s390/vtime: Use the generic IRQ entry accounting
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91
92 /*
93  * Ordering of locks:
94  *
95  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105
106 static struct kmem_cache *kvm_vcpu_cache;
107
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118                            unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121                                   unsigned long arg);
122 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
123 #else
124 /*
125  * For architectures that don't implement a compat infrastructure,
126  * adopt a double line of defense:
127  * - Prevent a compat task from opening /dev/kvm
128  * - If the open has been done by a 64bit task, and the KVM fd
129  *   passed to a compat task, let the ioctls fail.
130  */
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132                                 unsigned long arg) { return -EINVAL; }
133
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136         return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
139                         .open           = kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145
146 __visible bool kvm_rebooting;
147 EXPORT_SYMBOL_GPL(kvm_rebooting);
148
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154
155 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
156                                                    unsigned long start, unsigned long end)
157 {
158 }
159
160 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
161 {
162         /*
163          * The metadata used by is_zone_device_page() to determine whether or
164          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
165          * the device has been pinned, e.g. by get_user_pages().  WARN if the
166          * page_count() is zero to help detect bad usage of this helper.
167          */
168         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
169                 return false;
170
171         return is_zone_device_page(pfn_to_page(pfn));
172 }
173
174 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
175 {
176         /*
177          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
178          * perspective they are "normal" pages, albeit with slightly different
179          * usage rules.
180          */
181         if (pfn_valid(pfn))
182                 return PageReserved(pfn_to_page(pfn)) &&
183                        !is_zero_pfn(pfn) &&
184                        !kvm_is_zone_device_pfn(pfn);
185
186         return true;
187 }
188
189 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
190 {
191         struct page *page = pfn_to_page(pfn);
192
193         if (!PageTransCompoundMap(page))
194                 return false;
195
196         return is_transparent_hugepage(compound_head(page));
197 }
198
199 /*
200  * Switches to specified vcpu, until a matching vcpu_put()
201  */
202 void vcpu_load(struct kvm_vcpu *vcpu)
203 {
204         int cpu = get_cpu();
205
206         __this_cpu_write(kvm_running_vcpu, vcpu);
207         preempt_notifier_register(&vcpu->preempt_notifier);
208         kvm_arch_vcpu_load(vcpu, cpu);
209         put_cpu();
210 }
211 EXPORT_SYMBOL_GPL(vcpu_load);
212
213 void vcpu_put(struct kvm_vcpu *vcpu)
214 {
215         preempt_disable();
216         kvm_arch_vcpu_put(vcpu);
217         preempt_notifier_unregister(&vcpu->preempt_notifier);
218         __this_cpu_write(kvm_running_vcpu, NULL);
219         preempt_enable();
220 }
221 EXPORT_SYMBOL_GPL(vcpu_put);
222
223 /* TODO: merge with kvm_arch_vcpu_should_kick */
224 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
225 {
226         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
227
228         /*
229          * We need to wait for the VCPU to reenable interrupts and get out of
230          * READING_SHADOW_PAGE_TABLES mode.
231          */
232         if (req & KVM_REQUEST_WAIT)
233                 return mode != OUTSIDE_GUEST_MODE;
234
235         /*
236          * Need to kick a running VCPU, but otherwise there is nothing to do.
237          */
238         return mode == IN_GUEST_MODE;
239 }
240
241 static void ack_flush(void *_completed)
242 {
243 }
244
245 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
246 {
247         if (unlikely(!cpus))
248                 cpus = cpu_online_mask;
249
250         if (cpumask_empty(cpus))
251                 return false;
252
253         smp_call_function_many(cpus, ack_flush, NULL, wait);
254         return true;
255 }
256
257 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
258                                  struct kvm_vcpu *except,
259                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
260 {
261         int i, cpu, me;
262         struct kvm_vcpu *vcpu;
263         bool called;
264
265         me = get_cpu();
266
267         kvm_for_each_vcpu(i, vcpu, kvm) {
268                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
269                     vcpu == except)
270                         continue;
271
272                 kvm_make_request(req, vcpu);
273                 cpu = vcpu->cpu;
274
275                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
276                         continue;
277
278                 if (tmp != NULL && cpu != -1 && cpu != me &&
279                     kvm_request_needs_ipi(vcpu, req))
280                         __cpumask_set_cpu(cpu, tmp);
281         }
282
283         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
284         put_cpu();
285
286         return called;
287 }
288
289 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
290                                       struct kvm_vcpu *except)
291 {
292         cpumask_var_t cpus;
293         bool called;
294
295         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
296
297         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
298
299         free_cpumask_var(cpus);
300         return called;
301 }
302
303 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
304 {
305         return kvm_make_all_cpus_request_except(kvm, req, NULL);
306 }
307
308 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
309 void kvm_flush_remote_tlbs(struct kvm *kvm)
310 {
311         /*
312          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
313          * kvm_make_all_cpus_request.
314          */
315         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
316
317         /*
318          * We want to publish modifications to the page tables before reading
319          * mode. Pairs with a memory barrier in arch-specific code.
320          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
321          * and smp_mb in walk_shadow_page_lockless_begin/end.
322          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
323          *
324          * There is already an smp_mb__after_atomic() before
325          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
326          * barrier here.
327          */
328         if (!kvm_arch_flush_remote_tlb(kvm)
329             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
330                 ++kvm->stat.remote_tlb_flush;
331         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
332 }
333 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
334 #endif
335
336 void kvm_reload_remote_mmus(struct kvm *kvm)
337 {
338         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
339 }
340
341 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
342 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
343                                                gfp_t gfp_flags)
344 {
345         gfp_flags |= mc->gfp_zero;
346
347         if (mc->kmem_cache)
348                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
349         else
350                 return (void *)__get_free_page(gfp_flags);
351 }
352
353 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
354 {
355         void *obj;
356
357         if (mc->nobjs >= min)
358                 return 0;
359         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
360                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
361                 if (!obj)
362                         return mc->nobjs >= min ? 0 : -ENOMEM;
363                 mc->objects[mc->nobjs++] = obj;
364         }
365         return 0;
366 }
367
368 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
369 {
370         return mc->nobjs;
371 }
372
373 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
374 {
375         while (mc->nobjs) {
376                 if (mc->kmem_cache)
377                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
378                 else
379                         free_page((unsigned long)mc->objects[--mc->nobjs]);
380         }
381 }
382
383 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
384 {
385         void *p;
386
387         if (WARN_ON(!mc->nobjs))
388                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
389         else
390                 p = mc->objects[--mc->nobjs];
391         BUG_ON(!p);
392         return p;
393 }
394 #endif
395
396 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
397 {
398         mutex_init(&vcpu->mutex);
399         vcpu->cpu = -1;
400         vcpu->kvm = kvm;
401         vcpu->vcpu_id = id;
402         vcpu->pid = NULL;
403         rcuwait_init(&vcpu->wait);
404         kvm_async_pf_vcpu_init(vcpu);
405
406         vcpu->pre_pcpu = -1;
407         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
408
409         kvm_vcpu_set_in_spin_loop(vcpu, false);
410         kvm_vcpu_set_dy_eligible(vcpu, false);
411         vcpu->preempted = false;
412         vcpu->ready = false;
413         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
414 }
415
416 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
417 {
418         kvm_arch_vcpu_destroy(vcpu);
419
420         /*
421          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
422          * the vcpu->pid pointer, and at destruction time all file descriptors
423          * are already gone.
424          */
425         put_pid(rcu_dereference_protected(vcpu->pid, 1));
426
427         free_page((unsigned long)vcpu->run);
428         kmem_cache_free(kvm_vcpu_cache, vcpu);
429 }
430 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
431
432 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
433 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
434 {
435         return container_of(mn, struct kvm, mmu_notifier);
436 }
437
438 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
439                                               struct mm_struct *mm,
440                                               unsigned long start, unsigned long end)
441 {
442         struct kvm *kvm = mmu_notifier_to_kvm(mn);
443         int idx;
444
445         idx = srcu_read_lock(&kvm->srcu);
446         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
447         srcu_read_unlock(&kvm->srcu, idx);
448 }
449
450 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
451                                         struct mm_struct *mm,
452                                         unsigned long address,
453                                         pte_t pte)
454 {
455         struct kvm *kvm = mmu_notifier_to_kvm(mn);
456         int idx;
457
458         idx = srcu_read_lock(&kvm->srcu);
459         spin_lock(&kvm->mmu_lock);
460         kvm->mmu_notifier_seq++;
461
462         if (kvm_set_spte_hva(kvm, address, pte))
463                 kvm_flush_remote_tlbs(kvm);
464
465         spin_unlock(&kvm->mmu_lock);
466         srcu_read_unlock(&kvm->srcu, idx);
467 }
468
469 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
470                                         const struct mmu_notifier_range *range)
471 {
472         struct kvm *kvm = mmu_notifier_to_kvm(mn);
473         int need_tlb_flush = 0, idx;
474
475         idx = srcu_read_lock(&kvm->srcu);
476         spin_lock(&kvm->mmu_lock);
477         /*
478          * The count increase must become visible at unlock time as no
479          * spte can be established without taking the mmu_lock and
480          * count is also read inside the mmu_lock critical section.
481          */
482         kvm->mmu_notifier_count++;
483         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
484                                              range->flags);
485         need_tlb_flush |= kvm->tlbs_dirty;
486         /* we've to flush the tlb before the pages can be freed */
487         if (need_tlb_flush)
488                 kvm_flush_remote_tlbs(kvm);
489
490         spin_unlock(&kvm->mmu_lock);
491         srcu_read_unlock(&kvm->srcu, idx);
492
493         return 0;
494 }
495
496 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
497                                         const struct mmu_notifier_range *range)
498 {
499         struct kvm *kvm = mmu_notifier_to_kvm(mn);
500
501         spin_lock(&kvm->mmu_lock);
502         /*
503          * This sequence increase will notify the kvm page fault that
504          * the page that is going to be mapped in the spte could have
505          * been freed.
506          */
507         kvm->mmu_notifier_seq++;
508         smp_wmb();
509         /*
510          * The above sequence increase must be visible before the
511          * below count decrease, which is ensured by the smp_wmb above
512          * in conjunction with the smp_rmb in mmu_notifier_retry().
513          */
514         kvm->mmu_notifier_count--;
515         spin_unlock(&kvm->mmu_lock);
516
517         BUG_ON(kvm->mmu_notifier_count < 0);
518 }
519
520 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
521                                               struct mm_struct *mm,
522                                               unsigned long start,
523                                               unsigned long end)
524 {
525         struct kvm *kvm = mmu_notifier_to_kvm(mn);
526         int young, idx;
527
528         idx = srcu_read_lock(&kvm->srcu);
529         spin_lock(&kvm->mmu_lock);
530
531         young = kvm_age_hva(kvm, start, end);
532         if (young)
533                 kvm_flush_remote_tlbs(kvm);
534
535         spin_unlock(&kvm->mmu_lock);
536         srcu_read_unlock(&kvm->srcu, idx);
537
538         return young;
539 }
540
541 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
542                                         struct mm_struct *mm,
543                                         unsigned long start,
544                                         unsigned long end)
545 {
546         struct kvm *kvm = mmu_notifier_to_kvm(mn);
547         int young, idx;
548
549         idx = srcu_read_lock(&kvm->srcu);
550         spin_lock(&kvm->mmu_lock);
551         /*
552          * Even though we do not flush TLB, this will still adversely
553          * affect performance on pre-Haswell Intel EPT, where there is
554          * no EPT Access Bit to clear so that we have to tear down EPT
555          * tables instead. If we find this unacceptable, we can always
556          * add a parameter to kvm_age_hva so that it effectively doesn't
557          * do anything on clear_young.
558          *
559          * Also note that currently we never issue secondary TLB flushes
560          * from clear_young, leaving this job up to the regular system
561          * cadence. If we find this inaccurate, we might come up with a
562          * more sophisticated heuristic later.
563          */
564         young = kvm_age_hva(kvm, start, end);
565         spin_unlock(&kvm->mmu_lock);
566         srcu_read_unlock(&kvm->srcu, idx);
567
568         return young;
569 }
570
571 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
572                                        struct mm_struct *mm,
573                                        unsigned long address)
574 {
575         struct kvm *kvm = mmu_notifier_to_kvm(mn);
576         int young, idx;
577
578         idx = srcu_read_lock(&kvm->srcu);
579         spin_lock(&kvm->mmu_lock);
580         young = kvm_test_age_hva(kvm, address);
581         spin_unlock(&kvm->mmu_lock);
582         srcu_read_unlock(&kvm->srcu, idx);
583
584         return young;
585 }
586
587 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
588                                      struct mm_struct *mm)
589 {
590         struct kvm *kvm = mmu_notifier_to_kvm(mn);
591         int idx;
592
593         idx = srcu_read_lock(&kvm->srcu);
594         kvm_arch_flush_shadow_all(kvm);
595         srcu_read_unlock(&kvm->srcu, idx);
596 }
597
598 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
599         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
600         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
601         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
602         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
603         .clear_young            = kvm_mmu_notifier_clear_young,
604         .test_young             = kvm_mmu_notifier_test_young,
605         .change_pte             = kvm_mmu_notifier_change_pte,
606         .release                = kvm_mmu_notifier_release,
607 };
608
609 static int kvm_init_mmu_notifier(struct kvm *kvm)
610 {
611         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
612         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
613 }
614
615 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
616
617 static int kvm_init_mmu_notifier(struct kvm *kvm)
618 {
619         return 0;
620 }
621
622 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
623
624 static struct kvm_memslots *kvm_alloc_memslots(void)
625 {
626         int i;
627         struct kvm_memslots *slots;
628
629         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
630         if (!slots)
631                 return NULL;
632
633         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
634                 slots->id_to_index[i] = -1;
635
636         return slots;
637 }
638
639 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
640 {
641         if (!memslot->dirty_bitmap)
642                 return;
643
644         kvfree(memslot->dirty_bitmap);
645         memslot->dirty_bitmap = NULL;
646 }
647
648 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
649 {
650         kvm_destroy_dirty_bitmap(slot);
651
652         kvm_arch_free_memslot(kvm, slot);
653
654         slot->flags = 0;
655         slot->npages = 0;
656 }
657
658 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
659 {
660         struct kvm_memory_slot *memslot;
661
662         if (!slots)
663                 return;
664
665         kvm_for_each_memslot(memslot, slots)
666                 kvm_free_memslot(kvm, memslot);
667
668         kvfree(slots);
669 }
670
671 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
672 {
673         int i;
674
675         if (!kvm->debugfs_dentry)
676                 return;
677
678         debugfs_remove_recursive(kvm->debugfs_dentry);
679
680         if (kvm->debugfs_stat_data) {
681                 for (i = 0; i < kvm_debugfs_num_entries; i++)
682                         kfree(kvm->debugfs_stat_data[i]);
683                 kfree(kvm->debugfs_stat_data);
684         }
685 }
686
687 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
688 {
689         char dir_name[ITOA_MAX_LEN * 2];
690         struct kvm_stat_data *stat_data;
691         struct kvm_stats_debugfs_item *p;
692
693         if (!debugfs_initialized())
694                 return 0;
695
696         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
697         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
698
699         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
700                                          sizeof(*kvm->debugfs_stat_data),
701                                          GFP_KERNEL_ACCOUNT);
702         if (!kvm->debugfs_stat_data)
703                 return -ENOMEM;
704
705         for (p = debugfs_entries; p->name; p++) {
706                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
707                 if (!stat_data)
708                         return -ENOMEM;
709
710                 stat_data->kvm = kvm;
711                 stat_data->dbgfs_item = p;
712                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
713                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
714                                     kvm->debugfs_dentry, stat_data,
715                                     &stat_fops_per_vm);
716         }
717         return 0;
718 }
719
720 /*
721  * Called after the VM is otherwise initialized, but just before adding it to
722  * the vm_list.
723  */
724 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
725 {
726         return 0;
727 }
728
729 /*
730  * Called just after removing the VM from the vm_list, but before doing any
731  * other destruction.
732  */
733 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
734 {
735 }
736
737 static struct kvm *kvm_create_vm(unsigned long type)
738 {
739         struct kvm *kvm = kvm_arch_alloc_vm();
740         int r = -ENOMEM;
741         int i;
742
743         if (!kvm)
744                 return ERR_PTR(-ENOMEM);
745
746         spin_lock_init(&kvm->mmu_lock);
747         mmgrab(current->mm);
748         kvm->mm = current->mm;
749         kvm_eventfd_init(kvm);
750         mutex_init(&kvm->lock);
751         mutex_init(&kvm->irq_lock);
752         mutex_init(&kvm->slots_lock);
753         INIT_LIST_HEAD(&kvm->devices);
754
755         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
756
757         if (init_srcu_struct(&kvm->srcu))
758                 goto out_err_no_srcu;
759         if (init_srcu_struct(&kvm->irq_srcu))
760                 goto out_err_no_irq_srcu;
761
762         refcount_set(&kvm->users_count, 1);
763         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
764                 struct kvm_memslots *slots = kvm_alloc_memslots();
765
766                 if (!slots)
767                         goto out_err_no_arch_destroy_vm;
768                 /* Generations must be different for each address space. */
769                 slots->generation = i;
770                 rcu_assign_pointer(kvm->memslots[i], slots);
771         }
772
773         for (i = 0; i < KVM_NR_BUSES; i++) {
774                 rcu_assign_pointer(kvm->buses[i],
775                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
776                 if (!kvm->buses[i])
777                         goto out_err_no_arch_destroy_vm;
778         }
779
780         kvm->max_halt_poll_ns = halt_poll_ns;
781
782         r = kvm_arch_init_vm(kvm, type);
783         if (r)
784                 goto out_err_no_arch_destroy_vm;
785
786         r = hardware_enable_all();
787         if (r)
788                 goto out_err_no_disable;
789
790 #ifdef CONFIG_HAVE_KVM_IRQFD
791         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
792 #endif
793
794         r = kvm_init_mmu_notifier(kvm);
795         if (r)
796                 goto out_err_no_mmu_notifier;
797
798         r = kvm_arch_post_init_vm(kvm);
799         if (r)
800                 goto out_err;
801
802         mutex_lock(&kvm_lock);
803         list_add(&kvm->vm_list, &vm_list);
804         mutex_unlock(&kvm_lock);
805
806         preempt_notifier_inc();
807
808         return kvm;
809
810 out_err:
811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812         if (kvm->mmu_notifier.ops)
813                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
814 #endif
815 out_err_no_mmu_notifier:
816         hardware_disable_all();
817 out_err_no_disable:
818         kvm_arch_destroy_vm(kvm);
819 out_err_no_arch_destroy_vm:
820         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
821         for (i = 0; i < KVM_NR_BUSES; i++)
822                 kfree(kvm_get_bus(kvm, i));
823         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
824                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
825         cleanup_srcu_struct(&kvm->irq_srcu);
826 out_err_no_irq_srcu:
827         cleanup_srcu_struct(&kvm->srcu);
828 out_err_no_srcu:
829         kvm_arch_free_vm(kvm);
830         mmdrop(current->mm);
831         return ERR_PTR(r);
832 }
833
834 static void kvm_destroy_devices(struct kvm *kvm)
835 {
836         struct kvm_device *dev, *tmp;
837
838         /*
839          * We do not need to take the kvm->lock here, because nobody else
840          * has a reference to the struct kvm at this point and therefore
841          * cannot access the devices list anyhow.
842          */
843         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
844                 list_del(&dev->vm_node);
845                 dev->ops->destroy(dev);
846         }
847 }
848
849 static void kvm_destroy_vm(struct kvm *kvm)
850 {
851         int i;
852         struct mm_struct *mm = kvm->mm;
853
854         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
855         kvm_destroy_vm_debugfs(kvm);
856         kvm_arch_sync_events(kvm);
857         mutex_lock(&kvm_lock);
858         list_del(&kvm->vm_list);
859         mutex_unlock(&kvm_lock);
860         kvm_arch_pre_destroy_vm(kvm);
861
862         kvm_free_irq_routing(kvm);
863         for (i = 0; i < KVM_NR_BUSES; i++) {
864                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
865
866                 if (bus)
867                         kvm_io_bus_destroy(bus);
868                 kvm->buses[i] = NULL;
869         }
870         kvm_coalesced_mmio_free(kvm);
871 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
872         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
873 #else
874         kvm_arch_flush_shadow_all(kvm);
875 #endif
876         kvm_arch_destroy_vm(kvm);
877         kvm_destroy_devices(kvm);
878         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
879                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
880         cleanup_srcu_struct(&kvm->irq_srcu);
881         cleanup_srcu_struct(&kvm->srcu);
882         kvm_arch_free_vm(kvm);
883         preempt_notifier_dec();
884         hardware_disable_all();
885         mmdrop(mm);
886 }
887
888 void kvm_get_kvm(struct kvm *kvm)
889 {
890         refcount_inc(&kvm->users_count);
891 }
892 EXPORT_SYMBOL_GPL(kvm_get_kvm);
893
894 void kvm_put_kvm(struct kvm *kvm)
895 {
896         if (refcount_dec_and_test(&kvm->users_count))
897                 kvm_destroy_vm(kvm);
898 }
899 EXPORT_SYMBOL_GPL(kvm_put_kvm);
900
901 /*
902  * Used to put a reference that was taken on behalf of an object associated
903  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
904  * of the new file descriptor fails and the reference cannot be transferred to
905  * its final owner.  In such cases, the caller is still actively using @kvm and
906  * will fail miserably if the refcount unexpectedly hits zero.
907  */
908 void kvm_put_kvm_no_destroy(struct kvm *kvm)
909 {
910         WARN_ON(refcount_dec_and_test(&kvm->users_count));
911 }
912 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
913
914 static int kvm_vm_release(struct inode *inode, struct file *filp)
915 {
916         struct kvm *kvm = filp->private_data;
917
918         kvm_irqfd_release(kvm);
919
920         kvm_put_kvm(kvm);
921         return 0;
922 }
923
924 /*
925  * Allocation size is twice as large as the actual dirty bitmap size.
926  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
927  */
928 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
929 {
930         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
931
932         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
933         if (!memslot->dirty_bitmap)
934                 return -ENOMEM;
935
936         return 0;
937 }
938
939 /*
940  * Delete a memslot by decrementing the number of used slots and shifting all
941  * other entries in the array forward one spot.
942  */
943 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
944                                       struct kvm_memory_slot *memslot)
945 {
946         struct kvm_memory_slot *mslots = slots->memslots;
947         int i;
948
949         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
950                 return;
951
952         slots->used_slots--;
953
954         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
955                 atomic_set(&slots->lru_slot, 0);
956
957         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
958                 mslots[i] = mslots[i + 1];
959                 slots->id_to_index[mslots[i].id] = i;
960         }
961         mslots[i] = *memslot;
962         slots->id_to_index[memslot->id] = -1;
963 }
964
965 /*
966  * "Insert" a new memslot by incrementing the number of used slots.  Returns
967  * the new slot's initial index into the memslots array.
968  */
969 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
970 {
971         return slots->used_slots++;
972 }
973
974 /*
975  * Move a changed memslot backwards in the array by shifting existing slots
976  * with a higher GFN toward the front of the array.  Note, the changed memslot
977  * itself is not preserved in the array, i.e. not swapped at this time, only
978  * its new index into the array is tracked.  Returns the changed memslot's
979  * current index into the memslots array.
980  */
981 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
982                                             struct kvm_memory_slot *memslot)
983 {
984         struct kvm_memory_slot *mslots = slots->memslots;
985         int i;
986
987         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
988             WARN_ON_ONCE(!slots->used_slots))
989                 return -1;
990
991         /*
992          * Move the target memslot backward in the array by shifting existing
993          * memslots with a higher GFN (than the target memslot) towards the
994          * front of the array.
995          */
996         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
997                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
998                         break;
999
1000                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1001
1002                 /* Shift the next memslot forward one and update its index. */
1003                 mslots[i] = mslots[i + 1];
1004                 slots->id_to_index[mslots[i].id] = i;
1005         }
1006         return i;
1007 }
1008
1009 /*
1010  * Move a changed memslot forwards in the array by shifting existing slots with
1011  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1012  * is not preserved in the array, i.e. not swapped at this time, only its new
1013  * index into the array is tracked.  Returns the changed memslot's final index
1014  * into the memslots array.
1015  */
1016 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1017                                            struct kvm_memory_slot *memslot,
1018                                            int start)
1019 {
1020         struct kvm_memory_slot *mslots = slots->memslots;
1021         int i;
1022
1023         for (i = start; i > 0; i--) {
1024                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1025                         break;
1026
1027                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1028
1029                 /* Shift the next memslot back one and update its index. */
1030                 mslots[i] = mslots[i - 1];
1031                 slots->id_to_index[mslots[i].id] = i;
1032         }
1033         return i;
1034 }
1035
1036 /*
1037  * Re-sort memslots based on their GFN to account for an added, deleted, or
1038  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1039  * memslot lookup.
1040  *
1041  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1042  * at memslots[0] has the highest GFN.
1043  *
1044  * The sorting algorithm takes advantage of having initially sorted memslots
1045  * and knowing the position of the changed memslot.  Sorting is also optimized
1046  * by not swapping the updated memslot and instead only shifting other memslots
1047  * and tracking the new index for the update memslot.  Only once its final
1048  * index is known is the updated memslot copied into its position in the array.
1049  *
1050  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1051  *    the end of the array.
1052  *
1053  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1054  *    end of the array and then it forward to its correct location.
1055  *
1056  *  - When moving a memslot, the algorithm first moves the updated memslot
1057  *    backward to handle the scenario where the memslot's GFN was changed to a
1058  *    lower value.  update_memslots() then falls through and runs the same flow
1059  *    as creating a memslot to move the memslot forward to handle the scenario
1060  *    where its GFN was changed to a higher value.
1061  *
1062  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1063  * historical reasons.  Originally, invalid memslots where denoted by having
1064  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1065  * to the end of the array.  The current algorithm uses dedicated logic to
1066  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1067  *
1068  * The other historical motiviation for highest->lowest was to improve the
1069  * performance of memslot lookup.  KVM originally used a linear search starting
1070  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1071  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1072  * single memslot above the 4gb boundary.  As the largest memslot is also the
1073  * most likely to be referenced, sorting it to the front of the array was
1074  * advantageous.  The current binary search starts from the middle of the array
1075  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1076  */
1077 static void update_memslots(struct kvm_memslots *slots,
1078                             struct kvm_memory_slot *memslot,
1079                             enum kvm_mr_change change)
1080 {
1081         int i;
1082
1083         if (change == KVM_MR_DELETE) {
1084                 kvm_memslot_delete(slots, memslot);
1085         } else {
1086                 if (change == KVM_MR_CREATE)
1087                         i = kvm_memslot_insert_back(slots);
1088                 else
1089                         i = kvm_memslot_move_backward(slots, memslot);
1090                 i = kvm_memslot_move_forward(slots, memslot, i);
1091
1092                 /*
1093                  * Copy the memslot to its new position in memslots and update
1094                  * its index accordingly.
1095                  */
1096                 slots->memslots[i] = *memslot;
1097                 slots->id_to_index[memslot->id] = i;
1098         }
1099 }
1100
1101 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1102 {
1103         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1104
1105 #ifdef __KVM_HAVE_READONLY_MEM
1106         valid_flags |= KVM_MEM_READONLY;
1107 #endif
1108
1109         if (mem->flags & ~valid_flags)
1110                 return -EINVAL;
1111
1112         return 0;
1113 }
1114
1115 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1116                 int as_id, struct kvm_memslots *slots)
1117 {
1118         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1119         u64 gen = old_memslots->generation;
1120
1121         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1122         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1123
1124         rcu_assign_pointer(kvm->memslots[as_id], slots);
1125         synchronize_srcu_expedited(&kvm->srcu);
1126
1127         /*
1128          * Increment the new memslot generation a second time, dropping the
1129          * update in-progress flag and incrementing the generation based on
1130          * the number of address spaces.  This provides a unique and easily
1131          * identifiable generation number while the memslots are in flux.
1132          */
1133         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1134
1135         /*
1136          * Generations must be unique even across address spaces.  We do not need
1137          * a global counter for that, instead the generation space is evenly split
1138          * across address spaces.  For example, with two address spaces, address
1139          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1140          * use generations 1, 3, 5, ...
1141          */
1142         gen += KVM_ADDRESS_SPACE_NUM;
1143
1144         kvm_arch_memslots_updated(kvm, gen);
1145
1146         slots->generation = gen;
1147
1148         return old_memslots;
1149 }
1150
1151 /*
1152  * Note, at a minimum, the current number of used slots must be allocated, even
1153  * when deleting a memslot, as we need a complete duplicate of the memslots for
1154  * use when invalidating a memslot prior to deleting/moving the memslot.
1155  */
1156 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1157                                              enum kvm_mr_change change)
1158 {
1159         struct kvm_memslots *slots;
1160         size_t old_size, new_size;
1161
1162         old_size = sizeof(struct kvm_memslots) +
1163                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1164
1165         if (change == KVM_MR_CREATE)
1166                 new_size = old_size + sizeof(struct kvm_memory_slot);
1167         else
1168                 new_size = old_size;
1169
1170         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1171         if (likely(slots))
1172                 memcpy(slots, old, old_size);
1173
1174         return slots;
1175 }
1176
1177 static int kvm_set_memslot(struct kvm *kvm,
1178                            const struct kvm_userspace_memory_region *mem,
1179                            struct kvm_memory_slot *old,
1180                            struct kvm_memory_slot *new, int as_id,
1181                            enum kvm_mr_change change)
1182 {
1183         struct kvm_memory_slot *slot;
1184         struct kvm_memslots *slots;
1185         int r;
1186
1187         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1188         if (!slots)
1189                 return -ENOMEM;
1190
1191         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1192                 /*
1193                  * Note, the INVALID flag needs to be in the appropriate entry
1194                  * in the freshly allocated memslots, not in @old or @new.
1195                  */
1196                 slot = id_to_memslot(slots, old->id);
1197                 slot->flags |= KVM_MEMSLOT_INVALID;
1198
1199                 /*
1200                  * We can re-use the old memslots, the only difference from the
1201                  * newly installed memslots is the invalid flag, which will get
1202                  * dropped by update_memslots anyway.  We'll also revert to the
1203                  * old memslots if preparing the new memory region fails.
1204                  */
1205                 slots = install_new_memslots(kvm, as_id, slots);
1206
1207                 /* From this point no new shadow pages pointing to a deleted,
1208                  * or moved, memslot will be created.
1209                  *
1210                  * validation of sp->gfn happens in:
1211                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1212                  *      - kvm_is_visible_gfn (mmu_check_root)
1213                  */
1214                 kvm_arch_flush_shadow_memslot(kvm, slot);
1215         }
1216
1217         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1218         if (r)
1219                 goto out_slots;
1220
1221         update_memslots(slots, new, change);
1222         slots = install_new_memslots(kvm, as_id, slots);
1223
1224         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1225
1226         kvfree(slots);
1227         return 0;
1228
1229 out_slots:
1230         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1231                 slots = install_new_memslots(kvm, as_id, slots);
1232         kvfree(slots);
1233         return r;
1234 }
1235
1236 static int kvm_delete_memslot(struct kvm *kvm,
1237                               const struct kvm_userspace_memory_region *mem,
1238                               struct kvm_memory_slot *old, int as_id)
1239 {
1240         struct kvm_memory_slot new;
1241         int r;
1242
1243         if (!old->npages)
1244                 return -EINVAL;
1245
1246         memset(&new, 0, sizeof(new));
1247         new.id = old->id;
1248         /*
1249          * This is only for debugging purpose; it should never be referenced
1250          * for a removed memslot.
1251          */
1252         new.as_id = as_id;
1253
1254         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1255         if (r)
1256                 return r;
1257
1258         kvm_free_memslot(kvm, old);
1259         return 0;
1260 }
1261
1262 /*
1263  * Allocate some memory and give it an address in the guest physical address
1264  * space.
1265  *
1266  * Discontiguous memory is allowed, mostly for framebuffers.
1267  *
1268  * Must be called holding kvm->slots_lock for write.
1269  */
1270 int __kvm_set_memory_region(struct kvm *kvm,
1271                             const struct kvm_userspace_memory_region *mem)
1272 {
1273         struct kvm_memory_slot old, new;
1274         struct kvm_memory_slot *tmp;
1275         enum kvm_mr_change change;
1276         int as_id, id;
1277         int r;
1278
1279         r = check_memory_region_flags(mem);
1280         if (r)
1281                 return r;
1282
1283         as_id = mem->slot >> 16;
1284         id = (u16)mem->slot;
1285
1286         /* General sanity checks */
1287         if (mem->memory_size & (PAGE_SIZE - 1))
1288                 return -EINVAL;
1289         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1290                 return -EINVAL;
1291         /* We can read the guest memory with __xxx_user() later on. */
1292         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1293              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1294                         mem->memory_size))
1295                 return -EINVAL;
1296         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1297                 return -EINVAL;
1298         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1299                 return -EINVAL;
1300
1301         /*
1302          * Make a full copy of the old memslot, the pointer will become stale
1303          * when the memslots are re-sorted by update_memslots(), and the old
1304          * memslot needs to be referenced after calling update_memslots(), e.g.
1305          * to free its resources and for arch specific behavior.
1306          */
1307         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1308         if (tmp) {
1309                 old = *tmp;
1310                 tmp = NULL;
1311         } else {
1312                 memset(&old, 0, sizeof(old));
1313                 old.id = id;
1314         }
1315
1316         if (!mem->memory_size)
1317                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1318
1319         new.as_id = as_id;
1320         new.id = id;
1321         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1322         new.npages = mem->memory_size >> PAGE_SHIFT;
1323         new.flags = mem->flags;
1324         new.userspace_addr = mem->userspace_addr;
1325
1326         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1327                 return -EINVAL;
1328
1329         if (!old.npages) {
1330                 change = KVM_MR_CREATE;
1331                 new.dirty_bitmap = NULL;
1332                 memset(&new.arch, 0, sizeof(new.arch));
1333         } else { /* Modify an existing slot. */
1334                 if ((new.userspace_addr != old.userspace_addr) ||
1335                     (new.npages != old.npages) ||
1336                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1337                         return -EINVAL;
1338
1339                 if (new.base_gfn != old.base_gfn)
1340                         change = KVM_MR_MOVE;
1341                 else if (new.flags != old.flags)
1342                         change = KVM_MR_FLAGS_ONLY;
1343                 else /* Nothing to change. */
1344                         return 0;
1345
1346                 /* Copy dirty_bitmap and arch from the current memslot. */
1347                 new.dirty_bitmap = old.dirty_bitmap;
1348                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1349         }
1350
1351         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1352                 /* Check for overlaps */
1353                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1354                         if (tmp->id == id)
1355                                 continue;
1356                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1357                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1358                                 return -EEXIST;
1359                 }
1360         }
1361
1362         /* Allocate/free page dirty bitmap as needed */
1363         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1364                 new.dirty_bitmap = NULL;
1365         else if (!new.dirty_bitmap) {
1366                 r = kvm_alloc_dirty_bitmap(&new);
1367                 if (r)
1368                         return r;
1369
1370                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1371                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1372         }
1373
1374         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1375         if (r)
1376                 goto out_bitmap;
1377
1378         if (old.dirty_bitmap && !new.dirty_bitmap)
1379                 kvm_destroy_dirty_bitmap(&old);
1380         return 0;
1381
1382 out_bitmap:
1383         if (new.dirty_bitmap && !old.dirty_bitmap)
1384                 kvm_destroy_dirty_bitmap(&new);
1385         return r;
1386 }
1387 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1388
1389 int kvm_set_memory_region(struct kvm *kvm,
1390                           const struct kvm_userspace_memory_region *mem)
1391 {
1392         int r;
1393
1394         mutex_lock(&kvm->slots_lock);
1395         r = __kvm_set_memory_region(kvm, mem);
1396         mutex_unlock(&kvm->slots_lock);
1397         return r;
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1400
1401 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1402                                           struct kvm_userspace_memory_region *mem)
1403 {
1404         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1405                 return -EINVAL;
1406
1407         return kvm_set_memory_region(kvm, mem);
1408 }
1409
1410 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1411 /**
1412  * kvm_get_dirty_log - get a snapshot of dirty pages
1413  * @kvm:        pointer to kvm instance
1414  * @log:        slot id and address to which we copy the log
1415  * @is_dirty:   set to '1' if any dirty pages were found
1416  * @memslot:    set to the associated memslot, always valid on success
1417  */
1418 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1419                       int *is_dirty, struct kvm_memory_slot **memslot)
1420 {
1421         struct kvm_memslots *slots;
1422         int i, as_id, id;
1423         unsigned long n;
1424         unsigned long any = 0;
1425
1426         *memslot = NULL;
1427         *is_dirty = 0;
1428
1429         as_id = log->slot >> 16;
1430         id = (u16)log->slot;
1431         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1432                 return -EINVAL;
1433
1434         slots = __kvm_memslots(kvm, as_id);
1435         *memslot = id_to_memslot(slots, id);
1436         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1437                 return -ENOENT;
1438
1439         kvm_arch_sync_dirty_log(kvm, *memslot);
1440
1441         n = kvm_dirty_bitmap_bytes(*memslot);
1442
1443         for (i = 0; !any && i < n/sizeof(long); ++i)
1444                 any = (*memslot)->dirty_bitmap[i];
1445
1446         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1447                 return -EFAULT;
1448
1449         if (any)
1450                 *is_dirty = 1;
1451         return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1454
1455 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1456 /**
1457  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1458  *      and reenable dirty page tracking for the corresponding pages.
1459  * @kvm:        pointer to kvm instance
1460  * @log:        slot id and address to which we copy the log
1461  *
1462  * We need to keep it in mind that VCPU threads can write to the bitmap
1463  * concurrently. So, to avoid losing track of dirty pages we keep the
1464  * following order:
1465  *
1466  *    1. Take a snapshot of the bit and clear it if needed.
1467  *    2. Write protect the corresponding page.
1468  *    3. Copy the snapshot to the userspace.
1469  *    4. Upon return caller flushes TLB's if needed.
1470  *
1471  * Between 2 and 4, the guest may write to the page using the remaining TLB
1472  * entry.  This is not a problem because the page is reported dirty using
1473  * the snapshot taken before and step 4 ensures that writes done after
1474  * exiting to userspace will be logged for the next call.
1475  *
1476  */
1477 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1478 {
1479         struct kvm_memslots *slots;
1480         struct kvm_memory_slot *memslot;
1481         int i, as_id, id;
1482         unsigned long n;
1483         unsigned long *dirty_bitmap;
1484         unsigned long *dirty_bitmap_buffer;
1485         bool flush;
1486
1487         as_id = log->slot >> 16;
1488         id = (u16)log->slot;
1489         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1490                 return -EINVAL;
1491
1492         slots = __kvm_memslots(kvm, as_id);
1493         memslot = id_to_memslot(slots, id);
1494         if (!memslot || !memslot->dirty_bitmap)
1495                 return -ENOENT;
1496
1497         dirty_bitmap = memslot->dirty_bitmap;
1498
1499         kvm_arch_sync_dirty_log(kvm, memslot);
1500
1501         n = kvm_dirty_bitmap_bytes(memslot);
1502         flush = false;
1503         if (kvm->manual_dirty_log_protect) {
1504                 /*
1505                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1506                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1507                  * is some code duplication between this function and
1508                  * kvm_get_dirty_log, but hopefully all architecture
1509                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1510                  * can be eliminated.
1511                  */
1512                 dirty_bitmap_buffer = dirty_bitmap;
1513         } else {
1514                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1515                 memset(dirty_bitmap_buffer, 0, n);
1516
1517                 spin_lock(&kvm->mmu_lock);
1518                 for (i = 0; i < n / sizeof(long); i++) {
1519                         unsigned long mask;
1520                         gfn_t offset;
1521
1522                         if (!dirty_bitmap[i])
1523                                 continue;
1524
1525                         flush = true;
1526                         mask = xchg(&dirty_bitmap[i], 0);
1527                         dirty_bitmap_buffer[i] = mask;
1528
1529                         offset = i * BITS_PER_LONG;
1530                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1531                                                                 offset, mask);
1532                 }
1533                 spin_unlock(&kvm->mmu_lock);
1534         }
1535
1536         if (flush)
1537                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1538
1539         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1540                 return -EFAULT;
1541         return 0;
1542 }
1543
1544
1545 /**
1546  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1547  * @kvm: kvm instance
1548  * @log: slot id and address to which we copy the log
1549  *
1550  * Steps 1-4 below provide general overview of dirty page logging. See
1551  * kvm_get_dirty_log_protect() function description for additional details.
1552  *
1553  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1554  * always flush the TLB (step 4) even if previous step failed  and the dirty
1555  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1556  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1557  * writes will be marked dirty for next log read.
1558  *
1559  *   1. Take a snapshot of the bit and clear it if needed.
1560  *   2. Write protect the corresponding page.
1561  *   3. Copy the snapshot to the userspace.
1562  *   4. Flush TLB's if needed.
1563  */
1564 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1565                                       struct kvm_dirty_log *log)
1566 {
1567         int r;
1568
1569         mutex_lock(&kvm->slots_lock);
1570
1571         r = kvm_get_dirty_log_protect(kvm, log);
1572
1573         mutex_unlock(&kvm->slots_lock);
1574         return r;
1575 }
1576
1577 /**
1578  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1579  *      and reenable dirty page tracking for the corresponding pages.
1580  * @kvm:        pointer to kvm instance
1581  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1582  */
1583 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1584                                        struct kvm_clear_dirty_log *log)
1585 {
1586         struct kvm_memslots *slots;
1587         struct kvm_memory_slot *memslot;
1588         int as_id, id;
1589         gfn_t offset;
1590         unsigned long i, n;
1591         unsigned long *dirty_bitmap;
1592         unsigned long *dirty_bitmap_buffer;
1593         bool flush;
1594
1595         as_id = log->slot >> 16;
1596         id = (u16)log->slot;
1597         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1598                 return -EINVAL;
1599
1600         if (log->first_page & 63)
1601                 return -EINVAL;
1602
1603         slots = __kvm_memslots(kvm, as_id);
1604         memslot = id_to_memslot(slots, id);
1605         if (!memslot || !memslot->dirty_bitmap)
1606                 return -ENOENT;
1607
1608         dirty_bitmap = memslot->dirty_bitmap;
1609
1610         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1611
1612         if (log->first_page > memslot->npages ||
1613             log->num_pages > memslot->npages - log->first_page ||
1614             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1615             return -EINVAL;
1616
1617         kvm_arch_sync_dirty_log(kvm, memslot);
1618
1619         flush = false;
1620         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1621         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1622                 return -EFAULT;
1623
1624         spin_lock(&kvm->mmu_lock);
1625         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1626                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1627              i++, offset += BITS_PER_LONG) {
1628                 unsigned long mask = *dirty_bitmap_buffer++;
1629                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1630                 if (!mask)
1631                         continue;
1632
1633                 mask &= atomic_long_fetch_andnot(mask, p);
1634
1635                 /*
1636                  * mask contains the bits that really have been cleared.  This
1637                  * never includes any bits beyond the length of the memslot (if
1638                  * the length is not aligned to 64 pages), therefore it is not
1639                  * a problem if userspace sets them in log->dirty_bitmap.
1640                 */
1641                 if (mask) {
1642                         flush = true;
1643                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1644                                                                 offset, mask);
1645                 }
1646         }
1647         spin_unlock(&kvm->mmu_lock);
1648
1649         if (flush)
1650                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1651
1652         return 0;
1653 }
1654
1655 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1656                                         struct kvm_clear_dirty_log *log)
1657 {
1658         int r;
1659
1660         mutex_lock(&kvm->slots_lock);
1661
1662         r = kvm_clear_dirty_log_protect(kvm, log);
1663
1664         mutex_unlock(&kvm->slots_lock);
1665         return r;
1666 }
1667 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1668
1669 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1670 {
1671         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1674
1675 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1676 {
1677         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1680
1681 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1682 {
1683         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1684
1685         return kvm_is_visible_memslot(memslot);
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1688
1689 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1690 {
1691         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1692
1693         return kvm_is_visible_memslot(memslot);
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1696
1697 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1698 {
1699         struct vm_area_struct *vma;
1700         unsigned long addr, size;
1701
1702         size = PAGE_SIZE;
1703
1704         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1705         if (kvm_is_error_hva(addr))
1706                 return PAGE_SIZE;
1707
1708         mmap_read_lock(current->mm);
1709         vma = find_vma(current->mm, addr);
1710         if (!vma)
1711                 goto out;
1712
1713         size = vma_kernel_pagesize(vma);
1714
1715 out:
1716         mmap_read_unlock(current->mm);
1717
1718         return size;
1719 }
1720
1721 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1722 {
1723         return slot->flags & KVM_MEM_READONLY;
1724 }
1725
1726 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1727                                        gfn_t *nr_pages, bool write)
1728 {
1729         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1730                 return KVM_HVA_ERR_BAD;
1731
1732         if (memslot_is_readonly(slot) && write)
1733                 return KVM_HVA_ERR_RO_BAD;
1734
1735         if (nr_pages)
1736                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1737
1738         return __gfn_to_hva_memslot(slot, gfn);
1739 }
1740
1741 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1742                                      gfn_t *nr_pages)
1743 {
1744         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1745 }
1746
1747 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1748                                         gfn_t gfn)
1749 {
1750         return gfn_to_hva_many(slot, gfn, NULL);
1751 }
1752 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1753
1754 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1755 {
1756         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1757 }
1758 EXPORT_SYMBOL_GPL(gfn_to_hva);
1759
1760 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1761 {
1762         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1765
1766 /*
1767  * Return the hva of a @gfn and the R/W attribute if possible.
1768  *
1769  * @slot: the kvm_memory_slot which contains @gfn
1770  * @gfn: the gfn to be translated
1771  * @writable: used to return the read/write attribute of the @slot if the hva
1772  * is valid and @writable is not NULL
1773  */
1774 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1775                                       gfn_t gfn, bool *writable)
1776 {
1777         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1778
1779         if (!kvm_is_error_hva(hva) && writable)
1780                 *writable = !memslot_is_readonly(slot);
1781
1782         return hva;
1783 }
1784
1785 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1786 {
1787         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1788
1789         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1790 }
1791
1792 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1793 {
1794         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1795
1796         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1797 }
1798
1799 static inline int check_user_page_hwpoison(unsigned long addr)
1800 {
1801         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1802
1803         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1804         return rc == -EHWPOISON;
1805 }
1806
1807 /*
1808  * The fast path to get the writable pfn which will be stored in @pfn,
1809  * true indicates success, otherwise false is returned.  It's also the
1810  * only part that runs if we can in atomic context.
1811  */
1812 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1813                             bool *writable, kvm_pfn_t *pfn)
1814 {
1815         struct page *page[1];
1816
1817         /*
1818          * Fast pin a writable pfn only if it is a write fault request
1819          * or the caller allows to map a writable pfn for a read fault
1820          * request.
1821          */
1822         if (!(write_fault || writable))
1823                 return false;
1824
1825         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1826                 *pfn = page_to_pfn(page[0]);
1827
1828                 if (writable)
1829                         *writable = true;
1830                 return true;
1831         }
1832
1833         return false;
1834 }
1835
1836 /*
1837  * The slow path to get the pfn of the specified host virtual address,
1838  * 1 indicates success, -errno is returned if error is detected.
1839  */
1840 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1841                            bool *writable, kvm_pfn_t *pfn)
1842 {
1843         unsigned int flags = FOLL_HWPOISON;
1844         struct page *page;
1845         int npages = 0;
1846
1847         might_sleep();
1848
1849         if (writable)
1850                 *writable = write_fault;
1851
1852         if (write_fault)
1853                 flags |= FOLL_WRITE;
1854         if (async)
1855                 flags |= FOLL_NOWAIT;
1856
1857         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1858         if (npages != 1)
1859                 return npages;
1860
1861         /* map read fault as writable if possible */
1862         if (unlikely(!write_fault) && writable) {
1863                 struct page *wpage;
1864
1865                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1866                         *writable = true;
1867                         put_page(page);
1868                         page = wpage;
1869                 }
1870         }
1871         *pfn = page_to_pfn(page);
1872         return npages;
1873 }
1874
1875 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1876 {
1877         if (unlikely(!(vma->vm_flags & VM_READ)))
1878                 return false;
1879
1880         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1881                 return false;
1882
1883         return true;
1884 }
1885
1886 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1887                                unsigned long addr, bool *async,
1888                                bool write_fault, bool *writable,
1889                                kvm_pfn_t *p_pfn)
1890 {
1891         unsigned long pfn;
1892         int r;
1893
1894         r = follow_pfn(vma, addr, &pfn);
1895         if (r) {
1896                 /*
1897                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1898                  * not call the fault handler, so do it here.
1899                  */
1900                 bool unlocked = false;
1901                 r = fixup_user_fault(current->mm, addr,
1902                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1903                                      &unlocked);
1904                 if (unlocked)
1905                         return -EAGAIN;
1906                 if (r)
1907                         return r;
1908
1909                 r = follow_pfn(vma, addr, &pfn);
1910                 if (r)
1911                         return r;
1912
1913         }
1914
1915         if (writable)
1916                 *writable = true;
1917
1918         /*
1919          * Get a reference here because callers of *hva_to_pfn* and
1920          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1921          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1922          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1923          * simply do nothing for reserved pfns.
1924          *
1925          * Whoever called remap_pfn_range is also going to call e.g.
1926          * unmap_mapping_range before the underlying pages are freed,
1927          * causing a call to our MMU notifier.
1928          */ 
1929         kvm_get_pfn(pfn);
1930
1931         *p_pfn = pfn;
1932         return 0;
1933 }
1934
1935 /*
1936  * Pin guest page in memory and return its pfn.
1937  * @addr: host virtual address which maps memory to the guest
1938  * @atomic: whether this function can sleep
1939  * @async: whether this function need to wait IO complete if the
1940  *         host page is not in the memory
1941  * @write_fault: whether we should get a writable host page
1942  * @writable: whether it allows to map a writable host page for !@write_fault
1943  *
1944  * The function will map a writable host page for these two cases:
1945  * 1): @write_fault = true
1946  * 2): @write_fault = false && @writable, @writable will tell the caller
1947  *     whether the mapping is writable.
1948  */
1949 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1950                         bool write_fault, bool *writable)
1951 {
1952         struct vm_area_struct *vma;
1953         kvm_pfn_t pfn = 0;
1954         int npages, r;
1955
1956         /* we can do it either atomically or asynchronously, not both */
1957         BUG_ON(atomic && async);
1958
1959         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1960                 return pfn;
1961
1962         if (atomic)
1963                 return KVM_PFN_ERR_FAULT;
1964
1965         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1966         if (npages == 1)
1967                 return pfn;
1968
1969         mmap_read_lock(current->mm);
1970         if (npages == -EHWPOISON ||
1971               (!async && check_user_page_hwpoison(addr))) {
1972                 pfn = KVM_PFN_ERR_HWPOISON;
1973                 goto exit;
1974         }
1975
1976 retry:
1977         vma = find_vma_intersection(current->mm, addr, addr + 1);
1978
1979         if (vma == NULL)
1980                 pfn = KVM_PFN_ERR_FAULT;
1981         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1982                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1983                 if (r == -EAGAIN)
1984                         goto retry;
1985                 if (r < 0)
1986                         pfn = KVM_PFN_ERR_FAULT;
1987         } else {
1988                 if (async && vma_is_valid(vma, write_fault))
1989                         *async = true;
1990                 pfn = KVM_PFN_ERR_FAULT;
1991         }
1992 exit:
1993         mmap_read_unlock(current->mm);
1994         return pfn;
1995 }
1996
1997 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1998                                bool atomic, bool *async, bool write_fault,
1999                                bool *writable)
2000 {
2001         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2002
2003         if (addr == KVM_HVA_ERR_RO_BAD) {
2004                 if (writable)
2005                         *writable = false;
2006                 return KVM_PFN_ERR_RO_FAULT;
2007         }
2008
2009         if (kvm_is_error_hva(addr)) {
2010                 if (writable)
2011                         *writable = false;
2012                 return KVM_PFN_NOSLOT;
2013         }
2014
2015         /* Do not map writable pfn in the readonly memslot. */
2016         if (writable && memslot_is_readonly(slot)) {
2017                 *writable = false;
2018                 writable = NULL;
2019         }
2020
2021         return hva_to_pfn(addr, atomic, async, write_fault,
2022                           writable);
2023 }
2024 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2025
2026 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2027                       bool *writable)
2028 {
2029         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2030                                     write_fault, writable);
2031 }
2032 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2033
2034 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2035 {
2036         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2037 }
2038 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2039
2040 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2041 {
2042         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2043 }
2044 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2045
2046 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2047 {
2048         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2049 }
2050 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2051
2052 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2053 {
2054         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2055 }
2056 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2057
2058 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2059 {
2060         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2063
2064 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2065                             struct page **pages, int nr_pages)
2066 {
2067         unsigned long addr;
2068         gfn_t entry = 0;
2069
2070         addr = gfn_to_hva_many(slot, gfn, &entry);
2071         if (kvm_is_error_hva(addr))
2072                 return -1;
2073
2074         if (entry < nr_pages)
2075                 return 0;
2076
2077         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2078 }
2079 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2080
2081 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2082 {
2083         if (is_error_noslot_pfn(pfn))
2084                 return KVM_ERR_PTR_BAD_PAGE;
2085
2086         if (kvm_is_reserved_pfn(pfn)) {
2087                 WARN_ON(1);
2088                 return KVM_ERR_PTR_BAD_PAGE;
2089         }
2090
2091         return pfn_to_page(pfn);
2092 }
2093
2094 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2095 {
2096         kvm_pfn_t pfn;
2097
2098         pfn = gfn_to_pfn(kvm, gfn);
2099
2100         return kvm_pfn_to_page(pfn);
2101 }
2102 EXPORT_SYMBOL_GPL(gfn_to_page);
2103
2104 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2105 {
2106         if (pfn == 0)
2107                 return;
2108
2109         if (cache)
2110                 cache->pfn = cache->gfn = 0;
2111
2112         if (dirty)
2113                 kvm_release_pfn_dirty(pfn);
2114         else
2115                 kvm_release_pfn_clean(pfn);
2116 }
2117
2118 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2119                                  struct gfn_to_pfn_cache *cache, u64 gen)
2120 {
2121         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2122
2123         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2124         cache->gfn = gfn;
2125         cache->dirty = false;
2126         cache->generation = gen;
2127 }
2128
2129 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2130                          struct kvm_host_map *map,
2131                          struct gfn_to_pfn_cache *cache,
2132                          bool atomic)
2133 {
2134         kvm_pfn_t pfn;
2135         void *hva = NULL;
2136         struct page *page = KVM_UNMAPPED_PAGE;
2137         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2138         u64 gen = slots->generation;
2139
2140         if (!map)
2141                 return -EINVAL;
2142
2143         if (cache) {
2144                 if (!cache->pfn || cache->gfn != gfn ||
2145                         cache->generation != gen) {
2146                         if (atomic)
2147                                 return -EAGAIN;
2148                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2149                 }
2150                 pfn = cache->pfn;
2151         } else {
2152                 if (atomic)
2153                         return -EAGAIN;
2154                 pfn = gfn_to_pfn_memslot(slot, gfn);
2155         }
2156         if (is_error_noslot_pfn(pfn))
2157                 return -EINVAL;
2158
2159         if (pfn_valid(pfn)) {
2160                 page = pfn_to_page(pfn);
2161                 if (atomic)
2162                         hva = kmap_atomic(page);
2163                 else
2164                         hva = kmap(page);
2165 #ifdef CONFIG_HAS_IOMEM
2166         } else if (!atomic) {
2167                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2168         } else {
2169                 return -EINVAL;
2170 #endif
2171         }
2172
2173         if (!hva)
2174                 return -EFAULT;
2175
2176         map->page = page;
2177         map->hva = hva;
2178         map->pfn = pfn;
2179         map->gfn = gfn;
2180
2181         return 0;
2182 }
2183
2184 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2185                 struct gfn_to_pfn_cache *cache, bool atomic)
2186 {
2187         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2188                         cache, atomic);
2189 }
2190 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2191
2192 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2193 {
2194         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2195                 NULL, false);
2196 }
2197 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2198
2199 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2200                         struct kvm_host_map *map,
2201                         struct gfn_to_pfn_cache *cache,
2202                         bool dirty, bool atomic)
2203 {
2204         if (!map)
2205                 return;
2206
2207         if (!map->hva)
2208                 return;
2209
2210         if (map->page != KVM_UNMAPPED_PAGE) {
2211                 if (atomic)
2212                         kunmap_atomic(map->hva);
2213                 else
2214                         kunmap(map->page);
2215         }
2216 #ifdef CONFIG_HAS_IOMEM
2217         else if (!atomic)
2218                 memunmap(map->hva);
2219         else
2220                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2221 #endif
2222
2223         if (dirty)
2224                 mark_page_dirty_in_slot(memslot, map->gfn);
2225
2226         if (cache)
2227                 cache->dirty |= dirty;
2228         else
2229                 kvm_release_pfn(map->pfn, dirty, NULL);
2230
2231         map->hva = NULL;
2232         map->page = NULL;
2233 }
2234
2235 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2236                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2237 {
2238         __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2239                         cache, dirty, atomic);
2240         return 0;
2241 }
2242 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2243
2244 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2245 {
2246         __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2247                         dirty, false);
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2250
2251 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2252 {
2253         kvm_pfn_t pfn;
2254
2255         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2256
2257         return kvm_pfn_to_page(pfn);
2258 }
2259 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2260
2261 void kvm_release_page_clean(struct page *page)
2262 {
2263         WARN_ON(is_error_page(page));
2264
2265         kvm_release_pfn_clean(page_to_pfn(page));
2266 }
2267 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2268
2269 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2270 {
2271         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2272                 put_page(pfn_to_page(pfn));
2273 }
2274 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2275
2276 void kvm_release_page_dirty(struct page *page)
2277 {
2278         WARN_ON(is_error_page(page));
2279
2280         kvm_release_pfn_dirty(page_to_pfn(page));
2281 }
2282 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2283
2284 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2285 {
2286         kvm_set_pfn_dirty(pfn);
2287         kvm_release_pfn_clean(pfn);
2288 }
2289 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2290
2291 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2292 {
2293         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2294                 SetPageDirty(pfn_to_page(pfn));
2295 }
2296 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2297
2298 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2299 {
2300         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2301                 mark_page_accessed(pfn_to_page(pfn));
2302 }
2303 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2304
2305 void kvm_get_pfn(kvm_pfn_t pfn)
2306 {
2307         if (!kvm_is_reserved_pfn(pfn))
2308                 get_page(pfn_to_page(pfn));
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2311
2312 static int next_segment(unsigned long len, int offset)
2313 {
2314         if (len > PAGE_SIZE - offset)
2315                 return PAGE_SIZE - offset;
2316         else
2317                 return len;
2318 }
2319
2320 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2321                                  void *data, int offset, int len)
2322 {
2323         int r;
2324         unsigned long addr;
2325
2326         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2327         if (kvm_is_error_hva(addr))
2328                 return -EFAULT;
2329         r = __copy_from_user(data, (void __user *)addr + offset, len);
2330         if (r)
2331                 return -EFAULT;
2332         return 0;
2333 }
2334
2335 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2336                         int len)
2337 {
2338         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2339
2340         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2343
2344 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2345                              int offset, int len)
2346 {
2347         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2348
2349         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2352
2353 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2354 {
2355         gfn_t gfn = gpa >> PAGE_SHIFT;
2356         int seg;
2357         int offset = offset_in_page(gpa);
2358         int ret;
2359
2360         while ((seg = next_segment(len, offset)) != 0) {
2361                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2362                 if (ret < 0)
2363                         return ret;
2364                 offset = 0;
2365                 len -= seg;
2366                 data += seg;
2367                 ++gfn;
2368         }
2369         return 0;
2370 }
2371 EXPORT_SYMBOL_GPL(kvm_read_guest);
2372
2373 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2374 {
2375         gfn_t gfn = gpa >> PAGE_SHIFT;
2376         int seg;
2377         int offset = offset_in_page(gpa);
2378         int ret;
2379
2380         while ((seg = next_segment(len, offset)) != 0) {
2381                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2382                 if (ret < 0)
2383                         return ret;
2384                 offset = 0;
2385                 len -= seg;
2386                 data += seg;
2387                 ++gfn;
2388         }
2389         return 0;
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2392
2393 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2394                                    void *data, int offset, unsigned long len)
2395 {
2396         int r;
2397         unsigned long addr;
2398
2399         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2400         if (kvm_is_error_hva(addr))
2401                 return -EFAULT;
2402         pagefault_disable();
2403         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2404         pagefault_enable();
2405         if (r)
2406                 return -EFAULT;
2407         return 0;
2408 }
2409
2410 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2411                                void *data, unsigned long len)
2412 {
2413         gfn_t gfn = gpa >> PAGE_SHIFT;
2414         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2415         int offset = offset_in_page(gpa);
2416
2417         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2418 }
2419 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2420
2421 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2422                                   const void *data, int offset, int len)
2423 {
2424         int r;
2425         unsigned long addr;
2426
2427         addr = gfn_to_hva_memslot(memslot, gfn);
2428         if (kvm_is_error_hva(addr))
2429                 return -EFAULT;
2430         r = __copy_to_user((void __user *)addr + offset, data, len);
2431         if (r)
2432                 return -EFAULT;
2433         mark_page_dirty_in_slot(memslot, gfn);
2434         return 0;
2435 }
2436
2437 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2438                          const void *data, int offset, int len)
2439 {
2440         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2441
2442         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2443 }
2444 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2445
2446 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2447                               const void *data, int offset, int len)
2448 {
2449         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2450
2451         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2452 }
2453 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2454
2455 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2456                     unsigned long len)
2457 {
2458         gfn_t gfn = gpa >> PAGE_SHIFT;
2459         int seg;
2460         int offset = offset_in_page(gpa);
2461         int ret;
2462
2463         while ((seg = next_segment(len, offset)) != 0) {
2464                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2465                 if (ret < 0)
2466                         return ret;
2467                 offset = 0;
2468                 len -= seg;
2469                 data += seg;
2470                 ++gfn;
2471         }
2472         return 0;
2473 }
2474 EXPORT_SYMBOL_GPL(kvm_write_guest);
2475
2476 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2477                          unsigned long len)
2478 {
2479         gfn_t gfn = gpa >> PAGE_SHIFT;
2480         int seg;
2481         int offset = offset_in_page(gpa);
2482         int ret;
2483
2484         while ((seg = next_segment(len, offset)) != 0) {
2485                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2486                 if (ret < 0)
2487                         return ret;
2488                 offset = 0;
2489                 len -= seg;
2490                 data += seg;
2491                 ++gfn;
2492         }
2493         return 0;
2494 }
2495 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2496
2497 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2498                                        struct gfn_to_hva_cache *ghc,
2499                                        gpa_t gpa, unsigned long len)
2500 {
2501         int offset = offset_in_page(gpa);
2502         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2503         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2504         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2505         gfn_t nr_pages_avail;
2506
2507         /* Update ghc->generation before performing any error checks. */
2508         ghc->generation = slots->generation;
2509
2510         if (start_gfn > end_gfn) {
2511                 ghc->hva = KVM_HVA_ERR_BAD;
2512                 return -EINVAL;
2513         }
2514
2515         /*
2516          * If the requested region crosses two memslots, we still
2517          * verify that the entire region is valid here.
2518          */
2519         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2520                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2521                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2522                                            &nr_pages_avail);
2523                 if (kvm_is_error_hva(ghc->hva))
2524                         return -EFAULT;
2525         }
2526
2527         /* Use the slow path for cross page reads and writes. */
2528         if (nr_pages_needed == 1)
2529                 ghc->hva += offset;
2530         else
2531                 ghc->memslot = NULL;
2532
2533         ghc->gpa = gpa;
2534         ghc->len = len;
2535         return 0;
2536 }
2537
2538 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2539                               gpa_t gpa, unsigned long len)
2540 {
2541         struct kvm_memslots *slots = kvm_memslots(kvm);
2542         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2543 }
2544 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2545
2546 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2547                                   void *data, unsigned int offset,
2548                                   unsigned long len)
2549 {
2550         struct kvm_memslots *slots = kvm_memslots(kvm);
2551         int r;
2552         gpa_t gpa = ghc->gpa + offset;
2553
2554         BUG_ON(len + offset > ghc->len);
2555
2556         if (slots->generation != ghc->generation) {
2557                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2558                         return -EFAULT;
2559         }
2560
2561         if (kvm_is_error_hva(ghc->hva))
2562                 return -EFAULT;
2563
2564         if (unlikely(!ghc->memslot))
2565                 return kvm_write_guest(kvm, gpa, data, len);
2566
2567         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2568         if (r)
2569                 return -EFAULT;
2570         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2571
2572         return 0;
2573 }
2574 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2575
2576 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2577                            void *data, unsigned long len)
2578 {
2579         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2580 }
2581 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2582
2583 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2584                                  void *data, unsigned int offset,
2585                                  unsigned long len)
2586 {
2587         struct kvm_memslots *slots = kvm_memslots(kvm);
2588         int r;
2589         gpa_t gpa = ghc->gpa + offset;
2590
2591         BUG_ON(len + offset > ghc->len);
2592
2593         if (slots->generation != ghc->generation) {
2594                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2595                         return -EFAULT;
2596         }
2597
2598         if (kvm_is_error_hva(ghc->hva))
2599                 return -EFAULT;
2600
2601         if (unlikely(!ghc->memslot))
2602                 return kvm_read_guest(kvm, gpa, data, len);
2603
2604         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2605         if (r)
2606                 return -EFAULT;
2607
2608         return 0;
2609 }
2610 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2611
2612 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2613                           void *data, unsigned long len)
2614 {
2615         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2616 }
2617 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2618
2619 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2620 {
2621         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2622
2623         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2624 }
2625 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2626
2627 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2628 {
2629         gfn_t gfn = gpa >> PAGE_SHIFT;
2630         int seg;
2631         int offset = offset_in_page(gpa);
2632         int ret;
2633
2634         while ((seg = next_segment(len, offset)) != 0) {
2635                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2636                 if (ret < 0)
2637                         return ret;
2638                 offset = 0;
2639                 len -= seg;
2640                 ++gfn;
2641         }
2642         return 0;
2643 }
2644 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2645
2646 void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn)
2647 {
2648         if (memslot && memslot->dirty_bitmap) {
2649                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2650
2651                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2652         }
2653 }
2654 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2655
2656 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2657 {
2658         struct kvm_memory_slot *memslot;
2659
2660         memslot = gfn_to_memslot(kvm, gfn);
2661         mark_page_dirty_in_slot(memslot, gfn);
2662 }
2663 EXPORT_SYMBOL_GPL(mark_page_dirty);
2664
2665 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2666 {
2667         struct kvm_memory_slot *memslot;
2668
2669         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2670         mark_page_dirty_in_slot(memslot, gfn);
2671 }
2672 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2673
2674 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2675 {
2676         if (!vcpu->sigset_active)
2677                 return;
2678
2679         /*
2680          * This does a lockless modification of ->real_blocked, which is fine
2681          * because, only current can change ->real_blocked and all readers of
2682          * ->real_blocked don't care as long ->real_blocked is always a subset
2683          * of ->blocked.
2684          */
2685         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2686 }
2687
2688 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2689 {
2690         if (!vcpu->sigset_active)
2691                 return;
2692
2693         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2694         sigemptyset(&current->real_blocked);
2695 }
2696
2697 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2698 {
2699         unsigned int old, val, grow, grow_start;
2700
2701         old = val = vcpu->halt_poll_ns;
2702         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2703         grow = READ_ONCE(halt_poll_ns_grow);
2704         if (!grow)
2705                 goto out;
2706
2707         val *= grow;
2708         if (val < grow_start)
2709                 val = grow_start;
2710
2711         if (val > halt_poll_ns)
2712                 val = halt_poll_ns;
2713
2714         vcpu->halt_poll_ns = val;
2715 out:
2716         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2717 }
2718
2719 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2720 {
2721         unsigned int old, val, shrink;
2722
2723         old = val = vcpu->halt_poll_ns;
2724         shrink = READ_ONCE(halt_poll_ns_shrink);
2725         if (shrink == 0)
2726                 val = 0;
2727         else
2728                 val /= shrink;
2729
2730         vcpu->halt_poll_ns = val;
2731         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2732 }
2733
2734 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2735 {
2736         int ret = -EINTR;
2737         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2738
2739         if (kvm_arch_vcpu_runnable(vcpu)) {
2740                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2741                 goto out;
2742         }
2743         if (kvm_cpu_has_pending_timer(vcpu))
2744                 goto out;
2745         if (signal_pending(current))
2746                 goto out;
2747
2748         ret = 0;
2749 out:
2750         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2751         return ret;
2752 }
2753
2754 static inline void
2755 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2756 {
2757         if (waited)
2758                 vcpu->stat.halt_poll_fail_ns += poll_ns;
2759         else
2760                 vcpu->stat.halt_poll_success_ns += poll_ns;
2761 }
2762
2763 /*
2764  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2765  */
2766 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2767 {
2768         ktime_t start, cur, poll_end;
2769         bool waited = false;
2770         u64 block_ns;
2771
2772         kvm_arch_vcpu_blocking(vcpu);
2773
2774         start = cur = poll_end = ktime_get();
2775         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2776                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2777
2778                 ++vcpu->stat.halt_attempted_poll;
2779                 do {
2780                         /*
2781                          * This sets KVM_REQ_UNHALT if an interrupt
2782                          * arrives.
2783                          */
2784                         if (kvm_vcpu_check_block(vcpu) < 0) {
2785                                 ++vcpu->stat.halt_successful_poll;
2786                                 if (!vcpu_valid_wakeup(vcpu))
2787                                         ++vcpu->stat.halt_poll_invalid;
2788                                 goto out;
2789                         }
2790                         poll_end = cur = ktime_get();
2791                 } while (single_task_running() && ktime_before(cur, stop));
2792         }
2793
2794         prepare_to_rcuwait(&vcpu->wait);
2795         for (;;) {
2796                 set_current_state(TASK_INTERRUPTIBLE);
2797
2798                 if (kvm_vcpu_check_block(vcpu) < 0)
2799                         break;
2800
2801                 waited = true;
2802                 schedule();
2803         }
2804         finish_rcuwait(&vcpu->wait);
2805         cur = ktime_get();
2806 out:
2807         kvm_arch_vcpu_unblocking(vcpu);
2808         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2809
2810         update_halt_poll_stats(
2811                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2812
2813         if (!kvm_arch_no_poll(vcpu)) {
2814                 if (!vcpu_valid_wakeup(vcpu)) {
2815                         shrink_halt_poll_ns(vcpu);
2816                 } else if (vcpu->kvm->max_halt_poll_ns) {
2817                         if (block_ns <= vcpu->halt_poll_ns)
2818                                 ;
2819                         /* we had a long block, shrink polling */
2820                         else if (vcpu->halt_poll_ns &&
2821                                         block_ns > vcpu->kvm->max_halt_poll_ns)
2822                                 shrink_halt_poll_ns(vcpu);
2823                         /* we had a short halt and our poll time is too small */
2824                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2825                                         block_ns < vcpu->kvm->max_halt_poll_ns)
2826                                 grow_halt_poll_ns(vcpu);
2827                 } else {
2828                         vcpu->halt_poll_ns = 0;
2829                 }
2830         }
2831
2832         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2833         kvm_arch_vcpu_block_finish(vcpu);
2834 }
2835 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2836
2837 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2838 {
2839         struct rcuwait *waitp;
2840
2841         waitp = kvm_arch_vcpu_get_wait(vcpu);
2842         if (rcuwait_wake_up(waitp)) {
2843                 WRITE_ONCE(vcpu->ready, true);
2844                 ++vcpu->stat.halt_wakeup;
2845                 return true;
2846         }
2847
2848         return false;
2849 }
2850 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2851
2852 #ifndef CONFIG_S390
2853 /*
2854  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2855  */
2856 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2857 {
2858         int me;
2859         int cpu = vcpu->cpu;
2860
2861         if (kvm_vcpu_wake_up(vcpu))
2862                 return;
2863
2864         me = get_cpu();
2865         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2866                 if (kvm_arch_vcpu_should_kick(vcpu))
2867                         smp_send_reschedule(cpu);
2868         put_cpu();
2869 }
2870 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2871 #endif /* !CONFIG_S390 */
2872
2873 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2874 {
2875         struct pid *pid;
2876         struct task_struct *task = NULL;
2877         int ret = 0;
2878
2879         rcu_read_lock();
2880         pid = rcu_dereference(target->pid);
2881         if (pid)
2882                 task = get_pid_task(pid, PIDTYPE_PID);
2883         rcu_read_unlock();
2884         if (!task)
2885                 return ret;
2886         ret = yield_to(task, 1);
2887         put_task_struct(task);
2888
2889         return ret;
2890 }
2891 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2892
2893 /*
2894  * Helper that checks whether a VCPU is eligible for directed yield.
2895  * Most eligible candidate to yield is decided by following heuristics:
2896  *
2897  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2898  *  (preempted lock holder), indicated by @in_spin_loop.
2899  *  Set at the beginning and cleared at the end of interception/PLE handler.
2900  *
2901  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2902  *  chance last time (mostly it has become eligible now since we have probably
2903  *  yielded to lockholder in last iteration. This is done by toggling
2904  *  @dy_eligible each time a VCPU checked for eligibility.)
2905  *
2906  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2907  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2908  *  burning. Giving priority for a potential lock-holder increases lock
2909  *  progress.
2910  *
2911  *  Since algorithm is based on heuristics, accessing another VCPU data without
2912  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2913  *  and continue with next VCPU and so on.
2914  */
2915 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2916 {
2917 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2918         bool eligible;
2919
2920         eligible = !vcpu->spin_loop.in_spin_loop ||
2921                     vcpu->spin_loop.dy_eligible;
2922
2923         if (vcpu->spin_loop.in_spin_loop)
2924                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2925
2926         return eligible;
2927 #else
2928         return true;
2929 #endif
2930 }
2931
2932 /*
2933  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2934  * a vcpu_load/vcpu_put pair.  However, for most architectures
2935  * kvm_arch_vcpu_runnable does not require vcpu_load.
2936  */
2937 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2938 {
2939         return kvm_arch_vcpu_runnable(vcpu);
2940 }
2941
2942 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2943 {
2944         if (kvm_arch_dy_runnable(vcpu))
2945                 return true;
2946
2947 #ifdef CONFIG_KVM_ASYNC_PF
2948         if (!list_empty_careful(&vcpu->async_pf.done))
2949                 return true;
2950 #endif
2951
2952         return false;
2953 }
2954
2955 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2956 {
2957         struct kvm *kvm = me->kvm;
2958         struct kvm_vcpu *vcpu;
2959         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2960         int yielded = 0;
2961         int try = 3;
2962         int pass;
2963         int i;
2964
2965         kvm_vcpu_set_in_spin_loop(me, true);
2966         /*
2967          * We boost the priority of a VCPU that is runnable but not
2968          * currently running, because it got preempted by something
2969          * else and called schedule in __vcpu_run.  Hopefully that
2970          * VCPU is holding the lock that we need and will release it.
2971          * We approximate round-robin by starting at the last boosted VCPU.
2972          */
2973         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2974                 kvm_for_each_vcpu(i, vcpu, kvm) {
2975                         if (!pass && i <= last_boosted_vcpu) {
2976                                 i = last_boosted_vcpu;
2977                                 continue;
2978                         } else if (pass && i > last_boosted_vcpu)
2979                                 break;
2980                         if (!READ_ONCE(vcpu->ready))
2981                                 continue;
2982                         if (vcpu == me)
2983                                 continue;
2984                         if (rcuwait_active(&vcpu->wait) &&
2985                             !vcpu_dy_runnable(vcpu))
2986                                 continue;
2987                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2988                                 !kvm_arch_vcpu_in_kernel(vcpu))
2989                                 continue;
2990                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2991                                 continue;
2992
2993                         yielded = kvm_vcpu_yield_to(vcpu);
2994                         if (yielded > 0) {
2995                                 kvm->last_boosted_vcpu = i;
2996                                 break;
2997                         } else if (yielded < 0) {
2998                                 try--;
2999                                 if (!try)
3000                                         break;
3001                         }
3002                 }
3003         }
3004         kvm_vcpu_set_in_spin_loop(me, false);
3005
3006         /* Ensure vcpu is not eligible during next spinloop */
3007         kvm_vcpu_set_dy_eligible(me, false);
3008 }
3009 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3010
3011 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3012 {
3013         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3014         struct page *page;
3015
3016         if (vmf->pgoff == 0)
3017                 page = virt_to_page(vcpu->run);
3018 #ifdef CONFIG_X86
3019         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3020                 page = virt_to_page(vcpu->arch.pio_data);
3021 #endif
3022 #ifdef CONFIG_KVM_MMIO
3023         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3024                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3025 #endif
3026         else
3027                 return kvm_arch_vcpu_fault(vcpu, vmf);
3028         get_page(page);
3029         vmf->page = page;
3030         return 0;
3031 }
3032
3033 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3034         .fault = kvm_vcpu_fault,
3035 };
3036
3037 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3038 {
3039         vma->vm_ops = &kvm_vcpu_vm_ops;
3040         return 0;
3041 }
3042
3043 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3044 {
3045         struct kvm_vcpu *vcpu = filp->private_data;
3046
3047         kvm_put_kvm(vcpu->kvm);
3048         return 0;
3049 }
3050
3051 static struct file_operations kvm_vcpu_fops = {
3052         .release        = kvm_vcpu_release,
3053         .unlocked_ioctl = kvm_vcpu_ioctl,
3054         .mmap           = kvm_vcpu_mmap,
3055         .llseek         = noop_llseek,
3056         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3057 };
3058
3059 /*
3060  * Allocates an inode for the vcpu.
3061  */
3062 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3063 {
3064         char name[8 + 1 + ITOA_MAX_LEN + 1];
3065
3066         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3067         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3068 }
3069
3070 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3071 {
3072 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3073         struct dentry *debugfs_dentry;
3074         char dir_name[ITOA_MAX_LEN * 2];
3075
3076         if (!debugfs_initialized())
3077                 return;
3078
3079         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3080         debugfs_dentry = debugfs_create_dir(dir_name,
3081                                             vcpu->kvm->debugfs_dentry);
3082
3083         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3084 #endif
3085 }
3086
3087 /*
3088  * Creates some virtual cpus.  Good luck creating more than one.
3089  */
3090 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3091 {
3092         int r;
3093         struct kvm_vcpu *vcpu;
3094         struct page *page;
3095
3096         if (id >= KVM_MAX_VCPU_ID)
3097                 return -EINVAL;
3098
3099         mutex_lock(&kvm->lock);
3100         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3101                 mutex_unlock(&kvm->lock);
3102                 return -EINVAL;
3103         }
3104
3105         kvm->created_vcpus++;
3106         mutex_unlock(&kvm->lock);
3107
3108         r = kvm_arch_vcpu_precreate(kvm, id);
3109         if (r)
3110                 goto vcpu_decrement;
3111
3112         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3113         if (!vcpu) {
3114                 r = -ENOMEM;
3115                 goto vcpu_decrement;
3116         }
3117
3118         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3119         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3120         if (!page) {
3121                 r = -ENOMEM;
3122                 goto vcpu_free;
3123         }
3124         vcpu->run = page_address(page);
3125
3126         kvm_vcpu_init(vcpu, kvm, id);
3127
3128         r = kvm_arch_vcpu_create(vcpu);
3129         if (r)
3130                 goto vcpu_free_run_page;
3131
3132         mutex_lock(&kvm->lock);
3133         if (kvm_get_vcpu_by_id(kvm, id)) {
3134                 r = -EEXIST;
3135                 goto unlock_vcpu_destroy;
3136         }
3137
3138         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3139         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3140
3141         /* Now it's all set up, let userspace reach it */
3142         kvm_get_kvm(kvm);
3143         r = create_vcpu_fd(vcpu);
3144         if (r < 0) {
3145                 kvm_put_kvm_no_destroy(kvm);
3146                 goto unlock_vcpu_destroy;
3147         }
3148
3149         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3150
3151         /*
3152          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3153          * before kvm->online_vcpu's incremented value.
3154          */
3155         smp_wmb();
3156         atomic_inc(&kvm->online_vcpus);
3157
3158         mutex_unlock(&kvm->lock);
3159         kvm_arch_vcpu_postcreate(vcpu);
3160         kvm_create_vcpu_debugfs(vcpu);
3161         return r;
3162
3163 unlock_vcpu_destroy:
3164         mutex_unlock(&kvm->lock);
3165         kvm_arch_vcpu_destroy(vcpu);
3166 vcpu_free_run_page:
3167         free_page((unsigned long)vcpu->run);
3168 vcpu_free:
3169         kmem_cache_free(kvm_vcpu_cache, vcpu);
3170 vcpu_decrement:
3171         mutex_lock(&kvm->lock);
3172         kvm->created_vcpus--;
3173         mutex_unlock(&kvm->lock);
3174         return r;
3175 }
3176
3177 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3178 {
3179         if (sigset) {
3180                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3181                 vcpu->sigset_active = 1;
3182                 vcpu->sigset = *sigset;
3183         } else
3184                 vcpu->sigset_active = 0;
3185         return 0;
3186 }
3187
3188 static long kvm_vcpu_ioctl(struct file *filp,
3189                            unsigned int ioctl, unsigned long arg)
3190 {
3191         struct kvm_vcpu *vcpu = filp->private_data;
3192         void __user *argp = (void __user *)arg;
3193         int r;
3194         struct kvm_fpu *fpu = NULL;
3195         struct kvm_sregs *kvm_sregs = NULL;
3196
3197         if (vcpu->kvm->mm != current->mm)
3198                 return -EIO;
3199
3200         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3201                 return -EINVAL;
3202
3203         /*
3204          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3205          * execution; mutex_lock() would break them.
3206          */
3207         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3208         if (r != -ENOIOCTLCMD)
3209                 return r;
3210
3211         if (mutex_lock_killable(&vcpu->mutex))
3212                 return -EINTR;
3213         switch (ioctl) {
3214         case KVM_RUN: {
3215                 struct pid *oldpid;
3216                 r = -EINVAL;
3217                 if (arg)
3218                         goto out;
3219                 oldpid = rcu_access_pointer(vcpu->pid);
3220                 if (unlikely(oldpid != task_pid(current))) {
3221                         /* The thread running this VCPU changed. */
3222                         struct pid *newpid;
3223
3224                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3225                         if (r)
3226                                 break;
3227
3228                         newpid = get_task_pid(current, PIDTYPE_PID);
3229                         rcu_assign_pointer(vcpu->pid, newpid);
3230                         if (oldpid)
3231                                 synchronize_rcu();
3232                         put_pid(oldpid);
3233                 }
3234                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3235                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3236                 break;
3237         }
3238         case KVM_GET_REGS: {
3239                 struct kvm_regs *kvm_regs;
3240
3241                 r = -ENOMEM;
3242                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3243                 if (!kvm_regs)
3244                         goto out;
3245                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3246                 if (r)
3247                         goto out_free1;
3248                 r = -EFAULT;
3249                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3250                         goto out_free1;
3251                 r = 0;
3252 out_free1:
3253                 kfree(kvm_regs);
3254                 break;
3255         }
3256         case KVM_SET_REGS: {
3257                 struct kvm_regs *kvm_regs;
3258
3259                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3260                 if (IS_ERR(kvm_regs)) {
3261                         r = PTR_ERR(kvm_regs);
3262                         goto out;
3263                 }
3264                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3265                 kfree(kvm_regs);
3266                 break;
3267         }
3268         case KVM_GET_SREGS: {
3269                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3270                                     GFP_KERNEL_ACCOUNT);
3271                 r = -ENOMEM;
3272                 if (!kvm_sregs)
3273                         goto out;
3274                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3275                 if (r)
3276                         goto out;
3277                 r = -EFAULT;
3278                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3279                         goto out;
3280                 r = 0;
3281                 break;
3282         }
3283         case KVM_SET_SREGS: {
3284                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3285                 if (IS_ERR(kvm_sregs)) {
3286                         r = PTR_ERR(kvm_sregs);
3287                         kvm_sregs = NULL;
3288                         goto out;
3289                 }
3290                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3291                 break;
3292         }
3293         case KVM_GET_MP_STATE: {
3294                 struct kvm_mp_state mp_state;
3295
3296                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3297                 if (r)
3298                         goto out;
3299                 r = -EFAULT;
3300                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3301                         goto out;
3302                 r = 0;
3303                 break;
3304         }
3305         case KVM_SET_MP_STATE: {
3306                 struct kvm_mp_state mp_state;
3307
3308                 r = -EFAULT;
3309                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3310                         goto out;
3311                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3312                 break;
3313         }
3314         case KVM_TRANSLATE: {
3315                 struct kvm_translation tr;
3316
3317                 r = -EFAULT;
3318                 if (copy_from_user(&tr, argp, sizeof(tr)))
3319                         goto out;
3320                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3321                 if (r)
3322                         goto out;
3323                 r = -EFAULT;
3324                 if (copy_to_user(argp, &tr, sizeof(tr)))
3325                         goto out;
3326                 r = 0;
3327                 break;
3328         }
3329         case KVM_SET_GUEST_DEBUG: {
3330                 struct kvm_guest_debug dbg;
3331
3332                 r = -EFAULT;
3333                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3334                         goto out;
3335                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3336                 break;
3337         }
3338         case KVM_SET_SIGNAL_MASK: {
3339                 struct kvm_signal_mask __user *sigmask_arg = argp;
3340                 struct kvm_signal_mask kvm_sigmask;
3341                 sigset_t sigset, *p;
3342
3343                 p = NULL;
3344                 if (argp) {
3345                         r = -EFAULT;
3346                         if (copy_from_user(&kvm_sigmask, argp,
3347                                            sizeof(kvm_sigmask)))
3348                                 goto out;
3349                         r = -EINVAL;
3350                         if (kvm_sigmask.len != sizeof(sigset))
3351                                 goto out;
3352                         r = -EFAULT;
3353                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3354                                            sizeof(sigset)))
3355                                 goto out;
3356                         p = &sigset;
3357                 }
3358                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3359                 break;
3360         }
3361         case KVM_GET_FPU: {
3362                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3363                 r = -ENOMEM;
3364                 if (!fpu)
3365                         goto out;
3366                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3367                 if (r)
3368                         goto out;
3369                 r = -EFAULT;
3370                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3371                         goto out;
3372                 r = 0;
3373                 break;
3374         }
3375         case KVM_SET_FPU: {
3376                 fpu = memdup_user(argp, sizeof(*fpu));
3377                 if (IS_ERR(fpu)) {
3378                         r = PTR_ERR(fpu);
3379                         fpu = NULL;
3380                         goto out;
3381                 }
3382                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3383                 break;
3384         }
3385         default:
3386                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3387         }
3388 out:
3389         mutex_unlock(&vcpu->mutex);
3390         kfree(fpu);
3391         kfree(kvm_sregs);
3392         return r;
3393 }
3394
3395 #ifdef CONFIG_KVM_COMPAT
3396 static long kvm_vcpu_compat_ioctl(struct file *filp,
3397                                   unsigned int ioctl, unsigned long arg)
3398 {
3399         struct kvm_vcpu *vcpu = filp->private_data;
3400         void __user *argp = compat_ptr(arg);
3401         int r;
3402
3403         if (vcpu->kvm->mm != current->mm)
3404                 return -EIO;
3405
3406         switch (ioctl) {
3407         case KVM_SET_SIGNAL_MASK: {
3408                 struct kvm_signal_mask __user *sigmask_arg = argp;
3409                 struct kvm_signal_mask kvm_sigmask;
3410                 sigset_t sigset;
3411
3412                 if (argp) {
3413                         r = -EFAULT;
3414                         if (copy_from_user(&kvm_sigmask, argp,
3415                                            sizeof(kvm_sigmask)))
3416                                 goto out;
3417                         r = -EINVAL;
3418                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3419                                 goto out;
3420                         r = -EFAULT;
3421                         if (get_compat_sigset(&sigset,
3422                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3423                                 goto out;
3424                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3425                 } else
3426                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3427                 break;
3428         }
3429         default:
3430                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3431         }
3432
3433 out:
3434         return r;
3435 }
3436 #endif
3437
3438 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3439 {
3440         struct kvm_device *dev = filp->private_data;
3441
3442         if (dev->ops->mmap)
3443                 return dev->ops->mmap(dev, vma);
3444
3445         return -ENODEV;
3446 }
3447
3448 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3449                                  int (*accessor)(struct kvm_device *dev,
3450                                                  struct kvm_device_attr *attr),
3451                                  unsigned long arg)
3452 {
3453         struct kvm_device_attr attr;
3454
3455         if (!accessor)
3456                 return -EPERM;
3457
3458         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3459                 return -EFAULT;
3460
3461         return accessor(dev, &attr);
3462 }
3463
3464 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3465                              unsigned long arg)
3466 {
3467         struct kvm_device *dev = filp->private_data;
3468
3469         if (dev->kvm->mm != current->mm)
3470                 return -EIO;
3471
3472         switch (ioctl) {
3473         case KVM_SET_DEVICE_ATTR:
3474                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3475         case KVM_GET_DEVICE_ATTR:
3476                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3477         case KVM_HAS_DEVICE_ATTR:
3478                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3479         default:
3480                 if (dev->ops->ioctl)
3481                         return dev->ops->ioctl(dev, ioctl, arg);
3482
3483                 return -ENOTTY;
3484         }
3485 }
3486
3487 static int kvm_device_release(struct inode *inode, struct file *filp)
3488 {
3489         struct kvm_device *dev = filp->private_data;
3490         struct kvm *kvm = dev->kvm;
3491
3492         if (dev->ops->release) {
3493                 mutex_lock(&kvm->lock);
3494                 list_del(&dev->vm_node);
3495                 dev->ops->release(dev);
3496                 mutex_unlock(&kvm->lock);
3497         }
3498
3499         kvm_put_kvm(kvm);
3500         return 0;
3501 }
3502
3503 static const struct file_operations kvm_device_fops = {
3504         .unlocked_ioctl = kvm_device_ioctl,
3505         .release = kvm_device_release,
3506         KVM_COMPAT(kvm_device_ioctl),
3507         .mmap = kvm_device_mmap,
3508 };
3509
3510 struct kvm_device *kvm_device_from_filp(struct file *filp)
3511 {
3512         if (filp->f_op != &kvm_device_fops)
3513                 return NULL;
3514
3515         return filp->private_data;
3516 }
3517
3518 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3519 #ifdef CONFIG_KVM_MPIC
3520         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3521         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3522 #endif
3523 };
3524
3525 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3526 {
3527         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3528                 return -ENOSPC;
3529
3530         if (kvm_device_ops_table[type] != NULL)
3531                 return -EEXIST;
3532
3533         kvm_device_ops_table[type] = ops;
3534         return 0;
3535 }
3536
3537 void kvm_unregister_device_ops(u32 type)
3538 {
3539         if (kvm_device_ops_table[type] != NULL)
3540                 kvm_device_ops_table[type] = NULL;
3541 }
3542
3543 static int kvm_ioctl_create_device(struct kvm *kvm,
3544                                    struct kvm_create_device *cd)
3545 {
3546         const struct kvm_device_ops *ops = NULL;
3547         struct kvm_device *dev;
3548         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3549         int type;
3550         int ret;
3551
3552         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3553                 return -ENODEV;
3554
3555         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3556         ops = kvm_device_ops_table[type];
3557         if (ops == NULL)
3558                 return -ENODEV;
3559
3560         if (test)
3561                 return 0;
3562
3563         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3564         if (!dev)
3565                 return -ENOMEM;
3566
3567         dev->ops = ops;
3568         dev->kvm = kvm;
3569
3570         mutex_lock(&kvm->lock);
3571         ret = ops->create(dev, type);
3572         if (ret < 0) {
3573                 mutex_unlock(&kvm->lock);
3574                 kfree(dev);
3575                 return ret;
3576         }
3577         list_add(&dev->vm_node, &kvm->devices);
3578         mutex_unlock(&kvm->lock);
3579
3580         if (ops->init)
3581                 ops->init(dev);
3582
3583         kvm_get_kvm(kvm);
3584         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3585         if (ret < 0) {
3586                 kvm_put_kvm_no_destroy(kvm);
3587                 mutex_lock(&kvm->lock);
3588                 list_del(&dev->vm_node);
3589                 mutex_unlock(&kvm->lock);
3590                 ops->destroy(dev);
3591                 return ret;
3592         }
3593
3594         cd->fd = ret;
3595         return 0;
3596 }
3597
3598 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3599 {
3600         switch (arg) {
3601         case KVM_CAP_USER_MEMORY:
3602         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3603         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3604         case KVM_CAP_INTERNAL_ERROR_DATA:
3605 #ifdef CONFIG_HAVE_KVM_MSI
3606         case KVM_CAP_SIGNAL_MSI:
3607 #endif
3608 #ifdef CONFIG_HAVE_KVM_IRQFD
3609         case KVM_CAP_IRQFD:
3610         case KVM_CAP_IRQFD_RESAMPLE:
3611 #endif
3612         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3613         case KVM_CAP_CHECK_EXTENSION_VM:
3614         case KVM_CAP_ENABLE_CAP_VM:
3615         case KVM_CAP_HALT_POLL:
3616                 return 1;
3617 #ifdef CONFIG_KVM_MMIO
3618         case KVM_CAP_COALESCED_MMIO:
3619                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3620         case KVM_CAP_COALESCED_PIO:
3621                 return 1;
3622 #endif
3623 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3624         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3625                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3626 #endif
3627 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3628         case KVM_CAP_IRQ_ROUTING:
3629                 return KVM_MAX_IRQ_ROUTES;
3630 #endif
3631 #if KVM_ADDRESS_SPACE_NUM > 1
3632         case KVM_CAP_MULTI_ADDRESS_SPACE:
3633                 return KVM_ADDRESS_SPACE_NUM;
3634 #endif
3635         case KVM_CAP_NR_MEMSLOTS:
3636                 return KVM_USER_MEM_SLOTS;
3637         default:
3638                 break;
3639         }
3640         return kvm_vm_ioctl_check_extension(kvm, arg);
3641 }
3642
3643 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3644                                                   struct kvm_enable_cap *cap)
3645 {
3646         return -EINVAL;
3647 }
3648
3649 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3650                                            struct kvm_enable_cap *cap)
3651 {
3652         switch (cap->cap) {
3653 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3654         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3655                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3656
3657                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3658                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3659
3660                 if (cap->flags || (cap->args[0] & ~allowed_options))
3661                         return -EINVAL;
3662                 kvm->manual_dirty_log_protect = cap->args[0];
3663                 return 0;
3664         }
3665 #endif
3666         case KVM_CAP_HALT_POLL: {
3667                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3668                         return -EINVAL;
3669
3670                 kvm->max_halt_poll_ns = cap->args[0];
3671                 return 0;
3672         }
3673         default:
3674                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3675         }
3676 }
3677
3678 static long kvm_vm_ioctl(struct file *filp,
3679                            unsigned int ioctl, unsigned long arg)
3680 {
3681         struct kvm *kvm = filp->private_data;
3682         void __user *argp = (void __user *)arg;
3683         int r;
3684
3685         if (kvm->mm != current->mm)
3686                 return -EIO;
3687         switch (ioctl) {
3688         case KVM_CREATE_VCPU:
3689                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3690                 break;
3691         case KVM_ENABLE_CAP: {
3692                 struct kvm_enable_cap cap;
3693
3694                 r = -EFAULT;
3695                 if (copy_from_user(&cap, argp, sizeof(cap)))
3696                         goto out;
3697                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3698                 break;
3699         }
3700         case KVM_SET_USER_MEMORY_REGION: {
3701                 struct kvm_userspace_memory_region kvm_userspace_mem;
3702
3703                 r = -EFAULT;
3704                 if (copy_from_user(&kvm_userspace_mem, argp,
3705                                                 sizeof(kvm_userspace_mem)))
3706                         goto out;
3707
3708                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3709                 break;
3710         }
3711         case KVM_GET_DIRTY_LOG: {
3712                 struct kvm_dirty_log log;
3713
3714                 r = -EFAULT;
3715                 if (copy_from_user(&log, argp, sizeof(log)))
3716                         goto out;
3717                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3718                 break;
3719         }
3720 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3721         case KVM_CLEAR_DIRTY_LOG: {
3722                 struct kvm_clear_dirty_log log;
3723
3724                 r = -EFAULT;
3725                 if (copy_from_user(&log, argp, sizeof(log)))
3726                         goto out;
3727                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3728                 break;
3729         }
3730 #endif
3731 #ifdef CONFIG_KVM_MMIO
3732         case KVM_REGISTER_COALESCED_MMIO: {
3733                 struct kvm_coalesced_mmio_zone zone;
3734
3735                 r = -EFAULT;
3736                 if (copy_from_user(&zone, argp, sizeof(zone)))
3737                         goto out;
3738                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3739                 break;
3740         }
3741         case KVM_UNREGISTER_COALESCED_MMIO: {
3742                 struct kvm_coalesced_mmio_zone zone;
3743
3744                 r = -EFAULT;
3745                 if (copy_from_user(&zone, argp, sizeof(zone)))
3746                         goto out;
3747                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3748                 break;
3749         }
3750 #endif
3751         case KVM_IRQFD: {
3752                 struct kvm_irqfd data;
3753
3754                 r = -EFAULT;
3755                 if (copy_from_user(&data, argp, sizeof(data)))
3756                         goto out;
3757                 r = kvm_irqfd(kvm, &data);
3758                 break;
3759         }
3760         case KVM_IOEVENTFD: {
3761                 struct kvm_ioeventfd data;
3762
3763                 r = -EFAULT;
3764                 if (copy_from_user(&data, argp, sizeof(data)))
3765                         goto out;
3766                 r = kvm_ioeventfd(kvm, &data);
3767                 break;
3768         }
3769 #ifdef CONFIG_HAVE_KVM_MSI
3770         case KVM_SIGNAL_MSI: {
3771                 struct kvm_msi msi;
3772
3773                 r = -EFAULT;
3774                 if (copy_from_user(&msi, argp, sizeof(msi)))
3775                         goto out;
3776                 r = kvm_send_userspace_msi(kvm, &msi);
3777                 break;
3778         }
3779 #endif
3780 #ifdef __KVM_HAVE_IRQ_LINE
3781         case KVM_IRQ_LINE_STATUS:
3782         case KVM_IRQ_LINE: {
3783                 struct kvm_irq_level irq_event;
3784
3785                 r = -EFAULT;
3786                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3787                         goto out;
3788
3789                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3790                                         ioctl == KVM_IRQ_LINE_STATUS);
3791                 if (r)
3792                         goto out;
3793
3794                 r = -EFAULT;
3795                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3796                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3797                                 goto out;
3798                 }
3799
3800                 r = 0;
3801                 break;
3802         }
3803 #endif
3804 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3805         case KVM_SET_GSI_ROUTING: {
3806                 struct kvm_irq_routing routing;
3807                 struct kvm_irq_routing __user *urouting;
3808                 struct kvm_irq_routing_entry *entries = NULL;
3809
3810                 r = -EFAULT;
3811                 if (copy_from_user(&routing, argp, sizeof(routing)))
3812                         goto out;
3813                 r = -EINVAL;
3814                 if (!kvm_arch_can_set_irq_routing(kvm))
3815                         goto out;
3816                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3817                         goto out;
3818                 if (routing.flags)
3819                         goto out;
3820                 if (routing.nr) {
3821                         urouting = argp;
3822                         entries = vmemdup_user(urouting->entries,
3823                                                array_size(sizeof(*entries),
3824                                                           routing.nr));
3825                         if (IS_ERR(entries)) {
3826                                 r = PTR_ERR(entries);
3827                                 goto out;
3828                         }
3829                 }
3830                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3831                                         routing.flags);
3832                 kvfree(entries);
3833                 break;
3834         }
3835 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3836         case KVM_CREATE_DEVICE: {
3837                 struct kvm_create_device cd;
3838
3839                 r = -EFAULT;
3840                 if (copy_from_user(&cd, argp, sizeof(cd)))
3841                         goto out;
3842
3843                 r = kvm_ioctl_create_device(kvm, &cd);
3844                 if (r)
3845                         goto out;
3846
3847                 r = -EFAULT;
3848                 if (copy_to_user(argp, &cd, sizeof(cd)))
3849                         goto out;
3850
3851                 r = 0;
3852                 break;
3853         }
3854         case KVM_CHECK_EXTENSION:
3855                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3856                 break;
3857         default:
3858                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3859         }
3860 out:
3861         return r;
3862 }
3863
3864 #ifdef CONFIG_KVM_COMPAT
3865 struct compat_kvm_dirty_log {
3866         __u32 slot;
3867         __u32 padding1;
3868         union {
3869                 compat_uptr_t dirty_bitmap; /* one bit per page */
3870                 __u64 padding2;
3871         };
3872 };
3873
3874 static long kvm_vm_compat_ioctl(struct file *filp,
3875                            unsigned int ioctl, unsigned long arg)
3876 {
3877         struct kvm *kvm = filp->private_data;
3878         int r;
3879
3880         if (kvm->mm != current->mm)
3881                 return -EIO;
3882         switch (ioctl) {
3883         case KVM_GET_DIRTY_LOG: {
3884                 struct compat_kvm_dirty_log compat_log;
3885                 struct kvm_dirty_log log;
3886
3887                 if (copy_from_user(&compat_log, (void __user *)arg,
3888                                    sizeof(compat_log)))
3889                         return -EFAULT;
3890                 log.slot         = compat_log.slot;
3891                 log.padding1     = compat_log.padding1;
3892                 log.padding2     = compat_log.padding2;
3893                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3894
3895                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3896                 break;
3897         }
3898         default:
3899                 r = kvm_vm_ioctl(filp, ioctl, arg);
3900         }
3901         return r;
3902 }
3903 #endif
3904
3905 static struct file_operations kvm_vm_fops = {
3906         .release        = kvm_vm_release,
3907         .unlocked_ioctl = kvm_vm_ioctl,
3908         .llseek         = noop_llseek,
3909         KVM_COMPAT(kvm_vm_compat_ioctl),
3910 };
3911
3912 static int kvm_dev_ioctl_create_vm(unsigned long type)
3913 {
3914         int r;
3915         struct kvm *kvm;
3916         struct file *file;
3917
3918         kvm = kvm_create_vm(type);
3919         if (IS_ERR(kvm))
3920                 return PTR_ERR(kvm);
3921 #ifdef CONFIG_KVM_MMIO
3922         r = kvm_coalesced_mmio_init(kvm);
3923         if (r < 0)
3924                 goto put_kvm;
3925 #endif
3926         r = get_unused_fd_flags(O_CLOEXEC);
3927         if (r < 0)
3928                 goto put_kvm;
3929
3930         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3931         if (IS_ERR(file)) {
3932                 put_unused_fd(r);
3933                 r = PTR_ERR(file);
3934                 goto put_kvm;
3935         }
3936
3937         /*
3938          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3939          * already set, with ->release() being kvm_vm_release().  In error
3940          * cases it will be called by the final fput(file) and will take
3941          * care of doing kvm_put_kvm(kvm).
3942          */
3943         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3944                 put_unused_fd(r);
3945                 fput(file);
3946                 return -ENOMEM;
3947         }
3948         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3949
3950         fd_install(r, file);
3951         return r;
3952
3953 put_kvm:
3954         kvm_put_kvm(kvm);
3955         return r;
3956 }
3957
3958 static long kvm_dev_ioctl(struct file *filp,
3959                           unsigned int ioctl, unsigned long arg)
3960 {
3961         long r = -EINVAL;
3962
3963         switch (ioctl) {
3964         case KVM_GET_API_VERSION:
3965                 if (arg)
3966                         goto out;
3967                 r = KVM_API_VERSION;
3968                 break;
3969         case KVM_CREATE_VM:
3970                 r = kvm_dev_ioctl_create_vm(arg);
3971                 break;
3972         case KVM_CHECK_EXTENSION:
3973                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3974                 break;
3975         case KVM_GET_VCPU_MMAP_SIZE:
3976                 if (arg)
3977                         goto out;
3978                 r = PAGE_SIZE;     /* struct kvm_run */
3979 #ifdef CONFIG_X86
3980                 r += PAGE_SIZE;    /* pio data page */
3981 #endif
3982 #ifdef CONFIG_KVM_MMIO
3983                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3984 #endif
3985                 break;
3986         case KVM_TRACE_ENABLE:
3987         case KVM_TRACE_PAUSE:
3988         case KVM_TRACE_DISABLE:
3989                 r = -EOPNOTSUPP;
3990                 break;
3991         default:
3992                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3993         }
3994 out:
3995         return r;
3996 }
3997
3998 static struct file_operations kvm_chardev_ops = {
3999         .unlocked_ioctl = kvm_dev_ioctl,
4000         .llseek         = noop_llseek,
4001         KVM_COMPAT(kvm_dev_ioctl),
4002 };
4003
4004 static struct miscdevice kvm_dev = {
4005         KVM_MINOR,
4006         "kvm",
4007         &kvm_chardev_ops,
4008 };
4009
4010 static void hardware_enable_nolock(void *junk)
4011 {
4012         int cpu = raw_smp_processor_id();
4013         int r;
4014
4015         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4016                 return;
4017
4018         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4019
4020         r = kvm_arch_hardware_enable();
4021
4022         if (r) {
4023                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4024                 atomic_inc(&hardware_enable_failed);
4025                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4026         }
4027 }
4028
4029 static int kvm_starting_cpu(unsigned int cpu)
4030 {
4031         raw_spin_lock(&kvm_count_lock);
4032         if (kvm_usage_count)
4033                 hardware_enable_nolock(NULL);
4034         raw_spin_unlock(&kvm_count_lock);
4035         return 0;
4036 }
4037
4038 static void hardware_disable_nolock(void *junk)
4039 {
4040         int cpu = raw_smp_processor_id();
4041
4042         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4043                 return;
4044         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4045         kvm_arch_hardware_disable();
4046 }
4047
4048 static int kvm_dying_cpu(unsigned int cpu)
4049 {
4050         raw_spin_lock(&kvm_count_lock);
4051         if (kvm_usage_count)
4052                 hardware_disable_nolock(NULL);
4053         raw_spin_unlock(&kvm_count_lock);
4054         return 0;
4055 }
4056
4057 static void hardware_disable_all_nolock(void)
4058 {
4059         BUG_ON(!kvm_usage_count);
4060
4061         kvm_usage_count--;
4062         if (!kvm_usage_count)
4063                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4064 }
4065
4066 static void hardware_disable_all(void)
4067 {
4068         raw_spin_lock(&kvm_count_lock);
4069         hardware_disable_all_nolock();
4070         raw_spin_unlock(&kvm_count_lock);
4071 }
4072
4073 static int hardware_enable_all(void)
4074 {
4075         int r = 0;
4076
4077         raw_spin_lock(&kvm_count_lock);
4078
4079         kvm_usage_count++;
4080         if (kvm_usage_count == 1) {
4081                 atomic_set(&hardware_enable_failed, 0);
4082                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4083
4084                 if (atomic_read(&hardware_enable_failed)) {
4085                         hardware_disable_all_nolock();
4086                         r = -EBUSY;
4087                 }
4088         }
4089
4090         raw_spin_unlock(&kvm_count_lock);
4091
4092         return r;
4093 }
4094
4095 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4096                       void *v)
4097 {
4098         /*
4099          * Some (well, at least mine) BIOSes hang on reboot if
4100          * in vmx root mode.
4101          *
4102          * And Intel TXT required VMX off for all cpu when system shutdown.
4103          */
4104         pr_info("kvm: exiting hardware virtualization\n");
4105         kvm_rebooting = true;
4106         on_each_cpu(hardware_disable_nolock, NULL, 1);
4107         return NOTIFY_OK;
4108 }
4109
4110 static struct notifier_block kvm_reboot_notifier = {
4111         .notifier_call = kvm_reboot,
4112         .priority = 0,
4113 };
4114
4115 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4116 {
4117         int i;
4118
4119         for (i = 0; i < bus->dev_count; i++) {
4120                 struct kvm_io_device *pos = bus->range[i].dev;
4121
4122                 kvm_iodevice_destructor(pos);
4123         }
4124         kfree(bus);
4125 }
4126
4127 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4128                                  const struct kvm_io_range *r2)
4129 {
4130         gpa_t addr1 = r1->addr;
4131         gpa_t addr2 = r2->addr;
4132
4133         if (addr1 < addr2)
4134                 return -1;
4135
4136         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4137          * accept any overlapping write.  Any order is acceptable for
4138          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4139          * we process all of them.
4140          */
4141         if (r2->len) {
4142                 addr1 += r1->len;
4143                 addr2 += r2->len;
4144         }
4145
4146         if (addr1 > addr2)
4147                 return 1;
4148
4149         return 0;
4150 }
4151
4152 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4153 {
4154         return kvm_io_bus_cmp(p1, p2);
4155 }
4156
4157 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4158                              gpa_t addr, int len)
4159 {
4160         struct kvm_io_range *range, key;
4161         int off;
4162
4163         key = (struct kvm_io_range) {
4164                 .addr = addr,
4165                 .len = len,
4166         };
4167
4168         range = bsearch(&key, bus->range, bus->dev_count,
4169                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4170         if (range == NULL)
4171                 return -ENOENT;
4172
4173         off = range - bus->range;
4174
4175         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4176                 off--;
4177
4178         return off;
4179 }
4180
4181 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4182                               struct kvm_io_range *range, const void *val)
4183 {
4184         int idx;
4185
4186         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4187         if (idx < 0)
4188                 return -EOPNOTSUPP;
4189
4190         while (idx < bus->dev_count &&
4191                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4192                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4193                                         range->len, val))
4194                         return idx;
4195                 idx++;
4196         }
4197
4198         return -EOPNOTSUPP;
4199 }
4200
4201 /* kvm_io_bus_write - called under kvm->slots_lock */
4202 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4203                      int len, const void *val)
4204 {
4205         struct kvm_io_bus *bus;
4206         struct kvm_io_range range;
4207         int r;
4208
4209         range = (struct kvm_io_range) {
4210                 .addr = addr,
4211                 .len = len,
4212         };
4213
4214         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4215         if (!bus)
4216                 return -ENOMEM;
4217         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4218         return r < 0 ? r : 0;
4219 }
4220 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4221
4222 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4223 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4224                             gpa_t addr, int len, const void *val, long cookie)
4225 {
4226         struct kvm_io_bus *bus;
4227         struct kvm_io_range range;
4228
4229         range = (struct kvm_io_range) {
4230                 .addr = addr,
4231                 .len = len,
4232         };
4233
4234         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4235         if (!bus)
4236                 return -ENOMEM;
4237
4238         /* First try the device referenced by cookie. */
4239         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4240             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4241                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4242                                         val))
4243                         return cookie;
4244
4245         /*
4246          * cookie contained garbage; fall back to search and return the
4247          * correct cookie value.
4248          */
4249         return __kvm_io_bus_write(vcpu, bus, &range, val);
4250 }
4251
4252 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4253                              struct kvm_io_range *range, void *val)
4254 {
4255         int idx;
4256
4257         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4258         if (idx < 0)
4259                 return -EOPNOTSUPP;
4260
4261         while (idx < bus->dev_count &&
4262                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4263                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4264                                        range->len, val))
4265                         return idx;
4266                 idx++;
4267         }
4268
4269         return -EOPNOTSUPP;
4270 }
4271
4272 /* kvm_io_bus_read - called under kvm->slots_lock */
4273 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4274                     int len, void *val)
4275 {
4276         struct kvm_io_bus *bus;
4277         struct kvm_io_range range;
4278         int r;
4279
4280         range = (struct kvm_io_range) {
4281                 .addr = addr,
4282                 .len = len,
4283         };
4284
4285         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4286         if (!bus)
4287                 return -ENOMEM;
4288         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4289         return r < 0 ? r : 0;
4290 }
4291
4292 /* Caller must hold slots_lock. */
4293 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4294                             int len, struct kvm_io_device *dev)
4295 {
4296         int i;
4297         struct kvm_io_bus *new_bus, *bus;
4298         struct kvm_io_range range;
4299
4300         bus = kvm_get_bus(kvm, bus_idx);
4301         if (!bus)
4302                 return -ENOMEM;
4303
4304         /* exclude ioeventfd which is limited by maximum fd */
4305         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4306                 return -ENOSPC;
4307
4308         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4309                           GFP_KERNEL_ACCOUNT);
4310         if (!new_bus)
4311                 return -ENOMEM;
4312
4313         range = (struct kvm_io_range) {
4314                 .addr = addr,
4315                 .len = len,
4316                 .dev = dev,
4317         };
4318
4319         for (i = 0; i < bus->dev_count; i++)
4320                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4321                         break;
4322
4323         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4324         new_bus->dev_count++;
4325         new_bus->range[i] = range;
4326         memcpy(new_bus->range + i + 1, bus->range + i,
4327                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4328         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4329         synchronize_srcu_expedited(&kvm->srcu);
4330         kfree(bus);
4331
4332         return 0;
4333 }
4334
4335 /* Caller must hold slots_lock. */
4336 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4337                                struct kvm_io_device *dev)
4338 {
4339         int i, j;
4340         struct kvm_io_bus *new_bus, *bus;
4341
4342         bus = kvm_get_bus(kvm, bus_idx);
4343         if (!bus)
4344                 return;
4345
4346         for (i = 0; i < bus->dev_count; i++)
4347                 if (bus->range[i].dev == dev) {
4348                         break;
4349                 }
4350
4351         if (i == bus->dev_count)
4352                 return;
4353
4354         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4355                           GFP_KERNEL_ACCOUNT);
4356         if (new_bus) {
4357                 memcpy(new_bus, bus, struct_size(bus, range, i));
4358                 new_bus->dev_count--;
4359                 memcpy(new_bus->range + i, bus->range + i + 1,
4360                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
4361         } else {
4362                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4363                 for (j = 0; j < bus->dev_count; j++) {
4364                         if (j == i)
4365                                 continue;
4366                         kvm_iodevice_destructor(bus->range[j].dev);
4367                 }
4368         }
4369
4370         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4371         synchronize_srcu_expedited(&kvm->srcu);
4372         kfree(bus);
4373         return;
4374 }
4375
4376 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4377                                          gpa_t addr)
4378 {
4379         struct kvm_io_bus *bus;
4380         int dev_idx, srcu_idx;
4381         struct kvm_io_device *iodev = NULL;
4382
4383         srcu_idx = srcu_read_lock(&kvm->srcu);
4384
4385         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4386         if (!bus)
4387                 goto out_unlock;
4388
4389         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4390         if (dev_idx < 0)
4391                 goto out_unlock;
4392
4393         iodev = bus->range[dev_idx].dev;
4394
4395 out_unlock:
4396         srcu_read_unlock(&kvm->srcu, srcu_idx);
4397
4398         return iodev;
4399 }
4400 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4401
4402 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4403                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4404                            const char *fmt)
4405 {
4406         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4407                                           inode->i_private;
4408
4409         /* The debugfs files are a reference to the kvm struct which
4410          * is still valid when kvm_destroy_vm is called.
4411          * To avoid the race between open and the removal of the debugfs
4412          * directory we test against the users count.
4413          */
4414         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4415                 return -ENOENT;
4416
4417         if (simple_attr_open(inode, file, get,
4418                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4419                     ? set : NULL,
4420                     fmt)) {
4421                 kvm_put_kvm(stat_data->kvm);
4422                 return -ENOMEM;
4423         }
4424
4425         return 0;
4426 }
4427
4428 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4429 {
4430         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4431                                           inode->i_private;
4432
4433         simple_attr_release(inode, file);
4434         kvm_put_kvm(stat_data->kvm);
4435
4436         return 0;
4437 }
4438
4439 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4440 {
4441         *val = *(ulong *)((void *)kvm + offset);
4442
4443         return 0;
4444 }
4445
4446 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4447 {
4448         *(ulong *)((void *)kvm + offset) = 0;
4449
4450         return 0;
4451 }
4452
4453 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4454 {
4455         int i;
4456         struct kvm_vcpu *vcpu;
4457
4458         *val = 0;
4459
4460         kvm_for_each_vcpu(i, vcpu, kvm)
4461                 *val += *(u64 *)((void *)vcpu + offset);
4462
4463         return 0;
4464 }
4465
4466 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4467 {
4468         int i;
4469         struct kvm_vcpu *vcpu;
4470
4471         kvm_for_each_vcpu(i, vcpu, kvm)
4472                 *(u64 *)((void *)vcpu + offset) = 0;
4473
4474         return 0;
4475 }
4476
4477 static int kvm_stat_data_get(void *data, u64 *val)
4478 {
4479         int r = -EFAULT;
4480         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4481
4482         switch (stat_data->dbgfs_item->kind) {
4483         case KVM_STAT_VM:
4484                 r = kvm_get_stat_per_vm(stat_data->kvm,
4485                                         stat_data->dbgfs_item->offset, val);
4486                 break;
4487         case KVM_STAT_VCPU:
4488                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4489                                           stat_data->dbgfs_item->offset, val);
4490                 break;
4491         }
4492
4493         return r;
4494 }
4495
4496 static int kvm_stat_data_clear(void *data, u64 val)
4497 {
4498         int r = -EFAULT;
4499         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4500
4501         if (val)
4502                 return -EINVAL;
4503
4504         switch (stat_data->dbgfs_item->kind) {
4505         case KVM_STAT_VM:
4506                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4507                                           stat_data->dbgfs_item->offset);
4508                 break;
4509         case KVM_STAT_VCPU:
4510                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4511                                             stat_data->dbgfs_item->offset);
4512                 break;
4513         }
4514
4515         return r;
4516 }
4517
4518 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4519 {
4520         __simple_attr_check_format("%llu\n", 0ull);
4521         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4522                                 kvm_stat_data_clear, "%llu\n");
4523 }
4524
4525 static const struct file_operations stat_fops_per_vm = {
4526         .owner = THIS_MODULE,
4527         .open = kvm_stat_data_open,
4528         .release = kvm_debugfs_release,
4529         .read = simple_attr_read,
4530         .write = simple_attr_write,
4531         .llseek = no_llseek,
4532 };
4533
4534 static int vm_stat_get(void *_offset, u64 *val)
4535 {
4536         unsigned offset = (long)_offset;
4537         struct kvm *kvm;
4538         u64 tmp_val;
4539
4540         *val = 0;
4541         mutex_lock(&kvm_lock);
4542         list_for_each_entry(kvm, &vm_list, vm_list) {
4543                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4544                 *val += tmp_val;
4545         }
4546         mutex_unlock(&kvm_lock);
4547         return 0;
4548 }
4549
4550 static int vm_stat_clear(void *_offset, u64 val)
4551 {
4552         unsigned offset = (long)_offset;
4553         struct kvm *kvm;
4554
4555         if (val)
4556                 return -EINVAL;
4557
4558         mutex_lock(&kvm_lock);
4559         list_for_each_entry(kvm, &vm_list, vm_list) {
4560                 kvm_clear_stat_per_vm(kvm, offset);
4561         }
4562         mutex_unlock(&kvm_lock);
4563
4564         return 0;
4565 }
4566
4567 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4568
4569 static int vcpu_stat_get(void *_offset, u64 *val)
4570 {
4571         unsigned offset = (long)_offset;
4572         struct kvm *kvm;
4573         u64 tmp_val;
4574
4575         *val = 0;
4576         mutex_lock(&kvm_lock);
4577         list_for_each_entry(kvm, &vm_list, vm_list) {
4578                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4579                 *val += tmp_val;
4580         }
4581         mutex_unlock(&kvm_lock);
4582         return 0;
4583 }
4584
4585 static int vcpu_stat_clear(void *_offset, u64 val)
4586 {
4587         unsigned offset = (long)_offset;
4588         struct kvm *kvm;
4589
4590         if (val)
4591                 return -EINVAL;
4592
4593         mutex_lock(&kvm_lock);
4594         list_for_each_entry(kvm, &vm_list, vm_list) {
4595                 kvm_clear_stat_per_vcpu(kvm, offset);
4596         }
4597         mutex_unlock(&kvm_lock);
4598
4599         return 0;
4600 }
4601
4602 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4603                         "%llu\n");
4604
4605 static const struct file_operations *stat_fops[] = {
4606         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4607         [KVM_STAT_VM]   = &vm_stat_fops,
4608 };
4609
4610 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4611 {
4612         struct kobj_uevent_env *env;
4613         unsigned long long created, active;
4614
4615         if (!kvm_dev.this_device || !kvm)
4616                 return;
4617
4618         mutex_lock(&kvm_lock);
4619         if (type == KVM_EVENT_CREATE_VM) {
4620                 kvm_createvm_count++;
4621                 kvm_active_vms++;
4622         } else if (type == KVM_EVENT_DESTROY_VM) {
4623                 kvm_active_vms--;
4624         }
4625         created = kvm_createvm_count;
4626         active = kvm_active_vms;
4627         mutex_unlock(&kvm_lock);
4628
4629         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4630         if (!env)
4631                 return;
4632
4633         add_uevent_var(env, "CREATED=%llu", created);
4634         add_uevent_var(env, "COUNT=%llu", active);
4635
4636         if (type == KVM_EVENT_CREATE_VM) {
4637                 add_uevent_var(env, "EVENT=create");
4638                 kvm->userspace_pid = task_pid_nr(current);
4639         } else if (type == KVM_EVENT_DESTROY_VM) {
4640                 add_uevent_var(env, "EVENT=destroy");
4641         }
4642         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4643
4644         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4645                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4646
4647                 if (p) {
4648                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4649                         if (!IS_ERR(tmp))
4650                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4651                         kfree(p);
4652                 }
4653         }
4654         /* no need for checks, since we are adding at most only 5 keys */
4655         env->envp[env->envp_idx++] = NULL;
4656         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4657         kfree(env);
4658 }
4659
4660 static void kvm_init_debug(void)
4661 {
4662         struct kvm_stats_debugfs_item *p;
4663
4664         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4665
4666         kvm_debugfs_num_entries = 0;
4667         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4668                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4669                                     kvm_debugfs_dir, (void *)(long)p->offset,
4670                                     stat_fops[p->kind]);
4671         }
4672 }
4673
4674 static int kvm_suspend(void)
4675 {
4676         if (kvm_usage_count)
4677                 hardware_disable_nolock(NULL);
4678         return 0;
4679 }
4680
4681 static void kvm_resume(void)
4682 {
4683         if (kvm_usage_count) {
4684 #ifdef CONFIG_LOCKDEP
4685                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4686 #endif
4687                 hardware_enable_nolock(NULL);
4688         }
4689 }
4690
4691 static struct syscore_ops kvm_syscore_ops = {
4692         .suspend = kvm_suspend,
4693         .resume = kvm_resume,
4694 };
4695
4696 static inline
4697 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4698 {
4699         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4700 }
4701
4702 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4703 {
4704         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4705
4706         WRITE_ONCE(vcpu->preempted, false);
4707         WRITE_ONCE(vcpu->ready, false);
4708
4709         __this_cpu_write(kvm_running_vcpu, vcpu);
4710         kvm_arch_sched_in(vcpu, cpu);
4711         kvm_arch_vcpu_load(vcpu, cpu);
4712 }
4713
4714 static void kvm_sched_out(struct preempt_notifier *pn,
4715                           struct task_struct *next)
4716 {
4717         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4718
4719         if (current->state == TASK_RUNNING) {
4720                 WRITE_ONCE(vcpu->preempted, true);
4721                 WRITE_ONCE(vcpu->ready, true);
4722         }
4723         kvm_arch_vcpu_put(vcpu);
4724         __this_cpu_write(kvm_running_vcpu, NULL);
4725 }
4726
4727 /**
4728  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4729  *
4730  * We can disable preemption locally around accessing the per-CPU variable,
4731  * and use the resolved vcpu pointer after enabling preemption again,
4732  * because even if the current thread is migrated to another CPU, reading
4733  * the per-CPU value later will give us the same value as we update the
4734  * per-CPU variable in the preempt notifier handlers.
4735  */
4736 struct kvm_vcpu *kvm_get_running_vcpu(void)
4737 {
4738         struct kvm_vcpu *vcpu;
4739
4740         preempt_disable();
4741         vcpu = __this_cpu_read(kvm_running_vcpu);
4742         preempt_enable();
4743
4744         return vcpu;
4745 }
4746 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4747
4748 /**
4749  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4750  */
4751 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4752 {
4753         return &kvm_running_vcpu;
4754 }
4755
4756 struct kvm_cpu_compat_check {
4757         void *opaque;
4758         int *ret;
4759 };
4760
4761 static void check_processor_compat(void *data)
4762 {
4763         struct kvm_cpu_compat_check *c = data;
4764
4765         *c->ret = kvm_arch_check_processor_compat(c->opaque);
4766 }
4767
4768 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4769                   struct module *module)
4770 {
4771         struct kvm_cpu_compat_check c;
4772         int r;
4773         int cpu;
4774
4775         r = kvm_arch_init(opaque);
4776         if (r)
4777                 goto out_fail;
4778
4779         /*
4780          * kvm_arch_init makes sure there's at most one caller
4781          * for architectures that support multiple implementations,
4782          * like intel and amd on x86.
4783          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4784          * conflicts in case kvm is already setup for another implementation.
4785          */
4786         r = kvm_irqfd_init();
4787         if (r)
4788                 goto out_irqfd;
4789
4790         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4791                 r = -ENOMEM;
4792                 goto out_free_0;
4793         }
4794
4795         r = kvm_arch_hardware_setup(opaque);
4796         if (r < 0)
4797                 goto out_free_1;
4798
4799         c.ret = &r;
4800         c.opaque = opaque;
4801         for_each_online_cpu(cpu) {
4802                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4803                 if (r < 0)
4804                         goto out_free_2;
4805         }
4806
4807         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4808                                       kvm_starting_cpu, kvm_dying_cpu);
4809         if (r)
4810                 goto out_free_2;
4811         register_reboot_notifier(&kvm_reboot_notifier);
4812
4813         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4814         if (!vcpu_align)
4815                 vcpu_align = __alignof__(struct kvm_vcpu);
4816         kvm_vcpu_cache =
4817                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4818                                            SLAB_ACCOUNT,
4819                                            offsetof(struct kvm_vcpu, arch),
4820                                            sizeof_field(struct kvm_vcpu, arch),
4821                                            NULL);
4822         if (!kvm_vcpu_cache) {
4823                 r = -ENOMEM;
4824                 goto out_free_3;
4825         }
4826
4827         r = kvm_async_pf_init();
4828         if (r)
4829                 goto out_free;
4830
4831         kvm_chardev_ops.owner = module;
4832         kvm_vm_fops.owner = module;
4833         kvm_vcpu_fops.owner = module;
4834
4835         r = misc_register(&kvm_dev);
4836         if (r) {
4837                 pr_err("kvm: misc device register failed\n");
4838                 goto out_unreg;
4839         }
4840
4841         register_syscore_ops(&kvm_syscore_ops);
4842
4843         kvm_preempt_ops.sched_in = kvm_sched_in;
4844         kvm_preempt_ops.sched_out = kvm_sched_out;
4845
4846         kvm_init_debug();
4847
4848         r = kvm_vfio_ops_init();
4849         WARN_ON(r);
4850
4851         return 0;
4852
4853 out_unreg:
4854         kvm_async_pf_deinit();
4855 out_free:
4856         kmem_cache_destroy(kvm_vcpu_cache);
4857 out_free_3:
4858         unregister_reboot_notifier(&kvm_reboot_notifier);
4859         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4860 out_free_2:
4861         kvm_arch_hardware_unsetup();
4862 out_free_1:
4863         free_cpumask_var(cpus_hardware_enabled);
4864 out_free_0:
4865         kvm_irqfd_exit();
4866 out_irqfd:
4867         kvm_arch_exit();
4868 out_fail:
4869         return r;
4870 }
4871 EXPORT_SYMBOL_GPL(kvm_init);
4872
4873 void kvm_exit(void)
4874 {
4875         debugfs_remove_recursive(kvm_debugfs_dir);
4876         misc_deregister(&kvm_dev);
4877         kmem_cache_destroy(kvm_vcpu_cache);
4878         kvm_async_pf_deinit();
4879         unregister_syscore_ops(&kvm_syscore_ops);
4880         unregister_reboot_notifier(&kvm_reboot_notifier);
4881         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4882         on_each_cpu(hardware_disable_nolock, NULL, 1);
4883         kvm_arch_hardware_unsetup();
4884         kvm_arch_exit();
4885         kvm_irqfd_exit();
4886         free_cpumask_var(cpus_hardware_enabled);
4887         kvm_vfio_ops_exit();
4888 }
4889 EXPORT_SYMBOL_GPL(kvm_exit);
4890
4891 struct kvm_vm_worker_thread_context {
4892         struct kvm *kvm;
4893         struct task_struct *parent;
4894         struct completion init_done;
4895         kvm_vm_thread_fn_t thread_fn;
4896         uintptr_t data;
4897         int err;
4898 };
4899
4900 static int kvm_vm_worker_thread(void *context)
4901 {
4902         /*
4903          * The init_context is allocated on the stack of the parent thread, so
4904          * we have to locally copy anything that is needed beyond initialization
4905          */
4906         struct kvm_vm_worker_thread_context *init_context = context;
4907         struct kvm *kvm = init_context->kvm;
4908         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4909         uintptr_t data = init_context->data;
4910         int err;
4911
4912         err = kthread_park(current);
4913         /* kthread_park(current) is never supposed to return an error */
4914         WARN_ON(err != 0);
4915         if (err)
4916                 goto init_complete;
4917
4918         err = cgroup_attach_task_all(init_context->parent, current);
4919         if (err) {
4920                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4921                         __func__, err);
4922                 goto init_complete;
4923         }
4924
4925         set_user_nice(current, task_nice(init_context->parent));
4926
4927 init_complete:
4928         init_context->err = err;
4929         complete(&init_context->init_done);
4930         init_context = NULL;
4931
4932         if (err)
4933                 return err;
4934
4935         /* Wait to be woken up by the spawner before proceeding. */
4936         kthread_parkme();
4937
4938         if (!kthread_should_stop())
4939                 err = thread_fn(kvm, data);
4940
4941         return err;
4942 }
4943
4944 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4945                                 uintptr_t data, const char *name,
4946                                 struct task_struct **thread_ptr)
4947 {
4948         struct kvm_vm_worker_thread_context init_context = {};
4949         struct task_struct *thread;
4950
4951         *thread_ptr = NULL;
4952         init_context.kvm = kvm;
4953         init_context.parent = current;
4954         init_context.thread_fn = thread_fn;
4955         init_context.data = data;
4956         init_completion(&init_context.init_done);
4957
4958         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4959                              "%s-%d", name, task_pid_nr(current));
4960         if (IS_ERR(thread))
4961                 return PTR_ERR(thread);
4962
4963         /* kthread_run is never supposed to return NULL */
4964         WARN_ON(thread == NULL);
4965
4966         wait_for_completion(&init_context.init_done);
4967
4968         if (!init_context.err)
4969                 *thread_ptr = thread;
4970
4971         return init_context.err;
4972 }