Revert "KVM: Support vCPU-based gfn->hva cache"
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
134 {
135         if (pfn_valid(pfn))
136                 return PageReserved(pfn_to_page(pfn));
137
138         return true;
139 }
140
141 /*
142  * Switches to specified vcpu, until a matching vcpu_put()
143  */
144 int vcpu_load(struct kvm_vcpu *vcpu)
145 {
146         int cpu;
147
148         if (mutex_lock_killable(&vcpu->mutex))
149                 return -EINTR;
150         cpu = get_cpu();
151         preempt_notifier_register(&vcpu->preempt_notifier);
152         kvm_arch_vcpu_load(vcpu, cpu);
153         put_cpu();
154         return 0;
155 }
156 EXPORT_SYMBOL_GPL(vcpu_load);
157
158 void vcpu_put(struct kvm_vcpu *vcpu)
159 {
160         preempt_disable();
161         kvm_arch_vcpu_put(vcpu);
162         preempt_notifier_unregister(&vcpu->preempt_notifier);
163         preempt_enable();
164         mutex_unlock(&vcpu->mutex);
165 }
166 EXPORT_SYMBOL_GPL(vcpu_put);
167
168 /* TODO: merge with kvm_arch_vcpu_should_kick */
169 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
170 {
171         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
172
173         /*
174          * We need to wait for the VCPU to reenable interrupts and get out of
175          * READING_SHADOW_PAGE_TABLES mode.
176          */
177         if (req & KVM_REQUEST_WAIT)
178                 return mode != OUTSIDE_GUEST_MODE;
179
180         /*
181          * Need to kick a running VCPU, but otherwise there is nothing to do.
182          */
183         return mode == IN_GUEST_MODE;
184 }
185
186 static void ack_flush(void *_completed)
187 {
188 }
189
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
191 {
192         int i, cpu, me;
193         cpumask_var_t cpus;
194         bool called = true;
195         bool wait = req & KVM_REQUEST_WAIT;
196         struct kvm_vcpu *vcpu;
197
198         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
199
200         me = get_cpu();
201         kvm_for_each_vcpu(i, vcpu, kvm) {
202                 kvm_make_request(req, vcpu);
203                 cpu = vcpu->cpu;
204
205                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
206                         continue;
207
208                 if (cpus != NULL && cpu != -1 && cpu != me &&
209                     kvm_request_needs_ipi(vcpu, req))
210                         cpumask_set_cpu(cpu, cpus);
211         }
212         if (unlikely(cpus == NULL))
213                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, wait);
214         else if (!cpumask_empty(cpus))
215                 smp_call_function_many(cpus, ack_flush, NULL, wait);
216         else
217                 called = false;
218         put_cpu();
219         free_cpumask_var(cpus);
220         return called;
221 }
222
223 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
224 void kvm_flush_remote_tlbs(struct kvm *kvm)
225 {
226         /*
227          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
228          * kvm_make_all_cpus_request.
229          */
230         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
231
232         /*
233          * We want to publish modifications to the page tables before reading
234          * mode. Pairs with a memory barrier in arch-specific code.
235          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
236          * and smp_mb in walk_shadow_page_lockless_begin/end.
237          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
238          *
239          * There is already an smp_mb__after_atomic() before
240          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
241          * barrier here.
242          */
243         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
244                 ++kvm->stat.remote_tlb_flush;
245         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
246 }
247 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
248 #endif
249
250 void kvm_reload_remote_mmus(struct kvm *kvm)
251 {
252         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
253 }
254
255 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
256 {
257         struct page *page;
258         int r;
259
260         mutex_init(&vcpu->mutex);
261         vcpu->cpu = -1;
262         vcpu->kvm = kvm;
263         vcpu->vcpu_id = id;
264         vcpu->pid = NULL;
265         init_swait_queue_head(&vcpu->wq);
266         kvm_async_pf_vcpu_init(vcpu);
267
268         vcpu->pre_pcpu = -1;
269         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
270
271         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
272         if (!page) {
273                 r = -ENOMEM;
274                 goto fail;
275         }
276         vcpu->run = page_address(page);
277
278         kvm_vcpu_set_in_spin_loop(vcpu, false);
279         kvm_vcpu_set_dy_eligible(vcpu, false);
280         vcpu->preempted = false;
281
282         r = kvm_arch_vcpu_init(vcpu);
283         if (r < 0)
284                 goto fail_free_run;
285         return 0;
286
287 fail_free_run:
288         free_page((unsigned long)vcpu->run);
289 fail:
290         return r;
291 }
292 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
293
294 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
295 {
296         put_pid(vcpu->pid);
297         kvm_arch_vcpu_uninit(vcpu);
298         free_page((unsigned long)vcpu->run);
299 }
300 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
301
302 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
303 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
304 {
305         return container_of(mn, struct kvm, mmu_notifier);
306 }
307
308 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
309                                              struct mm_struct *mm,
310                                              unsigned long address)
311 {
312         struct kvm *kvm = mmu_notifier_to_kvm(mn);
313         int need_tlb_flush, idx;
314
315         /*
316          * When ->invalidate_page runs, the linux pte has been zapped
317          * already but the page is still allocated until
318          * ->invalidate_page returns. So if we increase the sequence
319          * here the kvm page fault will notice if the spte can't be
320          * established because the page is going to be freed. If
321          * instead the kvm page fault establishes the spte before
322          * ->invalidate_page runs, kvm_unmap_hva will release it
323          * before returning.
324          *
325          * The sequence increase only need to be seen at spin_unlock
326          * time, and not at spin_lock time.
327          *
328          * Increasing the sequence after the spin_unlock would be
329          * unsafe because the kvm page fault could then establish the
330          * pte after kvm_unmap_hva returned, without noticing the page
331          * is going to be freed.
332          */
333         idx = srcu_read_lock(&kvm->srcu);
334         spin_lock(&kvm->mmu_lock);
335
336         kvm->mmu_notifier_seq++;
337         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
338         /* we've to flush the tlb before the pages can be freed */
339         if (need_tlb_flush)
340                 kvm_flush_remote_tlbs(kvm);
341
342         spin_unlock(&kvm->mmu_lock);
343
344         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
345
346         srcu_read_unlock(&kvm->srcu, idx);
347 }
348
349 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
350                                         struct mm_struct *mm,
351                                         unsigned long address,
352                                         pte_t pte)
353 {
354         struct kvm *kvm = mmu_notifier_to_kvm(mn);
355         int idx;
356
357         idx = srcu_read_lock(&kvm->srcu);
358         spin_lock(&kvm->mmu_lock);
359         kvm->mmu_notifier_seq++;
360         kvm_set_spte_hva(kvm, address, pte);
361         spin_unlock(&kvm->mmu_lock);
362         srcu_read_unlock(&kvm->srcu, idx);
363 }
364
365 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366                                                     struct mm_struct *mm,
367                                                     unsigned long start,
368                                                     unsigned long end)
369 {
370         struct kvm *kvm = mmu_notifier_to_kvm(mn);
371         int need_tlb_flush = 0, idx;
372
373         idx = srcu_read_lock(&kvm->srcu);
374         spin_lock(&kvm->mmu_lock);
375         /*
376          * The count increase must become visible at unlock time as no
377          * spte can be established without taking the mmu_lock and
378          * count is also read inside the mmu_lock critical section.
379          */
380         kvm->mmu_notifier_count++;
381         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
382         need_tlb_flush |= kvm->tlbs_dirty;
383         /* we've to flush the tlb before the pages can be freed */
384         if (need_tlb_flush)
385                 kvm_flush_remote_tlbs(kvm);
386
387         spin_unlock(&kvm->mmu_lock);
388         srcu_read_unlock(&kvm->srcu, idx);
389 }
390
391 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
392                                                   struct mm_struct *mm,
393                                                   unsigned long start,
394                                                   unsigned long end)
395 {
396         struct kvm *kvm = mmu_notifier_to_kvm(mn);
397
398         spin_lock(&kvm->mmu_lock);
399         /*
400          * This sequence increase will notify the kvm page fault that
401          * the page that is going to be mapped in the spte could have
402          * been freed.
403          */
404         kvm->mmu_notifier_seq++;
405         smp_wmb();
406         /*
407          * The above sequence increase must be visible before the
408          * below count decrease, which is ensured by the smp_wmb above
409          * in conjunction with the smp_rmb in mmu_notifier_retry().
410          */
411         kvm->mmu_notifier_count--;
412         spin_unlock(&kvm->mmu_lock);
413
414         BUG_ON(kvm->mmu_notifier_count < 0);
415 }
416
417 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
418                                               struct mm_struct *mm,
419                                               unsigned long start,
420                                               unsigned long end)
421 {
422         struct kvm *kvm = mmu_notifier_to_kvm(mn);
423         int young, idx;
424
425         idx = srcu_read_lock(&kvm->srcu);
426         spin_lock(&kvm->mmu_lock);
427
428         young = kvm_age_hva(kvm, start, end);
429         if (young)
430                 kvm_flush_remote_tlbs(kvm);
431
432         spin_unlock(&kvm->mmu_lock);
433         srcu_read_unlock(&kvm->srcu, idx);
434
435         return young;
436 }
437
438 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
439                                         struct mm_struct *mm,
440                                         unsigned long start,
441                                         unsigned long end)
442 {
443         struct kvm *kvm = mmu_notifier_to_kvm(mn);
444         int young, idx;
445
446         idx = srcu_read_lock(&kvm->srcu);
447         spin_lock(&kvm->mmu_lock);
448         /*
449          * Even though we do not flush TLB, this will still adversely
450          * affect performance on pre-Haswell Intel EPT, where there is
451          * no EPT Access Bit to clear so that we have to tear down EPT
452          * tables instead. If we find this unacceptable, we can always
453          * add a parameter to kvm_age_hva so that it effectively doesn't
454          * do anything on clear_young.
455          *
456          * Also note that currently we never issue secondary TLB flushes
457          * from clear_young, leaving this job up to the regular system
458          * cadence. If we find this inaccurate, we might come up with a
459          * more sophisticated heuristic later.
460          */
461         young = kvm_age_hva(kvm, start, end);
462         spin_unlock(&kvm->mmu_lock);
463         srcu_read_unlock(&kvm->srcu, idx);
464
465         return young;
466 }
467
468 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
469                                        struct mm_struct *mm,
470                                        unsigned long address)
471 {
472         struct kvm *kvm = mmu_notifier_to_kvm(mn);
473         int young, idx;
474
475         idx = srcu_read_lock(&kvm->srcu);
476         spin_lock(&kvm->mmu_lock);
477         young = kvm_test_age_hva(kvm, address);
478         spin_unlock(&kvm->mmu_lock);
479         srcu_read_unlock(&kvm->srcu, idx);
480
481         return young;
482 }
483
484 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
485                                      struct mm_struct *mm)
486 {
487         struct kvm *kvm = mmu_notifier_to_kvm(mn);
488         int idx;
489
490         idx = srcu_read_lock(&kvm->srcu);
491         kvm_arch_flush_shadow_all(kvm);
492         srcu_read_unlock(&kvm->srcu, idx);
493 }
494
495 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
496         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
497         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
498         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
499         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
500         .clear_young            = kvm_mmu_notifier_clear_young,
501         .test_young             = kvm_mmu_notifier_test_young,
502         .change_pte             = kvm_mmu_notifier_change_pte,
503         .release                = kvm_mmu_notifier_release,
504 };
505
506 static int kvm_init_mmu_notifier(struct kvm *kvm)
507 {
508         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
509         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
510 }
511
512 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
513
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
515 {
516         return 0;
517 }
518
519 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
520
521 static struct kvm_memslots *kvm_alloc_memslots(void)
522 {
523         int i;
524         struct kvm_memslots *slots;
525
526         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
527         if (!slots)
528                 return NULL;
529
530         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
531                 slots->id_to_index[i] = slots->memslots[i].id = i;
532
533         return slots;
534 }
535
536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
537 {
538         if (!memslot->dirty_bitmap)
539                 return;
540
541         kvfree(memslot->dirty_bitmap);
542         memslot->dirty_bitmap = NULL;
543 }
544
545 /*
546  * Free any memory in @free but not in @dont.
547  */
548 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
549                               struct kvm_memory_slot *dont)
550 {
551         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
552                 kvm_destroy_dirty_bitmap(free);
553
554         kvm_arch_free_memslot(kvm, free, dont);
555
556         free->npages = 0;
557 }
558
559 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
560 {
561         struct kvm_memory_slot *memslot;
562
563         if (!slots)
564                 return;
565
566         kvm_for_each_memslot(memslot, slots)
567                 kvm_free_memslot(kvm, memslot, NULL);
568
569         kvfree(slots);
570 }
571
572 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
573 {
574         int i;
575
576         if (!kvm->debugfs_dentry)
577                 return;
578
579         debugfs_remove_recursive(kvm->debugfs_dentry);
580
581         if (kvm->debugfs_stat_data) {
582                 for (i = 0; i < kvm_debugfs_num_entries; i++)
583                         kfree(kvm->debugfs_stat_data[i]);
584                 kfree(kvm->debugfs_stat_data);
585         }
586 }
587
588 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
589 {
590         char dir_name[ITOA_MAX_LEN * 2];
591         struct kvm_stat_data *stat_data;
592         struct kvm_stats_debugfs_item *p;
593
594         if (!debugfs_initialized())
595                 return 0;
596
597         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
598         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
599                                                  kvm_debugfs_dir);
600         if (!kvm->debugfs_dentry)
601                 return -ENOMEM;
602
603         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
604                                          sizeof(*kvm->debugfs_stat_data),
605                                          GFP_KERNEL);
606         if (!kvm->debugfs_stat_data)
607                 return -ENOMEM;
608
609         for (p = debugfs_entries; p->name; p++) {
610                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
611                 if (!stat_data)
612                         return -ENOMEM;
613
614                 stat_data->kvm = kvm;
615                 stat_data->offset = p->offset;
616                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
617                 if (!debugfs_create_file(p->name, 0644,
618                                          kvm->debugfs_dentry,
619                                          stat_data,
620                                          stat_fops_per_vm[p->kind]))
621                         return -ENOMEM;
622         }
623         return 0;
624 }
625
626 static struct kvm *kvm_create_vm(unsigned long type)
627 {
628         int r, i;
629         struct kvm *kvm = kvm_arch_alloc_vm();
630
631         if (!kvm)
632                 return ERR_PTR(-ENOMEM);
633
634         spin_lock_init(&kvm->mmu_lock);
635         mmgrab(current->mm);
636         kvm->mm = current->mm;
637         kvm_eventfd_init(kvm);
638         mutex_init(&kvm->lock);
639         mutex_init(&kvm->irq_lock);
640         mutex_init(&kvm->slots_lock);
641         refcount_set(&kvm->users_count, 1);
642         INIT_LIST_HEAD(&kvm->devices);
643
644         r = kvm_arch_init_vm(kvm, type);
645         if (r)
646                 goto out_err_no_disable;
647
648         r = hardware_enable_all();
649         if (r)
650                 goto out_err_no_disable;
651
652 #ifdef CONFIG_HAVE_KVM_IRQFD
653         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
654 #endif
655
656         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
657
658         r = -ENOMEM;
659         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
660                 struct kvm_memslots *slots = kvm_alloc_memslots();
661                 if (!slots)
662                         goto out_err_no_srcu;
663                 /*
664                  * Generations must be different for each address space.
665                  * Init kvm generation close to the maximum to easily test the
666                  * code of handling generation number wrap-around.
667                  */
668                 slots->generation = i * 2 - 150;
669                 rcu_assign_pointer(kvm->memslots[i], slots);
670         }
671
672         if (init_srcu_struct(&kvm->srcu))
673                 goto out_err_no_srcu;
674         if (init_srcu_struct(&kvm->irq_srcu))
675                 goto out_err_no_irq_srcu;
676         for (i = 0; i < KVM_NR_BUSES; i++) {
677                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
678                                         GFP_KERNEL);
679                 if (!kvm->buses[i])
680                         goto out_err;
681         }
682
683         r = kvm_init_mmu_notifier(kvm);
684         if (r)
685                 goto out_err;
686
687         spin_lock(&kvm_lock);
688         list_add(&kvm->vm_list, &vm_list);
689         spin_unlock(&kvm_lock);
690
691         preempt_notifier_inc();
692
693         return kvm;
694
695 out_err:
696         cleanup_srcu_struct(&kvm->irq_srcu);
697 out_err_no_irq_srcu:
698         cleanup_srcu_struct(&kvm->srcu);
699 out_err_no_srcu:
700         hardware_disable_all();
701 out_err_no_disable:
702         for (i = 0; i < KVM_NR_BUSES; i++)
703                 kfree(kvm->buses[i]);
704         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
705                 kvm_free_memslots(kvm, kvm->memslots[i]);
706         kvm_arch_free_vm(kvm);
707         mmdrop(current->mm);
708         return ERR_PTR(r);
709 }
710
711 /*
712  * Avoid using vmalloc for a small buffer.
713  * Should not be used when the size is statically known.
714  */
715 void *kvm_kvzalloc(unsigned long size)
716 {
717         if (size > PAGE_SIZE)
718                 return vzalloc(size);
719         else
720                 return kzalloc(size, GFP_KERNEL);
721 }
722
723 static void kvm_destroy_devices(struct kvm *kvm)
724 {
725         struct kvm_device *dev, *tmp;
726
727         /*
728          * We do not need to take the kvm->lock here, because nobody else
729          * has a reference to the struct kvm at this point and therefore
730          * cannot access the devices list anyhow.
731          */
732         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
733                 list_del(&dev->vm_node);
734                 dev->ops->destroy(dev);
735         }
736 }
737
738 static void kvm_destroy_vm(struct kvm *kvm)
739 {
740         int i;
741         struct mm_struct *mm = kvm->mm;
742
743         kvm_destroy_vm_debugfs(kvm);
744         kvm_arch_sync_events(kvm);
745         spin_lock(&kvm_lock);
746         list_del(&kvm->vm_list);
747         spin_unlock(&kvm_lock);
748         kvm_free_irq_routing(kvm);
749         for (i = 0; i < KVM_NR_BUSES; i++) {
750                 if (kvm->buses[i])
751                         kvm_io_bus_destroy(kvm->buses[i]);
752                 kvm->buses[i] = NULL;
753         }
754         kvm_coalesced_mmio_free(kvm);
755 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
756         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
757 #else
758         kvm_arch_flush_shadow_all(kvm);
759 #endif
760         kvm_arch_destroy_vm(kvm);
761         kvm_destroy_devices(kvm);
762         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
763                 kvm_free_memslots(kvm, kvm->memslots[i]);
764         cleanup_srcu_struct(&kvm->irq_srcu);
765         cleanup_srcu_struct(&kvm->srcu);
766         kvm_arch_free_vm(kvm);
767         preempt_notifier_dec();
768         hardware_disable_all();
769         mmdrop(mm);
770 }
771
772 void kvm_get_kvm(struct kvm *kvm)
773 {
774         refcount_inc(&kvm->users_count);
775 }
776 EXPORT_SYMBOL_GPL(kvm_get_kvm);
777
778 void kvm_put_kvm(struct kvm *kvm)
779 {
780         if (refcount_dec_and_test(&kvm->users_count))
781                 kvm_destroy_vm(kvm);
782 }
783 EXPORT_SYMBOL_GPL(kvm_put_kvm);
784
785
786 static int kvm_vm_release(struct inode *inode, struct file *filp)
787 {
788         struct kvm *kvm = filp->private_data;
789
790         kvm_irqfd_release(kvm);
791
792         kvm_put_kvm(kvm);
793         return 0;
794 }
795
796 /*
797  * Allocation size is twice as large as the actual dirty bitmap size.
798  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
799  */
800 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
801 {
802         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
803
804         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
805         if (!memslot->dirty_bitmap)
806                 return -ENOMEM;
807
808         return 0;
809 }
810
811 /*
812  * Insert memslot and re-sort memslots based on their GFN,
813  * so binary search could be used to lookup GFN.
814  * Sorting algorithm takes advantage of having initially
815  * sorted array and known changed memslot position.
816  */
817 static void update_memslots(struct kvm_memslots *slots,
818                             struct kvm_memory_slot *new)
819 {
820         int id = new->id;
821         int i = slots->id_to_index[id];
822         struct kvm_memory_slot *mslots = slots->memslots;
823
824         WARN_ON(mslots[i].id != id);
825         if (!new->npages) {
826                 WARN_ON(!mslots[i].npages);
827                 if (mslots[i].npages)
828                         slots->used_slots--;
829         } else {
830                 if (!mslots[i].npages)
831                         slots->used_slots++;
832         }
833
834         while (i < KVM_MEM_SLOTS_NUM - 1 &&
835                new->base_gfn <= mslots[i + 1].base_gfn) {
836                 if (!mslots[i + 1].npages)
837                         break;
838                 mslots[i] = mslots[i + 1];
839                 slots->id_to_index[mslots[i].id] = i;
840                 i++;
841         }
842
843         /*
844          * The ">=" is needed when creating a slot with base_gfn == 0,
845          * so that it moves before all those with base_gfn == npages == 0.
846          *
847          * On the other hand, if new->npages is zero, the above loop has
848          * already left i pointing to the beginning of the empty part of
849          * mslots, and the ">=" would move the hole backwards in this
850          * case---which is wrong.  So skip the loop when deleting a slot.
851          */
852         if (new->npages) {
853                 while (i > 0 &&
854                        new->base_gfn >= mslots[i - 1].base_gfn) {
855                         mslots[i] = mslots[i - 1];
856                         slots->id_to_index[mslots[i].id] = i;
857                         i--;
858                 }
859         } else
860                 WARN_ON_ONCE(i != slots->used_slots);
861
862         mslots[i] = *new;
863         slots->id_to_index[mslots[i].id] = i;
864 }
865
866 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
867 {
868         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
869
870 #ifdef __KVM_HAVE_READONLY_MEM
871         valid_flags |= KVM_MEM_READONLY;
872 #endif
873
874         if (mem->flags & ~valid_flags)
875                 return -EINVAL;
876
877         return 0;
878 }
879
880 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
881                 int as_id, struct kvm_memslots *slots)
882 {
883         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
884
885         /*
886          * Set the low bit in the generation, which disables SPTE caching
887          * until the end of synchronize_srcu_expedited.
888          */
889         WARN_ON(old_memslots->generation & 1);
890         slots->generation = old_memslots->generation + 1;
891
892         rcu_assign_pointer(kvm->memslots[as_id], slots);
893         synchronize_srcu_expedited(&kvm->srcu);
894
895         /*
896          * Increment the new memslot generation a second time. This prevents
897          * vm exits that race with memslot updates from caching a memslot
898          * generation that will (potentially) be valid forever.
899          *
900          * Generations must be unique even across address spaces.  We do not need
901          * a global counter for that, instead the generation space is evenly split
902          * across address spaces.  For example, with two address spaces, address
903          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
904          * use generations 2, 6, 10, 14, ...
905          */
906         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
907
908         kvm_arch_memslots_updated(kvm, slots);
909
910         return old_memslots;
911 }
912
913 /*
914  * Allocate some memory and give it an address in the guest physical address
915  * space.
916  *
917  * Discontiguous memory is allowed, mostly for framebuffers.
918  *
919  * Must be called holding kvm->slots_lock for write.
920  */
921 int __kvm_set_memory_region(struct kvm *kvm,
922                             const struct kvm_userspace_memory_region *mem)
923 {
924         int r;
925         gfn_t base_gfn;
926         unsigned long npages;
927         struct kvm_memory_slot *slot;
928         struct kvm_memory_slot old, new;
929         struct kvm_memslots *slots = NULL, *old_memslots;
930         int as_id, id;
931         enum kvm_mr_change change;
932
933         r = check_memory_region_flags(mem);
934         if (r)
935                 goto out;
936
937         r = -EINVAL;
938         as_id = mem->slot >> 16;
939         id = (u16)mem->slot;
940
941         /* General sanity checks */
942         if (mem->memory_size & (PAGE_SIZE - 1))
943                 goto out;
944         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
945                 goto out;
946         /* We can read the guest memory with __xxx_user() later on. */
947         if ((id < KVM_USER_MEM_SLOTS) &&
948             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
949              !access_ok(VERIFY_WRITE,
950                         (void __user *)(unsigned long)mem->userspace_addr,
951                         mem->memory_size)))
952                 goto out;
953         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
954                 goto out;
955         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
956                 goto out;
957
958         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
959         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
960         npages = mem->memory_size >> PAGE_SHIFT;
961
962         if (npages > KVM_MEM_MAX_NR_PAGES)
963                 goto out;
964
965         new = old = *slot;
966
967         new.id = id;
968         new.base_gfn = base_gfn;
969         new.npages = npages;
970         new.flags = mem->flags;
971
972         if (npages) {
973                 if (!old.npages)
974                         change = KVM_MR_CREATE;
975                 else { /* Modify an existing slot. */
976                         if ((mem->userspace_addr != old.userspace_addr) ||
977                             (npages != old.npages) ||
978                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
979                                 goto out;
980
981                         if (base_gfn != old.base_gfn)
982                                 change = KVM_MR_MOVE;
983                         else if (new.flags != old.flags)
984                                 change = KVM_MR_FLAGS_ONLY;
985                         else { /* Nothing to change. */
986                                 r = 0;
987                                 goto out;
988                         }
989                 }
990         } else {
991                 if (!old.npages)
992                         goto out;
993
994                 change = KVM_MR_DELETE;
995                 new.base_gfn = 0;
996                 new.flags = 0;
997         }
998
999         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1000                 /* Check for overlaps */
1001                 r = -EEXIST;
1002                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1003                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
1004                             (slot->id == id))
1005                                 continue;
1006                         if (!((base_gfn + npages <= slot->base_gfn) ||
1007                               (base_gfn >= slot->base_gfn + slot->npages)))
1008                                 goto out;
1009                 }
1010         }
1011
1012         /* Free page dirty bitmap if unneeded */
1013         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1014                 new.dirty_bitmap = NULL;
1015
1016         r = -ENOMEM;
1017         if (change == KVM_MR_CREATE) {
1018                 new.userspace_addr = mem->userspace_addr;
1019
1020                 if (kvm_arch_create_memslot(kvm, &new, npages))
1021                         goto out_free;
1022         }
1023
1024         /* Allocate page dirty bitmap if needed */
1025         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1026                 if (kvm_create_dirty_bitmap(&new) < 0)
1027                         goto out_free;
1028         }
1029
1030         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
1031         if (!slots)
1032                 goto out_free;
1033         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1034
1035         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1036                 slot = id_to_memslot(slots, id);
1037                 slot->flags |= KVM_MEMSLOT_INVALID;
1038
1039                 old_memslots = install_new_memslots(kvm, as_id, slots);
1040
1041                 /* From this point no new shadow pages pointing to a deleted,
1042                  * or moved, memslot will be created.
1043                  *
1044                  * validation of sp->gfn happens in:
1045                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1046                  *      - kvm_is_visible_gfn (mmu_check_roots)
1047                  */
1048                 kvm_arch_flush_shadow_memslot(kvm, slot);
1049
1050                 /*
1051                  * We can re-use the old_memslots from above, the only difference
1052                  * from the currently installed memslots is the invalid flag.  This
1053                  * will get overwritten by update_memslots anyway.
1054                  */
1055                 slots = old_memslots;
1056         }
1057
1058         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1059         if (r)
1060                 goto out_slots;
1061
1062         /* actual memory is freed via old in kvm_free_memslot below */
1063         if (change == KVM_MR_DELETE) {
1064                 new.dirty_bitmap = NULL;
1065                 memset(&new.arch, 0, sizeof(new.arch));
1066         }
1067
1068         update_memslots(slots, &new);
1069         old_memslots = install_new_memslots(kvm, as_id, slots);
1070
1071         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1072
1073         kvm_free_memslot(kvm, &old, &new);
1074         kvfree(old_memslots);
1075         return 0;
1076
1077 out_slots:
1078         kvfree(slots);
1079 out_free:
1080         kvm_free_memslot(kvm, &new, &old);
1081 out:
1082         return r;
1083 }
1084 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1085
1086 int kvm_set_memory_region(struct kvm *kvm,
1087                           const struct kvm_userspace_memory_region *mem)
1088 {
1089         int r;
1090
1091         mutex_lock(&kvm->slots_lock);
1092         r = __kvm_set_memory_region(kvm, mem);
1093         mutex_unlock(&kvm->slots_lock);
1094         return r;
1095 }
1096 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1097
1098 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1099                                           struct kvm_userspace_memory_region *mem)
1100 {
1101         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1102                 return -EINVAL;
1103
1104         return kvm_set_memory_region(kvm, mem);
1105 }
1106
1107 int kvm_get_dirty_log(struct kvm *kvm,
1108                         struct kvm_dirty_log *log, int *is_dirty)
1109 {
1110         struct kvm_memslots *slots;
1111         struct kvm_memory_slot *memslot;
1112         int i, as_id, id;
1113         unsigned long n;
1114         unsigned long any = 0;
1115
1116         as_id = log->slot >> 16;
1117         id = (u16)log->slot;
1118         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1119                 return -EINVAL;
1120
1121         slots = __kvm_memslots(kvm, as_id);
1122         memslot = id_to_memslot(slots, id);
1123         if (!memslot->dirty_bitmap)
1124                 return -ENOENT;
1125
1126         n = kvm_dirty_bitmap_bytes(memslot);
1127
1128         for (i = 0; !any && i < n/sizeof(long); ++i)
1129                 any = memslot->dirty_bitmap[i];
1130
1131         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1132                 return -EFAULT;
1133
1134         if (any)
1135                 *is_dirty = 1;
1136         return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1139
1140 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1141 /**
1142  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1143  *      are dirty write protect them for next write.
1144  * @kvm:        pointer to kvm instance
1145  * @log:        slot id and address to which we copy the log
1146  * @is_dirty:   flag set if any page is dirty
1147  *
1148  * We need to keep it in mind that VCPU threads can write to the bitmap
1149  * concurrently. So, to avoid losing track of dirty pages we keep the
1150  * following order:
1151  *
1152  *    1. Take a snapshot of the bit and clear it if needed.
1153  *    2. Write protect the corresponding page.
1154  *    3. Copy the snapshot to the userspace.
1155  *    4. Upon return caller flushes TLB's if needed.
1156  *
1157  * Between 2 and 4, the guest may write to the page using the remaining TLB
1158  * entry.  This is not a problem because the page is reported dirty using
1159  * the snapshot taken before and step 4 ensures that writes done after
1160  * exiting to userspace will be logged for the next call.
1161  *
1162  */
1163 int kvm_get_dirty_log_protect(struct kvm *kvm,
1164                         struct kvm_dirty_log *log, bool *is_dirty)
1165 {
1166         struct kvm_memslots *slots;
1167         struct kvm_memory_slot *memslot;
1168         int i, as_id, id;
1169         unsigned long n;
1170         unsigned long *dirty_bitmap;
1171         unsigned long *dirty_bitmap_buffer;
1172
1173         as_id = log->slot >> 16;
1174         id = (u16)log->slot;
1175         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1176                 return -EINVAL;
1177
1178         slots = __kvm_memslots(kvm, as_id);
1179         memslot = id_to_memslot(slots, id);
1180
1181         dirty_bitmap = memslot->dirty_bitmap;
1182         if (!dirty_bitmap)
1183                 return -ENOENT;
1184
1185         n = kvm_dirty_bitmap_bytes(memslot);
1186
1187         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1188         memset(dirty_bitmap_buffer, 0, n);
1189
1190         spin_lock(&kvm->mmu_lock);
1191         *is_dirty = false;
1192         for (i = 0; i < n / sizeof(long); i++) {
1193                 unsigned long mask;
1194                 gfn_t offset;
1195
1196                 if (!dirty_bitmap[i])
1197                         continue;
1198
1199                 *is_dirty = true;
1200
1201                 mask = xchg(&dirty_bitmap[i], 0);
1202                 dirty_bitmap_buffer[i] = mask;
1203
1204                 if (mask) {
1205                         offset = i * BITS_PER_LONG;
1206                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1207                                                                 offset, mask);
1208                 }
1209         }
1210
1211         spin_unlock(&kvm->mmu_lock);
1212         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1213                 return -EFAULT;
1214         return 0;
1215 }
1216 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1217 #endif
1218
1219 bool kvm_largepages_enabled(void)
1220 {
1221         return largepages_enabled;
1222 }
1223
1224 void kvm_disable_largepages(void)
1225 {
1226         largepages_enabled = false;
1227 }
1228 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1229
1230 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1231 {
1232         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1233 }
1234 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1235
1236 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1237 {
1238         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1239 }
1240
1241 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1242 {
1243         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1244
1245         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1246               memslot->flags & KVM_MEMSLOT_INVALID)
1247                 return false;
1248
1249         return true;
1250 }
1251 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1252
1253 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1254 {
1255         struct vm_area_struct *vma;
1256         unsigned long addr, size;
1257
1258         size = PAGE_SIZE;
1259
1260         addr = gfn_to_hva(kvm, gfn);
1261         if (kvm_is_error_hva(addr))
1262                 return PAGE_SIZE;
1263
1264         down_read(&current->mm->mmap_sem);
1265         vma = find_vma(current->mm, addr);
1266         if (!vma)
1267                 goto out;
1268
1269         size = vma_kernel_pagesize(vma);
1270
1271 out:
1272         up_read(&current->mm->mmap_sem);
1273
1274         return size;
1275 }
1276
1277 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1278 {
1279         return slot->flags & KVM_MEM_READONLY;
1280 }
1281
1282 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1283                                        gfn_t *nr_pages, bool write)
1284 {
1285         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1286                 return KVM_HVA_ERR_BAD;
1287
1288         if (memslot_is_readonly(slot) && write)
1289                 return KVM_HVA_ERR_RO_BAD;
1290
1291         if (nr_pages)
1292                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1293
1294         return __gfn_to_hva_memslot(slot, gfn);
1295 }
1296
1297 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1298                                      gfn_t *nr_pages)
1299 {
1300         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1301 }
1302
1303 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1304                                         gfn_t gfn)
1305 {
1306         return gfn_to_hva_many(slot, gfn, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1309
1310 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1311 {
1312         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1313 }
1314 EXPORT_SYMBOL_GPL(gfn_to_hva);
1315
1316 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1317 {
1318         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1319 }
1320 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1321
1322 /*
1323  * If writable is set to false, the hva returned by this function is only
1324  * allowed to be read.
1325  */
1326 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1327                                       gfn_t gfn, bool *writable)
1328 {
1329         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1330
1331         if (!kvm_is_error_hva(hva) && writable)
1332                 *writable = !memslot_is_readonly(slot);
1333
1334         return hva;
1335 }
1336
1337 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1338 {
1339         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1340
1341         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1342 }
1343
1344 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1345 {
1346         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1347
1348         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1349 }
1350
1351 static int get_user_page_nowait(unsigned long start, int write,
1352                 struct page **page)
1353 {
1354         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1355
1356         if (write)
1357                 flags |= FOLL_WRITE;
1358
1359         return get_user_pages(start, 1, flags, page, NULL);
1360 }
1361
1362 static inline int check_user_page_hwpoison(unsigned long addr)
1363 {
1364         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1365
1366         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1367         return rc == -EHWPOISON;
1368 }
1369
1370 /*
1371  * The atomic path to get the writable pfn which will be stored in @pfn,
1372  * true indicates success, otherwise false is returned.
1373  */
1374 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1375                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1376 {
1377         struct page *page[1];
1378         int npages;
1379
1380         if (!(async || atomic))
1381                 return false;
1382
1383         /*
1384          * Fast pin a writable pfn only if it is a write fault request
1385          * or the caller allows to map a writable pfn for a read fault
1386          * request.
1387          */
1388         if (!(write_fault || writable))
1389                 return false;
1390
1391         npages = __get_user_pages_fast(addr, 1, 1, page);
1392         if (npages == 1) {
1393                 *pfn = page_to_pfn(page[0]);
1394
1395                 if (writable)
1396                         *writable = true;
1397                 return true;
1398         }
1399
1400         return false;
1401 }
1402
1403 /*
1404  * The slow path to get the pfn of the specified host virtual address,
1405  * 1 indicates success, -errno is returned if error is detected.
1406  */
1407 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1408                            bool *writable, kvm_pfn_t *pfn)
1409 {
1410         struct page *page[1];
1411         int npages = 0;
1412
1413         might_sleep();
1414
1415         if (writable)
1416                 *writable = write_fault;
1417
1418         if (async) {
1419                 down_read(&current->mm->mmap_sem);
1420                 npages = get_user_page_nowait(addr, write_fault, page);
1421                 up_read(&current->mm->mmap_sem);
1422         } else {
1423                 unsigned int flags = FOLL_HWPOISON;
1424
1425                 if (write_fault)
1426                         flags |= FOLL_WRITE;
1427
1428                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1429         }
1430         if (npages != 1)
1431                 return npages;
1432
1433         /* map read fault as writable if possible */
1434         if (unlikely(!write_fault) && writable) {
1435                 struct page *wpage[1];
1436
1437                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1438                 if (npages == 1) {
1439                         *writable = true;
1440                         put_page(page[0]);
1441                         page[0] = wpage[0];
1442                 }
1443
1444                 npages = 1;
1445         }
1446         *pfn = page_to_pfn(page[0]);
1447         return npages;
1448 }
1449
1450 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1451 {
1452         if (unlikely(!(vma->vm_flags & VM_READ)))
1453                 return false;
1454
1455         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1456                 return false;
1457
1458         return true;
1459 }
1460
1461 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1462                                unsigned long addr, bool *async,
1463                                bool write_fault, kvm_pfn_t *p_pfn)
1464 {
1465         unsigned long pfn;
1466         int r;
1467
1468         r = follow_pfn(vma, addr, &pfn);
1469         if (r) {
1470                 /*
1471                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1472                  * not call the fault handler, so do it here.
1473                  */
1474                 bool unlocked = false;
1475                 r = fixup_user_fault(current, current->mm, addr,
1476                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1477                                      &unlocked);
1478                 if (unlocked)
1479                         return -EAGAIN;
1480                 if (r)
1481                         return r;
1482
1483                 r = follow_pfn(vma, addr, &pfn);
1484                 if (r)
1485                         return r;
1486
1487         }
1488
1489
1490         /*
1491          * Get a reference here because callers of *hva_to_pfn* and
1492          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1493          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1494          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1495          * simply do nothing for reserved pfns.
1496          *
1497          * Whoever called remap_pfn_range is also going to call e.g.
1498          * unmap_mapping_range before the underlying pages are freed,
1499          * causing a call to our MMU notifier.
1500          */ 
1501         kvm_get_pfn(pfn);
1502
1503         *p_pfn = pfn;
1504         return 0;
1505 }
1506
1507 /*
1508  * Pin guest page in memory and return its pfn.
1509  * @addr: host virtual address which maps memory to the guest
1510  * @atomic: whether this function can sleep
1511  * @async: whether this function need to wait IO complete if the
1512  *         host page is not in the memory
1513  * @write_fault: whether we should get a writable host page
1514  * @writable: whether it allows to map a writable host page for !@write_fault
1515  *
1516  * The function will map a writable host page for these two cases:
1517  * 1): @write_fault = true
1518  * 2): @write_fault = false && @writable, @writable will tell the caller
1519  *     whether the mapping is writable.
1520  */
1521 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1522                         bool write_fault, bool *writable)
1523 {
1524         struct vm_area_struct *vma;
1525         kvm_pfn_t pfn = 0;
1526         int npages, r;
1527
1528         /* we can do it either atomically or asynchronously, not both */
1529         BUG_ON(atomic && async);
1530
1531         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1532                 return pfn;
1533
1534         if (atomic)
1535                 return KVM_PFN_ERR_FAULT;
1536
1537         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1538         if (npages == 1)
1539                 return pfn;
1540
1541         down_read(&current->mm->mmap_sem);
1542         if (npages == -EHWPOISON ||
1543               (!async && check_user_page_hwpoison(addr))) {
1544                 pfn = KVM_PFN_ERR_HWPOISON;
1545                 goto exit;
1546         }
1547
1548 retry:
1549         vma = find_vma_intersection(current->mm, addr, addr + 1);
1550
1551         if (vma == NULL)
1552                 pfn = KVM_PFN_ERR_FAULT;
1553         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1554                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1555                 if (r == -EAGAIN)
1556                         goto retry;
1557                 if (r < 0)
1558                         pfn = KVM_PFN_ERR_FAULT;
1559         } else {
1560                 if (async && vma_is_valid(vma, write_fault))
1561                         *async = true;
1562                 pfn = KVM_PFN_ERR_FAULT;
1563         }
1564 exit:
1565         up_read(&current->mm->mmap_sem);
1566         return pfn;
1567 }
1568
1569 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1570                                bool atomic, bool *async, bool write_fault,
1571                                bool *writable)
1572 {
1573         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1574
1575         if (addr == KVM_HVA_ERR_RO_BAD) {
1576                 if (writable)
1577                         *writable = false;
1578                 return KVM_PFN_ERR_RO_FAULT;
1579         }
1580
1581         if (kvm_is_error_hva(addr)) {
1582                 if (writable)
1583                         *writable = false;
1584                 return KVM_PFN_NOSLOT;
1585         }
1586
1587         /* Do not map writable pfn in the readonly memslot. */
1588         if (writable && memslot_is_readonly(slot)) {
1589                 *writable = false;
1590                 writable = NULL;
1591         }
1592
1593         return hva_to_pfn(addr, atomic, async, write_fault,
1594                           writable);
1595 }
1596 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1597
1598 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1599                       bool *writable)
1600 {
1601         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1602                                     write_fault, writable);
1603 }
1604 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1605
1606 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1607 {
1608         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1609 }
1610 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1611
1612 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1613 {
1614         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1615 }
1616 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1617
1618 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1619 {
1620         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1621 }
1622 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1623
1624 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1625 {
1626         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1627 }
1628 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1629
1630 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1631 {
1632         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1633 }
1634 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1635
1636 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1637 {
1638         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1639 }
1640 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1641
1642 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1643                             struct page **pages, int nr_pages)
1644 {
1645         unsigned long addr;
1646         gfn_t entry;
1647
1648         addr = gfn_to_hva_many(slot, gfn, &entry);
1649         if (kvm_is_error_hva(addr))
1650                 return -1;
1651
1652         if (entry < nr_pages)
1653                 return 0;
1654
1655         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1656 }
1657 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1658
1659 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1660 {
1661         if (is_error_noslot_pfn(pfn))
1662                 return KVM_ERR_PTR_BAD_PAGE;
1663
1664         if (kvm_is_reserved_pfn(pfn)) {
1665                 WARN_ON(1);
1666                 return KVM_ERR_PTR_BAD_PAGE;
1667         }
1668
1669         return pfn_to_page(pfn);
1670 }
1671
1672 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1673 {
1674         kvm_pfn_t pfn;
1675
1676         pfn = gfn_to_pfn(kvm, gfn);
1677
1678         return kvm_pfn_to_page(pfn);
1679 }
1680 EXPORT_SYMBOL_GPL(gfn_to_page);
1681
1682 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1683 {
1684         kvm_pfn_t pfn;
1685
1686         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1687
1688         return kvm_pfn_to_page(pfn);
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1691
1692 void kvm_release_page_clean(struct page *page)
1693 {
1694         WARN_ON(is_error_page(page));
1695
1696         kvm_release_pfn_clean(page_to_pfn(page));
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1699
1700 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1701 {
1702         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1703                 put_page(pfn_to_page(pfn));
1704 }
1705 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1706
1707 void kvm_release_page_dirty(struct page *page)
1708 {
1709         WARN_ON(is_error_page(page));
1710
1711         kvm_release_pfn_dirty(page_to_pfn(page));
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1714
1715 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1716 {
1717         kvm_set_pfn_dirty(pfn);
1718         kvm_release_pfn_clean(pfn);
1719 }
1720
1721 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1722 {
1723         if (!kvm_is_reserved_pfn(pfn)) {
1724                 struct page *page = pfn_to_page(pfn);
1725
1726                 if (!PageReserved(page))
1727                         SetPageDirty(page);
1728         }
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1731
1732 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1733 {
1734         if (!kvm_is_reserved_pfn(pfn))
1735                 mark_page_accessed(pfn_to_page(pfn));
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1738
1739 void kvm_get_pfn(kvm_pfn_t pfn)
1740 {
1741         if (!kvm_is_reserved_pfn(pfn))
1742                 get_page(pfn_to_page(pfn));
1743 }
1744 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1745
1746 static int next_segment(unsigned long len, int offset)
1747 {
1748         if (len > PAGE_SIZE - offset)
1749                 return PAGE_SIZE - offset;
1750         else
1751                 return len;
1752 }
1753
1754 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1755                                  void *data, int offset, int len)
1756 {
1757         int r;
1758         unsigned long addr;
1759
1760         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1761         if (kvm_is_error_hva(addr))
1762                 return -EFAULT;
1763         r = __copy_from_user(data, (void __user *)addr + offset, len);
1764         if (r)
1765                 return -EFAULT;
1766         return 0;
1767 }
1768
1769 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1770                         int len)
1771 {
1772         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1773
1774         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1775 }
1776 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1777
1778 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1779                              int offset, int len)
1780 {
1781         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1782
1783         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1784 }
1785 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1786
1787 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1788 {
1789         gfn_t gfn = gpa >> PAGE_SHIFT;
1790         int seg;
1791         int offset = offset_in_page(gpa);
1792         int ret;
1793
1794         while ((seg = next_segment(len, offset)) != 0) {
1795                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1796                 if (ret < 0)
1797                         return ret;
1798                 offset = 0;
1799                 len -= seg;
1800                 data += seg;
1801                 ++gfn;
1802         }
1803         return 0;
1804 }
1805 EXPORT_SYMBOL_GPL(kvm_read_guest);
1806
1807 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1808 {
1809         gfn_t gfn = gpa >> PAGE_SHIFT;
1810         int seg;
1811         int offset = offset_in_page(gpa);
1812         int ret;
1813
1814         while ((seg = next_segment(len, offset)) != 0) {
1815                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1816                 if (ret < 0)
1817                         return ret;
1818                 offset = 0;
1819                 len -= seg;
1820                 data += seg;
1821                 ++gfn;
1822         }
1823         return 0;
1824 }
1825 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1826
1827 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1828                                    void *data, int offset, unsigned long len)
1829 {
1830         int r;
1831         unsigned long addr;
1832
1833         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1834         if (kvm_is_error_hva(addr))
1835                 return -EFAULT;
1836         pagefault_disable();
1837         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1838         pagefault_enable();
1839         if (r)
1840                 return -EFAULT;
1841         return 0;
1842 }
1843
1844 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1845                           unsigned long len)
1846 {
1847         gfn_t gfn = gpa >> PAGE_SHIFT;
1848         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1849         int offset = offset_in_page(gpa);
1850
1851         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1852 }
1853 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1854
1855 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1856                                void *data, unsigned long len)
1857 {
1858         gfn_t gfn = gpa >> PAGE_SHIFT;
1859         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1860         int offset = offset_in_page(gpa);
1861
1862         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1865
1866 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1867                                   const void *data, int offset, int len)
1868 {
1869         int r;
1870         unsigned long addr;
1871
1872         addr = gfn_to_hva_memslot(memslot, gfn);
1873         if (kvm_is_error_hva(addr))
1874                 return -EFAULT;
1875         r = __copy_to_user((void __user *)addr + offset, data, len);
1876         if (r)
1877                 return -EFAULT;
1878         mark_page_dirty_in_slot(memslot, gfn);
1879         return 0;
1880 }
1881
1882 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1883                          const void *data, int offset, int len)
1884 {
1885         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1886
1887         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1890
1891 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1892                               const void *data, int offset, int len)
1893 {
1894         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1895
1896         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1897 }
1898 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1899
1900 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1901                     unsigned long len)
1902 {
1903         gfn_t gfn = gpa >> PAGE_SHIFT;
1904         int seg;
1905         int offset = offset_in_page(gpa);
1906         int ret;
1907
1908         while ((seg = next_segment(len, offset)) != 0) {
1909                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1910                 if (ret < 0)
1911                         return ret;
1912                 offset = 0;
1913                 len -= seg;
1914                 data += seg;
1915                 ++gfn;
1916         }
1917         return 0;
1918 }
1919 EXPORT_SYMBOL_GPL(kvm_write_guest);
1920
1921 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1922                          unsigned long len)
1923 {
1924         gfn_t gfn = gpa >> PAGE_SHIFT;
1925         int seg;
1926         int offset = offset_in_page(gpa);
1927         int ret;
1928
1929         while ((seg = next_segment(len, offset)) != 0) {
1930                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1931                 if (ret < 0)
1932                         return ret;
1933                 offset = 0;
1934                 len -= seg;
1935                 data += seg;
1936                 ++gfn;
1937         }
1938         return 0;
1939 }
1940 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1941
1942 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1943                                        struct gfn_to_hva_cache *ghc,
1944                                        gpa_t gpa, unsigned long len)
1945 {
1946         int offset = offset_in_page(gpa);
1947         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1948         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1949         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1950         gfn_t nr_pages_avail;
1951
1952         ghc->gpa = gpa;
1953         ghc->generation = slots->generation;
1954         ghc->len = len;
1955         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1956         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1957         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1958                 ghc->hva += offset;
1959         } else {
1960                 /*
1961                  * If the requested region crosses two memslots, we still
1962                  * verify that the entire region is valid here.
1963                  */
1964                 while (start_gfn <= end_gfn) {
1965                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1966                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1967                                                    &nr_pages_avail);
1968                         if (kvm_is_error_hva(ghc->hva))
1969                                 return -EFAULT;
1970                         start_gfn += nr_pages_avail;
1971                 }
1972                 /* Use the slow path for cross page reads and writes. */
1973                 ghc->memslot = NULL;
1974         }
1975         return 0;
1976 }
1977
1978 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1979                               gpa_t gpa, unsigned long len)
1980 {
1981         struct kvm_memslots *slots = kvm_memslots(kvm);
1982         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1983 }
1984 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1985
1986 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1987                            void *data, int offset, unsigned long len)
1988 {
1989         struct kvm_memslots *slots = kvm_memslots(kvm);
1990         int r;
1991         gpa_t gpa = ghc->gpa + offset;
1992
1993         BUG_ON(len + offset > ghc->len);
1994
1995         if (slots->generation != ghc->generation)
1996                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1997
1998         if (unlikely(!ghc->memslot))
1999                 return kvm_write_guest(kvm, gpa, data, len);
2000
2001         if (kvm_is_error_hva(ghc->hva))
2002                 return -EFAULT;
2003
2004         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2005         if (r)
2006                 return -EFAULT;
2007         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2008
2009         return 0;
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2012
2013 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2014                            void *data, unsigned long len)
2015 {
2016         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2019
2020 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2021                            void *data, unsigned long len)
2022 {
2023         struct kvm_memslots *slots = kvm_memslots(kvm);
2024         int r;
2025
2026         BUG_ON(len > ghc->len);
2027
2028         if (slots->generation != ghc->generation)
2029                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2030
2031         if (unlikely(!ghc->memslot))
2032                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2033
2034         if (kvm_is_error_hva(ghc->hva))
2035                 return -EFAULT;
2036
2037         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2038         if (r)
2039                 return -EFAULT;
2040
2041         return 0;
2042 }
2043 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2044
2045 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2046 {
2047         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2048
2049         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2052
2053 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2054 {
2055         gfn_t gfn = gpa >> PAGE_SHIFT;
2056         int seg;
2057         int offset = offset_in_page(gpa);
2058         int ret;
2059
2060         while ((seg = next_segment(len, offset)) != 0) {
2061                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2062                 if (ret < 0)
2063                         return ret;
2064                 offset = 0;
2065                 len -= seg;
2066                 ++gfn;
2067         }
2068         return 0;
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2071
2072 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2073                                     gfn_t gfn)
2074 {
2075         if (memslot && memslot->dirty_bitmap) {
2076                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2077
2078                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2079         }
2080 }
2081
2082 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2083 {
2084         struct kvm_memory_slot *memslot;
2085
2086         memslot = gfn_to_memslot(kvm, gfn);
2087         mark_page_dirty_in_slot(memslot, gfn);
2088 }
2089 EXPORT_SYMBOL_GPL(mark_page_dirty);
2090
2091 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2092 {
2093         struct kvm_memory_slot *memslot;
2094
2095         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2096         mark_page_dirty_in_slot(memslot, gfn);
2097 }
2098 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2099
2100 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2101 {
2102         unsigned int old, val, grow;
2103
2104         old = val = vcpu->halt_poll_ns;
2105         grow = READ_ONCE(halt_poll_ns_grow);
2106         /* 10us base */
2107         if (val == 0 && grow)
2108                 val = 10000;
2109         else
2110                 val *= grow;
2111
2112         if (val > halt_poll_ns)
2113                 val = halt_poll_ns;
2114
2115         vcpu->halt_poll_ns = val;
2116         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2117 }
2118
2119 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2120 {
2121         unsigned int old, val, shrink;
2122
2123         old = val = vcpu->halt_poll_ns;
2124         shrink = READ_ONCE(halt_poll_ns_shrink);
2125         if (shrink == 0)
2126                 val = 0;
2127         else
2128                 val /= shrink;
2129
2130         vcpu->halt_poll_ns = val;
2131         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2132 }
2133
2134 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2135 {
2136         if (kvm_arch_vcpu_runnable(vcpu)) {
2137                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2138                 return -EINTR;
2139         }
2140         if (kvm_cpu_has_pending_timer(vcpu))
2141                 return -EINTR;
2142         if (signal_pending(current))
2143                 return -EINTR;
2144
2145         return 0;
2146 }
2147
2148 /*
2149  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2150  */
2151 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2152 {
2153         ktime_t start, cur;
2154         DECLARE_SWAITQUEUE(wait);
2155         bool waited = false;
2156         u64 block_ns;
2157
2158         start = cur = ktime_get();
2159         if (vcpu->halt_poll_ns) {
2160                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2161
2162                 ++vcpu->stat.halt_attempted_poll;
2163                 do {
2164                         /*
2165                          * This sets KVM_REQ_UNHALT if an interrupt
2166                          * arrives.
2167                          */
2168                         if (kvm_vcpu_check_block(vcpu) < 0) {
2169                                 ++vcpu->stat.halt_successful_poll;
2170                                 if (!vcpu_valid_wakeup(vcpu))
2171                                         ++vcpu->stat.halt_poll_invalid;
2172                                 goto out;
2173                         }
2174                         cur = ktime_get();
2175                 } while (single_task_running() && ktime_before(cur, stop));
2176         }
2177
2178         kvm_arch_vcpu_blocking(vcpu);
2179
2180         for (;;) {
2181                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2182
2183                 if (kvm_vcpu_check_block(vcpu) < 0)
2184                         break;
2185
2186                 waited = true;
2187                 schedule();
2188         }
2189
2190         finish_swait(&vcpu->wq, &wait);
2191         cur = ktime_get();
2192
2193         kvm_arch_vcpu_unblocking(vcpu);
2194 out:
2195         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2196
2197         if (!vcpu_valid_wakeup(vcpu))
2198                 shrink_halt_poll_ns(vcpu);
2199         else if (halt_poll_ns) {
2200                 if (block_ns <= vcpu->halt_poll_ns)
2201                         ;
2202                 /* we had a long block, shrink polling */
2203                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2204                         shrink_halt_poll_ns(vcpu);
2205                 /* we had a short halt and our poll time is too small */
2206                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2207                         block_ns < halt_poll_ns)
2208                         grow_halt_poll_ns(vcpu);
2209         } else
2210                 vcpu->halt_poll_ns = 0;
2211
2212         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2213         kvm_arch_vcpu_block_finish(vcpu);
2214 }
2215 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2216
2217 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2218 {
2219         struct swait_queue_head *wqp;
2220
2221         wqp = kvm_arch_vcpu_wq(vcpu);
2222         if (swait_active(wqp)) {
2223                 swake_up(wqp);
2224                 ++vcpu->stat.halt_wakeup;
2225                 return true;
2226         }
2227
2228         return false;
2229 }
2230 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2231
2232 /*
2233  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2234  */
2235 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2236 {
2237         int me;
2238         int cpu = vcpu->cpu;
2239
2240         if (kvm_vcpu_wake_up(vcpu))
2241                 return;
2242
2243         me = get_cpu();
2244         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2245                 if (kvm_arch_vcpu_should_kick(vcpu))
2246                         smp_send_reschedule(cpu);
2247         put_cpu();
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2250
2251 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2252 {
2253         struct pid *pid;
2254         struct task_struct *task = NULL;
2255         int ret = 0;
2256
2257         rcu_read_lock();
2258         pid = rcu_dereference(target->pid);
2259         if (pid)
2260                 task = get_pid_task(pid, PIDTYPE_PID);
2261         rcu_read_unlock();
2262         if (!task)
2263                 return ret;
2264         ret = yield_to(task, 1);
2265         put_task_struct(task);
2266
2267         return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2270
2271 /*
2272  * Helper that checks whether a VCPU is eligible for directed yield.
2273  * Most eligible candidate to yield is decided by following heuristics:
2274  *
2275  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2276  *  (preempted lock holder), indicated by @in_spin_loop.
2277  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2278  *
2279  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2280  *  chance last time (mostly it has become eligible now since we have probably
2281  *  yielded to lockholder in last iteration. This is done by toggling
2282  *  @dy_eligible each time a VCPU checked for eligibility.)
2283  *
2284  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2285  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2286  *  burning. Giving priority for a potential lock-holder increases lock
2287  *  progress.
2288  *
2289  *  Since algorithm is based on heuristics, accessing another VCPU data without
2290  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2291  *  and continue with next VCPU and so on.
2292  */
2293 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2294 {
2295 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2296         bool eligible;
2297
2298         eligible = !vcpu->spin_loop.in_spin_loop ||
2299                     vcpu->spin_loop.dy_eligible;
2300
2301         if (vcpu->spin_loop.in_spin_loop)
2302                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2303
2304         return eligible;
2305 #else
2306         return true;
2307 #endif
2308 }
2309
2310 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2311 {
2312         struct kvm *kvm = me->kvm;
2313         struct kvm_vcpu *vcpu;
2314         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2315         int yielded = 0;
2316         int try = 3;
2317         int pass;
2318         int i;
2319
2320         kvm_vcpu_set_in_spin_loop(me, true);
2321         /*
2322          * We boost the priority of a VCPU that is runnable but not
2323          * currently running, because it got preempted by something
2324          * else and called schedule in __vcpu_run.  Hopefully that
2325          * VCPU is holding the lock that we need and will release it.
2326          * We approximate round-robin by starting at the last boosted VCPU.
2327          */
2328         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2329                 kvm_for_each_vcpu(i, vcpu, kvm) {
2330                         if (!pass && i <= last_boosted_vcpu) {
2331                                 i = last_boosted_vcpu;
2332                                 continue;
2333                         } else if (pass && i > last_boosted_vcpu)
2334                                 break;
2335                         if (!ACCESS_ONCE(vcpu->preempted))
2336                                 continue;
2337                         if (vcpu == me)
2338                                 continue;
2339                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2340                                 continue;
2341                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2342                                 continue;
2343
2344                         yielded = kvm_vcpu_yield_to(vcpu);
2345                         if (yielded > 0) {
2346                                 kvm->last_boosted_vcpu = i;
2347                                 break;
2348                         } else if (yielded < 0) {
2349                                 try--;
2350                                 if (!try)
2351                                         break;
2352                         }
2353                 }
2354         }
2355         kvm_vcpu_set_in_spin_loop(me, false);
2356
2357         /* Ensure vcpu is not eligible during next spinloop */
2358         kvm_vcpu_set_dy_eligible(me, false);
2359 }
2360 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2361
2362 static int kvm_vcpu_fault(struct vm_fault *vmf)
2363 {
2364         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2365         struct page *page;
2366
2367         if (vmf->pgoff == 0)
2368                 page = virt_to_page(vcpu->run);
2369 #ifdef CONFIG_X86
2370         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2371                 page = virt_to_page(vcpu->arch.pio_data);
2372 #endif
2373 #ifdef CONFIG_KVM_MMIO
2374         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2375                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2376 #endif
2377         else
2378                 return kvm_arch_vcpu_fault(vcpu, vmf);
2379         get_page(page);
2380         vmf->page = page;
2381         return 0;
2382 }
2383
2384 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2385         .fault = kvm_vcpu_fault,
2386 };
2387
2388 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2389 {
2390         vma->vm_ops = &kvm_vcpu_vm_ops;
2391         return 0;
2392 }
2393
2394 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2395 {
2396         struct kvm_vcpu *vcpu = filp->private_data;
2397
2398         debugfs_remove_recursive(vcpu->debugfs_dentry);
2399         kvm_put_kvm(vcpu->kvm);
2400         return 0;
2401 }
2402
2403 static struct file_operations kvm_vcpu_fops = {
2404         .release        = kvm_vcpu_release,
2405         .unlocked_ioctl = kvm_vcpu_ioctl,
2406 #ifdef CONFIG_KVM_COMPAT
2407         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2408 #endif
2409         .mmap           = kvm_vcpu_mmap,
2410         .llseek         = noop_llseek,
2411 };
2412
2413 /*
2414  * Allocates an inode for the vcpu.
2415  */
2416 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2417 {
2418         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2419 }
2420
2421 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2422 {
2423         char dir_name[ITOA_MAX_LEN * 2];
2424         int ret;
2425
2426         if (!kvm_arch_has_vcpu_debugfs())
2427                 return 0;
2428
2429         if (!debugfs_initialized())
2430                 return 0;
2431
2432         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2433         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2434                                                                 vcpu->kvm->debugfs_dentry);
2435         if (!vcpu->debugfs_dentry)
2436                 return -ENOMEM;
2437
2438         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2439         if (ret < 0) {
2440                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2441                 return ret;
2442         }
2443
2444         return 0;
2445 }
2446
2447 /*
2448  * Creates some virtual cpus.  Good luck creating more than one.
2449  */
2450 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2451 {
2452         int r;
2453         struct kvm_vcpu *vcpu;
2454
2455         if (id >= KVM_MAX_VCPU_ID)
2456                 return -EINVAL;
2457
2458         mutex_lock(&kvm->lock);
2459         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2460                 mutex_unlock(&kvm->lock);
2461                 return -EINVAL;
2462         }
2463
2464         kvm->created_vcpus++;
2465         mutex_unlock(&kvm->lock);
2466
2467         vcpu = kvm_arch_vcpu_create(kvm, id);
2468         if (IS_ERR(vcpu)) {
2469                 r = PTR_ERR(vcpu);
2470                 goto vcpu_decrement;
2471         }
2472
2473         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2474
2475         r = kvm_arch_vcpu_setup(vcpu);
2476         if (r)
2477                 goto vcpu_destroy;
2478
2479         r = kvm_create_vcpu_debugfs(vcpu);
2480         if (r)
2481                 goto vcpu_destroy;
2482
2483         mutex_lock(&kvm->lock);
2484         if (kvm_get_vcpu_by_id(kvm, id)) {
2485                 r = -EEXIST;
2486                 goto unlock_vcpu_destroy;
2487         }
2488
2489         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2490
2491         /* Now it's all set up, let userspace reach it */
2492         kvm_get_kvm(kvm);
2493         r = create_vcpu_fd(vcpu);
2494         if (r < 0) {
2495                 kvm_put_kvm(kvm);
2496                 goto unlock_vcpu_destroy;
2497         }
2498
2499         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2500
2501         /*
2502          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2503          * before kvm->online_vcpu's incremented value.
2504          */
2505         smp_wmb();
2506         atomic_inc(&kvm->online_vcpus);
2507
2508         mutex_unlock(&kvm->lock);
2509         kvm_arch_vcpu_postcreate(vcpu);
2510         return r;
2511
2512 unlock_vcpu_destroy:
2513         mutex_unlock(&kvm->lock);
2514         debugfs_remove_recursive(vcpu->debugfs_dentry);
2515 vcpu_destroy:
2516         kvm_arch_vcpu_destroy(vcpu);
2517 vcpu_decrement:
2518         mutex_lock(&kvm->lock);
2519         kvm->created_vcpus--;
2520         mutex_unlock(&kvm->lock);
2521         return r;
2522 }
2523
2524 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2525 {
2526         if (sigset) {
2527                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2528                 vcpu->sigset_active = 1;
2529                 vcpu->sigset = *sigset;
2530         } else
2531                 vcpu->sigset_active = 0;
2532         return 0;
2533 }
2534
2535 static long kvm_vcpu_ioctl(struct file *filp,
2536                            unsigned int ioctl, unsigned long arg)
2537 {
2538         struct kvm_vcpu *vcpu = filp->private_data;
2539         void __user *argp = (void __user *)arg;
2540         int r;
2541         struct kvm_fpu *fpu = NULL;
2542         struct kvm_sregs *kvm_sregs = NULL;
2543
2544         if (vcpu->kvm->mm != current->mm)
2545                 return -EIO;
2546
2547         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2548                 return -EINVAL;
2549
2550 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2551         /*
2552          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2553          * so vcpu_load() would break it.
2554          */
2555         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2556                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2557 #endif
2558
2559
2560         r = vcpu_load(vcpu);
2561         if (r)
2562                 return r;
2563         switch (ioctl) {
2564         case KVM_RUN:
2565                 r = -EINVAL;
2566                 if (arg)
2567                         goto out;
2568                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2569                         /* The thread running this VCPU changed. */
2570                         struct pid *oldpid = vcpu->pid;
2571                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2572
2573                         rcu_assign_pointer(vcpu->pid, newpid);
2574                         if (oldpid)
2575                                 synchronize_rcu();
2576                         put_pid(oldpid);
2577                 }
2578                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2579                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2580                 break;
2581         case KVM_GET_REGS: {
2582                 struct kvm_regs *kvm_regs;
2583
2584                 r = -ENOMEM;
2585                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2586                 if (!kvm_regs)
2587                         goto out;
2588                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2589                 if (r)
2590                         goto out_free1;
2591                 r = -EFAULT;
2592                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2593                         goto out_free1;
2594                 r = 0;
2595 out_free1:
2596                 kfree(kvm_regs);
2597                 break;
2598         }
2599         case KVM_SET_REGS: {
2600                 struct kvm_regs *kvm_regs;
2601
2602                 r = -ENOMEM;
2603                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2604                 if (IS_ERR(kvm_regs)) {
2605                         r = PTR_ERR(kvm_regs);
2606                         goto out;
2607                 }
2608                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2609                 kfree(kvm_regs);
2610                 break;
2611         }
2612         case KVM_GET_SREGS: {
2613                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2614                 r = -ENOMEM;
2615                 if (!kvm_sregs)
2616                         goto out;
2617                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2618                 if (r)
2619                         goto out;
2620                 r = -EFAULT;
2621                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2622                         goto out;
2623                 r = 0;
2624                 break;
2625         }
2626         case KVM_SET_SREGS: {
2627                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2628                 if (IS_ERR(kvm_sregs)) {
2629                         r = PTR_ERR(kvm_sregs);
2630                         kvm_sregs = NULL;
2631                         goto out;
2632                 }
2633                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2634                 break;
2635         }
2636         case KVM_GET_MP_STATE: {
2637                 struct kvm_mp_state mp_state;
2638
2639                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2640                 if (r)
2641                         goto out;
2642                 r = -EFAULT;
2643                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2644                         goto out;
2645                 r = 0;
2646                 break;
2647         }
2648         case KVM_SET_MP_STATE: {
2649                 struct kvm_mp_state mp_state;
2650
2651                 r = -EFAULT;
2652                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2653                         goto out;
2654                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2655                 break;
2656         }
2657         case KVM_TRANSLATE: {
2658                 struct kvm_translation tr;
2659
2660                 r = -EFAULT;
2661                 if (copy_from_user(&tr, argp, sizeof(tr)))
2662                         goto out;
2663                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2664                 if (r)
2665                         goto out;
2666                 r = -EFAULT;
2667                 if (copy_to_user(argp, &tr, sizeof(tr)))
2668                         goto out;
2669                 r = 0;
2670                 break;
2671         }
2672         case KVM_SET_GUEST_DEBUG: {
2673                 struct kvm_guest_debug dbg;
2674
2675                 r = -EFAULT;
2676                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2677                         goto out;
2678                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2679                 break;
2680         }
2681         case KVM_SET_SIGNAL_MASK: {
2682                 struct kvm_signal_mask __user *sigmask_arg = argp;
2683                 struct kvm_signal_mask kvm_sigmask;
2684                 sigset_t sigset, *p;
2685
2686                 p = NULL;
2687                 if (argp) {
2688                         r = -EFAULT;
2689                         if (copy_from_user(&kvm_sigmask, argp,
2690                                            sizeof(kvm_sigmask)))
2691                                 goto out;
2692                         r = -EINVAL;
2693                         if (kvm_sigmask.len != sizeof(sigset))
2694                                 goto out;
2695                         r = -EFAULT;
2696                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2697                                            sizeof(sigset)))
2698                                 goto out;
2699                         p = &sigset;
2700                 }
2701                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2702                 break;
2703         }
2704         case KVM_GET_FPU: {
2705                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2706                 r = -ENOMEM;
2707                 if (!fpu)
2708                         goto out;
2709                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2710                 if (r)
2711                         goto out;
2712                 r = -EFAULT;
2713                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2714                         goto out;
2715                 r = 0;
2716                 break;
2717         }
2718         case KVM_SET_FPU: {
2719                 fpu = memdup_user(argp, sizeof(*fpu));
2720                 if (IS_ERR(fpu)) {
2721                         r = PTR_ERR(fpu);
2722                         fpu = NULL;
2723                         goto out;
2724                 }
2725                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2726                 break;
2727         }
2728         default:
2729                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2730         }
2731 out:
2732         vcpu_put(vcpu);
2733         kfree(fpu);
2734         kfree(kvm_sregs);
2735         return r;
2736 }
2737
2738 #ifdef CONFIG_KVM_COMPAT
2739 static long kvm_vcpu_compat_ioctl(struct file *filp,
2740                                   unsigned int ioctl, unsigned long arg)
2741 {
2742         struct kvm_vcpu *vcpu = filp->private_data;
2743         void __user *argp = compat_ptr(arg);
2744         int r;
2745
2746         if (vcpu->kvm->mm != current->mm)
2747                 return -EIO;
2748
2749         switch (ioctl) {
2750         case KVM_SET_SIGNAL_MASK: {
2751                 struct kvm_signal_mask __user *sigmask_arg = argp;
2752                 struct kvm_signal_mask kvm_sigmask;
2753                 compat_sigset_t csigset;
2754                 sigset_t sigset;
2755
2756                 if (argp) {
2757                         r = -EFAULT;
2758                         if (copy_from_user(&kvm_sigmask, argp,
2759                                            sizeof(kvm_sigmask)))
2760                                 goto out;
2761                         r = -EINVAL;
2762                         if (kvm_sigmask.len != sizeof(csigset))
2763                                 goto out;
2764                         r = -EFAULT;
2765                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2766                                            sizeof(csigset)))
2767                                 goto out;
2768                         sigset_from_compat(&sigset, &csigset);
2769                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2770                 } else
2771                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2772                 break;
2773         }
2774         default:
2775                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2776         }
2777
2778 out:
2779         return r;
2780 }
2781 #endif
2782
2783 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2784                                  int (*accessor)(struct kvm_device *dev,
2785                                                  struct kvm_device_attr *attr),
2786                                  unsigned long arg)
2787 {
2788         struct kvm_device_attr attr;
2789
2790         if (!accessor)
2791                 return -EPERM;
2792
2793         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2794                 return -EFAULT;
2795
2796         return accessor(dev, &attr);
2797 }
2798
2799 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2800                              unsigned long arg)
2801 {
2802         struct kvm_device *dev = filp->private_data;
2803
2804         switch (ioctl) {
2805         case KVM_SET_DEVICE_ATTR:
2806                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2807         case KVM_GET_DEVICE_ATTR:
2808                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2809         case KVM_HAS_DEVICE_ATTR:
2810                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2811         default:
2812                 if (dev->ops->ioctl)
2813                         return dev->ops->ioctl(dev, ioctl, arg);
2814
2815                 return -ENOTTY;
2816         }
2817 }
2818
2819 static int kvm_device_release(struct inode *inode, struct file *filp)
2820 {
2821         struct kvm_device *dev = filp->private_data;
2822         struct kvm *kvm = dev->kvm;
2823
2824         kvm_put_kvm(kvm);
2825         return 0;
2826 }
2827
2828 static const struct file_operations kvm_device_fops = {
2829         .unlocked_ioctl = kvm_device_ioctl,
2830 #ifdef CONFIG_KVM_COMPAT
2831         .compat_ioctl = kvm_device_ioctl,
2832 #endif
2833         .release = kvm_device_release,
2834 };
2835
2836 struct kvm_device *kvm_device_from_filp(struct file *filp)
2837 {
2838         if (filp->f_op != &kvm_device_fops)
2839                 return NULL;
2840
2841         return filp->private_data;
2842 }
2843
2844 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2845 #ifdef CONFIG_KVM_MPIC
2846         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2847         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2848 #endif
2849
2850 #ifdef CONFIG_KVM_XICS
2851         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2852 #endif
2853 };
2854
2855 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2856 {
2857         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2858                 return -ENOSPC;
2859
2860         if (kvm_device_ops_table[type] != NULL)
2861                 return -EEXIST;
2862
2863         kvm_device_ops_table[type] = ops;
2864         return 0;
2865 }
2866
2867 void kvm_unregister_device_ops(u32 type)
2868 {
2869         if (kvm_device_ops_table[type] != NULL)
2870                 kvm_device_ops_table[type] = NULL;
2871 }
2872
2873 static int kvm_ioctl_create_device(struct kvm *kvm,
2874                                    struct kvm_create_device *cd)
2875 {
2876         struct kvm_device_ops *ops = NULL;
2877         struct kvm_device *dev;
2878         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2879         int ret;
2880
2881         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2882                 return -ENODEV;
2883
2884         ops = kvm_device_ops_table[cd->type];
2885         if (ops == NULL)
2886                 return -ENODEV;
2887
2888         if (test)
2889                 return 0;
2890
2891         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2892         if (!dev)
2893                 return -ENOMEM;
2894
2895         dev->ops = ops;
2896         dev->kvm = kvm;
2897
2898         mutex_lock(&kvm->lock);
2899         ret = ops->create(dev, cd->type);
2900         if (ret < 0) {
2901                 mutex_unlock(&kvm->lock);
2902                 kfree(dev);
2903                 return ret;
2904         }
2905         list_add(&dev->vm_node, &kvm->devices);
2906         mutex_unlock(&kvm->lock);
2907
2908         if (ops->init)
2909                 ops->init(dev);
2910
2911         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2912         if (ret < 0) {
2913                 mutex_lock(&kvm->lock);
2914                 list_del(&dev->vm_node);
2915                 mutex_unlock(&kvm->lock);
2916                 ops->destroy(dev);
2917                 return ret;
2918         }
2919
2920         kvm_get_kvm(kvm);
2921         cd->fd = ret;
2922         return 0;
2923 }
2924
2925 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2926 {
2927         switch (arg) {
2928         case KVM_CAP_USER_MEMORY:
2929         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2930         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2931         case KVM_CAP_INTERNAL_ERROR_DATA:
2932 #ifdef CONFIG_HAVE_KVM_MSI
2933         case KVM_CAP_SIGNAL_MSI:
2934 #endif
2935 #ifdef CONFIG_HAVE_KVM_IRQFD
2936         case KVM_CAP_IRQFD:
2937         case KVM_CAP_IRQFD_RESAMPLE:
2938 #endif
2939         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2940         case KVM_CAP_CHECK_EXTENSION_VM:
2941                 return 1;
2942 #ifdef CONFIG_KVM_MMIO
2943         case KVM_CAP_COALESCED_MMIO:
2944                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2945 #endif
2946 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2947         case KVM_CAP_IRQ_ROUTING:
2948                 return KVM_MAX_IRQ_ROUTES;
2949 #endif
2950 #if KVM_ADDRESS_SPACE_NUM > 1
2951         case KVM_CAP_MULTI_ADDRESS_SPACE:
2952                 return KVM_ADDRESS_SPACE_NUM;
2953 #endif
2954         case KVM_CAP_MAX_VCPU_ID:
2955                 return KVM_MAX_VCPU_ID;
2956         default:
2957                 break;
2958         }
2959         return kvm_vm_ioctl_check_extension(kvm, arg);
2960 }
2961
2962 static long kvm_vm_ioctl(struct file *filp,
2963                            unsigned int ioctl, unsigned long arg)
2964 {
2965         struct kvm *kvm = filp->private_data;
2966         void __user *argp = (void __user *)arg;
2967         int r;
2968
2969         if (kvm->mm != current->mm)
2970                 return -EIO;
2971         switch (ioctl) {
2972         case KVM_CREATE_VCPU:
2973                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2974                 break;
2975         case KVM_SET_USER_MEMORY_REGION: {
2976                 struct kvm_userspace_memory_region kvm_userspace_mem;
2977
2978                 r = -EFAULT;
2979                 if (copy_from_user(&kvm_userspace_mem, argp,
2980                                                 sizeof(kvm_userspace_mem)))
2981                         goto out;
2982
2983                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2984                 break;
2985         }
2986         case KVM_GET_DIRTY_LOG: {
2987                 struct kvm_dirty_log log;
2988
2989                 r = -EFAULT;
2990                 if (copy_from_user(&log, argp, sizeof(log)))
2991                         goto out;
2992                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2993                 break;
2994         }
2995 #ifdef CONFIG_KVM_MMIO
2996         case KVM_REGISTER_COALESCED_MMIO: {
2997                 struct kvm_coalesced_mmio_zone zone;
2998
2999                 r = -EFAULT;
3000                 if (copy_from_user(&zone, argp, sizeof(zone)))
3001                         goto out;
3002                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3003                 break;
3004         }
3005         case KVM_UNREGISTER_COALESCED_MMIO: {
3006                 struct kvm_coalesced_mmio_zone zone;
3007
3008                 r = -EFAULT;
3009                 if (copy_from_user(&zone, argp, sizeof(zone)))
3010                         goto out;
3011                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3012                 break;
3013         }
3014 #endif
3015         case KVM_IRQFD: {
3016                 struct kvm_irqfd data;
3017
3018                 r = -EFAULT;
3019                 if (copy_from_user(&data, argp, sizeof(data)))
3020                         goto out;
3021                 r = kvm_irqfd(kvm, &data);
3022                 break;
3023         }
3024         case KVM_IOEVENTFD: {
3025                 struct kvm_ioeventfd data;
3026
3027                 r = -EFAULT;
3028                 if (copy_from_user(&data, argp, sizeof(data)))
3029                         goto out;
3030                 r = kvm_ioeventfd(kvm, &data);
3031                 break;
3032         }
3033 #ifdef CONFIG_HAVE_KVM_MSI
3034         case KVM_SIGNAL_MSI: {
3035                 struct kvm_msi msi;
3036
3037                 r = -EFAULT;
3038                 if (copy_from_user(&msi, argp, sizeof(msi)))
3039                         goto out;
3040                 r = kvm_send_userspace_msi(kvm, &msi);
3041                 break;
3042         }
3043 #endif
3044 #ifdef __KVM_HAVE_IRQ_LINE
3045         case KVM_IRQ_LINE_STATUS:
3046         case KVM_IRQ_LINE: {
3047                 struct kvm_irq_level irq_event;
3048
3049                 r = -EFAULT;
3050                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3051                         goto out;
3052
3053                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3054                                         ioctl == KVM_IRQ_LINE_STATUS);
3055                 if (r)
3056                         goto out;
3057
3058                 r = -EFAULT;
3059                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3060                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3061                                 goto out;
3062                 }
3063
3064                 r = 0;
3065                 break;
3066         }
3067 #endif
3068 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3069         case KVM_SET_GSI_ROUTING: {
3070                 struct kvm_irq_routing routing;
3071                 struct kvm_irq_routing __user *urouting;
3072                 struct kvm_irq_routing_entry *entries = NULL;
3073
3074                 r = -EFAULT;
3075                 if (copy_from_user(&routing, argp, sizeof(routing)))
3076                         goto out;
3077                 r = -EINVAL;
3078                 if (!kvm_arch_can_set_irq_routing(kvm))
3079                         goto out;
3080                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3081                         goto out;
3082                 if (routing.flags)
3083                         goto out;
3084                 if (routing.nr) {
3085                         r = -ENOMEM;
3086                         entries = vmalloc(routing.nr * sizeof(*entries));
3087                         if (!entries)
3088                                 goto out;
3089                         r = -EFAULT;
3090                         urouting = argp;
3091                         if (copy_from_user(entries, urouting->entries,
3092                                            routing.nr * sizeof(*entries)))
3093                                 goto out_free_irq_routing;
3094                 }
3095                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3096                                         routing.flags);
3097 out_free_irq_routing:
3098                 vfree(entries);
3099                 break;
3100         }
3101 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3102         case KVM_CREATE_DEVICE: {
3103                 struct kvm_create_device cd;
3104
3105                 r = -EFAULT;
3106                 if (copy_from_user(&cd, argp, sizeof(cd)))
3107                         goto out;
3108
3109                 r = kvm_ioctl_create_device(kvm, &cd);
3110                 if (r)
3111                         goto out;
3112
3113                 r = -EFAULT;
3114                 if (copy_to_user(argp, &cd, sizeof(cd)))
3115                         goto out;
3116
3117                 r = 0;
3118                 break;
3119         }
3120         case KVM_CHECK_EXTENSION:
3121                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3122                 break;
3123         default:
3124                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3125         }
3126 out:
3127         return r;
3128 }
3129
3130 #ifdef CONFIG_KVM_COMPAT
3131 struct compat_kvm_dirty_log {
3132         __u32 slot;
3133         __u32 padding1;
3134         union {
3135                 compat_uptr_t dirty_bitmap; /* one bit per page */
3136                 __u64 padding2;
3137         };
3138 };
3139
3140 static long kvm_vm_compat_ioctl(struct file *filp,
3141                            unsigned int ioctl, unsigned long arg)
3142 {
3143         struct kvm *kvm = filp->private_data;
3144         int r;
3145
3146         if (kvm->mm != current->mm)
3147                 return -EIO;
3148         switch (ioctl) {
3149         case KVM_GET_DIRTY_LOG: {
3150                 struct compat_kvm_dirty_log compat_log;
3151                 struct kvm_dirty_log log;
3152
3153                 if (copy_from_user(&compat_log, (void __user *)arg,
3154                                    sizeof(compat_log)))
3155                         return -EFAULT;
3156                 log.slot         = compat_log.slot;
3157                 log.padding1     = compat_log.padding1;
3158                 log.padding2     = compat_log.padding2;
3159                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3160
3161                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3162                 break;
3163         }
3164         default:
3165                 r = kvm_vm_ioctl(filp, ioctl, arg);
3166         }
3167         return r;
3168 }
3169 #endif
3170
3171 static struct file_operations kvm_vm_fops = {
3172         .release        = kvm_vm_release,
3173         .unlocked_ioctl = kvm_vm_ioctl,
3174 #ifdef CONFIG_KVM_COMPAT
3175         .compat_ioctl   = kvm_vm_compat_ioctl,
3176 #endif
3177         .llseek         = noop_llseek,
3178 };
3179
3180 static int kvm_dev_ioctl_create_vm(unsigned long type)
3181 {
3182         int r;
3183         struct kvm *kvm;
3184         struct file *file;
3185
3186         kvm = kvm_create_vm(type);
3187         if (IS_ERR(kvm))
3188                 return PTR_ERR(kvm);
3189 #ifdef CONFIG_KVM_MMIO
3190         r = kvm_coalesced_mmio_init(kvm);
3191         if (r < 0) {
3192                 kvm_put_kvm(kvm);
3193                 return r;
3194         }
3195 #endif
3196         r = get_unused_fd_flags(O_CLOEXEC);
3197         if (r < 0) {
3198                 kvm_put_kvm(kvm);
3199                 return r;
3200         }
3201         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3202         if (IS_ERR(file)) {
3203                 put_unused_fd(r);
3204                 kvm_put_kvm(kvm);
3205                 return PTR_ERR(file);
3206         }
3207
3208         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3209                 put_unused_fd(r);
3210                 fput(file);
3211                 return -ENOMEM;
3212         }
3213
3214         fd_install(r, file);
3215         return r;
3216 }
3217
3218 static long kvm_dev_ioctl(struct file *filp,
3219                           unsigned int ioctl, unsigned long arg)
3220 {
3221         long r = -EINVAL;
3222
3223         switch (ioctl) {
3224         case KVM_GET_API_VERSION:
3225                 if (arg)
3226                         goto out;
3227                 r = KVM_API_VERSION;
3228                 break;
3229         case KVM_CREATE_VM:
3230                 r = kvm_dev_ioctl_create_vm(arg);
3231                 break;
3232         case KVM_CHECK_EXTENSION:
3233                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3234                 break;
3235         case KVM_GET_VCPU_MMAP_SIZE:
3236                 if (arg)
3237                         goto out;
3238                 r = PAGE_SIZE;     /* struct kvm_run */
3239 #ifdef CONFIG_X86
3240                 r += PAGE_SIZE;    /* pio data page */
3241 #endif
3242 #ifdef CONFIG_KVM_MMIO
3243                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3244 #endif
3245                 break;
3246         case KVM_TRACE_ENABLE:
3247         case KVM_TRACE_PAUSE:
3248         case KVM_TRACE_DISABLE:
3249                 r = -EOPNOTSUPP;
3250                 break;
3251         default:
3252                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3253         }
3254 out:
3255         return r;
3256 }
3257
3258 static struct file_operations kvm_chardev_ops = {
3259         .unlocked_ioctl = kvm_dev_ioctl,
3260         .compat_ioctl   = kvm_dev_ioctl,
3261         .llseek         = noop_llseek,
3262 };
3263
3264 static struct miscdevice kvm_dev = {
3265         KVM_MINOR,
3266         "kvm",
3267         &kvm_chardev_ops,
3268 };
3269
3270 static void hardware_enable_nolock(void *junk)
3271 {
3272         int cpu = raw_smp_processor_id();
3273         int r;
3274
3275         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3276                 return;
3277
3278         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3279
3280         r = kvm_arch_hardware_enable();
3281
3282         if (r) {
3283                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3284                 atomic_inc(&hardware_enable_failed);
3285                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3286         }
3287 }
3288
3289 static int kvm_starting_cpu(unsigned int cpu)
3290 {
3291         raw_spin_lock(&kvm_count_lock);
3292         if (kvm_usage_count)
3293                 hardware_enable_nolock(NULL);
3294         raw_spin_unlock(&kvm_count_lock);
3295         return 0;
3296 }
3297
3298 static void hardware_disable_nolock(void *junk)
3299 {
3300         int cpu = raw_smp_processor_id();
3301
3302         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3303                 return;
3304         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3305         kvm_arch_hardware_disable();
3306 }
3307
3308 static int kvm_dying_cpu(unsigned int cpu)
3309 {
3310         raw_spin_lock(&kvm_count_lock);
3311         if (kvm_usage_count)
3312                 hardware_disable_nolock(NULL);
3313         raw_spin_unlock(&kvm_count_lock);
3314         return 0;
3315 }
3316
3317 static void hardware_disable_all_nolock(void)
3318 {
3319         BUG_ON(!kvm_usage_count);
3320
3321         kvm_usage_count--;
3322         if (!kvm_usage_count)
3323                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3324 }
3325
3326 static void hardware_disable_all(void)
3327 {
3328         raw_spin_lock(&kvm_count_lock);
3329         hardware_disable_all_nolock();
3330         raw_spin_unlock(&kvm_count_lock);
3331 }
3332
3333 static int hardware_enable_all(void)
3334 {
3335         int r = 0;
3336
3337         raw_spin_lock(&kvm_count_lock);
3338
3339         kvm_usage_count++;
3340         if (kvm_usage_count == 1) {
3341                 atomic_set(&hardware_enable_failed, 0);
3342                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3343
3344                 if (atomic_read(&hardware_enable_failed)) {
3345                         hardware_disable_all_nolock();
3346                         r = -EBUSY;
3347                 }
3348         }
3349
3350         raw_spin_unlock(&kvm_count_lock);
3351
3352         return r;
3353 }
3354
3355 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3356                       void *v)
3357 {
3358         /*
3359          * Some (well, at least mine) BIOSes hang on reboot if
3360          * in vmx root mode.
3361          *
3362          * And Intel TXT required VMX off for all cpu when system shutdown.
3363          */
3364         pr_info("kvm: exiting hardware virtualization\n");
3365         kvm_rebooting = true;
3366         on_each_cpu(hardware_disable_nolock, NULL, 1);
3367         return NOTIFY_OK;
3368 }
3369
3370 static struct notifier_block kvm_reboot_notifier = {
3371         .notifier_call = kvm_reboot,
3372         .priority = 0,
3373 };
3374
3375 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3376 {
3377         int i;
3378
3379         for (i = 0; i < bus->dev_count; i++) {
3380                 struct kvm_io_device *pos = bus->range[i].dev;
3381
3382                 kvm_iodevice_destructor(pos);
3383         }
3384         kfree(bus);
3385 }
3386
3387 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3388                                  const struct kvm_io_range *r2)
3389 {
3390         gpa_t addr1 = r1->addr;
3391         gpa_t addr2 = r2->addr;
3392
3393         if (addr1 < addr2)
3394                 return -1;
3395
3396         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3397          * accept any overlapping write.  Any order is acceptable for
3398          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3399          * we process all of them.
3400          */
3401         if (r2->len) {
3402                 addr1 += r1->len;
3403                 addr2 += r2->len;
3404         }
3405
3406         if (addr1 > addr2)
3407                 return 1;
3408
3409         return 0;
3410 }
3411
3412 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3413 {
3414         return kvm_io_bus_cmp(p1, p2);
3415 }
3416
3417 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3418                           gpa_t addr, int len)
3419 {
3420         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3421                 .addr = addr,
3422                 .len = len,
3423                 .dev = dev,
3424         };
3425
3426         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3427                 kvm_io_bus_sort_cmp, NULL);
3428
3429         return 0;
3430 }
3431
3432 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3433                              gpa_t addr, int len)
3434 {
3435         struct kvm_io_range *range, key;
3436         int off;
3437
3438         key = (struct kvm_io_range) {
3439                 .addr = addr,
3440                 .len = len,
3441         };
3442
3443         range = bsearch(&key, bus->range, bus->dev_count,
3444                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3445         if (range == NULL)
3446                 return -ENOENT;
3447
3448         off = range - bus->range;
3449
3450         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3451                 off--;
3452
3453         return off;
3454 }
3455
3456 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3457                               struct kvm_io_range *range, const void *val)
3458 {
3459         int idx;
3460
3461         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3462         if (idx < 0)
3463                 return -EOPNOTSUPP;
3464
3465         while (idx < bus->dev_count &&
3466                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3467                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3468                                         range->len, val))
3469                         return idx;
3470                 idx++;
3471         }
3472
3473         return -EOPNOTSUPP;
3474 }
3475
3476 /* kvm_io_bus_write - called under kvm->slots_lock */
3477 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3478                      int len, const void *val)
3479 {
3480         struct kvm_io_bus *bus;
3481         struct kvm_io_range range;
3482         int r;
3483
3484         range = (struct kvm_io_range) {
3485                 .addr = addr,
3486                 .len = len,
3487         };
3488
3489         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3490         if (!bus)
3491                 return -ENOMEM;
3492         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3493         return r < 0 ? r : 0;
3494 }
3495
3496 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3497 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3498                             gpa_t addr, int len, const void *val, long cookie)
3499 {
3500         struct kvm_io_bus *bus;
3501         struct kvm_io_range range;
3502
3503         range = (struct kvm_io_range) {
3504                 .addr = addr,
3505                 .len = len,
3506         };
3507
3508         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3509         if (!bus)
3510                 return -ENOMEM;
3511
3512         /* First try the device referenced by cookie. */
3513         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3514             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3515                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3516                                         val))
3517                         return cookie;
3518
3519         /*
3520          * cookie contained garbage; fall back to search and return the
3521          * correct cookie value.
3522          */
3523         return __kvm_io_bus_write(vcpu, bus, &range, val);
3524 }
3525
3526 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3527                              struct kvm_io_range *range, void *val)
3528 {
3529         int idx;
3530
3531         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3532         if (idx < 0)
3533                 return -EOPNOTSUPP;
3534
3535         while (idx < bus->dev_count &&
3536                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3537                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3538                                        range->len, val))
3539                         return idx;
3540                 idx++;
3541         }
3542
3543         return -EOPNOTSUPP;
3544 }
3545 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3546
3547 /* kvm_io_bus_read - called under kvm->slots_lock */
3548 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3549                     int len, void *val)
3550 {
3551         struct kvm_io_bus *bus;
3552         struct kvm_io_range range;
3553         int r;
3554
3555         range = (struct kvm_io_range) {
3556                 .addr = addr,
3557                 .len = len,
3558         };
3559
3560         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3561         if (!bus)
3562                 return -ENOMEM;
3563         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3564         return r < 0 ? r : 0;
3565 }
3566
3567
3568 /* Caller must hold slots_lock. */
3569 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3570                             int len, struct kvm_io_device *dev)
3571 {
3572         struct kvm_io_bus *new_bus, *bus;
3573
3574         bus = kvm->buses[bus_idx];
3575         if (!bus)
3576                 return -ENOMEM;
3577
3578         /* exclude ioeventfd which is limited by maximum fd */
3579         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3580                 return -ENOSPC;
3581
3582         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3583                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3584         if (!new_bus)
3585                 return -ENOMEM;
3586         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3587                sizeof(struct kvm_io_range)));
3588         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3589         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3590         synchronize_srcu_expedited(&kvm->srcu);
3591         kfree(bus);
3592
3593         return 0;
3594 }
3595
3596 /* Caller must hold slots_lock. */
3597 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3598                                struct kvm_io_device *dev)
3599 {
3600         int i;
3601         struct kvm_io_bus *new_bus, *bus;
3602
3603         bus = kvm->buses[bus_idx];
3604         if (!bus)
3605                 return;
3606
3607         for (i = 0; i < bus->dev_count; i++)
3608                 if (bus->range[i].dev == dev) {
3609                         break;
3610                 }
3611
3612         if (i == bus->dev_count)
3613                 return;
3614
3615         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3616                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3617         if (!new_bus)  {
3618                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3619                 goto broken;
3620         }
3621
3622         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3623         new_bus->dev_count--;
3624         memcpy(new_bus->range + i, bus->range + i + 1,
3625                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3626
3627 broken:
3628         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3629         synchronize_srcu_expedited(&kvm->srcu);
3630         kfree(bus);
3631         return;
3632 }
3633
3634 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3635                                          gpa_t addr)
3636 {
3637         struct kvm_io_bus *bus;
3638         int dev_idx, srcu_idx;
3639         struct kvm_io_device *iodev = NULL;
3640
3641         srcu_idx = srcu_read_lock(&kvm->srcu);
3642
3643         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3644         if (!bus)
3645                 goto out_unlock;
3646
3647         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3648         if (dev_idx < 0)
3649                 goto out_unlock;
3650
3651         iodev = bus->range[dev_idx].dev;
3652
3653 out_unlock:
3654         srcu_read_unlock(&kvm->srcu, srcu_idx);
3655
3656         return iodev;
3657 }
3658 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3659
3660 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3661                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3662                            const char *fmt)
3663 {
3664         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3665                                           inode->i_private;
3666
3667         /* The debugfs files are a reference to the kvm struct which
3668          * is still valid when kvm_destroy_vm is called.
3669          * To avoid the race between open and the removal of the debugfs
3670          * directory we test against the users count.
3671          */
3672         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3673                 return -ENOENT;
3674
3675         if (simple_attr_open(inode, file, get, set, fmt)) {
3676                 kvm_put_kvm(stat_data->kvm);
3677                 return -ENOMEM;
3678         }
3679
3680         return 0;
3681 }
3682
3683 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3684 {
3685         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3686                                           inode->i_private;
3687
3688         simple_attr_release(inode, file);
3689         kvm_put_kvm(stat_data->kvm);
3690
3691         return 0;
3692 }
3693
3694 static int vm_stat_get_per_vm(void *data, u64 *val)
3695 {
3696         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3697
3698         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3699
3700         return 0;
3701 }
3702
3703 static int vm_stat_clear_per_vm(void *data, u64 val)
3704 {
3705         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3706
3707         if (val)
3708                 return -EINVAL;
3709
3710         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3711
3712         return 0;
3713 }
3714
3715 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3716 {
3717         __simple_attr_check_format("%llu\n", 0ull);
3718         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3719                                 vm_stat_clear_per_vm, "%llu\n");
3720 }
3721
3722 static const struct file_operations vm_stat_get_per_vm_fops = {
3723         .owner   = THIS_MODULE,
3724         .open    = vm_stat_get_per_vm_open,
3725         .release = kvm_debugfs_release,
3726         .read    = simple_attr_read,
3727         .write   = simple_attr_write,
3728         .llseek  = generic_file_llseek,
3729 };
3730
3731 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3732 {
3733         int i;
3734         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3735         struct kvm_vcpu *vcpu;
3736
3737         *val = 0;
3738
3739         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3740                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3741
3742         return 0;
3743 }
3744
3745 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3746 {
3747         int i;
3748         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3749         struct kvm_vcpu *vcpu;
3750
3751         if (val)
3752                 return -EINVAL;
3753
3754         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3755                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3756
3757         return 0;
3758 }
3759
3760 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3761 {
3762         __simple_attr_check_format("%llu\n", 0ull);
3763         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3764                                  vcpu_stat_clear_per_vm, "%llu\n");
3765 }
3766
3767 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3768         .owner   = THIS_MODULE,
3769         .open    = vcpu_stat_get_per_vm_open,
3770         .release = kvm_debugfs_release,
3771         .read    = simple_attr_read,
3772         .write   = simple_attr_write,
3773         .llseek  = generic_file_llseek,
3774 };
3775
3776 static const struct file_operations *stat_fops_per_vm[] = {
3777         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3778         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3779 };
3780
3781 static int vm_stat_get(void *_offset, u64 *val)
3782 {
3783         unsigned offset = (long)_offset;
3784         struct kvm *kvm;
3785         struct kvm_stat_data stat_tmp = {.offset = offset};
3786         u64 tmp_val;
3787
3788         *val = 0;
3789         spin_lock(&kvm_lock);
3790         list_for_each_entry(kvm, &vm_list, vm_list) {
3791                 stat_tmp.kvm = kvm;
3792                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3793                 *val += tmp_val;
3794         }
3795         spin_unlock(&kvm_lock);
3796         return 0;
3797 }
3798
3799 static int vm_stat_clear(void *_offset, u64 val)
3800 {
3801         unsigned offset = (long)_offset;
3802         struct kvm *kvm;
3803         struct kvm_stat_data stat_tmp = {.offset = offset};
3804
3805         if (val)
3806                 return -EINVAL;
3807
3808         spin_lock(&kvm_lock);
3809         list_for_each_entry(kvm, &vm_list, vm_list) {
3810                 stat_tmp.kvm = kvm;
3811                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3812         }
3813         spin_unlock(&kvm_lock);
3814
3815         return 0;
3816 }
3817
3818 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3819
3820 static int vcpu_stat_get(void *_offset, u64 *val)
3821 {
3822         unsigned offset = (long)_offset;
3823         struct kvm *kvm;
3824         struct kvm_stat_data stat_tmp = {.offset = offset};
3825         u64 tmp_val;
3826
3827         *val = 0;
3828         spin_lock(&kvm_lock);
3829         list_for_each_entry(kvm, &vm_list, vm_list) {
3830                 stat_tmp.kvm = kvm;
3831                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3832                 *val += tmp_val;
3833         }
3834         spin_unlock(&kvm_lock);
3835         return 0;
3836 }
3837
3838 static int vcpu_stat_clear(void *_offset, u64 val)
3839 {
3840         unsigned offset = (long)_offset;
3841         struct kvm *kvm;
3842         struct kvm_stat_data stat_tmp = {.offset = offset};
3843
3844         if (val)
3845                 return -EINVAL;
3846
3847         spin_lock(&kvm_lock);
3848         list_for_each_entry(kvm, &vm_list, vm_list) {
3849                 stat_tmp.kvm = kvm;
3850                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3851         }
3852         spin_unlock(&kvm_lock);
3853
3854         return 0;
3855 }
3856
3857 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3858                         "%llu\n");
3859
3860 static const struct file_operations *stat_fops[] = {
3861         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3862         [KVM_STAT_VM]   = &vm_stat_fops,
3863 };
3864
3865 static int kvm_init_debug(void)
3866 {
3867         int r = -EEXIST;
3868         struct kvm_stats_debugfs_item *p;
3869
3870         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3871         if (kvm_debugfs_dir == NULL)
3872                 goto out;
3873
3874         kvm_debugfs_num_entries = 0;
3875         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3876                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3877                                          (void *)(long)p->offset,
3878                                          stat_fops[p->kind]))
3879                         goto out_dir;
3880         }
3881
3882         return 0;
3883
3884 out_dir:
3885         debugfs_remove_recursive(kvm_debugfs_dir);
3886 out:
3887         return r;
3888 }
3889
3890 static int kvm_suspend(void)
3891 {
3892         if (kvm_usage_count)
3893                 hardware_disable_nolock(NULL);
3894         return 0;
3895 }
3896
3897 static void kvm_resume(void)
3898 {
3899         if (kvm_usage_count) {
3900                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3901                 hardware_enable_nolock(NULL);
3902         }
3903 }
3904
3905 static struct syscore_ops kvm_syscore_ops = {
3906         .suspend = kvm_suspend,
3907         .resume = kvm_resume,
3908 };
3909
3910 static inline
3911 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3912 {
3913         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3914 }
3915
3916 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3917 {
3918         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3919
3920         if (vcpu->preempted)
3921                 vcpu->preempted = false;
3922
3923         kvm_arch_sched_in(vcpu, cpu);
3924
3925         kvm_arch_vcpu_load(vcpu, cpu);
3926 }
3927
3928 static void kvm_sched_out(struct preempt_notifier *pn,
3929                           struct task_struct *next)
3930 {
3931         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3932
3933         if (current->state == TASK_RUNNING)
3934                 vcpu->preempted = true;
3935         kvm_arch_vcpu_put(vcpu);
3936 }
3937
3938 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3939                   struct module *module)
3940 {
3941         int r;
3942         int cpu;
3943
3944         r = kvm_arch_init(opaque);
3945         if (r)
3946                 goto out_fail;
3947
3948         /*
3949          * kvm_arch_init makes sure there's at most one caller
3950          * for architectures that support multiple implementations,
3951          * like intel and amd on x86.
3952          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3953          * conflicts in case kvm is already setup for another implementation.
3954          */
3955         r = kvm_irqfd_init();
3956         if (r)
3957                 goto out_irqfd;
3958
3959         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3960                 r = -ENOMEM;
3961                 goto out_free_0;
3962         }
3963
3964         r = kvm_arch_hardware_setup();
3965         if (r < 0)
3966                 goto out_free_0a;
3967
3968         for_each_online_cpu(cpu) {
3969                 smp_call_function_single(cpu,
3970                                 kvm_arch_check_processor_compat,
3971                                 &r, 1);
3972                 if (r < 0)
3973                         goto out_free_1;
3974         }
3975
3976         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3977                                       kvm_starting_cpu, kvm_dying_cpu);
3978         if (r)
3979                 goto out_free_2;
3980         register_reboot_notifier(&kvm_reboot_notifier);
3981
3982         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3983         if (!vcpu_align)
3984                 vcpu_align = __alignof__(struct kvm_vcpu);
3985         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3986                                            0, NULL);
3987         if (!kvm_vcpu_cache) {
3988                 r = -ENOMEM;
3989                 goto out_free_3;
3990         }
3991
3992         r = kvm_async_pf_init();
3993         if (r)
3994                 goto out_free;
3995
3996         kvm_chardev_ops.owner = module;
3997         kvm_vm_fops.owner = module;
3998         kvm_vcpu_fops.owner = module;
3999
4000         r = misc_register(&kvm_dev);
4001         if (r) {
4002                 pr_err("kvm: misc device register failed\n");
4003                 goto out_unreg;
4004         }
4005
4006         register_syscore_ops(&kvm_syscore_ops);
4007
4008         kvm_preempt_ops.sched_in = kvm_sched_in;
4009         kvm_preempt_ops.sched_out = kvm_sched_out;
4010
4011         r = kvm_init_debug();
4012         if (r) {
4013                 pr_err("kvm: create debugfs files failed\n");
4014                 goto out_undebugfs;
4015         }
4016
4017         r = kvm_vfio_ops_init();
4018         WARN_ON(r);
4019
4020         return 0;
4021
4022 out_undebugfs:
4023         unregister_syscore_ops(&kvm_syscore_ops);
4024         misc_deregister(&kvm_dev);
4025 out_unreg:
4026         kvm_async_pf_deinit();
4027 out_free:
4028         kmem_cache_destroy(kvm_vcpu_cache);
4029 out_free_3:
4030         unregister_reboot_notifier(&kvm_reboot_notifier);
4031         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4032 out_free_2:
4033 out_free_1:
4034         kvm_arch_hardware_unsetup();
4035 out_free_0a:
4036         free_cpumask_var(cpus_hardware_enabled);
4037 out_free_0:
4038         kvm_irqfd_exit();
4039 out_irqfd:
4040         kvm_arch_exit();
4041 out_fail:
4042         return r;
4043 }
4044 EXPORT_SYMBOL_GPL(kvm_init);
4045
4046 void kvm_exit(void)
4047 {
4048         debugfs_remove_recursive(kvm_debugfs_dir);
4049         misc_deregister(&kvm_dev);
4050         kmem_cache_destroy(kvm_vcpu_cache);
4051         kvm_async_pf_deinit();
4052         unregister_syscore_ops(&kvm_syscore_ops);
4053         unregister_reboot_notifier(&kvm_reboot_notifier);
4054         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4055         on_each_cpu(hardware_disable_nolock, NULL, 1);
4056         kvm_arch_hardware_unsetup();
4057         kvm_arch_exit();
4058         kvm_irqfd_exit();
4059         free_cpumask_var(cpus_hardware_enabled);
4060         kvm_vfio_ops_exit();
4061 }
4062 EXPORT_SYMBOL_GPL(kvm_exit);