifier_range_end, end);
656         }
657 }
658
659 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
660                                         const struct mmu_notifier_range *range)
661 {
662         struct kvm *kvm = mmu_notifier_to_kvm(mn);
663         const struct kvm_hva_range hva_range = {
664                 .start          = range->start,
665                 .end            = range->end,
666                 .pte            = __pte(0),
667                 .handler        = kvm_unmap_gfn_range,
668                 .on_lock        = kvm_inc_notifier_count,
669                 .flush_on_ret   = true,
670                 .may_block      = mmu_notifier_range_blockable(range),
671         };
672
673         trace_kvm_unmap_hva_range(range->start, range->end);
674
675         /*
676          * Prevent memslot modification between range_start() and range_end()
677          * so that conditionally locking provides the same result in both
678          * functions.  Without that guarantee, the mmu_notifier_count
679          * adjustments will be imbalanced.
680          *
681          * Pairs with the decrement in range_end().
682          */
683         spin_lock(&kvm->mn_invalidate_lock);
684         kvm->mn_active_invalidate_count++;
685         spin_unlock(&kvm->mn_invalidate_lock);
686
687         __kvm_handle_hva_range(kvm, &hva_range);
688
689         return 0;
690 }
691
692 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
693                                    unsigned long end)
694 {
695         /*
696          * This sequence increase will notify the kvm page fault that
697          * the page that is going to be mapped in the spte could have
698          * been freed.
699          */
700         kvm->mmu_notifier_seq++;
701         smp_wmb();
702         /*
703          * The above sequence increase must be visible before the
704          * below count decrease, which is ensured by the smp_wmb above
705          * in conjunction with the smp_rmb in mmu_notifier_retry().
706          */
707         kvm->mmu_notifier_count--;
708 }
709
710 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
711                                         const struct mmu_notifier_range *range)
712 {
713         struct kvm *kvm = mmu_notifier_to_kvm(mn);
714         const struct kvm_hva_range hva_range = {
715                 .start          = range->start,
716                 .end            = range->end,
717                 .pte            = __pte(0),
718                 .handler        = (void *)kvm_null_fn,
719                 .on_lock        = kvm_dec_notifier_count,
720                 .flush_on_ret   = false,
721                 .may_block      = mmu_notifier_range_blockable(range),
722         };
723         bool wake;
724
725         __kvm_handle_hva_range(kvm, &hva_range);
726
727         /* Pairs with the increment in range_start(). */
728         spin_lock(&kvm->mn_invalidate_lock);
729         wake = (--kvm->mn_active_invalidate_count == 0);
730         spin_unlock(&kvm->mn_invalidate_lock);
731
732         /*
733          * There can only be one waiter, since the wait happens under
734          * slots_lock.
735          */
736         if (wake)
737                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
738
739         BUG_ON(kvm->mmu_notifier_count < 0);
740 }
741
742 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
743                                               struct mm_struct *mm,
744                                               unsigned long start,
745                                               unsigned long end)
746 {
747         trace_kvm_age_hva(start, end);
748
749         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
750 }
751
752 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
753                                         struct mm_struct *mm,
754                                         unsigned long start,
755                                         unsigned long end)
756 {
757         trace_kvm_age_hva(start, end);
758
759         /*
760          * Even though we do not flush TLB, this will still adversely
761          * affect performance on pre-Haswell Intel EPT, where there is
762          * no EPT Access Bit to clear so that we have to tear down EPT
763          * tables instead. If we find this unacceptable, we can always
764          * add a parameter to kvm_age_hva so that it effectively doesn't
765          * do anything on clear_young.
766          *
767          * Also note that currently we never issue secondary TLB flushes
768          * from clear_young, leaving this job up to the regular system
769          * cadence. If we find this inaccurate, we might come up with a
770          * more sophisticated heuristic later.
771          */
772         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
773 }
774
775 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
776                                        struct mm_struct *mm,
777                                        unsigned long address)
778 {
779         trace_kvm_test_age_hva(address);
780
781         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
782                                              kvm_test_age_gfn);
783 }
784
785 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
786                                      struct mm_struct *mm)
787 {
788         struct kvm *kvm = mmu_notifier_to_kvm(mn);
789         int idx;
790
791         idx = srcu_read_lock(&kvm->srcu);
792         kvm_arch_flush_shadow_all(kvm);
793         srcu_read_unlock(&kvm->srcu, idx);
794 }
795
796 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
797         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
798         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
799         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
800         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
801         .clear_young            = kvm_mmu_notifier_clear_young,
802         .test_young             = kvm_mmu_notifier_test_young,
803         .change_pte             = kvm_mmu_notifier_change_pte,
804         .release                = kvm_mmu_notifier_release,
805 };
806
807 static int kvm_init_mmu_notifier(struct kvm *kvm)
808 {
809         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
810         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
811 }
812
813 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
814
815 static int kvm_init_mmu_notifier(struct kvm *kvm)
816 {
817         return 0;
818 }
819
820 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
821
822 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
823 static int kvm_pm_notifier_call(struct notifier_block *bl,
824                                 unsigned long state,
825                                 void *unused)
826 {
827         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
828
829         return kvm_arch_pm_notifier(kvm, state);
830 }
831
832 static void kvm_init_pm_notifier(struct kvm *kvm)
833 {
834         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
835         /* Suspend KVM before we suspend ftrace, RCU, etc. */
836         kvm->pm_notifier.priority = INT_MAX;
837         register_pm_notifier(&kvm->pm_notifier);
838 }
839
840 static void kvm_destroy_pm_notifier(struct kvm *kvm)
841 {
842         unregister_pm_notifier(&kvm->pm_notifier);
843 }
844 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
845 static void kvm_init_pm_notifier(struct kvm *kvm)
846 {
847 }
848
849 static void kvm_destroy_pm_notifier(struct kvm *kvm)
850 {
851 }
852 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
853
854 static struct kvm_memslots *kvm_alloc_memslots(void)
855 {
856         int i;
857         struct kvm_memslots *slots;
858
859         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
860         if (!slots)
861                 return NULL;
862
863         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
864                 slots->id_to_index[i] = -1;
865
866         return slots;
867 }
868
869 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
870 {
871         if (!memslot->dirty_bitmap)
872                 return;
873
874         kvfree(memslot->dirty_bitmap);
875         memslot->dirty_bitmap = NULL;
876 }
877
878 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
879 {
880         kvm_destroy_dirty_bitmap(slot);
881
882         kvm_arch_free_memslot(kvm, slot);
883
884         slot->flags = 0;
885         slot->npages = 0;
886 }
887
888 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
889 {
890         struct kvm_memory_slot *memslot;
891
892         if (!slots)
893                 return;
894
895         kvm_for_each_memslot(memslot, slots)
896                 kvm_free_memslot(kvm, memslot);
897
898         kvfree(slots);
899 }
900
901 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
902 {
903         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
904         case KVM_STATS_TYPE_INSTANT:
905                 return 0444;
906         case KVM_STATS_TYPE_CUMULATIVE:
907         case KVM_STATS_TYPE_PEAK:
908         default:
909                 return 0644;
910         }
911 }
912
913
914 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
915 {
916         int i;
917         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
918                                       kvm_vcpu_stats_header.num_desc;
919
920         if (!kvm->debugfs_dentry)
921                 return;
922
923         debugfs_remove_recursive(kvm->debugfs_dentry);
924
925         if (kvm->debugfs_stat_data) {
926                 for (i = 0; i < kvm_debugfs_num_entries; i++)
927                         kfree(kvm->debugfs_stat_data[i]);
928                 kfree(kvm->debugfs_stat_data);
929         }
930 }
931
932 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
933 {
934         static DEFINE_MUTEX(kvm_debugfs_lock);
935         struct dentry *dent;
936         char dir_name[ITOA_MAX_LEN * 2];
937         struct kvm_stat_data *stat_data;
938         const struct _kvm_stats_desc *pdesc;
939         int i, ret;
940         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
941                                       kvm_vcpu_stats_header.num_desc;
942
943         if (!debugfs_initialized())
944                 return 0;
945
946         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
947         mutex_lock(&kvm_debugfs_lock);
948         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
949         if (dent) {
950                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
951                 dput(dent);
952                 mutex_unlock(&kvm_debugfs_lock);
953                 return 0;
954         }
955         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
956         mutex_unlock(&kvm_debugfs_lock);
957         if (IS_ERR(dent))
958                 return 0;
959
960         kvm->debugfs_dentry = dent;
961         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
962                                          sizeof(*kvm->debugfs_stat_data),
963                                          GFP_KERNEL_ACCOUNT);
964         if (!kvm->debugfs_stat_data)
965                 return -ENOMEM;
966
967         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
968                 pdesc = &kvm_vm_stats_desc[i];
969                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
970                 if (!stat_data)
971                         return -ENOMEM;
972
973                 stat_data->kvm = kvm;
974                 stat_data->desc = pdesc;
975                 stat_data->kind = KVM_STAT_VM;
976                 kvm->debugfs_stat_data[i] = stat_data;
977                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
978                                     kvm->debugfs_dentry, stat_data,
979                                     &stat_fops_per_vm);
980         }
981
982         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
983                 pdesc = &kvm_vcpu_stats_desc[i];
984                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
985                 if (!stat_data)
986                         return -ENOMEM;
987
988                 stat_data->kvm = kvm;
989                 stat_data->desc = pdesc;
990                 stat_data->kind = KVM_STAT_VCPU;
991                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
992                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
993                                     kvm->debugfs_dentry, stat_data,
994                                     &stat_fops_per_vm);
995         }
996
997         ret = kvm_arch_create_vm_debugfs(kvm);
998         if (ret) {
999                 kvm_destroy_vm_debugfs(kvm);
1000                 return i;
1001         }
1002
1003         return 0;
1004 }
1005
1006 /*
1007  * Called after the VM is otherwise initialized, but just before adding it to
1008  * the vm_list.
1009  */
1010 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1011 {
1012         return 0;
1013 }
1014
1015 /*
1016  * Called just after removing the VM from the vm_list, but before doing any
1017  * other destruction.
1018  */
1019 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1020 {
1021 }
1022
1023 /*
1024  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1025  * be setup already, so we can create arch-specific debugfs entries under it.
1026  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1027  * a per-arch destroy interface is not needed.
1028  */
1029 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1030 {
1031         return 0;
1032 }
1033
1034 static struct kvm *kvm_create_vm(unsigned long type)
1035 {
1036         struct kvm *kvm = kvm_arch_alloc_vm();
1037         int r = -ENOMEM;
1038         int i;
1039
1040         if (!kvm)
1041                 return ERR_PTR(-ENOMEM);
1042
1043         KVM_MMU_LOCK_INIT(kvm);
1044         mmgrab(current->mm);
1045         kvm->mm = current->mm;
1046         kvm_eventfd_init(kvm);
1047         mutex_init(&kvm->lock);
1048         mutex_init(&kvm->irq_lock);
1049         mutex_init(&kvm->slots_lock);
1050         mutex_init(&kvm->slots_arch_lock);
1051         spin_lock_init(&kvm->mn_invalidate_lock);
1052         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1053
1054         INIT_LIST_HEAD(&kvm->devices);
1055
1056         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1057
1058         if (init_srcu_struct(&kvm->srcu))
1059                 goto out_err_no_srcu;
1060         if (init_srcu_struct(&kvm->irq_srcu))
1061                 goto out_err_no_irq_srcu;
1062
1063         refcount_set(&kvm->users_count, 1);
1064         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1065                 struct kvm_memslots *slots = kvm_alloc_memslots();
1066
1067                 if (!slots)
1068                         goto out_err_no_arch_destroy_vm;
1069                 /* Generations must be different for each address space. */
1070                 slots->generation = i;
1071                 rcu_assign_pointer(kvm->memslots[i], slots);
1072         }
1073
1074         for (i = 0; i < KVM_NR_BUSES; i++) {
1075                 rcu_assign_pointer(kvm->buses[i],
1076                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1077                 if (!kvm->buses[i])
1078                         goto out_err_no_arch_destroy_vm;
1079         }
1080
1081         kvm->max_halt_poll_ns = halt_poll_ns;
1082
1083         r = kvm_arch_init_vm(kvm, type);
1084         if (r)
1085                 goto out_err_no_arch_destroy_vm;
1086
1087         r = hardware_enable_all();
1088         if (r)
1089                 goto out_err_no_disable;
1090
1091 #ifdef CONFIG_HAVE_KVM_IRQFD
1092         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1093 #endif
1094
1095         r = kvm_init_mmu_notifier(kvm);
1096         if (r)
1097                 goto out_err_no_mmu_notifier;
1098
1099         r = kvm_arch_post_init_vm(kvm);
1100         if (r)
1101                 goto out_err;
1102
1103         mutex_lock(&kvm_lock);
1104         list_add(&kvm->vm_list, &vm_list);
1105         mutex_unlock(&kvm_lock);
1106
1107         preempt_notifier_inc();
1108         kvm_init_pm_notifier(kvm);
1109
1110         return kvm;
1111
1112 out_err:
1113 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1114         if (kvm->mmu_notifier.ops)
1115                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1116 #endif
1117 out_err_no_mmu_notifier:
1118         hardware_disable_all();
1119 out_err_no_disable:
1120         kvm_arch_destroy_vm(kvm);
1121 out_err_no_arch_destroy_vm:
1122         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1123         for (i = 0; i < KVM_NR_BUSES; i++)
1124                 kfree(kvm_get_bus(kvm, i));
1125         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1126                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1127         cleanup_srcu_struct(&kvm->irq_srcu);
1128 out_err_no_irq_srcu:
1129         cleanup_srcu_struct(&kvm->srcu);
1130 out_err_no_srcu:
1131         kvm_arch_free_vm(kvm);
1132         mmdrop(current->mm);
1133         return ERR_PTR(r);
1134 }
1135
1136 static void kvm_destroy_devices(struct kvm *kvm)
1137 {
1138         struct kvm_device *dev, *tmp;
1139
1140         /*
1141          * We do not need to take the kvm->lock here, because nobody else
1142          * has a reference to the struct kvm at this point and therefore
1143          * cannot access the devices list anyhow.
1144          */
1145         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1146                 list_del(&dev->vm_node);
1147                 dev->ops->destroy(dev);
1148         }
1149 }
1150
1151 static void kvm_destroy_vm(struct kvm *kvm)
1152 {
1153         int i;
1154         struct mm_struct *mm = kvm->mm;
1155
1156         kvm_destroy_pm_notifier(kvm);
1157         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1158         kvm_destroy_vm_debugfs(kvm);
1159         kvm_arch_sync_events(kvm);
1160         mutex_lock(&kvm_lock);
1161         list_del(&kvm->vm_list);
1162         mutex_unlock(&kvm_lock);
1163         kvm_arch_pre_destroy_vm(kvm);
1164
1165         kvm_free_irq_routing(kvm);
1166         for (i = 0; i < KVM_NR_BUSES; i++) {
1167                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1168
1169                 if (bus)
1170                         kvm_io_bus_destroy(bus);
1171                 kvm->buses[i] = NULL;
1172         }
1173         kvm_coalesced_mmio_free(kvm);
1174 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1175         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1176         /*
1177          * At this point, pending calls to invalidate_range_start()
1178          * have completed but no more MMU notifiers will run, so
1179          * mn_active_invalidate_count may remain unbalanced.
1180          * No threads can be waiting in install_new_memslots as the
1181          * last reference on KVM has been dropped, but freeing
1182          * memslots would deadlock without this manual intervention.
1183          */
1184         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1185         kvm->mn_active_invalidate_count = 0;
1186 #else
1187         kvm_arch_flush_shadow_all(kvm);
1188 #endif
1189         kvm_arch_destroy_vm(kvm);
1190         kvm_destroy_devices(kvm);
1191         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1192                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1193         cleanup_srcu_struct(&kvm->irq_srcu);
1194         cleanup_srcu_struct(&kvm->srcu);
1195         kvm_arch_free_vm(kvm);
1196         preempt_notifier_dec();
1197         hardware_disable_all();
1198         mmdrop(mm);
1199 }
1200
1201 void kvm_get_kvm(struct kvm *kvm)
1202 {
1203         refcount_inc(&kvm->users_count);
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1206
1207 /*
1208  * Make sure the vm is not during destruction, which is a safe version of
1209  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1210  */
1211 bool kvm_get_kvm_safe(struct kvm *kvm)
1212 {
1213         return refcount_inc_not_zero(&kvm->users_count);
1214 }
1215 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1216
1217 void kvm_put_kvm(struct kvm *kvm)
1218 {
1219         if (refcount_dec_and_test(&kvm->users_count))
1220                 kvm_destroy_vm(kvm);
1221 }
1222 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1223
1224 /*
1225  * Used to put a reference that was taken on behalf of an object associated
1226  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1227  * of the new file descriptor fails and the reference cannot be transferred to
1228  * its final owner.  In such cases, the caller is still actively using @kvm and
1229  * will fail miserably if the refcount unexpectedly hits zero.
1230  */
1231 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1232 {
1233         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1236
1237 static int kvm_vm_release(struct inode *inode, struct file *filp)
1238 {
1239         struct kvm *kvm = filp->private_data;
1240
1241         kvm_irqfd_release(kvm);
1242
1243         kvm_put_kvm(kvm);
1244         return 0;
1245 }
1246
1247 /*
1248  * Allocation size is twice as large as the actual dirty bitmap size.
1249  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1250  */
1251 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1252 {
1253         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1254
1255         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1256         if (!memslot->dirty_bitmap)
1257                 return -ENOMEM;
1258
1259         return 0;
1260 }
1261
1262 /*
1263  * Delete a memslot by decrementing the number of used slots and shifting all
1264  * other entries in the array forward one spot.
1265  */
1266 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1267                                       struct kvm_memory_slot *memslot)
1268 {
1269         struct kvm_memory_slot *mslots = slots->memslots;
1270         int i;
1271
1272         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1273                 return;
1274
1275         slots->used_slots--;
1276
1277         if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1278                 atomic_set(&slots->last_used_slot, 0);
1279
1280         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1281                 mslots[i] = mslots[i + 1];
1282                 slots->id_to_index[mslots[i].id] = i;
1283         }
1284         mslots[i] = *memslot;
1285         slots->id_to_index[memslot->id] = -1;
1286 }
1287
1288 /*
1289  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1290  * the new slot's initial index into the memslots array.
1291  */
1292 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1293 {
1294         return slots->used_slots++;
1295 }
1296
1297 /*
1298  * Move a changed memslot backwards in the array by shifting existing slots
1299  * with a higher GFN toward the front of the array.  Note, the changed memslot
1300  * itself is not preserved in the array, i.e. not swapped at this time, only
1301  * its new index into the array is tracked.  Returns the changed memslot's
1302  * current index into the memslots array.
1303  */
1304 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1305                                             struct kvm_memory_slot *memslot)
1306 {
1307         struct kvm_memory_slot *mslots = slots->memslots;
1308         int i;
1309
1310         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1311             WARN_ON_ONCE(!slots->used_slots))
1312                 return -1;
1313
1314         /*
1315          * Move the target memslot backward in the array by shifting existing
1316          * memslots with a higher GFN (than the target memslot) towards the
1317          * front of the array.
1318          */
1319         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1320                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1321                         break;
1322
1323                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1324
1325                 /* Shift the next memslot forward one and update its index. */
1326                 mslots[i] = mslots[i + 1];
1327                 slots->id_to_index[mslots[i].id] = i;
1328         }
1329         return i;
1330 }
1331
1332 /*
1333  * Move a changed memslot forwards in the array by shifting existing slots with
1334  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1335  * is not preserved in the array, i.e. not swapped at this time, only its new
1336  * index into the array is tracked.  Returns the changed memslot's final index
1337  * into the memslots array.
1338  */
1339 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1340                                            struct kvm_memory_slot *memslot,
1341                                            int start)
1342 {
1343         struct kvm_memory_slot *mslots = slots->memslots;
1344         int i;
1345
1346         for (i = start; i > 0; i--) {
1347                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1348                         break;
1349
1350                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1351
1352                 /* Shift the next memslot back one and update its index. */
1353                 mslots[i] = mslots[i - 1];
1354                 slots->id_to_index[mslots[i].id] = i;
1355         }
1356         return i;
1357 }
1358
1359 /*
1360  * Re-sort memslots based on their GFN to account for an added, deleted, or
1361  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1362  * memslot lookup.
1363  *
1364  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1365  * at memslots[0] has the highest GFN.
1366  *
1367  * The sorting algorithm takes advantage of having initially sorted memslots
1368  * and knowing the position of the changed memslot.  Sorting is also optimized
1369  * by not swapping the updated memslot and instead only shifting other memslots
1370  * and tracking the new index for the update memslot.  Only once its final
1371  * index is known is the updated memslot copied into its position in the array.
1372  *
1373  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1374  *    the end of the array.
1375  *
1376  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1377  *    end of the array and then it forward to its correct location.
1378  *
1379  *  - When moving a memslot, the algorithm first moves the updated memslot
1380  *    backward to handle the scenario where the memslot's GFN was changed to a
1381  *    lower value.  update_memslots() then falls through and runs the same flow
1382  *    as creating a memslot to move the memslot forward to handle the scenario
1383  *    where its GFN was changed to a higher value.
1384  *
1385  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1386  * historical reasons.  Originally, invalid memslots where denoted by having
1387  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1388  * to the end of the array.  The current algorithm uses dedicated logic to
1389  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1390  *
1391  * The other historical motiviation for highest->lowest was to improve the
1392  * performance of memslot lookup.  KVM originally used a linear search starting
1393  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1394  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1395  * single memslot above the 4gb boundary.  As the largest memslot is also the
1396  * most likely to be referenced, sorting it to the front of the array was
1397  * advantageous.  The current binary search starts from the middle of the array
1398  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1399  */
1400 static void update_memslots(struct kvm_memslots *slots,
1401                             struct kvm_memory_slot *memslot,
1402                             enum kvm_mr_change change)
1403 {
1404         int i;
1405
1406         if (change == KVM_MR_DELETE) {
1407                 kvm_memslot_delete(slots, memslot);
1408         } else {
1409                 if (change == KVM_MR_CREATE)
1410                         i = kvm_memslot_insert_back(slots);
1411                 else
1412                         i = kvm_memslot_move_backward(slots, memslot);
1413                 i = kvm_memslot_move_forward(slots, memslot, i);
1414
1415                 /*
1416                  * Copy the memslot to its new position in memslots and update
1417                  * its index accordingly.
1418                  */
1419                 slots->memslots[i] = *memslot;
1420                 slots->id_to_index[memslot->id] = i;
1421         }
1422 }
1423
1424 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1425 {
1426         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1427
1428 #ifdef __KVM_HAVE_READONLY_MEM
1429         valid_flags |= KVM_MEM_READONLY;
1430 #endif
1431
1432         if (mem->flags & ~valid_flags)
1433                 return -EINVAL;
1434
1435         return 0;
1436 }
1437
1438 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1439                 int as_id, struct kvm_memslots *slots)
1440 {
1441         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1442         u64 gen = old_memslots->generation;
1443
1444         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1445         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1446
1447         /*
1448          * Do not store the new memslots while there are invalidations in
1449          * progress, otherwise the locking in invalidate_range_start and
1450          * invalidate_range_end will be unbalanced.
1451          */
1452         spin_lock(&kvm->mn_invalidate_lock);
1453         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1454         while (kvm->mn_active_invalidate_count) {
1455                 set_current_state(TASK_UNINTERRUPTIBLE);
1456                 spin_unlock(&kvm->mn_invalidate_lock);
1457                 schedule();
1458                 spin_lock(&kvm->mn_invalidate_lock);
1459         }
1460         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1461         rcu_assign_pointer(kvm->memslots[as_id], slots);
1462         spin_unlock(&kvm->mn_invalidate_lock);
1463
1464         /*
1465          * Acquired in kvm_set_memslot. Must be released before synchronize
1466          * SRCU below in order to avoid deadlock with another thread
1467          * acquiring the slots_arch_lock in an srcu critical section.
1468          */
1469         mutex_unlock(&kvm->slots_arch_lock);
1470
1471         synchronize_srcu_expedited(&kvm->srcu);
1472
1473         /*
1474          * Increment the new memslot generation a second time, dropping the
1475          * update in-progress flag and incrementing the generation based on
1476          * the number of address spaces.  This provides a unique and easily
1477          * identifiable generation number while the memslots are in flux.
1478          */
1479         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1480
1481         /*
1482          * Generations must be unique even across address spaces.  We do not need
1483          * a global counter for that, instead the generation space is evenly split
1484          * across address spaces.  For example, with two address spaces, address
1485          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1486          * use generations 1, 3, 5, ...
1487          */
1488         gen += KVM_ADDRESS_SPACE_NUM;
1489
1490         kvm_arch_memslots_updated(kvm, gen);
1491
1492         slots->generation = gen;
1493
1494         return old_memslots;
1495 }
1496
1497 static size_t kvm_memslots_size(int slots)
1498 {
1499         return sizeof(struct kvm_memslots) +
1500                (sizeof(struct kvm_memory_slot) * slots);
1501 }
1502
1503 static void kvm_copy_memslots(struct kvm_memslots *to,
1504                               struct kvm_memslots *from)
1505 {
1506         memcpy(to, from, kvm_memslots_size(from->used_slots));
1507 }
1508
1509 /*
1510  * Note, at a minimum, the current number of used slots must be allocated, even
1511  * when deleting a memslot, as we need a complete duplicate of the memslots for
1512  * use when invalidating a memslot prior to deleting/moving the memslot.
1513  */
1514 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1515                                              enum kvm_mr_change change)
1516 {
1517         struct kvm_memslots *slots;
1518         size_t new_size;
1519
1520         if (change == KVM_MR_CREATE)
1521                 new_size = kvm_memslots_size(old->used_slots + 1);
1522         else
1523                 new_size = kvm_memslots_size(old->used_slots);
1524
1525         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1526         if (likely(slots))
1527                 kvm_copy_memslots(slots, old);
1528
1529         return slots;
1530 }
1531
1532 static int kvm_set_memslot(struct kvm *kvm,
1533                            const struct kvm_userspace_memory_region *mem,
1534                            struct kvm_memory_slot *old,
1535                            struct kvm_memory_slot *new, int as_id,
1536                            enum kvm_mr_change change)
1537 {
1538         struct kvm_memory_slot *slot;
1539         struct kvm_memslots *slots;
1540         int r;
1541
1542         /*
1543          * Released in install_new_memslots.
1544          *
1545          * Must be held from before the current memslots are copied until
1546          * after the new memslots are installed with rcu_assign_pointer,
1547          * then released before the synchronize srcu in install_new_memslots.
1548          *
1549          * When modifying memslots outside of the slots_lock, must be held
1550          * before reading the pointer to the current memslots until after all
1551          * changes to those memslots are complete.
1552          *
1553          * These rules ensure that installing new memslots does not lose
1554          * changes made to the previous memslots.
1555          */
1556         mutex_lock(&kvm->slots_arch_lock);
1557
1558         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1559         if (!slots) {
1560                 mutex_unlock(&kvm->slots_arch_lock);
1561                 return -ENOMEM;
1562         }
1563
1564         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1565                 /*
1566                  * Note, the INVALID flag needs to be in the appropriate entry
1567                  * in the freshly allocated memslots, not in @old or @new.
1568                  */
1569                 slot = id_to_memslot(slots, old->id);
1570                 slot->flags |= KVM_MEMSLOT_INVALID;
1571
1572                 /*
1573                  * We can re-use the memory from the old memslots.
1574                  * It will be overwritten with a copy of the new memslots
1575                  * after reacquiring the slots_arch_lock below.
1576                  */
1577                 slots = install_new_memslots(kvm, as_id, slots);
1578
1579                 /* From this point no new shadow pages pointing to a deleted,
1580                  * or moved, memslot will be created.
1581                  *
1582                  * validation of sp->gfn happens in:
1583                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1584                  *      - kvm_is_visible_gfn (mmu_check_root)
1585                  */
1586                 kvm_arch_flush_shadow_memslot(kvm, slot);
1587
1588                 /* Released in install_new_memslots. */
1589                 mutex_lock(&kvm->slots_arch_lock);
1590
1591                 /*
1592                  * The arch-specific fields of the memslots could have changed
1593                  * between releasing the slots_arch_lock in
1594                  * install_new_memslots and here, so get a fresh copy of the
1595                  * slots.
1596                  */
1597                 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1598         }
1599
1600         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1601         if (r)
1602                 goto out_slots;
1603
1604         update_memslots(slots, new, change);
1605         slots = install_new_memslots(kvm, as_id, slots);
1606
1607         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1608
1609         kvfree(slots);
1610         return 0;
1611
1612 out_slots:
1613         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1614                 slot = id_to_memslot(slots, old->id);
1615                 slot->flags &= ~KVM_MEMSLOT_INVALID;
1616                 slots = install_new_memslots(kvm, as_id, slots);
1617         } else {
1618                 mutex_unlock(&kvm->slots_arch_lock);
1619         }
1620         kvfree(slots);
1621         return r;
1622 }
1623
1624 static int kvm_delete_memslot(struct kvm *kvm,
1625                               const struct kvm_userspace_memory_region *mem,
1626                               struct kvm_memory_slot *old, int as_id)
1627 {
1628         struct kvm_memory_slot new;
1629         int r;
1630
1631         if (!old->npages)
1632                 return -EINVAL;
1633
1634         memset(&new, 0, sizeof(new));
1635         new.id = old->id;
1636         /*
1637          * This is only for debugging purpose; it should never be referenced
1638          * for a removed memslot.
1639          */
1640         new.as_id = as_id;
1641
1642         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1643         if (r)
1644                 return r;
1645
1646         kvm_free_memslot(kvm, old);
1647         return 0;
1648 }
1649
1650 /*
1651  * Allocate some memory and give it an address in the guest physical address
1652  * space.
1653  *
1654  * Discontiguous memory is allowed, mostly for framebuffers.
1655  *
1656  * Must be called holding kvm->slots_lock for write.
1657  */
1658 int __kvm_set_memory_region(struct kvm *kvm,
1659                             const struct kvm_userspace_memory_region *mem)
1660 {
1661         struct kvm_memory_slot old, new;
1662         struct kvm_memory_slot *tmp;
1663         enum kvm_mr_change change;
1664         int as_id, id;
1665         int r;
1666
1667         r = check_memory_region_flags(mem);
1668         if (r)
1669                 return r;
1670
1671         as_id = mem->slot >> 16;
1672         id = (u16)mem->slot;
1673
1674         /* General sanity checks */
1675         if (mem->memory_size & (PAGE_SIZE - 1))
1676                 return -EINVAL;
1677         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1678                 return -EINVAL;
1679         /* We can read the guest memory with __xxx_user() later on. */
1680         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1681             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1682              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1683                         mem->memory_size))
1684                 return -EINVAL;
1685         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1686                 return -EINVAL;
1687         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1688                 return -EINVAL;
1689
1690         /*
1691          * Make a full copy of the old memslot, the pointer will become stale
1692          * when the memslots are re-sorted by update_memslots(), and the old
1693          * memslot needs to be referenced after calling update_memslots(), e.g.
1694          * to free its resources and for arch specific behavior.
1695          */
1696         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1697         if (tmp) {
1698                 old = *tmp;
1699                 tmp = NULL;
1700         } else {
1701                 memset(&old, 0, sizeof(old));
1702                 old.id = id;
1703         }
1704
1705         if (!mem->memory_size)
1706                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1707
1708         new.as_id = as_id;
1709         new.id = id;
1710         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1711         new.npages = mem->memory_size >> PAGE_SHIFT;
1712         new.flags = mem->flags;
1713         new.userspace_addr = mem->userspace_addr;
1714
1715         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1716                 return -EINVAL;
1717
1718         if (!old.npages) {
1719                 change = KVM_MR_CREATE;
1720                 new.dirty_bitmap = NULL;
1721                 memset(&new.arch, 0, sizeof(new.arch));
1722         } else { /* Modify an existing slot. */
1723                 if ((new.userspace_addr != old.userspace_addr) ||
1724                     (new.npages != old.npages) ||
1725                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1726                         return -EINVAL;
1727
1728                 if (new.base_gfn != old.base_gfn)
1729                         change = KVM_MR_MOVE;
1730                 else if (new.flags != old.flags)
1731                         change = KVM_MR_FLAGS_ONLY;
1732                 else /* Nothing to change. */
1733                         return 0;
1734
1735                 /* Copy dirty_bitmap and arch from the current memslot. */
1736                 new.dirty_bitmap = old.dirty_bitmap;
1737                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1738         }
1739
1740         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1741                 /* Check for overlaps */
1742                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1743                         if (tmp->id == id)
1744                                 continue;
1745                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1746                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1747                                 return -EEXIST;
1748                 }
1749         }
1750
1751         /* Allocate/free page dirty bitmap as needed */
1752         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1753                 new.dirty_bitmap = NULL;
1754         else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1755                 r = kvm_alloc_dirty_bitmap(&new);
1756                 if (r)
1757                         return r;
1758
1759                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1760                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1761         }
1762
1763         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1764         if (r)
1765                 goto out_bitmap;
1766
1767         if (old.dirty_bitmap && !new.dirty_bitmap)
1768                 kvm_destroy_dirty_bitmap(&old);
1769         return 0;
1770
1771 out_bitmap:
1772         if (new.dirty_bitmap && !old.dirty_bitmap)
1773                 kvm_destroy_dirty_bitmap(&new);
1774         return r;
1775 }
1776 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1777
1778 int kvm_set_memory_region(struct kvm *kvm,
1779                           const struct kvm_userspace_memory_region *mem)
1780 {
1781         int r;
1782
1783         mutex_lock(&kvm->slots_lock);
1784         r = __kvm_set_memory_region(kvm, mem);
1785         mutex_unlock(&kvm->slots_lock);
1786         return r;
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1789
1790 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1791                                           struct kvm_userspace_memory_region *mem)
1792 {
1793         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1794                 return -EINVAL;
1795
1796         return kvm_set_memory_region(kvm, mem);
1797 }
1798
1799 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1800 /**
1801  * kvm_get_dirty_log - get a snapshot of dirty pages
1802  * @kvm:        pointer to kvm instance
1803  * @log:        slot id and address to which we copy the log
1804  * @is_dirty:   set to '1' if any dirty pages were found
1805  * @memslot:    set to the associated memslot, always valid on success
1806  */
1807 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1808                       int *is_dirty, struct kvm_memory_slot **memslot)
1809 {
1810         struct kvm_memslots *slots;
1811         int i, as_id, id;
1812         unsigned long n;
1813         unsigned long any = 0;
1814
1815         /* Dirty ring tracking is exclusive to dirty log tracking */
1816         if (kvm->dirty_ring_size)
1817                 return -ENXIO;
1818
1819         *memslot = NULL;
1820         *is_dirty = 0;
1821
1822         as_id = log->slot >> 16;
1823         id = (u16)log->slot;
1824         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1825                 return -EINVAL;
1826
1827         slots = __kvm_memslots(kvm, as_id);
1828         *memslot = id_to_memslot(slots, id);
1829         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1830                 return -ENOENT;
1831
1832         kvm_arch_sync_dirty_log(kvm, *memslot);
1833
1834         n = kvm_dirty_bitmap_bytes(*memslot);
1835
1836         for (i = 0; !any && i < n/sizeof(long); ++i)
1837                 any = (*memslot)->dirty_bitmap[i];
1838
1839         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1840                 return -EFAULT;
1841
1842         if (any)
1843                 *is_dirty = 1;
1844         return 0;
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1847
1848 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1849 /**
1850  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1851  *      and reenable dirty page tracking for the corresponding pages.
1852  * @kvm:        pointer to kvm instance
1853  * @log:        slot id and address to which we copy the log
1854  *
1855  * We need to keep it in mind that VCPU threads can write to the bitmap
1856  * concurrently. So, to avoid losing track of dirty pages we keep the
1857  * following order:
1858  *
1859  *    1. Take a snapshot of the bit and clear it if needed.
1860  *    2. Write protect the corresponding page.
1861  *    3. Copy the snapshot to the userspace.
1862  *    4. Upon return caller flushes TLB's if needed.
1863  *
1864  * Between 2 and 4, the guest may write to the page using the remaining TLB
1865  * entry.  This is not a problem because the page is reported dirty using
1866  * the snapshot taken before and step 4 ensures that writes done after
1867  * exiting to userspace will be logged for the next call.
1868  *
1869  */
1870 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1871 {
1872         struct kvm_memslots *slots;
1873         struct kvm_memory_slot *memslot;
1874         int i, as_id, id;
1875         unsigned long n;
1876         unsigned long *dirty_bitmap;
1877         unsigned long *dirty_bitmap_buffer;
1878         bool flush;
1879
1880         /* Dirty ring tracking is exclusive to dirty log tracking */
1881         if (kvm->dirty_ring_size)
1882                 return -ENXIO;
1883
1884         as_id = log->slot >> 16;
1885         id = (u16)log->slot;
1886         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1887                 return -EINVAL;
1888
1889         slots = __kvm_memslots(kvm, as_id);
1890         memslot = id_to_memslot(slots, id);
1891         if (!memslot || !memslot->dirty_bitmap)
1892                 return -ENOENT;
1893
1894         dirty_bitmap = memslot->dirty_bitmap;
1895
1896         kvm_arch_sync_dirty_log(kvm, memslot);
1897
1898         n = kvm_dirty_bitmap_bytes(memslot);
1899         flush = false;
1900         if (kvm->manual_dirty_log_protect) {
1901                 /*
1902                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1903                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1904                  * is some code duplication between this function and
1905                  * kvm_get_dirty_log, but hopefully all architecture
1906                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1907                  * can be eliminated.
1908                  */
1909                 dirty_bitmap_buffer = dirty_bitmap;
1910         } else {
1911                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1912                 memset(dirty_bitmap_buffer, 0, n);
1913
1914                 KVM_MMU_LOCK(kvm);
1915                 for (i = 0; i < n / sizeof(long); i++) {
1916                         unsigned long mask;
1917                         gfn_t offset;
1918
1919                         if (!dirty_bitmap[i])
1920                                 continue;
1921
1922                         flush = true;
1923                         mask = xchg(&dirty_bitmap[i], 0);
1924                         dirty_bitmap_buffer[i] = mask;
1925
1926                         offset = i * BITS_PER_LONG;
1927                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1928                                                                 offset, mask);
1929                 }
1930                 KVM_MMU_UNLOCK(kvm);
1931         }
1932
1933         if (flush)
1934                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1935
1936         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1937                 return -EFAULT;
1938         return 0;
1939 }
1940
1941
1942 /**
1943  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1944  * @kvm: kvm instance
1945  * @log: slot id and address to which we copy the log
1946  *
1947  * Steps 1-4 below provide general overview of dirty page logging. See
1948  * kvm_get_dirty_log_protect() function description for additional details.
1949  *
1950  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1951  * always flush the TLB (step 4) even if previous step failed  and the dirty
1952  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1953  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1954  * writes will be marked dirty for next log read.
1955  *
1956  *   1. Take a snapshot of the bit and clear it if needed.
1957  *   2. Write protect the corresponding page.
1958  *   3. Copy the snapshot to the userspace.
1959  *   4. Flush TLB's if needed.
1960  */
1961 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1962                                       struct kvm_dirty_log *log)
1963 {
1964         int r;
1965
1966         mutex_lock(&kvm->slots_lock);
1967
1968         r = kvm_get_dirty_log_protect(kvm, log);
1969
1970         mutex_unlock(&kvm->slots_lock);
1971         return r;
1972 }
1973
1974 /**
1975  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1976  *      and reenable dirty page tracking for the corresponding pages.
1977  * @kvm:        pointer to kvm instance
1978  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1979  */
1980 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1981                                        struct kvm_clear_dirty_log *log)
1982 {
1983         struct kvm_memslots *slots;
1984         struct kvm_memory_slot *memslot;
1985         int as_id, id;
1986         gfn_t offset;
1987         unsigned long i, n;
1988         unsigned long *dirty_bitmap;
1989         unsigned long *dirty_bitmap_buffer;
1990         bool flush;
1991
1992         /* Dirty ring tracking is exclusive to dirty log tracking */
1993         if (kvm->dirty_ring_size)
1994                 return -ENXIO;
1995
1996         as_id = log->slot >> 16;
1997         id = (u16)log->slot;
1998         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1999                 return -EINVAL;
2000
2001         if (log->first_page & 63)
2002                 return -EINVAL;
2003
2004         slots = __kvm_memslots(kvm, as_id);
2005         memslot = id_to_memslot(slots, id);
2006         if (!memslot || !memslot->dirty_bitmap)
2007                 return -ENOENT;
2008
2009         dirty_bitmap = memslot->dirty_bitmap;
2010
2011         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2012
2013         if (log->first_page > memslot->npages ||
2014             log->num_pages > memslot->npages - log->first_page ||
2015             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2016             return -EINVAL;
2017
2018         kvm_arch_sync_dirty_log(kvm, memslot);
2019
2020         flush = false;
2021         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2022         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2023                 return -EFAULT;
2024
2025         KVM_MMU_LOCK(kvm);
2026         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2027                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2028              i++, offset += BITS_PER_LONG) {
2029                 unsigned long mask = *dirty_bitmap_buffer++;
2030                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2031                 if (!mask)
2032                         continue;
2033
2034                 mask &= atomic_long_fetch_andnot(mask, p);
2035
2036                 /*
2037                  * mask contains the bits that really have been cleared.  This
2038                  * never includes any bits beyond the length of the memslot (if
2039                  * the length is not aligned to 64 pages), therefore it is not
2040                  * a problem if userspace sets them in log->dirty_bitmap.
2041                 */
2042                 if (mask) {
2043                         flush = true;
2044                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2045                                                                 offset, mask);
2046                 }
2047         }
2048         KVM_MMU_UNLOCK(kvm);
2049
2050         if (flush)
2051                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2052
2053         return 0;
2054 }
2055
2056 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2057                                         struct kvm_clear_dirty_log *log)
2058 {
2059         int r;
2060
2061         mutex_lock(&kvm->slots_lock);
2062
2063         r = kvm_clear_dirty_log_protect(kvm, log);
2064
2065         mutex_unlock(&kvm->slots_lock);
2066         return r;
2067 }
2068 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2069
2070 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2071 {
2072         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2073 }
2074 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2075
2076 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2077 {
2078         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2079         struct kvm_memory_slot *slot;
2080         int slot_index;
2081
2082         slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2083         if (slot)
2084                 return slot;
2085
2086         /*
2087          * Fall back to searching all memslots. We purposely use
2088          * search_memslots() instead of __gfn_to_memslot() to avoid
2089          * thrashing the VM-wide last_used_index in kvm_memslots.
2090          */
2091         slot = search_memslots(slots, gfn, &slot_index);
2092         if (slot) {
2093                 vcpu->last_used_slot = slot_index;
2094                 return slot;
2095         }
2096
2097         return NULL;
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2100
2101 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2102 {
2103         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2104
2105         return kvm_is_visible_memslot(memslot);
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2108
2109 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2110 {
2111         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2112
2113         return kvm_is_visible_memslot(memslot);
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2116
2117 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2118 {
2119         struct vm_area_struct *vma;
2120         unsigned long addr, size;
2121
2122         size = PAGE_SIZE;
2123
2124         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2125         if (kvm_is_error_hva(addr))
2126                 return PAGE_SIZE;
2127
2128         mmap_read_lock(current->mm);
2129         vma = find_vma(current->mm, addr);
2130         if (!vma)
2131                 goto out;
2132
2133         size = vma_kernel_pagesize(vma);
2134
2135 out:
2136         mmap_read_unlock(current->mm);
2137
2138         return size;
2139 }
2140
2141 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2142 {
2143         return slot->flags & KVM_MEM_READONLY;
2144 }
2145
2146 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2147                                        gfn_t *nr_pages, bool write)
2148 {
2149         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2150                 return KVM_HVA_ERR_BAD;
2151
2152         if (memslot_is_readonly(slot) && write)
2153                 return KVM_HVA_ERR_RO_BAD;
2154
2155         if (nr_pages)
2156                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2157
2158         return __gfn_to_hva_memslot(slot, gfn);
2159 }
2160
2161 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2162                                      gfn_t *nr_pages)
2163 {
2164         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2165 }
2166
2167 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2168                                         gfn_t gfn)
2169 {
2170         return gfn_to_hva_many(slot, gfn, NULL);
2171 }
2172 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2173
2174 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2175 {
2176         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2177 }
2178 EXPORT_SYMBOL_GPL(gfn_to_hva);
2179
2180 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2181 {
2182         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2183 }
2184 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2185
2186 /*
2187  * Return the hva of a @gfn and the R/W attribute if possible.
2188  *
2189  * @slot: the kvm_memory_slot which contains @gfn
2190  * @gfn: the gfn to be translated
2191  * @writable: used to return the read/write attribute of the @slot if the hva
2192  * is valid and @writable is not NULL
2193  */
2194 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2195                                       gfn_t gfn, bool *writable)
2196 {
2197         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2198
2199         if (!kvm_is_error_hva(hva) && writable)
2200                 *writable = !memslot_is_readonly(slot);
2201
2202         return hva;
2203 }
2204
2205 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2206 {
2207         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2208
2209         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2210 }
2211
2212 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2213 {
2214         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2215
2216         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2217 }
2218
2219 static inline int check_user_page_hwpoison(unsigned long addr)
2220 {
2221         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2222
2223         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2224         return rc == -EHWPOISON;
2225 }
2226
2227 /*
2228  * The fast path to get the writable pfn which will be stored in @pfn,
2229  * true indicates success, otherwise false is returned.  It's also the
2230  * only part that runs if we can in atomic context.
2231  */
2232 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2233                             bool *writable, kvm_pfn_t *pfn)
2234 {
2235         struct page *page[1];
2236
2237         /*
2238          * Fast pin a writable pfn only if it is a write fault request
2239          * or the caller allows to map a writable pfn for a read fault
2240          * request.
2241          */
2242         if (!(write_fault || writable))
2243                 return false;
2244
2245         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2246                 *pfn = page_to_pfn(page[0]);
2247
2248                 if (writable)
2249                         *writable = true;
2250                 return true;
2251         }
2252
2253         return false;
2254 }
2255
2256 /*
2257  * The slow path to get the pfn of the specified host virtual address,
2258  * 1 indicates success, -errno is returned if error is detected.
2259  */
2260 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2261                            bool *writable, kvm_pfn_t *pfn)
2262 {
2263         unsigned int flags = FOLL_HWPOISON;
2264         struct page *page;
2265         int npages = 0;
2266
2267         might_sleep();
2268
2269         if (writable)
2270                 *writable = write_fault;
2271
2272         if (write_fault)
2273                 flags |= FOLL_WRITE;
2274         if (async)
2275                 flags |= FOLL_NOWAIT;
2276
2277         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2278         if (npages != 1)
2279                 return npages;
2280
2281         /* map read fault as writable if possible */
2282         if (unlikely(!write_fault) && writable) {
2283                 struct page *wpage;
2284
2285                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2286                         *writable = true;
2287                         put_page(page);
2288                         page = wpage;
2289                 }
2290         }
2291         *pfn = page_to_pfn(page);
2292         return npages;
2293 }
2294
2295 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2296 {
2297         if (unlikely(!(vma->vm_flags & VM_READ)))
2298                 return false;
2299
2300         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2301                 return false;
2302
2303         return true;
2304 }
2305
2306 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2307 {
2308         if (kvm_is_reserved_pfn(pfn))
2309                 return 1;
2310         return get_page_unless_zero(pfn_to_page(pfn));
2311 }
2312
2313 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2314                                unsigned long addr, bool *async,
2315                                bool write_fault, bool *writable,
2316                                kvm_pfn_t *p_pfn)
2317 {
2318         kvm_pfn_t pfn;
2319         pte_t *ptep;
2320         spinlock_t *ptl;
2321         int r;
2322
2323         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2324         if (r) {
2325                 /*
2326                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2327                  * not call the fault handler, so do it here.
2328                  */
2329                 bool unlocked = false;
2330                 r = fixup_user_fault(current->mm, addr,
2331                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2332                                      &unlocked);
2333                 if (unlocked)
2334                         return -EAGAIN;
2335                 if (r)
2336                         return r;
2337
2338                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2339                 if (r)
2340                         return r;
2341         }
2342
2343         if (write_fault && !pte_write(*ptep)) {
2344                 pfn = KVM_PFN_ERR_RO_FAULT;
2345                 goto out;
2346         }
2347
2348         if (writable)
2349                 *writable = pte_write(*ptep);
2350         pfn = pte_pfn(*ptep);
2351
2352         /*
2353          * Get a reference here because callers of *hva_to_pfn* and
2354          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2355          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2356          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2357          * simply do nothing for reserved pfns.
2358          *
2359          * Whoever called remap_pfn_range is also going to call e.g.
2360          * unmap_mapping_range before the underlying pages are freed,
2361          * causing a call to our MMU notifier.
2362          *
2363          * Certain IO or PFNMAP mappings can be backed with valid
2364          * struct pages, but be allocated without refcounting e.g.,
2365          * tail pages of non-compound higher order allocations, which
2366          * would then underflow the refcount when the caller does the
2367          * required put_page. Don't allow those pages here.
2368          */ 
2369         if (!kvm_try_get_pfn(pfn))
2370                 r = -EFAULT;
2371
2372 out:
2373         pte_unmap_unlock(ptep, ptl);
2374         *p_pfn = pfn;
2375
2376         return r;
2377 }
2378
2379 /*
2380  * Pin guest page in memory and return its pfn.
2381  * @addr: host virtual address which maps memory to the guest
2382  * @atomic: whether this function can sleep
2383  * @async: whether this function need to wait IO complete if the
2384  *         host page is not in the memory
2385  * @write_fault: whether we should get a writable host page
2386  * @writable: whether it allows to map a writable host page for !@write_fault
2387  *
2388  * The function will map a writable host page for these two cases:
2389  * 1): @write_fault = true
2390  * 2): @write_fault = false && @writable, @writable will tell the caller
2391  *     whether the mapping is writable.
2392  */
2393 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2394                         bool write_fault, bool *writable)
2395 {
2396         struct vm_area_struct *vma;
2397         kvm_pfn_t pfn = 0;
2398         int npages, r;
2399
2400         /* we can do it either atomically or asynchronously, not both */
2401         BUG_ON(atomic && async);
2402
2403         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2404                 return pfn;
2405
2406         if (atomic)
2407                 return KVM_PFN_ERR_FAULT;
2408
2409         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2410         if (npages == 1)
2411                 return pfn;
2412
2413         mmap_read_lock(current->mm);
2414         if (npages == -EHWPOISON ||
2415               (!async && check_user_page_hwpoison(addr))) {
2416                 pfn = KVM_PFN_ERR_HWPOISON;
2417                 goto exit;
2418         }
2419
2420 retry:
2421         vma = vma_lookup(current->mm, addr);
2422
2423         if (vma == NULL)
2424                 pfn = KVM_PFN_ERR_FAULT;
2425         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2426                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2427                 if (r == -EAGAIN)
2428                         goto retry;
2429                 if (r < 0)
2430                         pfn = KVM_PFN_ERR_FAULT;
2431         } else {
2432                 if (async && vma_is_valid(vma, write_fault))
2433                         *async = true;
2434                 pfn = KVM_PFN_ERR_FAULT;
2435         }
2436 exit:
2437         mmap_read_unlock(current->mm);
2438         return pfn;
2439 }
2440
2441 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2442                                bool atomic, bool *async, bool write_fault,
2443                                bool *writable, hva_t *hva)
2444 {
2445         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2446
2447         if (hva)
2448                 *hva = addr;
2449
2450         if (addr == KVM_HVA_ERR_RO_BAD) {
2451                 if (writable)
2452                         *writable = false;
2453                 return KVM_PFN_ERR_RO_FAULT;
2454         }
2455
2456         if (kvm_is_error_hva(addr)) {
2457                 if (writable)
2458                         *writable = false;
2459                 return KVM_PFN_NOSLOT;
2460         }
2461
2462         /* Do not map writable pfn in the readonly memslot. */
2463         if (writable && memslot_is_readonly(slot)) {
2464                 *writable = false;
2465                 writable = NULL;
2466         }
2467
2468         return hva_to_pfn(addr, atomic, async, write_fault,
2469                           writable);
2470 }
2471 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2472
2473 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2474                       bool *writable)
2475 {
2476         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2477                                     write_fault, writable, NULL);
2478 }
2479 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2480
2481 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2482 {
2483         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2484 }
2485 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2486
2487 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2488 {
2489         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2490 }
2491 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2492
2493 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2494 {
2495         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2496 }
2497 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2498
2499 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2500 {
2501         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2502 }
2503 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2504
2505 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2506 {
2507         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2508 }
2509 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2510
2511 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2512                             struct page **pages, int nr_pages)
2513 {
2514         unsigned long addr;
2515         gfn_t entry = 0;
2516
2517         addr = gfn_to_hva_many(slot, gfn, &entry);
2518         if (kvm_is_error_hva(addr))
2519                 return -1;
2520
2521         if (entry < nr_pages)
2522                 return 0;
2523
2524         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2525 }
2526 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2527
2528 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2529 {
2530         if (is_error_noslot_pfn(pfn))
2531                 return KVM_ERR_PTR_BAD_PAGE;
2532
2533         if (kvm_is_reserved_pfn(pfn)) {
2534                 WARN_ON(1);
2535                 return KVM_ERR_PTR_BAD_PAGE;
2536         }
2537
2538         return pfn_to_page(pfn);
2539 }
2540
2541 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2542 {
2543         kvm_pfn_t pfn;
2544
2545         pfn = gfn_to_pfn(kvm, gfn);
2546
2547         return kvm_pfn_to_page(pfn);
2548 }
2549 EXPORT_SYMBOL_GPL(gfn_to_page);
2550
2551 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2552 {
2553         if (pfn == 0)
2554                 return;
2555
2556         if (dirty)
2557                 kvm_release_pfn_dirty(pfn);
2558         else
2559                 kvm_release_pfn_clean(pfn);
2560 }
2561
2562 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2563 {
2564         kvm_pfn_t pfn;
2565         void *hva = NULL;
2566         struct page *page = KVM_UNMAPPED_PAGE;
2567
2568         if (!map)
2569                 return -EINVAL;
2570
2571         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2572         if (is_error_noslot_pfn(pfn))
2573                 return -EINVAL;
2574
2575         if (pfn_valid(pfn)) {
2576                 page = pfn_to_page(pfn);
2577                 hva = kmap(page);
2578 #ifdef CONFIG_HAS_IOMEM
2579         } else {
2580                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2581 #endif
2582         }
2583
2584         if (!hva)
2585                 return -EFAULT;
2586
2587         map->page = page;
2588         map->hva = hva;
2589         map->pfn = pfn;
2590         map->gfn = gfn;
2591
2592         return 0;
2593 }
2594 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2595
2596 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2597 {
2598         if (!map)
2599                 return;
2600
2601         if (!map->hva)
2602                 return;
2603
2604         if (map->page != KVM_UNMAPPED_PAGE)
2605                 kunmap(map->page);
2606 #ifdef CONFIG_HAS_IOMEM
2607         else
2608                 memunmap(map->hva);
2609 #endif
2610
2611         if (dirty)
2612                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2613
2614         kvm_release_pfn(map->pfn, dirty);
2615
2616         map->hva = NULL;
2617         map->page = NULL;
2618 }
2619 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2620
2621 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2622 {
2623         kvm_pfn_t pfn;
2624
2625         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2626
2627         return kvm_pfn_to_page(pfn);
2628 }
2629 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2630
2631 void kvm_release_page_clean(struct page *page)
2632 {
2633         WARN_ON(is_error_page(page));
2634
2635         kvm_release_pfn_clean(page_to_pfn(page));
2636 }
2637 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2638
2639 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2640 {
2641         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2642                 put_page(pfn_to_page(pfn));
2643 }
2644 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2645
2646 void kvm_release_page_dirty(struct page *page)
2647 {
2648         WARN_ON(is_error_page(page));
2649
2650         kvm_release_pfn_dirty(page_to_pfn(page));
2651 }
2652 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2653
2654 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2655 {
2656         kvm_set_pfn_dirty(pfn);
2657         kvm_release_pfn_clean(pfn);
2658 }
2659 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2660
2661 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2662 {
2663         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2664                 SetPageDirty(pfn_to_page(pfn));
2665 }
2666 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2667
2668 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2669 {
2670         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2671                 mark_page_accessed(pfn_to_page(pfn));
2672 }
2673 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2674
2675 static int next_segment(unsigned long len, int offset)
2676 {
2677         if (len > PAGE_SIZE - offset)
2678                 return PAGE_SIZE - offset;
2679         else
2680                 return len;
2681 }
2682
2683 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2684                                  void *data, int offset, int len)
2685 {
2686         int r;
2687         unsigned long addr;
2688
2689         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2690         if (kvm_is_error_hva(addr))
2691                 return -EFAULT;
2692         r = __copy_from_user(data, (void __user *)addr + offset, len);
2693         if (r)
2694                 return -EFAULT;
2695         return 0;
2696 }
2697
2698 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2699                         int len)
2700 {
2701         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2702
2703         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2704 }
2705 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2706
2707 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2708                              int offset, int len)
2709 {
2710         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2711
2712         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2713 }
2714 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2715
2716 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2717 {
2718         gfn_t gfn = gpa >> PAGE_SHIFT;
2719         int seg;
2720         int offset = offset_in_page(gpa);
2721         int ret;
2722
2723         while ((seg = next_segment(len, offset)) != 0) {
2724                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2725                 if (ret < 0)
2726                         return ret;
2727                 offset = 0;
2728                 len -= seg;
2729                 data += seg;
2730                 ++gfn;
2731         }
2732         return 0;
2733 }
2734 EXPORT_SYMBOL_GPL(kvm_read_guest);
2735
2736 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2737 {
2738         gfn_t gfn = gpa >> PAGE_SHIFT;
2739         int seg;
2740         int offset = offset_in_page(gpa);
2741         int ret;
2742
2743         while ((seg = next_segment(len, offset)) != 0) {
2744                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2745                 if (ret < 0)
2746                         return ret;
2747                 offset = 0;
2748                 len -= seg;
2749                 data += seg;
2750                 ++gfn;
2751         }
2752         return 0;
2753 }
2754 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2755
2756 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2757                                    void *data, int offset, unsigned long len)
2758 {
2759         int r;
2760         unsigned long addr;
2761
2762         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2763         if (kvm_is_error_hva(addr))
2764                 return -EFAULT;
2765         pagefault_disable();
2766         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2767         pagefault_enable();
2768         if (r)
2769                 return -EFAULT;
2770         return 0;
2771 }
2772
2773 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2774                                void *data, unsigned long len)
2775 {
2776         gfn_t gfn = gpa >> PAGE_SHIFT;
2777         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2778         int offset = offset_in_page(gpa);
2779
2780         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2781 }
2782 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2783
2784 static int __kvm_write_guest_page(struct kvm *kvm,
2785                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2786                                   const void *data, int offset, int len)
2787 {
2788         int r;
2789         unsigned long addr;
2790
2791         addr = gfn_to_hva_memslot(memslot, gfn);
2792         if (kvm_is_error_hva(addr))
2793                 return -EFAULT;
2794         r = __copy_to_user((void __user *)addr + offset, data, len);
2795         if (r)
2796                 return -EFAULT;
2797         mark_page_dirty_in_slot(kvm, memslot, gfn);
2798         return 0;
2799 }
2800
2801 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2802                          const void *data, int offset, int len)
2803 {
2804         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2805
2806         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2807 }
2808 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2809
2810 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2811                               const void *data, int offset, int len)
2812 {
2813         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2814
2815         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2816 }
2817 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2818
2819 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2820                     unsigned long len)
2821 {
2822         gfn_t gfn = gpa >> PAGE_SHIFT;
2823         int seg;
2824         int offset = offset_in_page(gpa);
2825         int ret;
2826
2827         while ((seg = next_segment(len, offset)) != 0) {
2828                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2829                 if (ret < 0)
2830                         return ret;
2831                 offset = 0;
2832                 len -= seg;
2833                 data += seg;
2834                 ++gfn;
2835         }
2836         return 0;
2837 }
2838 EXPORT_SYMBOL_GPL(kvm_write_guest);
2839
2840 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2841                          unsigned long len)
2842 {
2843         gfn_t gfn = gpa >> PAGE_SHIFT;
2844         int seg;
2845         int offset = offset_in_page(gpa);
2846         int ret;
2847
2848         while ((seg = next_segment(len, offset)) != 0) {
2849                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2850                 if (ret < 0)
2851                         return ret;
2852                 offset = 0;
2853                 len -= seg;
2854                 data += seg;
2855                 ++gfn;
2856         }
2857         return 0;
2858 }
2859 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2860
2861 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2862                                        struct gfn_to_hva_cache *ghc,
2863                                        gpa_t gpa, unsigned long len)
2864 {
2865         int offset = offset_in_page(gpa);
2866         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2867         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2868         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2869         gfn_t nr_pages_avail;
2870
2871         /* Update ghc->generation before performing any error checks. */
2872         ghc->generation = slots->generation;
2873
2874         if (start_gfn > end_gfn) {
2875                 ghc->hva = KVM_HVA_ERR_BAD;
2876                 return -EINVAL;
2877         }
2878
2879         /*
2880          * If the requested region crosses two memslots, we still
2881          * verify that the entire region is valid here.
2882          */
2883         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2884                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2885                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2886                                            &nr_pages_avail);
2887                 if (kvm_is_error_hva(ghc->hva))
2888                         return -EFAULT;
2889         }
2890
2891         /* Use the slow path for cross page reads and writes. */
2892         if (nr_pages_needed == 1)
2893                 ghc->hva += offset;
2894         else
2895                 ghc->memslot = NULL;
2896
2897         ghc->gpa = gpa;
2898         ghc->len = len;
2899         return 0;
2900 }
2901
2902 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2903                               gpa_t gpa, unsigned long len)
2904 {
2905         struct kvm_memslots *slots = kvm_memslots(kvm);
2906         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2907 }
2908 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2909
2910 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2911                                   void *data, unsigned int offset,
2912                                   unsigned long len)
2913 {
2914         struct kvm_memslots *slots = kvm_memslots(kvm);
2915         int r;
2916         gpa_t gpa = ghc->gpa + offset;
2917
2918         BUG_ON(len + offset > ghc->len);
2919
2920         if (slots->generation != ghc->generation) {
2921                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2922                         return -EFAULT;
2923         }
2924
2925         if (kvm_is_error_hva(ghc->hva))
2926                 return -EFAULT;
2927
2928         if (unlikely(!ghc->memslot))
2929                 return kvm_write_guest(kvm, gpa, data, len);
2930
2931         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2932         if (r)
2933                 return -EFAULT;
2934         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2935
2936         return 0;
2937 }
2938 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2939
2940 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2941                            void *data, unsigned long len)
2942 {
2943         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2944 }
2945 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2946
2947 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2948                                  void *data, unsigned int offset,
2949                                  unsigned long len)
2950 {
2951         struct kvm_memslots *slots = kvm_memslots(kvm);
2952         int r;
2953         gpa_t gpa = ghc->gpa + offset;
2954
2955         BUG_ON(len + offset > ghc->len);
2956
2957         if (slots->generation != ghc->generation) {
2958                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2959                         return -EFAULT;
2960         }
2961
2962         if (kvm_is_error_hva(ghc->hva))
2963                 return -EFAULT;
2964
2965         if (unlikely(!ghc->memslot))
2966                 return kvm_read_guest(kvm, gpa, data, len);
2967
2968         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2969         if (r)
2970                 return -EFAULT;
2971
2972         return 0;
2973 }
2974 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2975
2976 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2977                           void *data, unsigned long len)
2978 {
2979         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2980 }
2981 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2982
2983 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2984 {
2985         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2986         gfn_t gfn = gpa >> PAGE_SHIFT;
2987         int seg;
2988         int offset = offset_in_page(gpa);
2989         int ret;
2990
2991         while ((seg = next_segment(len, offset)) != 0) {
2992                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2993                 if (ret < 0)
2994                         return ret;
2995                 offset = 0;
2996                 len -= seg;
2997                 ++gfn;
2998         }
2999         return 0;
3000 }
3001 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3002
3003 void mark_page_dirty_in_slot(struct kvm *kvm,
3004                              struct kvm_memory_slot *memslot,
3005                              gfn_t gfn)
3006 {
3007         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3008                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3009                 u32 slot = (memslot->as_id << 16) | memslot->id;
3010
3011                 if (kvm->dirty_ring_size)
3012                         kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3013                                             slot, rel_gfn);
3014                 else
3015                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3016         }
3017 }
3018 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3019
3020 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3021 {
3022         struct kvm_memory_slot *memslot;
3023
3024         memslot = gfn_to_memslot(kvm, gfn);
3025         mark_page_dirty_in_slot(kvm, memslot, gfn);
3026 }
3027 EXPORT_SYMBOL_GPL(mark_page_dirty);
3028
3029 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3030 {
3031         struct kvm_memory_slot *memslot;
3032
3033         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3034         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3035 }
3036 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3037
3038 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3039 {
3040         if (!vcpu->sigset_active)
3041                 return;
3042
3043         /*
3044          * This does a lockless modification of ->real_blocked, which is fine
3045          * because, only current can change ->real_blocked and all readers of
3046          * ->real_blocked don't care as long ->real_blocked is always a subset
3047          * of ->blocked.
3048          */
3049         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3050 }
3051
3052 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3053 {
3054         if (!vcpu->sigset_active)
3055                 return;
3056
3057         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3058         sigemptyset(&current->real_blocked);
3059 }
3060
3061 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3062 {
3063         unsigned int old, val, grow, grow_start;
3064
3065         old = val = vcpu->halt_poll_ns;
3066         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3067         grow = READ_ONCE(halt_poll_ns_grow);
3068         if (!grow)
3069                 goto out;
3070
3071         val *= grow;
3072         if (val < grow_start)
3073                 val = grow_start;
3074
3075         if (val > vcpu->kvm->max_halt_poll_ns)
3076                 val = vcpu->kvm->max_halt_poll_ns;
3077
3078         vcpu->halt_poll_ns = val;
3079 out:
3080         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3081 }
3082
3083 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3084 {
3085         unsigned int old, val, shrink, grow_start;
3086
3087         old = val = vcpu->halt_poll_ns;
3088         shrink = READ_ONCE(halt_poll_ns_shrink);
3089         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3090         if (shrink == 0)
3091                 val = 0;
3092         else
3093                 val /= shrink;
3094
3095         if (val < grow_start)
3096                 val = 0;
3097
3098         vcpu->halt_poll_ns = val;
3099         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3100 }
3101
3102 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3103 {
3104         int ret = -EINTR;
3105         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3106
3107         if (kvm_arch_vcpu_runnable(vcpu)) {
3108                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3109                 goto out;
3110         }
3111         if (kvm_cpu_has_pending_timer(vcpu))
3112                 goto out;
3113         if (signal_pending(current))
3114                 goto out;
3115         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3116                 goto out;
3117
3118         ret = 0;
3119 out:
3120         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3121         return ret;
3122 }
3123
3124 static inline void
3125 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3126 {
3127         if (waited)
3128                 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3129         else
3130                 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3131 }
3132
3133 /*
3134  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3135  */
3136 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3137 {
3138         ktime_t start, cur, poll_end;
3139         bool waited = false;
3140         u64 block_ns;
3141
3142         kvm_arch_vcpu_blocking(vcpu);
3143
3144         start = cur = poll_end = ktime_get();
3145         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3146                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3147
3148                 ++vcpu->stat.generic.halt_attempted_poll;
3149                 do {
3150                         /*
3151                          * This sets KVM_REQ_UNHALT if an interrupt
3152                          * arrives.
3153                          */
3154                         if (kvm_vcpu_check_block(vcpu) < 0) {
3155                                 ++vcpu->stat.generic.halt_successful_poll;
3156                                 if (!vcpu_valid_wakeup(vcpu))
3157                                         ++vcpu->stat.generic.halt_poll_invalid;
3158
3159                                 KVM_STATS_LOG_HIST_UPDATE(
3160                                       vcpu->stat.generic.halt_poll_success_hist,
3161                                       ktime_to_ns(ktime_get()) -
3162                                       ktime_to_ns(start));
3163                                 goto out;
3164                         }
3165                         cpu_relax();
3166                         poll_end = cur = ktime_get();
3167                 } while (kvm_vcpu_can_poll(cur, stop));
3168
3169                 KVM_STATS_LOG_HIST_UPDATE(
3170                                 vcpu->stat.generic.halt_poll_fail_hist,
3171                                 ktime_to_ns(ktime_get()) - ktime_to_ns(start));
3172         }
3173
3174
3175         prepare_to_rcuwait(&vcpu->wait);
3176         for (;;) {
3177                 set_current_state(TASK_INTERRUPTIBLE);
3178
3179                 if (kvm_vcpu_check_block(vcpu) < 0)
3180                         break;
3181
3182                 waited = true;
3183                 schedule();
3184         }
3185         finish_rcuwait(&vcpu->wait);
3186         cur = ktime_get();
3187         if (waited) {
3188                 vcpu->stat.generic.halt_wait_ns +=
3189                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3190                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3191                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3192         }
3193 out:
3194         kvm_arch_vcpu_unblocking(vcpu);
3195         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3196
3197         update_halt_poll_stats(
3198                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3199
3200         if (!kvm_arch_no_poll(vcpu)) {
3201                 if (!vcpu_valid_wakeup(vcpu)) {
3202                         shrink_halt_poll_ns(vcpu);
3203                 } else if (vcpu->kvm->max_halt_poll_ns) {
3204                         if (block_ns <= vcpu->halt_poll_ns)
3205                                 ;
3206                         /* we had a long block, shrink polling */
3207                         else if (vcpu->halt_poll_ns &&
3208                                         block_ns > vcpu->kvm->max_halt_poll_ns)
3209                                 shrink_halt_poll_ns(vcpu);
3210                         /* we had a short halt and our poll time is too small */
3211                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3212                                         block_ns < vcpu->kvm->max_halt_poll_ns)
3213                                 grow_halt_poll_ns(vcpu);
3214                 } else {
3215                         vcpu->halt_poll_ns = 0;
3216                 }
3217         }
3218
3219         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3220         kvm_arch_vcpu_block_finish(vcpu);
3221 }
3222 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3223
3224 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3225 {
3226         struct rcuwait *waitp;
3227
3228         waitp = kvm_arch_vcpu_get_wait(vcpu);
3229         if (rcuwait_wake_up(waitp)) {
3230                 WRITE_ONCE(vcpu->ready, true);
3231                 ++vcpu->stat.generic.halt_wakeup;
3232                 return true;
3233         }
3234
3235         return false;
3236 }
3237 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3238
3239 #ifndef CONFIG_S390
3240 /*
3241  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3242  */
3243 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3244 {
3245         int me, cpu;
3246
3247         if (kvm_vcpu_wake_up(vcpu))
3248                 return;
3249
3250         /*
3251          * Note, the vCPU could get migrated to a different pCPU at any point
3252          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3253          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3254          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3255          * vCPU also requires it to leave IN_GUEST_MODE.
3256          */
3257         me = get_cpu();
3258         if (kvm_arch_vcpu_should_kick(vcpu)) {
3259                 cpu = READ_ONCE(vcpu->cpu);
3260                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3261                         smp_send_reschedule(cpu);
3262         }
3263         put_cpu();
3264 }
3265 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3266 #endif /* !CONFIG_S390 */
3267
3268 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3269 {
3270         struct pid *pid;
3271         struct task_struct *task = NULL;
3272         int ret = 0;
3273
3274         rcu_read_lock();
3275         pid = rcu_dereference(target->pid);
3276         if (pid)
3277                 task = get_pid_task(pid, PIDTYPE_PID);
3278         rcu_read_unlock();
3279         if (!task)
3280                 return ret;
3281         ret = yield_to(task, 1);
3282         put_task_struct(task);
3283
3284         return ret;
3285 }
3286 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3287
3288 /*
3289  * Helper that checks whether a VCPU is eligible for directed yield.
3290  * Most eligible candidate to yield is decided by following heuristics:
3291  *
3292  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3293  *  (preempted lock holder), indicated by @in_spin_loop.
3294  *  Set at the beginning and cleared at the end of interception/PLE handler.
3295  *
3296  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3297  *  chance last time (mostly it has become eligible now since we have probably
3298  *  yielded to lockholder in last iteration. This is done by toggling
3299  *  @dy_eligible each time a VCPU checked for eligibility.)
3300  *
3301  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3302  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3303  *  burning. Giving priority for a potential lock-holder increases lock
3304  *  progress.
3305  *
3306  *  Since algorithm is based on heuristics, accessing another VCPU data without
3307  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3308  *  and continue with next VCPU and so on.
3309  */
3310 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3311 {
3312 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3313         bool eligible;
3314
3315         eligible = !vcpu->spin_loop.in_spin_loop ||
3316                     vcpu->spin_loop.dy_eligible;
3317
3318         if (vcpu->spin_loop.in_spin_loop)
3319                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3320
3321         return eligible;
3322 #else
3323         return true;
3324 #endif
3325 }
3326
3327 /*
3328  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3329  * a vcpu_load/vcpu_put pair.  However, for most architectures
3330  * kvm_arch_vcpu_runnable does not require vcpu_load.
3331  */
3332 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3333 {
3334         return kvm_arch_vcpu_runnable(vcpu);
3335 }
3336
3337 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3338 {
3339         if (kvm_arch_dy_runnable(vcpu))
3340                 return true;
3341
3342 #ifdef CONFIG_KVM_ASYNC_PF
3343         if (!list_empty_careful(&vcpu->async_pf.done))
3344                 return true;
3345 #endif
3346
3347         return false;
3348 }
3349
3350 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3351 {
3352         return false;
3353 }
3354
3355 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3356 {
3357         struct kvm *kvm = me->kvm;
3358         struct kvm_vcpu *vcpu;
3359         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3360         int yielded = 0;
3361         int try = 3;
3362         int pass;
3363         int i;
3364
3365         kvm_vcpu_set_in_spin_loop(me, true);
3366         /*
3367          * We boost the priority of a VCPU that is runnable but not
3368          * currently running, because it got preempted by something
3369          * else and called schedule in __vcpu_run.  Hopefully that
3370          * VCPU is holding the lock that we need and will release it.
3371          * We approximate round-robin by starting at the last boosted VCPU.
3372          */
3373         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3374                 kvm_for_each_vcpu(i, vcpu, kvm) {
3375                         if (!pass && i <= last_boosted_vcpu) {
3376                                 i = last_boosted_vcpu;
3377                                 continue;
3378                         } else if (pass && i > last_boosted_vcpu)
3379                                 break;
3380                         if (!READ_ONCE(vcpu->ready))
3381                                 continue;
3382                         if (vcpu == me)
3383                                 continue;
3384                         if (rcuwait_active(&vcpu->wait) &&
3385                             !vcpu_dy_runnable(vcpu))
3386                                 continue;
3387                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3388                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3389                             !kvm_arch_vcpu_in_kernel(vcpu))
3390                                 continue;
3391                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3392                                 continue;
3393
3394                         yielded = kvm_vcpu_yield_to(vcpu);
3395                         if (yielded > 0) {
3396                                 kvm->last_boosted_vcpu = i;
3397                                 break;
3398                         } else if (yielded < 0) {
3399                                 try--;
3400                                 if (!try)
3401                                         break;
3402                         }
3403                 }
3404         }
3405         kvm_vcpu_set_in_spin_loop(me, false);
3406
3407         /* Ensure vcpu is not eligible during next spinloop */
3408         kvm_vcpu_set_dy_eligible(me, false);
3409 }
3410 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3411
3412 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3413 {
3414 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3415         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3416             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3417              kvm->dirty_ring_size / PAGE_SIZE);
3418 #else
3419         return false;
3420 #endif
3421 }
3422
3423 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3424 {
3425         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3426         struct page *page;
3427
3428         if (vmf->pgoff == 0)
3429                 page = virt_to_page(vcpu->run);
3430 #ifdef CONFIG_X86
3431         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3432                 page = virt_to_page(vcpu->arch.pio_data);
3433 #endif
3434 #ifdef CONFIG_KVM_MMIO
3435         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3436                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3437 #endif
3438         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3439                 page = kvm_dirty_ring_get_page(
3440                     &vcpu->dirty_ring,
3441                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3442         else
3443                 return kvm_arch_vcpu_fault(vcpu, vmf);
3444         get_page(page);
3445         vmf->page = page;
3446         return 0;
3447 }
3448
3449 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3450         .fault = kvm_vcpu_fault,
3451 };
3452
3453 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3454 {
3455         struct kvm_vcpu *vcpu = file->private_data;
3456         unsigned long pages = vma_pages(vma);
3457
3458         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3459              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3460             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3461                 return -EINVAL;
3462
3463         vma->vm_ops = &kvm_vcpu_vm_ops;
3464         return 0;
3465 }
3466
3467 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3468 {
3469         struct kvm_vcpu *vcpu = filp->private_data;
3470
3471         kvm_put_kvm(vcpu->kvm);
3472         return 0;
3473 }
3474
3475 static struct file_operations kvm_vcpu_fops = {
3476         .release        = kvm_vcpu_release,
3477         .unlocked_ioctl = kvm_vcpu_ioctl,
3478         .mmap           = kvm_vcpu_mmap,
3479         .llseek         = noop_llseek,
3480         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3481 };
3482
3483 /*
3484  * Allocates an inode for the vcpu.
3485  */
3486 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3487 {
3488         char name[8 + 1 + ITOA_MAX_LEN + 1];
3489
3490         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3491         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3492 }
3493
3494 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3495 {
3496 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3497         struct dentry *debugfs_dentry;
3498         char dir_name[ITOA_MAX_LEN * 2];
3499
3500         if (!debugfs_initialized())
3501                 return;
3502
3503         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3504         debugfs_dentry = debugfs_create_dir(dir_name,
3505                                             vcpu->kvm->debugfs_dentry);
3506
3507         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3508 #endif
3509 }
3510
3511 /*
3512  * Creates some virtual cpus.  Good luck creating more than one.
3513  */
3514 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3515 {
3516         int r;
3517         struct kvm_vcpu *vcpu;
3518         struct page *page;
3519
3520         if (id >= KVM_MAX_VCPU_IDS)
3521                 return -EINVAL;
3522
3523         mutex_lock(&kvm->lock);
3524         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3525                 mutex_unlock(&kvm->lock);
3526                 return -EINVAL;
3527         }
3528
3529         kvm->created_vcpus++;
3530         mutex_unlock(&kvm->lock);
3531
3532         r = kvm_arch_vcpu_precreate(kvm, id);
3533         if (r)
3534                 goto vcpu_decrement;
3535
3536         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3537         if (!vcpu) {
3538                 r = -ENOMEM;
3539                 goto vcpu_decrement;
3540         }
3541
3542         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3543         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3544         if (!page) {
3545                 r = -ENOMEM;
3546                 goto vcpu_free;
3547         }
3548         vcpu->run = page_address(page);
3549
3550         kvm_vcpu_init(vcpu, kvm, id);
3551
3552         r = kvm_arch_vcpu_create(vcpu);
3553         if (r)
3554                 goto vcpu_free_run_page;
3555
3556         if (kvm->dirty_ring_size) {
3557                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3558                                          id, kvm->dirty_ring_size);
3559                 if (r)
3560                         goto arch_vcpu_destroy;
3561         }
3562
3563         mutex_lock(&kvm->lock);
3564         if (kvm_get_vcpu_by_id(kvm, id)) {
3565                 r = -EEXIST;
3566                 goto unlock_vcpu_destroy;
3567         }
3568
3569         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3570         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3571
3572         /* Fill the stats id string for the vcpu */
3573         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3574                  task_pid_nr(current), id);
3575
3576         /* Now it's all set up, let userspace reach it */
3577         kvm_get_kvm(kvm);
3578         r = create_vcpu_fd(vcpu);
3579         if (r < 0) {
3580                 kvm_put_kvm_no_destroy(kvm);
3581                 goto unlock_vcpu_destroy;
3582         }
3583
3584         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3585
3586         /*
3587          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3588          * before kvm->online_vcpu's incremented value.
3589          */
3590         smp_wmb();
3591         atomic_inc(&kvm->online_vcpus);
3592
3593         mutex_unlock(&kvm->lock);
3594         kvm_arch_vcpu_postcreate(vcpu);
3595         kvm_create_vcpu_debugfs(vcpu);
3596         return r;
3597
3598 unlock_vcpu_destroy:
3599         mutex_unlock(&kvm->lock);
3600         kvm_dirty_ring_free(&vcpu->dirty_ring);
3601 arch_vcpu_destroy:
3602         kvm_arch_vcpu_destroy(vcpu);
3603 vcpu_free_run_page:
3604         free_page((unsigned long)vcpu->run);
3605 vcpu_free:
3606         kmem_cache_free(kvm_vcpu_cache, vcpu);
3607 vcpu_decrement:
3608         mutex_lock(&kvm->lock);
3609         kvm->created_vcpus--;
3610         mutex_unlock(&kvm->lock);
3611         return r;
3612 }
3613
3614 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3615 {
3616         if (sigset) {
3617                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3618                 vcpu->sigset_active = 1;
3619                 vcpu->sigset = *sigset;
3620         } else
3621                 vcpu->sigset_active = 0;
3622         return 0;
3623 }
3624
3625 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3626                               size_t size, loff_t *offset)
3627 {
3628         struct kvm_vcpu *vcpu = file->private_data;
3629
3630         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3631                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3632                         sizeof(vcpu->stat), user_buffer, size, offset);
3633 }
3634
3635 static const struct file_operations kvm_vcpu_stats_fops = {
3636         .read = kvm_vcpu_stats_read,
3637         .llseek = noop_llseek,
3638 };
3639
3640 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3641 {
3642         int fd;
3643         struct file *file;
3644         char name[15 + ITOA_MAX_LEN + 1];
3645
3646         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3647
3648         fd = get_unused_fd_flags(O_CLOEXEC);
3649         if (fd < 0)
3650                 return fd;
3651
3652         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3653         if (IS_ERR(file)) {
3654                 put_unused_fd(fd);
3655                 return PTR_ERR(file);
3656         }
3657         file->f_mode |= FMODE_PREAD;
3658         fd_install(fd, file);
3659
3660         return fd;
3661 }
3662
3663 static long kvm_vcpu_ioctl(struct file *filp,
3664                            unsigned int ioctl, unsigned long arg)
3665 {
3666         struct kvm_vcpu *vcpu = filp->private_data;
3667         void __user *argp = (void __user *)arg;
3668         int r;
3669         struct kvm_fpu *fpu = NULL;
3670         struct kvm_sregs *kvm_sregs = NULL;
3671
3672         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3673                 return -EIO;
3674
3675         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3676                 return -EINVAL;
3677
3678         /*
3679          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3680          * execution; mutex_lock() would break them.
3681          */
3682         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3683         if (r != -ENOIOCTLCMD)
3684                 return r;
3685
3686         if (mutex_lock_killable(&vcpu->mutex))
3687                 return -EINTR;
3688         switch (ioctl) {
3689         case KVM_RUN: {
3690                 struct pid *oldpid;
3691                 r = -EINVAL;
3692                 if (arg)
3693                         goto out;
3694                 oldpid = rcu_access_pointer(vcpu->pid);
3695                 if (unlikely(oldpid != task_pid(current))) {
3696                         /* The thread running this VCPU changed. */
3697                         struct pid *newpid;
3698
3699                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3700                         if (r)
3701                                 break;
3702
3703                         newpid = get_task_pid(current, PIDTYPE_PID);
3704                         rcu_assign_pointer(vcpu->pid, newpid);
3705                         if (oldpid)
3706                                 synchronize_rcu();
3707                         put_pid(oldpid);
3708                 }
3709                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3710                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3711                 break;
3712         }
3713         case KVM_GET_REGS: {
3714                 struct kvm_regs *kvm_regs;
3715
3716                 r = -ENOMEM;
3717                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3718                 if (!kvm_regs)
3719                         goto out;
3720                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3721                 if (r)
3722                         goto out_free1;
3723                 r = -EFAULT;
3724                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3725                         goto out_free1;
3726                 r = 0;
3727 out_free1:
3728                 kfree(kvm_regs);
3729                 break;
3730         }
3731         case KVM_SET_REGS: {
3732                 struct kvm_regs *kvm_regs;
3733
3734                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3735                 if (IS_ERR(kvm_regs)) {
3736                         r = PTR_ERR(kvm_regs);
3737                         goto out;
3738                 }
3739                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3740                 kfree(kvm_regs);
3741                 break;
3742         }
3743         case KVM_GET_SREGS: {
3744                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3745                                     GFP_KERNEL_ACCOUNT);
3746                 r = -ENOMEM;
3747                 if (!kvm_sregs)
3748                         goto out;
3749                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3750                 if (r)
3751                         goto out;
3752                 r = -EFAULT;
3753                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3754                         goto out;
3755                 r = 0;
3756                 break;
3757         }
3758         case KVM_SET_SREGS: {
3759                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3760                 if (IS_ERR(kvm_sregs)) {
3761                         r = PTR_ERR(kvm_sregs);
3762                         kvm_sregs = NULL;
3763                         goto out;
3764                 }
3765                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3766                 break;
3767         }
3768         case KVM_GET_MP_STATE: {
3769                 struct kvm_mp_state mp_state;
3770
3771                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3772                 if (r)
3773                         goto out;
3774                 r = -EFAULT;
3775                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3776                         goto out;
3777                 r = 0;
3778                 break;
3779         }
3780         case KVM_SET_MP_STATE: {
3781                 struct kvm_mp_state mp_state;
3782
3783                 r = -EFAULT;
3784                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3785                         goto out;
3786                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3787                 break;
3788         }
3789         case KVM_TRANSLATE: {
3790                 struct kvm_translation tr;
3791
3792                 r = -EFAULT;
3793                 if (copy_from_user(&tr, argp, sizeof(tr)))
3794                         goto out;
3795                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3796                 if (r)
3797                         goto out;
3798                 r = -EFAULT;
3799                 if (copy_to_user(argp, &tr, sizeof(tr)))
3800                         goto out;
3801                 r = 0;
3802                 break;
3803         }
3804         case KVM_SET_GUEST_DEBUG: {
3805                 struct kvm_guest_debug dbg;
3806
3807                 r = -EFAULT;
3808                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3809                         goto out;
3810                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3811                 break;
3812         }
3813         case KVM_SET_SIGNAL_MASK: {
3814                 struct kvm_signal_mask __user *sigmask_arg = argp;
3815                 struct kvm_signal_mask kvm_sigmask;
3816                 sigset_t sigset, *p;
3817
3818                 p = NULL;
3819                 if (argp) {
3820                         r = -EFAULT;
3821                         if (copy_from_user(&kvm_sigmask, argp,
3822                                            sizeof(kvm_sigmask)))
3823                                 goto out;
3824                         r = -EINVAL;
3825                         if (kvm_sigmask.len != sizeof(sigset))
3826                                 goto out;
3827                         r = -EFAULT;
3828                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3829                                            sizeof(sigset)))
3830                                 goto out;
3831                         p = &sigset;
3832                 }
3833                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3834                 break;
3835         }
3836         case KVM_GET_FPU: {
3837                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3838                 r = -ENOMEM;
3839                 if (!fpu)
3840                         goto out;
3841                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3842                 if (r)
3843                         goto out;
3844                 r = -EFAULT;
3845                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3846                         goto out;
3847                 r = 0;
3848                 break;
3849         }
3850         case KVM_SET_FPU: {
3851                 fpu = memdup_user(argp, sizeof(*fpu));
3852                 if (IS_ERR(fpu)) {
3853                         r = PTR_ERR(fpu);
3854                         fpu = NULL;
3855                         goto out;
3856                 }
3857                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3858                 break;
3859         }
3860         case KVM_GET_STATS_FD: {
3861                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3862                 break;
3863         }
3864         default:
3865                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3866         }
3867 out:
3868         mutex_unlock(&vcpu->mutex);
3869         kfree(fpu);
3870         kfree(kvm_sregs);
3871         return r;
3872 }
3873
3874 #ifdef CONFIG_KVM_COMPAT
3875 static long kvm_vcpu_compat_ioctl(struct file *filp,
3876                                   unsigned int ioctl, unsigned long arg)
3877 {
3878         struct kvm_vcpu *vcpu = filp->private_data;
3879         void __user *argp = compat_ptr(arg);
3880         int r;
3881
3882         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3883                 return -EIO;
3884
3885         switch (ioctl) {
3886         case KVM_SET_SIGNAL_MASK: {
3887                 struct kvm_signal_mask __user *sigmask_arg = argp;
3888                 struct kvm_signal_mask kvm_sigmask;
3889                 sigset_t sigset;
3890
3891                 if (argp) {
3892                         r = -EFAULT;
3893                         if (copy_from_user(&kvm_sigmask, argp,
3894                                            sizeof(kvm_sigmask)))
3895                                 goto out;
3896                         r = -EINVAL;
3897                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3898                                 goto out;
3899                         r = -EFAULT;
3900                         if (get_compat_sigset(&sigset,
3901                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3902                                 goto out;
3903                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3904                 } else
3905                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3906                 break;
3907         }
3908         default:
3909                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3910         }
3911
3912 out:
3913         return r;
3914 }
3915 #endif
3916
3917 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3918 {
3919         struct kvm_device *dev = filp->private_data;
3920
3921         if (dev->ops->mmap)
3922                 return dev->ops->mmap(dev, vma);
3923
3924         return -ENODEV;
3925 }
3926
3927 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3928                                  int (*accessor)(struct kvm_device *dev,
3929                                                  struct kvm_device_attr *attr),
3930                                  unsigned long arg)
3931 {
3932         struct kvm_device_attr attr;
3933
3934         if (!accessor)
3935                 return -EPERM;
3936
3937         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3938                 return -EFAULT;
3939
3940         return accessor(dev, &attr);
3941 }
3942
3943 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3944                              unsigned long arg)
3945 {
3946         struct kvm_device *dev = filp->private_data;
3947
3948         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
3949                 return -EIO;
3950
3951         switch (ioctl) {
3952         case KVM_SET_DEVICE_ATTR:
3953                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3954         case KVM_GET_DEVICE_ATTR:
3955                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3956         case KVM_HAS_DEVICE_ATTR:
3957                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3958         default:
3959                 if (dev->ops->ioctl)
3960                         return dev->ops->ioctl(dev, ioctl, arg);
3961
3962                 return -ENOTTY;
3963         }
3964 }
3965
3966 static int kvm_device_release(struct inode *inode, struct file *filp)
3967 {
3968         struct kvm_device *dev = filp->private_data;
3969         struct kvm *kvm = dev->kvm;
3970
3971         if (dev->ops->release) {
3972                 mutex_lock(&kvm->lock);
3973                 list_del(&dev->vm_node);
3974                 dev->ops->release(dev);
3975                 mutex_unlock(&kvm->lock);
3976         }
3977
3978         kvm_put_kvm(kvm);
3979         return 0;
3980 }
3981
3982 static const struct file_operations kvm_device_fops = {
3983         .unlocked_ioctl = kvm_device_ioctl,
3984         .release = kvm_device_release,
3985         KVM_COMPAT(kvm_device_ioctl),
3986         .mmap = kvm_device_mmap,
3987 };
3988
3989 struct kvm_device *kvm_device_from_filp(struct file *filp)
3990 {
3991         if (filp->f_op != &kvm_device_fops)
3992                 return NULL;
3993
3994         return filp->private_data;
3995 }
3996
3997 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3998 #ifdef CONFIG_KVM_MPIC
3999         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4000         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4001 #endif
4002 };
4003
4004 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4005 {
4006         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4007                 return -ENOSPC;
4008
4009         if (kvm_device_ops_table[type] != NULL)
4010                 return -EEXIST;
4011
4012         kvm_device_ops_table[type] = ops;
4013         return 0;
4014 }
4015
4016 void kvm_unregister_device_ops(u32 type)
4017 {
4018         if (kvm_device_ops_table[type] != NULL)
4019                 kvm_device_ops_table[type] = NULL;
4020 }
4021
4022 static int kvm_ioctl_create_device(struct kvm *kvm,
4023                                    struct kvm_create_device *cd)
4024 {
4025         const struct kvm_device_ops *ops = NULL;
4026         struct kvm_device *dev;
4027         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4028         int type;
4029         int ret;
4030
4031         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4032                 return -ENODEV;
4033
4034         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4035         ops = kvm_device_ops_table[type];
4036         if (ops == NULL)
4037                 return -ENODEV;
4038
4039         if (test)
4040                 return 0;
4041
4042         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4043         if (!dev)
4044                 return -ENOMEM;
4045
4046         dev->ops = ops;
4047         dev->kvm = kvm;
4048
4049         mutex_lock(&kvm->lock);
4050         ret = ops->create(dev, type);
4051         if (ret < 0) {
4052                 mutex_unlock(&kvm->lock);
4053                 kfree(dev);
4054                 return ret;
4055         }
4056         list_add(&dev->vm_node, &kvm->devices);
4057         mutex_unlock(&kvm->lock);
4058
4059         if (ops->init)
4060                 ops->init(dev);
4061
4062         kvm_get_kvm(kvm);
4063         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4064         if (ret < 0) {
4065                 kvm_put_kvm_no_destroy(kvm);
4066                 mutex_lock(&kvm->lock);
4067                 list_del(&dev->vm_node);
4068                 mutex_unlock(&kvm->lock);
4069                 ops->destroy(dev);
4070                 return ret;
4071         }
4072
4073         cd->fd = ret;
4074         return 0;
4075 }
4076
4077 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4078 {
4079         switch (arg) {
4080         case KVM_CAP_USER_MEMORY:
4081         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4082         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4083         case KVM_CAP_INTERNAL_ERROR_DATA:
4084 #ifdef CONFIG_HAVE_KVM_MSI
4085         case KVM_CAP_SIGNAL_MSI:
4086 #endif
4087 #ifdef CONFIG_HAVE_KVM_IRQFD
4088         case KVM_CAP_IRQFD:
4089         case KVM_CAP_IRQFD_RESAMPLE:
4090 #endif
4091         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4092         case KVM_CAP_CHECK_EXTENSION_VM:
4093         case KVM_CAP_ENABLE_CAP_VM:
4094         case KVM_CAP_HALT_POLL:
4095                 return 1;
4096 #ifdef CONFIG_KVM_MMIO
4097         case KVM_CAP_COALESCED_MMIO:
4098                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4099         case KVM_CAP_COALESCED_PIO:
4100                 return 1;
4101 #endif
4102 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4103         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4104                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4105 #endif
4106 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4107         case KVM_CAP_IRQ_ROUTING:
4108                 return KVM_MAX_IRQ_ROUTES;
4109 #endif
4110 #if KVM_ADDRESS_SPACE_NUM > 1
4111         case KVM_CAP_MULTI_ADDRESS_SPACE:
4112                 return KVM_ADDRESS_SPACE_NUM;
4113 #endif
4114         case KVM_CAP_NR_MEMSLOTS:
4115                 return KVM_USER_MEM_SLOTS;
4116         case KVM_CAP_DIRTY_LOG_RING:
4117 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4118                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4119 #else
4120                 return 0;
4121 #endif
4122         case KVM_CAP_BINARY_STATS_FD:
4123                 return 1;
4124         default:
4125                 break;
4126         }
4127         return kvm_vm_ioctl_check_extension(kvm, arg);
4128 }
4129
4130 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4131 {
4132         int r;
4133
4134         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4135                 return -EINVAL;
4136
4137         /* the size should be power of 2 */
4138         if (!size || (size & (size - 1)))
4139                 return -EINVAL;
4140
4141         /* Should be bigger to keep the reserved entries, or a page */
4142         if (size < kvm_dirty_ring_get_rsvd_entries() *
4143             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4144                 return -EINVAL;
4145
4146         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4147             sizeof(struct kvm_dirty_gfn))
4148                 return -E2BIG;
4149
4150         /* We only allow it to set once */
4151         if (kvm->dirty_ring_size)
4152                 return -EINVAL;
4153
4154         mutex_lock(&kvm->lock);
4155
4156         if (kvm->created_vcpus) {
4157                 /* We don't allow to change this value after vcpu created */
4158                 r = -EINVAL;
4159         } else {
4160                 kvm->dirty_ring_size = size;
4161                 r = 0;
4162         }
4163
4164         mutex_unlock(&kvm->lock);
4165         return r;
4166 }
4167
4168 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4169 {
4170         int i;
4171         struct kvm_vcpu *vcpu;
4172         int cleared = 0;
4173
4174         if (!kvm->dirty_ring_size)
4175                 return -EINVAL;
4176
4177         mutex_lock(&kvm->slots_lock);
4178
4179         kvm_for_each_vcpu(i, vcpu, kvm)
4180                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4181
4182         mutex_unlock(&kvm->slots_lock);
4183
4184         if (cleared)
4185                 kvm_flush_remote_tlbs(kvm);
4186
4187         return cleared;
4188 }
4189
4190 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4191                                                   struct kvm_enable_cap *cap)
4192 {
4193         return -EINVAL;
4194 }
4195
4196 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4197                                            struct kvm_enable_cap *cap)
4198 {
4199         switch (cap->cap) {
4200 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4201         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4202                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4203
4204                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4205                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4206
4207                 if (cap->flags || (cap->args[0] & ~allowed_options))
4208                         return -EINVAL;
4209                 kvm->manual_dirty_log_protect = cap->args[0];
4210                 return 0;
4211         }
4212 #endif
4213         case KVM_CAP_HALT_POLL: {
4214                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4215                         return -EINVAL;
4216
4217                 kvm->max_halt_poll_ns = cap->args[0];
4218                 return 0;
4219         }
4220         case KVM_CAP_DIRTY_LOG_RING:
4221                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4222         default:
4223                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4224         }
4225 }
4226
4227 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4228                               size_t size, loff_t *offset)
4229 {
4230         struct kvm *kvm = file->private_data;
4231
4232         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4233                                 &kvm_vm_stats_desc[0], &kvm->stat,
4234                                 sizeof(kvm->stat), user_buffer, size, offset);
4235 }
4236
4237 static const struct file_operations kvm_vm_stats_fops = {
4238         .read = kvm_vm_stats_read,
4239         .llseek = noop_llseek,
4240 };
4241
4242 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4243 {
4244         int fd;
4245         struct file *file;
4246
4247         fd = get_unused_fd_flags(O_CLOEXEC);
4248         if (fd < 0)
4249                 return fd;
4250
4251         file = anon_inode_getfile("kvm-vm-stats",
4252                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4253         if (IS_ERR(file)) {
4254                 put_unused_fd(fd);
4255                 return PTR_ERR(file);
4256         }
4257         file->f_mode |= FMODE_PREAD;
4258         fd_install(fd, file);
4259
4260         return fd;
4261 }
4262
4263 static long kvm_vm_ioctl(struct file *filp,
4264                            unsigned int ioctl, unsigned long arg)
4265 {
4266         struct kvm *kvm = filp->private_data;
4267         void __user *argp = (void __user *)arg;
4268         int r;
4269
4270         if (kvm->mm != current->mm || kvm->vm_dead)
4271                 return -EIO;
4272         switch (ioctl) {
4273         case KVM_CREATE_VCPU:
4274                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4275                 break;
4276         case KVM_ENABLE_CAP: {
4277                 struct kvm_enable_cap cap;
4278
4279                 r = -EFAULT;
4280                 if (copy_from_user(&cap, argp, sizeof(cap)))
4281                         goto out;
4282                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4283                 break;
4284         }
4285         case KVM_SET_USER_MEMORY_REGION: {
4286                 struct kvm_userspace_memory_region kvm_userspace_mem;
4287
4288                 r = -EFAULT;
4289                 if (copy_from_user(&kvm_userspace_mem, argp,
4290                                                 sizeof(kvm_userspace_mem)))
4291                         goto out;
4292
4293                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4294                 break;
4295         }
4296         case KVM_GET_DIRTY_LOG: {
4297                 struct kvm_dirty_log log;
4298
4299                 r = -EFAULT;
4300                 if (copy_from_user(&log, argp, sizeof(log)))
4301                         goto out;
4302                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4303                 break;
4304         }
4305 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4306         case KVM_CLEAR_DIRTY_LOG: {
4307                 struct kvm_clear_dirty_log log;
4308
4309                 r = -EFAULT;
4310                 if (copy_from_user(&log, argp, sizeof(log)))
4311                         goto out;
4312                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4313                 break;
4314         }
4315 #endif
4316 #ifdef CONFIG_KVM_MMIO
4317         case KVM_REGISTER_COALESCED_MMIO: {
4318                 struct kvm_coalesced_mmio_zone zone;
4319
4320                 r = -EFAULT;
4321                 if (copy_from_user(&zone, argp, sizeof(zone)))
4322                         goto out;
4323                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4324                 break;
4325         }
4326         case KVM_UNREGISTER_COALESCED_MMIO: {
4327                 struct kvm_coalesced_mmio_zone zone;
4328
4329                 r = -EFAULT;
4330                 if (copy_from_user(&zone, argp, sizeof(zone)))
4331                         goto out;
4332                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4333                 break;
4334         }
4335 #endif
4336         case KVM_IRQFD: {
4337                 struct kvm_irqfd data;
4338
4339                 r = -EFAULT;
4340                 if (copy_from_user(&data, argp, sizeof(data)))
4341                         goto out;
4342                 r = kvm_irqfd(kvm, &data);
4343                 break;
4344         }
4345         case KVM_IOEVENTFD: {
4346                 struct kvm_ioeventfd data;
4347
4348                 r = -EFAULT;
4349                 if (copy_from_user(&data, argp, sizeof(data)))
4350                         goto out;
4351                 r = kvm_ioeventfd(kvm, &data);
4352                 break;
4353         }
4354 #ifdef CONFIG_HAVE_KVM_MSI
4355         case KVM_SIGNAL_MSI: {
4356                 struct kvm_msi msi;
4357
4358                 r = -EFAULT;
4359                 if (copy_from_user(&msi, argp, sizeof(msi)))
4360                         goto out;
4361                 r = kvm_send_userspace_msi(kvm, &msi);
4362                 break;
4363         }
4364 #endif
4365 #ifdef __KVM_HAVE_IRQ_LINE
4366         case KVM_IRQ_LINE_STATUS:
4367         case KVM_IRQ_LINE: {
4368                 struct kvm_irq_level irq_event;
4369
4370                 r = -EFAULT;
4371                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4372                         goto out;
4373
4374                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4375                                         ioctl == KVM_IRQ_LINE_STATUS);
4376                 if (r)
4377                         goto out;
4378
4379                 r = -EFAULT;
4380                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4381                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4382                                 goto out;
4383                 }
4384
4385                 r = 0;
4386                 break;
4387         }
4388 #endif
4389 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4390         case KVM_SET_GSI_ROUTING: {
4391                 struct kvm_irq_routing routing;
4392                 struct kvm_irq_routing __user *urouting;
4393                 struct kvm_irq_routing_entry *entries = NULL;
4394
4395                 r = -EFAULT;
4396                 if (copy_from_user(&routing, argp, sizeof(routing)))
4397                         goto out;
4398                 r = -EINVAL;
4399                 if (!kvm_arch_can_set_irq_routing(kvm))
4400                         goto out;
4401                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4402                         goto out;
4403                 if (routing.flags)
4404                         goto out;
4405                 if (routing.nr) {
4406                         urouting = argp;
4407                         entries = vmemdup_user(urouting->entries,
4408                                                array_size(sizeof(*entries),
4409                                                           routing.nr));
4410                         if (IS_ERR(entries)) {
4411                                 r = PTR_ERR(entries);
4412                                 goto out;
4413                         }
4414                 }
4415                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4416                                         routing.flags);
4417                 kvfree(entries);
4418                 break;
4419         }
4420 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4421         case KVM_CREATE_DEVICE: {
4422                 struct kvm_create_device cd;
4423
4424                 r = -EFAULT;
4425                 if (copy_from_user(&cd, argp, sizeof(cd)))
4426                         goto out;
4427
4428                 r = kvm_ioctl_create_device(kvm, &cd);
4429                 if (r)
4430                         goto out;
4431
4432                 r = -EFAULT;
4433                 if (copy_to_user(argp, &cd, sizeof(cd)))
4434                         goto out;
4435
4436                 r = 0;
4437                 break;
4438         }
4439         case KVM_CHECK_EXTENSION:
4440                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4441                 break;
4442         case KVM_RESET_DIRTY_RINGS:
4443                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4444                 break;
4445         case KVM_GET_STATS_FD:
4446                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4447                 break;
4448         default:
4449                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4450         }
4451 out:
4452         return r;
4453 }
4454
4455 #ifdef CONFIG_KVM_COMPAT
4456 struct compat_kvm_dirty_log {
4457         __u32 slot;
4458         __u32 padding1;
4459         union {
4460                 compat_uptr_t dirty_bitmap; /* one bit per page */
4461                 __u64 padding2;
4462         };
4463 };
4464
4465 struct compat_kvm_clear_dirty_log {
4466         __u32 slot;
4467         __u32 num_pages;
4468         __u64 first_page;
4469         union {
4470                 compat_uptr_t dirty_bitmap; /* one bit per page */
4471                 __u64 padding2;
4472         };
4473 };
4474
4475 static long kvm_vm_compat_ioctl(struct file *filp,
4476                            unsigned int ioctl, unsigned long arg)
4477 {
4478         struct kvm *kvm = filp->private_data;
4479         int r;
4480
4481         if (kvm->mm != current->mm || kvm->vm_dead)
4482                 return -EIO;
4483         switch (ioctl) {
4484 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4485         case KVM_CLEAR_DIRTY_LOG: {
4486                 struct compat_kvm_clear_dirty_log compat_log;
4487                 struct kvm_clear_dirty_log log;
4488
4489                 if (copy_from_user(&compat_log, (void __user *)arg,
4490                                    sizeof(compat_log)))
4491                         return -EFAULT;
4492                 log.slot         = compat_log.slot;
4493                 log.num_pages    = compat_log.num_pages;
4494                 log.first_page   = compat_log.first_page;
4495                 log.padding2     = compat_log.padding2;
4496                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4497
4498                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4499                 break;
4500         }
4501 #endif
4502         case KVM_GET_DIRTY_LOG: {
4503                 struct compat_kvm_dirty_log compat_log;
4504                 struct kvm_dirty_log log;
4505
4506                 if (copy_from_user(&compat_log, (void __user *)arg,
4507                                    sizeof(compat_log)))
4508                         return -EFAULT;
4509                 log.slot         = compat_log.slot;
4510                 log.padding1     = compat_log.padding1;
4511                 log.padding2     = compat_log.padding2;
4512                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4513
4514                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4515                 break;
4516         }
4517         default:
4518                 r = kvm_vm_ioctl(filp, ioctl, arg);
4519         }
4520         return r;
4521 }
4522 #endif
4523
4524 static struct file_operations kvm_vm_fops = {
4525         .release        = kvm_vm_release,
4526         .unlocked_ioctl = kvm_vm_ioctl,
4527         .llseek         = noop_llseek,
4528         KVM_COMPAT(kvm_vm_compat_ioctl),
4529 };
4530
4531 bool file_is_kvm(struct file *file)
4532 {
4533         return file && file->f_op == &kvm_vm_fops;
4534 }
4535 EXPORT_SYMBOL_GPL(file_is_kvm);
4536
4537 static int kvm_dev_ioctl_create_vm(unsigned long type)
4538 {
4539         int r;
4540         struct kvm *kvm;
4541         struct file *file;
4542
4543         kvm = kvm_create_vm(type);
4544         if (IS_ERR(kvm))
4545                 return PTR_ERR(kvm);
4546 #ifdef CONFIG_KVM_MMIO
4547         r = kvm_coalesced_mmio_init(kvm);
4548         if (r < 0)
4549                 goto put_kvm;
4550 #endif
4551         r = get_unused_fd_flags(O_CLOEXEC);
4552         if (r < 0)
4553                 goto put_kvm;
4554
4555         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4556                         "kvm-%d", task_pid_nr(current));
4557
4558         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4559         if (IS_ERR(file)) {
4560                 put_unused_fd(r);
4561                 r = PTR_ERR(file);
4562                 goto put_kvm;
4563         }
4564
4565         /*
4566          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4567          * already set, with ->release() being kvm_vm_release().  In error
4568          * cases it will be called by the final fput(file) and will take
4569          * care of doing kvm_put_kvm(kvm).
4570          */
4571         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4572                 put_unused_fd(r);
4573                 fput(file);
4574                 return -ENOMEM;
4575         }
4576         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4577
4578         fd_install(r, file);
4579         return r;
4580
4581 put_kvm:
4582         kvm_put_kvm(kvm);
4583         return r;
4584 }
4585
4586 static long kvm_dev_ioctl(struct file *filp,
4587                           unsigned int ioctl, unsigned long arg)
4588 {
4589         long r = -EINVAL;
4590
4591         switch (ioctl) {
4592         case KVM_GET_API_VERSION:
4593                 if (arg)
4594                         goto out;
4595                 r = KVM_API_VERSION;
4596                 break;
4597         case KVM_CREATE_VM:
4598                 r = kvm_dev_ioctl_create_vm(arg);
4599                 break;
4600         case KVM_CHECK_EXTENSION:
4601                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4602                 break;
4603         case KVM_GET_VCPU_MMAP_SIZE:
4604                 if (arg)
4605                         goto out;
4606                 r = PAGE_SIZE;     /* struct kvm_run */
4607 #ifdef CONFIG_X86
4608                 r += PAGE_SIZE;    /* pio data page */
4609 #endif
4610 #ifdef CONFIG_KVM_MMIO
4611                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4612 #endif
4613                 break;
4614         case KVM_TRACE_ENABLE:
4615         case KVM_TRACE_PAUSE:
4616         case KVM_TRACE_DISABLE:
4617                 r = -EOPNOTSUPP;
4618                 break;
4619         default:
4620                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4621         }
4622 out:
4623         return r;
4624 }
4625
4626 static struct file_operations kvm_chardev_ops = {
4627         .unlocked_ioctl = kvm_dev_ioctl,
4628         .llseek         = noop_llseek,
4629         KVM_COMPAT(kvm_dev_ioctl),
4630 };
4631
4632 static struct miscdevice kvm_dev = {
4633         KVM_MINOR,
4634         "kvm",
4635         &kvm_chardev_ops,
4636 };
4637
4638 static void hardware_enable_nolock(void *junk)
4639 {
4640         int cpu = raw_smp_processor_id();
4641         int r;
4642
4643         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4644                 return;
4645
4646         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4647
4648         r = kvm_arch_hardware_enable();
4649
4650         if (r) {
4651                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4652                 atomic_inc(&hardware_enable_failed);
4653                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4654         }
4655 }
4656
4657 static int kvm_starting_cpu(unsigned int cpu)
4658 {
4659         raw_spin_lock(&kvm_count_lock);
4660         if (kvm_usage_count)
4661                 hardware_enable_nolock(NULL);
4662         raw_spin_unlock(&kvm_count_lock);
4663         return 0;
4664 }
4665
4666 static void hardware_disable_nolock(void *junk)
4667 {
4668         int cpu = raw_smp_processor_id();
4669
4670         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4671                 return;
4672         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4673         kvm_arch_hardware_disable();
4674 }
4675
4676 static int kvm_dying_cpu(unsigned int cpu)
4677 {
4678         raw_spin_lock(&kvm_count_lock);
4679         if (kvm_usage_count)
4680                 hardware_disable_nolock(NULL);
4681         raw_spin_unlock(&kvm_count_lock);
4682         return 0;
4683 }
4684
4685 static void hardware_disable_all_nolock(void)
4686 {
4687         BUG_ON(!kvm_usage_count);
4688
4689         kvm_usage_count--;
4690         if (!kvm_usage_count)
4691                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4692 }
4693
4694 static void hardware_disable_all(void)
4695 {
4696         raw_spin_lock(&kvm_count_lock);
4697         hardware_disable_all_nolock();
4698         raw_spin_unlock(&kvm_count_lock);
4699 }
4700
4701 static int hardware_enable_all(void)
4702 {
4703         int r = 0;
4704
4705         raw_spin_lock(&kvm_count_lock);
4706
4707         kvm_usage_count++;
4708         if (kvm_usage_count == 1) {
4709                 atomic_set(&hardware_enable_failed, 0);
4710                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4711
4712                 if (atomic_read(&hardware_enable_failed)) {
4713                         hardware_disable_all_nolock();
4714                         r = -EBUSY;
4715                 }
4716         }
4717
4718         raw_spin_unlock(&kvm_count_lock);
4719
4720         return r;
4721 }
4722
4723 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4724                       void *v)
4725 {
4726         /*
4727          * Some (well, at least mine) BIOSes hang on reboot if
4728          * in vmx root mode.
4729          *
4730          * And Intel TXT required VMX off for all cpu when system shutdown.
4731          */
4732         pr_info("kvm: exiting hardware virtualization\n");
4733         kvm_rebooting = true;
4734         on_each_cpu(hardware_disable_nolock, NULL, 1);
4735         return NOTIFY_OK;
4736 }
4737
4738 static struct notifier_block kvm_reboot_notifier = {
4739         .notifier_call = kvm_reboot,
4740         .priority = 0,
4741 };
4742
4743 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4744 {
4745         int i;
4746
4747         for (i = 0; i < bus->dev_count; i++) {
4748                 struct kvm_io_device *pos = bus->range[i].dev;
4749
4750                 kvm_iodevice_destructor(pos);
4751         }
4752         kfree(bus);
4753 }
4754
4755 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4756                                  const struct kvm_io_range *r2)
4757 {
4758         gpa_t addr1 = r1->addr;
4759         gpa_t addr2 = r2->addr;
4760
4761         if (addr1 < addr2)
4762                 return -1;
4763
4764         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4765          * accept any overlapping write.  Any order is acceptable for
4766          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4767          * we process all of them.
4768          */
4769         if (r2->len) {
4770                 addr1 += r1->len;
4771                 addr2 += r2->len;
4772         }
4773
4774         if (addr1 > addr2)
4775                 return 1;
4776
4777         return 0;
4778 }
4779
4780 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4781 {
4782         return kvm_io_bus_cmp(p1, p2);
4783 }
4784
4785 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4786                              gpa_t addr, int len)
4787 {
4788         struct kvm_io_range *range, key;
4789         int off;
4790
4791         key = (struct kvm_io_range) {
4792                 .addr = addr,
4793                 .len = len,
4794         };
4795
4796         range = bsearch(&key, bus->range, bus->dev_count,
4797                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4798         if (range == NULL)
4799                 return -ENOENT;
4800
4801         off = range - bus->range;
4802
4803         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4804                 off--;
4805
4806         return off;
4807 }
4808
4809 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4810                               struct kvm_io_range *range, const void *val)
4811 {
4812         int idx;
4813
4814         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4815         if (idx < 0)
4816                 return -EOPNOTSUPP;
4817
4818         while (idx < bus->dev_count &&
4819                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4820                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4821                                         range->len, val))
4822                         return idx;
4823                 idx++;
4824         }
4825
4826         return -EOPNOTSUPP;
4827 }
4828
4829 /* kvm_io_bus_write - called under kvm->slots_lock */
4830 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4831                      int len, const void *val)
4832 {
4833         struct kvm_io_bus *bus;
4834         struct kvm_io_range range;
4835         int r;
4836
4837         range = (struct kvm_io_range) {
4838                 .addr = addr,
4839                 .len = len,
4840         };
4841
4842         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4843         if (!bus)
4844                 return -ENOMEM;
4845         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4846         return r < 0 ? r : 0;
4847 }
4848 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4849
4850 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4851 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4852                             gpa_t addr, int len, const void *val, long cookie)
4853 {
4854         struct kvm_io_bus *bus;
4855         struct kvm_io_range range;
4856
4857         range = (struct kvm_io_range) {
4858                 .addr = addr,
4859                 .len = len,
4860         };
4861
4862         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4863         if (!bus)
4864                 return -ENOMEM;
4865
4866         /* First try the device referenced by cookie. */
4867         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4868             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4869                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4870                                         val))
4871                         return cookie;
4872
4873         /*
4874          * cookie contained garbage; fall back to search and return the
4875          * correct cookie value.
4876          */
4877         return __kvm_io_bus_write(vcpu, bus, &range, val);
4878 }
4879
4880 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4881                              struct kvm_io_range *range, void *val)
4882 {
4883         int idx;
4884
4885         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4886         if (idx < 0)
4887                 return -EOPNOTSUPP;
4888
4889         while (idx < bus->dev_count &&
4890                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4891                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4892                                        range->len, val))
4893                         return idx;
4894                 idx++;
4895         }
4896
4897         return -EOPNOTSUPP;
4898 }
4899
4900 /* kvm_io_bus_read - called under kvm->slots_lock */
4901 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4902                     int len, void *val)
4903 {
4904         struct kvm_io_bus *bus;
4905         struct kvm_io_range range;
4906         int r;
4907
4908         range = (struct kvm_io_range) {
4909                 .addr = addr,
4910                 .len = len,
4911         };
4912
4913         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4914         if (!bus)
4915                 return -ENOMEM;
4916         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4917         return r < 0 ? r : 0;
4918 }
4919
4920 /* Caller must hold slots_lock. */
4921 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4922                             int len, struct kvm_io_device *dev)
4923 {
4924         int i;
4925         struct kvm_io_bus *new_bus, *bus;
4926         struct kvm_io_range range;
4927
4928         bus = kvm_get_bus(kvm, bus_idx);
4929         if (!bus)
4930                 return -ENOMEM;
4931
4932         /* exclude ioeventfd which is limited by maximum fd */
4933         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4934                 return -ENOSPC;
4935
4936         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4937                           GFP_KERNEL_ACCOUNT);
4938         if (!new_bus)
4939                 return -ENOMEM;
4940
4941         range = (struct kvm_io_range) {
4942                 .addr = addr,
4943                 .len = len,
4944                 .dev = dev,
4945         };
4946
4947         for (i = 0; i < bus->dev_count; i++)
4948                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4949                         break;
4950
4951         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4952         new_bus->dev_count++;
4953         new_bus->range[i] = range;
4954         memcpy(new_bus->range + i + 1, bus->range + i,
4955                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4956         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4957         synchronize_srcu_expedited(&kvm->srcu);
4958         kfree(bus);
4959
4960         return 0;
4961 }
4962
4963 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4964                               struct kvm_io_device *dev)
4965 {
4966         int i, j;
4967         struct kvm_io_bus *new_bus, *bus;
4968
4969         lockdep_assert_held(&kvm->slots_lock);
4970
4971         bus = kvm_get_bus(kvm, bus_idx);
4972         if (!bus)
4973                 return 0;
4974
4975         for (i = 0; i < bus->dev_count; i++) {
4976                 if (bus->range[i].dev == dev) {
4977                         break;
4978                 }
4979         }
4980
4981         if (i == bus->dev_count)
4982                 return 0;
4983
4984         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4985                           GFP_KERNEL_ACCOUNT);
4986         if (new_bus) {
4987                 memcpy(new_bus, bus, struct_size(bus, range, i));
4988                 new_bus->dev_count--;
4989                 memcpy(new_bus->range + i, bus->range + i + 1,
4990                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
4991         }
4992
4993         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4994         synchronize_srcu_expedited(&kvm->srcu);
4995
4996         /* Destroy the old bus _after_ installing the (null) bus. */
4997         if (!new_bus) {
4998                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4999                 for (j = 0; j < bus->dev_count; j++) {
5000                         if (j == i)
5001                                 continue;
5002                         kvm_iodevice_destructor(bus->range[j].dev);
5003                 }
5004         }
5005
5006         kfree(bus);
5007         return new_bus ? 0 : -ENOMEM;
5008 }
5009
5010 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5011                                          gpa_t addr)
5012 {
5013         struct kvm_io_bus *bus;
5014         int dev_idx, srcu_idx;
5015         struct kvm_io_device *iodev = NULL;
5016
5017         srcu_idx = srcu_read_lock(&kvm->srcu);
5018
5019         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5020         if (!bus)
5021                 goto out_unlock;
5022
5023         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5024         if (dev_idx < 0)
5025                 goto out_unlock;
5026
5027         iodev = bus->range[dev_idx].dev;
5028
5029 out_unlock:
5030         srcu_read_unlock(&kvm->srcu, srcu_idx);
5031
5032         return iodev;
5033 }
5034 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5035
5036 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5037                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5038                            const char *fmt)
5039 {
5040         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5041                                           inode->i_private;
5042
5043         /*
5044          * The debugfs files are a reference to the kvm struct which
5045         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5046         * avoids the race between open and the removal of the debugfs directory.
5047          */
5048         if (!kvm_get_kvm_safe(stat_data->kvm))
5049                 return -ENOENT;
5050
5051         if (simple_attr_open(inode, file, get,
5052                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5053                     ? set : NULL,
5054                     fmt)) {
5055                 kvm_put_kvm(stat_data->kvm);
5056                 return -ENOMEM;
5057         }
5058
5059         return 0;
5060 }
5061
5062 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5063 {
5064         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5065                                           inode->i_private;
5066
5067         simple_attr_release(inode, file);
5068         kvm_put_kvm(stat_data->kvm);
5069
5070         return 0;
5071 }
5072
5073 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5074 {
5075         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5076
5077         return 0;
5078 }
5079
5080 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5081 {
5082         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5083
5084         return 0;
5085 }
5086
5087 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5088 {
5089         int i;
5090         struct kvm_vcpu *vcpu;
5091
5092         *val = 0;
5093
5094         kvm_for_each_vcpu(i, vcpu, kvm)
5095                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5096
5097         return 0;
5098 }
5099
5100 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5101 {
5102         int i;
5103         struct kvm_vcpu *vcpu;
5104
5105         kvm_for_each_vcpu(i, vcpu, kvm)
5106                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5107
5108         return 0;
5109 }
5110
5111 static int kvm_stat_data_get(void *data, u64 *val)
5112 {
5113         int r = -EFAULT;
5114         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5115
5116         switch (stat_data->kind) {
5117         case KVM_STAT_VM:
5118                 r = kvm_get_stat_per_vm(stat_data->kvm,
5119                                         stat_data->desc->desc.offset, val);
5120                 break;
5121         case KVM_STAT_VCPU:
5122                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5123                                           stat_data->desc->desc.offset, val);
5124                 break;
5125         }
5126
5127         return r;
5128 }
5129
5130 static int kvm_stat_data_clear(void *data, u64 val)
5131 {
5132         int r = -EFAULT;
5133         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5134
5135         if (val)
5136                 return -EINVAL;
5137
5138         switch (stat_data->kind) {
5139         case KVM_STAT_VM:
5140                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5141                                           stat_data->desc->desc.offset);
5142                 break;
5143         case KVM_STAT_VCPU:
5144                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5145                                             stat_data->desc->desc.offset);
5146                 break;
5147         }
5148
5149         return r;
5150 }
5151
5152 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5153 {
5154         __simple_attr_check_format("%llu\n", 0ull);
5155         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5156                                 kvm_stat_data_clear, "%llu\n");
5157 }
5158
5159 static const struct file_operations stat_fops_per_vm = {
5160         .owner = THIS_MODULE,
5161         .open = kvm_stat_data_open,
5162         .release = kvm_debugfs_release,
5163         .read = simple_attr_read,
5164         .write = simple_attr_write,
5165         .llseek = no_llseek,
5166 };
5167
5168 static int vm_stat_get(void *_offset, u64 *val)
5169 {
5170         unsigned offset = (long)_offset;
5171         struct kvm *kvm;
5172         u64 tmp_val;
5173
5174         *val = 0;
5175         mutex_lock(&kvm_lock);
5176         list_for_each_entry(kvm, &vm_list, vm_list) {
5177                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5178                 *val += tmp_val;
5179         }
5180         mutex_unlock(&kvm_lock);
5181         return 0;
5182 }
5183
5184 static int vm_stat_clear(void *_offset, u64 val)
5185 {
5186         unsigned offset = (long)_offset;
5187         struct kvm *kvm;
5188
5189         if (val)
5190                 return -EINVAL;
5191
5192         mutex_lock(&kvm_lock);
5193         list_for_each_entry(kvm, &vm_list, vm_list) {
5194                 kvm_clear_stat_per_vm(kvm, offset);
5195         }
5196         mutex_unlock(&kvm_lock);
5197
5198         return 0;
5199 }
5200
5201 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5202 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5203
5204 static int vcpu_stat_get(void *_offset, u64 *val)
5205 {
5206         unsigned offset = (long)_offset;
5207         struct kvm *kvm;
5208         u64 tmp_val;
5209
5210         *val = 0;
5211         mutex_lock(&kvm_lock);
5212         list_for_each_entry(kvm, &vm_list, vm_list) {
5213                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5214                 *val += tmp_val;
5215         }
5216         mutex_unlock(&kvm_lock);
5217         return 0;
5218 }
5219
5220 static int vcpu_stat_clear(void *_offset, u64 val)
5221 {
5222         unsigned offset = (long)_offset;
5223         struct kvm *kvm;
5224
5225         if (val)
5226                 return -EINVAL;
5227
5228         mutex_lock(&kvm_lock);
5229         list_for_each_entry(kvm, &vm_list, vm_list) {
5230                 kvm_clear_stat_per_vcpu(kvm, offset);
5231         }
5232         mutex_unlock(&kvm_lock);
5233
5234         return 0;
5235 }
5236
5237 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5238                         "%llu\n");
5239 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5240
5241 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5242 {
5243         struct kobj_uevent_env *env;
5244         unsigned long long created, active;
5245
5246         if (!kvm_dev.this_device || !kvm)
5247                 return;
5248
5249         mutex_lock(&kvm_lock);
5250         if (type == KVM_EVENT_CREATE_VM) {
5251                 kvm_createvm_count++;
5252                 kvm_active_vms++;
5253         } else if (type == KVM_EVENT_DESTROY_VM) {
5254                 kvm_active_vms--;
5255         }
5256         created = kvm_createvm_count;
5257         active = kvm_active_vms;
5258         mutex_unlock(&kvm_lock);
5259
5260         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5261         if (!env)
5262                 return;
5263
5264         add_uevent_var(env, "CREATED=%llu", created);
5265         add_uevent_var(env, "COUNT=%llu", active);
5266
5267         if (type == KVM_EVENT_CREATE_VM) {
5268                 add_uevent_var(env, "EVENT=create");
5269                 kvm->userspace_pid = task_pid_nr(current);
5270         } else if (type == KVM_EVENT_DESTROY_VM) {
5271                 add_uevent_var(env, "EVENT=destroy");
5272         }
5273         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5274
5275         if (kvm->debugfs_dentry) {
5276                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5277
5278                 if (p) {
5279                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5280                         if (!IS_ERR(tmp))
5281                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5282                         kfree(p);
5283                 }
5284         }
5285         /* no need for checks, since we are adding at most only 5 keys */
5286         env->envp[env->envp_idx++] = NULL;
5287         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5288         kfree(env);
5289 }
5290
5291 static void kvm_init_debug(void)
5292 {
5293         const struct file_operations *fops;
5294         const struct _kvm_stats_desc *pdesc;
5295         int i;
5296
5297         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5298
5299         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5300                 pdesc = &kvm_vm_stats_desc[i];
5301                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5302                         fops = &vm_stat_fops;
5303                 else
5304                         fops = &vm_stat_readonly_fops;
5305                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5306                                 kvm_debugfs_dir,
5307                                 (void *)(long)pdesc->desc.offset, fops);
5308         }
5309
5310         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5311                 pdesc = &kvm_vcpu_stats_desc[i];
5312                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5313                         fops = &vcpu_stat_fops;
5314                 else
5315                         fops = &vcpu_stat_readonly_fops;
5316                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5317                                 kvm_debugfs_dir,
5318                                 (void *)(long)pdesc->desc.offset, fops);
5319         }
5320 }
5321
5322 static int kvm_suspend(void)
5323 {
5324         if (kvm_usage_count)
5325                 hardware_disable_nolock(NULL);
5326         return 0;
5327 }
5328
5329 static void kvm_resume(void)
5330 {
5331         if (kvm_usage_count) {
5332 #ifdef CONFIG_LOCKDEP
5333                 WARN_ON(lockdep_is_held(&kvm_count_lock));
5334 #endif
5335                 hardware_enable_nolock(NULL);
5336         }
5337 }
5338
5339 static struct syscore_ops kvm_syscore_ops = {
5340         .suspend = kvm_suspend,
5341         .resume = kvm_resume,
5342 };
5343
5344 static inline
5345 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5346 {
5347         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5348 }
5349
5350 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5351 {
5352         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5353
5354         WRITE_ONCE(vcpu->preempted, false);
5355         WRITE_ONCE(vcpu->ready, false);
5356
5357         __this_cpu_write(kvm_running_vcpu, vcpu);
5358         kvm_arch_sched_in(vcpu, cpu);
5359         kvm_arch_vcpu_load(vcpu, cpu);
5360 }
5361
5362 static void kvm_sched_out(struct preempt_notifier *pn,
5363                           struct task_struct *next)
5364 {
5365         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5366
5367         if (current->on_rq) {
5368                 WRITE_ONCE(vcpu->preempted, true);
5369                 WRITE_ONCE(vcpu->ready, true);
5370         }
5371         kvm_arch_vcpu_put(vcpu);
5372         __this_cpu_write(kvm_running_vcpu, NULL);
5373 }
5374
5375 /**
5376  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5377  *
5378  * We can disable preemption locally around accessing the per-CPU variable,
5379  * and use the resolved vcpu pointer after enabling preemption again,
5380  * because even if the current thread is migrated to another CPU, reading
5381  * the per-CPU value later will give us the same value as we update the
5382  * per-CPU variable in the preempt notifier handlers.
5383  */
5384 struct kvm_vcpu *kvm_get_running_vcpu(void)
5385 {
5386         struct kvm_vcpu *vcpu;
5387
5388         preempt_disable();
5389         vcpu = __this_cpu_read(kvm_running_vcpu);
5390         preempt_enable();
5391
5392         return vcpu;
5393 }
5394 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5395
5396 /**
5397  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5398  */
5399 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5400 {
5401         return &kvm_running_vcpu;
5402 }
5403
5404 struct kvm_cpu_compat_check {
5405         void *opaque;
5406         int *ret;
5407 };
5408
5409 static void check_processor_compat(void *data)
5410 {
5411         struct kvm_cpu_compat_check *c = data;
5412
5413         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5414 }
5415
5416 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5417                   struct module *module)
5418 {
5419         struct kvm_cpu_compat_check c;
5420         int r;
5421         int cpu;
5422
5423         r = kvm_arch_init(opaque);
5424         if (r)
5425                 goto out_fail;
5426
5427         /*
5428          * kvm_arch_init makes sure there's at most one caller
5429          * for architectures that support multiple implementations,
5430          * like intel and amd on x86.
5431          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5432          * conflicts in case kvm is already setup for another implementation.
5433          */
5434         r = kvm_irqfd_init();
5435         if (r)
5436                 goto out_irqfd;
5437
5438         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5439                 r = -ENOMEM;
5440                 goto out_free_0;
5441         }
5442
5443         r = kvm_arch_hardware_setup(opaque);
5444         if (r < 0)
5445                 goto out_free_1;
5446
5447         c.ret = &r;
5448         c.opaque = opaque;
5449         for_each_online_cpu(cpu) {
5450                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5451                 if (r < 0)
5452                         goto out_free_2;
5453         }
5454
5455         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5456                                       kvm_starting_cpu, kvm_dying_cpu);
5457         if (r)
5458                 goto out_free_2;
5459         register_reboot_notifier(&kvm_reboot_notifier);
5460
5461         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5462         if (!vcpu_align)
5463                 vcpu_align = __alignof__(struct kvm_vcpu);
5464         kvm_vcpu_cache =
5465                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5466                                            SLAB_ACCOUNT,
5467                                            offsetof(struct kvm_vcpu, arch),
5468                                            offsetofend(struct kvm_vcpu, stats_id)
5469                                            - offsetof(struct kvm_vcpu, arch),
5470                                            NULL);
5471         if (!kvm_vcpu_cache) {
5472                 r = -ENOMEM;
5473                 goto out_free_3;
5474         }
5475
5476         for_each_possible_cpu(cpu) {
5477                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5478                                             GFP_KERNEL, cpu_to_node(cpu))) {
5479                         r = -ENOMEM;
5480                         goto out_free_4;
5481                 }
5482         }
5483
5484         r = kvm_async_pf_init();
5485         if (r)
5486                 goto out_free_5;
5487
5488         kvm_chardev_ops.owner = module;
5489         kvm_vm_fops.owner = module;
5490         kvm_vcpu_fops.owner = module;
5491
5492         r = misc_register(&kvm_dev);
5493         if (r) {
5494                 pr_err("kvm: misc device register failed\n");
5495                 goto out_unreg;
5496         }
5497
5498         register_syscore_ops(&kvm_syscore_ops);
5499
5500         kvm_preempt_ops.sched_in = kvm_sched_in;
5501         kvm_preempt_ops.sched_out = kvm_sched_out;
5502
5503         kvm_init_debug();
5504
5505         r = kvm_vfio_ops_init();
5506         WARN_ON(r);
5507
5508         return 0;
5509
5510 out_unreg:
5511         kvm_async_pf_deinit();
5512 out_free_5:
5513         for_each_possible_cpu(cpu)
5514                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5515 out_free_4:
5516         kmem_cache_destroy(kvm_vcpu_cache);
5517 out_free_3:
5518         unregister_reboot_notifier(&kvm_reboot_notifier);
5519         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5520 out_free_2:
5521         kvm_arch_hardware_unsetup();
5522 out_free_1:
5523         free_cpumask_var(cpus_hardware_enabled);
5524 out_free_0:
5525         kvm_irqfd_exit();
5526 out_irqfd:
5527         kvm_arch_exit();
5528 out_fail:
5529         return r;
5530 }
5531 EXPORT_SYMBOL_GPL(kvm_init);
5532
5533 void kvm_exit(void)
5534 {
5535         int cpu;
5536
5537         debugfs_remove_recursive(kvm_debugfs_dir);
5538         misc_deregister(&kvm_dev);
5539         for_each_possible_cpu(cpu)
5540                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5541         kmem_cache_destroy(kvm_vcpu_cache);
5542         kvm_async_pf_deinit();
5543         unregister_syscore_ops(&kvm_syscore_ops);
5544         unregister_reboot_notifier(&kvm_reboot_notifier);
5545         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5546         on_each_cpu(hardware_disable_nolock, NULL, 1);
5547         kvm_arch_hardware_unsetup();
5548         kvm_arch_exit();
5549         kvm_irqfd_exit();
5550         free_cpumask_var(cpus_hardware_enabled);
5551         kvm_vfio_ops_exit();
5552 }
5553 EXPORT_SYMBOL_GPL(kvm_exit);
5554
5555 struct kvm_vm_worker_thread_context {
5556         struct kvm *kvm;
5557         struct task_struct *parent;
5558         struct completion init_done;
5559         kvm_vm_thread_fn_t thread_fn;
5560         uintptr_t data;
5561         int err;
5562 };
5563
5564 static int kvm_vm_worker_thread(void *context)
5565 {
5566         /*
5567          * The init_context is allocated on the stack of the parent thread, so
5568          * we have to locally copy anything that is needed beyond initialization
5569          */
5570         struct kvm_vm_worker_thread_context *init_context = context;
5571         struct kvm *kvm = init_context->kvm;
5572         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5573         uintptr_t data = init_context->data;
5574         int err;
5575
5576         err = kthread_park(current);
5577         /* kthread_park(current) is never supposed to return an error */
5578         WARN_ON(err != 0);
5579         if (err)
5580                 goto init_complete;
5581
5582         err = cgroup_attach_task_all(init_context->parent, current);
5583         if (err) {
5584                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5585                         __func__, err);
5586                 goto init_complete;
5587         }
5588
5589         set_user_nice(current, task_nice(init_context->parent));
5590
5591 init_complete:
5592         init_context->err = err;
5593         complete(&init_context->init_done);
5594         init_context = NULL;
5595
5596         if (err)
5597                 return err;
5598
5599         /* Wait to be woken up by the spawner before proceeding. */
5600         kthread_parkme();
5601
5602         if (!kthread_should_stop())
5603                 err = thread_fn(kvm, data);
5604
5605         return err;
5606 }
5607
5608 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5609                                 uintptr_t data, const char *name,
5610                                 struct task_struct **thread_ptr)
5611 {
5612         struct kvm_vm_worker_thread_context init_context = {};
5613         struct task_struct *thread;
5614
5615         *thread_ptr = NULL;
5616         init_context.kvm = kvm;
5617         init_context.parent = current;
5618         init_context.thread_fn = thread_fn;
5619         init_context.data = data;
5620         init_completion(&init_context.init_done);
5621
5622         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5623                              "%s-%d", name, task_pid_nr(current));
5624         if (IS_ERR(thread))
5625                 return PTR_ERR(thread);
5626
5627         /* kthread_run is never supposed to return NULL */
5628         WARN_ON(thread == NULL);
5629
5630         wait_for_completion(&init_context.init_done);
5631
5632         if (!init_context.err)
5633                 *thread_ptr = thread;
5634
5635         return init_context.err;
5636 }