Merge branches 'clk-range', 'clk-uniphier', 'clk-apple' and 'clk-qcom' into clk-next
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
159
160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161                                                    unsigned long start, unsigned long end)
162 {
163 }
164
165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166 {
167         /*
168          * The metadata used by is_zone_device_page() to determine whether or
169          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170          * the device has been pinned, e.g. by get_user_pages().  WARN if the
171          * page_count() is zero to help detect bad usage of this helper.
172          */
173         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174                 return false;
175
176         return is_zone_device_page(pfn_to_page(pfn));
177 }
178
179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
180 {
181         /*
182          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183          * perspective they are "normal" pages, albeit with slightly different
184          * usage rules.
185          */
186         if (pfn_valid(pfn))
187                 return PageReserved(pfn_to_page(pfn)) &&
188                        !is_zero_pfn(pfn) &&
189                        !kvm_is_zone_device_pfn(pfn);
190
191         return true;
192 }
193
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199         int cpu = get_cpu();
200
201         __this_cpu_write(kvm_running_vcpu, vcpu);
202         preempt_notifier_register(&vcpu->preempt_notifier);
203         kvm_arch_vcpu_load(vcpu, cpu);
204         put_cpu();
205 }
206 EXPORT_SYMBOL_GPL(vcpu_load);
207
208 void vcpu_put(struct kvm_vcpu *vcpu)
209 {
210         preempt_disable();
211         kvm_arch_vcpu_put(vcpu);
212         preempt_notifier_unregister(&vcpu->preempt_notifier);
213         __this_cpu_write(kvm_running_vcpu, NULL);
214         preempt_enable();
215 }
216 EXPORT_SYMBOL_GPL(vcpu_put);
217
218 /* TODO: merge with kvm_arch_vcpu_should_kick */
219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
220 {
221         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
222
223         /*
224          * We need to wait for the VCPU to reenable interrupts and get out of
225          * READING_SHADOW_PAGE_TABLES mode.
226          */
227         if (req & KVM_REQUEST_WAIT)
228                 return mode != OUTSIDE_GUEST_MODE;
229
230         /*
231          * Need to kick a running VCPU, but otherwise there is nothing to do.
232          */
233         return mode == IN_GUEST_MODE;
234 }
235
236 static void ack_flush(void *_completed)
237 {
238 }
239
240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
241 {
242         if (cpumask_empty(cpus))
243                 return false;
244
245         smp_call_function_many(cpus, ack_flush, NULL, wait);
246         return true;
247 }
248
249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
250                                   unsigned int req, struct cpumask *tmp,
251                                   int current_cpu)
252 {
253         int cpu;
254
255         kvm_make_request(req, vcpu);
256
257         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
258                 return;
259
260         /*
261          * Note, the vCPU could get migrated to a different pCPU at any point
262          * after kvm_request_needs_ipi(), which could result in sending an IPI
263          * to the previous pCPU.  But, that's OK because the purpose of the IPI
264          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
265          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
266          * after this point is also OK, as the requirement is only that KVM wait
267          * for vCPUs that were reading SPTEs _before_ any changes were
268          * finalized. See kvm_vcpu_kick() for more details on handling requests.
269          */
270         if (kvm_request_needs_ipi(vcpu, req)) {
271                 cpu = READ_ONCE(vcpu->cpu);
272                 if (cpu != -1 && cpu != current_cpu)
273                         __cpumask_set_cpu(cpu, tmp);
274         }
275 }
276
277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
278                                  unsigned long *vcpu_bitmap)
279 {
280         struct kvm_vcpu *vcpu;
281         struct cpumask *cpus;
282         int i, me;
283         bool called;
284
285         me = get_cpu();
286
287         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
288         cpumask_clear(cpus);
289
290         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
291                 vcpu = kvm_get_vcpu(kvm, i);
292                 if (!vcpu)
293                         continue;
294                 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
295         }
296
297         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
298         put_cpu();
299
300         return called;
301 }
302
303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
304                                       struct kvm_vcpu *except)
305 {
306         struct kvm_vcpu *vcpu;
307         struct cpumask *cpus;
308         unsigned long i;
309         bool called;
310         int me;
311
312         me = get_cpu();
313
314         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
315         cpumask_clear(cpus);
316
317         kvm_for_each_vcpu(i, vcpu, kvm) {
318                 if (vcpu == except)
319                         continue;
320                 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
321         }
322
323         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
324         put_cpu();
325
326         return called;
327 }
328
329 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
330 {
331         return kvm_make_all_cpus_request_except(kvm, req, NULL);
332 }
333 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
334
335 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
336 void kvm_flush_remote_tlbs(struct kvm *kvm)
337 {
338         ++kvm->stat.generic.remote_tlb_flush_requests;
339
340         /*
341          * We want to publish modifications to the page tables before reading
342          * mode. Pairs with a memory barrier in arch-specific code.
343          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
344          * and smp_mb in walk_shadow_page_lockless_begin/end.
345          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
346          *
347          * There is already an smp_mb__after_atomic() before
348          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
349          * barrier here.
350          */
351         if (!kvm_arch_flush_remote_tlb(kvm)
352             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
353                 ++kvm->stat.generic.remote_tlb_flush;
354 }
355 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
356 #endif
357
358 void kvm_reload_remote_mmus(struct kvm *kvm)
359 {
360         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
361 }
362
363 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
364 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
365                                                gfp_t gfp_flags)
366 {
367         gfp_flags |= mc->gfp_zero;
368
369         if (mc->kmem_cache)
370                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
371         else
372                 return (void *)__get_free_page(gfp_flags);
373 }
374
375 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
376 {
377         void *obj;
378
379         if (mc->nobjs >= min)
380                 return 0;
381         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
382                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
383                 if (!obj)
384                         return mc->nobjs >= min ? 0 : -ENOMEM;
385                 mc->objects[mc->nobjs++] = obj;
386         }
387         return 0;
388 }
389
390 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
391 {
392         return mc->nobjs;
393 }
394
395 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
396 {
397         while (mc->nobjs) {
398                 if (mc->kmem_cache)
399                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
400                 else
401                         free_page((unsigned long)mc->objects[--mc->nobjs]);
402         }
403 }
404
405 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
406 {
407         void *p;
408
409         if (WARN_ON(!mc->nobjs))
410                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
411         else
412                 p = mc->objects[--mc->nobjs];
413         BUG_ON(!p);
414         return p;
415 }
416 #endif
417
418 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
419 {
420         mutex_init(&vcpu->mutex);
421         vcpu->cpu = -1;
422         vcpu->kvm = kvm;
423         vcpu->vcpu_id = id;
424         vcpu->pid = NULL;
425 #ifndef __KVM_HAVE_ARCH_WQP
426         rcuwait_init(&vcpu->wait);
427 #endif
428         kvm_async_pf_vcpu_init(vcpu);
429
430         kvm_vcpu_set_in_spin_loop(vcpu, false);
431         kvm_vcpu_set_dy_eligible(vcpu, false);
432         vcpu->preempted = false;
433         vcpu->ready = false;
434         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
435         vcpu->last_used_slot = NULL;
436 }
437
438 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
439 {
440         kvm_dirty_ring_free(&vcpu->dirty_ring);
441         kvm_arch_vcpu_destroy(vcpu);
442
443         /*
444          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
445          * the vcpu->pid pointer, and at destruction time all file descriptors
446          * are already gone.
447          */
448         put_pid(rcu_dereference_protected(vcpu->pid, 1));
449
450         free_page((unsigned long)vcpu->run);
451         kmem_cache_free(kvm_vcpu_cache, vcpu);
452 }
453
454 void kvm_destroy_vcpus(struct kvm *kvm)
455 {
456         unsigned long i;
457         struct kvm_vcpu *vcpu;
458
459         kvm_for_each_vcpu(i, vcpu, kvm) {
460                 kvm_vcpu_destroy(vcpu);
461                 xa_erase(&kvm->vcpu_array, i);
462         }
463
464         atomic_set(&kvm->online_vcpus, 0);
465 }
466 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
467
468 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
469 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
470 {
471         return container_of(mn, struct kvm, mmu_notifier);
472 }
473
474 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
475                                               struct mm_struct *mm,
476                                               unsigned long start, unsigned long end)
477 {
478         struct kvm *kvm = mmu_notifier_to_kvm(mn);
479         int idx;
480
481         idx = srcu_read_lock(&kvm->srcu);
482         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
483         srcu_read_unlock(&kvm->srcu, idx);
484 }
485
486 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
487
488 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
489                              unsigned long end);
490
491 struct kvm_hva_range {
492         unsigned long start;
493         unsigned long end;
494         pte_t pte;
495         hva_handler_t handler;
496         on_lock_fn_t on_lock;
497         bool flush_on_ret;
498         bool may_block;
499 };
500
501 /*
502  * Use a dedicated stub instead of NULL to indicate that there is no callback
503  * function/handler.  The compiler technically can't guarantee that a real
504  * function will have a non-zero address, and so it will generate code to
505  * check for !NULL, whereas comparing against a stub will be elided at compile
506  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
507  */
508 static void kvm_null_fn(void)
509 {
510
511 }
512 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
513
514 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
515 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
516         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
517              node;                                                           \
518              node = interval_tree_iter_next(node, start, last))      \
519
520 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
521                                                   const struct kvm_hva_range *range)
522 {
523         bool ret = false, locked = false;
524         struct kvm_gfn_range gfn_range;
525         struct kvm_memory_slot *slot;
526         struct kvm_memslots *slots;
527         int i, idx;
528
529         if (WARN_ON_ONCE(range->end <= range->start))
530                 return 0;
531
532         /* A null handler is allowed if and only if on_lock() is provided. */
533         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
534                          IS_KVM_NULL_FN(range->handler)))
535                 return 0;
536
537         idx = srcu_read_lock(&kvm->srcu);
538
539         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
540                 struct interval_tree_node *node;
541
542                 slots = __kvm_memslots(kvm, i);
543                 kvm_for_each_memslot_in_hva_range(node, slots,
544                                                   range->start, range->end - 1) {
545                         unsigned long hva_start, hva_end;
546
547                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
548                         hva_start = max(range->start, slot->userspace_addr);
549                         hva_end = min(range->end, slot->userspace_addr +
550                                                   (slot->npages << PAGE_SHIFT));
551
552                         /*
553                          * To optimize for the likely case where the address
554                          * range is covered by zero or one memslots, don't
555                          * bother making these conditional (to avoid writes on
556                          * the second or later invocation of the handler).
557                          */
558                         gfn_range.pte = range->pte;
559                         gfn_range.may_block = range->may_block;
560
561                         /*
562                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
563                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
564                          */
565                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
566                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
567                         gfn_range.slot = slot;
568
569                         if (!locked) {
570                                 locked = true;
571                                 KVM_MMU_LOCK(kvm);
572                                 if (!IS_KVM_NULL_FN(range->on_lock))
573                                         range->on_lock(kvm, range->start, range->end);
574                                 if (IS_KVM_NULL_FN(range->handler))
575                                         break;
576                         }
577                         ret |= range->handler(kvm, &gfn_range);
578                 }
579         }
580
581         if (range->flush_on_ret && ret)
582                 kvm_flush_remote_tlbs(kvm);
583
584         if (locked)
585                 KVM_MMU_UNLOCK(kvm);
586
587         srcu_read_unlock(&kvm->srcu, idx);
588
589         /* The notifiers are averse to booleans. :-( */
590         return (int)ret;
591 }
592
593 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
594                                                 unsigned long start,
595                                                 unsigned long end,
596                                                 pte_t pte,
597                                                 hva_handler_t handler)
598 {
599         struct kvm *kvm = mmu_notifier_to_kvm(mn);
600         const struct kvm_hva_range range = {
601                 .start          = start,
602                 .end            = end,
603                 .pte            = pte,
604                 .handler        = handler,
605                 .on_lock        = (void *)kvm_null_fn,
606                 .flush_on_ret   = true,
607                 .may_block      = false,
608         };
609
610         return __kvm_handle_hva_range(kvm, &range);
611 }
612
613 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
614                                                          unsigned long start,
615                                                          unsigned long end,
616                                                          hva_handler_t handler)
617 {
618         struct kvm *kvm = mmu_notifier_to_kvm(mn);
619         const struct kvm_hva_range range = {
620                 .start          = start,
621                 .end            = end,
622                 .pte            = __pte(0),
623                 .handler        = handler,
624                 .on_lock        = (void *)kvm_null_fn,
625                 .flush_on_ret   = false,
626                 .may_block      = false,
627         };
628
629         return __kvm_handle_hva_range(kvm, &range);
630 }
631 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
632                                         struct mm_struct *mm,
633                                         unsigned long address,
634                                         pte_t pte)
635 {
636         struct kvm *kvm = mmu_notifier_to_kvm(mn);
637
638         trace_kvm_set_spte_hva(address);
639
640         /*
641          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
642          * If mmu_notifier_count is zero, then no in-progress invalidations,
643          * including this one, found a relevant memslot at start(); rechecking
644          * memslots here is unnecessary.  Note, a false positive (count elevated
645          * by a different invalidation) is sub-optimal but functionally ok.
646          */
647         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
648         if (!READ_ONCE(kvm->mmu_notifier_count))
649                 return;
650
651         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
652 }
653
654 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
655                                    unsigned long end)
656 {
657         /*
658          * The count increase must become visible at unlock time as no
659          * spte can be established without taking the mmu_lock and
660          * count is also read inside the mmu_lock critical section.
661          */
662         kvm->mmu_notifier_count++;
663         if (likely(kvm->mmu_notifier_count == 1)) {
664                 kvm->mmu_notifier_range_start = start;
665                 kvm->mmu_notifier_range_end = end;
666         } else {
667                 /*
668                  * Fully tracking multiple concurrent ranges has dimishing
669                  * returns. Keep things simple and just find the minimal range
670                  * which includes the current and new ranges. As there won't be
671                  * enough information to subtract a range after its invalidate
672                  * completes, any ranges invalidated concurrently will
673                  * accumulate and persist until all outstanding invalidates
674                  * complete.
675                  */
676                 kvm->mmu_notifier_range_start =
677                         min(kvm->mmu_notifier_range_start, start);
678                 kvm->mmu_notifier_range_end =
679                         max(kvm->mmu_notifier_range_end, end);
680         }
681 }
682
683 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
684                                         const struct mmu_notifier_range *range)
685 {
686         struct kvm *kvm = mmu_notifier_to_kvm(mn);
687         const struct kvm_hva_range hva_range = {
688                 .start          = range->start,
689                 .end            = range->end,
690                 .pte            = __pte(0),
691                 .handler        = kvm_unmap_gfn_range,
692                 .on_lock        = kvm_inc_notifier_count,
693                 .flush_on_ret   = true,
694                 .may_block      = mmu_notifier_range_blockable(range),
695         };
696
697         trace_kvm_unmap_hva_range(range->start, range->end);
698
699         /*
700          * Prevent memslot modification between range_start() and range_end()
701          * so that conditionally locking provides the same result in both
702          * functions.  Without that guarantee, the mmu_notifier_count
703          * adjustments will be imbalanced.
704          *
705          * Pairs with the decrement in range_end().
706          */
707         spin_lock(&kvm->mn_invalidate_lock);
708         kvm->mn_active_invalidate_count++;
709         spin_unlock(&kvm->mn_invalidate_lock);
710
711         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
712                                           hva_range.may_block);
713
714         __kvm_handle_hva_range(kvm, &hva_range);
715
716         return 0;
717 }
718
719 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
720                                    unsigned long end)
721 {
722         /*
723          * This sequence increase will notify the kvm page fault that
724          * the page that is going to be mapped in the spte could have
725          * been freed.
726          */
727         kvm->mmu_notifier_seq++;
728         smp_wmb();
729         /*
730          * The above sequence increase must be visible before the
731          * below count decrease, which is ensured by the smp_wmb above
732          * in conjunction with the smp_rmb in mmu_notifier_retry().
733          */
734         kvm->mmu_notifier_count--;
735 }
736
737 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
738                                         const struct mmu_notifier_range *range)
739 {
740         struct kvm *kvm = mmu_notifier_to_kvm(mn);
741         const struct kvm_hva_range hva_range = {
742                 .start          = range->start,
743                 .end            = range->end,
744                 .pte            = __pte(0),
745                 .handler        = (void *)kvm_null_fn,
746                 .on_lock        = kvm_dec_notifier_count,
747                 .flush_on_ret   = false,
748                 .may_block      = mmu_notifier_range_blockable(range),
749         };
750         bool wake;
751
752         __kvm_handle_hva_range(kvm, &hva_range);
753
754         /* Pairs with the increment in range_start(). */
755         spin_lock(&kvm->mn_invalidate_lock);
756         wake = (--kvm->mn_active_invalidate_count == 0);
757         spin_unlock(&kvm->mn_invalidate_lock);
758
759         /*
760          * There can only be one waiter, since the wait happens under
761          * slots_lock.
762          */
763         if (wake)
764                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
765
766         BUG_ON(kvm->mmu_notifier_count < 0);
767 }
768
769 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
770                                               struct mm_struct *mm,
771                                               unsigned long start,
772                                               unsigned long end)
773 {
774         trace_kvm_age_hva(start, end);
775
776         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
777 }
778
779 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
780                                         struct mm_struct *mm,
781                                         unsigned long start,
782                                         unsigned long end)
783 {
784         trace_kvm_age_hva(start, end);
785
786         /*
787          * Even though we do not flush TLB, this will still adversely
788          * affect performance on pre-Haswell Intel EPT, where there is
789          * no EPT Access Bit to clear so that we have to tear down EPT
790          * tables instead. If we find this unacceptable, we can always
791          * add a parameter to kvm_age_hva so that it effectively doesn't
792          * do anything on clear_young.
793          *
794          * Also note that currently we never issue secondary TLB flushes
795          * from clear_young, leaving this job up to the regular system
796          * cadence. If we find this inaccurate, we might come up with a
797          * more sophisticated heuristic later.
798          */
799         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
800 }
801
802 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
803                                        struct mm_struct *mm,
804                                        unsigned long address)
805 {
806         trace_kvm_test_age_hva(address);
807
808         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
809                                              kvm_test_age_gfn);
810 }
811
812 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
813                                      struct mm_struct *mm)
814 {
815         struct kvm *kvm = mmu_notifier_to_kvm(mn);
816         int idx;
817
818         idx = srcu_read_lock(&kvm->srcu);
819         kvm_arch_flush_shadow_all(kvm);
820         srcu_read_unlock(&kvm->srcu, idx);
821 }
822
823 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
824         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
825         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
826         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
827         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
828         .clear_young            = kvm_mmu_notifier_clear_young,
829         .test_young             = kvm_mmu_notifier_test_young,
830         .change_pte             = kvm_mmu_notifier_change_pte,
831         .release                = kvm_mmu_notifier_release,
832 };
833
834 static int kvm_init_mmu_notifier(struct kvm *kvm)
835 {
836         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
837         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
838 }
839
840 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
841
842 static int kvm_init_mmu_notifier(struct kvm *kvm)
843 {
844         return 0;
845 }
846
847 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
848
849 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
850 static int kvm_pm_notifier_call(struct notifier_block *bl,
851                                 unsigned long state,
852                                 void *unused)
853 {
854         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
855
856         return kvm_arch_pm_notifier(kvm, state);
857 }
858
859 static void kvm_init_pm_notifier(struct kvm *kvm)
860 {
861         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
862         /* Suspend KVM before we suspend ftrace, RCU, etc. */
863         kvm->pm_notifier.priority = INT_MAX;
864         register_pm_notifier(&kvm->pm_notifier);
865 }
866
867 static void kvm_destroy_pm_notifier(struct kvm *kvm)
868 {
869         unregister_pm_notifier(&kvm->pm_notifier);
870 }
871 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
872 static void kvm_init_pm_notifier(struct kvm *kvm)
873 {
874 }
875
876 static void kvm_destroy_pm_notifier(struct kvm *kvm)
877 {
878 }
879 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
880
881 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
882 {
883         if (!memslot->dirty_bitmap)
884                 return;
885
886         kvfree(memslot->dirty_bitmap);
887         memslot->dirty_bitmap = NULL;
888 }
889
890 /* This does not remove the slot from struct kvm_memslots data structures */
891 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
892 {
893         kvm_destroy_dirty_bitmap(slot);
894
895         kvm_arch_free_memslot(kvm, slot);
896
897         kfree(slot);
898 }
899
900 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
901 {
902         struct hlist_node *idnode;
903         struct kvm_memory_slot *memslot;
904         int bkt;
905
906         /*
907          * The same memslot objects live in both active and inactive sets,
908          * arbitrarily free using index '1' so the second invocation of this
909          * function isn't operating over a structure with dangling pointers
910          * (even though this function isn't actually touching them).
911          */
912         if (!slots->node_idx)
913                 return;
914
915         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
916                 kvm_free_memslot(kvm, memslot);
917 }
918
919 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
920 {
921         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
922         case KVM_STATS_TYPE_INSTANT:
923                 return 0444;
924         case KVM_STATS_TYPE_CUMULATIVE:
925         case KVM_STATS_TYPE_PEAK:
926         default:
927                 return 0644;
928         }
929 }
930
931
932 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
933 {
934         int i;
935         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
936                                       kvm_vcpu_stats_header.num_desc;
937
938         if (!kvm->debugfs_dentry)
939                 return;
940
941         debugfs_remove_recursive(kvm->debugfs_dentry);
942
943         if (kvm->debugfs_stat_data) {
944                 for (i = 0; i < kvm_debugfs_num_entries; i++)
945                         kfree(kvm->debugfs_stat_data[i]);
946                 kfree(kvm->debugfs_stat_data);
947         }
948 }
949
950 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
951 {
952         static DEFINE_MUTEX(kvm_debugfs_lock);
953         struct dentry *dent;
954         char dir_name[ITOA_MAX_LEN * 2];
955         struct kvm_stat_data *stat_data;
956         const struct _kvm_stats_desc *pdesc;
957         int i, ret;
958         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
959                                       kvm_vcpu_stats_header.num_desc;
960
961         if (!debugfs_initialized())
962                 return 0;
963
964         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
965         mutex_lock(&kvm_debugfs_lock);
966         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
967         if (dent) {
968                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
969                 dput(dent);
970                 mutex_unlock(&kvm_debugfs_lock);
971                 return 0;
972         }
973         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
974         mutex_unlock(&kvm_debugfs_lock);
975         if (IS_ERR(dent))
976                 return 0;
977
978         kvm->debugfs_dentry = dent;
979         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
980                                          sizeof(*kvm->debugfs_stat_data),
981                                          GFP_KERNEL_ACCOUNT);
982         if (!kvm->debugfs_stat_data)
983                 return -ENOMEM;
984
985         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
986                 pdesc = &kvm_vm_stats_desc[i];
987                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
988                 if (!stat_data)
989                         return -ENOMEM;
990
991                 stat_data->kvm = kvm;
992                 stat_data->desc = pdesc;
993                 stat_data->kind = KVM_STAT_VM;
994                 kvm->debugfs_stat_data[i] = stat_data;
995                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
996                                     kvm->debugfs_dentry, stat_data,
997                                     &stat_fops_per_vm);
998         }
999
1000         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1001                 pdesc = &kvm_vcpu_stats_desc[i];
1002                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1003                 if (!stat_data)
1004                         return -ENOMEM;
1005
1006                 stat_data->kvm = kvm;
1007                 stat_data->desc = pdesc;
1008                 stat_data->kind = KVM_STAT_VCPU;
1009                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1010                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1011                                     kvm->debugfs_dentry, stat_data,
1012                                     &stat_fops_per_vm);
1013         }
1014
1015         ret = kvm_arch_create_vm_debugfs(kvm);
1016         if (ret) {
1017                 kvm_destroy_vm_debugfs(kvm);
1018                 return i;
1019         }
1020
1021         return 0;
1022 }
1023
1024 /*
1025  * Called after the VM is otherwise initialized, but just before adding it to
1026  * the vm_list.
1027  */
1028 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1029 {
1030         return 0;
1031 }
1032
1033 /*
1034  * Called just after removing the VM from the vm_list, but before doing any
1035  * other destruction.
1036  */
1037 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1038 {
1039 }
1040
1041 /*
1042  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1043  * be setup already, so we can create arch-specific debugfs entries under it.
1044  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1045  * a per-arch destroy interface is not needed.
1046  */
1047 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1048 {
1049         return 0;
1050 }
1051
1052 static struct kvm *kvm_create_vm(unsigned long type)
1053 {
1054         struct kvm *kvm = kvm_arch_alloc_vm();
1055         struct kvm_memslots *slots;
1056         int r = -ENOMEM;
1057         int i, j;
1058
1059         if (!kvm)
1060                 return ERR_PTR(-ENOMEM);
1061
1062         KVM_MMU_LOCK_INIT(kvm);
1063         mmgrab(current->mm);
1064         kvm->mm = current->mm;
1065         kvm_eventfd_init(kvm);
1066         mutex_init(&kvm->lock);
1067         mutex_init(&kvm->irq_lock);
1068         mutex_init(&kvm->slots_lock);
1069         mutex_init(&kvm->slots_arch_lock);
1070         spin_lock_init(&kvm->mn_invalidate_lock);
1071         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1072         xa_init(&kvm->vcpu_array);
1073
1074         INIT_LIST_HEAD(&kvm->gpc_list);
1075         spin_lock_init(&kvm->gpc_lock);
1076
1077         INIT_LIST_HEAD(&kvm->devices);
1078
1079         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1080
1081         if (init_srcu_struct(&kvm->srcu))
1082                 goto out_err_no_srcu;
1083         if (init_srcu_struct(&kvm->irq_srcu))
1084                 goto out_err_no_irq_srcu;
1085
1086         refcount_set(&kvm->users_count, 1);
1087         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1088                 for (j = 0; j < 2; j++) {
1089                         slots = &kvm->__memslots[i][j];
1090
1091                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1092                         slots->hva_tree = RB_ROOT_CACHED;
1093                         slots->gfn_tree = RB_ROOT;
1094                         hash_init(slots->id_hash);
1095                         slots->node_idx = j;
1096
1097                         /* Generations must be different for each address space. */
1098                         slots->generation = i;
1099                 }
1100
1101                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1102         }
1103
1104         for (i = 0; i < KVM_NR_BUSES; i++) {
1105                 rcu_assign_pointer(kvm->buses[i],
1106                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1107                 if (!kvm->buses[i])
1108                         goto out_err_no_arch_destroy_vm;
1109         }
1110
1111         kvm->max_halt_poll_ns = halt_poll_ns;
1112
1113         r = kvm_arch_init_vm(kvm, type);
1114         if (r)
1115                 goto out_err_no_arch_destroy_vm;
1116
1117         r = hardware_enable_all();
1118         if (r)
1119                 goto out_err_no_disable;
1120
1121 #ifdef CONFIG_HAVE_KVM_IRQFD
1122         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1123 #endif
1124
1125         r = kvm_init_mmu_notifier(kvm);
1126         if (r)
1127                 goto out_err_no_mmu_notifier;
1128
1129         r = kvm_arch_post_init_vm(kvm);
1130         if (r)
1131                 goto out_err;
1132
1133         mutex_lock(&kvm_lock);
1134         list_add(&kvm->vm_list, &vm_list);
1135         mutex_unlock(&kvm_lock);
1136
1137         preempt_notifier_inc();
1138         kvm_init_pm_notifier(kvm);
1139
1140         return kvm;
1141
1142 out_err:
1143 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1144         if (kvm->mmu_notifier.ops)
1145                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1146 #endif
1147 out_err_no_mmu_notifier:
1148         hardware_disable_all();
1149 out_err_no_disable:
1150         kvm_arch_destroy_vm(kvm);
1151 out_err_no_arch_destroy_vm:
1152         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1153         for (i = 0; i < KVM_NR_BUSES; i++)
1154                 kfree(kvm_get_bus(kvm, i));
1155         cleanup_srcu_struct(&kvm->irq_srcu);
1156 out_err_no_irq_srcu:
1157         cleanup_srcu_struct(&kvm->srcu);
1158 out_err_no_srcu:
1159         kvm_arch_free_vm(kvm);
1160         mmdrop(current->mm);
1161         return ERR_PTR(r);
1162 }
1163
1164 static void kvm_destroy_devices(struct kvm *kvm)
1165 {
1166         struct kvm_device *dev, *tmp;
1167
1168         /*
1169          * We do not need to take the kvm->lock here, because nobody else
1170          * has a reference to the struct kvm at this point and therefore
1171          * cannot access the devices list anyhow.
1172          */
1173         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1174                 list_del(&dev->vm_node);
1175                 dev->ops->destroy(dev);
1176         }
1177 }
1178
1179 static void kvm_destroy_vm(struct kvm *kvm)
1180 {
1181         int i;
1182         struct mm_struct *mm = kvm->mm;
1183
1184         kvm_destroy_pm_notifier(kvm);
1185         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1186         kvm_destroy_vm_debugfs(kvm);
1187         kvm_arch_sync_events(kvm);
1188         mutex_lock(&kvm_lock);
1189         list_del(&kvm->vm_list);
1190         mutex_unlock(&kvm_lock);
1191         kvm_arch_pre_destroy_vm(kvm);
1192
1193         kvm_free_irq_routing(kvm);
1194         for (i = 0; i < KVM_NR_BUSES; i++) {
1195                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1196
1197                 if (bus)
1198                         kvm_io_bus_destroy(bus);
1199                 kvm->buses[i] = NULL;
1200         }
1201         kvm_coalesced_mmio_free(kvm);
1202 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1203         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1204         /*
1205          * At this point, pending calls to invalidate_range_start()
1206          * have completed but no more MMU notifiers will run, so
1207          * mn_active_invalidate_count may remain unbalanced.
1208          * No threads can be waiting in install_new_memslots as the
1209          * last reference on KVM has been dropped, but freeing
1210          * memslots would deadlock without this manual intervention.
1211          */
1212         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1213         kvm->mn_active_invalidate_count = 0;
1214 #else
1215         kvm_arch_flush_shadow_all(kvm);
1216 #endif
1217         kvm_arch_destroy_vm(kvm);
1218         kvm_destroy_devices(kvm);
1219         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1220                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1221                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1222         }
1223         cleanup_srcu_struct(&kvm->irq_srcu);
1224         cleanup_srcu_struct(&kvm->srcu);
1225         kvm_arch_free_vm(kvm);
1226         preempt_notifier_dec();
1227         hardware_disable_all();
1228         mmdrop(mm);
1229 }
1230
1231 void kvm_get_kvm(struct kvm *kvm)
1232 {
1233         refcount_inc(&kvm->users_count);
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1236
1237 /*
1238  * Make sure the vm is not during destruction, which is a safe version of
1239  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1240  */
1241 bool kvm_get_kvm_safe(struct kvm *kvm)
1242 {
1243         return refcount_inc_not_zero(&kvm->users_count);
1244 }
1245 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1246
1247 void kvm_put_kvm(struct kvm *kvm)
1248 {
1249         if (refcount_dec_and_test(&kvm->users_count))
1250                 kvm_destroy_vm(kvm);
1251 }
1252 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1253
1254 /*
1255  * Used to put a reference that was taken on behalf of an object associated
1256  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1257  * of the new file descriptor fails and the reference cannot be transferred to
1258  * its final owner.  In such cases, the caller is still actively using @kvm and
1259  * will fail miserably if the refcount unexpectedly hits zero.
1260  */
1261 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1262 {
1263         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1264 }
1265 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1266
1267 static int kvm_vm_release(struct inode *inode, struct file *filp)
1268 {
1269         struct kvm *kvm = filp->private_data;
1270
1271         kvm_irqfd_release(kvm);
1272
1273         kvm_put_kvm(kvm);
1274         return 0;
1275 }
1276
1277 /*
1278  * Allocation size is twice as large as the actual dirty bitmap size.
1279  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1280  */
1281 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1282 {
1283         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1284
1285         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1286         if (!memslot->dirty_bitmap)
1287                 return -ENOMEM;
1288
1289         return 0;
1290 }
1291
1292 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1293 {
1294         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1295         int node_idx_inactive = active->node_idx ^ 1;
1296
1297         return &kvm->__memslots[as_id][node_idx_inactive];
1298 }
1299
1300 /*
1301  * Helper to get the address space ID when one of memslot pointers may be NULL.
1302  * This also serves as a sanity that at least one of the pointers is non-NULL,
1303  * and that their address space IDs don't diverge.
1304  */
1305 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1306                                   struct kvm_memory_slot *b)
1307 {
1308         if (WARN_ON_ONCE(!a && !b))
1309                 return 0;
1310
1311         if (!a)
1312                 return b->as_id;
1313         if (!b)
1314                 return a->as_id;
1315
1316         WARN_ON_ONCE(a->as_id != b->as_id);
1317         return a->as_id;
1318 }
1319
1320 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1321                                 struct kvm_memory_slot *slot)
1322 {
1323         struct rb_root *gfn_tree = &slots->gfn_tree;
1324         struct rb_node **node, *parent;
1325         int idx = slots->node_idx;
1326
1327         parent = NULL;
1328         for (node = &gfn_tree->rb_node; *node; ) {
1329                 struct kvm_memory_slot *tmp;
1330
1331                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1332                 parent = *node;
1333                 if (slot->base_gfn < tmp->base_gfn)
1334                         node = &(*node)->rb_left;
1335                 else if (slot->base_gfn > tmp->base_gfn)
1336                         node = &(*node)->rb_right;
1337                 else
1338                         BUG();
1339         }
1340
1341         rb_link_node(&slot->gfn_node[idx], parent, node);
1342         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1343 }
1344
1345 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1346                                struct kvm_memory_slot *slot)
1347 {
1348         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1349 }
1350
1351 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1352                                  struct kvm_memory_slot *old,
1353                                  struct kvm_memory_slot *new)
1354 {
1355         int idx = slots->node_idx;
1356
1357         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1358
1359         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1360                         &slots->gfn_tree);
1361 }
1362
1363 /*
1364  * Replace @old with @new in the inactive memslots.
1365  *
1366  * With NULL @old this simply adds @new.
1367  * With NULL @new this simply removes @old.
1368  *
1369  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1370  * appropriately.
1371  */
1372 static void kvm_replace_memslot(struct kvm *kvm,
1373                                 struct kvm_memory_slot *old,
1374                                 struct kvm_memory_slot *new)
1375 {
1376         int as_id = kvm_memslots_get_as_id(old, new);
1377         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1378         int idx = slots->node_idx;
1379
1380         if (old) {
1381                 hash_del(&old->id_node[idx]);
1382                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1383
1384                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1385                         atomic_long_set(&slots->last_used_slot, (long)new);
1386
1387                 if (!new) {
1388                         kvm_erase_gfn_node(slots, old);
1389                         return;
1390                 }
1391         }
1392
1393         /*
1394          * Initialize @new's hva range.  Do this even when replacing an @old
1395          * slot, kvm_copy_memslot() deliberately does not touch node data.
1396          */
1397         new->hva_node[idx].start = new->userspace_addr;
1398         new->hva_node[idx].last = new->userspace_addr +
1399                                   (new->npages << PAGE_SHIFT) - 1;
1400
1401         /*
1402          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1403          * hva_node needs to be swapped with remove+insert even though hva can't
1404          * change when replacing an existing slot.
1405          */
1406         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1407         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1408
1409         /*
1410          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1411          * switch the node in the gfn tree instead of removing the old and
1412          * inserting the new as two separate operations. Replacement is a
1413          * single O(1) operation versus two O(log(n)) operations for
1414          * remove+insert.
1415          */
1416         if (old && old->base_gfn == new->base_gfn) {
1417                 kvm_replace_gfn_node(slots, old, new);
1418         } else {
1419                 if (old)
1420                         kvm_erase_gfn_node(slots, old);
1421                 kvm_insert_gfn_node(slots, new);
1422         }
1423 }
1424
1425 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1426 {
1427         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1428
1429 #ifdef __KVM_HAVE_READONLY_MEM
1430         valid_flags |= KVM_MEM_READONLY;
1431 #endif
1432
1433         if (mem->flags & ~valid_flags)
1434                 return -EINVAL;
1435
1436         return 0;
1437 }
1438
1439 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1440 {
1441         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1442
1443         /* Grab the generation from the activate memslots. */
1444         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1445
1446         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1447         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1448
1449         /*
1450          * Do not store the new memslots while there are invalidations in
1451          * progress, otherwise the locking in invalidate_range_start and
1452          * invalidate_range_end will be unbalanced.
1453          */
1454         spin_lock(&kvm->mn_invalidate_lock);
1455         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1456         while (kvm->mn_active_invalidate_count) {
1457                 set_current_state(TASK_UNINTERRUPTIBLE);
1458                 spin_unlock(&kvm->mn_invalidate_lock);
1459                 schedule();
1460                 spin_lock(&kvm->mn_invalidate_lock);
1461         }
1462         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1463         rcu_assign_pointer(kvm->memslots[as_id], slots);
1464         spin_unlock(&kvm->mn_invalidate_lock);
1465
1466         /*
1467          * Acquired in kvm_set_memslot. Must be released before synchronize
1468          * SRCU below in order to avoid deadlock with another thread
1469          * acquiring the slots_arch_lock in an srcu critical section.
1470          */
1471         mutex_unlock(&kvm->slots_arch_lock);
1472
1473         synchronize_srcu_expedited(&kvm->srcu);
1474
1475         /*
1476          * Increment the new memslot generation a second time, dropping the
1477          * update in-progress flag and incrementing the generation based on
1478          * the number of address spaces.  This provides a unique and easily
1479          * identifiable generation number while the memslots are in flux.
1480          */
1481         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1482
1483         /*
1484          * Generations must be unique even across address spaces.  We do not need
1485          * a global counter for that, instead the generation space is evenly split
1486          * across address spaces.  For example, with two address spaces, address
1487          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1488          * use generations 1, 3, 5, ...
1489          */
1490         gen += KVM_ADDRESS_SPACE_NUM;
1491
1492         kvm_arch_memslots_updated(kvm, gen);
1493
1494         slots->generation = gen;
1495 }
1496
1497 static int kvm_prepare_memory_region(struct kvm *kvm,
1498                                      const struct kvm_memory_slot *old,
1499                                      struct kvm_memory_slot *new,
1500                                      enum kvm_mr_change change)
1501 {
1502         int r;
1503
1504         /*
1505          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1506          * will be freed on "commit".  If logging is enabled in both old and
1507          * new, reuse the existing bitmap.  If logging is enabled only in the
1508          * new and KVM isn't using a ring buffer, allocate and initialize a
1509          * new bitmap.
1510          */
1511         if (change != KVM_MR_DELETE) {
1512                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1513                         new->dirty_bitmap = NULL;
1514                 else if (old && old->dirty_bitmap)
1515                         new->dirty_bitmap = old->dirty_bitmap;
1516                 else if (!kvm->dirty_ring_size) {
1517                         r = kvm_alloc_dirty_bitmap(new);
1518                         if (r)
1519                                 return r;
1520
1521                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1522                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1523                 }
1524         }
1525
1526         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1527
1528         /* Free the bitmap on failure if it was allocated above. */
1529         if (r && new && new->dirty_bitmap && old && !old->dirty_bitmap)
1530                 kvm_destroy_dirty_bitmap(new);
1531
1532         return r;
1533 }
1534
1535 static void kvm_commit_memory_region(struct kvm *kvm,
1536                                      struct kvm_memory_slot *old,
1537                                      const struct kvm_memory_slot *new,
1538                                      enum kvm_mr_change change)
1539 {
1540         /*
1541          * Update the total number of memslot pages before calling the arch
1542          * hook so that architectures can consume the result directly.
1543          */
1544         if (change == KVM_MR_DELETE)
1545                 kvm->nr_memslot_pages -= old->npages;
1546         else if (change == KVM_MR_CREATE)
1547                 kvm->nr_memslot_pages += new->npages;
1548
1549         kvm_arch_commit_memory_region(kvm, old, new, change);
1550
1551         switch (change) {
1552         case KVM_MR_CREATE:
1553                 /* Nothing more to do. */
1554                 break;
1555         case KVM_MR_DELETE:
1556                 /* Free the old memslot and all its metadata. */
1557                 kvm_free_memslot(kvm, old);
1558                 break;
1559         case KVM_MR_MOVE:
1560         case KVM_MR_FLAGS_ONLY:
1561                 /*
1562                  * Free the dirty bitmap as needed; the below check encompasses
1563                  * both the flags and whether a ring buffer is being used)
1564                  */
1565                 if (old->dirty_bitmap && !new->dirty_bitmap)
1566                         kvm_destroy_dirty_bitmap(old);
1567
1568                 /*
1569                  * The final quirk.  Free the detached, old slot, but only its
1570                  * memory, not any metadata.  Metadata, including arch specific
1571                  * data, may be reused by @new.
1572                  */
1573                 kfree(old);
1574                 break;
1575         default:
1576                 BUG();
1577         }
1578 }
1579
1580 /*
1581  * Activate @new, which must be installed in the inactive slots by the caller,
1582  * by swapping the active slots and then propagating @new to @old once @old is
1583  * unreachable and can be safely modified.
1584  *
1585  * With NULL @old this simply adds @new to @active (while swapping the sets).
1586  * With NULL @new this simply removes @old from @active and frees it
1587  * (while also swapping the sets).
1588  */
1589 static void kvm_activate_memslot(struct kvm *kvm,
1590                                  struct kvm_memory_slot *old,
1591                                  struct kvm_memory_slot *new)
1592 {
1593         int as_id = kvm_memslots_get_as_id(old, new);
1594
1595         kvm_swap_active_memslots(kvm, as_id);
1596
1597         /* Propagate the new memslot to the now inactive memslots. */
1598         kvm_replace_memslot(kvm, old, new);
1599 }
1600
1601 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1602                              const struct kvm_memory_slot *src)
1603 {
1604         dest->base_gfn = src->base_gfn;
1605         dest->npages = src->npages;
1606         dest->dirty_bitmap = src->dirty_bitmap;
1607         dest->arch = src->arch;
1608         dest->userspace_addr = src->userspace_addr;
1609         dest->flags = src->flags;
1610         dest->id = src->id;
1611         dest->as_id = src->as_id;
1612 }
1613
1614 static void kvm_invalidate_memslot(struct kvm *kvm,
1615                                    struct kvm_memory_slot *old,
1616                                    struct kvm_memory_slot *invalid_slot)
1617 {
1618         /*
1619          * Mark the current slot INVALID.  As with all memslot modifications,
1620          * this must be done on an unreachable slot to avoid modifying the
1621          * current slot in the active tree.
1622          */
1623         kvm_copy_memslot(invalid_slot, old);
1624         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1625         kvm_replace_memslot(kvm, old, invalid_slot);
1626
1627         /*
1628          * Activate the slot that is now marked INVALID, but don't propagate
1629          * the slot to the now inactive slots. The slot is either going to be
1630          * deleted or recreated as a new slot.
1631          */
1632         kvm_swap_active_memslots(kvm, old->as_id);
1633
1634         /*
1635          * From this point no new shadow pages pointing to a deleted, or moved,
1636          * memslot will be created.  Validation of sp->gfn happens in:
1637          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1638          *      - kvm_is_visible_gfn (mmu_check_root)
1639          */
1640         kvm_arch_flush_shadow_memslot(kvm, old);
1641
1642         /* Was released by kvm_swap_active_memslots, reacquire. */
1643         mutex_lock(&kvm->slots_arch_lock);
1644
1645         /*
1646          * Copy the arch-specific field of the newly-installed slot back to the
1647          * old slot as the arch data could have changed between releasing
1648          * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1649          * above.  Writers are required to retrieve memslots *after* acquiring
1650          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1651          */
1652         old->arch = invalid_slot->arch;
1653 }
1654
1655 static void kvm_create_memslot(struct kvm *kvm,
1656                                struct kvm_memory_slot *new)
1657 {
1658         /* Add the new memslot to the inactive set and activate. */
1659         kvm_replace_memslot(kvm, NULL, new);
1660         kvm_activate_memslot(kvm, NULL, new);
1661 }
1662
1663 static void kvm_delete_memslot(struct kvm *kvm,
1664                                struct kvm_memory_slot *old,
1665                                struct kvm_memory_slot *invalid_slot)
1666 {
1667         /*
1668          * Remove the old memslot (in the inactive memslots) by passing NULL as
1669          * the "new" slot, and for the invalid version in the active slots.
1670          */
1671         kvm_replace_memslot(kvm, old, NULL);
1672         kvm_activate_memslot(kvm, invalid_slot, NULL);
1673 }
1674
1675 static void kvm_move_memslot(struct kvm *kvm,
1676                              struct kvm_memory_slot *old,
1677                              struct kvm_memory_slot *new,
1678                              struct kvm_memory_slot *invalid_slot)
1679 {
1680         /*
1681          * Replace the old memslot in the inactive slots, and then swap slots
1682          * and replace the current INVALID with the new as well.
1683          */
1684         kvm_replace_memslot(kvm, old, new);
1685         kvm_activate_memslot(kvm, invalid_slot, new);
1686 }
1687
1688 static void kvm_update_flags_memslot(struct kvm *kvm,
1689                                      struct kvm_memory_slot *old,
1690                                      struct kvm_memory_slot *new)
1691 {
1692         /*
1693          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1694          * an intermediate step. Instead, the old memslot is simply replaced
1695          * with a new, updated copy in both memslot sets.
1696          */
1697         kvm_replace_memslot(kvm, old, new);
1698         kvm_activate_memslot(kvm, old, new);
1699 }
1700
1701 static int kvm_set_memslot(struct kvm *kvm,
1702                            struct kvm_memory_slot *old,
1703                            struct kvm_memory_slot *new,
1704                            enum kvm_mr_change change)
1705 {
1706         struct kvm_memory_slot *invalid_slot;
1707         int r;
1708
1709         /*
1710          * Released in kvm_swap_active_memslots.
1711          *
1712          * Must be held from before the current memslots are copied until
1713          * after the new memslots are installed with rcu_assign_pointer,
1714          * then released before the synchronize srcu in kvm_swap_active_memslots.
1715          *
1716          * When modifying memslots outside of the slots_lock, must be held
1717          * before reading the pointer to the current memslots until after all
1718          * changes to those memslots are complete.
1719          *
1720          * These rules ensure that installing new memslots does not lose
1721          * changes made to the previous memslots.
1722          */
1723         mutex_lock(&kvm->slots_arch_lock);
1724
1725         /*
1726          * Invalidate the old slot if it's being deleted or moved.  This is
1727          * done prior to actually deleting/moving the memslot to allow vCPUs to
1728          * continue running by ensuring there are no mappings or shadow pages
1729          * for the memslot when it is deleted/moved.  Without pre-invalidation
1730          * (and without a lock), a window would exist between effecting the
1731          * delete/move and committing the changes in arch code where KVM or a
1732          * guest could access a non-existent memslot.
1733          *
1734          * Modifications are done on a temporary, unreachable slot.  The old
1735          * slot needs to be preserved in case a later step fails and the
1736          * invalidation needs to be reverted.
1737          */
1738         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1739                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1740                 if (!invalid_slot) {
1741                         mutex_unlock(&kvm->slots_arch_lock);
1742                         return -ENOMEM;
1743                 }
1744                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1745         }
1746
1747         r = kvm_prepare_memory_region(kvm, old, new, change);
1748         if (r) {
1749                 /*
1750                  * For DELETE/MOVE, revert the above INVALID change.  No
1751                  * modifications required since the original slot was preserved
1752                  * in the inactive slots.  Changing the active memslots also
1753                  * release slots_arch_lock.
1754                  */
1755                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1756                         kvm_activate_memslot(kvm, invalid_slot, old);
1757                         kfree(invalid_slot);
1758                 } else {
1759                         mutex_unlock(&kvm->slots_arch_lock);
1760                 }
1761                 return r;
1762         }
1763
1764         /*
1765          * For DELETE and MOVE, the working slot is now active as the INVALID
1766          * version of the old slot.  MOVE is particularly special as it reuses
1767          * the old slot and returns a copy of the old slot (in working_slot).
1768          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1769          * old slot is detached but otherwise preserved.
1770          */
1771         if (change == KVM_MR_CREATE)
1772                 kvm_create_memslot(kvm, new);
1773         else if (change == KVM_MR_DELETE)
1774                 kvm_delete_memslot(kvm, old, invalid_slot);
1775         else if (change == KVM_MR_MOVE)
1776                 kvm_move_memslot(kvm, old, new, invalid_slot);
1777         else if (change == KVM_MR_FLAGS_ONLY)
1778                 kvm_update_flags_memslot(kvm, old, new);
1779         else
1780                 BUG();
1781
1782         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1783         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1784                 kfree(invalid_slot);
1785
1786         /*
1787          * No need to refresh new->arch, changes after dropping slots_arch_lock
1788          * will directly hit the final, active memsot.  Architectures are
1789          * responsible for knowing that new->arch may be stale.
1790          */
1791         kvm_commit_memory_region(kvm, old, new, change);
1792
1793         return 0;
1794 }
1795
1796 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1797                                       gfn_t start, gfn_t end)
1798 {
1799         struct kvm_memslot_iter iter;
1800
1801         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1802                 if (iter.slot->id != id)
1803                         return true;
1804         }
1805
1806         return false;
1807 }
1808
1809 /*
1810  * Allocate some memory and give it an address in the guest physical address
1811  * space.
1812  *
1813  * Discontiguous memory is allowed, mostly for framebuffers.
1814  *
1815  * Must be called holding kvm->slots_lock for write.
1816  */
1817 int __kvm_set_memory_region(struct kvm *kvm,
1818                             const struct kvm_userspace_memory_region *mem)
1819 {
1820         struct kvm_memory_slot *old, *new;
1821         struct kvm_memslots *slots;
1822         enum kvm_mr_change change;
1823         unsigned long npages;
1824         gfn_t base_gfn;
1825         int as_id, id;
1826         int r;
1827
1828         r = check_memory_region_flags(mem);
1829         if (r)
1830                 return r;
1831
1832         as_id = mem->slot >> 16;
1833         id = (u16)mem->slot;
1834
1835         /* General sanity checks */
1836         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1837             (mem->memory_size != (unsigned long)mem->memory_size))
1838                 return -EINVAL;
1839         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1840                 return -EINVAL;
1841         /* We can read the guest memory with __xxx_user() later on. */
1842         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1843             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1844              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1845                         mem->memory_size))
1846                 return -EINVAL;
1847         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1848                 return -EINVAL;
1849         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1850                 return -EINVAL;
1851         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1852                 return -EINVAL;
1853
1854         slots = __kvm_memslots(kvm, as_id);
1855
1856         /*
1857          * Note, the old memslot (and the pointer itself!) may be invalidated
1858          * and/or destroyed by kvm_set_memslot().
1859          */
1860         old = id_to_memslot(slots, id);
1861
1862         if (!mem->memory_size) {
1863                 if (!old || !old->npages)
1864                         return -EINVAL;
1865
1866                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1867                         return -EIO;
1868
1869                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1870         }
1871
1872         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1873         npages = (mem->memory_size >> PAGE_SHIFT);
1874
1875         if (!old || !old->npages) {
1876                 change = KVM_MR_CREATE;
1877
1878                 /*
1879                  * To simplify KVM internals, the total number of pages across
1880                  * all memslots must fit in an unsigned long.
1881                  */
1882                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1883                         return -EINVAL;
1884         } else { /* Modify an existing slot. */
1885                 if ((mem->userspace_addr != old->userspace_addr) ||
1886                     (npages != old->npages) ||
1887                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1888                         return -EINVAL;
1889
1890                 if (base_gfn != old->base_gfn)
1891                         change = KVM_MR_MOVE;
1892                 else if (mem->flags != old->flags)
1893                         change = KVM_MR_FLAGS_ONLY;
1894                 else /* Nothing to change. */
1895                         return 0;
1896         }
1897
1898         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
1899             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
1900                 return -EEXIST;
1901
1902         /* Allocate a slot that will persist in the memslot. */
1903         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
1904         if (!new)
1905                 return -ENOMEM;
1906
1907         new->as_id = as_id;
1908         new->id = id;
1909         new->base_gfn = base_gfn;
1910         new->npages = npages;
1911         new->flags = mem->flags;
1912         new->userspace_addr = mem->userspace_addr;
1913
1914         r = kvm_set_memslot(kvm, old, new, change);
1915         if (r)
1916                 kfree(new);
1917         return r;
1918 }
1919 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1920
1921 int kvm_set_memory_region(struct kvm *kvm,
1922                           const struct kvm_userspace_memory_region *mem)
1923 {
1924         int r;
1925
1926         mutex_lock(&kvm->slots_lock);
1927         r = __kvm_set_memory_region(kvm, mem);
1928         mutex_unlock(&kvm->slots_lock);
1929         return r;
1930 }
1931 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1932
1933 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1934                                           struct kvm_userspace_memory_region *mem)
1935 {
1936         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1937                 return -EINVAL;
1938
1939         return kvm_set_memory_region(kvm, mem);
1940 }
1941
1942 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1943 /**
1944  * kvm_get_dirty_log - get a snapshot of dirty pages
1945  * @kvm:        pointer to kvm instance
1946  * @log:        slot id and address to which we copy the log
1947  * @is_dirty:   set to '1' if any dirty pages were found
1948  * @memslot:    set to the associated memslot, always valid on success
1949  */
1950 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1951                       int *is_dirty, struct kvm_memory_slot **memslot)
1952 {
1953         struct kvm_memslots *slots;
1954         int i, as_id, id;
1955         unsigned long n;
1956         unsigned long any = 0;
1957
1958         /* Dirty ring tracking is exclusive to dirty log tracking */
1959         if (kvm->dirty_ring_size)
1960                 return -ENXIO;
1961
1962         *memslot = NULL;
1963         *is_dirty = 0;
1964
1965         as_id = log->slot >> 16;
1966         id = (u16)log->slot;
1967         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1968                 return -EINVAL;
1969
1970         slots = __kvm_memslots(kvm, as_id);
1971         *memslot = id_to_memslot(slots, id);
1972         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1973                 return -ENOENT;
1974
1975         kvm_arch_sync_dirty_log(kvm, *memslot);
1976
1977         n = kvm_dirty_bitmap_bytes(*memslot);
1978
1979         for (i = 0; !any && i < n/sizeof(long); ++i)
1980                 any = (*memslot)->dirty_bitmap[i];
1981
1982         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1983                 return -EFAULT;
1984
1985         if (any)
1986                 *is_dirty = 1;
1987         return 0;
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1990
1991 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1992 /**
1993  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1994  *      and reenable dirty page tracking for the corresponding pages.
1995  * @kvm:        pointer to kvm instance
1996  * @log:        slot id and address to which we copy the log
1997  *
1998  * We need to keep it in mind that VCPU threads can write to the bitmap
1999  * concurrently. So, to avoid losing track of dirty pages we keep the
2000  * following order:
2001  *
2002  *    1. Take a snapshot of the bit and clear it if needed.
2003  *    2. Write protect the corresponding page.
2004  *    3. Copy the snapshot to the userspace.
2005  *    4. Upon return caller flushes TLB's if needed.
2006  *
2007  * Between 2 and 4, the guest may write to the page using the remaining TLB
2008  * entry.  This is not a problem because the page is reported dirty using
2009  * the snapshot taken before and step 4 ensures that writes done after
2010  * exiting to userspace will be logged for the next call.
2011  *
2012  */
2013 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2014 {
2015         struct kvm_memslots *slots;
2016         struct kvm_memory_slot *memslot;
2017         int i, as_id, id;
2018         unsigned long n;
2019         unsigned long *dirty_bitmap;
2020         unsigned long *dirty_bitmap_buffer;
2021         bool flush;
2022
2023         /* Dirty ring tracking is exclusive to dirty log tracking */
2024         if (kvm->dirty_ring_size)
2025                 return -ENXIO;
2026
2027         as_id = log->slot >> 16;
2028         id = (u16)log->slot;
2029         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2030                 return -EINVAL;
2031
2032         slots = __kvm_memslots(kvm, as_id);
2033         memslot = id_to_memslot(slots, id);
2034         if (!memslot || !memslot->dirty_bitmap)
2035                 return -ENOENT;
2036
2037         dirty_bitmap = memslot->dirty_bitmap;
2038
2039         kvm_arch_sync_dirty_log(kvm, memslot);
2040
2041         n = kvm_dirty_bitmap_bytes(memslot);
2042         flush = false;
2043         if (kvm->manual_dirty_log_protect) {
2044                 /*
2045                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2046                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2047                  * is some code duplication between this function and
2048                  * kvm_get_dirty_log, but hopefully all architecture
2049                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2050                  * can be eliminated.
2051                  */
2052                 dirty_bitmap_buffer = dirty_bitmap;
2053         } else {
2054                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2055                 memset(dirty_bitmap_buffer, 0, n);
2056
2057                 KVM_MMU_LOCK(kvm);
2058                 for (i = 0; i < n / sizeof(long); i++) {
2059                         unsigned long mask;
2060                         gfn_t offset;
2061
2062                         if (!dirty_bitmap[i])
2063                                 continue;
2064
2065                         flush = true;
2066                         mask = xchg(&dirty_bitmap[i], 0);
2067                         dirty_bitmap_buffer[i] = mask;
2068
2069                         offset = i * BITS_PER_LONG;
2070                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2071                                                                 offset, mask);
2072                 }
2073                 KVM_MMU_UNLOCK(kvm);
2074         }
2075
2076         if (flush)
2077                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2078
2079         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2080                 return -EFAULT;
2081         return 0;
2082 }
2083
2084
2085 /**
2086  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2087  * @kvm: kvm instance
2088  * @log: slot id and address to which we copy the log
2089  *
2090  * Steps 1-4 below provide general overview of dirty page logging. See
2091  * kvm_get_dirty_log_protect() function description for additional details.
2092  *
2093  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2094  * always flush the TLB (step 4) even if previous step failed  and the dirty
2095  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2096  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2097  * writes will be marked dirty for next log read.
2098  *
2099  *   1. Take a snapshot of the bit and clear it if needed.
2100  *   2. Write protect the corresponding page.
2101  *   3. Copy the snapshot to the userspace.
2102  *   4. Flush TLB's if needed.
2103  */
2104 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2105                                       struct kvm_dirty_log *log)
2106 {
2107         int r;
2108
2109         mutex_lock(&kvm->slots_lock);
2110
2111         r = kvm_get_dirty_log_protect(kvm, log);
2112
2113         mutex_unlock(&kvm->slots_lock);
2114         return r;
2115 }
2116
2117 /**
2118  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2119  *      and reenable dirty page tracking for the corresponding pages.
2120  * @kvm:        pointer to kvm instance
2121  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2122  */
2123 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2124                                        struct kvm_clear_dirty_log *log)
2125 {
2126         struct kvm_memslots *slots;
2127         struct kvm_memory_slot *memslot;
2128         int as_id, id;
2129         gfn_t offset;
2130         unsigned long i, n;
2131         unsigned long *dirty_bitmap;
2132         unsigned long *dirty_bitmap_buffer;
2133         bool flush;
2134
2135         /* Dirty ring tracking is exclusive to dirty log tracking */
2136         if (kvm->dirty_ring_size)
2137                 return -ENXIO;
2138
2139         as_id = log->slot >> 16;
2140         id = (u16)log->slot;
2141         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2142                 return -EINVAL;
2143
2144         if (log->first_page & 63)
2145                 return -EINVAL;
2146
2147         slots = __kvm_memslots(kvm, as_id);
2148         memslot = id_to_memslot(slots, id);
2149         if (!memslot || !memslot->dirty_bitmap)
2150                 return -ENOENT;
2151
2152         dirty_bitmap = memslot->dirty_bitmap;
2153
2154         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2155
2156         if (log->first_page > memslot->npages ||
2157             log->num_pages > memslot->npages - log->first_page ||
2158             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2159             return -EINVAL;
2160
2161         kvm_arch_sync_dirty_log(kvm, memslot);
2162
2163         flush = false;
2164         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2165         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2166                 return -EFAULT;
2167
2168         KVM_MMU_LOCK(kvm);
2169         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2170                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2171              i++, offset += BITS_PER_LONG) {
2172                 unsigned long mask = *dirty_bitmap_buffer++;
2173                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2174                 if (!mask)
2175                         continue;
2176
2177                 mask &= atomic_long_fetch_andnot(mask, p);
2178
2179                 /*
2180                  * mask contains the bits that really have been cleared.  This
2181                  * never includes any bits beyond the length of the memslot (if
2182                  * the length is not aligned to 64 pages), therefore it is not
2183                  * a problem if userspace sets them in log->dirty_bitmap.
2184                 */
2185                 if (mask) {
2186                         flush = true;
2187                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2188                                                                 offset, mask);
2189                 }
2190         }
2191         KVM_MMU_UNLOCK(kvm);
2192
2193         if (flush)
2194                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2195
2196         return 0;
2197 }
2198
2199 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2200                                         struct kvm_clear_dirty_log *log)
2201 {
2202         int r;
2203
2204         mutex_lock(&kvm->slots_lock);
2205
2206         r = kvm_clear_dirty_log_protect(kvm, log);
2207
2208         mutex_unlock(&kvm->slots_lock);
2209         return r;
2210 }
2211 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2212
2213 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2214 {
2215         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2216 }
2217 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2218
2219 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2220 {
2221         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2222         u64 gen = slots->generation;
2223         struct kvm_memory_slot *slot;
2224
2225         /*
2226          * This also protects against using a memslot from a different address space,
2227          * since different address spaces have different generation numbers.
2228          */
2229         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2230                 vcpu->last_used_slot = NULL;
2231                 vcpu->last_used_slot_gen = gen;
2232         }
2233
2234         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2235         if (slot)
2236                 return slot;
2237
2238         /*
2239          * Fall back to searching all memslots. We purposely use
2240          * search_memslots() instead of __gfn_to_memslot() to avoid
2241          * thrashing the VM-wide last_used_slot in kvm_memslots.
2242          */
2243         slot = search_memslots(slots, gfn, false);
2244         if (slot) {
2245                 vcpu->last_used_slot = slot;
2246                 return slot;
2247         }
2248
2249         return NULL;
2250 }
2251
2252 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2253 {
2254         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2255
2256         return kvm_is_visible_memslot(memslot);
2257 }
2258 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2259
2260 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2261 {
2262         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2263
2264         return kvm_is_visible_memslot(memslot);
2265 }
2266 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2267
2268 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2269 {
2270         struct vm_area_struct *vma;
2271         unsigned long addr, size;
2272
2273         size = PAGE_SIZE;
2274
2275         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2276         if (kvm_is_error_hva(addr))
2277                 return PAGE_SIZE;
2278
2279         mmap_read_lock(current->mm);
2280         vma = find_vma(current->mm, addr);
2281         if (!vma)
2282                 goto out;
2283
2284         size = vma_kernel_pagesize(vma);
2285
2286 out:
2287         mmap_read_unlock(current->mm);
2288
2289         return size;
2290 }
2291
2292 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2293 {
2294         return slot->flags & KVM_MEM_READONLY;
2295 }
2296
2297 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2298                                        gfn_t *nr_pages, bool write)
2299 {
2300         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2301                 return KVM_HVA_ERR_BAD;
2302
2303         if (memslot_is_readonly(slot) && write)
2304                 return KVM_HVA_ERR_RO_BAD;
2305
2306         if (nr_pages)
2307                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2308
2309         return __gfn_to_hva_memslot(slot, gfn);
2310 }
2311
2312 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2313                                      gfn_t *nr_pages)
2314 {
2315         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2316 }
2317
2318 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2319                                         gfn_t gfn)
2320 {
2321         return gfn_to_hva_many(slot, gfn, NULL);
2322 }
2323 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2324
2325 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2326 {
2327         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2328 }
2329 EXPORT_SYMBOL_GPL(gfn_to_hva);
2330
2331 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2332 {
2333         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2334 }
2335 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2336
2337 /*
2338  * Return the hva of a @gfn and the R/W attribute if possible.
2339  *
2340  * @slot: the kvm_memory_slot which contains @gfn
2341  * @gfn: the gfn to be translated
2342  * @writable: used to return the read/write attribute of the @slot if the hva
2343  * is valid and @writable is not NULL
2344  */
2345 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2346                                       gfn_t gfn, bool *writable)
2347 {
2348         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2349
2350         if (!kvm_is_error_hva(hva) && writable)
2351                 *writable = !memslot_is_readonly(slot);
2352
2353         return hva;
2354 }
2355
2356 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2357 {
2358         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2359
2360         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2361 }
2362
2363 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2364 {
2365         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2366
2367         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2368 }
2369
2370 static inline int check_user_page_hwpoison(unsigned long addr)
2371 {
2372         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2373
2374         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2375         return rc == -EHWPOISON;
2376 }
2377
2378 /*
2379  * The fast path to get the writable pfn which will be stored in @pfn,
2380  * true indicates success, otherwise false is returned.  It's also the
2381  * only part that runs if we can in atomic context.
2382  */
2383 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2384                             bool *writable, kvm_pfn_t *pfn)
2385 {
2386         struct page *page[1];
2387
2388         /*
2389          * Fast pin a writable pfn only if it is a write fault request
2390          * or the caller allows to map a writable pfn for a read fault
2391          * request.
2392          */
2393         if (!(write_fault || writable))
2394                 return false;
2395
2396         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2397                 *pfn = page_to_pfn(page[0]);
2398
2399                 if (writable)
2400                         *writable = true;
2401                 return true;
2402         }
2403
2404         return false;
2405 }
2406
2407 /*
2408  * The slow path to get the pfn of the specified host virtual address,
2409  * 1 indicates success, -errno is returned if error is detected.
2410  */
2411 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2412                            bool *writable, kvm_pfn_t *pfn)
2413 {
2414         unsigned int flags = FOLL_HWPOISON;
2415         struct page *page;
2416         int npages = 0;
2417
2418         might_sleep();
2419
2420         if (writable)
2421                 *writable = write_fault;
2422
2423         if (write_fault)
2424                 flags |= FOLL_WRITE;
2425         if (async)
2426                 flags |= FOLL_NOWAIT;
2427
2428         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2429         if (npages != 1)
2430                 return npages;
2431
2432         /* map read fault as writable if possible */
2433         if (unlikely(!write_fault) && writable) {
2434                 struct page *wpage;
2435
2436                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2437                         *writable = true;
2438                         put_page(page);
2439                         page = wpage;
2440                 }
2441         }
2442         *pfn = page_to_pfn(page);
2443         return npages;
2444 }
2445
2446 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2447 {
2448         if (unlikely(!(vma->vm_flags & VM_READ)))
2449                 return false;
2450
2451         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2452                 return false;
2453
2454         return true;
2455 }
2456
2457 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2458 {
2459         if (kvm_is_reserved_pfn(pfn))
2460                 return 1;
2461         return get_page_unless_zero(pfn_to_page(pfn));
2462 }
2463
2464 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2465                                unsigned long addr, bool write_fault,
2466                                bool *writable, kvm_pfn_t *p_pfn)
2467 {
2468         kvm_pfn_t pfn;
2469         pte_t *ptep;
2470         spinlock_t *ptl;
2471         int r;
2472
2473         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2474         if (r) {
2475                 /*
2476                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2477                  * not call the fault handler, so do it here.
2478                  */
2479                 bool unlocked = false;
2480                 r = fixup_user_fault(current->mm, addr,
2481                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2482                                      &unlocked);
2483                 if (unlocked)
2484                         return -EAGAIN;
2485                 if (r)
2486                         return r;
2487
2488                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2489                 if (r)
2490                         return r;
2491         }
2492
2493         if (write_fault && !pte_write(*ptep)) {
2494                 pfn = KVM_PFN_ERR_RO_FAULT;
2495                 goto out;
2496         }
2497
2498         if (writable)
2499                 *writable = pte_write(*ptep);
2500         pfn = pte_pfn(*ptep);
2501
2502         /*
2503          * Get a reference here because callers of *hva_to_pfn* and
2504          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2505          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2506          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2507          * simply do nothing for reserved pfns.
2508          *
2509          * Whoever called remap_pfn_range is also going to call e.g.
2510          * unmap_mapping_range before the underlying pages are freed,
2511          * causing a call to our MMU notifier.
2512          *
2513          * Certain IO or PFNMAP mappings can be backed with valid
2514          * struct pages, but be allocated without refcounting e.g.,
2515          * tail pages of non-compound higher order allocations, which
2516          * would then underflow the refcount when the caller does the
2517          * required put_page. Don't allow those pages here.
2518          */ 
2519         if (!kvm_try_get_pfn(pfn))
2520                 r = -EFAULT;
2521
2522 out:
2523         pte_unmap_unlock(ptep, ptl);
2524         *p_pfn = pfn;
2525
2526         return r;
2527 }
2528
2529 /*
2530  * Pin guest page in memory and return its pfn.
2531  * @addr: host virtual address which maps memory to the guest
2532  * @atomic: whether this function can sleep
2533  * @async: whether this function need to wait IO complete if the
2534  *         host page is not in the memory
2535  * @write_fault: whether we should get a writable host page
2536  * @writable: whether it allows to map a writable host page for !@write_fault
2537  *
2538  * The function will map a writable host page for these two cases:
2539  * 1): @write_fault = true
2540  * 2): @write_fault = false && @writable, @writable will tell the caller
2541  *     whether the mapping is writable.
2542  */
2543 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2544                      bool write_fault, bool *writable)
2545 {
2546         struct vm_area_struct *vma;
2547         kvm_pfn_t pfn = 0;
2548         int npages, r;
2549
2550         /* we can do it either atomically or asynchronously, not both */
2551         BUG_ON(atomic && async);
2552
2553         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2554                 return pfn;
2555
2556         if (atomic)
2557                 return KVM_PFN_ERR_FAULT;
2558
2559         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2560         if (npages == 1)
2561                 return pfn;
2562
2563         mmap_read_lock(current->mm);
2564         if (npages == -EHWPOISON ||
2565               (!async && check_user_page_hwpoison(addr))) {
2566                 pfn = KVM_PFN_ERR_HWPOISON;
2567                 goto exit;
2568         }
2569
2570 retry:
2571         vma = vma_lookup(current->mm, addr);
2572
2573         if (vma == NULL)
2574                 pfn = KVM_PFN_ERR_FAULT;
2575         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2576                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2577                 if (r == -EAGAIN)
2578                         goto retry;
2579                 if (r < 0)
2580                         pfn = KVM_PFN_ERR_FAULT;
2581         } else {
2582                 if (async && vma_is_valid(vma, write_fault))
2583                         *async = true;
2584                 pfn = KVM_PFN_ERR_FAULT;
2585         }
2586 exit:
2587         mmap_read_unlock(current->mm);
2588         return pfn;
2589 }
2590
2591 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2592                                bool atomic, bool *async, bool write_fault,
2593                                bool *writable, hva_t *hva)
2594 {
2595         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2596
2597         if (hva)
2598                 *hva = addr;
2599
2600         if (addr == KVM_HVA_ERR_RO_BAD) {
2601                 if (writable)
2602                         *writable = false;
2603                 return KVM_PFN_ERR_RO_FAULT;
2604         }
2605
2606         if (kvm_is_error_hva(addr)) {
2607                 if (writable)
2608                         *writable = false;
2609                 return KVM_PFN_NOSLOT;
2610         }
2611
2612         /* Do not map writable pfn in the readonly memslot. */
2613         if (writable && memslot_is_readonly(slot)) {
2614                 *writable = false;
2615                 writable = NULL;
2616         }
2617
2618         return hva_to_pfn(addr, atomic, async, write_fault,
2619                           writable);
2620 }
2621 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2622
2623 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2624                       bool *writable)
2625 {
2626         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2627                                     write_fault, writable, NULL);
2628 }
2629 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2630
2631 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2632 {
2633         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2634 }
2635 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2636
2637 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2638 {
2639         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2640 }
2641 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2642
2643 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2644 {
2645         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2646 }
2647 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2648
2649 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2650 {
2651         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2652 }
2653 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2654
2655 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2656 {
2657         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2658 }
2659 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2660
2661 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2662                             struct page **pages, int nr_pages)
2663 {
2664         unsigned long addr;
2665         gfn_t entry = 0;
2666
2667         addr = gfn_to_hva_many(slot, gfn, &entry);
2668         if (kvm_is_error_hva(addr))
2669                 return -1;
2670
2671         if (entry < nr_pages)
2672                 return 0;
2673
2674         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2675 }
2676 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2677
2678 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2679 {
2680         if (is_error_noslot_pfn(pfn))
2681                 return KVM_ERR_PTR_BAD_PAGE;
2682
2683         if (kvm_is_reserved_pfn(pfn)) {
2684                 WARN_ON(1);
2685                 return KVM_ERR_PTR_BAD_PAGE;
2686         }
2687
2688         return pfn_to_page(pfn);
2689 }
2690
2691 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2692 {
2693         kvm_pfn_t pfn;
2694
2695         pfn = gfn_to_pfn(kvm, gfn);
2696
2697         return kvm_pfn_to_page(pfn);
2698 }
2699 EXPORT_SYMBOL_GPL(gfn_to_page);
2700
2701 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2702 {
2703         if (pfn == 0)
2704                 return;
2705
2706         if (dirty)
2707                 kvm_release_pfn_dirty(pfn);
2708         else
2709                 kvm_release_pfn_clean(pfn);
2710 }
2711
2712 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2713 {
2714         kvm_pfn_t pfn;
2715         void *hva = NULL;
2716         struct page *page = KVM_UNMAPPED_PAGE;
2717
2718         if (!map)
2719                 return -EINVAL;
2720
2721         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2722         if (is_error_noslot_pfn(pfn))
2723                 return -EINVAL;
2724
2725         if (pfn_valid(pfn)) {
2726                 page = pfn_to_page(pfn);
2727                 hva = kmap(page);
2728 #ifdef CONFIG_HAS_IOMEM
2729         } else {
2730                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2731 #endif
2732         }
2733
2734         if (!hva)
2735                 return -EFAULT;
2736
2737         map->page = page;
2738         map->hva = hva;
2739         map->pfn = pfn;
2740         map->gfn = gfn;
2741
2742         return 0;
2743 }
2744 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2745
2746 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2747 {
2748         if (!map)
2749                 return;
2750
2751         if (!map->hva)
2752                 return;
2753
2754         if (map->page != KVM_UNMAPPED_PAGE)
2755                 kunmap(map->page);
2756 #ifdef CONFIG_HAS_IOMEM
2757         else
2758                 memunmap(map->hva);
2759 #endif
2760
2761         if (dirty)
2762                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2763
2764         kvm_release_pfn(map->pfn, dirty);
2765
2766         map->hva = NULL;
2767         map->page = NULL;
2768 }
2769 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2770
2771 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2772 {
2773         kvm_pfn_t pfn;
2774
2775         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2776
2777         return kvm_pfn_to_page(pfn);
2778 }
2779 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2780
2781 void kvm_release_page_clean(struct page *page)
2782 {
2783         WARN_ON(is_error_page(page));
2784
2785         kvm_release_pfn_clean(page_to_pfn(page));
2786 }
2787 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2788
2789 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2790 {
2791         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2792                 put_page(pfn_to_page(pfn));
2793 }
2794 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2795
2796 void kvm_release_page_dirty(struct page *page)
2797 {
2798         WARN_ON(is_error_page(page));
2799
2800         kvm_release_pfn_dirty(page_to_pfn(page));
2801 }
2802 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2803
2804 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2805 {
2806         kvm_set_pfn_dirty(pfn);
2807         kvm_release_pfn_clean(pfn);
2808 }
2809 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2810
2811 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2812 {
2813         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2814                 SetPageDirty(pfn_to_page(pfn));
2815 }
2816 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2817
2818 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2819 {
2820         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2821                 mark_page_accessed(pfn_to_page(pfn));
2822 }
2823 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2824
2825 static int next_segment(unsigned long len, int offset)
2826 {
2827         if (len > PAGE_SIZE - offset)
2828                 return PAGE_SIZE - offset;
2829         else
2830                 return len;
2831 }
2832
2833 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2834                                  void *data, int offset, int len)
2835 {
2836         int r;
2837         unsigned long addr;
2838
2839         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2840         if (kvm_is_error_hva(addr))
2841                 return -EFAULT;
2842         r = __copy_from_user(data, (void __user *)addr + offset, len);
2843         if (r)
2844                 return -EFAULT;
2845         return 0;
2846 }
2847
2848 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2849                         int len)
2850 {
2851         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2852
2853         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2854 }
2855 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2856
2857 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2858                              int offset, int len)
2859 {
2860         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2861
2862         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2863 }
2864 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2865
2866 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2867 {
2868         gfn_t gfn = gpa >> PAGE_SHIFT;
2869         int seg;
2870         int offset = offset_in_page(gpa);
2871         int ret;
2872
2873         while ((seg = next_segment(len, offset)) != 0) {
2874                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2875                 if (ret < 0)
2876                         return ret;
2877                 offset = 0;
2878                 len -= seg;
2879                 data += seg;
2880                 ++gfn;
2881         }
2882         return 0;
2883 }
2884 EXPORT_SYMBOL_GPL(kvm_read_guest);
2885
2886 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2887 {
2888         gfn_t gfn = gpa >> PAGE_SHIFT;
2889         int seg;
2890         int offset = offset_in_page(gpa);
2891         int ret;
2892
2893         while ((seg = next_segment(len, offset)) != 0) {
2894                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2895                 if (ret < 0)
2896                         return ret;
2897                 offset = 0;
2898                 len -= seg;
2899                 data += seg;
2900                 ++gfn;
2901         }
2902         return 0;
2903 }
2904 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2905
2906 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2907                                    void *data, int offset, unsigned long len)
2908 {
2909         int r;
2910         unsigned long addr;
2911
2912         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2913         if (kvm_is_error_hva(addr))
2914                 return -EFAULT;
2915         pagefault_disable();
2916         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2917         pagefault_enable();
2918         if (r)
2919                 return -EFAULT;
2920         return 0;
2921 }
2922
2923 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2924                                void *data, unsigned long len)
2925 {
2926         gfn_t gfn = gpa >> PAGE_SHIFT;
2927         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2928         int offset = offset_in_page(gpa);
2929
2930         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2931 }
2932 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2933
2934 static int __kvm_write_guest_page(struct kvm *kvm,
2935                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2936                                   const void *data, int offset, int len)
2937 {
2938         int r;
2939         unsigned long addr;
2940
2941         addr = gfn_to_hva_memslot(memslot, gfn);
2942         if (kvm_is_error_hva(addr))
2943                 return -EFAULT;
2944         r = __copy_to_user((void __user *)addr + offset, data, len);
2945         if (r)
2946                 return -EFAULT;
2947         mark_page_dirty_in_slot(kvm, memslot, gfn);
2948         return 0;
2949 }
2950
2951 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2952                          const void *data, int offset, int len)
2953 {
2954         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2955
2956         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2957 }
2958 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2959
2960 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2961                               const void *data, int offset, int len)
2962 {
2963         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2964
2965         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2966 }
2967 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2968
2969 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2970                     unsigned long len)
2971 {
2972         gfn_t gfn = gpa >> PAGE_SHIFT;
2973         int seg;
2974         int offset = offset_in_page(gpa);
2975         int ret;
2976
2977         while ((seg = next_segment(len, offset)) != 0) {
2978                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2979                 if (ret < 0)
2980                         return ret;
2981                 offset = 0;
2982                 len -= seg;
2983                 data += seg;
2984                 ++gfn;
2985         }
2986         return 0;
2987 }
2988 EXPORT_SYMBOL_GPL(kvm_write_guest);
2989
2990 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2991                          unsigned long len)
2992 {
2993         gfn_t gfn = gpa >> PAGE_SHIFT;
2994         int seg;
2995         int offset = offset_in_page(gpa);
2996         int ret;
2997
2998         while ((seg = next_segment(len, offset)) != 0) {
2999                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3000                 if (ret < 0)
3001                         return ret;
3002                 offset = 0;
3003                 len -= seg;
3004                 data += seg;
3005                 ++gfn;
3006         }
3007         return 0;
3008 }
3009 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3010
3011 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3012                                        struct gfn_to_hva_cache *ghc,
3013                                        gpa_t gpa, unsigned long len)
3014 {
3015         int offset = offset_in_page(gpa);
3016         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3017         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3018         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3019         gfn_t nr_pages_avail;
3020
3021         /* Update ghc->generation before performing any error checks. */
3022         ghc->generation = slots->generation;
3023
3024         if (start_gfn > end_gfn) {
3025                 ghc->hva = KVM_HVA_ERR_BAD;
3026                 return -EINVAL;
3027         }
3028
3029         /*
3030          * If the requested region crosses two memslots, we still
3031          * verify that the entire region is valid here.
3032          */
3033         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3034                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3035                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3036                                            &nr_pages_avail);
3037                 if (kvm_is_error_hva(ghc->hva))
3038                         return -EFAULT;
3039         }
3040
3041         /* Use the slow path for cross page reads and writes. */
3042         if (nr_pages_needed == 1)
3043                 ghc->hva += offset;
3044         else
3045                 ghc->memslot = NULL;
3046
3047         ghc->gpa = gpa;
3048         ghc->len = len;
3049         return 0;
3050 }
3051
3052 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3053                               gpa_t gpa, unsigned long len)
3054 {
3055         struct kvm_memslots *slots = kvm_memslots(kvm);
3056         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3057 }
3058 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3059
3060 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3061                                   void *data, unsigned int offset,
3062                                   unsigned long len)
3063 {
3064         struct kvm_memslots *slots = kvm_memslots(kvm);
3065         int r;
3066         gpa_t gpa = ghc->gpa + offset;
3067
3068         if (WARN_ON_ONCE(len + offset > ghc->len))
3069                 return -EINVAL;
3070
3071         if (slots->generation != ghc->generation) {
3072                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3073                         return -EFAULT;
3074         }
3075
3076         if (kvm_is_error_hva(ghc->hva))
3077                 return -EFAULT;
3078
3079         if (unlikely(!ghc->memslot))
3080                 return kvm_write_guest(kvm, gpa, data, len);
3081
3082         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3083         if (r)
3084                 return -EFAULT;
3085         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3086
3087         return 0;
3088 }
3089 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3090
3091 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3092                            void *data, unsigned long len)
3093 {
3094         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3095 }
3096 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3097
3098 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3099                                  void *data, unsigned int offset,
3100                                  unsigned long len)
3101 {
3102         struct kvm_memslots *slots = kvm_memslots(kvm);
3103         int r;
3104         gpa_t gpa = ghc->gpa + offset;
3105
3106         if (WARN_ON_ONCE(len + offset > ghc->len))
3107                 return -EINVAL;
3108
3109         if (slots->generation != ghc->generation) {
3110                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3111                         return -EFAULT;
3112         }
3113
3114         if (kvm_is_error_hva(ghc->hva))
3115                 return -EFAULT;
3116
3117         if (unlikely(!ghc->memslot))
3118                 return kvm_read_guest(kvm, gpa, data, len);
3119
3120         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3121         if (r)
3122                 return -EFAULT;
3123
3124         return 0;
3125 }
3126 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3127
3128 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3129                           void *data, unsigned long len)
3130 {
3131         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3132 }
3133 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3134
3135 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3136 {
3137         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3138         gfn_t gfn = gpa >> PAGE_SHIFT;
3139         int seg;
3140         int offset = offset_in_page(gpa);
3141         int ret;
3142
3143         while ((seg = next_segment(len, offset)) != 0) {
3144                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3145                 if (ret < 0)
3146                         return ret;
3147                 offset = 0;
3148                 len -= seg;
3149                 ++gfn;
3150         }
3151         return 0;
3152 }
3153 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3154
3155 void mark_page_dirty_in_slot(struct kvm *kvm,
3156                              const struct kvm_memory_slot *memslot,
3157                              gfn_t gfn)
3158 {
3159         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3160
3161 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3162         if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3163                 return;
3164 #endif
3165
3166         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3167                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3168                 u32 slot = (memslot->as_id << 16) | memslot->id;
3169
3170                 if (kvm->dirty_ring_size)
3171                         kvm_dirty_ring_push(&vcpu->dirty_ring,
3172                                             slot, rel_gfn);
3173                 else
3174                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3175         }
3176 }
3177 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3178
3179 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3180 {
3181         struct kvm_memory_slot *memslot;
3182
3183         memslot = gfn_to_memslot(kvm, gfn);
3184         mark_page_dirty_in_slot(kvm, memslot, gfn);
3185 }
3186 EXPORT_SYMBOL_GPL(mark_page_dirty);
3187
3188 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3189 {
3190         struct kvm_memory_slot *memslot;
3191
3192         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3193         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3194 }
3195 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3196
3197 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3198 {
3199         if (!vcpu->sigset_active)
3200                 return;
3201
3202         /*
3203          * This does a lockless modification of ->real_blocked, which is fine
3204          * because, only current can change ->real_blocked and all readers of
3205          * ->real_blocked don't care as long ->real_blocked is always a subset
3206          * of ->blocked.
3207          */
3208         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3209 }
3210
3211 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3212 {
3213         if (!vcpu->sigset_active)
3214                 return;
3215
3216         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3217         sigemptyset(&current->real_blocked);
3218 }
3219
3220 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3221 {
3222         unsigned int old, val, grow, grow_start;
3223
3224         old = val = vcpu->halt_poll_ns;
3225         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3226         grow = READ_ONCE(halt_poll_ns_grow);
3227         if (!grow)
3228                 goto out;
3229
3230         val *= grow;
3231         if (val < grow_start)
3232                 val = grow_start;
3233
3234         if (val > vcpu->kvm->max_halt_poll_ns)
3235                 val = vcpu->kvm->max_halt_poll_ns;
3236
3237         vcpu->halt_poll_ns = val;
3238 out:
3239         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3240 }
3241
3242 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3243 {
3244         unsigned int old, val, shrink, grow_start;
3245
3246         old = val = vcpu->halt_poll_ns;
3247         shrink = READ_ONCE(halt_poll_ns_shrink);
3248         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3249         if (shrink == 0)
3250                 val = 0;
3251         else
3252                 val /= shrink;
3253
3254         if (val < grow_start)
3255                 val = 0;
3256
3257         vcpu->halt_poll_ns = val;
3258         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3259 }
3260
3261 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3262 {
3263         int ret = -EINTR;
3264         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3265
3266         if (kvm_arch_vcpu_runnable(vcpu)) {
3267                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3268                 goto out;
3269         }
3270         if (kvm_cpu_has_pending_timer(vcpu))
3271                 goto out;
3272         if (signal_pending(current))
3273                 goto out;
3274         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3275                 goto out;
3276
3277         ret = 0;
3278 out:
3279         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3280         return ret;
3281 }
3282
3283 /*
3284  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3285  * pending.  This is mostly used when halting a vCPU, but may also be used
3286  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3287  */
3288 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3289 {
3290         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3291         bool waited = false;
3292
3293         vcpu->stat.generic.blocking = 1;
3294
3295         kvm_arch_vcpu_blocking(vcpu);
3296
3297         prepare_to_rcuwait(wait);
3298         for (;;) {
3299                 set_current_state(TASK_INTERRUPTIBLE);
3300
3301                 if (kvm_vcpu_check_block(vcpu) < 0)
3302                         break;
3303
3304                 waited = true;
3305                 schedule();
3306         }
3307         finish_rcuwait(wait);
3308
3309         kvm_arch_vcpu_unblocking(vcpu);
3310
3311         vcpu->stat.generic.blocking = 0;
3312
3313         return waited;
3314 }
3315
3316 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3317                                           ktime_t end, bool success)
3318 {
3319         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3320         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3321
3322         ++vcpu->stat.generic.halt_attempted_poll;
3323
3324         if (success) {
3325                 ++vcpu->stat.generic.halt_successful_poll;
3326
3327                 if (!vcpu_valid_wakeup(vcpu))
3328                         ++vcpu->stat.generic.halt_poll_invalid;
3329
3330                 stats->halt_poll_success_ns += poll_ns;
3331                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3332         } else {
3333                 stats->halt_poll_fail_ns += poll_ns;
3334                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3335         }
3336 }
3337
3338 /*
3339  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3340  * polling is enabled, busy wait for a short time before blocking to avoid the
3341  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3342  * is halted.
3343  */
3344 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3345 {
3346         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3347         bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3348         ktime_t start, cur, poll_end;
3349         bool waited = false;
3350         u64 halt_ns;
3351
3352         start = cur = poll_end = ktime_get();
3353         if (do_halt_poll) {
3354                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3355
3356                 do {
3357                         /*
3358                          * This sets KVM_REQ_UNHALT if an interrupt
3359                          * arrives.
3360                          */
3361                         if (kvm_vcpu_check_block(vcpu) < 0)
3362                                 goto out;
3363                         cpu_relax();
3364                         poll_end = cur = ktime_get();
3365                 } while (kvm_vcpu_can_poll(cur, stop));
3366         }
3367
3368         waited = kvm_vcpu_block(vcpu);
3369
3370         cur = ktime_get();
3371         if (waited) {
3372                 vcpu->stat.generic.halt_wait_ns +=
3373                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3374                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3375                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3376         }
3377 out:
3378         /* The total time the vCPU was "halted", including polling time. */
3379         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3380
3381         /*
3382          * Note, halt-polling is considered successful so long as the vCPU was
3383          * never actually scheduled out, i.e. even if the wake event arrived
3384          * after of the halt-polling loop itself, but before the full wait.
3385          */
3386         if (do_halt_poll)
3387                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3388
3389         if (halt_poll_allowed) {
3390                 if (!vcpu_valid_wakeup(vcpu)) {
3391                         shrink_halt_poll_ns(vcpu);
3392                 } else if (vcpu->kvm->max_halt_poll_ns) {
3393                         if (halt_ns <= vcpu->halt_poll_ns)
3394                                 ;
3395                         /* we had a long block, shrink polling */
3396                         else if (vcpu->halt_poll_ns &&
3397                                  halt_ns > vcpu->kvm->max_halt_poll_ns)
3398                                 shrink_halt_poll_ns(vcpu);
3399                         /* we had a short halt and our poll time is too small */
3400                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3401                                  halt_ns < vcpu->kvm->max_halt_poll_ns)
3402                                 grow_halt_poll_ns(vcpu);
3403                 } else {
3404                         vcpu->halt_poll_ns = 0;
3405                 }
3406         }
3407
3408         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3409 }
3410 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3411
3412 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3413 {
3414         if (__kvm_vcpu_wake_up(vcpu)) {
3415                 WRITE_ONCE(vcpu->ready, true);
3416                 ++vcpu->stat.generic.halt_wakeup;
3417                 return true;
3418         }
3419
3420         return false;
3421 }
3422 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3423
3424 #ifndef CONFIG_S390
3425 /*
3426  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3427  */
3428 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3429 {
3430         int me, cpu;
3431
3432         if (kvm_vcpu_wake_up(vcpu))
3433                 return;
3434
3435         me = get_cpu();
3436         /*
3437          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3438          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3439          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3440          * within the vCPU thread itself.
3441          */
3442         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3443                 if (vcpu->mode == IN_GUEST_MODE)
3444                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3445                 goto out;
3446         }
3447
3448         /*
3449          * Note, the vCPU could get migrated to a different pCPU at any point
3450          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3451          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3452          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3453          * vCPU also requires it to leave IN_GUEST_MODE.
3454          */
3455         if (kvm_arch_vcpu_should_kick(vcpu)) {
3456                 cpu = READ_ONCE(vcpu->cpu);
3457                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3458                         smp_send_reschedule(cpu);
3459         }
3460 out:
3461         put_cpu();
3462 }
3463 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3464 #endif /* !CONFIG_S390 */
3465
3466 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3467 {
3468         struct pid *pid;
3469         struct task_struct *task = NULL;
3470         int ret = 0;
3471
3472         rcu_read_lock();
3473         pid = rcu_dereference(target->pid);
3474         if (pid)
3475                 task = get_pid_task(pid, PIDTYPE_PID);
3476         rcu_read_unlock();
3477         if (!task)
3478                 return ret;
3479         ret = yield_to(task, 1);
3480         put_task_struct(task);
3481
3482         return ret;
3483 }
3484 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3485
3486 /*
3487  * Helper that checks whether a VCPU is eligible for directed yield.
3488  * Most eligible candidate to yield is decided by following heuristics:
3489  *
3490  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3491  *  (preempted lock holder), indicated by @in_spin_loop.
3492  *  Set at the beginning and cleared at the end of interception/PLE handler.
3493  *
3494  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3495  *  chance last time (mostly it has become eligible now since we have probably
3496  *  yielded to lockholder in last iteration. This is done by toggling
3497  *  @dy_eligible each time a VCPU checked for eligibility.)
3498  *
3499  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3500  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3501  *  burning. Giving priority for a potential lock-holder increases lock
3502  *  progress.
3503  *
3504  *  Since algorithm is based on heuristics, accessing another VCPU data without
3505  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3506  *  and continue with next VCPU and so on.
3507  */
3508 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3509 {
3510 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3511         bool eligible;
3512
3513         eligible = !vcpu->spin_loop.in_spin_loop ||
3514                     vcpu->spin_loop.dy_eligible;
3515
3516         if (vcpu->spin_loop.in_spin_loop)
3517                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3518
3519         return eligible;
3520 #else
3521         return true;
3522 #endif
3523 }
3524
3525 /*
3526  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3527  * a vcpu_load/vcpu_put pair.  However, for most architectures
3528  * kvm_arch_vcpu_runnable does not require vcpu_load.
3529  */
3530 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3531 {
3532         return kvm_arch_vcpu_runnable(vcpu);
3533 }
3534
3535 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3536 {
3537         if (kvm_arch_dy_runnable(vcpu))
3538                 return true;
3539
3540 #ifdef CONFIG_KVM_ASYNC_PF
3541         if (!list_empty_careful(&vcpu->async_pf.done))
3542                 return true;
3543 #endif
3544
3545         return false;
3546 }
3547
3548 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3549 {
3550         return false;
3551 }
3552
3553 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3554 {
3555         struct kvm *kvm = me->kvm;
3556         struct kvm_vcpu *vcpu;
3557         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3558         unsigned long i;
3559         int yielded = 0;
3560         int try = 3;
3561         int pass;
3562
3563         kvm_vcpu_set_in_spin_loop(me, true);
3564         /*
3565          * We boost the priority of a VCPU that is runnable but not
3566          * currently running, because it got preempted by something
3567          * else and called schedule in __vcpu_run.  Hopefully that
3568          * VCPU is holding the lock that we need and will release it.
3569          * We approximate round-robin by starting at the last boosted VCPU.
3570          */
3571         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3572                 kvm_for_each_vcpu(i, vcpu, kvm) {
3573                         if (!pass && i <= last_boosted_vcpu) {
3574                                 i = last_boosted_vcpu;
3575                                 continue;
3576                         } else if (pass && i > last_boosted_vcpu)
3577                                 break;
3578                         if (!READ_ONCE(vcpu->ready))
3579                                 continue;
3580                         if (vcpu == me)
3581                                 continue;
3582                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3583                                 continue;
3584                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3585                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3586                             !kvm_arch_vcpu_in_kernel(vcpu))
3587                                 continue;
3588                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3589                                 continue;
3590
3591                         yielded = kvm_vcpu_yield_to(vcpu);
3592                         if (yielded > 0) {
3593                                 kvm->last_boosted_vcpu = i;
3594                                 break;
3595                         } else if (yielded < 0) {
3596                                 try--;
3597                                 if (!try)
3598                                         break;
3599                         }
3600                 }
3601         }
3602         kvm_vcpu_set_in_spin_loop(me, false);
3603
3604         /* Ensure vcpu is not eligible during next spinloop */
3605         kvm_vcpu_set_dy_eligible(me, false);
3606 }
3607 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3608
3609 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3610 {
3611 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3612         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3613             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3614              kvm->dirty_ring_size / PAGE_SIZE);
3615 #else
3616         return false;
3617 #endif
3618 }
3619
3620 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3621 {
3622         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3623         struct page *page;
3624
3625         if (vmf->pgoff == 0)
3626                 page = virt_to_page(vcpu->run);
3627 #ifdef CONFIG_X86
3628         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3629                 page = virt_to_page(vcpu->arch.pio_data);
3630 #endif
3631 #ifdef CONFIG_KVM_MMIO
3632         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3633                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3634 #endif
3635         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3636                 page = kvm_dirty_ring_get_page(
3637                     &vcpu->dirty_ring,
3638                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3639         else
3640                 return kvm_arch_vcpu_fault(vcpu, vmf);
3641         get_page(page);
3642         vmf->page = page;
3643         return 0;
3644 }
3645
3646 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3647         .fault = kvm_vcpu_fault,
3648 };
3649
3650 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3651 {
3652         struct kvm_vcpu *vcpu = file->private_data;
3653         unsigned long pages = vma_pages(vma);
3654
3655         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3656              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3657             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3658                 return -EINVAL;
3659
3660         vma->vm_ops = &kvm_vcpu_vm_ops;
3661         return 0;
3662 }
3663
3664 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3665 {
3666         struct kvm_vcpu *vcpu = filp->private_data;
3667
3668         kvm_put_kvm(vcpu->kvm);
3669         return 0;
3670 }
3671
3672 static struct file_operations kvm_vcpu_fops = {
3673         .release        = kvm_vcpu_release,
3674         .unlocked_ioctl = kvm_vcpu_ioctl,
3675         .mmap           = kvm_vcpu_mmap,
3676         .llseek         = noop_llseek,
3677         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3678 };
3679
3680 /*
3681  * Allocates an inode for the vcpu.
3682  */
3683 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3684 {
3685         char name[8 + 1 + ITOA_MAX_LEN + 1];
3686
3687         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3688         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3689 }
3690
3691 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3692 {
3693 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3694         struct dentry *debugfs_dentry;
3695         char dir_name[ITOA_MAX_LEN * 2];
3696
3697         if (!debugfs_initialized())
3698                 return;
3699
3700         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3701         debugfs_dentry = debugfs_create_dir(dir_name,
3702                                             vcpu->kvm->debugfs_dentry);
3703
3704         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3705 #endif
3706 }
3707
3708 /*
3709  * Creates some virtual cpus.  Good luck creating more than one.
3710  */
3711 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3712 {
3713         int r;
3714         struct kvm_vcpu *vcpu;
3715         struct page *page;
3716
3717         if (id >= KVM_MAX_VCPU_IDS)
3718                 return -EINVAL;
3719
3720         mutex_lock(&kvm->lock);
3721         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3722                 mutex_unlock(&kvm->lock);
3723                 return -EINVAL;
3724         }
3725
3726         kvm->created_vcpus++;
3727         mutex_unlock(&kvm->lock);
3728
3729         r = kvm_arch_vcpu_precreate(kvm, id);
3730         if (r)
3731                 goto vcpu_decrement;
3732
3733         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3734         if (!vcpu) {
3735                 r = -ENOMEM;
3736                 goto vcpu_decrement;
3737         }
3738
3739         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3740         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3741         if (!page) {
3742                 r = -ENOMEM;
3743                 goto vcpu_free;
3744         }
3745         vcpu->run = page_address(page);
3746
3747         kvm_vcpu_init(vcpu, kvm, id);
3748
3749         r = kvm_arch_vcpu_create(vcpu);
3750         if (r)
3751                 goto vcpu_free_run_page;
3752
3753         if (kvm->dirty_ring_size) {
3754                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3755                                          id, kvm->dirty_ring_size);
3756                 if (r)
3757                         goto arch_vcpu_destroy;
3758         }
3759
3760         mutex_lock(&kvm->lock);
3761         if (kvm_get_vcpu_by_id(kvm, id)) {
3762                 r = -EEXIST;
3763                 goto unlock_vcpu_destroy;
3764         }
3765
3766         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3767         r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3768         BUG_ON(r == -EBUSY);
3769         if (r)
3770                 goto unlock_vcpu_destroy;
3771
3772         /* Fill the stats id string for the vcpu */
3773         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3774                  task_pid_nr(current), id);
3775
3776         /* Now it's all set up, let userspace reach it */
3777         kvm_get_kvm(kvm);
3778         r = create_vcpu_fd(vcpu);
3779         if (r < 0) {
3780                 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3781                 kvm_put_kvm_no_destroy(kvm);
3782                 goto unlock_vcpu_destroy;
3783         }
3784
3785         /*
3786          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3787          * pointer before kvm->online_vcpu's incremented value.
3788          */
3789         smp_wmb();
3790         atomic_inc(&kvm->online_vcpus);
3791
3792         mutex_unlock(&kvm->lock);
3793         kvm_arch_vcpu_postcreate(vcpu);
3794         kvm_create_vcpu_debugfs(vcpu);
3795         return r;
3796
3797 unlock_vcpu_destroy:
3798         mutex_unlock(&kvm->lock);
3799         kvm_dirty_ring_free(&vcpu->dirty_ring);
3800 arch_vcpu_destroy:
3801         kvm_arch_vcpu_destroy(vcpu);
3802 vcpu_free_run_page:
3803         free_page((unsigned long)vcpu->run);
3804 vcpu_free:
3805         kmem_cache_free(kvm_vcpu_cache, vcpu);
3806 vcpu_decrement:
3807         mutex_lock(&kvm->lock);
3808         kvm->created_vcpus--;
3809         mutex_unlock(&kvm->lock);
3810         return r;
3811 }
3812
3813 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3814 {
3815         if (sigset) {
3816                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3817                 vcpu->sigset_active = 1;
3818                 vcpu->sigset = *sigset;
3819         } else
3820                 vcpu->sigset_active = 0;
3821         return 0;
3822 }
3823
3824 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3825                               size_t size, loff_t *offset)
3826 {
3827         struct kvm_vcpu *vcpu = file->private_data;
3828
3829         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3830                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3831                         sizeof(vcpu->stat), user_buffer, size, offset);
3832 }
3833
3834 static const struct file_operations kvm_vcpu_stats_fops = {
3835         .read = kvm_vcpu_stats_read,
3836         .llseek = noop_llseek,
3837 };
3838
3839 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3840 {
3841         int fd;
3842         struct file *file;
3843         char name[15 + ITOA_MAX_LEN + 1];
3844
3845         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3846
3847         fd = get_unused_fd_flags(O_CLOEXEC);
3848         if (fd < 0)
3849                 return fd;
3850
3851         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3852         if (IS_ERR(file)) {
3853                 put_unused_fd(fd);
3854                 return PTR_ERR(file);
3855         }
3856         file->f_mode |= FMODE_PREAD;
3857         fd_install(fd, file);
3858
3859         return fd;
3860 }
3861
3862 static long kvm_vcpu_ioctl(struct file *filp,
3863                            unsigned int ioctl, unsigned long arg)
3864 {
3865         struct kvm_vcpu *vcpu = filp->private_data;
3866         void __user *argp = (void __user *)arg;
3867         int r;
3868         struct kvm_fpu *fpu = NULL;
3869         struct kvm_sregs *kvm_sregs = NULL;
3870
3871         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3872                 return -EIO;
3873
3874         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3875                 return -EINVAL;
3876
3877         /*
3878          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3879          * execution; mutex_lock() would break them.
3880          */
3881         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3882         if (r != -ENOIOCTLCMD)
3883                 return r;
3884
3885         if (mutex_lock_killable(&vcpu->mutex))
3886                 return -EINTR;
3887         switch (ioctl) {
3888         case KVM_RUN: {
3889                 struct pid *oldpid;
3890                 r = -EINVAL;
3891                 if (arg)
3892                         goto out;
3893                 oldpid = rcu_access_pointer(vcpu->pid);
3894                 if (unlikely(oldpid != task_pid(current))) {
3895                         /* The thread running this VCPU changed. */
3896                         struct pid *newpid;
3897
3898                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3899                         if (r)
3900                                 break;
3901
3902                         newpid = get_task_pid(current, PIDTYPE_PID);
3903                         rcu_assign_pointer(vcpu->pid, newpid);
3904                         if (oldpid)
3905                                 synchronize_rcu();
3906                         put_pid(oldpid);
3907                 }
3908                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3909                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3910                 break;
3911         }
3912         case KVM_GET_REGS: {
3913                 struct kvm_regs *kvm_regs;
3914
3915                 r = -ENOMEM;
3916                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3917                 if (!kvm_regs)
3918                         goto out;
3919                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3920                 if (r)
3921                         goto out_free1;
3922                 r = -EFAULT;
3923                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3924                         goto out_free1;
3925                 r = 0;
3926 out_free1:
3927                 kfree(kvm_regs);
3928                 break;
3929         }
3930         case KVM_SET_REGS: {
3931                 struct kvm_regs *kvm_regs;
3932
3933                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3934                 if (IS_ERR(kvm_regs)) {
3935                         r = PTR_ERR(kvm_regs);
3936                         goto out;
3937                 }
3938                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3939                 kfree(kvm_regs);
3940                 break;
3941         }
3942         case KVM_GET_SREGS: {
3943                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3944                                     GFP_KERNEL_ACCOUNT);
3945                 r = -ENOMEM;
3946                 if (!kvm_sregs)
3947                         goto out;
3948                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3949                 if (r)
3950                         goto out;
3951                 r = -EFAULT;
3952                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3953                         goto out;
3954                 r = 0;
3955                 break;
3956         }
3957         case KVM_SET_SREGS: {
3958                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3959                 if (IS_ERR(kvm_sregs)) {
3960                         r = PTR_ERR(kvm_sregs);
3961                         kvm_sregs = NULL;
3962                         goto out;
3963                 }
3964                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3965                 break;
3966         }
3967         case KVM_GET_MP_STATE: {
3968                 struct kvm_mp_state mp_state;
3969
3970                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3971                 if (r)
3972                         goto out;
3973                 r = -EFAULT;
3974                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3975                         goto out;
3976                 r = 0;
3977                 break;
3978         }
3979         case KVM_SET_MP_STATE: {
3980                 struct kvm_mp_state mp_state;
3981
3982                 r = -EFAULT;
3983                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3984                         goto out;
3985                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3986                 break;
3987         }
3988         case KVM_TRANSLATE: {
3989                 struct kvm_translation tr;
3990
3991                 r = -EFAULT;
3992                 if (copy_from_user(&tr, argp, sizeof(tr)))
3993                         goto out;
3994                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3995                 if (r)
3996                         goto out;
3997                 r = -EFAULT;
3998                 if (copy_to_user(argp, &tr, sizeof(tr)))
3999                         goto out;
4000                 r = 0;
4001                 break;
4002         }
4003         case KVM_SET_GUEST_DEBUG: {
4004                 struct kvm_guest_debug dbg;
4005
4006                 r = -EFAULT;
4007                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4008                         goto out;
4009                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4010                 break;
4011         }
4012         case KVM_SET_SIGNAL_MASK: {
4013                 struct kvm_signal_mask __user *sigmask_arg = argp;
4014                 struct kvm_signal_mask kvm_sigmask;
4015                 sigset_t sigset, *p;
4016
4017                 p = NULL;
4018                 if (argp) {
4019                         r = -EFAULT;
4020                         if (copy_from_user(&kvm_sigmask, argp,
4021                                            sizeof(kvm_sigmask)))
4022                                 goto out;
4023                         r = -EINVAL;
4024                         if (kvm_sigmask.len != sizeof(sigset))
4025                                 goto out;
4026                         r = -EFAULT;
4027                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4028                                            sizeof(sigset)))
4029                                 goto out;
4030                         p = &sigset;
4031                 }
4032                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4033                 break;
4034         }
4035         case KVM_GET_FPU: {
4036                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4037                 r = -ENOMEM;
4038                 if (!fpu)
4039                         goto out;
4040                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4041                 if (r)
4042                         goto out;
4043                 r = -EFAULT;
4044                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4045                         goto out;
4046                 r = 0;
4047                 break;
4048         }
4049         case KVM_SET_FPU: {
4050                 fpu = memdup_user(argp, sizeof(*fpu));
4051                 if (IS_ERR(fpu)) {
4052                         r = PTR_ERR(fpu);
4053                         fpu = NULL;
4054                         goto out;
4055                 }
4056                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4057                 break;
4058         }
4059         case KVM_GET_STATS_FD: {
4060                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4061                 break;
4062         }
4063         default:
4064                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4065         }
4066 out:
4067         mutex_unlock(&vcpu->mutex);
4068         kfree(fpu);
4069         kfree(kvm_sregs);
4070         return r;
4071 }
4072
4073 #ifdef CONFIG_KVM_COMPAT
4074 static long kvm_vcpu_compat_ioctl(struct file *filp,
4075                                   unsigned int ioctl, unsigned long arg)
4076 {
4077         struct kvm_vcpu *vcpu = filp->private_data;
4078         void __user *argp = compat_ptr(arg);
4079         int r;
4080
4081         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4082                 return -EIO;
4083
4084         switch (ioctl) {
4085         case KVM_SET_SIGNAL_MASK: {
4086                 struct kvm_signal_mask __user *sigmask_arg = argp;
4087                 struct kvm_signal_mask kvm_sigmask;
4088                 sigset_t sigset;
4089
4090                 if (argp) {
4091                         r = -EFAULT;
4092                         if (copy_from_user(&kvm_sigmask, argp,
4093                                            sizeof(kvm_sigmask)))
4094                                 goto out;
4095                         r = -EINVAL;
4096                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4097                                 goto out;
4098                         r = -EFAULT;
4099                         if (get_compat_sigset(&sigset,
4100                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4101                                 goto out;
4102                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4103                 } else
4104                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4105                 break;
4106         }
4107         default:
4108                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4109         }
4110
4111 out:
4112         return r;
4113 }
4114 #endif
4115
4116 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4117 {
4118         struct kvm_device *dev = filp->private_data;
4119
4120         if (dev->ops->mmap)
4121                 return dev->ops->mmap(dev, vma);
4122
4123         return -ENODEV;
4124 }
4125
4126 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4127                                  int (*accessor)(struct kvm_device *dev,
4128                                                  struct kvm_device_attr *attr),
4129                                  unsigned long arg)
4130 {
4131         struct kvm_device_attr attr;
4132
4133         if (!accessor)
4134                 return -EPERM;
4135
4136         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4137                 return -EFAULT;
4138
4139         return accessor(dev, &attr);
4140 }
4141
4142 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4143                              unsigned long arg)
4144 {
4145         struct kvm_device *dev = filp->private_data;
4146
4147         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4148                 return -EIO;
4149
4150         switch (ioctl) {
4151         case KVM_SET_DEVICE_ATTR:
4152                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4153         case KVM_GET_DEVICE_ATTR:
4154                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4155         case KVM_HAS_DEVICE_ATTR:
4156                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4157         default:
4158                 if (dev->ops->ioctl)
4159                         return dev->ops->ioctl(dev, ioctl, arg);
4160
4161                 return -ENOTTY;
4162         }
4163 }
4164
4165 static int kvm_device_release(struct inode *inode, struct file *filp)
4166 {
4167         struct kvm_device *dev = filp->private_data;
4168         struct kvm *kvm = dev->kvm;
4169
4170         if (dev->ops->release) {
4171                 mutex_lock(&kvm->lock);
4172                 list_del(&dev->vm_node);
4173                 dev->ops->release(dev);
4174                 mutex_unlock(&kvm->lock);
4175         }
4176
4177         kvm_put_kvm(kvm);
4178         return 0;
4179 }
4180
4181 static const struct file_operations kvm_device_fops = {
4182         .unlocked_ioctl = kvm_device_ioctl,
4183         .release = kvm_device_release,
4184         KVM_COMPAT(kvm_device_ioctl),
4185         .mmap = kvm_device_mmap,
4186 };
4187
4188 struct kvm_device *kvm_device_from_filp(struct file *filp)
4189 {
4190         if (filp->f_op != &kvm_device_fops)
4191                 return NULL;
4192
4193         return filp->private_data;
4194 }
4195
4196 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4197 #ifdef CONFIG_KVM_MPIC
4198         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4199         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4200 #endif
4201 };
4202
4203 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4204 {
4205         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4206                 return -ENOSPC;
4207
4208         if (kvm_device_ops_table[type] != NULL)
4209                 return -EEXIST;
4210
4211         kvm_device_ops_table[type] = ops;
4212         return 0;
4213 }
4214
4215 void kvm_unregister_device_ops(u32 type)
4216 {
4217         if (kvm_device_ops_table[type] != NULL)
4218                 kvm_device_ops_table[type] = NULL;
4219 }
4220
4221 static int kvm_ioctl_create_device(struct kvm *kvm,
4222                                    struct kvm_create_device *cd)
4223 {
4224         const struct kvm_device_ops *ops = NULL;
4225         struct kvm_device *dev;
4226         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4227         int type;
4228         int ret;
4229
4230         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4231                 return -ENODEV;
4232
4233         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4234         ops = kvm_device_ops_table[type];
4235         if (ops == NULL)
4236                 return -ENODEV;
4237
4238         if (test)
4239                 return 0;
4240
4241         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4242         if (!dev)
4243                 return -ENOMEM;
4244
4245         dev->ops = ops;
4246         dev->kvm = kvm;
4247
4248         mutex_lock(&kvm->lock);
4249         ret = ops->create(dev, type);
4250         if (ret < 0) {
4251                 mutex_unlock(&kvm->lock);
4252                 kfree(dev);
4253                 return ret;
4254         }
4255         list_add(&dev->vm_node, &kvm->devices);
4256         mutex_unlock(&kvm->lock);
4257
4258         if (ops->init)
4259                 ops->init(dev);
4260
4261         kvm_get_kvm(kvm);
4262         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4263         if (ret < 0) {
4264                 kvm_put_kvm_no_destroy(kvm);
4265                 mutex_lock(&kvm->lock);
4266                 list_del(&dev->vm_node);
4267                 mutex_unlock(&kvm->lock);
4268                 ops->destroy(dev);
4269                 return ret;
4270         }
4271
4272         cd->fd = ret;
4273         return 0;
4274 }
4275
4276 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4277 {
4278         switch (arg) {
4279         case KVM_CAP_USER_MEMORY:
4280         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4281         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4282         case KVM_CAP_INTERNAL_ERROR_DATA:
4283 #ifdef CONFIG_HAVE_KVM_MSI
4284         case KVM_CAP_SIGNAL_MSI:
4285 #endif
4286 #ifdef CONFIG_HAVE_KVM_IRQFD
4287         case KVM_CAP_IRQFD:
4288         case KVM_CAP_IRQFD_RESAMPLE:
4289 #endif
4290         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4291         case KVM_CAP_CHECK_EXTENSION_VM:
4292         case KVM_CAP_ENABLE_CAP_VM:
4293         case KVM_CAP_HALT_POLL:
4294                 return 1;
4295 #ifdef CONFIG_KVM_MMIO
4296         case KVM_CAP_COALESCED_MMIO:
4297                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4298         case KVM_CAP_COALESCED_PIO:
4299                 return 1;
4300 #endif
4301 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4302         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4303                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4304 #endif
4305 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4306         case KVM_CAP_IRQ_ROUTING:
4307                 return KVM_MAX_IRQ_ROUTES;
4308 #endif
4309 #if KVM_ADDRESS_SPACE_NUM > 1
4310         case KVM_CAP_MULTI_ADDRESS_SPACE:
4311                 return KVM_ADDRESS_SPACE_NUM;
4312 #endif
4313         case KVM_CAP_NR_MEMSLOTS:
4314                 return KVM_USER_MEM_SLOTS;
4315         case KVM_CAP_DIRTY_LOG_RING:
4316 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4317                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4318 #else
4319                 return 0;
4320 #endif
4321         case KVM_CAP_BINARY_STATS_FD:
4322                 return 1;
4323         default:
4324                 break;
4325         }
4326         return kvm_vm_ioctl_check_extension(kvm, arg);
4327 }
4328
4329 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4330 {
4331         int r;
4332
4333         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4334                 return -EINVAL;
4335
4336         /* the size should be power of 2 */
4337         if (!size || (size & (size - 1)))
4338                 return -EINVAL;
4339
4340         /* Should be bigger to keep the reserved entries, or a page */
4341         if (size < kvm_dirty_ring_get_rsvd_entries() *
4342             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4343                 return -EINVAL;
4344
4345         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4346             sizeof(struct kvm_dirty_gfn))
4347                 return -E2BIG;
4348
4349         /* We only allow it to set once */
4350         if (kvm->dirty_ring_size)
4351                 return -EINVAL;
4352
4353         mutex_lock(&kvm->lock);
4354
4355         if (kvm->created_vcpus) {
4356                 /* We don't allow to change this value after vcpu created */
4357                 r = -EINVAL;
4358         } else {
4359                 kvm->dirty_ring_size = size;
4360                 r = 0;
4361         }
4362
4363         mutex_unlock(&kvm->lock);
4364         return r;
4365 }
4366
4367 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4368 {
4369         unsigned long i;
4370         struct kvm_vcpu *vcpu;
4371         int cleared = 0;
4372
4373         if (!kvm->dirty_ring_size)
4374                 return -EINVAL;
4375
4376         mutex_lock(&kvm->slots_lock);
4377
4378         kvm_for_each_vcpu(i, vcpu, kvm)
4379                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4380
4381         mutex_unlock(&kvm->slots_lock);
4382
4383         if (cleared)
4384                 kvm_flush_remote_tlbs(kvm);
4385
4386         return cleared;
4387 }
4388
4389 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4390                                                   struct kvm_enable_cap *cap)
4391 {
4392         return -EINVAL;
4393 }
4394
4395 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4396                                            struct kvm_enable_cap *cap)
4397 {
4398         switch (cap->cap) {
4399 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4400         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4401                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4402
4403                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4404                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4405
4406                 if (cap->flags || (cap->args[0] & ~allowed_options))
4407                         return -EINVAL;
4408                 kvm->manual_dirty_log_protect = cap->args[0];
4409                 return 0;
4410         }
4411 #endif
4412         case KVM_CAP_HALT_POLL: {
4413                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4414                         return -EINVAL;
4415
4416                 kvm->max_halt_poll_ns = cap->args[0];
4417                 return 0;
4418         }
4419         case KVM_CAP_DIRTY_LOG_RING:
4420                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4421         default:
4422                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4423         }
4424 }
4425
4426 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4427                               size_t size, loff_t *offset)
4428 {
4429         struct kvm *kvm = file->private_data;
4430
4431         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4432                                 &kvm_vm_stats_desc[0], &kvm->stat,
4433                                 sizeof(kvm->stat), user_buffer, size, offset);
4434 }
4435
4436 static const struct file_operations kvm_vm_stats_fops = {
4437         .read = kvm_vm_stats_read,
4438         .llseek = noop_llseek,
4439 };
4440
4441 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4442 {
4443         int fd;
4444         struct file *file;
4445
4446         fd = get_unused_fd_flags(O_CLOEXEC);
4447         if (fd < 0)
4448                 return fd;
4449
4450         file = anon_inode_getfile("kvm-vm-stats",
4451                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4452         if (IS_ERR(file)) {
4453                 put_unused_fd(fd);
4454                 return PTR_ERR(file);
4455         }
4456         file->f_mode |= FMODE_PREAD;
4457         fd_install(fd, file);
4458
4459         return fd;
4460 }
4461
4462 static long kvm_vm_ioctl(struct file *filp,
4463                            unsigned int ioctl, unsigned long arg)
4464 {
4465         struct kvm *kvm = filp->private_data;
4466         void __user *argp = (void __user *)arg;
4467         int r;
4468
4469         if (kvm->mm != current->mm || kvm->vm_dead)
4470                 return -EIO;
4471         switch (ioctl) {
4472         case KVM_CREATE_VCPU:
4473                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4474                 break;
4475         case KVM_ENABLE_CAP: {
4476                 struct kvm_enable_cap cap;
4477
4478                 r = -EFAULT;
4479                 if (copy_from_user(&cap, argp, sizeof(cap)))
4480                         goto out;
4481                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4482                 break;
4483         }
4484         case KVM_SET_USER_MEMORY_REGION: {
4485                 struct kvm_userspace_memory_region kvm_userspace_mem;
4486
4487                 r = -EFAULT;
4488                 if (copy_from_user(&kvm_userspace_mem, argp,
4489                                                 sizeof(kvm_userspace_mem)))
4490                         goto out;
4491
4492                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4493                 break;
4494         }
4495         case KVM_GET_DIRTY_LOG: {
4496                 struct kvm_dirty_log log;
4497
4498                 r = -EFAULT;
4499                 if (copy_from_user(&log, argp, sizeof(log)))
4500                         goto out;
4501                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4502                 break;
4503         }
4504 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4505         case KVM_CLEAR_DIRTY_LOG: {
4506                 struct kvm_clear_dirty_log log;
4507
4508                 r = -EFAULT;
4509                 if (copy_from_user(&log, argp, sizeof(log)))
4510                         goto out;
4511                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4512                 break;
4513         }
4514 #endif
4515 #ifdef CONFIG_KVM_MMIO
4516         case KVM_REGISTER_COALESCED_MMIO: {
4517                 struct kvm_coalesced_mmio_zone zone;
4518
4519                 r = -EFAULT;
4520                 if (copy_from_user(&zone, argp, sizeof(zone)))
4521                         goto out;
4522                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4523                 break;
4524         }
4525         case KVM_UNREGISTER_COALESCED_MMIO: {
4526                 struct kvm_coalesced_mmio_zone zone;
4527
4528                 r = -EFAULT;
4529                 if (copy_from_user(&zone, argp, sizeof(zone)))
4530                         goto out;
4531                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4532                 break;
4533         }
4534 #endif
4535         case KVM_IRQFD: {
4536                 struct kvm_irqfd data;
4537
4538                 r = -EFAULT;
4539                 if (copy_from_user(&data, argp, sizeof(data)))
4540                         goto out;
4541                 r = kvm_irqfd(kvm, &data);
4542                 break;
4543         }
4544         case KVM_IOEVENTFD: {
4545                 struct kvm_ioeventfd data;
4546
4547                 r = -EFAULT;
4548                 if (copy_from_user(&data, argp, sizeof(data)))
4549                         goto out;
4550                 r = kvm_ioeventfd(kvm, &data);
4551                 break;
4552         }
4553 #ifdef CONFIG_HAVE_KVM_MSI
4554         case KVM_SIGNAL_MSI: {
4555                 struct kvm_msi msi;
4556
4557                 r = -EFAULT;
4558                 if (copy_from_user(&msi, argp, sizeof(msi)))
4559                         goto out;
4560                 r = kvm_send_userspace_msi(kvm, &msi);
4561                 break;
4562         }
4563 #endif
4564 #ifdef __KVM_HAVE_IRQ_LINE
4565         case KVM_IRQ_LINE_STATUS:
4566         case KVM_IRQ_LINE: {
4567                 struct kvm_irq_level irq_event;
4568
4569                 r = -EFAULT;
4570                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4571                         goto out;
4572
4573                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4574                                         ioctl == KVM_IRQ_LINE_STATUS);
4575                 if (r)
4576                         goto out;
4577
4578                 r = -EFAULT;
4579                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4580                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4581                                 goto out;
4582                 }
4583
4584                 r = 0;
4585                 break;
4586         }
4587 #endif
4588 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4589         case KVM_SET_GSI_ROUTING: {
4590                 struct kvm_irq_routing routing;
4591                 struct kvm_irq_routing __user *urouting;
4592                 struct kvm_irq_routing_entry *entries = NULL;
4593
4594                 r = -EFAULT;
4595                 if (copy_from_user(&routing, argp, sizeof(routing)))
4596                         goto out;
4597                 r = -EINVAL;
4598                 if (!kvm_arch_can_set_irq_routing(kvm))
4599                         goto out;
4600                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4601                         goto out;
4602                 if (routing.flags)
4603                         goto out;
4604                 if (routing.nr) {
4605                         urouting = argp;
4606                         entries = vmemdup_user(urouting->entries,
4607                                                array_size(sizeof(*entries),
4608                                                           routing.nr));
4609                         if (IS_ERR(entries)) {
4610                                 r = PTR_ERR(entries);
4611                                 goto out;
4612                         }
4613                 }
4614                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4615                                         routing.flags);
4616                 kvfree(entries);
4617                 break;
4618         }
4619 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4620         case KVM_CREATE_DEVICE: {
4621                 struct kvm_create_device cd;
4622
4623                 r = -EFAULT;
4624                 if (copy_from_user(&cd, argp, sizeof(cd)))
4625                         goto out;
4626
4627                 r = kvm_ioctl_create_device(kvm, &cd);
4628                 if (r)
4629                         goto out;
4630
4631                 r = -EFAULT;
4632                 if (copy_to_user(argp, &cd, sizeof(cd)))
4633                         goto out;
4634
4635                 r = 0;
4636                 break;
4637         }
4638         case KVM_CHECK_EXTENSION:
4639                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4640                 break;
4641         case KVM_RESET_DIRTY_RINGS:
4642                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4643                 break;
4644         case KVM_GET_STATS_FD:
4645                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4646                 break;
4647         default:
4648                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4649         }
4650 out:
4651         return r;
4652 }
4653
4654 #ifdef CONFIG_KVM_COMPAT
4655 struct compat_kvm_dirty_log {
4656         __u32 slot;
4657         __u32 padding1;
4658         union {
4659                 compat_uptr_t dirty_bitmap; /* one bit per page */
4660                 __u64 padding2;
4661         };
4662 };
4663
4664 struct compat_kvm_clear_dirty_log {
4665         __u32 slot;
4666         __u32 num_pages;
4667         __u64 first_page;
4668         union {
4669                 compat_uptr_t dirty_bitmap; /* one bit per page */
4670                 __u64 padding2;
4671         };
4672 };
4673
4674 static long kvm_vm_compat_ioctl(struct file *filp,
4675                            unsigned int ioctl, unsigned long arg)
4676 {
4677         struct kvm *kvm = filp->private_data;
4678         int r;
4679
4680         if (kvm->mm != current->mm || kvm->vm_dead)
4681                 return -EIO;
4682         switch (ioctl) {
4683 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4684         case KVM_CLEAR_DIRTY_LOG: {
4685                 struct compat_kvm_clear_dirty_log compat_log;
4686                 struct kvm_clear_dirty_log log;
4687
4688                 if (copy_from_user(&compat_log, (void __user *)arg,
4689                                    sizeof(compat_log)))
4690                         return -EFAULT;
4691                 log.slot         = compat_log.slot;
4692                 log.num_pages    = compat_log.num_pages;
4693                 log.first_page   = compat_log.first_page;
4694                 log.padding2     = compat_log.padding2;
4695                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4696
4697                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4698                 break;
4699         }
4700 #endif
4701         case KVM_GET_DIRTY_LOG: {
4702                 struct compat_kvm_dirty_log compat_log;
4703                 struct kvm_dirty_log log;
4704
4705                 if (copy_from_user(&compat_log, (void __user *)arg,
4706                                    sizeof(compat_log)))
4707                         return -EFAULT;
4708                 log.slot         = compat_log.slot;
4709                 log.padding1     = compat_log.padding1;
4710                 log.padding2     = compat_log.padding2;
4711                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4712
4713                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4714                 break;
4715         }
4716         default:
4717                 r = kvm_vm_ioctl(filp, ioctl, arg);
4718         }
4719         return r;
4720 }
4721 #endif
4722
4723 static struct file_operations kvm_vm_fops = {
4724         .release        = kvm_vm_release,
4725         .unlocked_ioctl = kvm_vm_ioctl,
4726         .llseek         = noop_llseek,
4727         KVM_COMPAT(kvm_vm_compat_ioctl),
4728 };
4729
4730 bool file_is_kvm(struct file *file)
4731 {
4732         return file && file->f_op == &kvm_vm_fops;
4733 }
4734 EXPORT_SYMBOL_GPL(file_is_kvm);
4735
4736 static int kvm_dev_ioctl_create_vm(unsigned long type)
4737 {
4738         int r;
4739         struct kvm *kvm;
4740         struct file *file;
4741
4742         kvm = kvm_create_vm(type);
4743         if (IS_ERR(kvm))
4744                 return PTR_ERR(kvm);
4745 #ifdef CONFIG_KVM_MMIO
4746         r = kvm_coalesced_mmio_init(kvm);
4747         if (r < 0)
4748                 goto put_kvm;
4749 #endif
4750         r = get_unused_fd_flags(O_CLOEXEC);
4751         if (r < 0)
4752                 goto put_kvm;
4753
4754         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4755                         "kvm-%d", task_pid_nr(current));
4756
4757         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4758         if (IS_ERR(file)) {
4759                 put_unused_fd(r);
4760                 r = PTR_ERR(file);
4761                 goto put_kvm;
4762         }
4763
4764         /*
4765          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4766          * already set, with ->release() being kvm_vm_release().  In error
4767          * cases it will be called by the final fput(file) and will take
4768          * care of doing kvm_put_kvm(kvm).
4769          */
4770         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4771                 put_unused_fd(r);
4772                 fput(file);
4773                 return -ENOMEM;
4774         }
4775         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4776
4777         fd_install(r, file);
4778         return r;
4779
4780 put_kvm:
4781         kvm_put_kvm(kvm);
4782         return r;
4783 }
4784
4785 static long kvm_dev_ioctl(struct file *filp,
4786                           unsigned int ioctl, unsigned long arg)
4787 {
4788         long r = -EINVAL;
4789
4790         switch (ioctl) {
4791         case KVM_GET_API_VERSION:
4792                 if (arg)
4793                         goto out;
4794                 r = KVM_API_VERSION;
4795                 break;
4796         case KVM_CREATE_VM:
4797                 r = kvm_dev_ioctl_create_vm(arg);
4798                 break;
4799         case KVM_CHECK_EXTENSION:
4800                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4801                 break;
4802         case KVM_GET_VCPU_MMAP_SIZE:
4803                 if (arg)
4804                         goto out;
4805                 r = PAGE_SIZE;     /* struct kvm_run */
4806 #ifdef CONFIG_X86
4807                 r += PAGE_SIZE;    /* pio data page */
4808 #endif
4809 #ifdef CONFIG_KVM_MMIO
4810                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4811 #endif
4812                 break;
4813         case KVM_TRACE_ENABLE:
4814         case KVM_TRACE_PAUSE:
4815         case KVM_TRACE_DISABLE:
4816                 r = -EOPNOTSUPP;
4817                 break;
4818         default:
4819                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4820         }
4821 out:
4822         return r;
4823 }
4824
4825 static struct file_operations kvm_chardev_ops = {
4826         .unlocked_ioctl = kvm_dev_ioctl,
4827         .llseek         = noop_llseek,
4828         KVM_COMPAT(kvm_dev_ioctl),
4829 };
4830
4831 static struct miscdevice kvm_dev = {
4832         KVM_MINOR,
4833         "kvm",
4834         &kvm_chardev_ops,
4835 };
4836
4837 static void hardware_enable_nolock(void *junk)
4838 {
4839         int cpu = raw_smp_processor_id();
4840         int r;
4841
4842         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4843                 return;
4844
4845         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4846
4847         r = kvm_arch_hardware_enable();
4848
4849         if (r) {
4850                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4851                 atomic_inc(&hardware_enable_failed);
4852                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4853         }
4854 }
4855
4856 static int kvm_starting_cpu(unsigned int cpu)
4857 {
4858         raw_spin_lock(&kvm_count_lock);
4859         if (kvm_usage_count)
4860                 hardware_enable_nolock(NULL);
4861         raw_spin_unlock(&kvm_count_lock);
4862         return 0;
4863 }
4864
4865 static void hardware_disable_nolock(void *junk)
4866 {
4867         int cpu = raw_smp_processor_id();
4868
4869         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4870                 return;
4871         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4872         kvm_arch_hardware_disable();
4873 }
4874
4875 static int kvm_dying_cpu(unsigned int cpu)
4876 {
4877         raw_spin_lock(&kvm_count_lock);
4878         if (kvm_usage_count)
4879                 hardware_disable_nolock(NULL);
4880         raw_spin_unlock(&kvm_count_lock);
4881         return 0;
4882 }
4883
4884 static void hardware_disable_all_nolock(void)
4885 {
4886         BUG_ON(!kvm_usage_count);
4887
4888         kvm_usage_count--;
4889         if (!kvm_usage_count)
4890                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4891 }
4892
4893 static void hardware_disable_all(void)
4894 {
4895         raw_spin_lock(&kvm_count_lock);
4896         hardware_disable_all_nolock();
4897         raw_spin_unlock(&kvm_count_lock);
4898 }
4899
4900 static int hardware_enable_all(void)
4901 {
4902         int r = 0;
4903
4904         raw_spin_lock(&kvm_count_lock);
4905
4906         kvm_usage_count++;
4907         if (kvm_usage_count == 1) {
4908                 atomic_set(&hardware_enable_failed, 0);
4909                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4910
4911                 if (atomic_read(&hardware_enable_failed)) {
4912                         hardware_disable_all_nolock();
4913                         r = -EBUSY;
4914                 }
4915         }
4916
4917         raw_spin_unlock(&kvm_count_lock);
4918
4919         return r;
4920 }
4921
4922 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4923                       void *v)
4924 {
4925         /*
4926          * Some (well, at least mine) BIOSes hang on reboot if
4927          * in vmx root mode.
4928          *
4929          * And Intel TXT required VMX off for all cpu when system shutdown.
4930          */
4931         pr_info("kvm: exiting hardware virtualization\n");
4932         kvm_rebooting = true;
4933         on_each_cpu(hardware_disable_nolock, NULL, 1);
4934         return NOTIFY_OK;
4935 }
4936
4937 static struct notifier_block kvm_reboot_notifier = {
4938         .notifier_call = kvm_reboot,
4939         .priority = 0,
4940 };
4941
4942 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4943 {
4944         int i;
4945
4946         for (i = 0; i < bus->dev_count; i++) {
4947                 struct kvm_io_device *pos = bus->range[i].dev;
4948
4949                 kvm_iodevice_destructor(pos);
4950         }
4951         kfree(bus);
4952 }
4953
4954 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4955                                  const struct kvm_io_range *r2)
4956 {
4957         gpa_t addr1 = r1->addr;
4958         gpa_t addr2 = r2->addr;
4959
4960         if (addr1 < addr2)
4961                 return -1;
4962
4963         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4964          * accept any overlapping write.  Any order is acceptable for
4965          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4966          * we process all of them.
4967          */
4968         if (r2->len) {
4969                 addr1 += r1->len;
4970                 addr2 += r2->len;
4971         }
4972
4973         if (addr1 > addr2)
4974                 return 1;
4975
4976         return 0;
4977 }
4978
4979 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4980 {
4981         return kvm_io_bus_cmp(p1, p2);
4982 }
4983
4984 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4985                              gpa_t addr, int len)
4986 {
4987         struct kvm_io_range *range, key;
4988         int off;
4989
4990         key = (struct kvm_io_range) {
4991                 .addr = addr,
4992                 .len = len,
4993         };
4994
4995         range = bsearch(&key, bus->range, bus->dev_count,
4996                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4997         if (range == NULL)
4998                 return -ENOENT;
4999
5000         off = range - bus->range;
5001
5002         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5003                 off--;
5004
5005         return off;
5006 }
5007
5008 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5009                               struct kvm_io_range *range, const void *val)
5010 {
5011         int idx;
5012
5013         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5014         if (idx < 0)
5015                 return -EOPNOTSUPP;
5016
5017         while (idx < bus->dev_count &&
5018                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5019                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5020                                         range->len, val))
5021                         return idx;
5022                 idx++;
5023         }
5024
5025         return -EOPNOTSUPP;
5026 }
5027
5028 /* kvm_io_bus_write - called under kvm->slots_lock */
5029 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5030                      int len, const void *val)
5031 {
5032         struct kvm_io_bus *bus;
5033         struct kvm_io_range range;
5034         int r;
5035
5036         range = (struct kvm_io_range) {
5037                 .addr = addr,
5038                 .len = len,
5039         };
5040
5041         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5042         if (!bus)
5043                 return -ENOMEM;
5044         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5045         return r < 0 ? r : 0;
5046 }
5047 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5048
5049 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5050 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5051                             gpa_t addr, int len, const void *val, long cookie)
5052 {
5053         struct kvm_io_bus *bus;
5054         struct kvm_io_range range;
5055
5056         range = (struct kvm_io_range) {
5057                 .addr = addr,
5058                 .len = len,
5059         };
5060
5061         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5062         if (!bus)
5063                 return -ENOMEM;
5064
5065         /* First try the device referenced by cookie. */
5066         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5067             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5068                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5069                                         val))
5070                         return cookie;
5071
5072         /*
5073          * cookie contained garbage; fall back to search and return the
5074          * correct cookie value.
5075          */
5076         return __kvm_io_bus_write(vcpu, bus, &range, val);
5077 }
5078
5079 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5080                              struct kvm_io_range *range, void *val)
5081 {
5082         int idx;
5083
5084         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5085         if (idx < 0)
5086                 return -EOPNOTSUPP;
5087
5088         while (idx < bus->dev_count &&
5089                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5090                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5091                                        range->len, val))
5092                         return idx;
5093                 idx++;
5094         }
5095
5096         return -EOPNOTSUPP;
5097 }
5098
5099 /* kvm_io_bus_read - called under kvm->slots_lock */
5100 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5101                     int len, void *val)
5102 {
5103         struct kvm_io_bus *bus;
5104         struct kvm_io_range range;
5105         int r;
5106
5107         range = (struct kvm_io_range) {
5108                 .addr = addr,
5109                 .len = len,
5110         };
5111
5112         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5113         if (!bus)
5114                 return -ENOMEM;
5115         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5116         return r < 0 ? r : 0;
5117 }
5118
5119 /* Caller must hold slots_lock. */
5120 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5121                             int len, struct kvm_io_device *dev)
5122 {
5123         int i;
5124         struct kvm_io_bus *new_bus, *bus;
5125         struct kvm_io_range range;
5126
5127         bus = kvm_get_bus(kvm, bus_idx);
5128         if (!bus)
5129                 return -ENOMEM;
5130
5131         /* exclude ioeventfd which is limited by maximum fd */
5132         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5133                 return -ENOSPC;
5134
5135         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5136                           GFP_KERNEL_ACCOUNT);
5137         if (!new_bus)
5138                 return -ENOMEM;
5139
5140         range = (struct kvm_io_range) {
5141                 .addr = addr,
5142                 .len = len,
5143                 .dev = dev,
5144         };
5145
5146         for (i = 0; i < bus->dev_count; i++)
5147                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5148                         break;
5149
5150         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5151         new_bus->dev_count++;
5152         new_bus->range[i] = range;
5153         memcpy(new_bus->range + i + 1, bus->range + i,
5154                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5155         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5156         synchronize_srcu_expedited(&kvm->srcu);
5157         kfree(bus);
5158
5159         return 0;
5160 }
5161
5162 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5163                               struct kvm_io_device *dev)
5164 {
5165         int i, j;
5166         struct kvm_io_bus *new_bus, *bus;
5167
5168         lockdep_assert_held(&kvm->slots_lock);
5169
5170         bus = kvm_get_bus(kvm, bus_idx);
5171         if (!bus)
5172                 return 0;
5173
5174         for (i = 0; i < bus->dev_count; i++) {
5175                 if (bus->range[i].dev == dev) {
5176                         break;
5177                 }
5178         }
5179
5180         if (i == bus->dev_count)
5181                 return 0;
5182
5183         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5184                           GFP_KERNEL_ACCOUNT);
5185         if (new_bus) {
5186                 memcpy(new_bus, bus, struct_size(bus, range, i));
5187                 new_bus->dev_count--;
5188                 memcpy(new_bus->range + i, bus->range + i + 1,
5189                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5190         }
5191
5192         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5193         synchronize_srcu_expedited(&kvm->srcu);
5194
5195         /* Destroy the old bus _after_ installing the (null) bus. */
5196         if (!new_bus) {
5197                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5198                 for (j = 0; j < bus->dev_count; j++) {
5199                         if (j == i)
5200                                 continue;
5201                         kvm_iodevice_destructor(bus->range[j].dev);
5202                 }
5203         }
5204
5205         kfree(bus);
5206         return new_bus ? 0 : -ENOMEM;
5207 }
5208
5209 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5210                                          gpa_t addr)
5211 {
5212         struct kvm_io_bus *bus;
5213         int dev_idx, srcu_idx;
5214         struct kvm_io_device *iodev = NULL;
5215
5216         srcu_idx = srcu_read_lock(&kvm->srcu);
5217
5218         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5219         if (!bus)
5220                 goto out_unlock;
5221
5222         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5223         if (dev_idx < 0)
5224                 goto out_unlock;
5225
5226         iodev = bus->range[dev_idx].dev;
5227
5228 out_unlock:
5229         srcu_read_unlock(&kvm->srcu, srcu_idx);
5230
5231         return iodev;
5232 }
5233 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5234
5235 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5236                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5237                            const char *fmt)
5238 {
5239         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5240                                           inode->i_private;
5241
5242         /*
5243          * The debugfs files are a reference to the kvm struct which
5244         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5245         * avoids the race between open and the removal of the debugfs directory.
5246          */
5247         if (!kvm_get_kvm_safe(stat_data->kvm))
5248                 return -ENOENT;
5249
5250         if (simple_attr_open(inode, file, get,
5251                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5252                     ? set : NULL,
5253                     fmt)) {
5254                 kvm_put_kvm(stat_data->kvm);
5255                 return -ENOMEM;
5256         }
5257
5258         return 0;
5259 }
5260
5261 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5262 {
5263         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5264                                           inode->i_private;
5265
5266         simple_attr_release(inode, file);
5267         kvm_put_kvm(stat_data->kvm);
5268
5269         return 0;
5270 }
5271
5272 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5273 {
5274         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5275
5276         return 0;
5277 }
5278
5279 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5280 {
5281         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5282
5283         return 0;
5284 }
5285
5286 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5287 {
5288         unsigned long i;
5289         struct kvm_vcpu *vcpu;
5290
5291         *val = 0;
5292
5293         kvm_for_each_vcpu(i, vcpu, kvm)
5294                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5295
5296         return 0;
5297 }
5298
5299 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5300 {
5301         unsigned long i;
5302         struct kvm_vcpu *vcpu;
5303
5304         kvm_for_each_vcpu(i, vcpu, kvm)
5305                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5306
5307         return 0;
5308 }
5309
5310 static int kvm_stat_data_get(void *data, u64 *val)
5311 {
5312         int r = -EFAULT;
5313         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5314
5315         switch (stat_data->kind) {
5316         case KVM_STAT_VM:
5317                 r = kvm_get_stat_per_vm(stat_data->kvm,
5318                                         stat_data->desc->desc.offset, val);
5319                 break;
5320         case KVM_STAT_VCPU:
5321                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5322                                           stat_data->desc->desc.offset, val);
5323                 break;
5324         }
5325
5326         return r;
5327 }
5328
5329 static int kvm_stat_data_clear(void *data, u64 val)
5330 {
5331         int r = -EFAULT;
5332         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5333
5334         if (val)
5335                 return -EINVAL;
5336
5337         switch (stat_data->kind) {
5338         case KVM_STAT_VM:
5339                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5340                                           stat_data->desc->desc.offset);
5341                 break;
5342         case KVM_STAT_VCPU:
5343                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5344                                             stat_data->desc->desc.offset);
5345                 break;
5346         }
5347
5348         return r;
5349 }
5350
5351 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5352 {
5353         __simple_attr_check_format("%llu\n", 0ull);
5354         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5355                                 kvm_stat_data_clear, "%llu\n");
5356 }
5357
5358 static const struct file_operations stat_fops_per_vm = {
5359         .owner = THIS_MODULE,
5360         .open = kvm_stat_data_open,
5361         .release = kvm_debugfs_release,
5362         .read = simple_attr_read,
5363         .write = simple_attr_write,
5364         .llseek = no_llseek,
5365 };
5366
5367 static int vm_stat_get(void *_offset, u64 *val)
5368 {
5369         unsigned offset = (long)_offset;
5370         struct kvm *kvm;
5371         u64 tmp_val;
5372
5373         *val = 0;
5374         mutex_lock(&kvm_lock);
5375         list_for_each_entry(kvm, &vm_list, vm_list) {
5376                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5377                 *val += tmp_val;
5378         }
5379         mutex_unlock(&kvm_lock);
5380         return 0;
5381 }
5382
5383 static int vm_stat_clear(void *_offset, u64 val)
5384 {
5385         unsigned offset = (long)_offset;
5386         struct kvm *kvm;
5387
5388         if (val)
5389                 return -EINVAL;
5390
5391         mutex_lock(&kvm_lock);
5392         list_for_each_entry(kvm, &vm_list, vm_list) {
5393                 kvm_clear_stat_per_vm(kvm, offset);
5394         }
5395         mutex_unlock(&kvm_lock);
5396
5397         return 0;
5398 }
5399
5400 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5401 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5402
5403 static int vcpu_stat_get(void *_offset, u64 *val)
5404 {
5405         unsigned offset = (long)_offset;
5406         struct kvm *kvm;
5407         u64 tmp_val;
5408
5409         *val = 0;
5410         mutex_lock(&kvm_lock);
5411         list_for_each_entry(kvm, &vm_list, vm_list) {
5412                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5413                 *val += tmp_val;
5414         }
5415         mutex_unlock(&kvm_lock);
5416         return 0;
5417 }
5418
5419 static int vcpu_stat_clear(void *_offset, u64 val)
5420 {
5421         unsigned offset = (long)_offset;
5422         struct kvm *kvm;
5423
5424         if (val)
5425                 return -EINVAL;
5426
5427         mutex_lock(&kvm_lock);
5428         list_for_each_entry(kvm, &vm_list, vm_list) {
5429                 kvm_clear_stat_per_vcpu(kvm, offset);
5430         }
5431         mutex_unlock(&kvm_lock);
5432
5433         return 0;
5434 }
5435
5436 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5437                         "%llu\n");
5438 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5439
5440 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5441 {
5442         struct kobj_uevent_env *env;
5443         unsigned long long created, active;
5444
5445         if (!kvm_dev.this_device || !kvm)
5446                 return;
5447
5448         mutex_lock(&kvm_lock);
5449         if (type == KVM_EVENT_CREATE_VM) {
5450                 kvm_createvm_count++;
5451                 kvm_active_vms++;
5452         } else if (type == KVM_EVENT_DESTROY_VM) {
5453                 kvm_active_vms--;
5454         }
5455         created = kvm_createvm_count;
5456         active = kvm_active_vms;
5457         mutex_unlock(&kvm_lock);
5458
5459         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5460         if (!env)
5461                 return;
5462
5463         add_uevent_var(env, "CREATED=%llu", created);
5464         add_uevent_var(env, "COUNT=%llu", active);
5465
5466         if (type == KVM_EVENT_CREATE_VM) {
5467                 add_uevent_var(env, "EVENT=create");
5468                 kvm->userspace_pid = task_pid_nr(current);
5469         } else if (type == KVM_EVENT_DESTROY_VM) {
5470                 add_uevent_var(env, "EVENT=destroy");
5471         }
5472         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5473
5474         if (kvm->debugfs_dentry) {
5475                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5476
5477                 if (p) {
5478                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5479                         if (!IS_ERR(tmp))
5480                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5481                         kfree(p);
5482                 }
5483         }
5484         /* no need for checks, since we are adding at most only 5 keys */
5485         env->envp[env->envp_idx++] = NULL;
5486         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5487         kfree(env);
5488 }
5489
5490 static void kvm_init_debug(void)
5491 {
5492         const struct file_operations *fops;
5493         const struct _kvm_stats_desc *pdesc;
5494         int i;
5495
5496         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5497
5498         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5499                 pdesc = &kvm_vm_stats_desc[i];
5500                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5501                         fops = &vm_stat_fops;
5502                 else
5503                         fops = &vm_stat_readonly_fops;
5504                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5505                                 kvm_debugfs_dir,
5506                                 (void *)(long)pdesc->desc.offset, fops);
5507         }
5508
5509         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5510                 pdesc = &kvm_vcpu_stats_desc[i];
5511                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5512                         fops = &vcpu_stat_fops;
5513                 else
5514                         fops = &vcpu_stat_readonly_fops;
5515                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5516                                 kvm_debugfs_dir,
5517                                 (void *)(long)pdesc->desc.offset, fops);
5518         }
5519 }
5520
5521 static int kvm_suspend(void)
5522 {
5523         if (kvm_usage_count)
5524                 hardware_disable_nolock(NULL);
5525         return 0;
5526 }
5527
5528 static void kvm_resume(void)
5529 {
5530         if (kvm_usage_count) {
5531 #ifdef CONFIG_LOCKDEP
5532                 WARN_ON(lockdep_is_held(&kvm_count_lock));
5533 #endif
5534                 hardware_enable_nolock(NULL);
5535         }
5536 }
5537
5538 static struct syscore_ops kvm_syscore_ops = {
5539         .suspend = kvm_suspend,
5540         .resume = kvm_resume,
5541 };
5542
5543 static inline
5544 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5545 {
5546         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5547 }
5548
5549 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5550 {
5551         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5552
5553         WRITE_ONCE(vcpu->preempted, false);
5554         WRITE_ONCE(vcpu->ready, false);
5555
5556         __this_cpu_write(kvm_running_vcpu, vcpu);
5557         kvm_arch_sched_in(vcpu, cpu);
5558         kvm_arch_vcpu_load(vcpu, cpu);
5559 }
5560
5561 static void kvm_sched_out(struct preempt_notifier *pn,
5562                           struct task_struct *next)
5563 {
5564         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5565
5566         if (current->on_rq) {
5567                 WRITE_ONCE(vcpu->preempted, true);
5568                 WRITE_ONCE(vcpu->ready, true);
5569         }
5570         kvm_arch_vcpu_put(vcpu);
5571         __this_cpu_write(kvm_running_vcpu, NULL);
5572 }
5573
5574 /**
5575  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5576  *
5577  * We can disable preemption locally around accessing the per-CPU variable,
5578  * and use the resolved vcpu pointer after enabling preemption again,
5579  * because even if the current thread is migrated to another CPU, reading
5580  * the per-CPU value later will give us the same value as we update the
5581  * per-CPU variable in the preempt notifier handlers.
5582  */
5583 struct kvm_vcpu *kvm_get_running_vcpu(void)
5584 {
5585         struct kvm_vcpu *vcpu;
5586
5587         preempt_disable();
5588         vcpu = __this_cpu_read(kvm_running_vcpu);
5589         preempt_enable();
5590
5591         return vcpu;
5592 }
5593 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5594
5595 /**
5596  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5597  */
5598 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5599 {
5600         return &kvm_running_vcpu;
5601 }
5602
5603 #ifdef CONFIG_GUEST_PERF_EVENTS
5604 static unsigned int kvm_guest_state(void)
5605 {
5606         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5607         unsigned int state;
5608
5609         if (!kvm_arch_pmi_in_guest(vcpu))
5610                 return 0;
5611
5612         state = PERF_GUEST_ACTIVE;
5613         if (!kvm_arch_vcpu_in_kernel(vcpu))
5614                 state |= PERF_GUEST_USER;
5615
5616         return state;
5617 }
5618
5619 static unsigned long kvm_guest_get_ip(void)
5620 {
5621         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5622
5623         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5624         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5625                 return 0;
5626
5627         return kvm_arch_vcpu_get_ip(vcpu);
5628 }
5629
5630 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5631         .state                  = kvm_guest_state,
5632         .get_ip                 = kvm_guest_get_ip,
5633         .handle_intel_pt_intr   = NULL,
5634 };
5635
5636 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5637 {
5638         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5639         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5640 }
5641 void kvm_unregister_perf_callbacks(void)
5642 {
5643         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5644 }
5645 #endif
5646
5647 struct kvm_cpu_compat_check {
5648         void *opaque;
5649         int *ret;
5650 };
5651
5652 static void check_processor_compat(void *data)
5653 {
5654         struct kvm_cpu_compat_check *c = data;
5655
5656         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5657 }
5658
5659 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5660                   struct module *module)
5661 {
5662         struct kvm_cpu_compat_check c;
5663         int r;
5664         int cpu;
5665
5666         r = kvm_arch_init(opaque);
5667         if (r)
5668                 goto out_fail;
5669
5670         /*
5671          * kvm_arch_init makes sure there's at most one caller
5672          * for architectures that support multiple implementations,
5673          * like intel and amd on x86.
5674          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5675          * conflicts in case kvm is already setup for another implementation.
5676          */
5677         r = kvm_irqfd_init();
5678         if (r)
5679                 goto out_irqfd;
5680
5681         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5682                 r = -ENOMEM;
5683                 goto out_free_0;
5684         }
5685
5686         r = kvm_arch_hardware_setup(opaque);
5687         if (r < 0)
5688                 goto out_free_1;
5689
5690         c.ret = &r;
5691         c.opaque = opaque;
5692         for_each_online_cpu(cpu) {
5693                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5694                 if (r < 0)
5695                         goto out_free_2;
5696         }
5697
5698         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5699                                       kvm_starting_cpu, kvm_dying_cpu);
5700         if (r)
5701                 goto out_free_2;
5702         register_reboot_notifier(&kvm_reboot_notifier);
5703
5704         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5705         if (!vcpu_align)
5706                 vcpu_align = __alignof__(struct kvm_vcpu);
5707         kvm_vcpu_cache =
5708                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5709                                            SLAB_ACCOUNT,
5710                                            offsetof(struct kvm_vcpu, arch),
5711                                            offsetofend(struct kvm_vcpu, stats_id)
5712                                            - offsetof(struct kvm_vcpu, arch),
5713                                            NULL);
5714         if (!kvm_vcpu_cache) {
5715                 r = -ENOMEM;
5716                 goto out_free_3;
5717         }
5718
5719         for_each_possible_cpu(cpu) {
5720                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5721                                             GFP_KERNEL, cpu_to_node(cpu))) {
5722                         r = -ENOMEM;
5723                         goto out_free_4;
5724                 }
5725         }
5726
5727         r = kvm_async_pf_init();
5728         if (r)
5729                 goto out_free_5;
5730
5731         kvm_chardev_ops.owner = module;
5732         kvm_vm_fops.owner = module;
5733         kvm_vcpu_fops.owner = module;
5734
5735         r = misc_register(&kvm_dev);
5736         if (r) {
5737                 pr_err("kvm: misc device register failed\n");
5738                 goto out_unreg;
5739         }
5740
5741         register_syscore_ops(&kvm_syscore_ops);
5742
5743         kvm_preempt_ops.sched_in = kvm_sched_in;
5744         kvm_preempt_ops.sched_out = kvm_sched_out;
5745
5746         kvm_init_debug();
5747
5748         r = kvm_vfio_ops_init();
5749         WARN_ON(r);
5750
5751         return 0;
5752
5753 out_unreg:
5754         kvm_async_pf_deinit();
5755 out_free_5:
5756         for_each_possible_cpu(cpu)
5757                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5758 out_free_4:
5759         kmem_cache_destroy(kvm_vcpu_cache);
5760 out_free_3:
5761         unregister_reboot_notifier(&kvm_reboot_notifier);
5762         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5763 out_free_2:
5764         kvm_arch_hardware_unsetup();
5765 out_free_1:
5766         free_cpumask_var(cpus_hardware_enabled);
5767 out_free_0:
5768         kvm_irqfd_exit();
5769 out_irqfd:
5770         kvm_arch_exit();
5771 out_fail:
5772         return r;
5773 }
5774 EXPORT_SYMBOL_GPL(kvm_init);
5775
5776 void kvm_exit(void)
5777 {
5778         int cpu;
5779
5780         debugfs_remove_recursive(kvm_debugfs_dir);
5781         misc_deregister(&kvm_dev);
5782         for_each_possible_cpu(cpu)
5783                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5784         kmem_cache_destroy(kvm_vcpu_cache);
5785         kvm_async_pf_deinit();
5786         unregister_syscore_ops(&kvm_syscore_ops);
5787         unregister_reboot_notifier(&kvm_reboot_notifier);
5788         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5789         on_each_cpu(hardware_disable_nolock, NULL, 1);
5790         kvm_arch_hardware_unsetup();
5791         kvm_arch_exit();
5792         kvm_irqfd_exit();
5793         free_cpumask_var(cpus_hardware_enabled);
5794         kvm_vfio_ops_exit();
5795 }
5796 EXPORT_SYMBOL_GPL(kvm_exit);
5797
5798 struct kvm_vm_worker_thread_context {
5799         struct kvm *kvm;
5800         struct task_struct *parent;
5801         struct completion init_done;
5802         kvm_vm_thread_fn_t thread_fn;
5803         uintptr_t data;
5804         int err;
5805 };
5806
5807 static int kvm_vm_worker_thread(void *context)
5808 {
5809         /*
5810          * The init_context is allocated on the stack of the parent thread, so
5811          * we have to locally copy anything that is needed beyond initialization
5812          */
5813         struct kvm_vm_worker_thread_context *init_context = context;
5814         struct kvm *kvm = init_context->kvm;
5815         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5816         uintptr_t data = init_context->data;
5817         int err;
5818
5819         err = kthread_park(current);
5820         /* kthread_park(current) is never supposed to return an error */
5821         WARN_ON(err != 0);
5822         if (err)
5823                 goto init_complete;
5824
5825         err = cgroup_attach_task_all(init_context->parent, current);
5826         if (err) {
5827                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5828                         __func__, err);
5829                 goto init_complete;
5830         }
5831
5832         set_user_nice(current, task_nice(init_context->parent));
5833
5834 init_complete:
5835         init_context->err = err;
5836         complete(&init_context->init_done);
5837         init_context = NULL;
5838
5839         if (err)
5840                 return err;
5841
5842         /* Wait to be woken up by the spawner before proceeding. */
5843         kthread_parkme();
5844
5845         if (!kthread_should_stop())
5846                 err = thread_fn(kvm, data);
5847
5848         return err;
5849 }
5850
5851 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5852                                 uintptr_t data, const char *name,
5853                                 struct task_struct **thread_ptr)
5854 {
5855         struct kvm_vm_worker_thread_context init_context = {};
5856         struct task_struct *thread;
5857
5858         *thread_ptr = NULL;
5859         init_context.kvm = kvm;
5860         init_context.parent = current;
5861         init_context.thread_fn = thread_fn;
5862         init_context.data = data;
5863         init_completion(&init_context.init_done);
5864
5865         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5866                              "%s-%d", name, task_pid_nr(current));
5867         if (IS_ERR(thread))
5868                 return PTR_ERR(thread);
5869
5870         /* kthread_run is never supposed to return NULL */
5871         WARN_ON(thread == NULL);
5872
5873         wait_for_completion(&init_context.init_done);
5874
5875         if (!init_context.err)
5876                 *thread_ptr = thread;
5877
5878         return init_context.err;
5879 }