2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affilates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
51 #include <asm/processor.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55 #include <asm-generic/bitops/le.h>
57 #include "coalesced_mmio.h"
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/kvm.h>
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
68 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 DEFINE_SPINLOCK(kvm_lock);
74 static cpumask_var_t cpus_hardware_enabled;
75 static int kvm_usage_count = 0;
76 static atomic_t hardware_enable_failed;
78 struct kmem_cache *kvm_vcpu_cache;
79 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81 static __read_mostly struct preempt_ops kvm_preempt_ops;
83 struct dentry *kvm_debugfs_dir;
85 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
87 static int hardware_enable_all(void);
88 static void hardware_disable_all(void);
90 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
92 static bool kvm_rebooting;
94 static bool largepages_enabled = true;
96 static struct page *hwpoison_page;
97 static pfn_t hwpoison_pfn;
99 static struct page *fault_page;
100 static pfn_t fault_pfn;
102 inline int kvm_is_mmio_pfn(pfn_t pfn)
104 if (pfn_valid(pfn)) {
105 struct page *page = compound_head(pfn_to_page(pfn));
106 return PageReserved(page);
113 * Switches to specified vcpu, until a matching vcpu_put()
115 void vcpu_load(struct kvm_vcpu *vcpu)
119 mutex_lock(&vcpu->mutex);
121 preempt_notifier_register(&vcpu->preempt_notifier);
122 kvm_arch_vcpu_load(vcpu, cpu);
126 void vcpu_put(struct kvm_vcpu *vcpu)
129 kvm_arch_vcpu_put(vcpu);
130 preempt_notifier_unregister(&vcpu->preempt_notifier);
132 mutex_unlock(&vcpu->mutex);
135 static void ack_flush(void *_completed)
139 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
144 struct kvm_vcpu *vcpu;
146 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
148 raw_spin_lock(&kvm->requests_lock);
149 me = smp_processor_id();
150 kvm_for_each_vcpu(i, vcpu, kvm) {
151 if (kvm_make_check_request(req, vcpu))
154 if (cpus != NULL && cpu != -1 && cpu != me)
155 cpumask_set_cpu(cpu, cpus);
157 if (unlikely(cpus == NULL))
158 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
159 else if (!cpumask_empty(cpus))
160 smp_call_function_many(cpus, ack_flush, NULL, 1);
163 raw_spin_unlock(&kvm->requests_lock);
164 free_cpumask_var(cpus);
168 void kvm_flush_remote_tlbs(struct kvm *kvm)
170 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
171 ++kvm->stat.remote_tlb_flush;
174 void kvm_reload_remote_mmus(struct kvm *kvm)
176 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
179 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
184 mutex_init(&vcpu->mutex);
188 init_waitqueue_head(&vcpu->wq);
190 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
195 vcpu->run = page_address(page);
197 r = kvm_arch_vcpu_init(vcpu);
203 free_page((unsigned long)vcpu->run);
207 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
209 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
211 kvm_arch_vcpu_uninit(vcpu);
212 free_page((unsigned long)vcpu->run);
214 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
216 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
217 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
219 return container_of(mn, struct kvm, mmu_notifier);
222 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
223 struct mm_struct *mm,
224 unsigned long address)
226 struct kvm *kvm = mmu_notifier_to_kvm(mn);
227 int need_tlb_flush, idx;
230 * When ->invalidate_page runs, the linux pte has been zapped
231 * already but the page is still allocated until
232 * ->invalidate_page returns. So if we increase the sequence
233 * here the kvm page fault will notice if the spte can't be
234 * established because the page is going to be freed. If
235 * instead the kvm page fault establishes the spte before
236 * ->invalidate_page runs, kvm_unmap_hva will release it
239 * The sequence increase only need to be seen at spin_unlock
240 * time, and not at spin_lock time.
242 * Increasing the sequence after the spin_unlock would be
243 * unsafe because the kvm page fault could then establish the
244 * pte after kvm_unmap_hva returned, without noticing the page
245 * is going to be freed.
247 idx = srcu_read_lock(&kvm->srcu);
248 spin_lock(&kvm->mmu_lock);
249 kvm->mmu_notifier_seq++;
250 need_tlb_flush = kvm_unmap_hva(kvm, address);
251 spin_unlock(&kvm->mmu_lock);
252 srcu_read_unlock(&kvm->srcu, idx);
254 /* we've to flush the tlb before the pages can be freed */
256 kvm_flush_remote_tlbs(kvm);
260 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
261 struct mm_struct *mm,
262 unsigned long address,
265 struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 idx = srcu_read_lock(&kvm->srcu);
269 spin_lock(&kvm->mmu_lock);
270 kvm->mmu_notifier_seq++;
271 kvm_set_spte_hva(kvm, address, pte);
272 spin_unlock(&kvm->mmu_lock);
273 srcu_read_unlock(&kvm->srcu, idx);
276 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
277 struct mm_struct *mm,
281 struct kvm *kvm = mmu_notifier_to_kvm(mn);
282 int need_tlb_flush = 0, idx;
284 idx = srcu_read_lock(&kvm->srcu);
285 spin_lock(&kvm->mmu_lock);
287 * The count increase must become visible at unlock time as no
288 * spte can be established without taking the mmu_lock and
289 * count is also read inside the mmu_lock critical section.
291 kvm->mmu_notifier_count++;
292 for (; start < end; start += PAGE_SIZE)
293 need_tlb_flush |= kvm_unmap_hva(kvm, start);
294 spin_unlock(&kvm->mmu_lock);
295 srcu_read_unlock(&kvm->srcu, idx);
297 /* we've to flush the tlb before the pages can be freed */
299 kvm_flush_remote_tlbs(kvm);
302 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
303 struct mm_struct *mm,
307 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 spin_lock(&kvm->mmu_lock);
311 * This sequence increase will notify the kvm page fault that
312 * the page that is going to be mapped in the spte could have
315 kvm->mmu_notifier_seq++;
317 * The above sequence increase must be visible before the
318 * below count decrease but both values are read by the kvm
319 * page fault under mmu_lock spinlock so we don't need to add
320 * a smb_wmb() here in between the two.
322 kvm->mmu_notifier_count--;
323 spin_unlock(&kvm->mmu_lock);
325 BUG_ON(kvm->mmu_notifier_count < 0);
328 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
329 struct mm_struct *mm,
330 unsigned long address)
332 struct kvm *kvm = mmu_notifier_to_kvm(mn);
335 idx = srcu_read_lock(&kvm->srcu);
336 spin_lock(&kvm->mmu_lock);
337 young = kvm_age_hva(kvm, address);
338 spin_unlock(&kvm->mmu_lock);
339 srcu_read_unlock(&kvm->srcu, idx);
342 kvm_flush_remote_tlbs(kvm);
347 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
348 struct mm_struct *mm)
350 struct kvm *kvm = mmu_notifier_to_kvm(mn);
353 idx = srcu_read_lock(&kvm->srcu);
354 kvm_arch_flush_shadow(kvm);
355 srcu_read_unlock(&kvm->srcu, idx);
358 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
359 .invalidate_page = kvm_mmu_notifier_invalidate_page,
360 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
361 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
362 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
363 .change_pte = kvm_mmu_notifier_change_pte,
364 .release = kvm_mmu_notifier_release,
367 static int kvm_init_mmu_notifier(struct kvm *kvm)
369 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
370 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
373 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
375 static int kvm_init_mmu_notifier(struct kvm *kvm)
380 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
382 static struct kvm *kvm_create_vm(void)
385 struct kvm *kvm = kvm_arch_create_vm();
390 r = hardware_enable_all();
392 goto out_err_nodisable;
394 #ifdef CONFIG_HAVE_KVM_IRQCHIP
395 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
396 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
400 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
403 if (init_srcu_struct(&kvm->srcu))
405 for (i = 0; i < KVM_NR_BUSES; i++) {
406 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
408 if (!kvm->buses[i]) {
409 cleanup_srcu_struct(&kvm->srcu);
414 r = kvm_init_mmu_notifier(kvm);
416 cleanup_srcu_struct(&kvm->srcu);
420 kvm->mm = current->mm;
421 atomic_inc(&kvm->mm->mm_count);
422 spin_lock_init(&kvm->mmu_lock);
423 raw_spin_lock_init(&kvm->requests_lock);
424 kvm_eventfd_init(kvm);
425 mutex_init(&kvm->lock);
426 mutex_init(&kvm->irq_lock);
427 mutex_init(&kvm->slots_lock);
428 atomic_set(&kvm->users_count, 1);
429 spin_lock(&kvm_lock);
430 list_add(&kvm->vm_list, &vm_list);
431 spin_unlock(&kvm_lock);
436 hardware_disable_all();
438 for (i = 0; i < KVM_NR_BUSES; i++)
439 kfree(kvm->buses[i]);
440 kfree(kvm->memslots);
446 * Free any memory in @free but not in @dont.
448 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
449 struct kvm_memory_slot *dont)
453 if (!dont || free->rmap != dont->rmap)
456 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
457 vfree(free->dirty_bitmap);
460 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
461 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
462 vfree(free->lpage_info[i]);
463 free->lpage_info[i] = NULL;
468 free->dirty_bitmap = NULL;
472 void kvm_free_physmem(struct kvm *kvm)
475 struct kvm_memslots *slots = kvm->memslots;
477 for (i = 0; i < slots->nmemslots; ++i)
478 kvm_free_physmem_slot(&slots->memslots[i], NULL);
480 kfree(kvm->memslots);
483 static void kvm_destroy_vm(struct kvm *kvm)
486 struct mm_struct *mm = kvm->mm;
488 kvm_arch_sync_events(kvm);
489 spin_lock(&kvm_lock);
490 list_del(&kvm->vm_list);
491 spin_unlock(&kvm_lock);
492 kvm_free_irq_routing(kvm);
493 for (i = 0; i < KVM_NR_BUSES; i++)
494 kvm_io_bus_destroy(kvm->buses[i]);
495 kvm_coalesced_mmio_free(kvm);
496 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
497 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
499 kvm_arch_flush_shadow(kvm);
501 kvm_arch_destroy_vm(kvm);
502 hardware_disable_all();
506 void kvm_get_kvm(struct kvm *kvm)
508 atomic_inc(&kvm->users_count);
510 EXPORT_SYMBOL_GPL(kvm_get_kvm);
512 void kvm_put_kvm(struct kvm *kvm)
514 if (atomic_dec_and_test(&kvm->users_count))
517 EXPORT_SYMBOL_GPL(kvm_put_kvm);
520 static int kvm_vm_release(struct inode *inode, struct file *filp)
522 struct kvm *kvm = filp->private_data;
524 kvm_irqfd_release(kvm);
531 * Allocate some memory and give it an address in the guest physical address
534 * Discontiguous memory is allowed, mostly for framebuffers.
536 * Must be called holding mmap_sem for write.
538 int __kvm_set_memory_region(struct kvm *kvm,
539 struct kvm_userspace_memory_region *mem,
542 int r, flush_shadow = 0;
544 unsigned long npages;
546 struct kvm_memory_slot *memslot;
547 struct kvm_memory_slot old, new;
548 struct kvm_memslots *slots, *old_memslots;
551 /* General sanity checks */
552 if (mem->memory_size & (PAGE_SIZE - 1))
554 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
556 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
558 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
560 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
563 memslot = &kvm->memslots->memslots[mem->slot];
564 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
565 npages = mem->memory_size >> PAGE_SHIFT;
568 if (npages > KVM_MEM_MAX_NR_PAGES)
572 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
574 new = old = *memslot;
577 new.base_gfn = base_gfn;
579 new.flags = mem->flags;
581 /* Disallow changing a memory slot's size. */
583 if (npages && old.npages && npages != old.npages)
586 /* Check for overlaps */
588 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
589 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
591 if (s == memslot || !s->npages)
593 if (!((base_gfn + npages <= s->base_gfn) ||
594 (base_gfn >= s->base_gfn + s->npages)))
598 /* Free page dirty bitmap if unneeded */
599 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
600 new.dirty_bitmap = NULL;
604 /* Allocate if a slot is being created */
606 if (npages && !new.rmap) {
607 new.rmap = vmalloc(npages * sizeof(*new.rmap));
612 memset(new.rmap, 0, npages * sizeof(*new.rmap));
614 new.user_alloc = user_alloc;
615 new.userspace_addr = mem->userspace_addr;
620 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
626 /* Avoid unused variable warning if no large pages */
629 if (new.lpage_info[i])
632 lpages = 1 + ((base_gfn + npages - 1)
633 >> KVM_HPAGE_GFN_SHIFT(level));
634 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
636 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
638 if (!new.lpage_info[i])
641 memset(new.lpage_info[i], 0,
642 lpages * sizeof(*new.lpage_info[i]));
644 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
645 new.lpage_info[i][0].write_count = 1;
646 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
647 new.lpage_info[i][lpages - 1].write_count = 1;
648 ugfn = new.userspace_addr >> PAGE_SHIFT;
650 * If the gfn and userspace address are not aligned wrt each
651 * other, or if explicitly asked to, disable large page
652 * support for this slot
654 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
656 for (j = 0; j < lpages; ++j)
657 new.lpage_info[i][j].write_count = 1;
662 /* Allocate page dirty bitmap if needed */
663 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
664 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
666 new.dirty_bitmap = vmalloc(dirty_bytes);
667 if (!new.dirty_bitmap)
669 memset(new.dirty_bitmap, 0, dirty_bytes);
670 /* destroy any largepage mappings for dirty tracking */
674 #else /* not defined CONFIG_S390 */
675 new.user_alloc = user_alloc;
677 new.userspace_addr = mem->userspace_addr;
678 #endif /* not defined CONFIG_S390 */
682 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
685 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
686 if (mem->slot >= slots->nmemslots)
687 slots->nmemslots = mem->slot + 1;
688 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
690 old_memslots = kvm->memslots;
691 rcu_assign_pointer(kvm->memslots, slots);
692 synchronize_srcu_expedited(&kvm->srcu);
693 /* From this point no new shadow pages pointing to a deleted
694 * memslot will be created.
696 * validation of sp->gfn happens in:
697 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
698 * - kvm_is_visible_gfn (mmu_check_roots)
700 kvm_arch_flush_shadow(kvm);
704 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
709 /* map the pages in iommu page table */
711 r = kvm_iommu_map_pages(kvm, &new);
718 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
721 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
722 if (mem->slot >= slots->nmemslots)
723 slots->nmemslots = mem->slot + 1;
725 /* actual memory is freed via old in kvm_free_physmem_slot below */
728 new.dirty_bitmap = NULL;
729 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
730 new.lpage_info[i] = NULL;
733 slots->memslots[mem->slot] = new;
734 old_memslots = kvm->memslots;
735 rcu_assign_pointer(kvm->memslots, slots);
736 synchronize_srcu_expedited(&kvm->srcu);
738 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
740 kvm_free_physmem_slot(&old, &new);
744 kvm_arch_flush_shadow(kvm);
749 kvm_free_physmem_slot(&new, &old);
754 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
756 int kvm_set_memory_region(struct kvm *kvm,
757 struct kvm_userspace_memory_region *mem,
762 mutex_lock(&kvm->slots_lock);
763 r = __kvm_set_memory_region(kvm, mem, user_alloc);
764 mutex_unlock(&kvm->slots_lock);
767 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
769 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
771 kvm_userspace_memory_region *mem,
774 if (mem->slot >= KVM_MEMORY_SLOTS)
776 return kvm_set_memory_region(kvm, mem, user_alloc);
779 int kvm_get_dirty_log(struct kvm *kvm,
780 struct kvm_dirty_log *log, int *is_dirty)
782 struct kvm_memory_slot *memslot;
785 unsigned long any = 0;
788 if (log->slot >= KVM_MEMORY_SLOTS)
791 memslot = &kvm->memslots->memslots[log->slot];
793 if (!memslot->dirty_bitmap)
796 n = kvm_dirty_bitmap_bytes(memslot);
798 for (i = 0; !any && i < n/sizeof(long); ++i)
799 any = memslot->dirty_bitmap[i];
802 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
813 void kvm_disable_largepages(void)
815 largepages_enabled = false;
817 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
819 int is_error_page(struct page *page)
821 return page == bad_page || page == hwpoison_page || page == fault_page;
823 EXPORT_SYMBOL_GPL(is_error_page);
825 int is_error_pfn(pfn_t pfn)
827 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
829 EXPORT_SYMBOL_GPL(is_error_pfn);
831 int is_hwpoison_pfn(pfn_t pfn)
833 return pfn == hwpoison_pfn;
835 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
837 int is_fault_pfn(pfn_t pfn)
839 return pfn == fault_pfn;
841 EXPORT_SYMBOL_GPL(is_fault_pfn);
843 static inline unsigned long bad_hva(void)
848 int kvm_is_error_hva(unsigned long addr)
850 return addr == bad_hva();
852 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
854 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
857 struct kvm_memslots *slots = kvm_memslots(kvm);
859 for (i = 0; i < slots->nmemslots; ++i) {
860 struct kvm_memory_slot *memslot = &slots->memslots[i];
862 if (gfn >= memslot->base_gfn
863 && gfn < memslot->base_gfn + memslot->npages)
868 EXPORT_SYMBOL_GPL(gfn_to_memslot);
870 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
873 struct kvm_memslots *slots = kvm_memslots(kvm);
875 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
876 struct kvm_memory_slot *memslot = &slots->memslots[i];
878 if (memslot->flags & KVM_MEMSLOT_INVALID)
881 if (gfn >= memslot->base_gfn
882 && gfn < memslot->base_gfn + memslot->npages)
887 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
889 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
891 struct vm_area_struct *vma;
892 unsigned long addr, size;
896 addr = gfn_to_hva(kvm, gfn);
897 if (kvm_is_error_hva(addr))
900 down_read(¤t->mm->mmap_sem);
901 vma = find_vma(current->mm, addr);
905 size = vma_kernel_pagesize(vma);
908 up_read(¤t->mm->mmap_sem);
913 int memslot_id(struct kvm *kvm, gfn_t gfn)
916 struct kvm_memslots *slots = kvm_memslots(kvm);
917 struct kvm_memory_slot *memslot = NULL;
919 for (i = 0; i < slots->nmemslots; ++i) {
920 memslot = &slots->memslots[i];
922 if (gfn >= memslot->base_gfn
923 && gfn < memslot->base_gfn + memslot->npages)
927 return memslot - slots->memslots;
930 static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
932 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
935 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
937 struct kvm_memory_slot *slot;
939 slot = gfn_to_memslot(kvm, gfn);
940 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
942 return gfn_to_hva_memslot(slot, gfn);
944 EXPORT_SYMBOL_GPL(gfn_to_hva);
946 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
948 struct page *page[1];
954 npages = get_user_pages_fast(addr, 1, 1, page);
956 if (unlikely(npages != 1)) {
957 struct vm_area_struct *vma;
959 down_read(¤t->mm->mmap_sem);
960 if (is_hwpoison_address(addr)) {
961 up_read(¤t->mm->mmap_sem);
962 get_page(hwpoison_page);
963 return page_to_pfn(hwpoison_page);
966 vma = find_vma(current->mm, addr);
968 if (vma == NULL || addr < vma->vm_start ||
969 !(vma->vm_flags & VM_PFNMAP)) {
970 up_read(¤t->mm->mmap_sem);
971 get_page(fault_page);
972 return page_to_pfn(fault_page);
975 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
976 up_read(¤t->mm->mmap_sem);
977 BUG_ON(!kvm_is_mmio_pfn(pfn));
979 pfn = page_to_pfn(page[0]);
984 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
988 addr = gfn_to_hva(kvm, gfn);
989 if (kvm_is_error_hva(addr)) {
991 return page_to_pfn(bad_page);
994 return hva_to_pfn(kvm, addr);
996 EXPORT_SYMBOL_GPL(gfn_to_pfn);
998 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
999 struct kvm_memory_slot *slot, gfn_t gfn)
1001 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1002 return hva_to_pfn(kvm, addr);
1005 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1009 pfn = gfn_to_pfn(kvm, gfn);
1010 if (!kvm_is_mmio_pfn(pfn))
1011 return pfn_to_page(pfn);
1013 WARN_ON(kvm_is_mmio_pfn(pfn));
1019 EXPORT_SYMBOL_GPL(gfn_to_page);
1021 void kvm_release_page_clean(struct page *page)
1023 kvm_release_pfn_clean(page_to_pfn(page));
1025 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1027 void kvm_release_pfn_clean(pfn_t pfn)
1029 if (!kvm_is_mmio_pfn(pfn))
1030 put_page(pfn_to_page(pfn));
1032 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1034 void kvm_release_page_dirty(struct page *page)
1036 kvm_release_pfn_dirty(page_to_pfn(page));
1038 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1040 void kvm_release_pfn_dirty(pfn_t pfn)
1042 kvm_set_pfn_dirty(pfn);
1043 kvm_release_pfn_clean(pfn);
1045 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1047 void kvm_set_page_dirty(struct page *page)
1049 kvm_set_pfn_dirty(page_to_pfn(page));
1051 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1053 void kvm_set_pfn_dirty(pfn_t pfn)
1055 if (!kvm_is_mmio_pfn(pfn)) {
1056 struct page *page = pfn_to_page(pfn);
1057 if (!PageReserved(page))
1061 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1063 void kvm_set_pfn_accessed(pfn_t pfn)
1065 if (!kvm_is_mmio_pfn(pfn))
1066 mark_page_accessed(pfn_to_page(pfn));
1068 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1070 void kvm_get_pfn(pfn_t pfn)
1072 if (!kvm_is_mmio_pfn(pfn))
1073 get_page(pfn_to_page(pfn));
1075 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1077 static int next_segment(unsigned long len, int offset)
1079 if (len > PAGE_SIZE - offset)
1080 return PAGE_SIZE - offset;
1085 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1091 addr = gfn_to_hva(kvm, gfn);
1092 if (kvm_is_error_hva(addr))
1094 r = copy_from_user(data, (void __user *)addr + offset, len);
1099 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1101 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1103 gfn_t gfn = gpa >> PAGE_SHIFT;
1105 int offset = offset_in_page(gpa);
1108 while ((seg = next_segment(len, offset)) != 0) {
1109 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1119 EXPORT_SYMBOL_GPL(kvm_read_guest);
1121 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1126 gfn_t gfn = gpa >> PAGE_SHIFT;
1127 int offset = offset_in_page(gpa);
1129 addr = gfn_to_hva(kvm, gfn);
1130 if (kvm_is_error_hva(addr))
1132 pagefault_disable();
1133 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1139 EXPORT_SYMBOL(kvm_read_guest_atomic);
1141 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1142 int offset, int len)
1147 addr = gfn_to_hva(kvm, gfn);
1148 if (kvm_is_error_hva(addr))
1150 r = copy_to_user((void __user *)addr + offset, data, len);
1153 mark_page_dirty(kvm, gfn);
1156 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1158 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1161 gfn_t gfn = gpa >> PAGE_SHIFT;
1163 int offset = offset_in_page(gpa);
1166 while ((seg = next_segment(len, offset)) != 0) {
1167 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1178 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1180 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1182 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1184 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1186 gfn_t gfn = gpa >> PAGE_SHIFT;
1188 int offset = offset_in_page(gpa);
1191 while ((seg = next_segment(len, offset)) != 0) {
1192 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1201 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1203 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1205 struct kvm_memory_slot *memslot;
1207 memslot = gfn_to_memslot(kvm, gfn);
1208 if (memslot && memslot->dirty_bitmap) {
1209 unsigned long rel_gfn = gfn - memslot->base_gfn;
1211 generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1216 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1218 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1223 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1225 if (kvm_arch_vcpu_runnable(vcpu)) {
1226 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1229 if (kvm_cpu_has_pending_timer(vcpu))
1231 if (signal_pending(current))
1237 finish_wait(&vcpu->wq, &wait);
1240 void kvm_resched(struct kvm_vcpu *vcpu)
1242 if (!need_resched())
1246 EXPORT_SYMBOL_GPL(kvm_resched);
1248 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1253 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1255 /* Sleep for 100 us, and hope lock-holder got scheduled */
1256 expires = ktime_add_ns(ktime_get(), 100000UL);
1257 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1259 finish_wait(&vcpu->wq, &wait);
1261 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1263 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1265 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1268 if (vmf->pgoff == 0)
1269 page = virt_to_page(vcpu->run);
1271 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1272 page = virt_to_page(vcpu->arch.pio_data);
1274 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1275 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1276 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1279 return VM_FAULT_SIGBUS;
1285 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1286 .fault = kvm_vcpu_fault,
1289 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1291 vma->vm_ops = &kvm_vcpu_vm_ops;
1295 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1297 struct kvm_vcpu *vcpu = filp->private_data;
1299 kvm_put_kvm(vcpu->kvm);
1303 static struct file_operations kvm_vcpu_fops = {
1304 .release = kvm_vcpu_release,
1305 .unlocked_ioctl = kvm_vcpu_ioctl,
1306 .compat_ioctl = kvm_vcpu_ioctl,
1307 .mmap = kvm_vcpu_mmap,
1308 .llseek = noop_llseek,
1312 * Allocates an inode for the vcpu.
1314 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1316 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1320 * Creates some virtual cpus. Good luck creating more than one.
1322 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1325 struct kvm_vcpu *vcpu, *v;
1327 vcpu = kvm_arch_vcpu_create(kvm, id);
1329 return PTR_ERR(vcpu);
1331 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1333 r = kvm_arch_vcpu_setup(vcpu);
1337 mutex_lock(&kvm->lock);
1338 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1343 kvm_for_each_vcpu(r, v, kvm)
1344 if (v->vcpu_id == id) {
1349 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1351 /* Now it's all set up, let userspace reach it */
1353 r = create_vcpu_fd(vcpu);
1359 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1361 atomic_inc(&kvm->online_vcpus);
1363 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1364 if (kvm->bsp_vcpu_id == id)
1365 kvm->bsp_vcpu = vcpu;
1367 mutex_unlock(&kvm->lock);
1371 mutex_unlock(&kvm->lock);
1372 kvm_arch_vcpu_destroy(vcpu);
1376 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1379 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1380 vcpu->sigset_active = 1;
1381 vcpu->sigset = *sigset;
1383 vcpu->sigset_active = 0;
1387 static long kvm_vcpu_ioctl(struct file *filp,
1388 unsigned int ioctl, unsigned long arg)
1390 struct kvm_vcpu *vcpu = filp->private_data;
1391 void __user *argp = (void __user *)arg;
1393 struct kvm_fpu *fpu = NULL;
1394 struct kvm_sregs *kvm_sregs = NULL;
1396 if (vcpu->kvm->mm != current->mm)
1399 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1401 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1402 * so vcpu_load() would break it.
1404 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1405 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1415 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1417 case KVM_GET_REGS: {
1418 struct kvm_regs *kvm_regs;
1421 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1424 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1428 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1435 case KVM_SET_REGS: {
1436 struct kvm_regs *kvm_regs;
1439 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1443 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1445 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1453 case KVM_GET_SREGS: {
1454 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1458 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1462 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1467 case KVM_SET_SREGS: {
1468 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1473 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1475 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1481 case KVM_GET_MP_STATE: {
1482 struct kvm_mp_state mp_state;
1484 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1488 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1493 case KVM_SET_MP_STATE: {
1494 struct kvm_mp_state mp_state;
1497 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1499 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1505 case KVM_TRANSLATE: {
1506 struct kvm_translation tr;
1509 if (copy_from_user(&tr, argp, sizeof tr))
1511 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1515 if (copy_to_user(argp, &tr, sizeof tr))
1520 case KVM_SET_GUEST_DEBUG: {
1521 struct kvm_guest_debug dbg;
1524 if (copy_from_user(&dbg, argp, sizeof dbg))
1526 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1532 case KVM_SET_SIGNAL_MASK: {
1533 struct kvm_signal_mask __user *sigmask_arg = argp;
1534 struct kvm_signal_mask kvm_sigmask;
1535 sigset_t sigset, *p;
1540 if (copy_from_user(&kvm_sigmask, argp,
1541 sizeof kvm_sigmask))
1544 if (kvm_sigmask.len != sizeof sigset)
1547 if (copy_from_user(&sigset, sigmask_arg->sigset,
1552 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1556 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1560 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1564 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1570 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1575 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1577 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1584 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1593 static long kvm_vm_ioctl(struct file *filp,
1594 unsigned int ioctl, unsigned long arg)
1596 struct kvm *kvm = filp->private_data;
1597 void __user *argp = (void __user *)arg;
1600 if (kvm->mm != current->mm)
1603 case KVM_CREATE_VCPU:
1604 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1608 case KVM_SET_USER_MEMORY_REGION: {
1609 struct kvm_userspace_memory_region kvm_userspace_mem;
1612 if (copy_from_user(&kvm_userspace_mem, argp,
1613 sizeof kvm_userspace_mem))
1616 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1621 case KVM_GET_DIRTY_LOG: {
1622 struct kvm_dirty_log log;
1625 if (copy_from_user(&log, argp, sizeof log))
1627 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1632 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1633 case KVM_REGISTER_COALESCED_MMIO: {
1634 struct kvm_coalesced_mmio_zone zone;
1636 if (copy_from_user(&zone, argp, sizeof zone))
1638 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1644 case KVM_UNREGISTER_COALESCED_MMIO: {
1645 struct kvm_coalesced_mmio_zone zone;
1647 if (copy_from_user(&zone, argp, sizeof zone))
1649 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1657 struct kvm_irqfd data;
1660 if (copy_from_user(&data, argp, sizeof data))
1662 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1665 case KVM_IOEVENTFD: {
1666 struct kvm_ioeventfd data;
1669 if (copy_from_user(&data, argp, sizeof data))
1671 r = kvm_ioeventfd(kvm, &data);
1674 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1675 case KVM_SET_BOOT_CPU_ID:
1677 mutex_lock(&kvm->lock);
1678 if (atomic_read(&kvm->online_vcpus) != 0)
1681 kvm->bsp_vcpu_id = arg;
1682 mutex_unlock(&kvm->lock);
1686 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1688 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1694 #ifdef CONFIG_COMPAT
1695 struct compat_kvm_dirty_log {
1699 compat_uptr_t dirty_bitmap; /* one bit per page */
1704 static long kvm_vm_compat_ioctl(struct file *filp,
1705 unsigned int ioctl, unsigned long arg)
1707 struct kvm *kvm = filp->private_data;
1710 if (kvm->mm != current->mm)
1713 case KVM_GET_DIRTY_LOG: {
1714 struct compat_kvm_dirty_log compat_log;
1715 struct kvm_dirty_log log;
1718 if (copy_from_user(&compat_log, (void __user *)arg,
1719 sizeof(compat_log)))
1721 log.slot = compat_log.slot;
1722 log.padding1 = compat_log.padding1;
1723 log.padding2 = compat_log.padding2;
1724 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1726 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1732 r = kvm_vm_ioctl(filp, ioctl, arg);
1740 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1742 struct page *page[1];
1745 gfn_t gfn = vmf->pgoff;
1746 struct kvm *kvm = vma->vm_file->private_data;
1748 addr = gfn_to_hva(kvm, gfn);
1749 if (kvm_is_error_hva(addr))
1750 return VM_FAULT_SIGBUS;
1752 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1754 if (unlikely(npages != 1))
1755 return VM_FAULT_SIGBUS;
1757 vmf->page = page[0];
1761 static const struct vm_operations_struct kvm_vm_vm_ops = {
1762 .fault = kvm_vm_fault,
1765 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1767 vma->vm_ops = &kvm_vm_vm_ops;
1771 static struct file_operations kvm_vm_fops = {
1772 .release = kvm_vm_release,
1773 .unlocked_ioctl = kvm_vm_ioctl,
1774 #ifdef CONFIG_COMPAT
1775 .compat_ioctl = kvm_vm_compat_ioctl,
1777 .mmap = kvm_vm_mmap,
1778 .llseek = noop_llseek,
1781 static int kvm_dev_ioctl_create_vm(void)
1786 kvm = kvm_create_vm();
1788 return PTR_ERR(kvm);
1789 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1790 r = kvm_coalesced_mmio_init(kvm);
1796 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1803 static long kvm_dev_ioctl_check_extension_generic(long arg)
1806 case KVM_CAP_USER_MEMORY:
1807 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1808 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1809 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1810 case KVM_CAP_SET_BOOT_CPU_ID:
1812 case KVM_CAP_INTERNAL_ERROR_DATA:
1814 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1815 case KVM_CAP_IRQ_ROUTING:
1816 return KVM_MAX_IRQ_ROUTES;
1821 return kvm_dev_ioctl_check_extension(arg);
1824 static long kvm_dev_ioctl(struct file *filp,
1825 unsigned int ioctl, unsigned long arg)
1830 case KVM_GET_API_VERSION:
1834 r = KVM_API_VERSION;
1840 r = kvm_dev_ioctl_create_vm();
1842 case KVM_CHECK_EXTENSION:
1843 r = kvm_dev_ioctl_check_extension_generic(arg);
1845 case KVM_GET_VCPU_MMAP_SIZE:
1849 r = PAGE_SIZE; /* struct kvm_run */
1851 r += PAGE_SIZE; /* pio data page */
1853 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1854 r += PAGE_SIZE; /* coalesced mmio ring page */
1857 case KVM_TRACE_ENABLE:
1858 case KVM_TRACE_PAUSE:
1859 case KVM_TRACE_DISABLE:
1863 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1869 static struct file_operations kvm_chardev_ops = {
1870 .unlocked_ioctl = kvm_dev_ioctl,
1871 .compat_ioctl = kvm_dev_ioctl,
1872 .llseek = noop_llseek,
1875 static struct miscdevice kvm_dev = {
1881 static void hardware_enable(void *junk)
1883 int cpu = raw_smp_processor_id();
1886 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1889 cpumask_set_cpu(cpu, cpus_hardware_enabled);
1891 r = kvm_arch_hardware_enable(NULL);
1894 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1895 atomic_inc(&hardware_enable_failed);
1896 printk(KERN_INFO "kvm: enabling virtualization on "
1897 "CPU%d failed\n", cpu);
1901 static void hardware_disable(void *junk)
1903 int cpu = raw_smp_processor_id();
1905 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1907 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1908 kvm_arch_hardware_disable(NULL);
1911 static void hardware_disable_all_nolock(void)
1913 BUG_ON(!kvm_usage_count);
1916 if (!kvm_usage_count)
1917 on_each_cpu(hardware_disable, NULL, 1);
1920 static void hardware_disable_all(void)
1922 spin_lock(&kvm_lock);
1923 hardware_disable_all_nolock();
1924 spin_unlock(&kvm_lock);
1927 static int hardware_enable_all(void)
1931 spin_lock(&kvm_lock);
1934 if (kvm_usage_count == 1) {
1935 atomic_set(&hardware_enable_failed, 0);
1936 on_each_cpu(hardware_enable, NULL, 1);
1938 if (atomic_read(&hardware_enable_failed)) {
1939 hardware_disable_all_nolock();
1944 spin_unlock(&kvm_lock);
1949 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1954 if (!kvm_usage_count)
1957 val &= ~CPU_TASKS_FROZEN;
1960 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1962 hardware_disable(NULL);
1965 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1967 hardware_enable(NULL);
1974 asmlinkage void kvm_handle_fault_on_reboot(void)
1976 if (kvm_rebooting) {
1977 /* spin while reset goes on */
1982 /* Fault while not rebooting. We want the trace. */
1985 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1987 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1991 * Some (well, at least mine) BIOSes hang on reboot if
1994 * And Intel TXT required VMX off for all cpu when system shutdown.
1996 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1997 kvm_rebooting = true;
1998 on_each_cpu(hardware_disable, NULL, 1);
2002 static struct notifier_block kvm_reboot_notifier = {
2003 .notifier_call = kvm_reboot,
2007 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2011 for (i = 0; i < bus->dev_count; i++) {
2012 struct kvm_io_device *pos = bus->devs[i];
2014 kvm_iodevice_destructor(pos);
2019 /* kvm_io_bus_write - called under kvm->slots_lock */
2020 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2021 int len, const void *val)
2024 struct kvm_io_bus *bus;
2026 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2027 for (i = 0; i < bus->dev_count; i++)
2028 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2033 /* kvm_io_bus_read - called under kvm->slots_lock */
2034 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2038 struct kvm_io_bus *bus;
2040 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2041 for (i = 0; i < bus->dev_count; i++)
2042 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2047 /* Caller must hold slots_lock. */
2048 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2049 struct kvm_io_device *dev)
2051 struct kvm_io_bus *new_bus, *bus;
2053 bus = kvm->buses[bus_idx];
2054 if (bus->dev_count > NR_IOBUS_DEVS-1)
2057 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2060 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2061 new_bus->devs[new_bus->dev_count++] = dev;
2062 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2063 synchronize_srcu_expedited(&kvm->srcu);
2069 /* Caller must hold slots_lock. */
2070 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2071 struct kvm_io_device *dev)
2074 struct kvm_io_bus *new_bus, *bus;
2076 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2080 bus = kvm->buses[bus_idx];
2081 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2084 for (i = 0; i < new_bus->dev_count; i++)
2085 if (new_bus->devs[i] == dev) {
2087 new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2096 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2097 synchronize_srcu_expedited(&kvm->srcu);
2102 static struct notifier_block kvm_cpu_notifier = {
2103 .notifier_call = kvm_cpu_hotplug,
2106 static int vm_stat_get(void *_offset, u64 *val)
2108 unsigned offset = (long)_offset;
2112 spin_lock(&kvm_lock);
2113 list_for_each_entry(kvm, &vm_list, vm_list)
2114 *val += *(u32 *)((void *)kvm + offset);
2115 spin_unlock(&kvm_lock);
2119 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2121 static int vcpu_stat_get(void *_offset, u64 *val)
2123 unsigned offset = (long)_offset;
2125 struct kvm_vcpu *vcpu;
2129 spin_lock(&kvm_lock);
2130 list_for_each_entry(kvm, &vm_list, vm_list)
2131 kvm_for_each_vcpu(i, vcpu, kvm)
2132 *val += *(u32 *)((void *)vcpu + offset);
2134 spin_unlock(&kvm_lock);
2138 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2140 static const struct file_operations *stat_fops[] = {
2141 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2142 [KVM_STAT_VM] = &vm_stat_fops,
2145 static void kvm_init_debug(void)
2147 struct kvm_stats_debugfs_item *p;
2149 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2150 for (p = debugfs_entries; p->name; ++p)
2151 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2152 (void *)(long)p->offset,
2153 stat_fops[p->kind]);
2156 static void kvm_exit_debug(void)
2158 struct kvm_stats_debugfs_item *p;
2160 for (p = debugfs_entries; p->name; ++p)
2161 debugfs_remove(p->dentry);
2162 debugfs_remove(kvm_debugfs_dir);
2165 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2167 if (kvm_usage_count)
2168 hardware_disable(NULL);
2172 static int kvm_resume(struct sys_device *dev)
2174 if (kvm_usage_count)
2175 hardware_enable(NULL);
2179 static struct sysdev_class kvm_sysdev_class = {
2181 .suspend = kvm_suspend,
2182 .resume = kvm_resume,
2185 static struct sys_device kvm_sysdev = {
2187 .cls = &kvm_sysdev_class,
2190 struct page *bad_page;
2194 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2196 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2199 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2201 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2203 kvm_arch_vcpu_load(vcpu, cpu);
2206 static void kvm_sched_out(struct preempt_notifier *pn,
2207 struct task_struct *next)
2209 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2211 kvm_arch_vcpu_put(vcpu);
2214 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2215 struct module *module)
2220 r = kvm_arch_init(opaque);
2224 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2226 if (bad_page == NULL) {
2231 bad_pfn = page_to_pfn(bad_page);
2233 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2235 if (hwpoison_page == NULL) {
2240 hwpoison_pfn = page_to_pfn(hwpoison_page);
2242 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2244 if (fault_page == NULL) {
2249 fault_pfn = page_to_pfn(fault_page);
2251 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2256 r = kvm_arch_hardware_setup();
2260 for_each_online_cpu(cpu) {
2261 smp_call_function_single(cpu,
2262 kvm_arch_check_processor_compat,
2268 r = register_cpu_notifier(&kvm_cpu_notifier);
2271 register_reboot_notifier(&kvm_reboot_notifier);
2273 r = sysdev_class_register(&kvm_sysdev_class);
2277 r = sysdev_register(&kvm_sysdev);
2281 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2283 vcpu_align = __alignof__(struct kvm_vcpu);
2284 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2286 if (!kvm_vcpu_cache) {
2291 kvm_chardev_ops.owner = module;
2292 kvm_vm_fops.owner = module;
2293 kvm_vcpu_fops.owner = module;
2295 r = misc_register(&kvm_dev);
2297 printk(KERN_ERR "kvm: misc device register failed\n");
2301 kvm_preempt_ops.sched_in = kvm_sched_in;
2302 kvm_preempt_ops.sched_out = kvm_sched_out;
2309 kmem_cache_destroy(kvm_vcpu_cache);
2311 sysdev_unregister(&kvm_sysdev);
2313 sysdev_class_unregister(&kvm_sysdev_class);
2315 unregister_reboot_notifier(&kvm_reboot_notifier);
2316 unregister_cpu_notifier(&kvm_cpu_notifier);
2319 kvm_arch_hardware_unsetup();
2321 free_cpumask_var(cpus_hardware_enabled);
2324 __free_page(fault_page);
2326 __free_page(hwpoison_page);
2327 __free_page(bad_page);
2333 EXPORT_SYMBOL_GPL(kvm_init);
2338 misc_deregister(&kvm_dev);
2339 kmem_cache_destroy(kvm_vcpu_cache);
2340 sysdev_unregister(&kvm_sysdev);
2341 sysdev_class_unregister(&kvm_sysdev_class);
2342 unregister_reboot_notifier(&kvm_reboot_notifier);
2343 unregister_cpu_notifier(&kvm_cpu_notifier);
2344 on_each_cpu(hardware_disable, NULL, 1);
2345 kvm_arch_hardware_unsetup();
2347 free_cpumask_var(cpus_hardware_enabled);
2348 __free_page(hwpoison_page);
2349 __free_page(bad_page);
2351 EXPORT_SYMBOL_GPL(kvm_exit);