KVM: Use vmemdup_user()
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94  * Ordering of locks:
95  *
96  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 static struct kmem_cache *kvm_vcpu_cache;
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations stat_fops_per_vm;
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133                                 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137         return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
140                         .open           = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                 unsigned long start, unsigned long end, bool blockable)
160 {
161         return 0;
162 }
163
164 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165 {
166         /*
167          * The metadata used by is_zone_device_page() to determine whether or
168          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
169          * the device has been pinned, e.g. by get_user_pages().  WARN if the
170          * page_count() is zero to help detect bad usage of this helper.
171          */
172         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173                 return false;
174
175         return is_zone_device_page(pfn_to_page(pfn));
176 }
177
178 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
179 {
180         /*
181          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
182          * perspective they are "normal" pages, albeit with slightly different
183          * usage rules.
184          */
185         if (pfn_valid(pfn))
186                 return PageReserved(pfn_to_page(pfn)) &&
187                        !is_zero_pfn(pfn) &&
188                        !kvm_is_zone_device_pfn(pfn);
189
190         return true;
191 }
192
193 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
194 {
195         struct page *page = pfn_to_page(pfn);
196
197         if (!PageTransCompoundMap(page))
198                 return false;
199
200         return is_transparent_hugepage(compound_head(page));
201 }
202
203 /*
204  * Switches to specified vcpu, until a matching vcpu_put()
205  */
206 void vcpu_load(struct kvm_vcpu *vcpu)
207 {
208         int cpu = get_cpu();
209
210         __this_cpu_write(kvm_running_vcpu, vcpu);
211         preempt_notifier_register(&vcpu->preempt_notifier);
212         kvm_arch_vcpu_load(vcpu, cpu);
213         put_cpu();
214 }
215 EXPORT_SYMBOL_GPL(vcpu_load);
216
217 void vcpu_put(struct kvm_vcpu *vcpu)
218 {
219         preempt_disable();
220         kvm_arch_vcpu_put(vcpu);
221         preempt_notifier_unregister(&vcpu->preempt_notifier);
222         __this_cpu_write(kvm_running_vcpu, NULL);
223         preempt_enable();
224 }
225 EXPORT_SYMBOL_GPL(vcpu_put);
226
227 /* TODO: merge with kvm_arch_vcpu_should_kick */
228 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
229 {
230         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231
232         /*
233          * We need to wait for the VCPU to reenable interrupts and get out of
234          * READING_SHADOW_PAGE_TABLES mode.
235          */
236         if (req & KVM_REQUEST_WAIT)
237                 return mode != OUTSIDE_GUEST_MODE;
238
239         /*
240          * Need to kick a running VCPU, but otherwise there is nothing to do.
241          */
242         return mode == IN_GUEST_MODE;
243 }
244
245 static void ack_flush(void *_completed)
246 {
247 }
248
249 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250 {
251         if (unlikely(!cpus))
252                 cpus = cpu_online_mask;
253
254         if (cpumask_empty(cpus))
255                 return false;
256
257         smp_call_function_many(cpus, ack_flush, NULL, wait);
258         return true;
259 }
260
261 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
262                                  struct kvm_vcpu *except,
263                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
264 {
265         int i, cpu, me;
266         struct kvm_vcpu *vcpu;
267         bool called;
268
269         me = get_cpu();
270
271         kvm_for_each_vcpu(i, vcpu, kvm) {
272                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
273                     vcpu == except)
274                         continue;
275
276                 kvm_make_request(req, vcpu);
277                 cpu = vcpu->cpu;
278
279                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
280                         continue;
281
282                 if (tmp != NULL && cpu != -1 && cpu != me &&
283                     kvm_request_needs_ipi(vcpu, req))
284                         __cpumask_set_cpu(cpu, tmp);
285         }
286
287         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
288         put_cpu();
289
290         return called;
291 }
292
293 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
294                                       struct kvm_vcpu *except)
295 {
296         cpumask_var_t cpus;
297         bool called;
298
299         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
300
301         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
302
303         free_cpumask_var(cpus);
304         return called;
305 }
306
307 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
308 {
309         return kvm_make_all_cpus_request_except(kvm, req, NULL);
310 }
311
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315         /*
316          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317          * kvm_make_all_cpus_request.
318          */
319         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320
321         /*
322          * We want to publish modifications to the page tables before reading
323          * mode. Pairs with a memory barrier in arch-specific code.
324          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325          * and smp_mb in walk_shadow_page_lockless_begin/end.
326          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327          *
328          * There is already an smp_mb__after_atomic() before
329          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330          * barrier here.
331          */
332         if (!kvm_arch_flush_remote_tlb(kvm)
333             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334                 ++kvm->stat.remote_tlb_flush;
335         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
336 }
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 #endif
339
340 void kvm_reload_remote_mmus(struct kvm *kvm)
341 {
342         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 }
344
345 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
346 {
347         mutex_init(&vcpu->mutex);
348         vcpu->cpu = -1;
349         vcpu->kvm = kvm;
350         vcpu->vcpu_id = id;
351         vcpu->pid = NULL;
352         rcuwait_init(&vcpu->wait);
353         kvm_async_pf_vcpu_init(vcpu);
354
355         vcpu->pre_pcpu = -1;
356         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
357
358         kvm_vcpu_set_in_spin_loop(vcpu, false);
359         kvm_vcpu_set_dy_eligible(vcpu, false);
360         vcpu->preempted = false;
361         vcpu->ready = false;
362         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
363 }
364
365 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
366 {
367         kvm_arch_vcpu_destroy(vcpu);
368
369         /*
370          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
371          * the vcpu->pid pointer, and at destruction time all file descriptors
372          * are already gone.
373          */
374         put_pid(rcu_dereference_protected(vcpu->pid, 1));
375
376         free_page((unsigned long)vcpu->run);
377         kmem_cache_free(kvm_vcpu_cache, vcpu);
378 }
379 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
380
381 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
382 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
383 {
384         return container_of(mn, struct kvm, mmu_notifier);
385 }
386
387 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
388                                         struct mm_struct *mm,
389                                         unsigned long address,
390                                         pte_t pte)
391 {
392         struct kvm *kvm = mmu_notifier_to_kvm(mn);
393         int idx;
394
395         idx = srcu_read_lock(&kvm->srcu);
396         spin_lock(&kvm->mmu_lock);
397         kvm->mmu_notifier_seq++;
398
399         if (kvm_set_spte_hva(kvm, address, pte))
400                 kvm_flush_remote_tlbs(kvm);
401
402         spin_unlock(&kvm->mmu_lock);
403         srcu_read_unlock(&kvm->srcu, idx);
404 }
405
406 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
407                                         const struct mmu_notifier_range *range)
408 {
409         struct kvm *kvm = mmu_notifier_to_kvm(mn);
410         int need_tlb_flush = 0, idx;
411         int ret;
412
413         idx = srcu_read_lock(&kvm->srcu);
414         spin_lock(&kvm->mmu_lock);
415         /*
416          * The count increase must become visible at unlock time as no
417          * spte can be established without taking the mmu_lock and
418          * count is also read inside the mmu_lock critical section.
419          */
420         kvm->mmu_notifier_count++;
421         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
422         need_tlb_flush |= kvm->tlbs_dirty;
423         /* we've to flush the tlb before the pages can be freed */
424         if (need_tlb_flush)
425                 kvm_flush_remote_tlbs(kvm);
426
427         spin_unlock(&kvm->mmu_lock);
428
429         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
430                                         range->end,
431                                         mmu_notifier_range_blockable(range));
432
433         srcu_read_unlock(&kvm->srcu, idx);
434
435         return ret;
436 }
437
438 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
439                                         const struct mmu_notifier_range *range)
440 {
441         struct kvm *kvm = mmu_notifier_to_kvm(mn);
442
443         spin_lock(&kvm->mmu_lock);
444         /*
445          * This sequence increase will notify the kvm page fault that
446          * the page that is going to be mapped in the spte could have
447          * been freed.
448          */
449         kvm->mmu_notifier_seq++;
450         smp_wmb();
451         /*
452          * The above sequence increase must be visible before the
453          * below count decrease, which is ensured by the smp_wmb above
454          * in conjunction with the smp_rmb in mmu_notifier_retry().
455          */
456         kvm->mmu_notifier_count--;
457         spin_unlock(&kvm->mmu_lock);
458
459         BUG_ON(kvm->mmu_notifier_count < 0);
460 }
461
462 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
463                                               struct mm_struct *mm,
464                                               unsigned long start,
465                                               unsigned long end)
466 {
467         struct kvm *kvm = mmu_notifier_to_kvm(mn);
468         int young, idx;
469
470         idx = srcu_read_lock(&kvm->srcu);
471         spin_lock(&kvm->mmu_lock);
472
473         young = kvm_age_hva(kvm, start, end);
474         if (young)
475                 kvm_flush_remote_tlbs(kvm);
476
477         spin_unlock(&kvm->mmu_lock);
478         srcu_read_unlock(&kvm->srcu, idx);
479
480         return young;
481 }
482
483 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
484                                         struct mm_struct *mm,
485                                         unsigned long start,
486                                         unsigned long end)
487 {
488         struct kvm *kvm = mmu_notifier_to_kvm(mn);
489         int young, idx;
490
491         idx = srcu_read_lock(&kvm->srcu);
492         spin_lock(&kvm->mmu_lock);
493         /*
494          * Even though we do not flush TLB, this will still adversely
495          * affect performance on pre-Haswell Intel EPT, where there is
496          * no EPT Access Bit to clear so that we have to tear down EPT
497          * tables instead. If we find this unacceptable, we can always
498          * add a parameter to kvm_age_hva so that it effectively doesn't
499          * do anything on clear_young.
500          *
501          * Also note that currently we never issue secondary TLB flushes
502          * from clear_young, leaving this job up to the regular system
503          * cadence. If we find this inaccurate, we might come up with a
504          * more sophisticated heuristic later.
505          */
506         young = kvm_age_hva(kvm, start, end);
507         spin_unlock(&kvm->mmu_lock);
508         srcu_read_unlock(&kvm->srcu, idx);
509
510         return young;
511 }
512
513 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
514                                        struct mm_struct *mm,
515                                        unsigned long address)
516 {
517         struct kvm *kvm = mmu_notifier_to_kvm(mn);
518         int young, idx;
519
520         idx = srcu_read_lock(&kvm->srcu);
521         spin_lock(&kvm->mmu_lock);
522         young = kvm_test_age_hva(kvm, address);
523         spin_unlock(&kvm->mmu_lock);
524         srcu_read_unlock(&kvm->srcu, idx);
525
526         return young;
527 }
528
529 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
530                                      struct mm_struct *mm)
531 {
532         struct kvm *kvm = mmu_notifier_to_kvm(mn);
533         int idx;
534
535         idx = srcu_read_lock(&kvm->srcu);
536         kvm_arch_flush_shadow_all(kvm);
537         srcu_read_unlock(&kvm->srcu, idx);
538 }
539
540 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
541         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
542         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
543         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
544         .clear_young            = kvm_mmu_notifier_clear_young,
545         .test_young             = kvm_mmu_notifier_test_young,
546         .change_pte             = kvm_mmu_notifier_change_pte,
547         .release                = kvm_mmu_notifier_release,
548 };
549
550 static int kvm_init_mmu_notifier(struct kvm *kvm)
551 {
552         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
553         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
554 }
555
556 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
557
558 static int kvm_init_mmu_notifier(struct kvm *kvm)
559 {
560         return 0;
561 }
562
563 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
564
565 static struct kvm_memslots *kvm_alloc_memslots(void)
566 {
567         int i;
568         struct kvm_memslots *slots;
569
570         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
571         if (!slots)
572                 return NULL;
573
574         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
575                 slots->id_to_index[i] = -1;
576
577         return slots;
578 }
579
580 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
581 {
582         if (!memslot->dirty_bitmap)
583                 return;
584
585         kvfree(memslot->dirty_bitmap);
586         memslot->dirty_bitmap = NULL;
587 }
588
589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
590 {
591         kvm_destroy_dirty_bitmap(slot);
592
593         kvm_arch_free_memslot(kvm, slot);
594
595         slot->flags = 0;
596         slot->npages = 0;
597 }
598
599 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
600 {
601         struct kvm_memory_slot *memslot;
602
603         if (!slots)
604                 return;
605
606         kvm_for_each_memslot(memslot, slots)
607                 kvm_free_memslot(kvm, memslot);
608
609         kvfree(slots);
610 }
611
612 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
613 {
614         int i;
615
616         if (!kvm->debugfs_dentry)
617                 return;
618
619         debugfs_remove_recursive(kvm->debugfs_dentry);
620
621         if (kvm->debugfs_stat_data) {
622                 for (i = 0; i < kvm_debugfs_num_entries; i++)
623                         kfree(kvm->debugfs_stat_data[i]);
624                 kfree(kvm->debugfs_stat_data);
625         }
626 }
627
628 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
629 {
630         char dir_name[ITOA_MAX_LEN * 2];
631         struct kvm_stat_data *stat_data;
632         struct kvm_stats_debugfs_item *p;
633
634         if (!debugfs_initialized())
635                 return 0;
636
637         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
638         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
639
640         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
641                                          sizeof(*kvm->debugfs_stat_data),
642                                          GFP_KERNEL_ACCOUNT);
643         if (!kvm->debugfs_stat_data)
644                 return -ENOMEM;
645
646         for (p = debugfs_entries; p->name; p++) {
647                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
648                 if (!stat_data)
649                         return -ENOMEM;
650
651                 stat_data->kvm = kvm;
652                 stat_data->dbgfs_item = p;
653                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
654                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
655                                     kvm->debugfs_dentry, stat_data,
656                                     &stat_fops_per_vm);
657         }
658         return 0;
659 }
660
661 /*
662  * Called after the VM is otherwise initialized, but just before adding it to
663  * the vm_list.
664  */
665 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
666 {
667         return 0;
668 }
669
670 /*
671  * Called just after removing the VM from the vm_list, but before doing any
672  * other destruction.
673  */
674 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
675 {
676 }
677
678 static struct kvm *kvm_create_vm(unsigned long type)
679 {
680         struct kvm *kvm = kvm_arch_alloc_vm();
681         int r = -ENOMEM;
682         int i;
683
684         if (!kvm)
685                 return ERR_PTR(-ENOMEM);
686
687         spin_lock_init(&kvm->mmu_lock);
688         mmgrab(current->mm);
689         kvm->mm = current->mm;
690         kvm_eventfd_init(kvm);
691         mutex_init(&kvm->lock);
692         mutex_init(&kvm->irq_lock);
693         mutex_init(&kvm->slots_lock);
694         INIT_LIST_HEAD(&kvm->devices);
695
696         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
697
698         if (init_srcu_struct(&kvm->srcu))
699                 goto out_err_no_srcu;
700         if (init_srcu_struct(&kvm->irq_srcu))
701                 goto out_err_no_irq_srcu;
702
703         refcount_set(&kvm->users_count, 1);
704         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
705                 struct kvm_memslots *slots = kvm_alloc_memslots();
706
707                 if (!slots)
708                         goto out_err_no_arch_destroy_vm;
709                 /* Generations must be different for each address space. */
710                 slots->generation = i;
711                 rcu_assign_pointer(kvm->memslots[i], slots);
712         }
713
714         for (i = 0; i < KVM_NR_BUSES; i++) {
715                 rcu_assign_pointer(kvm->buses[i],
716                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
717                 if (!kvm->buses[i])
718                         goto out_err_no_arch_destroy_vm;
719         }
720
721         kvm->max_halt_poll_ns = halt_poll_ns;
722
723         r = kvm_arch_init_vm(kvm, type);
724         if (r)
725                 goto out_err_no_arch_destroy_vm;
726
727         r = hardware_enable_all();
728         if (r)
729                 goto out_err_no_disable;
730
731 #ifdef CONFIG_HAVE_KVM_IRQFD
732         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
733 #endif
734
735         r = kvm_init_mmu_notifier(kvm);
736         if (r)
737                 goto out_err_no_mmu_notifier;
738
739         r = kvm_arch_post_init_vm(kvm);
740         if (r)
741                 goto out_err;
742
743         mutex_lock(&kvm_lock);
744         list_add(&kvm->vm_list, &vm_list);
745         mutex_unlock(&kvm_lock);
746
747         preempt_notifier_inc();
748
749         return kvm;
750
751 out_err:
752 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
753         if (kvm->mmu_notifier.ops)
754                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
755 #endif
756 out_err_no_mmu_notifier:
757         hardware_disable_all();
758 out_err_no_disable:
759         kvm_arch_destroy_vm(kvm);
760 out_err_no_arch_destroy_vm:
761         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
762         for (i = 0; i < KVM_NR_BUSES; i++)
763                 kfree(kvm_get_bus(kvm, i));
764         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
765                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
766         cleanup_srcu_struct(&kvm->irq_srcu);
767 out_err_no_irq_srcu:
768         cleanup_srcu_struct(&kvm->srcu);
769 out_err_no_srcu:
770         kvm_arch_free_vm(kvm);
771         mmdrop(current->mm);
772         return ERR_PTR(r);
773 }
774
775 static void kvm_destroy_devices(struct kvm *kvm)
776 {
777         struct kvm_device *dev, *tmp;
778
779         /*
780          * We do not need to take the kvm->lock here, because nobody else
781          * has a reference to the struct kvm at this point and therefore
782          * cannot access the devices list anyhow.
783          */
784         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
785                 list_del(&dev->vm_node);
786                 dev->ops->destroy(dev);
787         }
788 }
789
790 static void kvm_destroy_vm(struct kvm *kvm)
791 {
792         int i;
793         struct mm_struct *mm = kvm->mm;
794
795         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
796         kvm_destroy_vm_debugfs(kvm);
797         kvm_arch_sync_events(kvm);
798         mutex_lock(&kvm_lock);
799         list_del(&kvm->vm_list);
800         mutex_unlock(&kvm_lock);
801         kvm_arch_pre_destroy_vm(kvm);
802
803         kvm_free_irq_routing(kvm);
804         for (i = 0; i < KVM_NR_BUSES; i++) {
805                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
806
807                 if (bus)
808                         kvm_io_bus_destroy(bus);
809                 kvm->buses[i] = NULL;
810         }
811         kvm_coalesced_mmio_free(kvm);
812 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
813         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
814 #else
815         kvm_arch_flush_shadow_all(kvm);
816 #endif
817         kvm_arch_destroy_vm(kvm);
818         kvm_destroy_devices(kvm);
819         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
820                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
821         cleanup_srcu_struct(&kvm->irq_srcu);
822         cleanup_srcu_struct(&kvm->srcu);
823         kvm_arch_free_vm(kvm);
824         preempt_notifier_dec();
825         hardware_disable_all();
826         mmdrop(mm);
827 }
828
829 void kvm_get_kvm(struct kvm *kvm)
830 {
831         refcount_inc(&kvm->users_count);
832 }
833 EXPORT_SYMBOL_GPL(kvm_get_kvm);
834
835 void kvm_put_kvm(struct kvm *kvm)
836 {
837         if (refcount_dec_and_test(&kvm->users_count))
838                 kvm_destroy_vm(kvm);
839 }
840 EXPORT_SYMBOL_GPL(kvm_put_kvm);
841
842 /*
843  * Used to put a reference that was taken on behalf of an object associated
844  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
845  * of the new file descriptor fails and the reference cannot be transferred to
846  * its final owner.  In such cases, the caller is still actively using @kvm and
847  * will fail miserably if the refcount unexpectedly hits zero.
848  */
849 void kvm_put_kvm_no_destroy(struct kvm *kvm)
850 {
851         WARN_ON(refcount_dec_and_test(&kvm->users_count));
852 }
853 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
854
855 static int kvm_vm_release(struct inode *inode, struct file *filp)
856 {
857         struct kvm *kvm = filp->private_data;
858
859         kvm_irqfd_release(kvm);
860
861         kvm_put_kvm(kvm);
862         return 0;
863 }
864
865 /*
866  * Allocation size is twice as large as the actual dirty bitmap size.
867  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
868  */
869 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
870 {
871         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
872
873         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
874         if (!memslot->dirty_bitmap)
875                 return -ENOMEM;
876
877         return 0;
878 }
879
880 /*
881  * Delete a memslot by decrementing the number of used slots and shifting all
882  * other entries in the array forward one spot.
883  */
884 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
885                                       struct kvm_memory_slot *memslot)
886 {
887         struct kvm_memory_slot *mslots = slots->memslots;
888         int i;
889
890         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
891                 return;
892
893         slots->used_slots--;
894
895         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
896                 atomic_set(&slots->lru_slot, 0);
897
898         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
899                 mslots[i] = mslots[i + 1];
900                 slots->id_to_index[mslots[i].id] = i;
901         }
902         mslots[i] = *memslot;
903         slots->id_to_index[memslot->id] = -1;
904 }
905
906 /*
907  * "Insert" a new memslot by incrementing the number of used slots.  Returns
908  * the new slot's initial index into the memslots array.
909  */
910 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
911 {
912         return slots->used_slots++;
913 }
914
915 /*
916  * Move a changed memslot backwards in the array by shifting existing slots
917  * with a higher GFN toward the front of the array.  Note, the changed memslot
918  * itself is not preserved in the array, i.e. not swapped at this time, only
919  * its new index into the array is tracked.  Returns the changed memslot's
920  * current index into the memslots array.
921  */
922 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
923                                             struct kvm_memory_slot *memslot)
924 {
925         struct kvm_memory_slot *mslots = slots->memslots;
926         int i;
927
928         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
929             WARN_ON_ONCE(!slots->used_slots))
930                 return -1;
931
932         /*
933          * Move the target memslot backward in the array by shifting existing
934          * memslots with a higher GFN (than the target memslot) towards the
935          * front of the array.
936          */
937         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
938                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
939                         break;
940
941                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
942
943                 /* Shift the next memslot forward one and update its index. */
944                 mslots[i] = mslots[i + 1];
945                 slots->id_to_index[mslots[i].id] = i;
946         }
947         return i;
948 }
949
950 /*
951  * Move a changed memslot forwards in the array by shifting existing slots with
952  * a lower GFN toward the back of the array.  Note, the changed memslot itself
953  * is not preserved in the array, i.e. not swapped at this time, only its new
954  * index into the array is tracked.  Returns the changed memslot's final index
955  * into the memslots array.
956  */
957 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
958                                            struct kvm_memory_slot *memslot,
959                                            int start)
960 {
961         struct kvm_memory_slot *mslots = slots->memslots;
962         int i;
963
964         for (i = start; i > 0; i--) {
965                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
966                         break;
967
968                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
969
970                 /* Shift the next memslot back one and update its index. */
971                 mslots[i] = mslots[i - 1];
972                 slots->id_to_index[mslots[i].id] = i;
973         }
974         return i;
975 }
976
977 /*
978  * Re-sort memslots based on their GFN to account for an added, deleted, or
979  * moved memslot.  Sorting memslots by GFN allows using a binary search during
980  * memslot lookup.
981  *
982  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
983  * at memslots[0] has the highest GFN.
984  *
985  * The sorting algorithm takes advantage of having initially sorted memslots
986  * and knowing the position of the changed memslot.  Sorting is also optimized
987  * by not swapping the updated memslot and instead only shifting other memslots
988  * and tracking the new index for the update memslot.  Only once its final
989  * index is known is the updated memslot copied into its position in the array.
990  *
991  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
992  *    the end of the array.
993  *
994  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
995  *    end of the array and then it forward to its correct location.
996  *
997  *  - When moving a memslot, the algorithm first moves the updated memslot
998  *    backward to handle the scenario where the memslot's GFN was changed to a
999  *    lower value.  update_memslots() then falls through and runs the same flow
1000  *    as creating a memslot to move the memslot forward to handle the scenario
1001  *    where its GFN was changed to a higher value.
1002  *
1003  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1004  * historical reasons.  Originally, invalid memslots where denoted by having
1005  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1006  * to the end of the array.  The current algorithm uses dedicated logic to
1007  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1008  *
1009  * The other historical motiviation for highest->lowest was to improve the
1010  * performance of memslot lookup.  KVM originally used a linear search starting
1011  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1012  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1013  * single memslot above the 4gb boundary.  As the largest memslot is also the
1014  * most likely to be referenced, sorting it to the front of the array was
1015  * advantageous.  The current binary search starts from the middle of the array
1016  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1017  */
1018 static void update_memslots(struct kvm_memslots *slots,
1019                             struct kvm_memory_slot *memslot,
1020                             enum kvm_mr_change change)
1021 {
1022         int i;
1023
1024         if (change == KVM_MR_DELETE) {
1025                 kvm_memslot_delete(slots, memslot);
1026         } else {
1027                 if (change == KVM_MR_CREATE)
1028                         i = kvm_memslot_insert_back(slots);
1029                 else
1030                         i = kvm_memslot_move_backward(slots, memslot);
1031                 i = kvm_memslot_move_forward(slots, memslot, i);
1032
1033                 /*
1034                  * Copy the memslot to its new position in memslots and update
1035                  * its index accordingly.
1036                  */
1037                 slots->memslots[i] = *memslot;
1038                 slots->id_to_index[memslot->id] = i;
1039         }
1040 }
1041
1042 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1043 {
1044         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1045
1046 #ifdef __KVM_HAVE_READONLY_MEM
1047         valid_flags |= KVM_MEM_READONLY;
1048 #endif
1049
1050         if (mem->flags & ~valid_flags)
1051                 return -EINVAL;
1052
1053         return 0;
1054 }
1055
1056 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1057                 int as_id, struct kvm_memslots *slots)
1058 {
1059         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1060         u64 gen = old_memslots->generation;
1061
1062         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1063         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1064
1065         rcu_assign_pointer(kvm->memslots[as_id], slots);
1066         synchronize_srcu_expedited(&kvm->srcu);
1067
1068         /*
1069          * Increment the new memslot generation a second time, dropping the
1070          * update in-progress flag and incrementing the generation based on
1071          * the number of address spaces.  This provides a unique and easily
1072          * identifiable generation number while the memslots are in flux.
1073          */
1074         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1075
1076         /*
1077          * Generations must be unique even across address spaces.  We do not need
1078          * a global counter for that, instead the generation space is evenly split
1079          * across address spaces.  For example, with two address spaces, address
1080          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1081          * use generations 1, 3, 5, ...
1082          */
1083         gen += KVM_ADDRESS_SPACE_NUM;
1084
1085         kvm_arch_memslots_updated(kvm, gen);
1086
1087         slots->generation = gen;
1088
1089         return old_memslots;
1090 }
1091
1092 /*
1093  * Note, at a minimum, the current number of used slots must be allocated, even
1094  * when deleting a memslot, as we need a complete duplicate of the memslots for
1095  * use when invalidating a memslot prior to deleting/moving the memslot.
1096  */
1097 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1098                                              enum kvm_mr_change change)
1099 {
1100         struct kvm_memslots *slots;
1101         size_t old_size, new_size;
1102
1103         old_size = sizeof(struct kvm_memslots) +
1104                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1105
1106         if (change == KVM_MR_CREATE)
1107                 new_size = old_size + sizeof(struct kvm_memory_slot);
1108         else
1109                 new_size = old_size;
1110
1111         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1112         if (likely(slots))
1113                 memcpy(slots, old, old_size);
1114
1115         return slots;
1116 }
1117
1118 static int kvm_set_memslot(struct kvm *kvm,
1119                            const struct kvm_userspace_memory_region *mem,
1120                            struct kvm_memory_slot *old,
1121                            struct kvm_memory_slot *new, int as_id,
1122                            enum kvm_mr_change change)
1123 {
1124         struct kvm_memory_slot *slot;
1125         struct kvm_memslots *slots;
1126         int r;
1127
1128         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1129         if (!slots)
1130                 return -ENOMEM;
1131
1132         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1133                 /*
1134                  * Note, the INVALID flag needs to be in the appropriate entry
1135                  * in the freshly allocated memslots, not in @old or @new.
1136                  */
1137                 slot = id_to_memslot(slots, old->id);
1138                 slot->flags |= KVM_MEMSLOT_INVALID;
1139
1140                 /*
1141                  * We can re-use the old memslots, the only difference from the
1142                  * newly installed memslots is the invalid flag, which will get
1143                  * dropped by update_memslots anyway.  We'll also revert to the
1144                  * old memslots if preparing the new memory region fails.
1145                  */
1146                 slots = install_new_memslots(kvm, as_id, slots);
1147
1148                 /* From this point no new shadow pages pointing to a deleted,
1149                  * or moved, memslot will be created.
1150                  *
1151                  * validation of sp->gfn happens in:
1152                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1153                  *      - kvm_is_visible_gfn (mmu_check_root)
1154                  */
1155                 kvm_arch_flush_shadow_memslot(kvm, slot);
1156         }
1157
1158         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1159         if (r)
1160                 goto out_slots;
1161
1162         update_memslots(slots, new, change);
1163         slots = install_new_memslots(kvm, as_id, slots);
1164
1165         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1166
1167         kvfree(slots);
1168         return 0;
1169
1170 out_slots:
1171         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1172                 slots = install_new_memslots(kvm, as_id, slots);
1173         kvfree(slots);
1174         return r;
1175 }
1176
1177 static int kvm_delete_memslot(struct kvm *kvm,
1178                               const struct kvm_userspace_memory_region *mem,
1179                               struct kvm_memory_slot *old, int as_id)
1180 {
1181         struct kvm_memory_slot new;
1182         int r;
1183
1184         if (!old->npages)
1185                 return -EINVAL;
1186
1187         memset(&new, 0, sizeof(new));
1188         new.id = old->id;
1189
1190         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1191         if (r)
1192                 return r;
1193
1194         kvm_free_memslot(kvm, old);
1195         return 0;
1196 }
1197
1198 /*
1199  * Allocate some memory and give it an address in the guest physical address
1200  * space.
1201  *
1202  * Discontiguous memory is allowed, mostly for framebuffers.
1203  *
1204  * Must be called holding kvm->slots_lock for write.
1205  */
1206 int __kvm_set_memory_region(struct kvm *kvm,
1207                             const struct kvm_userspace_memory_region *mem)
1208 {
1209         struct kvm_memory_slot old, new;
1210         struct kvm_memory_slot *tmp;
1211         enum kvm_mr_change change;
1212         int as_id, id;
1213         int r;
1214
1215         r = check_memory_region_flags(mem);
1216         if (r)
1217                 return r;
1218
1219         as_id = mem->slot >> 16;
1220         id = (u16)mem->slot;
1221
1222         /* General sanity checks */
1223         if (mem->memory_size & (PAGE_SIZE - 1))
1224                 return -EINVAL;
1225         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1226                 return -EINVAL;
1227         /* We can read the guest memory with __xxx_user() later on. */
1228         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1229              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1230                         mem->memory_size))
1231                 return -EINVAL;
1232         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1233                 return -EINVAL;
1234         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1235                 return -EINVAL;
1236
1237         /*
1238          * Make a full copy of the old memslot, the pointer will become stale
1239          * when the memslots are re-sorted by update_memslots(), and the old
1240          * memslot needs to be referenced after calling update_memslots(), e.g.
1241          * to free its resources and for arch specific behavior.
1242          */
1243         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1244         if (tmp) {
1245                 old = *tmp;
1246                 tmp = NULL;
1247         } else {
1248                 memset(&old, 0, sizeof(old));
1249                 old.id = id;
1250         }
1251
1252         if (!mem->memory_size)
1253                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1254
1255         new.id = id;
1256         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1257         new.npages = mem->memory_size >> PAGE_SHIFT;
1258         new.flags = mem->flags;
1259         new.userspace_addr = mem->userspace_addr;
1260
1261         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1262                 return -EINVAL;
1263
1264         if (!old.npages) {
1265                 change = KVM_MR_CREATE;
1266                 new.dirty_bitmap = NULL;
1267                 memset(&new.arch, 0, sizeof(new.arch));
1268         } else { /* Modify an existing slot. */
1269                 if ((new.userspace_addr != old.userspace_addr) ||
1270                     (new.npages != old.npages) ||
1271                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1272                         return -EINVAL;
1273
1274                 if (new.base_gfn != old.base_gfn)
1275                         change = KVM_MR_MOVE;
1276                 else if (new.flags != old.flags)
1277                         change = KVM_MR_FLAGS_ONLY;
1278                 else /* Nothing to change. */
1279                         return 0;
1280
1281                 /* Copy dirty_bitmap and arch from the current memslot. */
1282                 new.dirty_bitmap = old.dirty_bitmap;
1283                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1284         }
1285
1286         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1287                 /* Check for overlaps */
1288                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1289                         if (tmp->id == id)
1290                                 continue;
1291                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1292                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1293                                 return -EEXIST;
1294                 }
1295         }
1296
1297         /* Allocate/free page dirty bitmap as needed */
1298         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1299                 new.dirty_bitmap = NULL;
1300         else if (!new.dirty_bitmap) {
1301                 r = kvm_alloc_dirty_bitmap(&new);
1302                 if (r)
1303                         return r;
1304
1305                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1306                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1307         }
1308
1309         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1310         if (r)
1311                 goto out_bitmap;
1312
1313         if (old.dirty_bitmap && !new.dirty_bitmap)
1314                 kvm_destroy_dirty_bitmap(&old);
1315         return 0;
1316
1317 out_bitmap:
1318         if (new.dirty_bitmap && !old.dirty_bitmap)
1319                 kvm_destroy_dirty_bitmap(&new);
1320         return r;
1321 }
1322 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1323
1324 int kvm_set_memory_region(struct kvm *kvm,
1325                           const struct kvm_userspace_memory_region *mem)
1326 {
1327         int r;
1328
1329         mutex_lock(&kvm->slots_lock);
1330         r = __kvm_set_memory_region(kvm, mem);
1331         mutex_unlock(&kvm->slots_lock);
1332         return r;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1335
1336 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1337                                           struct kvm_userspace_memory_region *mem)
1338 {
1339         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1340                 return -EINVAL;
1341
1342         return kvm_set_memory_region(kvm, mem);
1343 }
1344
1345 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1346 /**
1347  * kvm_get_dirty_log - get a snapshot of dirty pages
1348  * @kvm:        pointer to kvm instance
1349  * @log:        slot id and address to which we copy the log
1350  * @is_dirty:   set to '1' if any dirty pages were found
1351  * @memslot:    set to the associated memslot, always valid on success
1352  */
1353 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1354                       int *is_dirty, struct kvm_memory_slot **memslot)
1355 {
1356         struct kvm_memslots *slots;
1357         int i, as_id, id;
1358         unsigned long n;
1359         unsigned long any = 0;
1360
1361         *memslot = NULL;
1362         *is_dirty = 0;
1363
1364         as_id = log->slot >> 16;
1365         id = (u16)log->slot;
1366         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1367                 return -EINVAL;
1368
1369         slots = __kvm_memslots(kvm, as_id);
1370         *memslot = id_to_memslot(slots, id);
1371         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1372                 return -ENOENT;
1373
1374         kvm_arch_sync_dirty_log(kvm, *memslot);
1375
1376         n = kvm_dirty_bitmap_bytes(*memslot);
1377
1378         for (i = 0; !any && i < n/sizeof(long); ++i)
1379                 any = (*memslot)->dirty_bitmap[i];
1380
1381         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1382                 return -EFAULT;
1383
1384         if (any)
1385                 *is_dirty = 1;
1386         return 0;
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1389
1390 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1391 /**
1392  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1393  *      and reenable dirty page tracking for the corresponding pages.
1394  * @kvm:        pointer to kvm instance
1395  * @log:        slot id and address to which we copy the log
1396  *
1397  * We need to keep it in mind that VCPU threads can write to the bitmap
1398  * concurrently. So, to avoid losing track of dirty pages we keep the
1399  * following order:
1400  *
1401  *    1. Take a snapshot of the bit and clear it if needed.
1402  *    2. Write protect the corresponding page.
1403  *    3. Copy the snapshot to the userspace.
1404  *    4. Upon return caller flushes TLB's if needed.
1405  *
1406  * Between 2 and 4, the guest may write to the page using the remaining TLB
1407  * entry.  This is not a problem because the page is reported dirty using
1408  * the snapshot taken before and step 4 ensures that writes done after
1409  * exiting to userspace will be logged for the next call.
1410  *
1411  */
1412 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1413 {
1414         struct kvm_memslots *slots;
1415         struct kvm_memory_slot *memslot;
1416         int i, as_id, id;
1417         unsigned long n;
1418         unsigned long *dirty_bitmap;
1419         unsigned long *dirty_bitmap_buffer;
1420         bool flush;
1421
1422         as_id = log->slot >> 16;
1423         id = (u16)log->slot;
1424         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1425                 return -EINVAL;
1426
1427         slots = __kvm_memslots(kvm, as_id);
1428         memslot = id_to_memslot(slots, id);
1429         if (!memslot || !memslot->dirty_bitmap)
1430                 return -ENOENT;
1431
1432         dirty_bitmap = memslot->dirty_bitmap;
1433
1434         kvm_arch_sync_dirty_log(kvm, memslot);
1435
1436         n = kvm_dirty_bitmap_bytes(memslot);
1437         flush = false;
1438         if (kvm->manual_dirty_log_protect) {
1439                 /*
1440                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1441                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1442                  * is some code duplication between this function and
1443                  * kvm_get_dirty_log, but hopefully all architecture
1444                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1445                  * can be eliminated.
1446                  */
1447                 dirty_bitmap_buffer = dirty_bitmap;
1448         } else {
1449                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1450                 memset(dirty_bitmap_buffer, 0, n);
1451
1452                 spin_lock(&kvm->mmu_lock);
1453                 for (i = 0; i < n / sizeof(long); i++) {
1454                         unsigned long mask;
1455                         gfn_t offset;
1456
1457                         if (!dirty_bitmap[i])
1458                                 continue;
1459
1460                         flush = true;
1461                         mask = xchg(&dirty_bitmap[i], 0);
1462                         dirty_bitmap_buffer[i] = mask;
1463
1464                         offset = i * BITS_PER_LONG;
1465                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1466                                                                 offset, mask);
1467                 }
1468                 spin_unlock(&kvm->mmu_lock);
1469         }
1470
1471         if (flush)
1472                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1473
1474         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1475                 return -EFAULT;
1476         return 0;
1477 }
1478
1479
1480 /**
1481  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1482  * @kvm: kvm instance
1483  * @log: slot id and address to which we copy the log
1484  *
1485  * Steps 1-4 below provide general overview of dirty page logging. See
1486  * kvm_get_dirty_log_protect() function description for additional details.
1487  *
1488  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1489  * always flush the TLB (step 4) even if previous step failed  and the dirty
1490  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1491  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1492  * writes will be marked dirty for next log read.
1493  *
1494  *   1. Take a snapshot of the bit and clear it if needed.
1495  *   2. Write protect the corresponding page.
1496  *   3. Copy the snapshot to the userspace.
1497  *   4. Flush TLB's if needed.
1498  */
1499 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1500                                       struct kvm_dirty_log *log)
1501 {
1502         int r;
1503
1504         mutex_lock(&kvm->slots_lock);
1505
1506         r = kvm_get_dirty_log_protect(kvm, log);
1507
1508         mutex_unlock(&kvm->slots_lock);
1509         return r;
1510 }
1511
1512 /**
1513  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1514  *      and reenable dirty page tracking for the corresponding pages.
1515  * @kvm:        pointer to kvm instance
1516  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1517  */
1518 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1519                                        struct kvm_clear_dirty_log *log)
1520 {
1521         struct kvm_memslots *slots;
1522         struct kvm_memory_slot *memslot;
1523         int as_id, id;
1524         gfn_t offset;
1525         unsigned long i, n;
1526         unsigned long *dirty_bitmap;
1527         unsigned long *dirty_bitmap_buffer;
1528         bool flush;
1529
1530         as_id = log->slot >> 16;
1531         id = (u16)log->slot;
1532         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1533                 return -EINVAL;
1534
1535         if (log->first_page & 63)
1536                 return -EINVAL;
1537
1538         slots = __kvm_memslots(kvm, as_id);
1539         memslot = id_to_memslot(slots, id);
1540         if (!memslot || !memslot->dirty_bitmap)
1541                 return -ENOENT;
1542
1543         dirty_bitmap = memslot->dirty_bitmap;
1544
1545         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1546
1547         if (log->first_page > memslot->npages ||
1548             log->num_pages > memslot->npages - log->first_page ||
1549             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1550             return -EINVAL;
1551
1552         kvm_arch_sync_dirty_log(kvm, memslot);
1553
1554         flush = false;
1555         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1556         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1557                 return -EFAULT;
1558
1559         spin_lock(&kvm->mmu_lock);
1560         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1561                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1562              i++, offset += BITS_PER_LONG) {
1563                 unsigned long mask = *dirty_bitmap_buffer++;
1564                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1565                 if (!mask)
1566                         continue;
1567
1568                 mask &= atomic_long_fetch_andnot(mask, p);
1569
1570                 /*
1571                  * mask contains the bits that really have been cleared.  This
1572                  * never includes any bits beyond the length of the memslot (if
1573                  * the length is not aligned to 64 pages), therefore it is not
1574                  * a problem if userspace sets them in log->dirty_bitmap.
1575                 */
1576                 if (mask) {
1577                         flush = true;
1578                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1579                                                                 offset, mask);
1580                 }
1581         }
1582         spin_unlock(&kvm->mmu_lock);
1583
1584         if (flush)
1585                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1586
1587         return 0;
1588 }
1589
1590 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1591                                         struct kvm_clear_dirty_log *log)
1592 {
1593         int r;
1594
1595         mutex_lock(&kvm->slots_lock);
1596
1597         r = kvm_clear_dirty_log_protect(kvm, log);
1598
1599         mutex_unlock(&kvm->slots_lock);
1600         return r;
1601 }
1602 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1603
1604 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1605 {
1606         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1609
1610 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1611 {
1612         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1615
1616 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1617 {
1618         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1619
1620         return kvm_is_visible_memslot(memslot);
1621 }
1622 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1623
1624 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1625 {
1626         struct vm_area_struct *vma;
1627         unsigned long addr, size;
1628
1629         size = PAGE_SIZE;
1630
1631         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1632         if (kvm_is_error_hva(addr))
1633                 return PAGE_SIZE;
1634
1635         down_read(&current->mm->mmap_sem);
1636         vma = find_vma(current->mm, addr);
1637         if (!vma)
1638                 goto out;
1639
1640         size = vma_kernel_pagesize(vma);
1641
1642 out:
1643         up_read(&current->mm->mmap_sem);
1644
1645         return size;
1646 }
1647
1648 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1649 {
1650         return slot->flags & KVM_MEM_READONLY;
1651 }
1652
1653 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1654                                        gfn_t *nr_pages, bool write)
1655 {
1656         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1657                 return KVM_HVA_ERR_BAD;
1658
1659         if (memslot_is_readonly(slot) && write)
1660                 return KVM_HVA_ERR_RO_BAD;
1661
1662         if (nr_pages)
1663                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1664
1665         return __gfn_to_hva_memslot(slot, gfn);
1666 }
1667
1668 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1669                                      gfn_t *nr_pages)
1670 {
1671         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1672 }
1673
1674 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1675                                         gfn_t gfn)
1676 {
1677         return gfn_to_hva_many(slot, gfn, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1680
1681 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1682 {
1683         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1684 }
1685 EXPORT_SYMBOL_GPL(gfn_to_hva);
1686
1687 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1688 {
1689         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1692
1693 /*
1694  * Return the hva of a @gfn and the R/W attribute if possible.
1695  *
1696  * @slot: the kvm_memory_slot which contains @gfn
1697  * @gfn: the gfn to be translated
1698  * @writable: used to return the read/write attribute of the @slot if the hva
1699  * is valid and @writable is not NULL
1700  */
1701 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1702                                       gfn_t gfn, bool *writable)
1703 {
1704         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1705
1706         if (!kvm_is_error_hva(hva) && writable)
1707                 *writable = !memslot_is_readonly(slot);
1708
1709         return hva;
1710 }
1711
1712 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1713 {
1714         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1715
1716         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1717 }
1718
1719 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1720 {
1721         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1722
1723         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1724 }
1725
1726 static inline int check_user_page_hwpoison(unsigned long addr)
1727 {
1728         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1729
1730         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1731         return rc == -EHWPOISON;
1732 }
1733
1734 /*
1735  * The fast path to get the writable pfn which will be stored in @pfn,
1736  * true indicates success, otherwise false is returned.  It's also the
1737  * only part that runs if we can in atomic context.
1738  */
1739 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1740                             bool *writable, kvm_pfn_t *pfn)
1741 {
1742         struct page *page[1];
1743         int npages;
1744
1745         /*
1746          * Fast pin a writable pfn only if it is a write fault request
1747          * or the caller allows to map a writable pfn for a read fault
1748          * request.
1749          */
1750         if (!(write_fault || writable))
1751                 return false;
1752
1753         npages = __get_user_pages_fast(addr, 1, 1, page);
1754         if (npages == 1) {
1755                 *pfn = page_to_pfn(page[0]);
1756
1757                 if (writable)
1758                         *writable = true;
1759                 return true;
1760         }
1761
1762         return false;
1763 }
1764
1765 /*
1766  * The slow path to get the pfn of the specified host virtual address,
1767  * 1 indicates success, -errno is returned if error is detected.
1768  */
1769 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1770                            bool *writable, kvm_pfn_t *pfn)
1771 {
1772         unsigned int flags = FOLL_HWPOISON;
1773         struct page *page;
1774         int npages = 0;
1775
1776         might_sleep();
1777
1778         if (writable)
1779                 *writable = write_fault;
1780
1781         if (write_fault)
1782                 flags |= FOLL_WRITE;
1783         if (async)
1784                 flags |= FOLL_NOWAIT;
1785
1786         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1787         if (npages != 1)
1788                 return npages;
1789
1790         /* map read fault as writable if possible */
1791         if (unlikely(!write_fault) && writable) {
1792                 struct page *wpage;
1793
1794                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1795                         *writable = true;
1796                         put_page(page);
1797                         page = wpage;
1798                 }
1799         }
1800         *pfn = page_to_pfn(page);
1801         return npages;
1802 }
1803
1804 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1805 {
1806         if (unlikely(!(vma->vm_flags & VM_READ)))
1807                 return false;
1808
1809         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1810                 return false;
1811
1812         return true;
1813 }
1814
1815 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1816                                unsigned long addr, bool *async,
1817                                bool write_fault, bool *writable,
1818                                kvm_pfn_t *p_pfn)
1819 {
1820         unsigned long pfn;
1821         int r;
1822
1823         r = follow_pfn(vma, addr, &pfn);
1824         if (r) {
1825                 /*
1826                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1827                  * not call the fault handler, so do it here.
1828                  */
1829                 bool unlocked = false;
1830                 r = fixup_user_fault(current, current->mm, addr,
1831                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1832                                      &unlocked);
1833                 if (unlocked)
1834                         return -EAGAIN;
1835                 if (r)
1836                         return r;
1837
1838                 r = follow_pfn(vma, addr, &pfn);
1839                 if (r)
1840                         return r;
1841
1842         }
1843
1844         if (writable)
1845                 *writable = true;
1846
1847         /*
1848          * Get a reference here because callers of *hva_to_pfn* and
1849          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1850          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1851          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1852          * simply do nothing for reserved pfns.
1853          *
1854          * Whoever called remap_pfn_range is also going to call e.g.
1855          * unmap_mapping_range before the underlying pages are freed,
1856          * causing a call to our MMU notifier.
1857          */ 
1858         kvm_get_pfn(pfn);
1859
1860         *p_pfn = pfn;
1861         return 0;
1862 }
1863
1864 /*
1865  * Pin guest page in memory and return its pfn.
1866  * @addr: host virtual address which maps memory to the guest
1867  * @atomic: whether this function can sleep
1868  * @async: whether this function need to wait IO complete if the
1869  *         host page is not in the memory
1870  * @write_fault: whether we should get a writable host page
1871  * @writable: whether it allows to map a writable host page for !@write_fault
1872  *
1873  * The function will map a writable host page for these two cases:
1874  * 1): @write_fault = true
1875  * 2): @write_fault = false && @writable, @writable will tell the caller
1876  *     whether the mapping is writable.
1877  */
1878 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1879                         bool write_fault, bool *writable)
1880 {
1881         struct vm_area_struct *vma;
1882         kvm_pfn_t pfn = 0;
1883         int npages, r;
1884
1885         /* we can do it either atomically or asynchronously, not both */
1886         BUG_ON(atomic && async);
1887
1888         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1889                 return pfn;
1890
1891         if (atomic)
1892                 return KVM_PFN_ERR_FAULT;
1893
1894         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1895         if (npages == 1)
1896                 return pfn;
1897
1898         down_read(&current->mm->mmap_sem);
1899         if (npages == -EHWPOISON ||
1900               (!async && check_user_page_hwpoison(addr))) {
1901                 pfn = KVM_PFN_ERR_HWPOISON;
1902                 goto exit;
1903         }
1904
1905 retry:
1906         vma = find_vma_intersection(current->mm, addr, addr + 1);
1907
1908         if (vma == NULL)
1909                 pfn = KVM_PFN_ERR_FAULT;
1910         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1911                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1912                 if (r == -EAGAIN)
1913                         goto retry;
1914                 if (r < 0)
1915                         pfn = KVM_PFN_ERR_FAULT;
1916         } else {
1917                 if (async && vma_is_valid(vma, write_fault))
1918                         *async = true;
1919                 pfn = KVM_PFN_ERR_FAULT;
1920         }
1921 exit:
1922         up_read(&current->mm->mmap_sem);
1923         return pfn;
1924 }
1925
1926 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1927                                bool atomic, bool *async, bool write_fault,
1928                                bool *writable)
1929 {
1930         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1931
1932         if (addr == KVM_HVA_ERR_RO_BAD) {
1933                 if (writable)
1934                         *writable = false;
1935                 return KVM_PFN_ERR_RO_FAULT;
1936         }
1937
1938         if (kvm_is_error_hva(addr)) {
1939                 if (writable)
1940                         *writable = false;
1941                 return KVM_PFN_NOSLOT;
1942         }
1943
1944         /* Do not map writable pfn in the readonly memslot. */
1945         if (writable && memslot_is_readonly(slot)) {
1946                 *writable = false;
1947                 writable = NULL;
1948         }
1949
1950         return hva_to_pfn(addr, atomic, async, write_fault,
1951                           writable);
1952 }
1953 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1954
1955 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1956                       bool *writable)
1957 {
1958         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1959                                     write_fault, writable);
1960 }
1961 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1962
1963 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1964 {
1965         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1966 }
1967 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1968
1969 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1970 {
1971         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1972 }
1973 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1974
1975 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1976 {
1977         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1980
1981 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1982 {
1983         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1984 }
1985 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1986
1987 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1988 {
1989         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1990 }
1991 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1992
1993 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1994                             struct page **pages, int nr_pages)
1995 {
1996         unsigned long addr;
1997         gfn_t entry = 0;
1998
1999         addr = gfn_to_hva_many(slot, gfn, &entry);
2000         if (kvm_is_error_hva(addr))
2001                 return -1;
2002
2003         if (entry < nr_pages)
2004                 return 0;
2005
2006         return __get_user_pages_fast(addr, nr_pages, 1, pages);
2007 }
2008 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2009
2010 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2011 {
2012         if (is_error_noslot_pfn(pfn))
2013                 return KVM_ERR_PTR_BAD_PAGE;
2014
2015         if (kvm_is_reserved_pfn(pfn)) {
2016                 WARN_ON(1);
2017                 return KVM_ERR_PTR_BAD_PAGE;
2018         }
2019
2020         return pfn_to_page(pfn);
2021 }
2022
2023 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2024 {
2025         kvm_pfn_t pfn;
2026
2027         pfn = gfn_to_pfn(kvm, gfn);
2028
2029         return kvm_pfn_to_page(pfn);
2030 }
2031 EXPORT_SYMBOL_GPL(gfn_to_page);
2032
2033 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2034 {
2035         if (pfn == 0)
2036                 return;
2037
2038         if (cache)
2039                 cache->pfn = cache->gfn = 0;
2040
2041         if (dirty)
2042                 kvm_release_pfn_dirty(pfn);
2043         else
2044                 kvm_release_pfn_clean(pfn);
2045 }
2046
2047 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2048                                  struct gfn_to_pfn_cache *cache, u64 gen)
2049 {
2050         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2051
2052         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2053         cache->gfn = gfn;
2054         cache->dirty = false;
2055         cache->generation = gen;
2056 }
2057
2058 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2059                          struct kvm_host_map *map,
2060                          struct gfn_to_pfn_cache *cache,
2061                          bool atomic)
2062 {
2063         kvm_pfn_t pfn;
2064         void *hva = NULL;
2065         struct page *page = KVM_UNMAPPED_PAGE;
2066         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2067         u64 gen = slots->generation;
2068
2069         if (!map)
2070                 return -EINVAL;
2071
2072         if (cache) {
2073                 if (!cache->pfn || cache->gfn != gfn ||
2074                         cache->generation != gen) {
2075                         if (atomic)
2076                                 return -EAGAIN;
2077                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2078                 }
2079                 pfn = cache->pfn;
2080         } else {
2081                 if (atomic)
2082                         return -EAGAIN;
2083                 pfn = gfn_to_pfn_memslot(slot, gfn);
2084         }
2085         if (is_error_noslot_pfn(pfn))
2086                 return -EINVAL;
2087
2088         if (pfn_valid(pfn)) {
2089                 page = pfn_to_page(pfn);
2090                 if (atomic)
2091                         hva = kmap_atomic(page);
2092                 else
2093                         hva = kmap(page);
2094 #ifdef CONFIG_HAS_IOMEM
2095         } else if (!atomic) {
2096                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2097         } else {
2098                 return -EINVAL;
2099 #endif
2100         }
2101
2102         if (!hva)
2103                 return -EFAULT;
2104
2105         map->page = page;
2106         map->hva = hva;
2107         map->pfn = pfn;
2108         map->gfn = gfn;
2109
2110         return 0;
2111 }
2112
2113 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2114                 struct gfn_to_pfn_cache *cache, bool atomic)
2115 {
2116         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2117                         cache, atomic);
2118 }
2119 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2120
2121 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2122 {
2123         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2124                 NULL, false);
2125 }
2126 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2127
2128 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2129                         struct kvm_host_map *map,
2130                         struct gfn_to_pfn_cache *cache,
2131                         bool dirty, bool atomic)
2132 {
2133         if (!map)
2134                 return;
2135
2136         if (!map->hva)
2137                 return;
2138
2139         if (map->page != KVM_UNMAPPED_PAGE) {
2140                 if (atomic)
2141                         kunmap_atomic(map->hva);
2142                 else
2143                         kunmap(map->page);
2144         }
2145 #ifdef CONFIG_HAS_IOMEM
2146         else if (!atomic)
2147                 memunmap(map->hva);
2148         else
2149                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2150 #endif
2151
2152         if (dirty)
2153                 mark_page_dirty_in_slot(memslot, map->gfn);
2154
2155         if (cache)
2156                 cache->dirty |= dirty;
2157         else
2158                 kvm_release_pfn(map->pfn, dirty, NULL);
2159
2160         map->hva = NULL;
2161         map->page = NULL;
2162 }
2163
2164 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2165                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2166 {
2167         __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2168                         cache, dirty, atomic);
2169         return 0;
2170 }
2171 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2172
2173 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2174 {
2175         __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2176                         dirty, false);
2177 }
2178 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2179
2180 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2181 {
2182         kvm_pfn_t pfn;
2183
2184         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2185
2186         return kvm_pfn_to_page(pfn);
2187 }
2188 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2189
2190 void kvm_release_page_clean(struct page *page)
2191 {
2192         WARN_ON(is_error_page(page));
2193
2194         kvm_release_pfn_clean(page_to_pfn(page));
2195 }
2196 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2197
2198 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2199 {
2200         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2201                 put_page(pfn_to_page(pfn));
2202 }
2203 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2204
2205 void kvm_release_page_dirty(struct page *page)
2206 {
2207         WARN_ON(is_error_page(page));
2208
2209         kvm_release_pfn_dirty(page_to_pfn(page));
2210 }
2211 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2212
2213 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2214 {
2215         kvm_set_pfn_dirty(pfn);
2216         kvm_release_pfn_clean(pfn);
2217 }
2218 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2219
2220 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2221 {
2222         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2223                 SetPageDirty(pfn_to_page(pfn));
2224 }
2225 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2226
2227 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2228 {
2229         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2230                 mark_page_accessed(pfn_to_page(pfn));
2231 }
2232 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2233
2234 void kvm_get_pfn(kvm_pfn_t pfn)
2235 {
2236         if (!kvm_is_reserved_pfn(pfn))
2237                 get_page(pfn_to_page(pfn));
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2240
2241 static int next_segment(unsigned long len, int offset)
2242 {
2243         if (len > PAGE_SIZE - offset)
2244                 return PAGE_SIZE - offset;
2245         else
2246                 return len;
2247 }
2248
2249 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2250                                  void *data, int offset, int len)
2251 {
2252         int r;
2253         unsigned long addr;
2254
2255         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2256         if (kvm_is_error_hva(addr))
2257                 return -EFAULT;
2258         r = __copy_from_user(data, (void __user *)addr + offset, len);
2259         if (r)
2260                 return -EFAULT;
2261         return 0;
2262 }
2263
2264 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2265                         int len)
2266 {
2267         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2268
2269         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2270 }
2271 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2272
2273 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2274                              int offset, int len)
2275 {
2276         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2277
2278         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2279 }
2280 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2281
2282 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2283 {
2284         gfn_t gfn = gpa >> PAGE_SHIFT;
2285         int seg;
2286         int offset = offset_in_page(gpa);
2287         int ret;
2288
2289         while ((seg = next_segment(len, offset)) != 0) {
2290                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2291                 if (ret < 0)
2292                         return ret;
2293                 offset = 0;
2294                 len -= seg;
2295                 data += seg;
2296                 ++gfn;
2297         }
2298         return 0;
2299 }
2300 EXPORT_SYMBOL_GPL(kvm_read_guest);
2301
2302 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2303 {
2304         gfn_t gfn = gpa >> PAGE_SHIFT;
2305         int seg;
2306         int offset = offset_in_page(gpa);
2307         int ret;
2308
2309         while ((seg = next_segment(len, offset)) != 0) {
2310                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2311                 if (ret < 0)
2312                         return ret;
2313                 offset = 0;
2314                 len -= seg;
2315                 data += seg;
2316                 ++gfn;
2317         }
2318         return 0;
2319 }
2320 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2321
2322 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2323                                    void *data, int offset, unsigned long len)
2324 {
2325         int r;
2326         unsigned long addr;
2327
2328         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2329         if (kvm_is_error_hva(addr))
2330                 return -EFAULT;
2331         pagefault_disable();
2332         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2333         pagefault_enable();
2334         if (r)
2335                 return -EFAULT;
2336         return 0;
2337 }
2338
2339 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2340                                void *data, unsigned long len)
2341 {
2342         gfn_t gfn = gpa >> PAGE_SHIFT;
2343         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2344         int offset = offset_in_page(gpa);
2345
2346         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2347 }
2348 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2349
2350 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2351                                   const void *data, int offset, int len)
2352 {
2353         int r;
2354         unsigned long addr;
2355
2356         addr = gfn_to_hva_memslot(memslot, gfn);
2357         if (kvm_is_error_hva(addr))
2358                 return -EFAULT;
2359         r = __copy_to_user((void __user *)addr + offset, data, len);
2360         if (r)
2361                 return -EFAULT;
2362         mark_page_dirty_in_slot(memslot, gfn);
2363         return 0;
2364 }
2365
2366 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2367                          const void *data, int offset, int len)
2368 {
2369         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2370
2371         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2372 }
2373 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2374
2375 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2376                               const void *data, int offset, int len)
2377 {
2378         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2379
2380         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2381 }
2382 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2383
2384 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2385                     unsigned long len)
2386 {
2387         gfn_t gfn = gpa >> PAGE_SHIFT;
2388         int seg;
2389         int offset = offset_in_page(gpa);
2390         int ret;
2391
2392         while ((seg = next_segment(len, offset)) != 0) {
2393                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2394                 if (ret < 0)
2395                         return ret;
2396                 offset = 0;
2397                 len -= seg;
2398                 data += seg;
2399                 ++gfn;
2400         }
2401         return 0;
2402 }
2403 EXPORT_SYMBOL_GPL(kvm_write_guest);
2404
2405 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2406                          unsigned long len)
2407 {
2408         gfn_t gfn = gpa >> PAGE_SHIFT;
2409         int seg;
2410         int offset = offset_in_page(gpa);
2411         int ret;
2412
2413         while ((seg = next_segment(len, offset)) != 0) {
2414                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2415                 if (ret < 0)
2416                         return ret;
2417                 offset = 0;
2418                 len -= seg;
2419                 data += seg;
2420                 ++gfn;
2421         }
2422         return 0;
2423 }
2424 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2425
2426 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2427                                        struct gfn_to_hva_cache *ghc,
2428                                        gpa_t gpa, unsigned long len)
2429 {
2430         int offset = offset_in_page(gpa);
2431         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2432         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2433         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2434         gfn_t nr_pages_avail;
2435
2436         /* Update ghc->generation before performing any error checks. */
2437         ghc->generation = slots->generation;
2438
2439         if (start_gfn > end_gfn) {
2440                 ghc->hva = KVM_HVA_ERR_BAD;
2441                 return -EINVAL;
2442         }
2443
2444         /*
2445          * If the requested region crosses two memslots, we still
2446          * verify that the entire region is valid here.
2447          */
2448         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2449                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2450                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2451                                            &nr_pages_avail);
2452                 if (kvm_is_error_hva(ghc->hva))
2453                         return -EFAULT;
2454         }
2455
2456         /* Use the slow path for cross page reads and writes. */
2457         if (nr_pages_needed == 1)
2458                 ghc->hva += offset;
2459         else
2460                 ghc->memslot = NULL;
2461
2462         ghc->gpa = gpa;
2463         ghc->len = len;
2464         return 0;
2465 }
2466
2467 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2468                               gpa_t gpa, unsigned long len)
2469 {
2470         struct kvm_memslots *slots = kvm_memslots(kvm);
2471         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2472 }
2473 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2474
2475 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2476                                   void *data, unsigned int offset,
2477                                   unsigned long len)
2478 {
2479         struct kvm_memslots *slots = kvm_memslots(kvm);
2480         int r;
2481         gpa_t gpa = ghc->gpa + offset;
2482
2483         BUG_ON(len + offset > ghc->len);
2484
2485         if (slots->generation != ghc->generation) {
2486                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2487                         return -EFAULT;
2488         }
2489
2490         if (kvm_is_error_hva(ghc->hva))
2491                 return -EFAULT;
2492
2493         if (unlikely(!ghc->memslot))
2494                 return kvm_write_guest(kvm, gpa, data, len);
2495
2496         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2497         if (r)
2498                 return -EFAULT;
2499         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2500
2501         return 0;
2502 }
2503 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2504
2505 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2506                            void *data, unsigned long len)
2507 {
2508         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2509 }
2510 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2511
2512 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2513                                  void *data, unsigned int offset,
2514                                  unsigned long len)
2515 {
2516         struct kvm_memslots *slots = kvm_memslots(kvm);
2517         int r;
2518         gpa_t gpa = ghc->gpa + offset;
2519
2520         BUG_ON(len + offset > ghc->len);
2521
2522         if (slots->generation != ghc->generation) {
2523                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2524                         return -EFAULT;
2525         }
2526
2527         if (kvm_is_error_hva(ghc->hva))
2528                 return -EFAULT;
2529
2530         if (unlikely(!ghc->memslot))
2531                 return kvm_read_guest(kvm, gpa, data, len);
2532
2533         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2534         if (r)
2535                 return -EFAULT;
2536
2537         return 0;
2538 }
2539 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2540
2541 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2542                           void *data, unsigned long len)
2543 {
2544         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2545 }
2546 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2547
2548 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2549 {
2550         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2551
2552         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2553 }
2554 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2555
2556 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2557 {
2558         gfn_t gfn = gpa >> PAGE_SHIFT;
2559         int seg;
2560         int offset = offset_in_page(gpa);
2561         int ret;
2562
2563         while ((seg = next_segment(len, offset)) != 0) {
2564                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2565                 if (ret < 0)
2566                         return ret;
2567                 offset = 0;
2568                 len -= seg;
2569                 ++gfn;
2570         }
2571         return 0;
2572 }
2573 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2574
2575 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2576                                     gfn_t gfn)
2577 {
2578         if (memslot && memslot->dirty_bitmap) {
2579                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2580
2581                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2582         }
2583 }
2584
2585 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2586 {
2587         struct kvm_memory_slot *memslot;
2588
2589         memslot = gfn_to_memslot(kvm, gfn);
2590         mark_page_dirty_in_slot(memslot, gfn);
2591 }
2592 EXPORT_SYMBOL_GPL(mark_page_dirty);
2593
2594 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2595 {
2596         struct kvm_memory_slot *memslot;
2597
2598         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2599         mark_page_dirty_in_slot(memslot, gfn);
2600 }
2601 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2602
2603 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2604 {
2605         if (!vcpu->sigset_active)
2606                 return;
2607
2608         /*
2609          * This does a lockless modification of ->real_blocked, which is fine
2610          * because, only current can change ->real_blocked and all readers of
2611          * ->real_blocked don't care as long ->real_blocked is always a subset
2612          * of ->blocked.
2613          */
2614         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2615 }
2616
2617 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2618 {
2619         if (!vcpu->sigset_active)
2620                 return;
2621
2622         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2623         sigemptyset(&current->real_blocked);
2624 }
2625
2626 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2627 {
2628         unsigned int old, val, grow, grow_start;
2629
2630         old = val = vcpu->halt_poll_ns;
2631         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2632         grow = READ_ONCE(halt_poll_ns_grow);
2633         if (!grow)
2634                 goto out;
2635
2636         val *= grow;
2637         if (val < grow_start)
2638                 val = grow_start;
2639
2640         if (val > halt_poll_ns)
2641                 val = halt_poll_ns;
2642
2643         vcpu->halt_poll_ns = val;
2644 out:
2645         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2646 }
2647
2648 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2649 {
2650         unsigned int old, val, shrink;
2651
2652         old = val = vcpu->halt_poll_ns;
2653         shrink = READ_ONCE(halt_poll_ns_shrink);
2654         if (shrink == 0)
2655                 val = 0;
2656         else
2657                 val /= shrink;
2658
2659         vcpu->halt_poll_ns = val;
2660         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2661 }
2662
2663 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2664 {
2665         int ret = -EINTR;
2666         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2667
2668         if (kvm_arch_vcpu_runnable(vcpu)) {
2669                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2670                 goto out;
2671         }
2672         if (kvm_cpu_has_pending_timer(vcpu))
2673                 goto out;
2674         if (signal_pending(current))
2675                 goto out;
2676
2677         ret = 0;
2678 out:
2679         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2680         return ret;
2681 }
2682
2683 static inline void
2684 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2685 {
2686         if (waited)
2687                 vcpu->stat.halt_poll_fail_ns += poll_ns;
2688         else
2689                 vcpu->stat.halt_poll_success_ns += poll_ns;
2690 }
2691
2692 /*
2693  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2694  */
2695 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2696 {
2697         ktime_t start, cur, poll_end;
2698         bool waited = false;
2699         u64 block_ns;
2700
2701         kvm_arch_vcpu_blocking(vcpu);
2702
2703         start = cur = poll_end = ktime_get();
2704         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2705                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2706
2707                 ++vcpu->stat.halt_attempted_poll;
2708                 do {
2709                         /*
2710                          * This sets KVM_REQ_UNHALT if an interrupt
2711                          * arrives.
2712                          */
2713                         if (kvm_vcpu_check_block(vcpu) < 0) {
2714                                 ++vcpu->stat.halt_successful_poll;
2715                                 if (!vcpu_valid_wakeup(vcpu))
2716                                         ++vcpu->stat.halt_poll_invalid;
2717                                 goto out;
2718                         }
2719                         poll_end = cur = ktime_get();
2720                 } while (single_task_running() && ktime_before(cur, stop));
2721         }
2722
2723         prepare_to_rcuwait(&vcpu->wait);
2724         for (;;) {
2725                 set_current_state(TASK_INTERRUPTIBLE);
2726
2727                 if (kvm_vcpu_check_block(vcpu) < 0)
2728                         break;
2729
2730                 waited = true;
2731                 schedule();
2732         }
2733         finish_rcuwait(&vcpu->wait);
2734         cur = ktime_get();
2735 out:
2736         kvm_arch_vcpu_unblocking(vcpu);
2737         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2738
2739         update_halt_poll_stats(
2740                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2741
2742         if (!kvm_arch_no_poll(vcpu)) {
2743                 if (!vcpu_valid_wakeup(vcpu)) {
2744                         shrink_halt_poll_ns(vcpu);
2745                 } else if (vcpu->kvm->max_halt_poll_ns) {
2746                         if (block_ns <= vcpu->halt_poll_ns)
2747                                 ;
2748                         /* we had a long block, shrink polling */
2749                         else if (vcpu->halt_poll_ns &&
2750                                         block_ns > vcpu->kvm->max_halt_poll_ns)
2751                                 shrink_halt_poll_ns(vcpu);
2752                         /* we had a short halt and our poll time is too small */
2753                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2754                                         block_ns < vcpu->kvm->max_halt_poll_ns)
2755                                 grow_halt_poll_ns(vcpu);
2756                 } else {
2757                         vcpu->halt_poll_ns = 0;
2758                 }
2759         }
2760
2761         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2762         kvm_arch_vcpu_block_finish(vcpu);
2763 }
2764 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2765
2766 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2767 {
2768         struct rcuwait *waitp;
2769
2770         waitp = kvm_arch_vcpu_get_wait(vcpu);
2771         if (rcuwait_wake_up(waitp)) {
2772                 WRITE_ONCE(vcpu->ready, true);
2773                 ++vcpu->stat.halt_wakeup;
2774                 return true;
2775         }
2776
2777         return false;
2778 }
2779 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2780
2781 #ifndef CONFIG_S390
2782 /*
2783  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2784  */
2785 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2786 {
2787         int me;
2788         int cpu = vcpu->cpu;
2789
2790         if (kvm_vcpu_wake_up(vcpu))
2791                 return;
2792
2793         me = get_cpu();
2794         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2795                 if (kvm_arch_vcpu_should_kick(vcpu))
2796                         smp_send_reschedule(cpu);
2797         put_cpu();
2798 }
2799 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2800 #endif /* !CONFIG_S390 */
2801
2802 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2803 {
2804         struct pid *pid;
2805         struct task_struct *task = NULL;
2806         int ret = 0;
2807
2808         rcu_read_lock();
2809         pid = rcu_dereference(target->pid);
2810         if (pid)
2811                 task = get_pid_task(pid, PIDTYPE_PID);
2812         rcu_read_unlock();
2813         if (!task)
2814                 return ret;
2815         ret = yield_to(task, 1);
2816         put_task_struct(task);
2817
2818         return ret;
2819 }
2820 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2821
2822 /*
2823  * Helper that checks whether a VCPU is eligible for directed yield.
2824  * Most eligible candidate to yield is decided by following heuristics:
2825  *
2826  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2827  *  (preempted lock holder), indicated by @in_spin_loop.
2828  *  Set at the beginning and cleared at the end of interception/PLE handler.
2829  *
2830  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2831  *  chance last time (mostly it has become eligible now since we have probably
2832  *  yielded to lockholder in last iteration. This is done by toggling
2833  *  @dy_eligible each time a VCPU checked for eligibility.)
2834  *
2835  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2836  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2837  *  burning. Giving priority for a potential lock-holder increases lock
2838  *  progress.
2839  *
2840  *  Since algorithm is based on heuristics, accessing another VCPU data without
2841  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2842  *  and continue with next VCPU and so on.
2843  */
2844 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2845 {
2846 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2847         bool eligible;
2848
2849         eligible = !vcpu->spin_loop.in_spin_loop ||
2850                     vcpu->spin_loop.dy_eligible;
2851
2852         if (vcpu->spin_loop.in_spin_loop)
2853                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2854
2855         return eligible;
2856 #else
2857         return true;
2858 #endif
2859 }
2860
2861 /*
2862  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2863  * a vcpu_load/vcpu_put pair.  However, for most architectures
2864  * kvm_arch_vcpu_runnable does not require vcpu_load.
2865  */
2866 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2867 {
2868         return kvm_arch_vcpu_runnable(vcpu);
2869 }
2870
2871 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2872 {
2873         if (kvm_arch_dy_runnable(vcpu))
2874                 return true;
2875
2876 #ifdef CONFIG_KVM_ASYNC_PF
2877         if (!list_empty_careful(&vcpu->async_pf.done))
2878                 return true;
2879 #endif
2880
2881         return false;
2882 }
2883
2884 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2885 {
2886         struct kvm *kvm = me->kvm;
2887         struct kvm_vcpu *vcpu;
2888         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2889         int yielded = 0;
2890         int try = 3;
2891         int pass;
2892         int i;
2893
2894         kvm_vcpu_set_in_spin_loop(me, true);
2895         /*
2896          * We boost the priority of a VCPU that is runnable but not
2897          * currently running, because it got preempted by something
2898          * else and called schedule in __vcpu_run.  Hopefully that
2899          * VCPU is holding the lock that we need and will release it.
2900          * We approximate round-robin by starting at the last boosted VCPU.
2901          */
2902         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2903                 kvm_for_each_vcpu(i, vcpu, kvm) {
2904                         if (!pass && i <= last_boosted_vcpu) {
2905                                 i = last_boosted_vcpu;
2906                                 continue;
2907                         } else if (pass && i > last_boosted_vcpu)
2908                                 break;
2909                         if (!READ_ONCE(vcpu->ready))
2910                                 continue;
2911                         if (vcpu == me)
2912                                 continue;
2913                         if (rcuwait_active(&vcpu->wait) &&
2914                             !vcpu_dy_runnable(vcpu))
2915                                 continue;
2916                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2917                                 !kvm_arch_vcpu_in_kernel(vcpu))
2918                                 continue;
2919                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2920                                 continue;
2921
2922                         yielded = kvm_vcpu_yield_to(vcpu);
2923                         if (yielded > 0) {
2924                                 kvm->last_boosted_vcpu = i;
2925                                 break;
2926                         } else if (yielded < 0) {
2927                                 try--;
2928                                 if (!try)
2929                                         break;
2930                         }
2931                 }
2932         }
2933         kvm_vcpu_set_in_spin_loop(me, false);
2934
2935         /* Ensure vcpu is not eligible during next spinloop */
2936         kvm_vcpu_set_dy_eligible(me, false);
2937 }
2938 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2939
2940 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2941 {
2942         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2943         struct page *page;
2944
2945         if (vmf->pgoff == 0)
2946                 page = virt_to_page(vcpu->run);
2947 #ifdef CONFIG_X86
2948         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2949                 page = virt_to_page(vcpu->arch.pio_data);
2950 #endif
2951 #ifdef CONFIG_KVM_MMIO
2952         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2953                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2954 #endif
2955         else
2956                 return kvm_arch_vcpu_fault(vcpu, vmf);
2957         get_page(page);
2958         vmf->page = page;
2959         return 0;
2960 }
2961
2962 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2963         .fault = kvm_vcpu_fault,
2964 };
2965
2966 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2967 {
2968         vma->vm_ops = &kvm_vcpu_vm_ops;
2969         return 0;
2970 }
2971
2972 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2973 {
2974         struct kvm_vcpu *vcpu = filp->private_data;
2975
2976         kvm_put_kvm(vcpu->kvm);
2977         return 0;
2978 }
2979
2980 static struct file_operations kvm_vcpu_fops = {
2981         .release        = kvm_vcpu_release,
2982         .unlocked_ioctl = kvm_vcpu_ioctl,
2983         .mmap           = kvm_vcpu_mmap,
2984         .llseek         = noop_llseek,
2985         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2986 };
2987
2988 /*
2989  * Allocates an inode for the vcpu.
2990  */
2991 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2992 {
2993         char name[8 + 1 + ITOA_MAX_LEN + 1];
2994
2995         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2996         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2997 }
2998
2999 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3000 {
3001 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3002         struct dentry *debugfs_dentry;
3003         char dir_name[ITOA_MAX_LEN * 2];
3004
3005         if (!debugfs_initialized())
3006                 return;
3007
3008         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3009         debugfs_dentry = debugfs_create_dir(dir_name,
3010                                             vcpu->kvm->debugfs_dentry);
3011
3012         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3013 #endif
3014 }
3015
3016 /*
3017  * Creates some virtual cpus.  Good luck creating more than one.
3018  */
3019 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3020 {
3021         int r;
3022         struct kvm_vcpu *vcpu;
3023         struct page *page;
3024
3025         if (id >= KVM_MAX_VCPU_ID)
3026                 return -EINVAL;
3027
3028         mutex_lock(&kvm->lock);
3029         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3030                 mutex_unlock(&kvm->lock);
3031                 return -EINVAL;
3032         }
3033
3034         kvm->created_vcpus++;
3035         mutex_unlock(&kvm->lock);
3036
3037         r = kvm_arch_vcpu_precreate(kvm, id);
3038         if (r)
3039                 goto vcpu_decrement;
3040
3041         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3042         if (!vcpu) {
3043                 r = -ENOMEM;
3044                 goto vcpu_decrement;
3045         }
3046
3047         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3048         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3049         if (!page) {
3050                 r = -ENOMEM;
3051                 goto vcpu_free;
3052         }
3053         vcpu->run = page_address(page);
3054
3055         kvm_vcpu_init(vcpu, kvm, id);
3056
3057         r = kvm_arch_vcpu_create(vcpu);
3058         if (r)
3059                 goto vcpu_free_run_page;
3060
3061         mutex_lock(&kvm->lock);
3062         if (kvm_get_vcpu_by_id(kvm, id)) {
3063                 r = -EEXIST;
3064                 goto unlock_vcpu_destroy;
3065         }
3066
3067         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3068         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3069
3070         /* Now it's all set up, let userspace reach it */
3071         kvm_get_kvm(kvm);
3072         r = create_vcpu_fd(vcpu);
3073         if (r < 0) {
3074                 kvm_put_kvm_no_destroy(kvm);
3075                 goto unlock_vcpu_destroy;
3076         }
3077
3078         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3079
3080         /*
3081          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3082          * before kvm->online_vcpu's incremented value.
3083          */
3084         smp_wmb();
3085         atomic_inc(&kvm->online_vcpus);
3086
3087         mutex_unlock(&kvm->lock);
3088         kvm_arch_vcpu_postcreate(vcpu);
3089         kvm_create_vcpu_debugfs(vcpu);
3090         return r;
3091
3092 unlock_vcpu_destroy:
3093         mutex_unlock(&kvm->lock);
3094         kvm_arch_vcpu_destroy(vcpu);
3095 vcpu_free_run_page:
3096         free_page((unsigned long)vcpu->run);
3097 vcpu_free:
3098         kmem_cache_free(kvm_vcpu_cache, vcpu);
3099 vcpu_decrement:
3100         mutex_lock(&kvm->lock);
3101         kvm->created_vcpus--;
3102         mutex_unlock(&kvm->lock);
3103         return r;
3104 }
3105
3106 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3107 {
3108         if (sigset) {
3109                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3110                 vcpu->sigset_active = 1;
3111                 vcpu->sigset = *sigset;
3112         } else
3113                 vcpu->sigset_active = 0;
3114         return 0;
3115 }
3116
3117 static long kvm_vcpu_ioctl(struct file *filp,
3118                            unsigned int ioctl, unsigned long arg)
3119 {
3120         struct kvm_vcpu *vcpu = filp->private_data;
3121         void __user *argp = (void __user *)arg;
3122         int r;
3123         struct kvm_fpu *fpu = NULL;
3124         struct kvm_sregs *kvm_sregs = NULL;
3125
3126         if (vcpu->kvm->mm != current->mm)
3127                 return -EIO;
3128
3129         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3130                 return -EINVAL;
3131
3132         /*
3133          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3134          * execution; mutex_lock() would break them.
3135          */
3136         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3137         if (r != -ENOIOCTLCMD)
3138                 return r;
3139
3140         if (mutex_lock_killable(&vcpu->mutex))
3141                 return -EINTR;
3142         switch (ioctl) {
3143         case KVM_RUN: {
3144                 struct pid *oldpid;
3145                 r = -EINVAL;
3146                 if (arg)
3147                         goto out;
3148                 oldpid = rcu_access_pointer(vcpu->pid);
3149                 if (unlikely(oldpid != task_pid(current))) {
3150                         /* The thread running this VCPU changed. */
3151                         struct pid *newpid;
3152
3153                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3154                         if (r)
3155                                 break;
3156
3157                         newpid = get_task_pid(current, PIDTYPE_PID);
3158                         rcu_assign_pointer(vcpu->pid, newpid);
3159                         if (oldpid)
3160                                 synchronize_rcu();
3161                         put_pid(oldpid);
3162                 }
3163                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3164                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3165                 break;
3166         }
3167         case KVM_GET_REGS: {
3168                 struct kvm_regs *kvm_regs;
3169
3170                 r = -ENOMEM;
3171                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3172                 if (!kvm_regs)
3173                         goto out;
3174                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3175                 if (r)
3176                         goto out_free1;
3177                 r = -EFAULT;
3178                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3179                         goto out_free1;
3180                 r = 0;
3181 out_free1:
3182                 kfree(kvm_regs);
3183                 break;
3184         }
3185         case KVM_SET_REGS: {
3186                 struct kvm_regs *kvm_regs;
3187
3188                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3189                 if (IS_ERR(kvm_regs)) {
3190                         r = PTR_ERR(kvm_regs);
3191                         goto out;
3192                 }
3193                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3194                 kfree(kvm_regs);
3195                 break;
3196         }
3197         case KVM_GET_SREGS: {
3198                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3199                                     GFP_KERNEL_ACCOUNT);
3200                 r = -ENOMEM;
3201                 if (!kvm_sregs)
3202                         goto out;
3203                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3204                 if (r)
3205                         goto out;
3206                 r = -EFAULT;
3207                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3208                         goto out;
3209                 r = 0;
3210                 break;
3211         }
3212         case KVM_SET_SREGS: {
3213                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3214                 if (IS_ERR(kvm_sregs)) {
3215                         r = PTR_ERR(kvm_sregs);
3216                         kvm_sregs = NULL;
3217                         goto out;
3218                 }
3219                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3220                 break;
3221         }
3222         case KVM_GET_MP_STATE: {
3223                 struct kvm_mp_state mp_state;
3224
3225                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3226                 if (r)
3227                         goto out;
3228                 r = -EFAULT;
3229                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3230                         goto out;
3231                 r = 0;
3232                 break;
3233         }
3234         case KVM_SET_MP_STATE: {
3235                 struct kvm_mp_state mp_state;
3236
3237                 r = -EFAULT;
3238                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3239                         goto out;
3240                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3241                 break;
3242         }
3243         case KVM_TRANSLATE: {
3244                 struct kvm_translation tr;
3245
3246                 r = -EFAULT;
3247                 if (copy_from_user(&tr, argp, sizeof(tr)))
3248                         goto out;
3249                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3250                 if (r)
3251                         goto out;
3252                 r = -EFAULT;
3253                 if (copy_to_user(argp, &tr, sizeof(tr)))
3254                         goto out;
3255                 r = 0;
3256                 break;
3257         }
3258         case KVM_SET_GUEST_DEBUG: {
3259                 struct kvm_guest_debug dbg;
3260
3261                 r = -EFAULT;
3262                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3263                         goto out;
3264                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3265                 break;
3266         }
3267         case KVM_SET_SIGNAL_MASK: {
3268                 struct kvm_signal_mask __user *sigmask_arg = argp;
3269                 struct kvm_signal_mask kvm_sigmask;
3270                 sigset_t sigset, *p;
3271
3272                 p = NULL;
3273                 if (argp) {
3274                         r = -EFAULT;
3275                         if (copy_from_user(&kvm_sigmask, argp,
3276                                            sizeof(kvm_sigmask)))
3277                                 goto out;
3278                         r = -EINVAL;
3279                         if (kvm_sigmask.len != sizeof(sigset))
3280                                 goto out;
3281                         r = -EFAULT;
3282                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3283                                            sizeof(sigset)))
3284                                 goto out;
3285                         p = &sigset;
3286                 }
3287                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3288                 break;
3289         }
3290         case KVM_GET_FPU: {
3291                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3292                 r = -ENOMEM;
3293                 if (!fpu)
3294                         goto out;
3295                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3296                 if (r)
3297                         goto out;
3298                 r = -EFAULT;
3299                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3300                         goto out;
3301                 r = 0;
3302                 break;
3303         }
3304         case KVM_SET_FPU: {
3305                 fpu = memdup_user(argp, sizeof(*fpu));
3306                 if (IS_ERR(fpu)) {
3307                         r = PTR_ERR(fpu);
3308                         fpu = NULL;
3309                         goto out;
3310                 }
3311                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3312                 break;
3313         }
3314         default:
3315                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3316         }
3317 out:
3318         mutex_unlock(&vcpu->mutex);
3319         kfree(fpu);
3320         kfree(kvm_sregs);
3321         return r;
3322 }
3323
3324 #ifdef CONFIG_KVM_COMPAT
3325 static long kvm_vcpu_compat_ioctl(struct file *filp,
3326                                   unsigned int ioctl, unsigned long arg)
3327 {
3328         struct kvm_vcpu *vcpu = filp->private_data;
3329         void __user *argp = compat_ptr(arg);
3330         int r;
3331
3332         if (vcpu->kvm->mm != current->mm)
3333                 return -EIO;
3334
3335         switch (ioctl) {
3336         case KVM_SET_SIGNAL_MASK: {
3337                 struct kvm_signal_mask __user *sigmask_arg = argp;
3338                 struct kvm_signal_mask kvm_sigmask;
3339                 sigset_t sigset;
3340
3341                 if (argp) {
3342                         r = -EFAULT;
3343                         if (copy_from_user(&kvm_sigmask, argp,
3344                                            sizeof(kvm_sigmask)))
3345                                 goto out;
3346                         r = -EINVAL;
3347                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3348                                 goto out;
3349                         r = -EFAULT;
3350                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3351                                 goto out;
3352                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3353                 } else
3354                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3355                 break;
3356         }
3357         default:
3358                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3359         }
3360
3361 out:
3362         return r;
3363 }
3364 #endif
3365
3366 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3367 {
3368         struct kvm_device *dev = filp->private_data;
3369
3370         if (dev->ops->mmap)
3371                 return dev->ops->mmap(dev, vma);
3372
3373         return -ENODEV;
3374 }
3375
3376 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3377                                  int (*accessor)(struct kvm_device *dev,
3378                                                  struct kvm_device_attr *attr),
3379                                  unsigned long arg)
3380 {
3381         struct kvm_device_attr attr;
3382
3383         if (!accessor)
3384                 return -EPERM;
3385
3386         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3387                 return -EFAULT;
3388
3389         return accessor(dev, &attr);
3390 }
3391
3392 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3393                              unsigned long arg)
3394 {
3395         struct kvm_device *dev = filp->private_data;
3396
3397         if (dev->kvm->mm != current->mm)
3398                 return -EIO;
3399
3400         switch (ioctl) {
3401         case KVM_SET_DEVICE_ATTR:
3402                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3403         case KVM_GET_DEVICE_ATTR:
3404                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3405         case KVM_HAS_DEVICE_ATTR:
3406                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3407         default:
3408                 if (dev->ops->ioctl)
3409                         return dev->ops->ioctl(dev, ioctl, arg);
3410
3411                 return -ENOTTY;
3412         }
3413 }
3414
3415 static int kvm_device_release(struct inode *inode, struct file *filp)
3416 {
3417         struct kvm_device *dev = filp->private_data;
3418         struct kvm *kvm = dev->kvm;
3419
3420         if (dev->ops->release) {
3421                 mutex_lock(&kvm->lock);
3422                 list_del(&dev->vm_node);
3423                 dev->ops->release(dev);
3424                 mutex_unlock(&kvm->lock);
3425         }
3426
3427         kvm_put_kvm(kvm);
3428         return 0;
3429 }
3430
3431 static const struct file_operations kvm_device_fops = {
3432         .unlocked_ioctl = kvm_device_ioctl,
3433         .release = kvm_device_release,
3434         KVM_COMPAT(kvm_device_ioctl),
3435         .mmap = kvm_device_mmap,
3436 };
3437
3438 struct kvm_device *kvm_device_from_filp(struct file *filp)
3439 {
3440         if (filp->f_op != &kvm_device_fops)
3441                 return NULL;
3442
3443         return filp->private_data;
3444 }
3445
3446 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3447 #ifdef CONFIG_KVM_MPIC
3448         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3449         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3450 #endif
3451 };
3452
3453 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3454 {
3455         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3456                 return -ENOSPC;
3457
3458         if (kvm_device_ops_table[type] != NULL)
3459                 return -EEXIST;
3460
3461         kvm_device_ops_table[type] = ops;
3462         return 0;
3463 }
3464
3465 void kvm_unregister_device_ops(u32 type)
3466 {
3467         if (kvm_device_ops_table[type] != NULL)
3468                 kvm_device_ops_table[type] = NULL;
3469 }
3470
3471 static int kvm_ioctl_create_device(struct kvm *kvm,
3472                                    struct kvm_create_device *cd)
3473 {
3474         const struct kvm_device_ops *ops = NULL;
3475         struct kvm_device *dev;
3476         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3477         int type;
3478         int ret;
3479
3480         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3481                 return -ENODEV;
3482
3483         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3484         ops = kvm_device_ops_table[type];
3485         if (ops == NULL)
3486                 return -ENODEV;
3487
3488         if (test)
3489                 return 0;
3490
3491         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3492         if (!dev)
3493                 return -ENOMEM;
3494
3495         dev->ops = ops;
3496         dev->kvm = kvm;
3497
3498         mutex_lock(&kvm->lock);
3499         ret = ops->create(dev, type);
3500         if (ret < 0) {
3501                 mutex_unlock(&kvm->lock);
3502                 kfree(dev);
3503                 return ret;
3504         }
3505         list_add(&dev->vm_node, &kvm->devices);
3506         mutex_unlock(&kvm->lock);
3507
3508         if (ops->init)
3509                 ops->init(dev);
3510
3511         kvm_get_kvm(kvm);
3512         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3513         if (ret < 0) {
3514                 kvm_put_kvm_no_destroy(kvm);
3515                 mutex_lock(&kvm->lock);
3516                 list_del(&dev->vm_node);
3517                 mutex_unlock(&kvm->lock);
3518                 ops->destroy(dev);
3519                 return ret;
3520         }
3521
3522         cd->fd = ret;
3523         return 0;
3524 }
3525
3526 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3527 {
3528         switch (arg) {
3529         case KVM_CAP_USER_MEMORY:
3530         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3531         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3532         case KVM_CAP_INTERNAL_ERROR_DATA:
3533 #ifdef CONFIG_HAVE_KVM_MSI
3534         case KVM_CAP_SIGNAL_MSI:
3535 #endif
3536 #ifdef CONFIG_HAVE_KVM_IRQFD
3537         case KVM_CAP_IRQFD:
3538         case KVM_CAP_IRQFD_RESAMPLE:
3539 #endif
3540         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3541         case KVM_CAP_CHECK_EXTENSION_VM:
3542         case KVM_CAP_ENABLE_CAP_VM:
3543         case KVM_CAP_HALT_POLL:
3544                 return 1;
3545 #ifdef CONFIG_KVM_MMIO
3546         case KVM_CAP_COALESCED_MMIO:
3547                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3548         case KVM_CAP_COALESCED_PIO:
3549                 return 1;
3550 #endif
3551 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3552         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3553                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3554 #endif
3555 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3556         case KVM_CAP_IRQ_ROUTING:
3557                 return KVM_MAX_IRQ_ROUTES;
3558 #endif
3559 #if KVM_ADDRESS_SPACE_NUM > 1
3560         case KVM_CAP_MULTI_ADDRESS_SPACE:
3561                 return KVM_ADDRESS_SPACE_NUM;
3562 #endif
3563         case KVM_CAP_NR_MEMSLOTS:
3564                 return KVM_USER_MEM_SLOTS;
3565         default:
3566                 break;
3567         }
3568         return kvm_vm_ioctl_check_extension(kvm, arg);
3569 }
3570
3571 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3572                                                   struct kvm_enable_cap *cap)
3573 {
3574         return -EINVAL;
3575 }
3576
3577 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3578                                            struct kvm_enable_cap *cap)
3579 {
3580         switch (cap->cap) {
3581 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3582         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3583                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3584
3585                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3586                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3587
3588                 if (cap->flags || (cap->args[0] & ~allowed_options))
3589                         return -EINVAL;
3590                 kvm->manual_dirty_log_protect = cap->args[0];
3591                 return 0;
3592         }
3593 #endif
3594         case KVM_CAP_HALT_POLL: {
3595                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3596                         return -EINVAL;
3597
3598                 kvm->max_halt_poll_ns = cap->args[0];
3599                 return 0;
3600         }
3601         default:
3602                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3603         }
3604 }
3605
3606 static long kvm_vm_ioctl(struct file *filp,
3607                            unsigned int ioctl, unsigned long arg)
3608 {
3609         struct kvm *kvm = filp->private_data;
3610         void __user *argp = (void __user *)arg;
3611         int r;
3612
3613         if (kvm->mm != current->mm)
3614                 return -EIO;
3615         switch (ioctl) {
3616         case KVM_CREATE_VCPU:
3617                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3618                 break;
3619         case KVM_ENABLE_CAP: {
3620                 struct kvm_enable_cap cap;
3621
3622                 r = -EFAULT;
3623                 if (copy_from_user(&cap, argp, sizeof(cap)))
3624                         goto out;
3625                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3626                 break;
3627         }
3628         case KVM_SET_USER_MEMORY_REGION: {
3629                 struct kvm_userspace_memory_region kvm_userspace_mem;
3630
3631                 r = -EFAULT;
3632                 if (copy_from_user(&kvm_userspace_mem, argp,
3633                                                 sizeof(kvm_userspace_mem)))
3634                         goto out;
3635
3636                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3637                 break;
3638         }
3639         case KVM_GET_DIRTY_LOG: {
3640                 struct kvm_dirty_log log;
3641
3642                 r = -EFAULT;
3643                 if (copy_from_user(&log, argp, sizeof(log)))
3644                         goto out;
3645                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3646                 break;
3647         }
3648 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3649         case KVM_CLEAR_DIRTY_LOG: {
3650                 struct kvm_clear_dirty_log log;
3651
3652                 r = -EFAULT;
3653                 if (copy_from_user(&log, argp, sizeof(log)))
3654                         goto out;
3655                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3656                 break;
3657         }
3658 #endif
3659 #ifdef CONFIG_KVM_MMIO
3660         case KVM_REGISTER_COALESCED_MMIO: {
3661                 struct kvm_coalesced_mmio_zone zone;
3662
3663                 r = -EFAULT;
3664                 if (copy_from_user(&zone, argp, sizeof(zone)))
3665                         goto out;
3666                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3667                 break;
3668         }
3669         case KVM_UNREGISTER_COALESCED_MMIO: {
3670                 struct kvm_coalesced_mmio_zone zone;
3671
3672                 r = -EFAULT;
3673                 if (copy_from_user(&zone, argp, sizeof(zone)))
3674                         goto out;
3675                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3676                 break;
3677         }
3678 #endif
3679         case KVM_IRQFD: {
3680                 struct kvm_irqfd data;
3681
3682                 r = -EFAULT;
3683                 if (copy_from_user(&data, argp, sizeof(data)))
3684                         goto out;
3685                 r = kvm_irqfd(kvm, &data);
3686                 break;
3687         }
3688         case KVM_IOEVENTFD: {
3689                 struct kvm_ioeventfd data;
3690
3691                 r = -EFAULT;
3692                 if (copy_from_user(&data, argp, sizeof(data)))
3693                         goto out;
3694                 r = kvm_ioeventfd(kvm, &data);
3695                 break;
3696         }
3697 #ifdef CONFIG_HAVE_KVM_MSI
3698         case KVM_SIGNAL_MSI: {
3699                 struct kvm_msi msi;
3700
3701                 r = -EFAULT;
3702                 if (copy_from_user(&msi, argp, sizeof(msi)))
3703                         goto out;
3704                 r = kvm_send_userspace_msi(kvm, &msi);
3705                 break;
3706         }
3707 #endif
3708 #ifdef __KVM_HAVE_IRQ_LINE
3709         case KVM_IRQ_LINE_STATUS:
3710         case KVM_IRQ_LINE: {
3711                 struct kvm_irq_level irq_event;
3712
3713                 r = -EFAULT;
3714                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3715                         goto out;
3716
3717                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3718                                         ioctl == KVM_IRQ_LINE_STATUS);
3719                 if (r)
3720                         goto out;
3721
3722                 r = -EFAULT;
3723                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3724                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3725                                 goto out;
3726                 }
3727
3728                 r = 0;
3729                 break;
3730         }
3731 #endif
3732 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3733         case KVM_SET_GSI_ROUTING: {
3734                 struct kvm_irq_routing routing;
3735                 struct kvm_irq_routing __user *urouting;
3736                 struct kvm_irq_routing_entry *entries = NULL;
3737
3738                 r = -EFAULT;
3739                 if (copy_from_user(&routing, argp, sizeof(routing)))
3740                         goto out;
3741                 r = -EINVAL;
3742                 if (!kvm_arch_can_set_irq_routing(kvm))
3743                         goto out;
3744                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3745                         goto out;
3746                 if (routing.flags)
3747                         goto out;
3748                 if (routing.nr) {
3749                         urouting = argp;
3750                         entries = vmemdup_user(urouting->entries,
3751                                                array_size(sizeof(*entries),
3752                                                           routing.nr));
3753                         if (IS_ERR(entries)) {
3754                                 r = PTR_ERR(entries);
3755                                 goto out;
3756                         }
3757                 }
3758                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3759                                         routing.flags);
3760                 kvfree(entries);
3761                 break;
3762         }
3763 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3764         case KVM_CREATE_DEVICE: {
3765                 struct kvm_create_device cd;
3766
3767                 r = -EFAULT;
3768                 if (copy_from_user(&cd, argp, sizeof(cd)))
3769                         goto out;
3770
3771                 r = kvm_ioctl_create_device(kvm, &cd);
3772                 if (r)
3773                         goto out;
3774
3775                 r = -EFAULT;
3776                 if (copy_to_user(argp, &cd, sizeof(cd)))
3777                         goto out;
3778
3779                 r = 0;
3780                 break;
3781         }
3782         case KVM_CHECK_EXTENSION:
3783                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3784                 break;
3785         default:
3786                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3787         }
3788 out:
3789         return r;
3790 }
3791
3792 #ifdef CONFIG_KVM_COMPAT
3793 struct compat_kvm_dirty_log {
3794         __u32 slot;
3795         __u32 padding1;
3796         union {
3797                 compat_uptr_t dirty_bitmap; /* one bit per page */
3798                 __u64 padding2;
3799         };
3800 };
3801
3802 static long kvm_vm_compat_ioctl(struct file *filp,
3803                            unsigned int ioctl, unsigned long arg)
3804 {
3805         struct kvm *kvm = filp->private_data;
3806         int r;
3807
3808         if (kvm->mm != current->mm)
3809                 return -EIO;
3810         switch (ioctl) {
3811         case KVM_GET_DIRTY_LOG: {
3812                 struct compat_kvm_dirty_log compat_log;
3813                 struct kvm_dirty_log log;
3814
3815                 if (copy_from_user(&compat_log, (void __user *)arg,
3816                                    sizeof(compat_log)))
3817                         return -EFAULT;
3818                 log.slot         = compat_log.slot;
3819                 log.padding1     = compat_log.padding1;
3820                 log.padding2     = compat_log.padding2;
3821                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3822
3823                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3824                 break;
3825         }
3826         default:
3827                 r = kvm_vm_ioctl(filp, ioctl, arg);
3828         }
3829         return r;
3830 }
3831 #endif
3832
3833 static struct file_operations kvm_vm_fops = {
3834         .release        = kvm_vm_release,
3835         .unlocked_ioctl = kvm_vm_ioctl,
3836         .llseek         = noop_llseek,
3837         KVM_COMPAT(kvm_vm_compat_ioctl),
3838 };
3839
3840 static int kvm_dev_ioctl_create_vm(unsigned long type)
3841 {
3842         int r;
3843         struct kvm *kvm;
3844         struct file *file;
3845
3846         kvm = kvm_create_vm(type);
3847         if (IS_ERR(kvm))
3848                 return PTR_ERR(kvm);
3849 #ifdef CONFIG_KVM_MMIO
3850         r = kvm_coalesced_mmio_init(kvm);
3851         if (r < 0)
3852                 goto put_kvm;
3853 #endif
3854         r = get_unused_fd_flags(O_CLOEXEC);
3855         if (r < 0)
3856                 goto put_kvm;
3857
3858         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3859         if (IS_ERR(file)) {
3860                 put_unused_fd(r);
3861                 r = PTR_ERR(file);
3862                 goto put_kvm;
3863         }
3864
3865         /*
3866          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3867          * already set, with ->release() being kvm_vm_release().  In error
3868          * cases it will be called by the final fput(file) and will take
3869          * care of doing kvm_put_kvm(kvm).
3870          */
3871         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3872                 put_unused_fd(r);
3873                 fput(file);
3874                 return -ENOMEM;
3875         }
3876         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3877
3878         fd_install(r, file);
3879         return r;
3880
3881 put_kvm:
3882         kvm_put_kvm(kvm);
3883         return r;
3884 }
3885
3886 static long kvm_dev_ioctl(struct file *filp,
3887                           unsigned int ioctl, unsigned long arg)
3888 {
3889         long r = -EINVAL;
3890
3891         switch (ioctl) {
3892         case KVM_GET_API_VERSION:
3893                 if (arg)
3894                         goto out;
3895                 r = KVM_API_VERSION;
3896                 break;
3897         case KVM_CREATE_VM:
3898                 r = kvm_dev_ioctl_create_vm(arg);
3899                 break;
3900         case KVM_CHECK_EXTENSION:
3901                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3902                 break;
3903         case KVM_GET_VCPU_MMAP_SIZE:
3904                 if (arg)
3905                         goto out;
3906                 r = PAGE_SIZE;     /* struct kvm_run */
3907 #ifdef CONFIG_X86
3908                 r += PAGE_SIZE;    /* pio data page */
3909 #endif
3910 #ifdef CONFIG_KVM_MMIO
3911                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3912 #endif
3913                 break;
3914         case KVM_TRACE_ENABLE:
3915         case KVM_TRACE_PAUSE:
3916         case KVM_TRACE_DISABLE:
3917                 r = -EOPNOTSUPP;
3918                 break;
3919         default:
3920                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3921         }
3922 out:
3923         return r;
3924 }
3925
3926 static struct file_operations kvm_chardev_ops = {
3927         .unlocked_ioctl = kvm_dev_ioctl,
3928         .llseek         = noop_llseek,
3929         KVM_COMPAT(kvm_dev_ioctl),
3930 };
3931
3932 static struct miscdevice kvm_dev = {
3933         KVM_MINOR,
3934         "kvm",
3935         &kvm_chardev_ops,
3936 };
3937
3938 static void hardware_enable_nolock(void *junk)
3939 {
3940         int cpu = raw_smp_processor_id();
3941         int r;
3942
3943         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3944                 return;
3945
3946         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3947
3948         r = kvm_arch_hardware_enable();
3949
3950         if (r) {
3951                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3952                 atomic_inc(&hardware_enable_failed);
3953                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3954         }
3955 }
3956
3957 static int kvm_starting_cpu(unsigned int cpu)
3958 {
3959         raw_spin_lock(&kvm_count_lock);
3960         if (kvm_usage_count)
3961                 hardware_enable_nolock(NULL);
3962         raw_spin_unlock(&kvm_count_lock);
3963         return 0;
3964 }
3965
3966 static void hardware_disable_nolock(void *junk)
3967 {
3968         int cpu = raw_smp_processor_id();
3969
3970         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3971                 return;
3972         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3973         kvm_arch_hardware_disable();
3974 }
3975
3976 static int kvm_dying_cpu(unsigned int cpu)
3977 {
3978         raw_spin_lock(&kvm_count_lock);
3979         if (kvm_usage_count)
3980                 hardware_disable_nolock(NULL);
3981         raw_spin_unlock(&kvm_count_lock);
3982         return 0;
3983 }
3984
3985 static void hardware_disable_all_nolock(void)
3986 {
3987         BUG_ON(!kvm_usage_count);
3988
3989         kvm_usage_count--;
3990         if (!kvm_usage_count)
3991                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3992 }
3993
3994 static void hardware_disable_all(void)
3995 {
3996         raw_spin_lock(&kvm_count_lock);
3997         hardware_disable_all_nolock();
3998         raw_spin_unlock(&kvm_count_lock);
3999 }
4000
4001 static int hardware_enable_all(void)
4002 {
4003         int r = 0;
4004
4005         raw_spin_lock(&kvm_count_lock);
4006
4007         kvm_usage_count++;
4008         if (kvm_usage_count == 1) {
4009                 atomic_set(&hardware_enable_failed, 0);
4010                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4011
4012                 if (atomic_read(&hardware_enable_failed)) {
4013                         hardware_disable_all_nolock();
4014                         r = -EBUSY;
4015                 }
4016         }
4017
4018         raw_spin_unlock(&kvm_count_lock);
4019
4020         return r;
4021 }
4022
4023 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4024                       void *v)
4025 {
4026         /*
4027          * Some (well, at least mine) BIOSes hang on reboot if
4028          * in vmx root mode.
4029          *
4030          * And Intel TXT required VMX off for all cpu when system shutdown.
4031          */
4032         pr_info("kvm: exiting hardware virtualization\n");
4033         kvm_rebooting = true;
4034         on_each_cpu(hardware_disable_nolock, NULL, 1);
4035         return NOTIFY_OK;
4036 }
4037
4038 static struct notifier_block kvm_reboot_notifier = {
4039         .notifier_call = kvm_reboot,
4040         .priority = 0,
4041 };
4042
4043 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4044 {
4045         int i;
4046
4047         for (i = 0; i < bus->dev_count; i++) {
4048                 struct kvm_io_device *pos = bus->range[i].dev;
4049
4050                 kvm_iodevice_destructor(pos);
4051         }
4052         kfree(bus);
4053 }
4054
4055 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4056                                  const struct kvm_io_range *r2)
4057 {
4058         gpa_t addr1 = r1->addr;
4059         gpa_t addr2 = r2->addr;
4060
4061         if (addr1 < addr2)
4062                 return -1;
4063
4064         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4065          * accept any overlapping write.  Any order is acceptable for
4066          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4067          * we process all of them.
4068          */
4069         if (r2->len) {
4070                 addr1 += r1->len;
4071                 addr2 += r2->len;
4072         }
4073
4074         if (addr1 > addr2)
4075                 return 1;
4076
4077         return 0;
4078 }
4079
4080 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4081 {
4082         return kvm_io_bus_cmp(p1, p2);
4083 }
4084
4085 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4086                              gpa_t addr, int len)
4087 {
4088         struct kvm_io_range *range, key;
4089         int off;
4090
4091         key = (struct kvm_io_range) {
4092                 .addr = addr,
4093                 .len = len,
4094         };
4095
4096         range = bsearch(&key, bus->range, bus->dev_count,
4097                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4098         if (range == NULL)
4099                 return -ENOENT;
4100
4101         off = range - bus->range;
4102
4103         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4104                 off--;
4105
4106         return off;
4107 }
4108
4109 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4110                               struct kvm_io_range *range, const void *val)
4111 {
4112         int idx;
4113
4114         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4115         if (idx < 0)
4116                 return -EOPNOTSUPP;
4117
4118         while (idx < bus->dev_count &&
4119                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4120                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4121                                         range->len, val))
4122                         return idx;
4123                 idx++;
4124         }
4125
4126         return -EOPNOTSUPP;
4127 }
4128
4129 /* kvm_io_bus_write - called under kvm->slots_lock */
4130 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4131                      int len, const void *val)
4132 {
4133         struct kvm_io_bus *bus;
4134         struct kvm_io_range range;
4135         int r;
4136
4137         range = (struct kvm_io_range) {
4138                 .addr = addr,
4139                 .len = len,
4140         };
4141
4142         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4143         if (!bus)
4144                 return -ENOMEM;
4145         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4146         return r < 0 ? r : 0;
4147 }
4148 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4149
4150 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4151 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4152                             gpa_t addr, int len, const void *val, long cookie)
4153 {
4154         struct kvm_io_bus *bus;
4155         struct kvm_io_range range;
4156
4157         range = (struct kvm_io_range) {
4158                 .addr = addr,
4159                 .len = len,
4160         };
4161
4162         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4163         if (!bus)
4164                 return -ENOMEM;
4165
4166         /* First try the device referenced by cookie. */
4167         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4168             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4169                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4170                                         val))
4171                         return cookie;
4172
4173         /*
4174          * cookie contained garbage; fall back to search and return the
4175          * correct cookie value.
4176          */
4177         return __kvm_io_bus_write(vcpu, bus, &range, val);
4178 }
4179
4180 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4181                              struct kvm_io_range *range, void *val)
4182 {
4183         int idx;
4184
4185         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4186         if (idx < 0)
4187                 return -EOPNOTSUPP;
4188
4189         while (idx < bus->dev_count &&
4190                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4191                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4192                                        range->len, val))
4193                         return idx;
4194                 idx++;
4195         }
4196
4197         return -EOPNOTSUPP;
4198 }
4199
4200 /* kvm_io_bus_read - called under kvm->slots_lock */
4201 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4202                     int len, void *val)
4203 {
4204         struct kvm_io_bus *bus;
4205         struct kvm_io_range range;
4206         int r;
4207
4208         range = (struct kvm_io_range) {
4209                 .addr = addr,
4210                 .len = len,
4211         };
4212
4213         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4214         if (!bus)
4215                 return -ENOMEM;
4216         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4217         return r < 0 ? r : 0;
4218 }
4219
4220 /* Caller must hold slots_lock. */
4221 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4222                             int len, struct kvm_io_device *dev)
4223 {
4224         int i;
4225         struct kvm_io_bus *new_bus, *bus;
4226         struct kvm_io_range range;
4227
4228         bus = kvm_get_bus(kvm, bus_idx);
4229         if (!bus)
4230                 return -ENOMEM;
4231
4232         /* exclude ioeventfd which is limited by maximum fd */
4233         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4234                 return -ENOSPC;
4235
4236         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4237                           GFP_KERNEL_ACCOUNT);
4238         if (!new_bus)
4239                 return -ENOMEM;
4240
4241         range = (struct kvm_io_range) {
4242                 .addr = addr,
4243                 .len = len,
4244                 .dev = dev,
4245         };
4246
4247         for (i = 0; i < bus->dev_count; i++)
4248                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4249                         break;
4250
4251         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4252         new_bus->dev_count++;
4253         new_bus->range[i] = range;
4254         memcpy(new_bus->range + i + 1, bus->range + i,
4255                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4256         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4257         synchronize_srcu_expedited(&kvm->srcu);
4258         kfree(bus);
4259
4260         return 0;
4261 }
4262
4263 /* Caller must hold slots_lock. */
4264 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4265                                struct kvm_io_device *dev)
4266 {
4267         int i;
4268         struct kvm_io_bus *new_bus, *bus;
4269
4270         bus = kvm_get_bus(kvm, bus_idx);
4271         if (!bus)
4272                 return;
4273
4274         for (i = 0; i < bus->dev_count; i++)
4275                 if (bus->range[i].dev == dev) {
4276                         break;
4277                 }
4278
4279         if (i == bus->dev_count)
4280                 return;
4281
4282         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4283                           GFP_KERNEL_ACCOUNT);
4284         if (!new_bus)  {
4285                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4286                 goto broken;
4287         }
4288
4289         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4290         new_bus->dev_count--;
4291         memcpy(new_bus->range + i, bus->range + i + 1,
4292                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4293
4294 broken:
4295         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4296         synchronize_srcu_expedited(&kvm->srcu);
4297         kfree(bus);
4298         return;
4299 }
4300
4301 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4302                                          gpa_t addr)
4303 {
4304         struct kvm_io_bus *bus;
4305         int dev_idx, srcu_idx;
4306         struct kvm_io_device *iodev = NULL;
4307
4308         srcu_idx = srcu_read_lock(&kvm->srcu);
4309
4310         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4311         if (!bus)
4312                 goto out_unlock;
4313
4314         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4315         if (dev_idx < 0)
4316                 goto out_unlock;
4317
4318         iodev = bus->range[dev_idx].dev;
4319
4320 out_unlock:
4321         srcu_read_unlock(&kvm->srcu, srcu_idx);
4322
4323         return iodev;
4324 }
4325 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4326
4327 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4328                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4329                            const char *fmt)
4330 {
4331         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4332                                           inode->i_private;
4333
4334         /* The debugfs files are a reference to the kvm struct which
4335          * is still valid when kvm_destroy_vm is called.
4336          * To avoid the race between open and the removal of the debugfs
4337          * directory we test against the users count.
4338          */
4339         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4340                 return -ENOENT;
4341
4342         if (simple_attr_open(inode, file, get,
4343                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4344                     ? set : NULL,
4345                     fmt)) {
4346                 kvm_put_kvm(stat_data->kvm);
4347                 return -ENOMEM;
4348         }
4349
4350         return 0;
4351 }
4352
4353 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4354 {
4355         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4356                                           inode->i_private;
4357
4358         simple_attr_release(inode, file);
4359         kvm_put_kvm(stat_data->kvm);
4360
4361         return 0;
4362 }
4363
4364 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4365 {
4366         *val = *(ulong *)((void *)kvm + offset);
4367
4368         return 0;
4369 }
4370
4371 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4372 {
4373         *(ulong *)((void *)kvm + offset) = 0;
4374
4375         return 0;
4376 }
4377
4378 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4379 {
4380         int i;
4381         struct kvm_vcpu *vcpu;
4382
4383         *val = 0;
4384
4385         kvm_for_each_vcpu(i, vcpu, kvm)
4386                 *val += *(u64 *)((void *)vcpu + offset);
4387
4388         return 0;
4389 }
4390
4391 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4392 {
4393         int i;
4394         struct kvm_vcpu *vcpu;
4395
4396         kvm_for_each_vcpu(i, vcpu, kvm)
4397                 *(u64 *)((void *)vcpu + offset) = 0;
4398
4399         return 0;
4400 }
4401
4402 static int kvm_stat_data_get(void *data, u64 *val)
4403 {
4404         int r = -EFAULT;
4405         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4406
4407         switch (stat_data->dbgfs_item->kind) {
4408         case KVM_STAT_VM:
4409                 r = kvm_get_stat_per_vm(stat_data->kvm,
4410                                         stat_data->dbgfs_item->offset, val);
4411                 break;
4412         case KVM_STAT_VCPU:
4413                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4414                                           stat_data->dbgfs_item->offset, val);
4415                 break;
4416         }
4417
4418         return r;
4419 }
4420
4421 static int kvm_stat_data_clear(void *data, u64 val)
4422 {
4423         int r = -EFAULT;
4424         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4425
4426         if (val)
4427                 return -EINVAL;
4428
4429         switch (stat_data->dbgfs_item->kind) {
4430         case KVM_STAT_VM:
4431                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4432                                           stat_data->dbgfs_item->offset);
4433                 break;
4434         case KVM_STAT_VCPU:
4435                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4436                                             stat_data->dbgfs_item->offset);
4437                 break;
4438         }
4439
4440         return r;
4441 }
4442
4443 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4444 {
4445         __simple_attr_check_format("%llu\n", 0ull);
4446         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4447                                 kvm_stat_data_clear, "%llu\n");
4448 }
4449
4450 static const struct file_operations stat_fops_per_vm = {
4451         .owner = THIS_MODULE,
4452         .open = kvm_stat_data_open,
4453         .release = kvm_debugfs_release,
4454         .read = simple_attr_read,
4455         .write = simple_attr_write,
4456         .llseek = no_llseek,
4457 };
4458
4459 static int vm_stat_get(void *_offset, u64 *val)
4460 {
4461         unsigned offset = (long)_offset;
4462         struct kvm *kvm;
4463         u64 tmp_val;
4464
4465         *val = 0;
4466         mutex_lock(&kvm_lock);
4467         list_for_each_entry(kvm, &vm_list, vm_list) {
4468                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4469                 *val += tmp_val;
4470         }
4471         mutex_unlock(&kvm_lock);
4472         return 0;
4473 }
4474
4475 static int vm_stat_clear(void *_offset, u64 val)
4476 {
4477         unsigned offset = (long)_offset;
4478         struct kvm *kvm;
4479
4480         if (val)
4481                 return -EINVAL;
4482
4483         mutex_lock(&kvm_lock);
4484         list_for_each_entry(kvm, &vm_list, vm_list) {
4485                 kvm_clear_stat_per_vm(kvm, offset);
4486         }
4487         mutex_unlock(&kvm_lock);
4488
4489         return 0;
4490 }
4491
4492 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4493
4494 static int vcpu_stat_get(void *_offset, u64 *val)
4495 {
4496         unsigned offset = (long)_offset;
4497         struct kvm *kvm;
4498         u64 tmp_val;
4499
4500         *val = 0;
4501         mutex_lock(&kvm_lock);
4502         list_for_each_entry(kvm, &vm_list, vm_list) {
4503                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4504                 *val += tmp_val;
4505         }
4506         mutex_unlock(&kvm_lock);
4507         return 0;
4508 }
4509
4510 static int vcpu_stat_clear(void *_offset, u64 val)
4511 {
4512         unsigned offset = (long)_offset;
4513         struct kvm *kvm;
4514
4515         if (val)
4516                 return -EINVAL;
4517
4518         mutex_lock(&kvm_lock);
4519         list_for_each_entry(kvm, &vm_list, vm_list) {
4520                 kvm_clear_stat_per_vcpu(kvm, offset);
4521         }
4522         mutex_unlock(&kvm_lock);
4523
4524         return 0;
4525 }
4526
4527 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4528                         "%llu\n");
4529
4530 static const struct file_operations *stat_fops[] = {
4531         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4532         [KVM_STAT_VM]   = &vm_stat_fops,
4533 };
4534
4535 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4536 {
4537         struct kobj_uevent_env *env;
4538         unsigned long long created, active;
4539
4540         if (!kvm_dev.this_device || !kvm)
4541                 return;
4542
4543         mutex_lock(&kvm_lock);
4544         if (type == KVM_EVENT_CREATE_VM) {
4545                 kvm_createvm_count++;
4546                 kvm_active_vms++;
4547         } else if (type == KVM_EVENT_DESTROY_VM) {
4548                 kvm_active_vms--;
4549         }
4550         created = kvm_createvm_count;
4551         active = kvm_active_vms;
4552         mutex_unlock(&kvm_lock);
4553
4554         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4555         if (!env)
4556                 return;
4557
4558         add_uevent_var(env, "CREATED=%llu", created);
4559         add_uevent_var(env, "COUNT=%llu", active);
4560
4561         if (type == KVM_EVENT_CREATE_VM) {
4562                 add_uevent_var(env, "EVENT=create");
4563                 kvm->userspace_pid = task_pid_nr(current);
4564         } else if (type == KVM_EVENT_DESTROY_VM) {
4565                 add_uevent_var(env, "EVENT=destroy");
4566         }
4567         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4568
4569         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4570                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4571
4572                 if (p) {
4573                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4574                         if (!IS_ERR(tmp))
4575                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4576                         kfree(p);
4577                 }
4578         }
4579         /* no need for checks, since we are adding at most only 5 keys */
4580         env->envp[env->envp_idx++] = NULL;
4581         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4582         kfree(env);
4583 }
4584
4585 static void kvm_init_debug(void)
4586 {
4587         struct kvm_stats_debugfs_item *p;
4588
4589         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4590
4591         kvm_debugfs_num_entries = 0;
4592         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4593                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4594                                     kvm_debugfs_dir, (void *)(long)p->offset,
4595                                     stat_fops[p->kind]);
4596         }
4597 }
4598
4599 static int kvm_suspend(void)
4600 {
4601         if (kvm_usage_count)
4602                 hardware_disable_nolock(NULL);
4603         return 0;
4604 }
4605
4606 static void kvm_resume(void)
4607 {
4608         if (kvm_usage_count) {
4609 #ifdef CONFIG_LOCKDEP
4610                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4611 #endif
4612                 hardware_enable_nolock(NULL);
4613         }
4614 }
4615
4616 static struct syscore_ops kvm_syscore_ops = {
4617         .suspend = kvm_suspend,
4618         .resume = kvm_resume,
4619 };
4620
4621 static inline
4622 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4623 {
4624         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4625 }
4626
4627 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4628 {
4629         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4630
4631         WRITE_ONCE(vcpu->preempted, false);
4632         WRITE_ONCE(vcpu->ready, false);
4633
4634         __this_cpu_write(kvm_running_vcpu, vcpu);
4635         kvm_arch_sched_in(vcpu, cpu);
4636         kvm_arch_vcpu_load(vcpu, cpu);
4637 }
4638
4639 static void kvm_sched_out(struct preempt_notifier *pn,
4640                           struct task_struct *next)
4641 {
4642         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4643
4644         if (current->state == TASK_RUNNING) {
4645                 WRITE_ONCE(vcpu->preempted, true);
4646                 WRITE_ONCE(vcpu->ready, true);
4647         }
4648         kvm_arch_vcpu_put(vcpu);
4649         __this_cpu_write(kvm_running_vcpu, NULL);
4650 }
4651
4652 /**
4653  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4654  *
4655  * We can disable preemption locally around accessing the per-CPU variable,
4656  * and use the resolved vcpu pointer after enabling preemption again,
4657  * because even if the current thread is migrated to another CPU, reading
4658  * the per-CPU value later will give us the same value as we update the
4659  * per-CPU variable in the preempt notifier handlers.
4660  */
4661 struct kvm_vcpu *kvm_get_running_vcpu(void)
4662 {
4663         struct kvm_vcpu *vcpu;
4664
4665         preempt_disable();
4666         vcpu = __this_cpu_read(kvm_running_vcpu);
4667         preempt_enable();
4668
4669         return vcpu;
4670 }
4671 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4672
4673 /**
4674  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4675  */
4676 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4677 {
4678         return &kvm_running_vcpu;
4679 }
4680
4681 struct kvm_cpu_compat_check {
4682         void *opaque;
4683         int *ret;
4684 };
4685
4686 static void check_processor_compat(void *data)
4687 {
4688         struct kvm_cpu_compat_check *c = data;
4689
4690         *c->ret = kvm_arch_check_processor_compat(c->opaque);
4691 }
4692
4693 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4694                   struct module *module)
4695 {
4696         struct kvm_cpu_compat_check c;
4697         int r;
4698         int cpu;
4699
4700         r = kvm_arch_init(opaque);
4701         if (r)
4702                 goto out_fail;
4703
4704         /*
4705          * kvm_arch_init makes sure there's at most one caller
4706          * for architectures that support multiple implementations,
4707          * like intel and amd on x86.
4708          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4709          * conflicts in case kvm is already setup for another implementation.
4710          */
4711         r = kvm_irqfd_init();
4712         if (r)
4713                 goto out_irqfd;
4714
4715         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4716                 r = -ENOMEM;
4717                 goto out_free_0;
4718         }
4719
4720         r = kvm_arch_hardware_setup(opaque);
4721         if (r < 0)
4722                 goto out_free_1;
4723
4724         c.ret = &r;
4725         c.opaque = opaque;
4726         for_each_online_cpu(cpu) {
4727                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4728                 if (r < 0)
4729                         goto out_free_2;
4730         }
4731
4732         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4733                                       kvm_starting_cpu, kvm_dying_cpu);
4734         if (r)
4735                 goto out_free_2;
4736         register_reboot_notifier(&kvm_reboot_notifier);
4737
4738         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4739         if (!vcpu_align)
4740                 vcpu_align = __alignof__(struct kvm_vcpu);
4741         kvm_vcpu_cache =
4742                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4743                                            SLAB_ACCOUNT,
4744                                            offsetof(struct kvm_vcpu, arch),
4745                                            sizeof_field(struct kvm_vcpu, arch),
4746                                            NULL);
4747         if (!kvm_vcpu_cache) {
4748                 r = -ENOMEM;
4749                 goto out_free_3;
4750         }
4751
4752         r = kvm_async_pf_init();
4753         if (r)
4754                 goto out_free;
4755
4756         kvm_chardev_ops.owner = module;
4757         kvm_vm_fops.owner = module;
4758         kvm_vcpu_fops.owner = module;
4759
4760         r = misc_register(&kvm_dev);
4761         if (r) {
4762                 pr_err("kvm: misc device register failed\n");
4763                 goto out_unreg;
4764         }
4765
4766         register_syscore_ops(&kvm_syscore_ops);
4767
4768         kvm_preempt_ops.sched_in = kvm_sched_in;
4769         kvm_preempt_ops.sched_out = kvm_sched_out;
4770
4771         kvm_init_debug();
4772
4773         r = kvm_vfio_ops_init();
4774         WARN_ON(r);
4775
4776         return 0;
4777
4778 out_unreg:
4779         kvm_async_pf_deinit();
4780 out_free:
4781         kmem_cache_destroy(kvm_vcpu_cache);
4782 out_free_3:
4783         unregister_reboot_notifier(&kvm_reboot_notifier);
4784         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4785 out_free_2:
4786         kvm_arch_hardware_unsetup();
4787 out_free_1:
4788         free_cpumask_var(cpus_hardware_enabled);
4789 out_free_0:
4790         kvm_irqfd_exit();
4791 out_irqfd:
4792         kvm_arch_exit();
4793 out_fail:
4794         return r;
4795 }
4796 EXPORT_SYMBOL_GPL(kvm_init);
4797
4798 void kvm_exit(void)
4799 {
4800         debugfs_remove_recursive(kvm_debugfs_dir);
4801         misc_deregister(&kvm_dev);
4802         kmem_cache_destroy(kvm_vcpu_cache);
4803         kvm_async_pf_deinit();
4804         unregister_syscore_ops(&kvm_syscore_ops);
4805         unregister_reboot_notifier(&kvm_reboot_notifier);
4806         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4807         on_each_cpu(hardware_disable_nolock, NULL, 1);
4808         kvm_arch_hardware_unsetup();
4809         kvm_arch_exit();
4810         kvm_irqfd_exit();
4811         free_cpumask_var(cpus_hardware_enabled);
4812         kvm_vfio_ops_exit();
4813 }
4814 EXPORT_SYMBOL_GPL(kvm_exit);
4815
4816 struct kvm_vm_worker_thread_context {
4817         struct kvm *kvm;
4818         struct task_struct *parent;
4819         struct completion init_done;
4820         kvm_vm_thread_fn_t thread_fn;
4821         uintptr_t data;
4822         int err;
4823 };
4824
4825 static int kvm_vm_worker_thread(void *context)
4826 {
4827         /*
4828          * The init_context is allocated on the stack of the parent thread, so
4829          * we have to locally copy anything that is needed beyond initialization
4830          */
4831         struct kvm_vm_worker_thread_context *init_context = context;
4832         struct kvm *kvm = init_context->kvm;
4833         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4834         uintptr_t data = init_context->data;
4835         int err;
4836
4837         err = kthread_park(current);
4838         /* kthread_park(current) is never supposed to return an error */
4839         WARN_ON(err != 0);
4840         if (err)
4841                 goto init_complete;
4842
4843         err = cgroup_attach_task_all(init_context->parent, current);
4844         if (err) {
4845                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4846                         __func__, err);
4847                 goto init_complete;
4848         }
4849
4850         set_user_nice(current, task_nice(init_context->parent));
4851
4852 init_complete:
4853         init_context->err = err;
4854         complete(&init_context->init_done);
4855         init_context = NULL;
4856
4857         if (err)
4858                 return err;
4859
4860         /* Wait to be woken up by the spawner before proceeding. */
4861         kthread_parkme();
4862
4863         if (!kthread_should_stop())
4864                 err = thread_fn(kvm, data);
4865
4866         return err;
4867 }
4868
4869 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4870                                 uintptr_t data, const char *name,
4871                                 struct task_struct **thread_ptr)
4872 {
4873         struct kvm_vm_worker_thread_context init_context = {};
4874         struct task_struct *thread;
4875
4876         *thread_ptr = NULL;
4877         init_context.kvm = kvm;
4878         init_context.parent = current;
4879         init_context.thread_fn = thread_fn;
4880         init_context.data = data;
4881         init_completion(&init_context.init_done);
4882
4883         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4884                              "%s-%d", name, task_pid_nr(current));
4885         if (IS_ERR(thread))
4886                 return PTR_ERR(thread);
4887
4888         /* kthread_run is never supposed to return NULL */
4889         WARN_ON(thread == NULL);
4890
4891         wait_for_completion(&init_context.init_done);
4892
4893         if (!init_context.err)
4894                 *thread_ptr = thread;
4895
4896         return init_context.err;
4897 }