soundwire: sysfs: add slave status and device number before probe
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91
92 /*
93  * Ordering of locks:
94  *
95  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105
106 static struct kmem_cache *kvm_vcpu_cache;
107
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118                            unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121                                   unsigned long arg);
122 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
123 #else
124 /*
125  * For architectures that don't implement a compat infrastructure,
126  * adopt a double line of defense:
127  * - Prevent a compat task from opening /dev/kvm
128  * - If the open has been done by a 64bit task, and the KVM fd
129  *   passed to a compat task, let the ioctls fail.
130  */
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132                                 unsigned long arg) { return -EINVAL; }
133
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136         return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
139                         .open           = kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145
146 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
147
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158                                                    unsigned long start, unsigned long end)
159 {
160 }
161
162 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
163 {
164         /*
165          * The metadata used by is_zone_device_page() to determine whether or
166          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
167          * the device has been pinned, e.g. by get_user_pages().  WARN if the
168          * page_count() is zero to help detect bad usage of this helper.
169          */
170         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
171                 return false;
172
173         return is_zone_device_page(pfn_to_page(pfn));
174 }
175
176 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
177 {
178         /*
179          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
180          * perspective they are "normal" pages, albeit with slightly different
181          * usage rules.
182          */
183         if (pfn_valid(pfn))
184                 return PageReserved(pfn_to_page(pfn)) &&
185                        !is_zero_pfn(pfn) &&
186                        !kvm_is_zone_device_pfn(pfn);
187
188         return true;
189 }
190
191 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
192 {
193         struct page *page = pfn_to_page(pfn);
194
195         if (!PageTransCompoundMap(page))
196                 return false;
197
198         return is_transparent_hugepage(compound_head(page));
199 }
200
201 /*
202  * Switches to specified vcpu, until a matching vcpu_put()
203  */
204 void vcpu_load(struct kvm_vcpu *vcpu)
205 {
206         int cpu = get_cpu();
207
208         __this_cpu_write(kvm_running_vcpu, vcpu);
209         preempt_notifier_register(&vcpu->preempt_notifier);
210         kvm_arch_vcpu_load(vcpu, cpu);
211         put_cpu();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_load);
214
215 void vcpu_put(struct kvm_vcpu *vcpu)
216 {
217         preempt_disable();
218         kvm_arch_vcpu_put(vcpu);
219         preempt_notifier_unregister(&vcpu->preempt_notifier);
220         __this_cpu_write(kvm_running_vcpu, NULL);
221         preempt_enable();
222 }
223 EXPORT_SYMBOL_GPL(vcpu_put);
224
225 /* TODO: merge with kvm_arch_vcpu_should_kick */
226 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
227 {
228         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
229
230         /*
231          * We need to wait for the VCPU to reenable interrupts and get out of
232          * READING_SHADOW_PAGE_TABLES mode.
233          */
234         if (req & KVM_REQUEST_WAIT)
235                 return mode != OUTSIDE_GUEST_MODE;
236
237         /*
238          * Need to kick a running VCPU, but otherwise there is nothing to do.
239          */
240         return mode == IN_GUEST_MODE;
241 }
242
243 static void ack_flush(void *_completed)
244 {
245 }
246
247 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
248 {
249         if (unlikely(!cpus))
250                 cpus = cpu_online_mask;
251
252         if (cpumask_empty(cpus))
253                 return false;
254
255         smp_call_function_many(cpus, ack_flush, NULL, wait);
256         return true;
257 }
258
259 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
260                                  struct kvm_vcpu *except,
261                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
262 {
263         int i, cpu, me;
264         struct kvm_vcpu *vcpu;
265         bool called;
266
267         me = get_cpu();
268
269         kvm_for_each_vcpu(i, vcpu, kvm) {
270                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
271                     vcpu == except)
272                         continue;
273
274                 kvm_make_request(req, vcpu);
275                 cpu = vcpu->cpu;
276
277                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278                         continue;
279
280                 if (tmp != NULL && cpu != -1 && cpu != me &&
281                     kvm_request_needs_ipi(vcpu, req))
282                         __cpumask_set_cpu(cpu, tmp);
283         }
284
285         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286         put_cpu();
287
288         return called;
289 }
290
291 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
292                                       struct kvm_vcpu *except)
293 {
294         cpumask_var_t cpus;
295         bool called;
296
297         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
298
299         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
300
301         free_cpumask_var(cpus);
302         return called;
303 }
304
305 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
306 {
307         return kvm_make_all_cpus_request_except(kvm, req, NULL);
308 }
309
310 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
311 void kvm_flush_remote_tlbs(struct kvm *kvm)
312 {
313         /*
314          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
315          * kvm_make_all_cpus_request.
316          */
317         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
318
319         /*
320          * We want to publish modifications to the page tables before reading
321          * mode. Pairs with a memory barrier in arch-specific code.
322          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
323          * and smp_mb in walk_shadow_page_lockless_begin/end.
324          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
325          *
326          * There is already an smp_mb__after_atomic() before
327          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
328          * barrier here.
329          */
330         if (!kvm_arch_flush_remote_tlb(kvm)
331             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
332                 ++kvm->stat.remote_tlb_flush;
333         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
334 }
335 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
336 #endif
337
338 void kvm_reload_remote_mmus(struct kvm *kvm)
339 {
340         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
341 }
342
343 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
344 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
345                                                gfp_t gfp_flags)
346 {
347         gfp_flags |= mc->gfp_zero;
348
349         if (mc->kmem_cache)
350                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
351         else
352                 return (void *)__get_free_page(gfp_flags);
353 }
354
355 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
356 {
357         void *obj;
358
359         if (mc->nobjs >= min)
360                 return 0;
361         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
362                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
363                 if (!obj)
364                         return mc->nobjs >= min ? 0 : -ENOMEM;
365                 mc->objects[mc->nobjs++] = obj;
366         }
367         return 0;
368 }
369
370 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
371 {
372         return mc->nobjs;
373 }
374
375 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
376 {
377         while (mc->nobjs) {
378                 if (mc->kmem_cache)
379                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
380                 else
381                         free_page((unsigned long)mc->objects[--mc->nobjs]);
382         }
383 }
384
385 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
386 {
387         void *p;
388
389         if (WARN_ON(!mc->nobjs))
390                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
391         else
392                 p = mc->objects[--mc->nobjs];
393         BUG_ON(!p);
394         return p;
395 }
396 #endif
397
398 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
399 {
400         mutex_init(&vcpu->mutex);
401         vcpu->cpu = -1;
402         vcpu->kvm = kvm;
403         vcpu->vcpu_id = id;
404         vcpu->pid = NULL;
405         rcuwait_init(&vcpu->wait);
406         kvm_async_pf_vcpu_init(vcpu);
407
408         vcpu->pre_pcpu = -1;
409         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
410
411         kvm_vcpu_set_in_spin_loop(vcpu, false);
412         kvm_vcpu_set_dy_eligible(vcpu, false);
413         vcpu->preempted = false;
414         vcpu->ready = false;
415         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
416 }
417
418 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
419 {
420         kvm_arch_vcpu_destroy(vcpu);
421
422         /*
423          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
424          * the vcpu->pid pointer, and at destruction time all file descriptors
425          * are already gone.
426          */
427         put_pid(rcu_dereference_protected(vcpu->pid, 1));
428
429         free_page((unsigned long)vcpu->run);
430         kmem_cache_free(kvm_vcpu_cache, vcpu);
431 }
432 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
433
434 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
435 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
436 {
437         return container_of(mn, struct kvm, mmu_notifier);
438 }
439
440 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
441                                               struct mm_struct *mm,
442                                               unsigned long start, unsigned long end)
443 {
444         struct kvm *kvm = mmu_notifier_to_kvm(mn);
445         int idx;
446
447         idx = srcu_read_lock(&kvm->srcu);
448         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
449         srcu_read_unlock(&kvm->srcu, idx);
450 }
451
452 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
453                                         struct mm_struct *mm,
454                                         unsigned long address,
455                                         pte_t pte)
456 {
457         struct kvm *kvm = mmu_notifier_to_kvm(mn);
458         int idx;
459
460         idx = srcu_read_lock(&kvm->srcu);
461         spin_lock(&kvm->mmu_lock);
462         kvm->mmu_notifier_seq++;
463
464         if (kvm_set_spte_hva(kvm, address, pte))
465                 kvm_flush_remote_tlbs(kvm);
466
467         spin_unlock(&kvm->mmu_lock);
468         srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
472                                         const struct mmu_notifier_range *range)
473 {
474         struct kvm *kvm = mmu_notifier_to_kvm(mn);
475         int need_tlb_flush = 0, idx;
476
477         idx = srcu_read_lock(&kvm->srcu);
478         spin_lock(&kvm->mmu_lock);
479         /*
480          * The count increase must become visible at unlock time as no
481          * spte can be established without taking the mmu_lock and
482          * count is also read inside the mmu_lock critical section.
483          */
484         kvm->mmu_notifier_count++;
485         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
486         need_tlb_flush |= kvm->tlbs_dirty;
487         /* we've to flush the tlb before the pages can be freed */
488         if (need_tlb_flush)
489                 kvm_flush_remote_tlbs(kvm);
490
491         spin_unlock(&kvm->mmu_lock);
492         srcu_read_unlock(&kvm->srcu, idx);
493
494         return 0;
495 }
496
497 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
498                                         const struct mmu_notifier_range *range)
499 {
500         struct kvm *kvm = mmu_notifier_to_kvm(mn);
501
502         spin_lock(&kvm->mmu_lock);
503         /*
504          * This sequence increase will notify the kvm page fault that
505          * the page that is going to be mapped in the spte could have
506          * been freed.
507          */
508         kvm->mmu_notifier_seq++;
509         smp_wmb();
510         /*
511          * The above sequence increase must be visible before the
512          * below count decrease, which is ensured by the smp_wmb above
513          * in conjunction with the smp_rmb in mmu_notifier_retry().
514          */
515         kvm->mmu_notifier_count--;
516         spin_unlock(&kvm->mmu_lock);
517
518         BUG_ON(kvm->mmu_notifier_count < 0);
519 }
520
521 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
522                                               struct mm_struct *mm,
523                                               unsigned long start,
524                                               unsigned long end)
525 {
526         struct kvm *kvm = mmu_notifier_to_kvm(mn);
527         int young, idx;
528
529         idx = srcu_read_lock(&kvm->srcu);
530         spin_lock(&kvm->mmu_lock);
531
532         young = kvm_age_hva(kvm, start, end);
533         if (young)
534                 kvm_flush_remote_tlbs(kvm);
535
536         spin_unlock(&kvm->mmu_lock);
537         srcu_read_unlock(&kvm->srcu, idx);
538
539         return young;
540 }
541
542 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
543                                         struct mm_struct *mm,
544                                         unsigned long start,
545                                         unsigned long end)
546 {
547         struct kvm *kvm = mmu_notifier_to_kvm(mn);
548         int young, idx;
549
550         idx = srcu_read_lock(&kvm->srcu);
551         spin_lock(&kvm->mmu_lock);
552         /*
553          * Even though we do not flush TLB, this will still adversely
554          * affect performance on pre-Haswell Intel EPT, where there is
555          * no EPT Access Bit to clear so that we have to tear down EPT
556          * tables instead. If we find this unacceptable, we can always
557          * add a parameter to kvm_age_hva so that it effectively doesn't
558          * do anything on clear_young.
559          *
560          * Also note that currently we never issue secondary TLB flushes
561          * from clear_young, leaving this job up to the regular system
562          * cadence. If we find this inaccurate, we might come up with a
563          * more sophisticated heuristic later.
564          */
565         young = kvm_age_hva(kvm, start, end);
566         spin_unlock(&kvm->mmu_lock);
567         srcu_read_unlock(&kvm->srcu, idx);
568
569         return young;
570 }
571
572 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
573                                        struct mm_struct *mm,
574                                        unsigned long address)
575 {
576         struct kvm *kvm = mmu_notifier_to_kvm(mn);
577         int young, idx;
578
579         idx = srcu_read_lock(&kvm->srcu);
580         spin_lock(&kvm->mmu_lock);
581         young = kvm_test_age_hva(kvm, address);
582         spin_unlock(&kvm->mmu_lock);
583         srcu_read_unlock(&kvm->srcu, idx);
584
585         return young;
586 }
587
588 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
589                                      struct mm_struct *mm)
590 {
591         struct kvm *kvm = mmu_notifier_to_kvm(mn);
592         int idx;
593
594         idx = srcu_read_lock(&kvm->srcu);
595         kvm_arch_flush_shadow_all(kvm);
596         srcu_read_unlock(&kvm->srcu, idx);
597 }
598
599 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
600         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
601         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
602         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
603         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
604         .clear_young            = kvm_mmu_notifier_clear_young,
605         .test_young             = kvm_mmu_notifier_test_young,
606         .change_pte             = kvm_mmu_notifier_change_pte,
607         .release                = kvm_mmu_notifier_release,
608 };
609
610 static int kvm_init_mmu_notifier(struct kvm *kvm)
611 {
612         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
613         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
614 }
615
616 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
617
618 static int kvm_init_mmu_notifier(struct kvm *kvm)
619 {
620         return 0;
621 }
622
623 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
624
625 static struct kvm_memslots *kvm_alloc_memslots(void)
626 {
627         int i;
628         struct kvm_memslots *slots;
629
630         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
631         if (!slots)
632                 return NULL;
633
634         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
635                 slots->id_to_index[i] = -1;
636
637         return slots;
638 }
639
640 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
641 {
642         if (!memslot->dirty_bitmap)
643                 return;
644
645         kvfree(memslot->dirty_bitmap);
646         memslot->dirty_bitmap = NULL;
647 }
648
649 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
650 {
651         kvm_destroy_dirty_bitmap(slot);
652
653         kvm_arch_free_memslot(kvm, slot);
654
655         slot->flags = 0;
656         slot->npages = 0;
657 }
658
659 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
660 {
661         struct kvm_memory_slot *memslot;
662
663         if (!slots)
664                 return;
665
666         kvm_for_each_memslot(memslot, slots)
667                 kvm_free_memslot(kvm, memslot);
668
669         kvfree(slots);
670 }
671
672 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
673 {
674         int i;
675
676         if (!kvm->debugfs_dentry)
677                 return;
678
679         debugfs_remove_recursive(kvm->debugfs_dentry);
680
681         if (kvm->debugfs_stat_data) {
682                 for (i = 0; i < kvm_debugfs_num_entries; i++)
683                         kfree(kvm->debugfs_stat_data[i]);
684                 kfree(kvm->debugfs_stat_data);
685         }
686 }
687
688 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
689 {
690         char dir_name[ITOA_MAX_LEN * 2];
691         struct kvm_stat_data *stat_data;
692         struct kvm_stats_debugfs_item *p;
693
694         if (!debugfs_initialized())
695                 return 0;
696
697         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
698         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
699
700         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
701                                          sizeof(*kvm->debugfs_stat_data),
702                                          GFP_KERNEL_ACCOUNT);
703         if (!kvm->debugfs_stat_data)
704                 return -ENOMEM;
705
706         for (p = debugfs_entries; p->name; p++) {
707                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
708                 if (!stat_data)
709                         return -ENOMEM;
710
711                 stat_data->kvm = kvm;
712                 stat_data->dbgfs_item = p;
713                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
714                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
715                                     kvm->debugfs_dentry, stat_data,
716                                     &stat_fops_per_vm);
717         }
718         return 0;
719 }
720
721 /*
722  * Called after the VM is otherwise initialized, but just before adding it to
723  * the vm_list.
724  */
725 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
726 {
727         return 0;
728 }
729
730 /*
731  * Called just after removing the VM from the vm_list, but before doing any
732  * other destruction.
733  */
734 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
735 {
736 }
737
738 static struct kvm *kvm_create_vm(unsigned long type)
739 {
740         struct kvm *kvm = kvm_arch_alloc_vm();
741         int r = -ENOMEM;
742         int i;
743
744         if (!kvm)
745                 return ERR_PTR(-ENOMEM);
746
747         spin_lock_init(&kvm->mmu_lock);
748         mmgrab(current->mm);
749         kvm->mm = current->mm;
750         kvm_eventfd_init(kvm);
751         mutex_init(&kvm->lock);
752         mutex_init(&kvm->irq_lock);
753         mutex_init(&kvm->slots_lock);
754         INIT_LIST_HEAD(&kvm->devices);
755
756         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
757
758         if (init_srcu_struct(&kvm->srcu))
759                 goto out_err_no_srcu;
760         if (init_srcu_struct(&kvm->irq_srcu))
761                 goto out_err_no_irq_srcu;
762
763         refcount_set(&kvm->users_count, 1);
764         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
765                 struct kvm_memslots *slots = kvm_alloc_memslots();
766
767                 if (!slots)
768                         goto out_err_no_arch_destroy_vm;
769                 /* Generations must be different for each address space. */
770                 slots->generation = i;
771                 rcu_assign_pointer(kvm->memslots[i], slots);
772         }
773
774         for (i = 0; i < KVM_NR_BUSES; i++) {
775                 rcu_assign_pointer(kvm->buses[i],
776                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
777                 if (!kvm->buses[i])
778                         goto out_err_no_arch_destroy_vm;
779         }
780
781         kvm->max_halt_poll_ns = halt_poll_ns;
782
783         r = kvm_arch_init_vm(kvm, type);
784         if (r)
785                 goto out_err_no_arch_destroy_vm;
786
787         r = hardware_enable_all();
788         if (r)
789                 goto out_err_no_disable;
790
791 #ifdef CONFIG_HAVE_KVM_IRQFD
792         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
793 #endif
794
795         r = kvm_init_mmu_notifier(kvm);
796         if (r)
797                 goto out_err_no_mmu_notifier;
798
799         r = kvm_arch_post_init_vm(kvm);
800         if (r)
801                 goto out_err;
802
803         mutex_lock(&kvm_lock);
804         list_add(&kvm->vm_list, &vm_list);
805         mutex_unlock(&kvm_lock);
806
807         preempt_notifier_inc();
808
809         return kvm;
810
811 out_err:
812 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
813         if (kvm->mmu_notifier.ops)
814                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
815 #endif
816 out_err_no_mmu_notifier:
817         hardware_disable_all();
818 out_err_no_disable:
819         kvm_arch_destroy_vm(kvm);
820 out_err_no_arch_destroy_vm:
821         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
822         for (i = 0; i < KVM_NR_BUSES; i++)
823                 kfree(kvm_get_bus(kvm, i));
824         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
825                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
826         cleanup_srcu_struct(&kvm->irq_srcu);
827 out_err_no_irq_srcu:
828         cleanup_srcu_struct(&kvm->srcu);
829 out_err_no_srcu:
830         kvm_arch_free_vm(kvm);
831         mmdrop(current->mm);
832         return ERR_PTR(r);
833 }
834
835 static void kvm_destroy_devices(struct kvm *kvm)
836 {
837         struct kvm_device *dev, *tmp;
838
839         /*
840          * We do not need to take the kvm->lock here, because nobody else
841          * has a reference to the struct kvm at this point and therefore
842          * cannot access the devices list anyhow.
843          */
844         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
845                 list_del(&dev->vm_node);
846                 dev->ops->destroy(dev);
847         }
848 }
849
850 static void kvm_destroy_vm(struct kvm *kvm)
851 {
852         int i;
853         struct mm_struct *mm = kvm->mm;
854
855         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
856         kvm_destroy_vm_debugfs(kvm);
857         kvm_arch_sync_events(kvm);
858         mutex_lock(&kvm_lock);
859         list_del(&kvm->vm_list);
860         mutex_unlock(&kvm_lock);
861         kvm_arch_pre_destroy_vm(kvm);
862
863         kvm_free_irq_routing(kvm);
864         for (i = 0; i < KVM_NR_BUSES; i++) {
865                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
866
867                 if (bus)
868                         kvm_io_bus_destroy(bus);
869                 kvm->buses[i] = NULL;
870         }
871         kvm_coalesced_mmio_free(kvm);
872 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
873         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
874 #else
875         kvm_arch_flush_shadow_all(kvm);
876 #endif
877         kvm_arch_destroy_vm(kvm);
878         kvm_destroy_devices(kvm);
879         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
880                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
881         cleanup_srcu_struct(&kvm->irq_srcu);
882         cleanup_srcu_struct(&kvm->srcu);
883         kvm_arch_free_vm(kvm);
884         preempt_notifier_dec();
885         hardware_disable_all();
886         mmdrop(mm);
887 }
888
889 void kvm_get_kvm(struct kvm *kvm)
890 {
891         refcount_inc(&kvm->users_count);
892 }
893 EXPORT_SYMBOL_GPL(kvm_get_kvm);
894
895 void kvm_put_kvm(struct kvm *kvm)
896 {
897         if (refcount_dec_and_test(&kvm->users_count))
898                 kvm_destroy_vm(kvm);
899 }
900 EXPORT_SYMBOL_GPL(kvm_put_kvm);
901
902 /*
903  * Used to put a reference that was taken on behalf of an object associated
904  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
905  * of the new file descriptor fails and the reference cannot be transferred to
906  * its final owner.  In such cases, the caller is still actively using @kvm and
907  * will fail miserably if the refcount unexpectedly hits zero.
908  */
909 void kvm_put_kvm_no_destroy(struct kvm *kvm)
910 {
911         WARN_ON(refcount_dec_and_test(&kvm->users_count));
912 }
913 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
914
915 static int kvm_vm_release(struct inode *inode, struct file *filp)
916 {
917         struct kvm *kvm = filp->private_data;
918
919         kvm_irqfd_release(kvm);
920
921         kvm_put_kvm(kvm);
922         return 0;
923 }
924
925 /*
926  * Allocation size is twice as large as the actual dirty bitmap size.
927  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
928  */
929 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
930 {
931         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
932
933         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
934         if (!memslot->dirty_bitmap)
935                 return -ENOMEM;
936
937         return 0;
938 }
939
940 /*
941  * Delete a memslot by decrementing the number of used slots and shifting all
942  * other entries in the array forward one spot.
943  */
944 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
945                                       struct kvm_memory_slot *memslot)
946 {
947         struct kvm_memory_slot *mslots = slots->memslots;
948         int i;
949
950         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
951                 return;
952
953         slots->used_slots--;
954
955         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
956                 atomic_set(&slots->lru_slot, 0);
957
958         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
959                 mslots[i] = mslots[i + 1];
960                 slots->id_to_index[mslots[i].id] = i;
961         }
962         mslots[i] = *memslot;
963         slots->id_to_index[memslot->id] = -1;
964 }
965
966 /*
967  * "Insert" a new memslot by incrementing the number of used slots.  Returns
968  * the new slot's initial index into the memslots array.
969  */
970 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
971 {
972         return slots->used_slots++;
973 }
974
975 /*
976  * Move a changed memslot backwards in the array by shifting existing slots
977  * with a higher GFN toward the front of the array.  Note, the changed memslot
978  * itself is not preserved in the array, i.e. not swapped at this time, only
979  * its new index into the array is tracked.  Returns the changed memslot's
980  * current index into the memslots array.
981  */
982 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
983                                             struct kvm_memory_slot *memslot)
984 {
985         struct kvm_memory_slot *mslots = slots->memslots;
986         int i;
987
988         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
989             WARN_ON_ONCE(!slots->used_slots))
990                 return -1;
991
992         /*
993          * Move the target memslot backward in the array by shifting existing
994          * memslots with a higher GFN (than the target memslot) towards the
995          * front of the array.
996          */
997         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
998                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
999                         break;
1000
1001                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1002
1003                 /* Shift the next memslot forward one and update its index. */
1004                 mslots[i] = mslots[i + 1];
1005                 slots->id_to_index[mslots[i].id] = i;
1006         }
1007         return i;
1008 }
1009
1010 /*
1011  * Move a changed memslot forwards in the array by shifting existing slots with
1012  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1013  * is not preserved in the array, i.e. not swapped at this time, only its new
1014  * index into the array is tracked.  Returns the changed memslot's final index
1015  * into the memslots array.
1016  */
1017 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1018                                            struct kvm_memory_slot *memslot,
1019                                            int start)
1020 {
1021         struct kvm_memory_slot *mslots = slots->memslots;
1022         int i;
1023
1024         for (i = start; i > 0; i--) {
1025                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1026                         break;
1027
1028                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1029
1030                 /* Shift the next memslot back one and update its index. */
1031                 mslots[i] = mslots[i - 1];
1032                 slots->id_to_index[mslots[i].id] = i;
1033         }
1034         return i;
1035 }
1036
1037 /*
1038  * Re-sort memslots based on their GFN to account for an added, deleted, or
1039  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1040  * memslot lookup.
1041  *
1042  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1043  * at memslots[0] has the highest GFN.
1044  *
1045  * The sorting algorithm takes advantage of having initially sorted memslots
1046  * and knowing the position of the changed memslot.  Sorting is also optimized
1047  * by not swapping the updated memslot and instead only shifting other memslots
1048  * and tracking the new index for the update memslot.  Only once its final
1049  * index is known is the updated memslot copied into its position in the array.
1050  *
1051  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1052  *    the end of the array.
1053  *
1054  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1055  *    end of the array and then it forward to its correct location.
1056  *
1057  *  - When moving a memslot, the algorithm first moves the updated memslot
1058  *    backward to handle the scenario where the memslot's GFN was changed to a
1059  *    lower value.  update_memslots() then falls through and runs the same flow
1060  *    as creating a memslot to move the memslot forward to handle the scenario
1061  *    where its GFN was changed to a higher value.
1062  *
1063  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1064  * historical reasons.  Originally, invalid memslots where denoted by having
1065  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1066  * to the end of the array.  The current algorithm uses dedicated logic to
1067  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1068  *
1069  * The other historical motiviation for highest->lowest was to improve the
1070  * performance of memslot lookup.  KVM originally used a linear search starting
1071  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1072  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1073  * single memslot above the 4gb boundary.  As the largest memslot is also the
1074  * most likely to be referenced, sorting it to the front of the array was
1075  * advantageous.  The current binary search starts from the middle of the array
1076  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1077  */
1078 static void update_memslots(struct kvm_memslots *slots,
1079                             struct kvm_memory_slot *memslot,
1080                             enum kvm_mr_change change)
1081 {
1082         int i;
1083
1084         if (change == KVM_MR_DELETE) {
1085                 kvm_memslot_delete(slots, memslot);
1086         } else {
1087                 if (change == KVM_MR_CREATE)
1088                         i = kvm_memslot_insert_back(slots);
1089                 else
1090                         i = kvm_memslot_move_backward(slots, memslot);
1091                 i = kvm_memslot_move_forward(slots, memslot, i);
1092
1093                 /*
1094                  * Copy the memslot to its new position in memslots and update
1095                  * its index accordingly.
1096                  */
1097                 slots->memslots[i] = *memslot;
1098                 slots->id_to_index[memslot->id] = i;
1099         }
1100 }
1101
1102 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1103 {
1104         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1105
1106 #ifdef __KVM_HAVE_READONLY_MEM
1107         valid_flags |= KVM_MEM_READONLY;
1108 #endif
1109
1110         if (mem->flags & ~valid_flags)
1111                 return -EINVAL;
1112
1113         return 0;
1114 }
1115
1116 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1117                 int as_id, struct kvm_memslots *slots)
1118 {
1119         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1120         u64 gen = old_memslots->generation;
1121
1122         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1123         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1124
1125         rcu_assign_pointer(kvm->memslots[as_id], slots);
1126         synchronize_srcu_expedited(&kvm->srcu);
1127
1128         /*
1129          * Increment the new memslot generation a second time, dropping the
1130          * update in-progress flag and incrementing the generation based on
1131          * the number of address spaces.  This provides a unique and easily
1132          * identifiable generation number while the memslots are in flux.
1133          */
1134         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1135
1136         /*
1137          * Generations must be unique even across address spaces.  We do not need
1138          * a global counter for that, instead the generation space is evenly split
1139          * across address spaces.  For example, with two address spaces, address
1140          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1141          * use generations 1, 3, 5, ...
1142          */
1143         gen += KVM_ADDRESS_SPACE_NUM;
1144
1145         kvm_arch_memslots_updated(kvm, gen);
1146
1147         slots->generation = gen;
1148
1149         return old_memslots;
1150 }
1151
1152 /*
1153  * Note, at a minimum, the current number of used slots must be allocated, even
1154  * when deleting a memslot, as we need a complete duplicate of the memslots for
1155  * use when invalidating a memslot prior to deleting/moving the memslot.
1156  */
1157 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1158                                              enum kvm_mr_change change)
1159 {
1160         struct kvm_memslots *slots;
1161         size_t old_size, new_size;
1162
1163         old_size = sizeof(struct kvm_memslots) +
1164                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1165
1166         if (change == KVM_MR_CREATE)
1167                 new_size = old_size + sizeof(struct kvm_memory_slot);
1168         else
1169                 new_size = old_size;
1170
1171         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1172         if (likely(slots))
1173                 memcpy(slots, old, old_size);
1174
1175         return slots;
1176 }
1177
1178 static int kvm_set_memslot(struct kvm *kvm,
1179                            const struct kvm_userspace_memory_region *mem,
1180                            struct kvm_memory_slot *old,
1181                            struct kvm_memory_slot *new, int as_id,
1182                            enum kvm_mr_change change)
1183 {
1184         struct kvm_memory_slot *slot;
1185         struct kvm_memslots *slots;
1186         int r;
1187
1188         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1189         if (!slots)
1190                 return -ENOMEM;
1191
1192         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1193                 /*
1194                  * Note, the INVALID flag needs to be in the appropriate entry
1195                  * in the freshly allocated memslots, not in @old or @new.
1196                  */
1197                 slot = id_to_memslot(slots, old->id);
1198                 slot->flags |= KVM_MEMSLOT_INVALID;
1199
1200                 /*
1201                  * We can re-use the old memslots, the only difference from the
1202                  * newly installed memslots is the invalid flag, which will get
1203                  * dropped by update_memslots anyway.  We'll also revert to the
1204                  * old memslots if preparing the new memory region fails.
1205                  */
1206                 slots = install_new_memslots(kvm, as_id, slots);
1207
1208                 /* From this point no new shadow pages pointing to a deleted,
1209                  * or moved, memslot will be created.
1210                  *
1211                  * validation of sp->gfn happens in:
1212                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1213                  *      - kvm_is_visible_gfn (mmu_check_root)
1214                  */
1215                 kvm_arch_flush_shadow_memslot(kvm, slot);
1216         }
1217
1218         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1219         if (r)
1220                 goto out_slots;
1221
1222         update_memslots(slots, new, change);
1223         slots = install_new_memslots(kvm, as_id, slots);
1224
1225         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1226
1227         kvfree(slots);
1228         return 0;
1229
1230 out_slots:
1231         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1232                 slots = install_new_memslots(kvm, as_id, slots);
1233         kvfree(slots);
1234         return r;
1235 }
1236
1237 static int kvm_delete_memslot(struct kvm *kvm,
1238                               const struct kvm_userspace_memory_region *mem,
1239                               struct kvm_memory_slot *old, int as_id)
1240 {
1241         struct kvm_memory_slot new;
1242         int r;
1243
1244         if (!old->npages)
1245                 return -EINVAL;
1246
1247         memset(&new, 0, sizeof(new));
1248         new.id = old->id;
1249
1250         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1251         if (r)
1252                 return r;
1253
1254         kvm_free_memslot(kvm, old);
1255         return 0;
1256 }
1257
1258 /*
1259  * Allocate some memory and give it an address in the guest physical address
1260  * space.
1261  *
1262  * Discontiguous memory is allowed, mostly for framebuffers.
1263  *
1264  * Must be called holding kvm->slots_lock for write.
1265  */
1266 int __kvm_set_memory_region(struct kvm *kvm,
1267                             const struct kvm_userspace_memory_region *mem)
1268 {
1269         struct kvm_memory_slot old, new;
1270         struct kvm_memory_slot *tmp;
1271         enum kvm_mr_change change;
1272         int as_id, id;
1273         int r;
1274
1275         r = check_memory_region_flags(mem);
1276         if (r)
1277                 return r;
1278
1279         as_id = mem->slot >> 16;
1280         id = (u16)mem->slot;
1281
1282         /* General sanity checks */
1283         if (mem->memory_size & (PAGE_SIZE - 1))
1284                 return -EINVAL;
1285         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1286                 return -EINVAL;
1287         /* We can read the guest memory with __xxx_user() later on. */
1288         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1289              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1290                         mem->memory_size))
1291                 return -EINVAL;
1292         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1293                 return -EINVAL;
1294         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1295                 return -EINVAL;
1296
1297         /*
1298          * Make a full copy of the old memslot, the pointer will become stale
1299          * when the memslots are re-sorted by update_memslots(), and the old
1300          * memslot needs to be referenced after calling update_memslots(), e.g.
1301          * to free its resources and for arch specific behavior.
1302          */
1303         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1304         if (tmp) {
1305                 old = *tmp;
1306                 tmp = NULL;
1307         } else {
1308                 memset(&old, 0, sizeof(old));
1309                 old.id = id;
1310         }
1311
1312         if (!mem->memory_size)
1313                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1314
1315         new.id = id;
1316         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1317         new.npages = mem->memory_size >> PAGE_SHIFT;
1318         new.flags = mem->flags;
1319         new.userspace_addr = mem->userspace_addr;
1320
1321         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1322                 return -EINVAL;
1323
1324         if (!old.npages) {
1325                 change = KVM_MR_CREATE;
1326                 new.dirty_bitmap = NULL;
1327                 memset(&new.arch, 0, sizeof(new.arch));
1328         } else { /* Modify an existing slot. */
1329                 if ((new.userspace_addr != old.userspace_addr) ||
1330                     (new.npages != old.npages) ||
1331                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1332                         return -EINVAL;
1333
1334                 if (new.base_gfn != old.base_gfn)
1335                         change = KVM_MR_MOVE;
1336                 else if (new.flags != old.flags)
1337                         change = KVM_MR_FLAGS_ONLY;
1338                 else /* Nothing to change. */
1339                         return 0;
1340
1341                 /* Copy dirty_bitmap and arch from the current memslot. */
1342                 new.dirty_bitmap = old.dirty_bitmap;
1343                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1344         }
1345
1346         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1347                 /* Check for overlaps */
1348                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1349                         if (tmp->id == id)
1350                                 continue;
1351                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1352                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1353                                 return -EEXIST;
1354                 }
1355         }
1356
1357         /* Allocate/free page dirty bitmap as needed */
1358         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1359                 new.dirty_bitmap = NULL;
1360         else if (!new.dirty_bitmap) {
1361                 r = kvm_alloc_dirty_bitmap(&new);
1362                 if (r)
1363                         return r;
1364
1365                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1366                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1367         }
1368
1369         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1370         if (r)
1371                 goto out_bitmap;
1372
1373         if (old.dirty_bitmap && !new.dirty_bitmap)
1374                 kvm_destroy_dirty_bitmap(&old);
1375         return 0;
1376
1377 out_bitmap:
1378         if (new.dirty_bitmap && !old.dirty_bitmap)
1379                 kvm_destroy_dirty_bitmap(&new);
1380         return r;
1381 }
1382 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1383
1384 int kvm_set_memory_region(struct kvm *kvm,
1385                           const struct kvm_userspace_memory_region *mem)
1386 {
1387         int r;
1388
1389         mutex_lock(&kvm->slots_lock);
1390         r = __kvm_set_memory_region(kvm, mem);
1391         mutex_unlock(&kvm->slots_lock);
1392         return r;
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1395
1396 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1397                                           struct kvm_userspace_memory_region *mem)
1398 {
1399         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1400                 return -EINVAL;
1401
1402         return kvm_set_memory_region(kvm, mem);
1403 }
1404
1405 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1406 /**
1407  * kvm_get_dirty_log - get a snapshot of dirty pages
1408  * @kvm:        pointer to kvm instance
1409  * @log:        slot id and address to which we copy the log
1410  * @is_dirty:   set to '1' if any dirty pages were found
1411  * @memslot:    set to the associated memslot, always valid on success
1412  */
1413 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1414                       int *is_dirty, struct kvm_memory_slot **memslot)
1415 {
1416         struct kvm_memslots *slots;
1417         int i, as_id, id;
1418         unsigned long n;
1419         unsigned long any = 0;
1420
1421         *memslot = NULL;
1422         *is_dirty = 0;
1423
1424         as_id = log->slot >> 16;
1425         id = (u16)log->slot;
1426         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1427                 return -EINVAL;
1428
1429         slots = __kvm_memslots(kvm, as_id);
1430         *memslot = id_to_memslot(slots, id);
1431         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1432                 return -ENOENT;
1433
1434         kvm_arch_sync_dirty_log(kvm, *memslot);
1435
1436         n = kvm_dirty_bitmap_bytes(*memslot);
1437
1438         for (i = 0; !any && i < n/sizeof(long); ++i)
1439                 any = (*memslot)->dirty_bitmap[i];
1440
1441         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1442                 return -EFAULT;
1443
1444         if (any)
1445                 *is_dirty = 1;
1446         return 0;
1447 }
1448 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1449
1450 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1451 /**
1452  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1453  *      and reenable dirty page tracking for the corresponding pages.
1454  * @kvm:        pointer to kvm instance
1455  * @log:        slot id and address to which we copy the log
1456  *
1457  * We need to keep it in mind that VCPU threads can write to the bitmap
1458  * concurrently. So, to avoid losing track of dirty pages we keep the
1459  * following order:
1460  *
1461  *    1. Take a snapshot of the bit and clear it if needed.
1462  *    2. Write protect the corresponding page.
1463  *    3. Copy the snapshot to the userspace.
1464  *    4. Upon return caller flushes TLB's if needed.
1465  *
1466  * Between 2 and 4, the guest may write to the page using the remaining TLB
1467  * entry.  This is not a problem because the page is reported dirty using
1468  * the snapshot taken before and step 4 ensures that writes done after
1469  * exiting to userspace will be logged for the next call.
1470  *
1471  */
1472 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1473 {
1474         struct kvm_memslots *slots;
1475         struct kvm_memory_slot *memslot;
1476         int i, as_id, id;
1477         unsigned long n;
1478         unsigned long *dirty_bitmap;
1479         unsigned long *dirty_bitmap_buffer;
1480         bool flush;
1481
1482         as_id = log->slot >> 16;
1483         id = (u16)log->slot;
1484         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1485                 return -EINVAL;
1486
1487         slots = __kvm_memslots(kvm, as_id);
1488         memslot = id_to_memslot(slots, id);
1489         if (!memslot || !memslot->dirty_bitmap)
1490                 return -ENOENT;
1491
1492         dirty_bitmap = memslot->dirty_bitmap;
1493
1494         kvm_arch_sync_dirty_log(kvm, memslot);
1495
1496         n = kvm_dirty_bitmap_bytes(memslot);
1497         flush = false;
1498         if (kvm->manual_dirty_log_protect) {
1499                 /*
1500                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1501                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1502                  * is some code duplication between this function and
1503                  * kvm_get_dirty_log, but hopefully all architecture
1504                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1505                  * can be eliminated.
1506                  */
1507                 dirty_bitmap_buffer = dirty_bitmap;
1508         } else {
1509                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1510                 memset(dirty_bitmap_buffer, 0, n);
1511
1512                 spin_lock(&kvm->mmu_lock);
1513                 for (i = 0; i < n / sizeof(long); i++) {
1514                         unsigned long mask;
1515                         gfn_t offset;
1516
1517                         if (!dirty_bitmap[i])
1518                                 continue;
1519
1520                         flush = true;
1521                         mask = xchg(&dirty_bitmap[i], 0);
1522                         dirty_bitmap_buffer[i] = mask;
1523
1524                         offset = i * BITS_PER_LONG;
1525                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1526                                                                 offset, mask);
1527                 }
1528                 spin_unlock(&kvm->mmu_lock);
1529         }
1530
1531         if (flush)
1532                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1533
1534         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1535                 return -EFAULT;
1536         return 0;
1537 }
1538
1539
1540 /**
1541  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1542  * @kvm: kvm instance
1543  * @log: slot id and address to which we copy the log
1544  *
1545  * Steps 1-4 below provide general overview of dirty page logging. See
1546  * kvm_get_dirty_log_protect() function description for additional details.
1547  *
1548  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1549  * always flush the TLB (step 4) even if previous step failed  and the dirty
1550  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1551  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1552  * writes will be marked dirty for next log read.
1553  *
1554  *   1. Take a snapshot of the bit and clear it if needed.
1555  *   2. Write protect the corresponding page.
1556  *   3. Copy the snapshot to the userspace.
1557  *   4. Flush TLB's if needed.
1558  */
1559 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1560                                       struct kvm_dirty_log *log)
1561 {
1562         int r;
1563
1564         mutex_lock(&kvm->slots_lock);
1565
1566         r = kvm_get_dirty_log_protect(kvm, log);
1567
1568         mutex_unlock(&kvm->slots_lock);
1569         return r;
1570 }
1571
1572 /**
1573  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1574  *      and reenable dirty page tracking for the corresponding pages.
1575  * @kvm:        pointer to kvm instance
1576  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1577  */
1578 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1579                                        struct kvm_clear_dirty_log *log)
1580 {
1581         struct kvm_memslots *slots;
1582         struct kvm_memory_slot *memslot;
1583         int as_id, id;
1584         gfn_t offset;
1585         unsigned long i, n;
1586         unsigned long *dirty_bitmap;
1587         unsigned long *dirty_bitmap_buffer;
1588         bool flush;
1589
1590         as_id = log->slot >> 16;
1591         id = (u16)log->slot;
1592         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1593                 return -EINVAL;
1594
1595         if (log->first_page & 63)
1596                 return -EINVAL;
1597
1598         slots = __kvm_memslots(kvm, as_id);
1599         memslot = id_to_memslot(slots, id);
1600         if (!memslot || !memslot->dirty_bitmap)
1601                 return -ENOENT;
1602
1603         dirty_bitmap = memslot->dirty_bitmap;
1604
1605         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1606
1607         if (log->first_page > memslot->npages ||
1608             log->num_pages > memslot->npages - log->first_page ||
1609             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1610             return -EINVAL;
1611
1612         kvm_arch_sync_dirty_log(kvm, memslot);
1613
1614         flush = false;
1615         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1616         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1617                 return -EFAULT;
1618
1619         spin_lock(&kvm->mmu_lock);
1620         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1621                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1622              i++, offset += BITS_PER_LONG) {
1623                 unsigned long mask = *dirty_bitmap_buffer++;
1624                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1625                 if (!mask)
1626                         continue;
1627
1628                 mask &= atomic_long_fetch_andnot(mask, p);
1629
1630                 /*
1631                  * mask contains the bits that really have been cleared.  This
1632                  * never includes any bits beyond the length of the memslot (if
1633                  * the length is not aligned to 64 pages), therefore it is not
1634                  * a problem if userspace sets them in log->dirty_bitmap.
1635                 */
1636                 if (mask) {
1637                         flush = true;
1638                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1639                                                                 offset, mask);
1640                 }
1641         }
1642         spin_unlock(&kvm->mmu_lock);
1643
1644         if (flush)
1645                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1646
1647         return 0;
1648 }
1649
1650 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1651                                         struct kvm_clear_dirty_log *log)
1652 {
1653         int r;
1654
1655         mutex_lock(&kvm->slots_lock);
1656
1657         r = kvm_clear_dirty_log_protect(kvm, log);
1658
1659         mutex_unlock(&kvm->slots_lock);
1660         return r;
1661 }
1662 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1663
1664 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1665 {
1666         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1667 }
1668 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1669
1670 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1671 {
1672         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1675
1676 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1677 {
1678         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1679
1680         return kvm_is_visible_memslot(memslot);
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1683
1684 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1685 {
1686         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1687
1688         return kvm_is_visible_memslot(memslot);
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1691
1692 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1693 {
1694         struct vm_area_struct *vma;
1695         unsigned long addr, size;
1696
1697         size = PAGE_SIZE;
1698
1699         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1700         if (kvm_is_error_hva(addr))
1701                 return PAGE_SIZE;
1702
1703         mmap_read_lock(current->mm);
1704         vma = find_vma(current->mm, addr);
1705         if (!vma)
1706                 goto out;
1707
1708         size = vma_kernel_pagesize(vma);
1709
1710 out:
1711         mmap_read_unlock(current->mm);
1712
1713         return size;
1714 }
1715
1716 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1717 {
1718         return slot->flags & KVM_MEM_READONLY;
1719 }
1720
1721 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1722                                        gfn_t *nr_pages, bool write)
1723 {
1724         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1725                 return KVM_HVA_ERR_BAD;
1726
1727         if (memslot_is_readonly(slot) && write)
1728                 return KVM_HVA_ERR_RO_BAD;
1729
1730         if (nr_pages)
1731                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1732
1733         return __gfn_to_hva_memslot(slot, gfn);
1734 }
1735
1736 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1737                                      gfn_t *nr_pages)
1738 {
1739         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1740 }
1741
1742 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1743                                         gfn_t gfn)
1744 {
1745         return gfn_to_hva_many(slot, gfn, NULL);
1746 }
1747 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1748
1749 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1750 {
1751         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1752 }
1753 EXPORT_SYMBOL_GPL(gfn_to_hva);
1754
1755 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1756 {
1757         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1758 }
1759 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1760
1761 /*
1762  * Return the hva of a @gfn and the R/W attribute if possible.
1763  *
1764  * @slot: the kvm_memory_slot which contains @gfn
1765  * @gfn: the gfn to be translated
1766  * @writable: used to return the read/write attribute of the @slot if the hva
1767  * is valid and @writable is not NULL
1768  */
1769 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1770                                       gfn_t gfn, bool *writable)
1771 {
1772         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1773
1774         if (!kvm_is_error_hva(hva) && writable)
1775                 *writable = !memslot_is_readonly(slot);
1776
1777         return hva;
1778 }
1779
1780 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1781 {
1782         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1783
1784         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1785 }
1786
1787 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1788 {
1789         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1790
1791         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1792 }
1793
1794 static inline int check_user_page_hwpoison(unsigned long addr)
1795 {
1796         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1797
1798         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1799         return rc == -EHWPOISON;
1800 }
1801
1802 /*
1803  * The fast path to get the writable pfn which will be stored in @pfn,
1804  * true indicates success, otherwise false is returned.  It's also the
1805  * only part that runs if we can in atomic context.
1806  */
1807 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1808                             bool *writable, kvm_pfn_t *pfn)
1809 {
1810         struct page *page[1];
1811
1812         /*
1813          * Fast pin a writable pfn only if it is a write fault request
1814          * or the caller allows to map a writable pfn for a read fault
1815          * request.
1816          */
1817         if (!(write_fault || writable))
1818                 return false;
1819
1820         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1821                 *pfn = page_to_pfn(page[0]);
1822
1823                 if (writable)
1824                         *writable = true;
1825                 return true;
1826         }
1827
1828         return false;
1829 }
1830
1831 /*
1832  * The slow path to get the pfn of the specified host virtual address,
1833  * 1 indicates success, -errno is returned if error is detected.
1834  */
1835 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1836                            bool *writable, kvm_pfn_t *pfn)
1837 {
1838         unsigned int flags = FOLL_HWPOISON;
1839         struct page *page;
1840         int npages = 0;
1841
1842         might_sleep();
1843
1844         if (writable)
1845                 *writable = write_fault;
1846
1847         if (write_fault)
1848                 flags |= FOLL_WRITE;
1849         if (async)
1850                 flags |= FOLL_NOWAIT;
1851
1852         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1853         if (npages != 1)
1854                 return npages;
1855
1856         /* map read fault as writable if possible */
1857         if (unlikely(!write_fault) && writable) {
1858                 struct page *wpage;
1859
1860                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1861                         *writable = true;
1862                         put_page(page);
1863                         page = wpage;
1864                 }
1865         }
1866         *pfn = page_to_pfn(page);
1867         return npages;
1868 }
1869
1870 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1871 {
1872         if (unlikely(!(vma->vm_flags & VM_READ)))
1873                 return false;
1874
1875         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1876                 return false;
1877
1878         return true;
1879 }
1880
1881 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1882                                unsigned long addr, bool *async,
1883                                bool write_fault, bool *writable,
1884                                kvm_pfn_t *p_pfn)
1885 {
1886         unsigned long pfn;
1887         int r;
1888
1889         r = follow_pfn(vma, addr, &pfn);
1890         if (r) {
1891                 /*
1892                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1893                  * not call the fault handler, so do it here.
1894                  */
1895                 bool unlocked = false;
1896                 r = fixup_user_fault(current->mm, addr,
1897                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1898                                      &unlocked);
1899                 if (unlocked)
1900                         return -EAGAIN;
1901                 if (r)
1902                         return r;
1903
1904                 r = follow_pfn(vma, addr, &pfn);
1905                 if (r)
1906                         return r;
1907
1908         }
1909
1910         if (writable)
1911                 *writable = true;
1912
1913         /*
1914          * Get a reference here because callers of *hva_to_pfn* and
1915          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1916          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1917          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1918          * simply do nothing for reserved pfns.
1919          *
1920          * Whoever called remap_pfn_range is also going to call e.g.
1921          * unmap_mapping_range before the underlying pages are freed,
1922          * causing a call to our MMU notifier.
1923          */ 
1924         kvm_get_pfn(pfn);
1925
1926         *p_pfn = pfn;
1927         return 0;
1928 }
1929
1930 /*
1931  * Pin guest page in memory and return its pfn.
1932  * @addr: host virtual address which maps memory to the guest
1933  * @atomic: whether this function can sleep
1934  * @async: whether this function need to wait IO complete if the
1935  *         host page is not in the memory
1936  * @write_fault: whether we should get a writable host page
1937  * @writable: whether it allows to map a writable host page for !@write_fault
1938  *
1939  * The function will map a writable host page for these two cases:
1940  * 1): @write_fault = true
1941  * 2): @write_fault = false && @writable, @writable will tell the caller
1942  *     whether the mapping is writable.
1943  */
1944 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1945                         bool write_fault, bool *writable)
1946 {
1947         struct vm_area_struct *vma;
1948         kvm_pfn_t pfn = 0;
1949         int npages, r;
1950
1951         /* we can do it either atomically or asynchronously, not both */
1952         BUG_ON(atomic && async);
1953
1954         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1955                 return pfn;
1956
1957         if (atomic)
1958                 return KVM_PFN_ERR_FAULT;
1959
1960         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1961         if (npages == 1)
1962                 return pfn;
1963
1964         mmap_read_lock(current->mm);
1965         if (npages == -EHWPOISON ||
1966               (!async && check_user_page_hwpoison(addr))) {
1967                 pfn = KVM_PFN_ERR_HWPOISON;
1968                 goto exit;
1969         }
1970
1971 retry:
1972         vma = find_vma_intersection(current->mm, addr, addr + 1);
1973
1974         if (vma == NULL)
1975                 pfn = KVM_PFN_ERR_FAULT;
1976         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1977                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1978                 if (r == -EAGAIN)
1979                         goto retry;
1980                 if (r < 0)
1981                         pfn = KVM_PFN_ERR_FAULT;
1982         } else {
1983                 if (async && vma_is_valid(vma, write_fault))
1984                         *async = true;
1985                 pfn = KVM_PFN_ERR_FAULT;
1986         }
1987 exit:
1988         mmap_read_unlock(current->mm);
1989         return pfn;
1990 }
1991
1992 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1993                                bool atomic, bool *async, bool write_fault,
1994                                bool *writable)
1995 {
1996         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1997
1998         if (addr == KVM_HVA_ERR_RO_BAD) {
1999                 if (writable)
2000                         *writable = false;
2001                 return KVM_PFN_ERR_RO_FAULT;
2002         }
2003
2004         if (kvm_is_error_hva(addr)) {
2005                 if (writable)
2006                         *writable = false;
2007                 return KVM_PFN_NOSLOT;
2008         }
2009
2010         /* Do not map writable pfn in the readonly memslot. */
2011         if (writable && memslot_is_readonly(slot)) {
2012                 *writable = false;
2013                 writable = NULL;
2014         }
2015
2016         return hva_to_pfn(addr, atomic, async, write_fault,
2017                           writable);
2018 }
2019 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2020
2021 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2022                       bool *writable)
2023 {
2024         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2025                                     write_fault, writable);
2026 }
2027 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2028
2029 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2030 {
2031         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2032 }
2033 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2034
2035 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2036 {
2037         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2038 }
2039 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2040
2041 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2042 {
2043         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2046
2047 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2048 {
2049         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2050 }
2051 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2052
2053 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2054 {
2055         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2056 }
2057 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2058
2059 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2060                             struct page **pages, int nr_pages)
2061 {
2062         unsigned long addr;
2063         gfn_t entry = 0;
2064
2065         addr = gfn_to_hva_many(slot, gfn, &entry);
2066         if (kvm_is_error_hva(addr))
2067                 return -1;
2068
2069         if (entry < nr_pages)
2070                 return 0;
2071
2072         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2073 }
2074 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2075
2076 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2077 {
2078         if (is_error_noslot_pfn(pfn))
2079                 return KVM_ERR_PTR_BAD_PAGE;
2080
2081         if (kvm_is_reserved_pfn(pfn)) {
2082                 WARN_ON(1);
2083                 return KVM_ERR_PTR_BAD_PAGE;
2084         }
2085
2086         return pfn_to_page(pfn);
2087 }
2088
2089 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2090 {
2091         kvm_pfn_t pfn;
2092
2093         pfn = gfn_to_pfn(kvm, gfn);
2094
2095         return kvm_pfn_to_page(pfn);
2096 }
2097 EXPORT_SYMBOL_GPL(gfn_to_page);
2098
2099 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2100 {
2101         if (pfn == 0)
2102                 return;
2103
2104         if (cache)
2105                 cache->pfn = cache->gfn = 0;
2106
2107         if (dirty)
2108                 kvm_release_pfn_dirty(pfn);
2109         else
2110                 kvm_release_pfn_clean(pfn);
2111 }
2112
2113 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2114                                  struct gfn_to_pfn_cache *cache, u64 gen)
2115 {
2116         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2117
2118         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2119         cache->gfn = gfn;
2120         cache->dirty = false;
2121         cache->generation = gen;
2122 }
2123
2124 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2125                          struct kvm_host_map *map,
2126                          struct gfn_to_pfn_cache *cache,
2127                          bool atomic)
2128 {
2129         kvm_pfn_t pfn;
2130         void *hva = NULL;
2131         struct page *page = KVM_UNMAPPED_PAGE;
2132         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2133         u64 gen = slots->generation;
2134
2135         if (!map)
2136                 return -EINVAL;
2137
2138         if (cache) {
2139                 if (!cache->pfn || cache->gfn != gfn ||
2140                         cache->generation != gen) {
2141                         if (atomic)
2142                                 return -EAGAIN;
2143                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2144                 }
2145                 pfn = cache->pfn;
2146         } else {
2147                 if (atomic)
2148                         return -EAGAIN;
2149                 pfn = gfn_to_pfn_memslot(slot, gfn);
2150         }
2151         if (is_error_noslot_pfn(pfn))
2152                 return -EINVAL;
2153
2154         if (pfn_valid(pfn)) {
2155                 page = pfn_to_page(pfn);
2156                 if (atomic)
2157                         hva = kmap_atomic(page);
2158                 else
2159                         hva = kmap(page);
2160 #ifdef CONFIG_HAS_IOMEM
2161         } else if (!atomic) {
2162                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2163         } else {
2164                 return -EINVAL;
2165 #endif
2166         }
2167
2168         if (!hva)
2169                 return -EFAULT;
2170
2171         map->page = page;
2172         map->hva = hva;
2173         map->pfn = pfn;
2174         map->gfn = gfn;
2175
2176         return 0;
2177 }
2178
2179 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2180                 struct gfn_to_pfn_cache *cache, bool atomic)
2181 {
2182         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2183                         cache, atomic);
2184 }
2185 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2186
2187 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2188 {
2189         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2190                 NULL, false);
2191 }
2192 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2193
2194 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2195                         struct kvm_host_map *map,
2196                         struct gfn_to_pfn_cache *cache,
2197                         bool dirty, bool atomic)
2198 {
2199         if (!map)
2200                 return;
2201
2202         if (!map->hva)
2203                 return;
2204
2205         if (map->page != KVM_UNMAPPED_PAGE) {
2206                 if (atomic)
2207                         kunmap_atomic(map->hva);
2208                 else
2209                         kunmap(map->page);
2210         }
2211 #ifdef CONFIG_HAS_IOMEM
2212         else if (!atomic)
2213                 memunmap(map->hva);
2214         else
2215                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2216 #endif
2217
2218         if (dirty)
2219                 mark_page_dirty_in_slot(memslot, map->gfn);
2220
2221         if (cache)
2222                 cache->dirty |= dirty;
2223         else
2224                 kvm_release_pfn(map->pfn, dirty, NULL);
2225
2226         map->hva = NULL;
2227         map->page = NULL;
2228 }
2229
2230 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2231                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2232 {
2233         __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2234                         cache, dirty, atomic);
2235         return 0;
2236 }
2237 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2238
2239 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2240 {
2241         __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2242                         dirty, false);
2243 }
2244 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2245
2246 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2247 {
2248         kvm_pfn_t pfn;
2249
2250         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2251
2252         return kvm_pfn_to_page(pfn);
2253 }
2254 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2255
2256 void kvm_release_page_clean(struct page *page)
2257 {
2258         WARN_ON(is_error_page(page));
2259
2260         kvm_release_pfn_clean(page_to_pfn(page));
2261 }
2262 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2263
2264 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2265 {
2266         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2267                 put_page(pfn_to_page(pfn));
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2270
2271 void kvm_release_page_dirty(struct page *page)
2272 {
2273         WARN_ON(is_error_page(page));
2274
2275         kvm_release_pfn_dirty(page_to_pfn(page));
2276 }
2277 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2278
2279 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2280 {
2281         kvm_set_pfn_dirty(pfn);
2282         kvm_release_pfn_clean(pfn);
2283 }
2284 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2285
2286 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2287 {
2288         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2289                 SetPageDirty(pfn_to_page(pfn));
2290 }
2291 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2292
2293 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2294 {
2295         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2296                 mark_page_accessed(pfn_to_page(pfn));
2297 }
2298 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2299
2300 void kvm_get_pfn(kvm_pfn_t pfn)
2301 {
2302         if (!kvm_is_reserved_pfn(pfn))
2303                 get_page(pfn_to_page(pfn));
2304 }
2305 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2306
2307 static int next_segment(unsigned long len, int offset)
2308 {
2309         if (len > PAGE_SIZE - offset)
2310                 return PAGE_SIZE - offset;
2311         else
2312                 return len;
2313 }
2314
2315 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2316                                  void *data, int offset, int len)
2317 {
2318         int r;
2319         unsigned long addr;
2320
2321         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2322         if (kvm_is_error_hva(addr))
2323                 return -EFAULT;
2324         r = __copy_from_user(data, (void __user *)addr + offset, len);
2325         if (r)
2326                 return -EFAULT;
2327         return 0;
2328 }
2329
2330 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2331                         int len)
2332 {
2333         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2334
2335         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2336 }
2337 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2338
2339 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2340                              int offset, int len)
2341 {
2342         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2343
2344         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2345 }
2346 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2347
2348 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2349 {
2350         gfn_t gfn = gpa >> PAGE_SHIFT;
2351         int seg;
2352         int offset = offset_in_page(gpa);
2353         int ret;
2354
2355         while ((seg = next_segment(len, offset)) != 0) {
2356                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2357                 if (ret < 0)
2358                         return ret;
2359                 offset = 0;
2360                 len -= seg;
2361                 data += seg;
2362                 ++gfn;
2363         }
2364         return 0;
2365 }
2366 EXPORT_SYMBOL_GPL(kvm_read_guest);
2367
2368 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2369 {
2370         gfn_t gfn = gpa >> PAGE_SHIFT;
2371         int seg;
2372         int offset = offset_in_page(gpa);
2373         int ret;
2374
2375         while ((seg = next_segment(len, offset)) != 0) {
2376                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2377                 if (ret < 0)
2378                         return ret;
2379                 offset = 0;
2380                 len -= seg;
2381                 data += seg;
2382                 ++gfn;
2383         }
2384         return 0;
2385 }
2386 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2387
2388 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2389                                    void *data, int offset, unsigned long len)
2390 {
2391         int r;
2392         unsigned long addr;
2393
2394         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2395         if (kvm_is_error_hva(addr))
2396                 return -EFAULT;
2397         pagefault_disable();
2398         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2399         pagefault_enable();
2400         if (r)
2401                 return -EFAULT;
2402         return 0;
2403 }
2404
2405 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2406                                void *data, unsigned long len)
2407 {
2408         gfn_t gfn = gpa >> PAGE_SHIFT;
2409         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2410         int offset = offset_in_page(gpa);
2411
2412         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2413 }
2414 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2415
2416 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2417                                   const void *data, int offset, int len)
2418 {
2419         int r;
2420         unsigned long addr;
2421
2422         addr = gfn_to_hva_memslot(memslot, gfn);
2423         if (kvm_is_error_hva(addr))
2424                 return -EFAULT;
2425         r = __copy_to_user((void __user *)addr + offset, data, len);
2426         if (r)
2427                 return -EFAULT;
2428         mark_page_dirty_in_slot(memslot, gfn);
2429         return 0;
2430 }
2431
2432 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2433                          const void *data, int offset, int len)
2434 {
2435         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2436
2437         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2438 }
2439 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2440
2441 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2442                               const void *data, int offset, int len)
2443 {
2444         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2445
2446         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2447 }
2448 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2449
2450 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2451                     unsigned long len)
2452 {
2453         gfn_t gfn = gpa >> PAGE_SHIFT;
2454         int seg;
2455         int offset = offset_in_page(gpa);
2456         int ret;
2457
2458         while ((seg = next_segment(len, offset)) != 0) {
2459                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2460                 if (ret < 0)
2461                         return ret;
2462                 offset = 0;
2463                 len -= seg;
2464                 data += seg;
2465                 ++gfn;
2466         }
2467         return 0;
2468 }
2469 EXPORT_SYMBOL_GPL(kvm_write_guest);
2470
2471 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2472                          unsigned long len)
2473 {
2474         gfn_t gfn = gpa >> PAGE_SHIFT;
2475         int seg;
2476         int offset = offset_in_page(gpa);
2477         int ret;
2478
2479         while ((seg = next_segment(len, offset)) != 0) {
2480                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2481                 if (ret < 0)
2482                         return ret;
2483                 offset = 0;
2484                 len -= seg;
2485                 data += seg;
2486                 ++gfn;
2487         }
2488         return 0;
2489 }
2490 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2491
2492 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2493                                        struct gfn_to_hva_cache *ghc,
2494                                        gpa_t gpa, unsigned long len)
2495 {
2496         int offset = offset_in_page(gpa);
2497         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2498         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2499         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2500         gfn_t nr_pages_avail;
2501
2502         /* Update ghc->generation before performing any error checks. */
2503         ghc->generation = slots->generation;
2504
2505         if (start_gfn > end_gfn) {
2506                 ghc->hva = KVM_HVA_ERR_BAD;
2507                 return -EINVAL;
2508         }
2509
2510         /*
2511          * If the requested region crosses two memslots, we still
2512          * verify that the entire region is valid here.
2513          */
2514         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2515                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2516                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2517                                            &nr_pages_avail);
2518                 if (kvm_is_error_hva(ghc->hva))
2519                         return -EFAULT;
2520         }
2521
2522         /* Use the slow path for cross page reads and writes. */
2523         if (nr_pages_needed == 1)
2524                 ghc->hva += offset;
2525         else
2526                 ghc->memslot = NULL;
2527
2528         ghc->gpa = gpa;
2529         ghc->len = len;
2530         return 0;
2531 }
2532
2533 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2534                               gpa_t gpa, unsigned long len)
2535 {
2536         struct kvm_memslots *slots = kvm_memslots(kvm);
2537         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2538 }
2539 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2540
2541 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2542                                   void *data, unsigned int offset,
2543                                   unsigned long len)
2544 {
2545         struct kvm_memslots *slots = kvm_memslots(kvm);
2546         int r;
2547         gpa_t gpa = ghc->gpa + offset;
2548
2549         BUG_ON(len + offset > ghc->len);
2550
2551         if (slots->generation != ghc->generation) {
2552                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2553                         return -EFAULT;
2554         }
2555
2556         if (kvm_is_error_hva(ghc->hva))
2557                 return -EFAULT;
2558
2559         if (unlikely(!ghc->memslot))
2560                 return kvm_write_guest(kvm, gpa, data, len);
2561
2562         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2563         if (r)
2564                 return -EFAULT;
2565         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2566
2567         return 0;
2568 }
2569 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2570
2571 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2572                            void *data, unsigned long len)
2573 {
2574         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2575 }
2576 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2577
2578 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2579                                  void *data, unsigned int offset,
2580                                  unsigned long len)
2581 {
2582         struct kvm_memslots *slots = kvm_memslots(kvm);
2583         int r;
2584         gpa_t gpa = ghc->gpa + offset;
2585
2586         BUG_ON(len + offset > ghc->len);
2587
2588         if (slots->generation != ghc->generation) {
2589                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2590                         return -EFAULT;
2591         }
2592
2593         if (kvm_is_error_hva(ghc->hva))
2594                 return -EFAULT;
2595
2596         if (unlikely(!ghc->memslot))
2597                 return kvm_read_guest(kvm, gpa, data, len);
2598
2599         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2600         if (r)
2601                 return -EFAULT;
2602
2603         return 0;
2604 }
2605 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2606
2607 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2608                           void *data, unsigned long len)
2609 {
2610         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2611 }
2612 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2613
2614 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2615 {
2616         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2617
2618         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2619 }
2620 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2621
2622 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2623 {
2624         gfn_t gfn = gpa >> PAGE_SHIFT;
2625         int seg;
2626         int offset = offset_in_page(gpa);
2627         int ret;
2628
2629         while ((seg = next_segment(len, offset)) != 0) {
2630                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2631                 if (ret < 0)
2632                         return ret;
2633                 offset = 0;
2634                 len -= seg;
2635                 ++gfn;
2636         }
2637         return 0;
2638 }
2639 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2640
2641 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2642                                     gfn_t gfn)
2643 {
2644         if (memslot && memslot->dirty_bitmap) {
2645                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2646
2647                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2648         }
2649 }
2650
2651 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2652 {
2653         struct kvm_memory_slot *memslot;
2654
2655         memslot = gfn_to_memslot(kvm, gfn);
2656         mark_page_dirty_in_slot(memslot, gfn);
2657 }
2658 EXPORT_SYMBOL_GPL(mark_page_dirty);
2659
2660 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2661 {
2662         struct kvm_memory_slot *memslot;
2663
2664         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2665         mark_page_dirty_in_slot(memslot, gfn);
2666 }
2667 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2668
2669 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2670 {
2671         if (!vcpu->sigset_active)
2672                 return;
2673
2674         /*
2675          * This does a lockless modification of ->real_blocked, which is fine
2676          * because, only current can change ->real_blocked and all readers of
2677          * ->real_blocked don't care as long ->real_blocked is always a subset
2678          * of ->blocked.
2679          */
2680         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2681 }
2682
2683 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2684 {
2685         if (!vcpu->sigset_active)
2686                 return;
2687
2688         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2689         sigemptyset(&current->real_blocked);
2690 }
2691
2692 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2693 {
2694         unsigned int old, val, grow, grow_start;
2695
2696         old = val = vcpu->halt_poll_ns;
2697         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2698         grow = READ_ONCE(halt_poll_ns_grow);
2699         if (!grow)
2700                 goto out;
2701
2702         val *= grow;
2703         if (val < grow_start)
2704                 val = grow_start;
2705
2706         if (val > halt_poll_ns)
2707                 val = halt_poll_ns;
2708
2709         vcpu->halt_poll_ns = val;
2710 out:
2711         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2712 }
2713
2714 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2715 {
2716         unsigned int old, val, shrink;
2717
2718         old = val = vcpu->halt_poll_ns;
2719         shrink = READ_ONCE(halt_poll_ns_shrink);
2720         if (shrink == 0)
2721                 val = 0;
2722         else
2723                 val /= shrink;
2724
2725         vcpu->halt_poll_ns = val;
2726         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2727 }
2728
2729 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2730 {
2731         int ret = -EINTR;
2732         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2733
2734         if (kvm_arch_vcpu_runnable(vcpu)) {
2735                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2736                 goto out;
2737         }
2738         if (kvm_cpu_has_pending_timer(vcpu))
2739                 goto out;
2740         if (signal_pending(current))
2741                 goto out;
2742
2743         ret = 0;
2744 out:
2745         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2746         return ret;
2747 }
2748
2749 static inline void
2750 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2751 {
2752         if (waited)
2753                 vcpu->stat.halt_poll_fail_ns += poll_ns;
2754         else
2755                 vcpu->stat.halt_poll_success_ns += poll_ns;
2756 }
2757
2758 /*
2759  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2760  */
2761 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2762 {
2763         ktime_t start, cur, poll_end;
2764         bool waited = false;
2765         u64 block_ns;
2766
2767         kvm_arch_vcpu_blocking(vcpu);
2768
2769         start = cur = poll_end = ktime_get();
2770         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2771                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2772
2773                 ++vcpu->stat.halt_attempted_poll;
2774                 do {
2775                         /*
2776                          * This sets KVM_REQ_UNHALT if an interrupt
2777                          * arrives.
2778                          */
2779                         if (kvm_vcpu_check_block(vcpu) < 0) {
2780                                 ++vcpu->stat.halt_successful_poll;
2781                                 if (!vcpu_valid_wakeup(vcpu))
2782                                         ++vcpu->stat.halt_poll_invalid;
2783                                 goto out;
2784                         }
2785                         poll_end = cur = ktime_get();
2786                 } while (single_task_running() && ktime_before(cur, stop));
2787         }
2788
2789         prepare_to_rcuwait(&vcpu->wait);
2790         for (;;) {
2791                 set_current_state(TASK_INTERRUPTIBLE);
2792
2793                 if (kvm_vcpu_check_block(vcpu) < 0)
2794                         break;
2795
2796                 waited = true;
2797                 schedule();
2798         }
2799         finish_rcuwait(&vcpu->wait);
2800         cur = ktime_get();
2801 out:
2802         kvm_arch_vcpu_unblocking(vcpu);
2803         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2804
2805         update_halt_poll_stats(
2806                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2807
2808         if (!kvm_arch_no_poll(vcpu)) {
2809                 if (!vcpu_valid_wakeup(vcpu)) {
2810                         shrink_halt_poll_ns(vcpu);
2811                 } else if (vcpu->kvm->max_halt_poll_ns) {
2812                         if (block_ns <= vcpu->halt_poll_ns)
2813                                 ;
2814                         /* we had a long block, shrink polling */
2815                         else if (vcpu->halt_poll_ns &&
2816                                         block_ns > vcpu->kvm->max_halt_poll_ns)
2817                                 shrink_halt_poll_ns(vcpu);
2818                         /* we had a short halt and our poll time is too small */
2819                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2820                                         block_ns < vcpu->kvm->max_halt_poll_ns)
2821                                 grow_halt_poll_ns(vcpu);
2822                 } else {
2823                         vcpu->halt_poll_ns = 0;
2824                 }
2825         }
2826
2827         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2828         kvm_arch_vcpu_block_finish(vcpu);
2829 }
2830 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2831
2832 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2833 {
2834         struct rcuwait *waitp;
2835
2836         waitp = kvm_arch_vcpu_get_wait(vcpu);
2837         if (rcuwait_wake_up(waitp)) {
2838                 WRITE_ONCE(vcpu->ready, true);
2839                 ++vcpu->stat.halt_wakeup;
2840                 return true;
2841         }
2842
2843         return false;
2844 }
2845 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2846
2847 #ifndef CONFIG_S390
2848 /*
2849  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2850  */
2851 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2852 {
2853         int me;
2854         int cpu = vcpu->cpu;
2855
2856         if (kvm_vcpu_wake_up(vcpu))
2857                 return;
2858
2859         me = get_cpu();
2860         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2861                 if (kvm_arch_vcpu_should_kick(vcpu))
2862                         smp_send_reschedule(cpu);
2863         put_cpu();
2864 }
2865 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2866 #endif /* !CONFIG_S390 */
2867
2868 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2869 {
2870         struct pid *pid;
2871         struct task_struct *task = NULL;
2872         int ret = 0;
2873
2874         rcu_read_lock();
2875         pid = rcu_dereference(target->pid);
2876         if (pid)
2877                 task = get_pid_task(pid, PIDTYPE_PID);
2878         rcu_read_unlock();
2879         if (!task)
2880                 return ret;
2881         ret = yield_to(task, 1);
2882         put_task_struct(task);
2883
2884         return ret;
2885 }
2886 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2887
2888 /*
2889  * Helper that checks whether a VCPU is eligible for directed yield.
2890  * Most eligible candidate to yield is decided by following heuristics:
2891  *
2892  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2893  *  (preempted lock holder), indicated by @in_spin_loop.
2894  *  Set at the beginning and cleared at the end of interception/PLE handler.
2895  *
2896  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2897  *  chance last time (mostly it has become eligible now since we have probably
2898  *  yielded to lockholder in last iteration. This is done by toggling
2899  *  @dy_eligible each time a VCPU checked for eligibility.)
2900  *
2901  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2902  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2903  *  burning. Giving priority for a potential lock-holder increases lock
2904  *  progress.
2905  *
2906  *  Since algorithm is based on heuristics, accessing another VCPU data without
2907  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2908  *  and continue with next VCPU and so on.
2909  */
2910 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2911 {
2912 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2913         bool eligible;
2914
2915         eligible = !vcpu->spin_loop.in_spin_loop ||
2916                     vcpu->spin_loop.dy_eligible;
2917
2918         if (vcpu->spin_loop.in_spin_loop)
2919                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2920
2921         return eligible;
2922 #else
2923         return true;
2924 #endif
2925 }
2926
2927 /*
2928  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2929  * a vcpu_load/vcpu_put pair.  However, for most architectures
2930  * kvm_arch_vcpu_runnable does not require vcpu_load.
2931  */
2932 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2933 {
2934         return kvm_arch_vcpu_runnable(vcpu);
2935 }
2936
2937 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2938 {
2939         if (kvm_arch_dy_runnable(vcpu))
2940                 return true;
2941
2942 #ifdef CONFIG_KVM_ASYNC_PF
2943         if (!list_empty_careful(&vcpu->async_pf.done))
2944                 return true;
2945 #endif
2946
2947         return false;
2948 }
2949
2950 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2951 {
2952         struct kvm *kvm = me->kvm;
2953         struct kvm_vcpu *vcpu;
2954         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2955         int yielded = 0;
2956         int try = 3;
2957         int pass;
2958         int i;
2959
2960         kvm_vcpu_set_in_spin_loop(me, true);
2961         /*
2962          * We boost the priority of a VCPU that is runnable but not
2963          * currently running, because it got preempted by something
2964          * else and called schedule in __vcpu_run.  Hopefully that
2965          * VCPU is holding the lock that we need and will release it.
2966          * We approximate round-robin by starting at the last boosted VCPU.
2967          */
2968         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2969                 kvm_for_each_vcpu(i, vcpu, kvm) {
2970                         if (!pass && i <= last_boosted_vcpu) {
2971                                 i = last_boosted_vcpu;
2972                                 continue;
2973                         } else if (pass && i > last_boosted_vcpu)
2974                                 break;
2975                         if (!READ_ONCE(vcpu->ready))
2976                                 continue;
2977                         if (vcpu == me)
2978                                 continue;
2979                         if (rcuwait_active(&vcpu->wait) &&
2980                             !vcpu_dy_runnable(vcpu))
2981                                 continue;
2982                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2983                                 !kvm_arch_vcpu_in_kernel(vcpu))
2984                                 continue;
2985                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2986                                 continue;
2987
2988                         yielded = kvm_vcpu_yield_to(vcpu);
2989                         if (yielded > 0) {
2990                                 kvm->last_boosted_vcpu = i;
2991                                 break;
2992                         } else if (yielded < 0) {
2993                                 try--;
2994                                 if (!try)
2995                                         break;
2996                         }
2997                 }
2998         }
2999         kvm_vcpu_set_in_spin_loop(me, false);
3000
3001         /* Ensure vcpu is not eligible during next spinloop */
3002         kvm_vcpu_set_dy_eligible(me, false);
3003 }
3004 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3005
3006 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3007 {
3008         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3009         struct page *page;
3010
3011         if (vmf->pgoff == 0)
3012                 page = virt_to_page(vcpu->run);
3013 #ifdef CONFIG_X86
3014         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3015                 page = virt_to_page(vcpu->arch.pio_data);
3016 #endif
3017 #ifdef CONFIG_KVM_MMIO
3018         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3019                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3020 #endif
3021         else
3022                 return kvm_arch_vcpu_fault(vcpu, vmf);
3023         get_page(page);
3024         vmf->page = page;
3025         return 0;
3026 }
3027
3028 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3029         .fault = kvm_vcpu_fault,
3030 };
3031
3032 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3033 {
3034         vma->vm_ops = &kvm_vcpu_vm_ops;
3035         return 0;
3036 }
3037
3038 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3039 {
3040         struct kvm_vcpu *vcpu = filp->private_data;
3041
3042         kvm_put_kvm(vcpu->kvm);
3043         return 0;
3044 }
3045
3046 static struct file_operations kvm_vcpu_fops = {
3047         .release        = kvm_vcpu_release,
3048         .unlocked_ioctl = kvm_vcpu_ioctl,
3049         .mmap           = kvm_vcpu_mmap,
3050         .llseek         = noop_llseek,
3051         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3052 };
3053
3054 /*
3055  * Allocates an inode for the vcpu.
3056  */
3057 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3058 {
3059         char name[8 + 1 + ITOA_MAX_LEN + 1];
3060
3061         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3062         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3063 }
3064
3065 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3066 {
3067 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3068         struct dentry *debugfs_dentry;
3069         char dir_name[ITOA_MAX_LEN * 2];
3070
3071         if (!debugfs_initialized())
3072                 return;
3073
3074         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3075         debugfs_dentry = debugfs_create_dir(dir_name,
3076                                             vcpu->kvm->debugfs_dentry);
3077
3078         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3079 #endif
3080 }
3081
3082 /*
3083  * Creates some virtual cpus.  Good luck creating more than one.
3084  */
3085 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3086 {
3087         int r;
3088         struct kvm_vcpu *vcpu;
3089         struct page *page;
3090
3091         if (id >= KVM_MAX_VCPU_ID)
3092                 return -EINVAL;
3093
3094         mutex_lock(&kvm->lock);
3095         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3096                 mutex_unlock(&kvm->lock);
3097                 return -EINVAL;
3098         }
3099
3100         kvm->created_vcpus++;
3101         mutex_unlock(&kvm->lock);
3102
3103         r = kvm_arch_vcpu_precreate(kvm, id);
3104         if (r)
3105                 goto vcpu_decrement;
3106
3107         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3108         if (!vcpu) {
3109                 r = -ENOMEM;
3110                 goto vcpu_decrement;
3111         }
3112
3113         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3114         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3115         if (!page) {
3116                 r = -ENOMEM;
3117                 goto vcpu_free;
3118         }
3119         vcpu->run = page_address(page);
3120
3121         kvm_vcpu_init(vcpu, kvm, id);
3122
3123         r = kvm_arch_vcpu_create(vcpu);
3124         if (r)
3125                 goto vcpu_free_run_page;
3126
3127         mutex_lock(&kvm->lock);
3128         if (kvm_get_vcpu_by_id(kvm, id)) {
3129                 r = -EEXIST;
3130                 goto unlock_vcpu_destroy;
3131         }
3132
3133         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3134         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3135
3136         /* Now it's all set up, let userspace reach it */
3137         kvm_get_kvm(kvm);
3138         r = create_vcpu_fd(vcpu);
3139         if (r < 0) {
3140                 kvm_put_kvm_no_destroy(kvm);
3141                 goto unlock_vcpu_destroy;
3142         }
3143
3144         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3145
3146         /*
3147          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3148          * before kvm->online_vcpu's incremented value.
3149          */
3150         smp_wmb();
3151         atomic_inc(&kvm->online_vcpus);
3152
3153         mutex_unlock(&kvm->lock);
3154         kvm_arch_vcpu_postcreate(vcpu);
3155         kvm_create_vcpu_debugfs(vcpu);
3156         return r;
3157
3158 unlock_vcpu_destroy:
3159         mutex_unlock(&kvm->lock);
3160         kvm_arch_vcpu_destroy(vcpu);
3161 vcpu_free_run_page:
3162         free_page((unsigned long)vcpu->run);
3163 vcpu_free:
3164         kmem_cache_free(kvm_vcpu_cache, vcpu);
3165 vcpu_decrement:
3166         mutex_lock(&kvm->lock);
3167         kvm->created_vcpus--;
3168         mutex_unlock(&kvm->lock);
3169         return r;
3170 }
3171
3172 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3173 {
3174         if (sigset) {
3175                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3176                 vcpu->sigset_active = 1;
3177                 vcpu->sigset = *sigset;
3178         } else
3179                 vcpu->sigset_active = 0;
3180         return 0;
3181 }
3182
3183 static long kvm_vcpu_ioctl(struct file *filp,
3184                            unsigned int ioctl, unsigned long arg)
3185 {
3186         struct kvm_vcpu *vcpu = filp->private_data;
3187         void __user *argp = (void __user *)arg;
3188         int r;
3189         struct kvm_fpu *fpu = NULL;
3190         struct kvm_sregs *kvm_sregs = NULL;
3191
3192         if (vcpu->kvm->mm != current->mm)
3193                 return -EIO;
3194
3195         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3196                 return -EINVAL;
3197
3198         /*
3199          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3200          * execution; mutex_lock() would break them.
3201          */
3202         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3203         if (r != -ENOIOCTLCMD)
3204                 return r;
3205
3206         if (mutex_lock_killable(&vcpu->mutex))
3207                 return -EINTR;
3208         switch (ioctl) {
3209         case KVM_RUN: {
3210                 struct pid *oldpid;
3211                 r = -EINVAL;
3212                 if (arg)
3213                         goto out;
3214                 oldpid = rcu_access_pointer(vcpu->pid);
3215                 if (unlikely(oldpid != task_pid(current))) {
3216                         /* The thread running this VCPU changed. */
3217                         struct pid *newpid;
3218
3219                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3220                         if (r)
3221                                 break;
3222
3223                         newpid = get_task_pid(current, PIDTYPE_PID);
3224                         rcu_assign_pointer(vcpu->pid, newpid);
3225                         if (oldpid)
3226                                 synchronize_rcu();
3227                         put_pid(oldpid);
3228                 }
3229                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3230                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3231                 break;
3232         }
3233         case KVM_GET_REGS: {
3234                 struct kvm_regs *kvm_regs;
3235
3236                 r = -ENOMEM;
3237                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3238                 if (!kvm_regs)
3239                         goto out;
3240                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3241                 if (r)
3242                         goto out_free1;
3243                 r = -EFAULT;
3244                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3245                         goto out_free1;
3246                 r = 0;
3247 out_free1:
3248                 kfree(kvm_regs);
3249                 break;
3250         }
3251         case KVM_SET_REGS: {
3252                 struct kvm_regs *kvm_regs;
3253
3254                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3255                 if (IS_ERR(kvm_regs)) {
3256                         r = PTR_ERR(kvm_regs);
3257                         goto out;
3258                 }
3259                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3260                 kfree(kvm_regs);
3261                 break;
3262         }
3263         case KVM_GET_SREGS: {
3264                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3265                                     GFP_KERNEL_ACCOUNT);
3266                 r = -ENOMEM;
3267                 if (!kvm_sregs)
3268                         goto out;
3269                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3270                 if (r)
3271                         goto out;
3272                 r = -EFAULT;
3273                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3274                         goto out;
3275                 r = 0;
3276                 break;
3277         }
3278         case KVM_SET_SREGS: {
3279                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3280                 if (IS_ERR(kvm_sregs)) {
3281                         r = PTR_ERR(kvm_sregs);
3282                         kvm_sregs = NULL;
3283                         goto out;
3284                 }
3285                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3286                 break;
3287         }
3288         case KVM_GET_MP_STATE: {
3289                 struct kvm_mp_state mp_state;
3290
3291                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3292                 if (r)
3293                         goto out;
3294                 r = -EFAULT;
3295                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3296                         goto out;
3297                 r = 0;
3298                 break;
3299         }
3300         case KVM_SET_MP_STATE: {
3301                 struct kvm_mp_state mp_state;
3302
3303                 r = -EFAULT;
3304                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3305                         goto out;
3306                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3307                 break;
3308         }
3309         case KVM_TRANSLATE: {
3310                 struct kvm_translation tr;
3311
3312                 r = -EFAULT;
3313                 if (copy_from_user(&tr, argp, sizeof(tr)))
3314                         goto out;
3315                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3316                 if (r)
3317                         goto out;
3318                 r = -EFAULT;
3319                 if (copy_to_user(argp, &tr, sizeof(tr)))
3320                         goto out;
3321                 r = 0;
3322                 break;
3323         }
3324         case KVM_SET_GUEST_DEBUG: {
3325                 struct kvm_guest_debug dbg;
3326
3327                 r = -EFAULT;
3328                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3329                         goto out;
3330                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3331                 break;
3332         }
3333         case KVM_SET_SIGNAL_MASK: {
3334                 struct kvm_signal_mask __user *sigmask_arg = argp;
3335                 struct kvm_signal_mask kvm_sigmask;
3336                 sigset_t sigset, *p;
3337
3338                 p = NULL;
3339                 if (argp) {
3340                         r = -EFAULT;
3341                         if (copy_from_user(&kvm_sigmask, argp,
3342                                            sizeof(kvm_sigmask)))
3343                                 goto out;
3344                         r = -EINVAL;
3345                         if (kvm_sigmask.len != sizeof(sigset))
3346                                 goto out;
3347                         r = -EFAULT;
3348                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3349                                            sizeof(sigset)))
3350                                 goto out;
3351                         p = &sigset;
3352                 }
3353                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3354                 break;
3355         }
3356         case KVM_GET_FPU: {
3357                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3358                 r = -ENOMEM;
3359                 if (!fpu)
3360                         goto out;
3361                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3362                 if (r)
3363                         goto out;
3364                 r = -EFAULT;
3365                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3366                         goto out;
3367                 r = 0;
3368                 break;
3369         }
3370         case KVM_SET_FPU: {
3371                 fpu = memdup_user(argp, sizeof(*fpu));
3372                 if (IS_ERR(fpu)) {
3373                         r = PTR_ERR(fpu);
3374                         fpu = NULL;
3375                         goto out;
3376                 }
3377                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3378                 break;
3379         }
3380         default:
3381                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3382         }
3383 out:
3384         mutex_unlock(&vcpu->mutex);
3385         kfree(fpu);
3386         kfree(kvm_sregs);
3387         return r;
3388 }
3389
3390 #ifdef CONFIG_KVM_COMPAT
3391 static long kvm_vcpu_compat_ioctl(struct file *filp,
3392                                   unsigned int ioctl, unsigned long arg)
3393 {
3394         struct kvm_vcpu *vcpu = filp->private_data;
3395         void __user *argp = compat_ptr(arg);
3396         int r;
3397
3398         if (vcpu->kvm->mm != current->mm)
3399                 return -EIO;
3400
3401         switch (ioctl) {
3402         case KVM_SET_SIGNAL_MASK: {
3403                 struct kvm_signal_mask __user *sigmask_arg = argp;
3404                 struct kvm_signal_mask kvm_sigmask;
3405                 sigset_t sigset;
3406
3407                 if (argp) {
3408                         r = -EFAULT;
3409                         if (copy_from_user(&kvm_sigmask, argp,
3410                                            sizeof(kvm_sigmask)))
3411                                 goto out;
3412                         r = -EINVAL;
3413                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3414                                 goto out;
3415                         r = -EFAULT;
3416                         if (get_compat_sigset(&sigset,
3417                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3418                                 goto out;
3419                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3420                 } else
3421                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3422                 break;
3423         }
3424         default:
3425                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3426         }
3427
3428 out:
3429         return r;
3430 }
3431 #endif
3432
3433 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3434 {
3435         struct kvm_device *dev = filp->private_data;
3436
3437         if (dev->ops->mmap)
3438                 return dev->ops->mmap(dev, vma);
3439
3440         return -ENODEV;
3441 }
3442
3443 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3444                                  int (*accessor)(struct kvm_device *dev,
3445                                                  struct kvm_device_attr *attr),
3446                                  unsigned long arg)
3447 {
3448         struct kvm_device_attr attr;
3449
3450         if (!accessor)
3451                 return -EPERM;
3452
3453         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3454                 return -EFAULT;
3455
3456         return accessor(dev, &attr);
3457 }
3458
3459 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3460                              unsigned long arg)
3461 {
3462         struct kvm_device *dev = filp->private_data;
3463
3464         if (dev->kvm->mm != current->mm)
3465                 return -EIO;
3466
3467         switch (ioctl) {
3468         case KVM_SET_DEVICE_ATTR:
3469                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3470         case KVM_GET_DEVICE_ATTR:
3471                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3472         case KVM_HAS_DEVICE_ATTR:
3473                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3474         default:
3475                 if (dev->ops->ioctl)
3476                         return dev->ops->ioctl(dev, ioctl, arg);
3477
3478                 return -ENOTTY;
3479         }
3480 }
3481
3482 static int kvm_device_release(struct inode *inode, struct file *filp)
3483 {
3484         struct kvm_device *dev = filp->private_data;
3485         struct kvm *kvm = dev->kvm;
3486
3487         if (dev->ops->release) {
3488                 mutex_lock(&kvm->lock);
3489                 list_del(&dev->vm_node);
3490                 dev->ops->release(dev);
3491                 mutex_unlock(&kvm->lock);
3492         }
3493
3494         kvm_put_kvm(kvm);
3495         return 0;
3496 }
3497
3498 static const struct file_operations kvm_device_fops = {
3499         .unlocked_ioctl = kvm_device_ioctl,
3500         .release = kvm_device_release,
3501         KVM_COMPAT(kvm_device_ioctl),
3502         .mmap = kvm_device_mmap,
3503 };
3504
3505 struct kvm_device *kvm_device_from_filp(struct file *filp)
3506 {
3507         if (filp->f_op != &kvm_device_fops)
3508                 return NULL;
3509
3510         return filp->private_data;
3511 }
3512
3513 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3514 #ifdef CONFIG_KVM_MPIC
3515         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3516         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3517 #endif
3518 };
3519
3520 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3521 {
3522         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3523                 return -ENOSPC;
3524
3525         if (kvm_device_ops_table[type] != NULL)
3526                 return -EEXIST;
3527
3528         kvm_device_ops_table[type] = ops;
3529         return 0;
3530 }
3531
3532 void kvm_unregister_device_ops(u32 type)
3533 {
3534         if (kvm_device_ops_table[type] != NULL)
3535                 kvm_device_ops_table[type] = NULL;
3536 }
3537
3538 static int kvm_ioctl_create_device(struct kvm *kvm,
3539                                    struct kvm_create_device *cd)
3540 {
3541         const struct kvm_device_ops *ops = NULL;
3542         struct kvm_device *dev;
3543         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3544         int type;
3545         int ret;
3546
3547         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3548                 return -ENODEV;
3549
3550         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3551         ops = kvm_device_ops_table[type];
3552         if (ops == NULL)
3553                 return -ENODEV;
3554
3555         if (test)
3556                 return 0;
3557
3558         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3559         if (!dev)
3560                 return -ENOMEM;
3561
3562         dev->ops = ops;
3563         dev->kvm = kvm;
3564
3565         mutex_lock(&kvm->lock);
3566         ret = ops->create(dev, type);
3567         if (ret < 0) {
3568                 mutex_unlock(&kvm->lock);
3569                 kfree(dev);
3570                 return ret;
3571         }
3572         list_add(&dev->vm_node, &kvm->devices);
3573         mutex_unlock(&kvm->lock);
3574
3575         if (ops->init)
3576                 ops->init(dev);
3577
3578         kvm_get_kvm(kvm);
3579         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3580         if (ret < 0) {
3581                 kvm_put_kvm_no_destroy(kvm);
3582                 mutex_lock(&kvm->lock);
3583                 list_del(&dev->vm_node);
3584                 mutex_unlock(&kvm->lock);
3585                 ops->destroy(dev);
3586                 return ret;
3587         }
3588
3589         cd->fd = ret;
3590         return 0;
3591 }
3592
3593 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3594 {
3595         switch (arg) {
3596         case KVM_CAP_USER_MEMORY:
3597         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3598         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3599         case KVM_CAP_INTERNAL_ERROR_DATA:
3600 #ifdef CONFIG_HAVE_KVM_MSI
3601         case KVM_CAP_SIGNAL_MSI:
3602 #endif
3603 #ifdef CONFIG_HAVE_KVM_IRQFD
3604         case KVM_CAP_IRQFD:
3605         case KVM_CAP_IRQFD_RESAMPLE:
3606 #endif
3607         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3608         case KVM_CAP_CHECK_EXTENSION_VM:
3609         case KVM_CAP_ENABLE_CAP_VM:
3610         case KVM_CAP_HALT_POLL:
3611                 return 1;
3612 #ifdef CONFIG_KVM_MMIO
3613         case KVM_CAP_COALESCED_MMIO:
3614                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3615         case KVM_CAP_COALESCED_PIO:
3616                 return 1;
3617 #endif
3618 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3619         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3620                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3621 #endif
3622 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3623         case KVM_CAP_IRQ_ROUTING:
3624                 return KVM_MAX_IRQ_ROUTES;
3625 #endif
3626 #if KVM_ADDRESS_SPACE_NUM > 1
3627         case KVM_CAP_MULTI_ADDRESS_SPACE:
3628                 return KVM_ADDRESS_SPACE_NUM;
3629 #endif
3630         case KVM_CAP_NR_MEMSLOTS:
3631                 return KVM_USER_MEM_SLOTS;
3632         default:
3633                 break;
3634         }
3635         return kvm_vm_ioctl_check_extension(kvm, arg);
3636 }
3637
3638 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3639                                                   struct kvm_enable_cap *cap)
3640 {
3641         return -EINVAL;
3642 }
3643
3644 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3645                                            struct kvm_enable_cap *cap)
3646 {
3647         switch (cap->cap) {
3648 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3649         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3650                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3651
3652                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3653                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3654
3655                 if (cap->flags || (cap->args[0] & ~allowed_options))
3656                         return -EINVAL;
3657                 kvm->manual_dirty_log_protect = cap->args[0];
3658                 return 0;
3659         }
3660 #endif
3661         case KVM_CAP_HALT_POLL: {
3662                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3663                         return -EINVAL;
3664
3665                 kvm->max_halt_poll_ns = cap->args[0];
3666                 return 0;
3667         }
3668         default:
3669                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3670         }
3671 }
3672
3673 static long kvm_vm_ioctl(struct file *filp,
3674                            unsigned int ioctl, unsigned long arg)
3675 {
3676         struct kvm *kvm = filp->private_data;
3677         void __user *argp = (void __user *)arg;
3678         int r;
3679
3680         if (kvm->mm != current->mm)
3681                 return -EIO;
3682         switch (ioctl) {
3683         case KVM_CREATE_VCPU:
3684                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3685                 break;
3686         case KVM_ENABLE_CAP: {
3687                 struct kvm_enable_cap cap;
3688
3689                 r = -EFAULT;
3690                 if (copy_from_user(&cap, argp, sizeof(cap)))
3691                         goto out;
3692                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3693                 break;
3694         }
3695         case KVM_SET_USER_MEMORY_REGION: {
3696                 struct kvm_userspace_memory_region kvm_userspace_mem;
3697
3698                 r = -EFAULT;
3699                 if (copy_from_user(&kvm_userspace_mem, argp,
3700                                                 sizeof(kvm_userspace_mem)))
3701                         goto out;
3702
3703                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3704                 break;
3705         }
3706         case KVM_GET_DIRTY_LOG: {
3707                 struct kvm_dirty_log log;
3708
3709                 r = -EFAULT;
3710                 if (copy_from_user(&log, argp, sizeof(log)))
3711                         goto out;
3712                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3713                 break;
3714         }
3715 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3716         case KVM_CLEAR_DIRTY_LOG: {
3717                 struct kvm_clear_dirty_log log;
3718
3719                 r = -EFAULT;
3720                 if (copy_from_user(&log, argp, sizeof(log)))
3721                         goto out;
3722                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3723                 break;
3724         }
3725 #endif
3726 #ifdef CONFIG_KVM_MMIO
3727         case KVM_REGISTER_COALESCED_MMIO: {
3728                 struct kvm_coalesced_mmio_zone zone;
3729
3730                 r = -EFAULT;
3731                 if (copy_from_user(&zone, argp, sizeof(zone)))
3732                         goto out;
3733                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3734                 break;
3735         }
3736         case KVM_UNREGISTER_COALESCED_MMIO: {
3737                 struct kvm_coalesced_mmio_zone zone;
3738
3739                 r = -EFAULT;
3740                 if (copy_from_user(&zone, argp, sizeof(zone)))
3741                         goto out;
3742                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3743                 break;
3744         }
3745 #endif
3746         case KVM_IRQFD: {
3747                 struct kvm_irqfd data;
3748
3749                 r = -EFAULT;
3750                 if (copy_from_user(&data, argp, sizeof(data)))
3751                         goto out;
3752                 r = kvm_irqfd(kvm, &data);
3753                 break;
3754         }
3755         case KVM_IOEVENTFD: {
3756                 struct kvm_ioeventfd data;
3757
3758                 r = -EFAULT;
3759                 if (copy_from_user(&data, argp, sizeof(data)))
3760                         goto out;
3761                 r = kvm_ioeventfd(kvm, &data);
3762                 break;
3763         }
3764 #ifdef CONFIG_HAVE_KVM_MSI
3765         case KVM_SIGNAL_MSI: {
3766                 struct kvm_msi msi;
3767
3768                 r = -EFAULT;
3769                 if (copy_from_user(&msi, argp, sizeof(msi)))
3770                         goto out;
3771                 r = kvm_send_userspace_msi(kvm, &msi);
3772                 break;
3773         }
3774 #endif
3775 #ifdef __KVM_HAVE_IRQ_LINE
3776         case KVM_IRQ_LINE_STATUS:
3777         case KVM_IRQ_LINE: {
3778                 struct kvm_irq_level irq_event;
3779
3780                 r = -EFAULT;
3781                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3782                         goto out;
3783
3784                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3785                                         ioctl == KVM_IRQ_LINE_STATUS);
3786                 if (r)
3787                         goto out;
3788
3789                 r = -EFAULT;
3790                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3791                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3792                                 goto out;
3793                 }
3794
3795                 r = 0;
3796                 break;
3797         }
3798 #endif
3799 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3800         case KVM_SET_GSI_ROUTING: {
3801                 struct kvm_irq_routing routing;
3802                 struct kvm_irq_routing __user *urouting;
3803                 struct kvm_irq_routing_entry *entries = NULL;
3804
3805                 r = -EFAULT;
3806                 if (copy_from_user(&routing, argp, sizeof(routing)))
3807                         goto out;
3808                 r = -EINVAL;
3809                 if (!kvm_arch_can_set_irq_routing(kvm))
3810                         goto out;
3811                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3812                         goto out;
3813                 if (routing.flags)
3814                         goto out;
3815                 if (routing.nr) {
3816                         urouting = argp;
3817                         entries = vmemdup_user(urouting->entries,
3818                                                array_size(sizeof(*entries),
3819                                                           routing.nr));
3820                         if (IS_ERR(entries)) {
3821                                 r = PTR_ERR(entries);
3822                                 goto out;
3823                         }
3824                 }
3825                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3826                                         routing.flags);
3827                 kvfree(entries);
3828                 break;
3829         }
3830 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3831         case KVM_CREATE_DEVICE: {
3832                 struct kvm_create_device cd;
3833
3834                 r = -EFAULT;
3835                 if (copy_from_user(&cd, argp, sizeof(cd)))
3836                         goto out;
3837
3838                 r = kvm_ioctl_create_device(kvm, &cd);
3839                 if (r)
3840                         goto out;
3841
3842                 r = -EFAULT;
3843                 if (copy_to_user(argp, &cd, sizeof(cd)))
3844                         goto out;
3845
3846                 r = 0;
3847                 break;
3848         }
3849         case KVM_CHECK_EXTENSION:
3850                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3851                 break;
3852         default:
3853                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3854         }
3855 out:
3856         return r;
3857 }
3858
3859 #ifdef CONFIG_KVM_COMPAT
3860 struct compat_kvm_dirty_log {
3861         __u32 slot;
3862         __u32 padding1;
3863         union {
3864                 compat_uptr_t dirty_bitmap; /* one bit per page */
3865                 __u64 padding2;
3866         };
3867 };
3868
3869 static long kvm_vm_compat_ioctl(struct file *filp,
3870                            unsigned int ioctl, unsigned long arg)
3871 {
3872         struct kvm *kvm = filp->private_data;
3873         int r;
3874
3875         if (kvm->mm != current->mm)
3876                 return -EIO;
3877         switch (ioctl) {
3878         case KVM_GET_DIRTY_LOG: {
3879                 struct compat_kvm_dirty_log compat_log;
3880                 struct kvm_dirty_log log;
3881
3882                 if (copy_from_user(&compat_log, (void __user *)arg,
3883                                    sizeof(compat_log)))
3884                         return -EFAULT;
3885                 log.slot         = compat_log.slot;
3886                 log.padding1     = compat_log.padding1;
3887                 log.padding2     = compat_log.padding2;
3888                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3889
3890                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3891                 break;
3892         }
3893         default:
3894                 r = kvm_vm_ioctl(filp, ioctl, arg);
3895         }
3896         return r;
3897 }
3898 #endif
3899
3900 static struct file_operations kvm_vm_fops = {
3901         .release        = kvm_vm_release,
3902         .unlocked_ioctl = kvm_vm_ioctl,
3903         .llseek         = noop_llseek,
3904         KVM_COMPAT(kvm_vm_compat_ioctl),
3905 };
3906
3907 static int kvm_dev_ioctl_create_vm(unsigned long type)
3908 {
3909         int r;
3910         struct kvm *kvm;
3911         struct file *file;
3912
3913         kvm = kvm_create_vm(type);
3914         if (IS_ERR(kvm))
3915                 return PTR_ERR(kvm);
3916 #ifdef CONFIG_KVM_MMIO
3917         r = kvm_coalesced_mmio_init(kvm);
3918         if (r < 0)
3919                 goto put_kvm;
3920 #endif
3921         r = get_unused_fd_flags(O_CLOEXEC);
3922         if (r < 0)
3923                 goto put_kvm;
3924
3925         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3926         if (IS_ERR(file)) {
3927                 put_unused_fd(r);
3928                 r = PTR_ERR(file);
3929                 goto put_kvm;
3930         }
3931
3932         /*
3933          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3934          * already set, with ->release() being kvm_vm_release().  In error
3935          * cases it will be called by the final fput(file) and will take
3936          * care of doing kvm_put_kvm(kvm).
3937          */
3938         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3939                 put_unused_fd(r);
3940                 fput(file);
3941                 return -ENOMEM;
3942         }
3943         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3944
3945         fd_install(r, file);
3946         return r;
3947
3948 put_kvm:
3949         kvm_put_kvm(kvm);
3950         return r;
3951 }
3952
3953 static long kvm_dev_ioctl(struct file *filp,
3954                           unsigned int ioctl, unsigned long arg)
3955 {
3956         long r = -EINVAL;
3957
3958         switch (ioctl) {
3959         case KVM_GET_API_VERSION:
3960                 if (arg)
3961                         goto out;
3962                 r = KVM_API_VERSION;
3963                 break;
3964         case KVM_CREATE_VM:
3965                 r = kvm_dev_ioctl_create_vm(arg);
3966                 break;
3967         case KVM_CHECK_EXTENSION:
3968                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3969                 break;
3970         case KVM_GET_VCPU_MMAP_SIZE:
3971                 if (arg)
3972                         goto out;
3973                 r = PAGE_SIZE;     /* struct kvm_run */
3974 #ifdef CONFIG_X86
3975                 r += PAGE_SIZE;    /* pio data page */
3976 #endif
3977 #ifdef CONFIG_KVM_MMIO
3978                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3979 #endif
3980                 break;
3981         case KVM_TRACE_ENABLE:
3982         case KVM_TRACE_PAUSE:
3983         case KVM_TRACE_DISABLE:
3984                 r = -EOPNOTSUPP;
3985                 break;
3986         default:
3987                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3988         }
3989 out:
3990         return r;
3991 }
3992
3993 static struct file_operations kvm_chardev_ops = {
3994         .unlocked_ioctl = kvm_dev_ioctl,
3995         .llseek         = noop_llseek,
3996         KVM_COMPAT(kvm_dev_ioctl),
3997 };
3998
3999 static struct miscdevice kvm_dev = {
4000         KVM_MINOR,
4001         "kvm",
4002         &kvm_chardev_ops,
4003 };
4004
4005 static void hardware_enable_nolock(void *junk)
4006 {
4007         int cpu = raw_smp_processor_id();
4008         int r;
4009
4010         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4011                 return;
4012
4013         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4014
4015         r = kvm_arch_hardware_enable();
4016
4017         if (r) {
4018                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4019                 atomic_inc(&hardware_enable_failed);
4020                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4021         }
4022 }
4023
4024 static int kvm_starting_cpu(unsigned int cpu)
4025 {
4026         raw_spin_lock(&kvm_count_lock);
4027         if (kvm_usage_count)
4028                 hardware_enable_nolock(NULL);
4029         raw_spin_unlock(&kvm_count_lock);
4030         return 0;
4031 }
4032
4033 static void hardware_disable_nolock(void *junk)
4034 {
4035         int cpu = raw_smp_processor_id();
4036
4037         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4038                 return;
4039         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4040         kvm_arch_hardware_disable();
4041 }
4042
4043 static int kvm_dying_cpu(unsigned int cpu)
4044 {
4045         raw_spin_lock(&kvm_count_lock);
4046         if (kvm_usage_count)
4047                 hardware_disable_nolock(NULL);
4048         raw_spin_unlock(&kvm_count_lock);
4049         return 0;
4050 }
4051
4052 static void hardware_disable_all_nolock(void)
4053 {
4054         BUG_ON(!kvm_usage_count);
4055
4056         kvm_usage_count--;
4057         if (!kvm_usage_count)
4058                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4059 }
4060
4061 static void hardware_disable_all(void)
4062 {
4063         raw_spin_lock(&kvm_count_lock);
4064         hardware_disable_all_nolock();
4065         raw_spin_unlock(&kvm_count_lock);
4066 }
4067
4068 static int hardware_enable_all(void)
4069 {
4070         int r = 0;
4071
4072         raw_spin_lock(&kvm_count_lock);
4073
4074         kvm_usage_count++;
4075         if (kvm_usage_count == 1) {
4076                 atomic_set(&hardware_enable_failed, 0);
4077                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4078
4079                 if (atomic_read(&hardware_enable_failed)) {
4080                         hardware_disable_all_nolock();
4081                         r = -EBUSY;
4082                 }
4083         }
4084
4085         raw_spin_unlock(&kvm_count_lock);
4086
4087         return r;
4088 }
4089
4090 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4091                       void *v)
4092 {
4093         /*
4094          * Some (well, at least mine) BIOSes hang on reboot if
4095          * in vmx root mode.
4096          *
4097          * And Intel TXT required VMX off for all cpu when system shutdown.
4098          */
4099         pr_info("kvm: exiting hardware virtualization\n");
4100         kvm_rebooting = true;
4101         on_each_cpu(hardware_disable_nolock, NULL, 1);
4102         return NOTIFY_OK;
4103 }
4104
4105 static struct notifier_block kvm_reboot_notifier = {
4106         .notifier_call = kvm_reboot,
4107         .priority = 0,
4108 };
4109
4110 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4111 {
4112         int i;
4113
4114         for (i = 0; i < bus->dev_count; i++) {
4115                 struct kvm_io_device *pos = bus->range[i].dev;
4116
4117                 kvm_iodevice_destructor(pos);
4118         }
4119         kfree(bus);
4120 }
4121
4122 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4123                                  const struct kvm_io_range *r2)
4124 {
4125         gpa_t addr1 = r1->addr;
4126         gpa_t addr2 = r2->addr;
4127
4128         if (addr1 < addr2)
4129                 return -1;
4130
4131         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4132          * accept any overlapping write.  Any order is acceptable for
4133          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4134          * we process all of them.
4135          */
4136         if (r2->len) {
4137                 addr1 += r1->len;
4138                 addr2 += r2->len;
4139         }
4140
4141         if (addr1 > addr2)
4142                 return 1;
4143
4144         return 0;
4145 }
4146
4147 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4148 {
4149         return kvm_io_bus_cmp(p1, p2);
4150 }
4151
4152 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4153                              gpa_t addr, int len)
4154 {
4155         struct kvm_io_range *range, key;
4156         int off;
4157
4158         key = (struct kvm_io_range) {
4159                 .addr = addr,
4160                 .len = len,
4161         };
4162
4163         range = bsearch(&key, bus->range, bus->dev_count,
4164                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4165         if (range == NULL)
4166                 return -ENOENT;
4167
4168         off = range - bus->range;
4169
4170         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4171                 off--;
4172
4173         return off;
4174 }
4175
4176 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4177                               struct kvm_io_range *range, const void *val)
4178 {
4179         int idx;
4180
4181         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4182         if (idx < 0)
4183                 return -EOPNOTSUPP;
4184
4185         while (idx < bus->dev_count &&
4186                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4187                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4188                                         range->len, val))
4189                         return idx;
4190                 idx++;
4191         }
4192
4193         return -EOPNOTSUPP;
4194 }
4195
4196 /* kvm_io_bus_write - called under kvm->slots_lock */
4197 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4198                      int len, const void *val)
4199 {
4200         struct kvm_io_bus *bus;
4201         struct kvm_io_range range;
4202         int r;
4203
4204         range = (struct kvm_io_range) {
4205                 .addr = addr,
4206                 .len = len,
4207         };
4208
4209         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4210         if (!bus)
4211                 return -ENOMEM;
4212         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4213         return r < 0 ? r : 0;
4214 }
4215 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4216
4217 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4218 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4219                             gpa_t addr, int len, const void *val, long cookie)
4220 {
4221         struct kvm_io_bus *bus;
4222         struct kvm_io_range range;
4223
4224         range = (struct kvm_io_range) {
4225                 .addr = addr,
4226                 .len = len,
4227         };
4228
4229         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4230         if (!bus)
4231                 return -ENOMEM;
4232
4233         /* First try the device referenced by cookie. */
4234         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4235             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4236                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4237                                         val))
4238                         return cookie;
4239
4240         /*
4241          * cookie contained garbage; fall back to search and return the
4242          * correct cookie value.
4243          */
4244         return __kvm_io_bus_write(vcpu, bus, &range, val);
4245 }
4246
4247 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4248                              struct kvm_io_range *range, void *val)
4249 {
4250         int idx;
4251
4252         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4253         if (idx < 0)
4254                 return -EOPNOTSUPP;
4255
4256         while (idx < bus->dev_count &&
4257                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4258                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4259                                        range->len, val))
4260                         return idx;
4261                 idx++;
4262         }
4263
4264         return -EOPNOTSUPP;
4265 }
4266
4267 /* kvm_io_bus_read - called under kvm->slots_lock */
4268 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4269                     int len, void *val)
4270 {
4271         struct kvm_io_bus *bus;
4272         struct kvm_io_range range;
4273         int r;
4274
4275         range = (struct kvm_io_range) {
4276                 .addr = addr,
4277                 .len = len,
4278         };
4279
4280         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4281         if (!bus)
4282                 return -ENOMEM;
4283         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4284         return r < 0 ? r : 0;
4285 }
4286
4287 /* Caller must hold slots_lock. */
4288 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4289                             int len, struct kvm_io_device *dev)
4290 {
4291         int i;
4292         struct kvm_io_bus *new_bus, *bus;
4293         struct kvm_io_range range;
4294
4295         bus = kvm_get_bus(kvm, bus_idx);
4296         if (!bus)
4297                 return -ENOMEM;
4298
4299         /* exclude ioeventfd which is limited by maximum fd */
4300         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4301                 return -ENOSPC;
4302
4303         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4304                           GFP_KERNEL_ACCOUNT);
4305         if (!new_bus)
4306                 return -ENOMEM;
4307
4308         range = (struct kvm_io_range) {
4309                 .addr = addr,
4310                 .len = len,
4311                 .dev = dev,
4312         };
4313
4314         for (i = 0; i < bus->dev_count; i++)
4315                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4316                         break;
4317
4318         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4319         new_bus->dev_count++;
4320         new_bus->range[i] = range;
4321         memcpy(new_bus->range + i + 1, bus->range + i,
4322                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4323         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4324         synchronize_srcu_expedited(&kvm->srcu);
4325         kfree(bus);
4326
4327         return 0;
4328 }
4329
4330 /* Caller must hold slots_lock. */
4331 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4332                                struct kvm_io_device *dev)
4333 {
4334         int i;
4335         struct kvm_io_bus *new_bus, *bus;
4336
4337         bus = kvm_get_bus(kvm, bus_idx);
4338         if (!bus)
4339                 return;
4340
4341         for (i = 0; i < bus->dev_count; i++)
4342                 if (bus->range[i].dev == dev) {
4343                         break;
4344                 }
4345
4346         if (i == bus->dev_count)
4347                 return;
4348
4349         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4350                           GFP_KERNEL_ACCOUNT);
4351         if (!new_bus)  {
4352                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4353                 goto broken;
4354         }
4355
4356         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4357         new_bus->dev_count--;
4358         memcpy(new_bus->range + i, bus->range + i + 1,
4359                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4360
4361 broken:
4362         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4363         synchronize_srcu_expedited(&kvm->srcu);
4364         kfree(bus);
4365         return;
4366 }
4367
4368 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4369                                          gpa_t addr)
4370 {
4371         struct kvm_io_bus *bus;
4372         int dev_idx, srcu_idx;
4373         struct kvm_io_device *iodev = NULL;
4374
4375         srcu_idx = srcu_read_lock(&kvm->srcu);
4376
4377         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4378         if (!bus)
4379                 goto out_unlock;
4380
4381         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4382         if (dev_idx < 0)
4383                 goto out_unlock;
4384
4385         iodev = bus->range[dev_idx].dev;
4386
4387 out_unlock:
4388         srcu_read_unlock(&kvm->srcu, srcu_idx);
4389
4390         return iodev;
4391 }
4392 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4393
4394 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4395                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4396                            const char *fmt)
4397 {
4398         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4399                                           inode->i_private;
4400
4401         /* The debugfs files are a reference to the kvm struct which
4402          * is still valid when kvm_destroy_vm is called.
4403          * To avoid the race between open and the removal of the debugfs
4404          * directory we test against the users count.
4405          */
4406         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4407                 return -ENOENT;
4408
4409         if (simple_attr_open(inode, file, get,
4410                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4411                     ? set : NULL,
4412                     fmt)) {
4413                 kvm_put_kvm(stat_data->kvm);
4414                 return -ENOMEM;
4415         }
4416
4417         return 0;
4418 }
4419
4420 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4421 {
4422         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4423                                           inode->i_private;
4424
4425         simple_attr_release(inode, file);
4426         kvm_put_kvm(stat_data->kvm);
4427
4428         return 0;
4429 }
4430
4431 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4432 {
4433         *val = *(ulong *)((void *)kvm + offset);
4434
4435         return 0;
4436 }
4437
4438 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4439 {
4440         *(ulong *)((void *)kvm + offset) = 0;
4441
4442         return 0;
4443 }
4444
4445 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4446 {
4447         int i;
4448         struct kvm_vcpu *vcpu;
4449
4450         *val = 0;
4451
4452         kvm_for_each_vcpu(i, vcpu, kvm)
4453                 *val += *(u64 *)((void *)vcpu + offset);
4454
4455         return 0;
4456 }
4457
4458 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4459 {
4460         int i;
4461         struct kvm_vcpu *vcpu;
4462
4463         kvm_for_each_vcpu(i, vcpu, kvm)
4464                 *(u64 *)((void *)vcpu + offset) = 0;
4465
4466         return 0;
4467 }
4468
4469 static int kvm_stat_data_get(void *data, u64 *val)
4470 {
4471         int r = -EFAULT;
4472         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4473
4474         switch (stat_data->dbgfs_item->kind) {
4475         case KVM_STAT_VM:
4476                 r = kvm_get_stat_per_vm(stat_data->kvm,
4477                                         stat_data->dbgfs_item->offset, val);
4478                 break;
4479         case KVM_STAT_VCPU:
4480                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4481                                           stat_data->dbgfs_item->offset, val);
4482                 break;
4483         }
4484
4485         return r;
4486 }
4487
4488 static int kvm_stat_data_clear(void *data, u64 val)
4489 {
4490         int r = -EFAULT;
4491         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4492
4493         if (val)
4494                 return -EINVAL;
4495
4496         switch (stat_data->dbgfs_item->kind) {
4497         case KVM_STAT_VM:
4498                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4499                                           stat_data->dbgfs_item->offset);
4500                 break;
4501         case KVM_STAT_VCPU:
4502                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4503                                             stat_data->dbgfs_item->offset);
4504                 break;
4505         }
4506
4507         return r;
4508 }
4509
4510 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4511 {
4512         __simple_attr_check_format("%llu\n", 0ull);
4513         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4514                                 kvm_stat_data_clear, "%llu\n");
4515 }
4516
4517 static const struct file_operations stat_fops_per_vm = {
4518         .owner = THIS_MODULE,
4519         .open = kvm_stat_data_open,
4520         .release = kvm_debugfs_release,
4521         .read = simple_attr_read,
4522         .write = simple_attr_write,
4523         .llseek = no_llseek,
4524 };
4525
4526 static int vm_stat_get(void *_offset, u64 *val)
4527 {
4528         unsigned offset = (long)_offset;
4529         struct kvm *kvm;
4530         u64 tmp_val;
4531
4532         *val = 0;
4533         mutex_lock(&kvm_lock);
4534         list_for_each_entry(kvm, &vm_list, vm_list) {
4535                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4536                 *val += tmp_val;
4537         }
4538         mutex_unlock(&kvm_lock);
4539         return 0;
4540 }
4541
4542 static int vm_stat_clear(void *_offset, u64 val)
4543 {
4544         unsigned offset = (long)_offset;
4545         struct kvm *kvm;
4546
4547         if (val)
4548                 return -EINVAL;
4549
4550         mutex_lock(&kvm_lock);
4551         list_for_each_entry(kvm, &vm_list, vm_list) {
4552                 kvm_clear_stat_per_vm(kvm, offset);
4553         }
4554         mutex_unlock(&kvm_lock);
4555
4556         return 0;
4557 }
4558
4559 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4560
4561 static int vcpu_stat_get(void *_offset, u64 *val)
4562 {
4563         unsigned offset = (long)_offset;
4564         struct kvm *kvm;
4565         u64 tmp_val;
4566
4567         *val = 0;
4568         mutex_lock(&kvm_lock);
4569         list_for_each_entry(kvm, &vm_list, vm_list) {
4570                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4571                 *val += tmp_val;
4572         }
4573         mutex_unlock(&kvm_lock);
4574         return 0;
4575 }
4576
4577 static int vcpu_stat_clear(void *_offset, u64 val)
4578 {
4579         unsigned offset = (long)_offset;
4580         struct kvm *kvm;
4581
4582         if (val)
4583                 return -EINVAL;
4584
4585         mutex_lock(&kvm_lock);
4586         list_for_each_entry(kvm, &vm_list, vm_list) {
4587                 kvm_clear_stat_per_vcpu(kvm, offset);
4588         }
4589         mutex_unlock(&kvm_lock);
4590
4591         return 0;
4592 }
4593
4594 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4595                         "%llu\n");
4596
4597 static const struct file_operations *stat_fops[] = {
4598         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4599         [KVM_STAT_VM]   = &vm_stat_fops,
4600 };
4601
4602 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4603 {
4604         struct kobj_uevent_env *env;
4605         unsigned long long created, active;
4606
4607         if (!kvm_dev.this_device || !kvm)
4608                 return;
4609
4610         mutex_lock(&kvm_lock);
4611         if (type == KVM_EVENT_CREATE_VM) {
4612                 kvm_createvm_count++;
4613                 kvm_active_vms++;
4614         } else if (type == KVM_EVENT_DESTROY_VM) {
4615                 kvm_active_vms--;
4616         }
4617         created = kvm_createvm_count;
4618         active = kvm_active_vms;
4619         mutex_unlock(&kvm_lock);
4620
4621         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4622         if (!env)
4623                 return;
4624
4625         add_uevent_var(env, "CREATED=%llu", created);
4626         add_uevent_var(env, "COUNT=%llu", active);
4627
4628         if (type == KVM_EVENT_CREATE_VM) {
4629                 add_uevent_var(env, "EVENT=create");
4630                 kvm->userspace_pid = task_pid_nr(current);
4631         } else if (type == KVM_EVENT_DESTROY_VM) {
4632                 add_uevent_var(env, "EVENT=destroy");
4633         }
4634         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4635
4636         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4637                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4638
4639                 if (p) {
4640                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4641                         if (!IS_ERR(tmp))
4642                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4643                         kfree(p);
4644                 }
4645         }
4646         /* no need for checks, since we are adding at most only 5 keys */
4647         env->envp[env->envp_idx++] = NULL;
4648         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4649         kfree(env);
4650 }
4651
4652 static void kvm_init_debug(void)
4653 {
4654         struct kvm_stats_debugfs_item *p;
4655
4656         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4657
4658         kvm_debugfs_num_entries = 0;
4659         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4660                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4661                                     kvm_debugfs_dir, (void *)(long)p->offset,
4662                                     stat_fops[p->kind]);
4663         }
4664 }
4665
4666 static int kvm_suspend(void)
4667 {
4668         if (kvm_usage_count)
4669                 hardware_disable_nolock(NULL);
4670         return 0;
4671 }
4672
4673 static void kvm_resume(void)
4674 {
4675         if (kvm_usage_count) {
4676 #ifdef CONFIG_LOCKDEP
4677                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4678 #endif
4679                 hardware_enable_nolock(NULL);
4680         }
4681 }
4682
4683 static struct syscore_ops kvm_syscore_ops = {
4684         .suspend = kvm_suspend,
4685         .resume = kvm_resume,
4686 };
4687
4688 static inline
4689 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4690 {
4691         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4692 }
4693
4694 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4695 {
4696         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4697
4698         WRITE_ONCE(vcpu->preempted, false);
4699         WRITE_ONCE(vcpu->ready, false);
4700
4701         __this_cpu_write(kvm_running_vcpu, vcpu);
4702         kvm_arch_sched_in(vcpu, cpu);
4703         kvm_arch_vcpu_load(vcpu, cpu);
4704 }
4705
4706 static void kvm_sched_out(struct preempt_notifier *pn,
4707                           struct task_struct *next)
4708 {
4709         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4710
4711         if (current->state == TASK_RUNNING) {
4712                 WRITE_ONCE(vcpu->preempted, true);
4713                 WRITE_ONCE(vcpu->ready, true);
4714         }
4715         kvm_arch_vcpu_put(vcpu);
4716         __this_cpu_write(kvm_running_vcpu, NULL);
4717 }
4718
4719 /**
4720  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4721  *
4722  * We can disable preemption locally around accessing the per-CPU variable,
4723  * and use the resolved vcpu pointer after enabling preemption again,
4724  * because even if the current thread is migrated to another CPU, reading
4725  * the per-CPU value later will give us the same value as we update the
4726  * per-CPU variable in the preempt notifier handlers.
4727  */
4728 struct kvm_vcpu *kvm_get_running_vcpu(void)
4729 {
4730         struct kvm_vcpu *vcpu;
4731
4732         preempt_disable();
4733         vcpu = __this_cpu_read(kvm_running_vcpu);
4734         preempt_enable();
4735
4736         return vcpu;
4737 }
4738 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4739
4740 /**
4741  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4742  */
4743 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4744 {
4745         return &kvm_running_vcpu;
4746 }
4747
4748 struct kvm_cpu_compat_check {
4749         void *opaque;
4750         int *ret;
4751 };
4752
4753 static void check_processor_compat(void *data)
4754 {
4755         struct kvm_cpu_compat_check *c = data;
4756
4757         *c->ret = kvm_arch_check_processor_compat(c->opaque);
4758 }
4759
4760 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4761                   struct module *module)
4762 {
4763         struct kvm_cpu_compat_check c;
4764         int r;
4765         int cpu;
4766
4767         r = kvm_arch_init(opaque);
4768         if (r)
4769                 goto out_fail;
4770
4771         /*
4772          * kvm_arch_init makes sure there's at most one caller
4773          * for architectures that support multiple implementations,
4774          * like intel and amd on x86.
4775          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4776          * conflicts in case kvm is already setup for another implementation.
4777          */
4778         r = kvm_irqfd_init();
4779         if (r)
4780                 goto out_irqfd;
4781
4782         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4783                 r = -ENOMEM;
4784                 goto out_free_0;
4785         }
4786
4787         r = kvm_arch_hardware_setup(opaque);
4788         if (r < 0)
4789                 goto out_free_1;
4790
4791         c.ret = &r;
4792         c.opaque = opaque;
4793         for_each_online_cpu(cpu) {
4794                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4795                 if (r < 0)
4796                         goto out_free_2;
4797         }
4798
4799         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4800                                       kvm_starting_cpu, kvm_dying_cpu);
4801         if (r)
4802                 goto out_free_2;
4803         register_reboot_notifier(&kvm_reboot_notifier);
4804
4805         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4806         if (!vcpu_align)
4807                 vcpu_align = __alignof__(struct kvm_vcpu);
4808         kvm_vcpu_cache =
4809                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4810                                            SLAB_ACCOUNT,
4811                                            offsetof(struct kvm_vcpu, arch),
4812                                            sizeof_field(struct kvm_vcpu, arch),
4813                                            NULL);
4814         if (!kvm_vcpu_cache) {
4815                 r = -ENOMEM;
4816                 goto out_free_3;
4817         }
4818
4819         r = kvm_async_pf_init();
4820         if (r)
4821                 goto out_free;
4822
4823         kvm_chardev_ops.owner = module;
4824         kvm_vm_fops.owner = module;
4825         kvm_vcpu_fops.owner = module;
4826
4827         r = misc_register(&kvm_dev);
4828         if (r) {
4829                 pr_err("kvm: misc device register failed\n");
4830                 goto out_unreg;
4831         }
4832
4833         register_syscore_ops(&kvm_syscore_ops);
4834
4835         kvm_preempt_ops.sched_in = kvm_sched_in;
4836         kvm_preempt_ops.sched_out = kvm_sched_out;
4837
4838         kvm_init_debug();
4839
4840         r = kvm_vfio_ops_init();
4841         WARN_ON(r);
4842
4843         return 0;
4844
4845 out_unreg:
4846         kvm_async_pf_deinit();
4847 out_free:
4848         kmem_cache_destroy(kvm_vcpu_cache);
4849 out_free_3:
4850         unregister_reboot_notifier(&kvm_reboot_notifier);
4851         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4852 out_free_2:
4853         kvm_arch_hardware_unsetup();
4854 out_free_1:
4855         free_cpumask_var(cpus_hardware_enabled);
4856 out_free_0:
4857         kvm_irqfd_exit();
4858 out_irqfd:
4859         kvm_arch_exit();
4860 out_fail:
4861         return r;
4862 }
4863 EXPORT_SYMBOL_GPL(kvm_init);
4864
4865 void kvm_exit(void)
4866 {
4867         debugfs_remove_recursive(kvm_debugfs_dir);
4868         misc_deregister(&kvm_dev);
4869         kmem_cache_destroy(kvm_vcpu_cache);
4870         kvm_async_pf_deinit();
4871         unregister_syscore_ops(&kvm_syscore_ops);
4872         unregister_reboot_notifier(&kvm_reboot_notifier);
4873         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4874         on_each_cpu(hardware_disable_nolock, NULL, 1);
4875         kvm_arch_hardware_unsetup();
4876         kvm_arch_exit();
4877         kvm_irqfd_exit();
4878         free_cpumask_var(cpus_hardware_enabled);
4879         kvm_vfio_ops_exit();
4880 }
4881 EXPORT_SYMBOL_GPL(kvm_exit);
4882
4883 struct kvm_vm_worker_thread_context {
4884         struct kvm *kvm;
4885         struct task_struct *parent;
4886         struct completion init_done;
4887         kvm_vm_thread_fn_t thread_fn;
4888         uintptr_t data;
4889         int err;
4890 };
4891
4892 static int kvm_vm_worker_thread(void *context)
4893 {
4894         /*
4895          * The init_context is allocated on the stack of the parent thread, so
4896          * we have to locally copy anything that is needed beyond initialization
4897          */
4898         struct kvm_vm_worker_thread_context *init_context = context;
4899         struct kvm *kvm = init_context->kvm;
4900         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4901         uintptr_t data = init_context->data;
4902         int err;
4903
4904         err = kthread_park(current);
4905         /* kthread_park(current) is never supposed to return an error */
4906         WARN_ON(err != 0);
4907         if (err)
4908                 goto init_complete;
4909
4910         err = cgroup_attach_task_all(init_context->parent, current);
4911         if (err) {
4912                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4913                         __func__, err);
4914                 goto init_complete;
4915         }
4916
4917         set_user_nice(current, task_nice(init_context->parent));
4918
4919 init_complete:
4920         init_context->err = err;
4921         complete(&init_context->init_done);
4922         init_context = NULL;
4923
4924         if (err)
4925                 return err;
4926
4927         /* Wait to be woken up by the spawner before proceeding. */
4928         kthread_parkme();
4929
4930         if (!kthread_should_stop())
4931                 err = thread_fn(kvm, data);
4932
4933         return err;
4934 }
4935
4936 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4937                                 uintptr_t data, const char *name,
4938                                 struct task_struct **thread_ptr)
4939 {
4940         struct kvm_vm_worker_thread_context init_context = {};
4941         struct task_struct *thread;
4942
4943         *thread_ptr = NULL;
4944         init_context.kvm = kvm;
4945         init_context.parent = current;
4946         init_context.thread_fn = thread_fn;
4947         init_context.data = data;
4948         init_completion(&init_context.init_done);
4949
4950         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4951                              "%s-%d", name, task_pid_nr(current));
4952         if (IS_ERR(thread))
4953                 return PTR_ERR(thread);
4954
4955         /* kthread_run is never supposed to return NULL */
4956         WARN_ON(thread == NULL);
4957
4958         wait_for_completion(&init_context.init_done);
4959
4960         if (!init_context.err)
4961                 *thread_ptr = thread;
4962
4963         return init_context.err;
4964 }