Merge branches 'core-objtool-for-linus', 'x86-cleanups-for-linus' and 'x86-apic-for...
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94  * Ordering of locks:
95  *
96  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 struct kmem_cache *kvm_vcpu_cache;
108 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations *stat_fops_per_vm[];
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133                                 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137         return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
140                         .open           = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 static bool largepages_enabled = true;
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161                 unsigned long start, unsigned long end, bool blockable)
162 {
163         return 0;
164 }
165
166 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167 {
168         /*
169          * The metadata used by is_zone_device_page() to determine whether or
170          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171          * the device has been pinned, e.g. by get_user_pages().  WARN if the
172          * page_count() is zero to help detect bad usage of this helper.
173          */
174         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175                 return false;
176
177         return is_zone_device_page(pfn_to_page(pfn));
178 }
179
180 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
181 {
182         /*
183          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184          * perspective they are "normal" pages, albeit with slightly different
185          * usage rules.
186          */
187         if (pfn_valid(pfn))
188                 return PageReserved(pfn_to_page(pfn)) &&
189                        !kvm_is_zone_device_pfn(pfn);
190
191         return true;
192 }
193
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199         int cpu = get_cpu();
200         preempt_notifier_register(&vcpu->preempt_notifier);
201         kvm_arch_vcpu_load(vcpu, cpu);
202         put_cpu();
203 }
204 EXPORT_SYMBOL_GPL(vcpu_load);
205
206 void vcpu_put(struct kvm_vcpu *vcpu)
207 {
208         preempt_disable();
209         kvm_arch_vcpu_put(vcpu);
210         preempt_notifier_unregister(&vcpu->preempt_notifier);
211         preempt_enable();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_put);
214
215 /* TODO: merge with kvm_arch_vcpu_should_kick */
216 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
217 {
218         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
219
220         /*
221          * We need to wait for the VCPU to reenable interrupts and get out of
222          * READING_SHADOW_PAGE_TABLES mode.
223          */
224         if (req & KVM_REQUEST_WAIT)
225                 return mode != OUTSIDE_GUEST_MODE;
226
227         /*
228          * Need to kick a running VCPU, but otherwise there is nothing to do.
229          */
230         return mode == IN_GUEST_MODE;
231 }
232
233 static void ack_flush(void *_completed)
234 {
235 }
236
237 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
238 {
239         if (unlikely(!cpus))
240                 cpus = cpu_online_mask;
241
242         if (cpumask_empty(cpus))
243                 return false;
244
245         smp_call_function_many(cpus, ack_flush, NULL, wait);
246         return true;
247 }
248
249 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
250                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
251 {
252         int i, cpu, me;
253         struct kvm_vcpu *vcpu;
254         bool called;
255
256         me = get_cpu();
257
258         kvm_for_each_vcpu(i, vcpu, kvm) {
259                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
260                         continue;
261
262                 kvm_make_request(req, vcpu);
263                 cpu = vcpu->cpu;
264
265                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
266                         continue;
267
268                 if (tmp != NULL && cpu != -1 && cpu != me &&
269                     kvm_request_needs_ipi(vcpu, req))
270                         __cpumask_set_cpu(cpu, tmp);
271         }
272
273         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
274         put_cpu();
275
276         return called;
277 }
278
279 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
280 {
281         cpumask_var_t cpus;
282         bool called;
283
284         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
285
286         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
287
288         free_cpumask_var(cpus);
289         return called;
290 }
291
292 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
293 void kvm_flush_remote_tlbs(struct kvm *kvm)
294 {
295         /*
296          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
297          * kvm_make_all_cpus_request.
298          */
299         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
300
301         /*
302          * We want to publish modifications to the page tables before reading
303          * mode. Pairs with a memory barrier in arch-specific code.
304          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
305          * and smp_mb in walk_shadow_page_lockless_begin/end.
306          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
307          *
308          * There is already an smp_mb__after_atomic() before
309          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
310          * barrier here.
311          */
312         if (!kvm_arch_flush_remote_tlb(kvm)
313             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
314                 ++kvm->stat.remote_tlb_flush;
315         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
316 }
317 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
318 #endif
319
320 void kvm_reload_remote_mmus(struct kvm *kvm)
321 {
322         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
323 }
324
325 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
326 {
327         struct page *page;
328         int r;
329
330         mutex_init(&vcpu->mutex);
331         vcpu->cpu = -1;
332         vcpu->kvm = kvm;
333         vcpu->vcpu_id = id;
334         vcpu->pid = NULL;
335         init_swait_queue_head(&vcpu->wq);
336         kvm_async_pf_vcpu_init(vcpu);
337
338         vcpu->pre_pcpu = -1;
339         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
340
341         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
342         if (!page) {
343                 r = -ENOMEM;
344                 goto fail;
345         }
346         vcpu->run = page_address(page);
347
348         kvm_vcpu_set_in_spin_loop(vcpu, false);
349         kvm_vcpu_set_dy_eligible(vcpu, false);
350         vcpu->preempted = false;
351         vcpu->ready = false;
352
353         r = kvm_arch_vcpu_init(vcpu);
354         if (r < 0)
355                 goto fail_free_run;
356         return 0;
357
358 fail_free_run:
359         free_page((unsigned long)vcpu->run);
360 fail:
361         return r;
362 }
363 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
364
365 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
366 {
367         /*
368          * no need for rcu_read_lock as VCPU_RUN is the only place that
369          * will change the vcpu->pid pointer and on uninit all file
370          * descriptors are already gone.
371          */
372         put_pid(rcu_dereference_protected(vcpu->pid, 1));
373         kvm_arch_vcpu_uninit(vcpu);
374         free_page((unsigned long)vcpu->run);
375 }
376 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
377
378 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
379 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
380 {
381         return container_of(mn, struct kvm, mmu_notifier);
382 }
383
384 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
385                                         struct mm_struct *mm,
386                                         unsigned long address,
387                                         pte_t pte)
388 {
389         struct kvm *kvm = mmu_notifier_to_kvm(mn);
390         int idx;
391
392         idx = srcu_read_lock(&kvm->srcu);
393         spin_lock(&kvm->mmu_lock);
394         kvm->mmu_notifier_seq++;
395
396         if (kvm_set_spte_hva(kvm, address, pte))
397                 kvm_flush_remote_tlbs(kvm);
398
399         spin_unlock(&kvm->mmu_lock);
400         srcu_read_unlock(&kvm->srcu, idx);
401 }
402
403 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
404                                         const struct mmu_notifier_range *range)
405 {
406         struct kvm *kvm = mmu_notifier_to_kvm(mn);
407         int need_tlb_flush = 0, idx;
408         int ret;
409
410         idx = srcu_read_lock(&kvm->srcu);
411         spin_lock(&kvm->mmu_lock);
412         /*
413          * The count increase must become visible at unlock time as no
414          * spte can be established without taking the mmu_lock and
415          * count is also read inside the mmu_lock critical section.
416          */
417         kvm->mmu_notifier_count++;
418         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
419         need_tlb_flush |= kvm->tlbs_dirty;
420         /* we've to flush the tlb before the pages can be freed */
421         if (need_tlb_flush)
422                 kvm_flush_remote_tlbs(kvm);
423
424         spin_unlock(&kvm->mmu_lock);
425
426         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
427                                         range->end,
428                                         mmu_notifier_range_blockable(range));
429
430         srcu_read_unlock(&kvm->srcu, idx);
431
432         return ret;
433 }
434
435 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
436                                         const struct mmu_notifier_range *range)
437 {
438         struct kvm *kvm = mmu_notifier_to_kvm(mn);
439
440         spin_lock(&kvm->mmu_lock);
441         /*
442          * This sequence increase will notify the kvm page fault that
443          * the page that is going to be mapped in the spte could have
444          * been freed.
445          */
446         kvm->mmu_notifier_seq++;
447         smp_wmb();
448         /*
449          * The above sequence increase must be visible before the
450          * below count decrease, which is ensured by the smp_wmb above
451          * in conjunction with the smp_rmb in mmu_notifier_retry().
452          */
453         kvm->mmu_notifier_count--;
454         spin_unlock(&kvm->mmu_lock);
455
456         BUG_ON(kvm->mmu_notifier_count < 0);
457 }
458
459 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
460                                               struct mm_struct *mm,
461                                               unsigned long start,
462                                               unsigned long end)
463 {
464         struct kvm *kvm = mmu_notifier_to_kvm(mn);
465         int young, idx;
466
467         idx = srcu_read_lock(&kvm->srcu);
468         spin_lock(&kvm->mmu_lock);
469
470         young = kvm_age_hva(kvm, start, end);
471         if (young)
472                 kvm_flush_remote_tlbs(kvm);
473
474         spin_unlock(&kvm->mmu_lock);
475         srcu_read_unlock(&kvm->srcu, idx);
476
477         return young;
478 }
479
480 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
481                                         struct mm_struct *mm,
482                                         unsigned long start,
483                                         unsigned long end)
484 {
485         struct kvm *kvm = mmu_notifier_to_kvm(mn);
486         int young, idx;
487
488         idx = srcu_read_lock(&kvm->srcu);
489         spin_lock(&kvm->mmu_lock);
490         /*
491          * Even though we do not flush TLB, this will still adversely
492          * affect performance on pre-Haswell Intel EPT, where there is
493          * no EPT Access Bit to clear so that we have to tear down EPT
494          * tables instead. If we find this unacceptable, we can always
495          * add a parameter to kvm_age_hva so that it effectively doesn't
496          * do anything on clear_young.
497          *
498          * Also note that currently we never issue secondary TLB flushes
499          * from clear_young, leaving this job up to the regular system
500          * cadence. If we find this inaccurate, we might come up with a
501          * more sophisticated heuristic later.
502          */
503         young = kvm_age_hva(kvm, start, end);
504         spin_unlock(&kvm->mmu_lock);
505         srcu_read_unlock(&kvm->srcu, idx);
506
507         return young;
508 }
509
510 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
511                                        struct mm_struct *mm,
512                                        unsigned long address)
513 {
514         struct kvm *kvm = mmu_notifier_to_kvm(mn);
515         int young, idx;
516
517         idx = srcu_read_lock(&kvm->srcu);
518         spin_lock(&kvm->mmu_lock);
519         young = kvm_test_age_hva(kvm, address);
520         spin_unlock(&kvm->mmu_lock);
521         srcu_read_unlock(&kvm->srcu, idx);
522
523         return young;
524 }
525
526 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
527                                      struct mm_struct *mm)
528 {
529         struct kvm *kvm = mmu_notifier_to_kvm(mn);
530         int idx;
531
532         idx = srcu_read_lock(&kvm->srcu);
533         kvm_arch_flush_shadow_all(kvm);
534         srcu_read_unlock(&kvm->srcu, idx);
535 }
536
537 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
538         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
539         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
540         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
541         .clear_young            = kvm_mmu_notifier_clear_young,
542         .test_young             = kvm_mmu_notifier_test_young,
543         .change_pte             = kvm_mmu_notifier_change_pte,
544         .release                = kvm_mmu_notifier_release,
545 };
546
547 static int kvm_init_mmu_notifier(struct kvm *kvm)
548 {
549         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
550         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
551 }
552
553 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
554
555 static int kvm_init_mmu_notifier(struct kvm *kvm)
556 {
557         return 0;
558 }
559
560 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
561
562 static struct kvm_memslots *kvm_alloc_memslots(void)
563 {
564         int i;
565         struct kvm_memslots *slots;
566
567         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
568         if (!slots)
569                 return NULL;
570
571         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
572                 slots->id_to_index[i] = slots->memslots[i].id = i;
573
574         return slots;
575 }
576
577 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
578 {
579         if (!memslot->dirty_bitmap)
580                 return;
581
582         kvfree(memslot->dirty_bitmap);
583         memslot->dirty_bitmap = NULL;
584 }
585
586 /*
587  * Free any memory in @free but not in @dont.
588  */
589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
590                               struct kvm_memory_slot *dont)
591 {
592         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
593                 kvm_destroy_dirty_bitmap(free);
594
595         kvm_arch_free_memslot(kvm, free, dont);
596
597         free->npages = 0;
598 }
599
600 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
601 {
602         struct kvm_memory_slot *memslot;
603
604         if (!slots)
605                 return;
606
607         kvm_for_each_memslot(memslot, slots)
608                 kvm_free_memslot(kvm, memslot, NULL);
609
610         kvfree(slots);
611 }
612
613 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
614 {
615         int i;
616
617         if (!kvm->debugfs_dentry)
618                 return;
619
620         debugfs_remove_recursive(kvm->debugfs_dentry);
621
622         if (kvm->debugfs_stat_data) {
623                 for (i = 0; i < kvm_debugfs_num_entries; i++)
624                         kfree(kvm->debugfs_stat_data[i]);
625                 kfree(kvm->debugfs_stat_data);
626         }
627 }
628
629 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
630 {
631         char dir_name[ITOA_MAX_LEN * 2];
632         struct kvm_stat_data *stat_data;
633         struct kvm_stats_debugfs_item *p;
634
635         if (!debugfs_initialized())
636                 return 0;
637
638         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
639         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
640
641         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
642                                          sizeof(*kvm->debugfs_stat_data),
643                                          GFP_KERNEL_ACCOUNT);
644         if (!kvm->debugfs_stat_data)
645                 return -ENOMEM;
646
647         for (p = debugfs_entries; p->name; p++) {
648                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
649                 if (!stat_data)
650                         return -ENOMEM;
651
652                 stat_data->kvm = kvm;
653                 stat_data->offset = p->offset;
654                 stat_data->mode = p->mode ? p->mode : 0644;
655                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
656                 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
657                                     stat_data, stat_fops_per_vm[p->kind]);
658         }
659         return 0;
660 }
661
662 /*
663  * Called after the VM is otherwise initialized, but just before adding it to
664  * the vm_list.
665  */
666 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
667 {
668         return 0;
669 }
670
671 /*
672  * Called just after removing the VM from the vm_list, but before doing any
673  * other destruction.
674  */
675 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
676 {
677 }
678
679 static struct kvm *kvm_create_vm(unsigned long type)
680 {
681         struct kvm *kvm = kvm_arch_alloc_vm();
682         int r = -ENOMEM;
683         int i;
684
685         if (!kvm)
686                 return ERR_PTR(-ENOMEM);
687
688         spin_lock_init(&kvm->mmu_lock);
689         mmgrab(current->mm);
690         kvm->mm = current->mm;
691         kvm_eventfd_init(kvm);
692         mutex_init(&kvm->lock);
693         mutex_init(&kvm->irq_lock);
694         mutex_init(&kvm->slots_lock);
695         INIT_LIST_HEAD(&kvm->devices);
696
697         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
698
699         if (init_srcu_struct(&kvm->srcu))
700                 goto out_err_no_srcu;
701         if (init_srcu_struct(&kvm->irq_srcu))
702                 goto out_err_no_irq_srcu;
703
704         refcount_set(&kvm->users_count, 1);
705         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
706                 struct kvm_memslots *slots = kvm_alloc_memslots();
707
708                 if (!slots)
709                         goto out_err_no_arch_destroy_vm;
710                 /* Generations must be different for each address space. */
711                 slots->generation = i;
712                 rcu_assign_pointer(kvm->memslots[i], slots);
713         }
714
715         for (i = 0; i < KVM_NR_BUSES; i++) {
716                 rcu_assign_pointer(kvm->buses[i],
717                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
718                 if (!kvm->buses[i])
719                         goto out_err_no_arch_destroy_vm;
720         }
721
722         r = kvm_arch_init_vm(kvm, type);
723         if (r)
724                 goto out_err_no_arch_destroy_vm;
725
726         r = hardware_enable_all();
727         if (r)
728                 goto out_err_no_disable;
729
730 #ifdef CONFIG_HAVE_KVM_IRQFD
731         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
732 #endif
733
734         r = kvm_init_mmu_notifier(kvm);
735         if (r)
736                 goto out_err_no_mmu_notifier;
737
738         r = kvm_arch_post_init_vm(kvm);
739         if (r)
740                 goto out_err;
741
742         mutex_lock(&kvm_lock);
743         list_add(&kvm->vm_list, &vm_list);
744         mutex_unlock(&kvm_lock);
745
746         preempt_notifier_inc();
747
748         return kvm;
749
750 out_err:
751 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
752         if (kvm->mmu_notifier.ops)
753                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
754 #endif
755 out_err_no_mmu_notifier:
756         hardware_disable_all();
757 out_err_no_disable:
758         kvm_arch_destroy_vm(kvm);
759 out_err_no_arch_destroy_vm:
760         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
761         for (i = 0; i < KVM_NR_BUSES; i++)
762                 kfree(kvm_get_bus(kvm, i));
763         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
764                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
765         cleanup_srcu_struct(&kvm->irq_srcu);
766 out_err_no_irq_srcu:
767         cleanup_srcu_struct(&kvm->srcu);
768 out_err_no_srcu:
769         kvm_arch_free_vm(kvm);
770         mmdrop(current->mm);
771         return ERR_PTR(r);
772 }
773
774 static void kvm_destroy_devices(struct kvm *kvm)
775 {
776         struct kvm_device *dev, *tmp;
777
778         /*
779          * We do not need to take the kvm->lock here, because nobody else
780          * has a reference to the struct kvm at this point and therefore
781          * cannot access the devices list anyhow.
782          */
783         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
784                 list_del(&dev->vm_node);
785                 dev->ops->destroy(dev);
786         }
787 }
788
789 static void kvm_destroy_vm(struct kvm *kvm)
790 {
791         int i;
792         struct mm_struct *mm = kvm->mm;
793
794         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
795         kvm_destroy_vm_debugfs(kvm);
796         kvm_arch_sync_events(kvm);
797         mutex_lock(&kvm_lock);
798         list_del(&kvm->vm_list);
799         mutex_unlock(&kvm_lock);
800         kvm_arch_pre_destroy_vm(kvm);
801
802         kvm_free_irq_routing(kvm);
803         for (i = 0; i < KVM_NR_BUSES; i++) {
804                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
805
806                 if (bus)
807                         kvm_io_bus_destroy(bus);
808                 kvm->buses[i] = NULL;
809         }
810         kvm_coalesced_mmio_free(kvm);
811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
813 #else
814         kvm_arch_flush_shadow_all(kvm);
815 #endif
816         kvm_arch_destroy_vm(kvm);
817         kvm_destroy_devices(kvm);
818         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
819                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820         cleanup_srcu_struct(&kvm->irq_srcu);
821         cleanup_srcu_struct(&kvm->srcu);
822         kvm_arch_free_vm(kvm);
823         preempt_notifier_dec();
824         hardware_disable_all();
825         mmdrop(mm);
826 }
827
828 void kvm_get_kvm(struct kvm *kvm)
829 {
830         refcount_inc(&kvm->users_count);
831 }
832 EXPORT_SYMBOL_GPL(kvm_get_kvm);
833
834 void kvm_put_kvm(struct kvm *kvm)
835 {
836         if (refcount_dec_and_test(&kvm->users_count))
837                 kvm_destroy_vm(kvm);
838 }
839 EXPORT_SYMBOL_GPL(kvm_put_kvm);
840
841 /*
842  * Used to put a reference that was taken on behalf of an object associated
843  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
844  * of the new file descriptor fails and the reference cannot be transferred to
845  * its final owner.  In such cases, the caller is still actively using @kvm and
846  * will fail miserably if the refcount unexpectedly hits zero.
847  */
848 void kvm_put_kvm_no_destroy(struct kvm *kvm)
849 {
850         WARN_ON(refcount_dec_and_test(&kvm->users_count));
851 }
852 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
853
854 static int kvm_vm_release(struct inode *inode, struct file *filp)
855 {
856         struct kvm *kvm = filp->private_data;
857
858         kvm_irqfd_release(kvm);
859
860         kvm_put_kvm(kvm);
861         return 0;
862 }
863
864 /*
865  * Allocation size is twice as large as the actual dirty bitmap size.
866  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
867  */
868 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
869 {
870         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
871
872         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
873         if (!memslot->dirty_bitmap)
874                 return -ENOMEM;
875
876         return 0;
877 }
878
879 /*
880  * Insert memslot and re-sort memslots based on their GFN,
881  * so binary search could be used to lookup GFN.
882  * Sorting algorithm takes advantage of having initially
883  * sorted array and known changed memslot position.
884  */
885 static void update_memslots(struct kvm_memslots *slots,
886                             struct kvm_memory_slot *new,
887                             enum kvm_mr_change change)
888 {
889         int id = new->id;
890         int i = slots->id_to_index[id];
891         struct kvm_memory_slot *mslots = slots->memslots;
892
893         WARN_ON(mslots[i].id != id);
894         switch (change) {
895         case KVM_MR_CREATE:
896                 slots->used_slots++;
897                 WARN_ON(mslots[i].npages || !new->npages);
898                 break;
899         case KVM_MR_DELETE:
900                 slots->used_slots--;
901                 WARN_ON(new->npages || !mslots[i].npages);
902                 break;
903         default:
904                 break;
905         }
906
907         while (i < KVM_MEM_SLOTS_NUM - 1 &&
908                new->base_gfn <= mslots[i + 1].base_gfn) {
909                 if (!mslots[i + 1].npages)
910                         break;
911                 mslots[i] = mslots[i + 1];
912                 slots->id_to_index[mslots[i].id] = i;
913                 i++;
914         }
915
916         /*
917          * The ">=" is needed when creating a slot with base_gfn == 0,
918          * so that it moves before all those with base_gfn == npages == 0.
919          *
920          * On the other hand, if new->npages is zero, the above loop has
921          * already left i pointing to the beginning of the empty part of
922          * mslots, and the ">=" would move the hole backwards in this
923          * case---which is wrong.  So skip the loop when deleting a slot.
924          */
925         if (new->npages) {
926                 while (i > 0 &&
927                        new->base_gfn >= mslots[i - 1].base_gfn) {
928                         mslots[i] = mslots[i - 1];
929                         slots->id_to_index[mslots[i].id] = i;
930                         i--;
931                 }
932         } else
933                 WARN_ON_ONCE(i != slots->used_slots);
934
935         mslots[i] = *new;
936         slots->id_to_index[mslots[i].id] = i;
937 }
938
939 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
940 {
941         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
942
943 #ifdef __KVM_HAVE_READONLY_MEM
944         valid_flags |= KVM_MEM_READONLY;
945 #endif
946
947         if (mem->flags & ~valid_flags)
948                 return -EINVAL;
949
950         return 0;
951 }
952
953 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
954                 int as_id, struct kvm_memslots *slots)
955 {
956         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
957         u64 gen = old_memslots->generation;
958
959         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
960         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
961
962         rcu_assign_pointer(kvm->memslots[as_id], slots);
963         synchronize_srcu_expedited(&kvm->srcu);
964
965         /*
966          * Increment the new memslot generation a second time, dropping the
967          * update in-progress flag and incrementing then generation based on
968          * the number of address spaces.  This provides a unique and easily
969          * identifiable generation number while the memslots are in flux.
970          */
971         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
972
973         /*
974          * Generations must be unique even across address spaces.  We do not need
975          * a global counter for that, instead the generation space is evenly split
976          * across address spaces.  For example, with two address spaces, address
977          * space 0 will use generations 0, 2, 4, ... while address space 1 will
978          * use generations 1, 3, 5, ...
979          */
980         gen += KVM_ADDRESS_SPACE_NUM;
981
982         kvm_arch_memslots_updated(kvm, gen);
983
984         slots->generation = gen;
985
986         return old_memslots;
987 }
988
989 /*
990  * Allocate some memory and give it an address in the guest physical address
991  * space.
992  *
993  * Discontiguous memory is allowed, mostly for framebuffers.
994  *
995  * Must be called holding kvm->slots_lock for write.
996  */
997 int __kvm_set_memory_region(struct kvm *kvm,
998                             const struct kvm_userspace_memory_region *mem)
999 {
1000         int r;
1001         gfn_t base_gfn;
1002         unsigned long npages;
1003         struct kvm_memory_slot *slot;
1004         struct kvm_memory_slot old, new;
1005         struct kvm_memslots *slots = NULL, *old_memslots;
1006         int as_id, id;
1007         enum kvm_mr_change change;
1008
1009         r = check_memory_region_flags(mem);
1010         if (r)
1011                 goto out;
1012
1013         r = -EINVAL;
1014         as_id = mem->slot >> 16;
1015         id = (u16)mem->slot;
1016
1017         /* General sanity checks */
1018         if (mem->memory_size & (PAGE_SIZE - 1))
1019                 goto out;
1020         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1021                 goto out;
1022         /* We can read the guest memory with __xxx_user() later on. */
1023         if ((id < KVM_USER_MEM_SLOTS) &&
1024             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1025              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1026                         mem->memory_size)))
1027                 goto out;
1028         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1029                 goto out;
1030         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1031                 goto out;
1032
1033         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1034         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1035         npages = mem->memory_size >> PAGE_SHIFT;
1036
1037         if (npages > KVM_MEM_MAX_NR_PAGES)
1038                 goto out;
1039
1040         new = old = *slot;
1041
1042         new.id = id;
1043         new.base_gfn = base_gfn;
1044         new.npages = npages;
1045         new.flags = mem->flags;
1046
1047         if (npages) {
1048                 if (!old.npages)
1049                         change = KVM_MR_CREATE;
1050                 else { /* Modify an existing slot. */
1051                         if ((mem->userspace_addr != old.userspace_addr) ||
1052                             (npages != old.npages) ||
1053                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1054                                 goto out;
1055
1056                         if (base_gfn != old.base_gfn)
1057                                 change = KVM_MR_MOVE;
1058                         else if (new.flags != old.flags)
1059                                 change = KVM_MR_FLAGS_ONLY;
1060                         else { /* Nothing to change. */
1061                                 r = 0;
1062                                 goto out;
1063                         }
1064                 }
1065         } else {
1066                 if (!old.npages)
1067                         goto out;
1068
1069                 change = KVM_MR_DELETE;
1070                 new.base_gfn = 0;
1071                 new.flags = 0;
1072         }
1073
1074         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1075                 /* Check for overlaps */
1076                 r = -EEXIST;
1077                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1078                         if (slot->id == id)
1079                                 continue;
1080                         if (!((base_gfn + npages <= slot->base_gfn) ||
1081                               (base_gfn >= slot->base_gfn + slot->npages)))
1082                                 goto out;
1083                 }
1084         }
1085
1086         /* Free page dirty bitmap if unneeded */
1087         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1088                 new.dirty_bitmap = NULL;
1089
1090         r = -ENOMEM;
1091         if (change == KVM_MR_CREATE) {
1092                 new.userspace_addr = mem->userspace_addr;
1093
1094                 if (kvm_arch_create_memslot(kvm, &new, npages))
1095                         goto out_free;
1096         }
1097
1098         /* Allocate page dirty bitmap if needed */
1099         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1100                 if (kvm_create_dirty_bitmap(&new) < 0)
1101                         goto out_free;
1102         }
1103
1104         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1105         if (!slots)
1106                 goto out_free;
1107         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1108
1109         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1110                 slot = id_to_memslot(slots, id);
1111                 slot->flags |= KVM_MEMSLOT_INVALID;
1112
1113                 old_memslots = install_new_memslots(kvm, as_id, slots);
1114
1115                 /* From this point no new shadow pages pointing to a deleted,
1116                  * or moved, memslot will be created.
1117                  *
1118                  * validation of sp->gfn happens in:
1119                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1120                  *      - kvm_is_visible_gfn (mmu_check_roots)
1121                  */
1122                 kvm_arch_flush_shadow_memslot(kvm, slot);
1123
1124                 /*
1125                  * We can re-use the old_memslots from above, the only difference
1126                  * from the currently installed memslots is the invalid flag.  This
1127                  * will get overwritten by update_memslots anyway.
1128                  */
1129                 slots = old_memslots;
1130         }
1131
1132         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1133         if (r)
1134                 goto out_slots;
1135
1136         /* actual memory is freed via old in kvm_free_memslot below */
1137         if (change == KVM_MR_DELETE) {
1138                 new.dirty_bitmap = NULL;
1139                 memset(&new.arch, 0, sizeof(new.arch));
1140         }
1141
1142         update_memslots(slots, &new, change);
1143         old_memslots = install_new_memslots(kvm, as_id, slots);
1144
1145         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1146
1147         kvm_free_memslot(kvm, &old, &new);
1148         kvfree(old_memslots);
1149         return 0;
1150
1151 out_slots:
1152         kvfree(slots);
1153 out_free:
1154         kvm_free_memslot(kvm, &new, &old);
1155 out:
1156         return r;
1157 }
1158 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1159
1160 int kvm_set_memory_region(struct kvm *kvm,
1161                           const struct kvm_userspace_memory_region *mem)
1162 {
1163         int r;
1164
1165         mutex_lock(&kvm->slots_lock);
1166         r = __kvm_set_memory_region(kvm, mem);
1167         mutex_unlock(&kvm->slots_lock);
1168         return r;
1169 }
1170 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1171
1172 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1173                                           struct kvm_userspace_memory_region *mem)
1174 {
1175         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1176                 return -EINVAL;
1177
1178         return kvm_set_memory_region(kvm, mem);
1179 }
1180
1181 int kvm_get_dirty_log(struct kvm *kvm,
1182                         struct kvm_dirty_log *log, int *is_dirty)
1183 {
1184         struct kvm_memslots *slots;
1185         struct kvm_memory_slot *memslot;
1186         int i, as_id, id;
1187         unsigned long n;
1188         unsigned long any = 0;
1189
1190         as_id = log->slot >> 16;
1191         id = (u16)log->slot;
1192         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1193                 return -EINVAL;
1194
1195         slots = __kvm_memslots(kvm, as_id);
1196         memslot = id_to_memslot(slots, id);
1197         if (!memslot->dirty_bitmap)
1198                 return -ENOENT;
1199
1200         n = kvm_dirty_bitmap_bytes(memslot);
1201
1202         for (i = 0; !any && i < n/sizeof(long); ++i)
1203                 any = memslot->dirty_bitmap[i];
1204
1205         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1206                 return -EFAULT;
1207
1208         if (any)
1209                 *is_dirty = 1;
1210         return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1213
1214 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1215 /**
1216  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1217  *      and reenable dirty page tracking for the corresponding pages.
1218  * @kvm:        pointer to kvm instance
1219  * @log:        slot id and address to which we copy the log
1220  * @flush:      true if TLB flush is needed by caller
1221  *
1222  * We need to keep it in mind that VCPU threads can write to the bitmap
1223  * concurrently. So, to avoid losing track of dirty pages we keep the
1224  * following order:
1225  *
1226  *    1. Take a snapshot of the bit and clear it if needed.
1227  *    2. Write protect the corresponding page.
1228  *    3. Copy the snapshot to the userspace.
1229  *    4. Upon return caller flushes TLB's if needed.
1230  *
1231  * Between 2 and 4, the guest may write to the page using the remaining TLB
1232  * entry.  This is not a problem because the page is reported dirty using
1233  * the snapshot taken before and step 4 ensures that writes done after
1234  * exiting to userspace will be logged for the next call.
1235  *
1236  */
1237 int kvm_get_dirty_log_protect(struct kvm *kvm,
1238                         struct kvm_dirty_log *log, bool *flush)
1239 {
1240         struct kvm_memslots *slots;
1241         struct kvm_memory_slot *memslot;
1242         int i, as_id, id;
1243         unsigned long n;
1244         unsigned long *dirty_bitmap;
1245         unsigned long *dirty_bitmap_buffer;
1246
1247         as_id = log->slot >> 16;
1248         id = (u16)log->slot;
1249         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1250                 return -EINVAL;
1251
1252         slots = __kvm_memslots(kvm, as_id);
1253         memslot = id_to_memslot(slots, id);
1254
1255         dirty_bitmap = memslot->dirty_bitmap;
1256         if (!dirty_bitmap)
1257                 return -ENOENT;
1258
1259         n = kvm_dirty_bitmap_bytes(memslot);
1260         *flush = false;
1261         if (kvm->manual_dirty_log_protect) {
1262                 /*
1263                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1264                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1265                  * is some code duplication between this function and
1266                  * kvm_get_dirty_log, but hopefully all architecture
1267                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1268                  * can be eliminated.
1269                  */
1270                 dirty_bitmap_buffer = dirty_bitmap;
1271         } else {
1272                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1273                 memset(dirty_bitmap_buffer, 0, n);
1274
1275                 spin_lock(&kvm->mmu_lock);
1276                 for (i = 0; i < n / sizeof(long); i++) {
1277                         unsigned long mask;
1278                         gfn_t offset;
1279
1280                         if (!dirty_bitmap[i])
1281                                 continue;
1282
1283                         *flush = true;
1284                         mask = xchg(&dirty_bitmap[i], 0);
1285                         dirty_bitmap_buffer[i] = mask;
1286
1287                         offset = i * BITS_PER_LONG;
1288                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1289                                                                 offset, mask);
1290                 }
1291                 spin_unlock(&kvm->mmu_lock);
1292         }
1293
1294         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1295                 return -EFAULT;
1296         return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1299
1300 /**
1301  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1302  *      and reenable dirty page tracking for the corresponding pages.
1303  * @kvm:        pointer to kvm instance
1304  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1305  * @flush:      true if TLB flush is needed by caller
1306  */
1307 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1308                                 struct kvm_clear_dirty_log *log, bool *flush)
1309 {
1310         struct kvm_memslots *slots;
1311         struct kvm_memory_slot *memslot;
1312         int as_id, id;
1313         gfn_t offset;
1314         unsigned long i, n;
1315         unsigned long *dirty_bitmap;
1316         unsigned long *dirty_bitmap_buffer;
1317
1318         as_id = log->slot >> 16;
1319         id = (u16)log->slot;
1320         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1321                 return -EINVAL;
1322
1323         if (log->first_page & 63)
1324                 return -EINVAL;
1325
1326         slots = __kvm_memslots(kvm, as_id);
1327         memslot = id_to_memslot(slots, id);
1328
1329         dirty_bitmap = memslot->dirty_bitmap;
1330         if (!dirty_bitmap)
1331                 return -ENOENT;
1332
1333         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1334
1335         if (log->first_page > memslot->npages ||
1336             log->num_pages > memslot->npages - log->first_page ||
1337             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1338             return -EINVAL;
1339
1340         *flush = false;
1341         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1342         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1343                 return -EFAULT;
1344
1345         spin_lock(&kvm->mmu_lock);
1346         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1347                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1348              i++, offset += BITS_PER_LONG) {
1349                 unsigned long mask = *dirty_bitmap_buffer++;
1350                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1351                 if (!mask)
1352                         continue;
1353
1354                 mask &= atomic_long_fetch_andnot(mask, p);
1355
1356                 /*
1357                  * mask contains the bits that really have been cleared.  This
1358                  * never includes any bits beyond the length of the memslot (if
1359                  * the length is not aligned to 64 pages), therefore it is not
1360                  * a problem if userspace sets them in log->dirty_bitmap.
1361                 */
1362                 if (mask) {
1363                         *flush = true;
1364                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1365                                                                 offset, mask);
1366                 }
1367         }
1368         spin_unlock(&kvm->mmu_lock);
1369
1370         return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1373 #endif
1374
1375 bool kvm_largepages_enabled(void)
1376 {
1377         return largepages_enabled;
1378 }
1379
1380 void kvm_disable_largepages(void)
1381 {
1382         largepages_enabled = false;
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1385
1386 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1387 {
1388         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1389 }
1390 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1391
1392 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1393 {
1394         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1395 }
1396
1397 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1398 {
1399         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1400
1401         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1402               memslot->flags & KVM_MEMSLOT_INVALID)
1403                 return false;
1404
1405         return true;
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1408
1409 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1410 {
1411         struct vm_area_struct *vma;
1412         unsigned long addr, size;
1413
1414         size = PAGE_SIZE;
1415
1416         addr = gfn_to_hva(kvm, gfn);
1417         if (kvm_is_error_hva(addr))
1418                 return PAGE_SIZE;
1419
1420         down_read(&current->mm->mmap_sem);
1421         vma = find_vma(current->mm, addr);
1422         if (!vma)
1423                 goto out;
1424
1425         size = vma_kernel_pagesize(vma);
1426
1427 out:
1428         up_read(&current->mm->mmap_sem);
1429
1430         return size;
1431 }
1432
1433 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1434 {
1435         return slot->flags & KVM_MEM_READONLY;
1436 }
1437
1438 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1439                                        gfn_t *nr_pages, bool write)
1440 {
1441         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1442                 return KVM_HVA_ERR_BAD;
1443
1444         if (memslot_is_readonly(slot) && write)
1445                 return KVM_HVA_ERR_RO_BAD;
1446
1447         if (nr_pages)
1448                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1449
1450         return __gfn_to_hva_memslot(slot, gfn);
1451 }
1452
1453 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1454                                      gfn_t *nr_pages)
1455 {
1456         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1457 }
1458
1459 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1460                                         gfn_t gfn)
1461 {
1462         return gfn_to_hva_many(slot, gfn, NULL);
1463 }
1464 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1465
1466 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1467 {
1468         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1469 }
1470 EXPORT_SYMBOL_GPL(gfn_to_hva);
1471
1472 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1473 {
1474         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1477
1478 /*
1479  * Return the hva of a @gfn and the R/W attribute if possible.
1480  *
1481  * @slot: the kvm_memory_slot which contains @gfn
1482  * @gfn: the gfn to be translated
1483  * @writable: used to return the read/write attribute of the @slot if the hva
1484  * is valid and @writable is not NULL
1485  */
1486 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1487                                       gfn_t gfn, bool *writable)
1488 {
1489         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1490
1491         if (!kvm_is_error_hva(hva) && writable)
1492                 *writable = !memslot_is_readonly(slot);
1493
1494         return hva;
1495 }
1496
1497 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1498 {
1499         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1500
1501         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1502 }
1503
1504 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1505 {
1506         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1507
1508         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1509 }
1510
1511 static inline int check_user_page_hwpoison(unsigned long addr)
1512 {
1513         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1514
1515         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1516         return rc == -EHWPOISON;
1517 }
1518
1519 /*
1520  * The fast path to get the writable pfn which will be stored in @pfn,
1521  * true indicates success, otherwise false is returned.  It's also the
1522  * only part that runs if we can are in atomic context.
1523  */
1524 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1525                             bool *writable, kvm_pfn_t *pfn)
1526 {
1527         struct page *page[1];
1528         int npages;
1529
1530         /*
1531          * Fast pin a writable pfn only if it is a write fault request
1532          * or the caller allows to map a writable pfn for a read fault
1533          * request.
1534          */
1535         if (!(write_fault || writable))
1536                 return false;
1537
1538         npages = __get_user_pages_fast(addr, 1, 1, page);
1539         if (npages == 1) {
1540                 *pfn = page_to_pfn(page[0]);
1541
1542                 if (writable)
1543                         *writable = true;
1544                 return true;
1545         }
1546
1547         return false;
1548 }
1549
1550 /*
1551  * The slow path to get the pfn of the specified host virtual address,
1552  * 1 indicates success, -errno is returned if error is detected.
1553  */
1554 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1555                            bool *writable, kvm_pfn_t *pfn)
1556 {
1557         unsigned int flags = FOLL_HWPOISON;
1558         struct page *page;
1559         int npages = 0;
1560
1561         might_sleep();
1562
1563         if (writable)
1564                 *writable = write_fault;
1565
1566         if (write_fault)
1567                 flags |= FOLL_WRITE;
1568         if (async)
1569                 flags |= FOLL_NOWAIT;
1570
1571         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1572         if (npages != 1)
1573                 return npages;
1574
1575         /* map read fault as writable if possible */
1576         if (unlikely(!write_fault) && writable) {
1577                 struct page *wpage;
1578
1579                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1580                         *writable = true;
1581                         put_page(page);
1582                         page = wpage;
1583                 }
1584         }
1585         *pfn = page_to_pfn(page);
1586         return npages;
1587 }
1588
1589 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1590 {
1591         if (unlikely(!(vma->vm_flags & VM_READ)))
1592                 return false;
1593
1594         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1595                 return false;
1596
1597         return true;
1598 }
1599
1600 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1601                                unsigned long addr, bool *async,
1602                                bool write_fault, bool *writable,
1603                                kvm_pfn_t *p_pfn)
1604 {
1605         unsigned long pfn;
1606         int r;
1607
1608         r = follow_pfn(vma, addr, &pfn);
1609         if (r) {
1610                 /*
1611                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1612                  * not call the fault handler, so do it here.
1613                  */
1614                 bool unlocked = false;
1615                 r = fixup_user_fault(current, current->mm, addr,
1616                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1617                                      &unlocked);
1618                 if (unlocked)
1619                         return -EAGAIN;
1620                 if (r)
1621                         return r;
1622
1623                 r = follow_pfn(vma, addr, &pfn);
1624                 if (r)
1625                         return r;
1626
1627         }
1628
1629         if (writable)
1630                 *writable = true;
1631
1632         /*
1633          * Get a reference here because callers of *hva_to_pfn* and
1634          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1635          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1636          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1637          * simply do nothing for reserved pfns.
1638          *
1639          * Whoever called remap_pfn_range is also going to call e.g.
1640          * unmap_mapping_range before the underlying pages are freed,
1641          * causing a call to our MMU notifier.
1642          */ 
1643         kvm_get_pfn(pfn);
1644
1645         *p_pfn = pfn;
1646         return 0;
1647 }
1648
1649 /*
1650  * Pin guest page in memory and return its pfn.
1651  * @addr: host virtual address which maps memory to the guest
1652  * @atomic: whether this function can sleep
1653  * @async: whether this function need to wait IO complete if the
1654  *         host page is not in the memory
1655  * @write_fault: whether we should get a writable host page
1656  * @writable: whether it allows to map a writable host page for !@write_fault
1657  *
1658  * The function will map a writable host page for these two cases:
1659  * 1): @write_fault = true
1660  * 2): @write_fault = false && @writable, @writable will tell the caller
1661  *     whether the mapping is writable.
1662  */
1663 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1664                         bool write_fault, bool *writable)
1665 {
1666         struct vm_area_struct *vma;
1667         kvm_pfn_t pfn = 0;
1668         int npages, r;
1669
1670         /* we can do it either atomically or asynchronously, not both */
1671         BUG_ON(atomic && async);
1672
1673         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1674                 return pfn;
1675
1676         if (atomic)
1677                 return KVM_PFN_ERR_FAULT;
1678
1679         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1680         if (npages == 1)
1681                 return pfn;
1682
1683         down_read(&current->mm->mmap_sem);
1684         if (npages == -EHWPOISON ||
1685               (!async && check_user_page_hwpoison(addr))) {
1686                 pfn = KVM_PFN_ERR_HWPOISON;
1687                 goto exit;
1688         }
1689
1690 retry:
1691         vma = find_vma_intersection(current->mm, addr, addr + 1);
1692
1693         if (vma == NULL)
1694                 pfn = KVM_PFN_ERR_FAULT;
1695         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1696                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1697                 if (r == -EAGAIN)
1698                         goto retry;
1699                 if (r < 0)
1700                         pfn = KVM_PFN_ERR_FAULT;
1701         } else {
1702                 if (async && vma_is_valid(vma, write_fault))
1703                         *async = true;
1704                 pfn = KVM_PFN_ERR_FAULT;
1705         }
1706 exit:
1707         up_read(&current->mm->mmap_sem);
1708         return pfn;
1709 }
1710
1711 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1712                                bool atomic, bool *async, bool write_fault,
1713                                bool *writable)
1714 {
1715         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1716
1717         if (addr == KVM_HVA_ERR_RO_BAD) {
1718                 if (writable)
1719                         *writable = false;
1720                 return KVM_PFN_ERR_RO_FAULT;
1721         }
1722
1723         if (kvm_is_error_hva(addr)) {
1724                 if (writable)
1725                         *writable = false;
1726                 return KVM_PFN_NOSLOT;
1727         }
1728
1729         /* Do not map writable pfn in the readonly memslot. */
1730         if (writable && memslot_is_readonly(slot)) {
1731                 *writable = false;
1732                 writable = NULL;
1733         }
1734
1735         return hva_to_pfn(addr, atomic, async, write_fault,
1736                           writable);
1737 }
1738 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1739
1740 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1741                       bool *writable)
1742 {
1743         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1744                                     write_fault, writable);
1745 }
1746 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1747
1748 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1749 {
1750         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1751 }
1752 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1753
1754 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1755 {
1756         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1757 }
1758 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1759
1760 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1761 {
1762         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1763 }
1764 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1765
1766 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1767 {
1768         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1769 }
1770 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1771
1772 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1773 {
1774         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1775 }
1776 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1777
1778 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1779 {
1780         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1783
1784 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1785                             struct page **pages, int nr_pages)
1786 {
1787         unsigned long addr;
1788         gfn_t entry = 0;
1789
1790         addr = gfn_to_hva_many(slot, gfn, &entry);
1791         if (kvm_is_error_hva(addr))
1792                 return -1;
1793
1794         if (entry < nr_pages)
1795                 return 0;
1796
1797         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1798 }
1799 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1800
1801 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1802 {
1803         if (is_error_noslot_pfn(pfn))
1804                 return KVM_ERR_PTR_BAD_PAGE;
1805
1806         if (kvm_is_reserved_pfn(pfn)) {
1807                 WARN_ON(1);
1808                 return KVM_ERR_PTR_BAD_PAGE;
1809         }
1810
1811         return pfn_to_page(pfn);
1812 }
1813
1814 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1815 {
1816         kvm_pfn_t pfn;
1817
1818         pfn = gfn_to_pfn(kvm, gfn);
1819
1820         return kvm_pfn_to_page(pfn);
1821 }
1822 EXPORT_SYMBOL_GPL(gfn_to_page);
1823
1824 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1825                          struct kvm_host_map *map)
1826 {
1827         kvm_pfn_t pfn;
1828         void *hva = NULL;
1829         struct page *page = KVM_UNMAPPED_PAGE;
1830
1831         if (!map)
1832                 return -EINVAL;
1833
1834         pfn = gfn_to_pfn_memslot(slot, gfn);
1835         if (is_error_noslot_pfn(pfn))
1836                 return -EINVAL;
1837
1838         if (pfn_valid(pfn)) {
1839                 page = pfn_to_page(pfn);
1840                 hva = kmap(page);
1841 #ifdef CONFIG_HAS_IOMEM
1842         } else {
1843                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1844 #endif
1845         }
1846
1847         if (!hva)
1848                 return -EFAULT;
1849
1850         map->page = page;
1851         map->hva = hva;
1852         map->pfn = pfn;
1853         map->gfn = gfn;
1854
1855         return 0;
1856 }
1857
1858 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1859 {
1860         return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1863
1864 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1865                     bool dirty)
1866 {
1867         if (!map)
1868                 return;
1869
1870         if (!map->hva)
1871                 return;
1872
1873         if (map->page != KVM_UNMAPPED_PAGE)
1874                 kunmap(map->page);
1875 #ifdef CONFIG_HAS_IOMEM
1876         else
1877                 memunmap(map->hva);
1878 #endif
1879
1880         if (dirty) {
1881                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1882                 kvm_release_pfn_dirty(map->pfn);
1883         } else {
1884                 kvm_release_pfn_clean(map->pfn);
1885         }
1886
1887         map->hva = NULL;
1888         map->page = NULL;
1889 }
1890 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1891
1892 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1893 {
1894         kvm_pfn_t pfn;
1895
1896         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1897
1898         return kvm_pfn_to_page(pfn);
1899 }
1900 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1901
1902 void kvm_release_page_clean(struct page *page)
1903 {
1904         WARN_ON(is_error_page(page));
1905
1906         kvm_release_pfn_clean(page_to_pfn(page));
1907 }
1908 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1909
1910 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1911 {
1912         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1913                 put_page(pfn_to_page(pfn));
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1916
1917 void kvm_release_page_dirty(struct page *page)
1918 {
1919         WARN_ON(is_error_page(page));
1920
1921         kvm_release_pfn_dirty(page_to_pfn(page));
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1924
1925 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1926 {
1927         kvm_set_pfn_dirty(pfn);
1928         kvm_release_pfn_clean(pfn);
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1931
1932 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1933 {
1934         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) {
1935                 struct page *page = pfn_to_page(pfn);
1936
1937                 SetPageDirty(page);
1938         }
1939 }
1940 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1941
1942 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1943 {
1944         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1945                 mark_page_accessed(pfn_to_page(pfn));
1946 }
1947 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1948
1949 void kvm_get_pfn(kvm_pfn_t pfn)
1950 {
1951         if (!kvm_is_reserved_pfn(pfn))
1952                 get_page(pfn_to_page(pfn));
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1955
1956 static int next_segment(unsigned long len, int offset)
1957 {
1958         if (len > PAGE_SIZE - offset)
1959                 return PAGE_SIZE - offset;
1960         else
1961                 return len;
1962 }
1963
1964 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1965                                  void *data, int offset, int len)
1966 {
1967         int r;
1968         unsigned long addr;
1969
1970         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1971         if (kvm_is_error_hva(addr))
1972                 return -EFAULT;
1973         r = __copy_from_user(data, (void __user *)addr + offset, len);
1974         if (r)
1975                 return -EFAULT;
1976         return 0;
1977 }
1978
1979 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1980                         int len)
1981 {
1982         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1983
1984         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1987
1988 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1989                              int offset, int len)
1990 {
1991         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1992
1993         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1994 }
1995 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1996
1997 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1998 {
1999         gfn_t gfn = gpa >> PAGE_SHIFT;
2000         int seg;
2001         int offset = offset_in_page(gpa);
2002         int ret;
2003
2004         while ((seg = next_segment(len, offset)) != 0) {
2005                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2006                 if (ret < 0)
2007                         return ret;
2008                 offset = 0;
2009                 len -= seg;
2010                 data += seg;
2011                 ++gfn;
2012         }
2013         return 0;
2014 }
2015 EXPORT_SYMBOL_GPL(kvm_read_guest);
2016
2017 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2018 {
2019         gfn_t gfn = gpa >> PAGE_SHIFT;
2020         int seg;
2021         int offset = offset_in_page(gpa);
2022         int ret;
2023
2024         while ((seg = next_segment(len, offset)) != 0) {
2025                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2026                 if (ret < 0)
2027                         return ret;
2028                 offset = 0;
2029                 len -= seg;
2030                 data += seg;
2031                 ++gfn;
2032         }
2033         return 0;
2034 }
2035 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2036
2037 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2038                                    void *data, int offset, unsigned long len)
2039 {
2040         int r;
2041         unsigned long addr;
2042
2043         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2044         if (kvm_is_error_hva(addr))
2045                 return -EFAULT;
2046         pagefault_disable();
2047         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2048         pagefault_enable();
2049         if (r)
2050                 return -EFAULT;
2051         return 0;
2052 }
2053
2054 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2055                           unsigned long len)
2056 {
2057         gfn_t gfn = gpa >> PAGE_SHIFT;
2058         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2059         int offset = offset_in_page(gpa);
2060
2061         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2064
2065 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2066                                void *data, unsigned long len)
2067 {
2068         gfn_t gfn = gpa >> PAGE_SHIFT;
2069         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2070         int offset = offset_in_page(gpa);
2071
2072         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2075
2076 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2077                                   const void *data, int offset, int len)
2078 {
2079         int r;
2080         unsigned long addr;
2081
2082         addr = gfn_to_hva_memslot(memslot, gfn);
2083         if (kvm_is_error_hva(addr))
2084                 return -EFAULT;
2085         r = __copy_to_user((void __user *)addr + offset, data, len);
2086         if (r)
2087                 return -EFAULT;
2088         mark_page_dirty_in_slot(memslot, gfn);
2089         return 0;
2090 }
2091
2092 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2093                          const void *data, int offset, int len)
2094 {
2095         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2096
2097         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2100
2101 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2102                               const void *data, int offset, int len)
2103 {
2104         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2105
2106         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2107 }
2108 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2109
2110 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2111                     unsigned long len)
2112 {
2113         gfn_t gfn = gpa >> PAGE_SHIFT;
2114         int seg;
2115         int offset = offset_in_page(gpa);
2116         int ret;
2117
2118         while ((seg = next_segment(len, offset)) != 0) {
2119                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2120                 if (ret < 0)
2121                         return ret;
2122                 offset = 0;
2123                 len -= seg;
2124                 data += seg;
2125                 ++gfn;
2126         }
2127         return 0;
2128 }
2129 EXPORT_SYMBOL_GPL(kvm_write_guest);
2130
2131 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2132                          unsigned long len)
2133 {
2134         gfn_t gfn = gpa >> PAGE_SHIFT;
2135         int seg;
2136         int offset = offset_in_page(gpa);
2137         int ret;
2138
2139         while ((seg = next_segment(len, offset)) != 0) {
2140                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2141                 if (ret < 0)
2142                         return ret;
2143                 offset = 0;
2144                 len -= seg;
2145                 data += seg;
2146                 ++gfn;
2147         }
2148         return 0;
2149 }
2150 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2151
2152 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2153                                        struct gfn_to_hva_cache *ghc,
2154                                        gpa_t gpa, unsigned long len)
2155 {
2156         int offset = offset_in_page(gpa);
2157         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2158         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2159         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2160         gfn_t nr_pages_avail;
2161         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2162
2163         ghc->gpa = gpa;
2164         ghc->generation = slots->generation;
2165         ghc->len = len;
2166         ghc->hva = KVM_HVA_ERR_BAD;
2167
2168         /*
2169          * If the requested region crosses two memslots, we still
2170          * verify that the entire region is valid here.
2171          */
2172         while (!r && start_gfn <= end_gfn) {
2173                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2174                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2175                                            &nr_pages_avail);
2176                 if (kvm_is_error_hva(ghc->hva))
2177                         r = -EFAULT;
2178                 start_gfn += nr_pages_avail;
2179         }
2180
2181         /* Use the slow path for cross page reads and writes. */
2182         if (!r && nr_pages_needed == 1)
2183                 ghc->hva += offset;
2184         else
2185                 ghc->memslot = NULL;
2186
2187         return r;
2188 }
2189
2190 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2191                               gpa_t gpa, unsigned long len)
2192 {
2193         struct kvm_memslots *slots = kvm_memslots(kvm);
2194         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2195 }
2196 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2197
2198 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2199                                   void *data, unsigned int offset,
2200                                   unsigned long len)
2201 {
2202         struct kvm_memslots *slots = kvm_memslots(kvm);
2203         int r;
2204         gpa_t gpa = ghc->gpa + offset;
2205
2206         BUG_ON(len + offset > ghc->len);
2207
2208         if (slots->generation != ghc->generation)
2209                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2210
2211         if (unlikely(!ghc->memslot))
2212                 return kvm_write_guest(kvm, gpa, data, len);
2213
2214         if (kvm_is_error_hva(ghc->hva))
2215                 return -EFAULT;
2216
2217         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2218         if (r)
2219                 return -EFAULT;
2220         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2221
2222         return 0;
2223 }
2224 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2225
2226 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2227                            void *data, unsigned long len)
2228 {
2229         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2230 }
2231 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2232
2233 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2234                            void *data, unsigned long len)
2235 {
2236         struct kvm_memslots *slots = kvm_memslots(kvm);
2237         int r;
2238
2239         BUG_ON(len > ghc->len);
2240
2241         if (slots->generation != ghc->generation)
2242                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2243
2244         if (unlikely(!ghc->memslot))
2245                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2246
2247         if (kvm_is_error_hva(ghc->hva))
2248                 return -EFAULT;
2249
2250         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2251         if (r)
2252                 return -EFAULT;
2253
2254         return 0;
2255 }
2256 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2257
2258 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2259 {
2260         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2261
2262         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2263 }
2264 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2265
2266 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2267 {
2268         gfn_t gfn = gpa >> PAGE_SHIFT;
2269         int seg;
2270         int offset = offset_in_page(gpa);
2271         int ret;
2272
2273         while ((seg = next_segment(len, offset)) != 0) {
2274                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2275                 if (ret < 0)
2276                         return ret;
2277                 offset = 0;
2278                 len -= seg;
2279                 ++gfn;
2280         }
2281         return 0;
2282 }
2283 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2284
2285 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2286                                     gfn_t gfn)
2287 {
2288         if (memslot && memslot->dirty_bitmap) {
2289                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2290
2291                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2292         }
2293 }
2294
2295 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2296 {
2297         struct kvm_memory_slot *memslot;
2298
2299         memslot = gfn_to_memslot(kvm, gfn);
2300         mark_page_dirty_in_slot(memslot, gfn);
2301 }
2302 EXPORT_SYMBOL_GPL(mark_page_dirty);
2303
2304 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2305 {
2306         struct kvm_memory_slot *memslot;
2307
2308         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2309         mark_page_dirty_in_slot(memslot, gfn);
2310 }
2311 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2312
2313 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2314 {
2315         if (!vcpu->sigset_active)
2316                 return;
2317
2318         /*
2319          * This does a lockless modification of ->real_blocked, which is fine
2320          * because, only current can change ->real_blocked and all readers of
2321          * ->real_blocked don't care as long ->real_blocked is always a subset
2322          * of ->blocked.
2323          */
2324         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2325 }
2326
2327 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2328 {
2329         if (!vcpu->sigset_active)
2330                 return;
2331
2332         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2333         sigemptyset(&current->real_blocked);
2334 }
2335
2336 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2337 {
2338         unsigned int old, val, grow, grow_start;
2339
2340         old = val = vcpu->halt_poll_ns;
2341         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2342         grow = READ_ONCE(halt_poll_ns_grow);
2343         if (!grow)
2344                 goto out;
2345
2346         val *= grow;
2347         if (val < grow_start)
2348                 val = grow_start;
2349
2350         if (val > halt_poll_ns)
2351                 val = halt_poll_ns;
2352
2353         vcpu->halt_poll_ns = val;
2354 out:
2355         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2356 }
2357
2358 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2359 {
2360         unsigned int old, val, shrink;
2361
2362         old = val = vcpu->halt_poll_ns;
2363         shrink = READ_ONCE(halt_poll_ns_shrink);
2364         if (shrink == 0)
2365                 val = 0;
2366         else
2367                 val /= shrink;
2368
2369         vcpu->halt_poll_ns = val;
2370         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2371 }
2372
2373 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2374 {
2375         int ret = -EINTR;
2376         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2377
2378         if (kvm_arch_vcpu_runnable(vcpu)) {
2379                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2380                 goto out;
2381         }
2382         if (kvm_cpu_has_pending_timer(vcpu))
2383                 goto out;
2384         if (signal_pending(current))
2385                 goto out;
2386
2387         ret = 0;
2388 out:
2389         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2390         return ret;
2391 }
2392
2393 /*
2394  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2395  */
2396 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2397 {
2398         ktime_t start, cur;
2399         DECLARE_SWAITQUEUE(wait);
2400         bool waited = false;
2401         u64 block_ns;
2402
2403         kvm_arch_vcpu_blocking(vcpu);
2404
2405         start = cur = ktime_get();
2406         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2407                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2408
2409                 ++vcpu->stat.halt_attempted_poll;
2410                 do {
2411                         /*
2412                          * This sets KVM_REQ_UNHALT if an interrupt
2413                          * arrives.
2414                          */
2415                         if (kvm_vcpu_check_block(vcpu) < 0) {
2416                                 ++vcpu->stat.halt_successful_poll;
2417                                 if (!vcpu_valid_wakeup(vcpu))
2418                                         ++vcpu->stat.halt_poll_invalid;
2419                                 goto out;
2420                         }
2421                         cur = ktime_get();
2422                 } while (single_task_running() && ktime_before(cur, stop));
2423         }
2424
2425         for (;;) {
2426                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2427
2428                 if (kvm_vcpu_check_block(vcpu) < 0)
2429                         break;
2430
2431                 waited = true;
2432                 schedule();
2433         }
2434
2435         finish_swait(&vcpu->wq, &wait);
2436         cur = ktime_get();
2437 out:
2438         kvm_arch_vcpu_unblocking(vcpu);
2439         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2440
2441         if (!kvm_arch_no_poll(vcpu)) {
2442                 if (!vcpu_valid_wakeup(vcpu)) {
2443                         shrink_halt_poll_ns(vcpu);
2444                 } else if (halt_poll_ns) {
2445                         if (block_ns <= vcpu->halt_poll_ns)
2446                                 ;
2447                         /* we had a long block, shrink polling */
2448                         else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2449                                 shrink_halt_poll_ns(vcpu);
2450                         /* we had a short halt and our poll time is too small */
2451                         else if (vcpu->halt_poll_ns < halt_poll_ns &&
2452                                 block_ns < halt_poll_ns)
2453                                 grow_halt_poll_ns(vcpu);
2454                 } else {
2455                         vcpu->halt_poll_ns = 0;
2456                 }
2457         }
2458
2459         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2460         kvm_arch_vcpu_block_finish(vcpu);
2461 }
2462 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2463
2464 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2465 {
2466         struct swait_queue_head *wqp;
2467
2468         wqp = kvm_arch_vcpu_wq(vcpu);
2469         if (swq_has_sleeper(wqp)) {
2470                 swake_up_one(wqp);
2471                 WRITE_ONCE(vcpu->ready, true);
2472                 ++vcpu->stat.halt_wakeup;
2473                 return true;
2474         }
2475
2476         return false;
2477 }
2478 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2479
2480 #ifndef CONFIG_S390
2481 /*
2482  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2483  */
2484 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2485 {
2486         int me;
2487         int cpu = vcpu->cpu;
2488
2489         if (kvm_vcpu_wake_up(vcpu))
2490                 return;
2491
2492         me = get_cpu();
2493         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2494                 if (kvm_arch_vcpu_should_kick(vcpu))
2495                         smp_send_reschedule(cpu);
2496         put_cpu();
2497 }
2498 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2499 #endif /* !CONFIG_S390 */
2500
2501 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2502 {
2503         struct pid *pid;
2504         struct task_struct *task = NULL;
2505         int ret = 0;
2506
2507         rcu_read_lock();
2508         pid = rcu_dereference(target->pid);
2509         if (pid)
2510                 task = get_pid_task(pid, PIDTYPE_PID);
2511         rcu_read_unlock();
2512         if (!task)
2513                 return ret;
2514         ret = yield_to(task, 1);
2515         put_task_struct(task);
2516
2517         return ret;
2518 }
2519 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2520
2521 /*
2522  * Helper that checks whether a VCPU is eligible for directed yield.
2523  * Most eligible candidate to yield is decided by following heuristics:
2524  *
2525  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2526  *  (preempted lock holder), indicated by @in_spin_loop.
2527  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2528  *
2529  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2530  *  chance last time (mostly it has become eligible now since we have probably
2531  *  yielded to lockholder in last iteration. This is done by toggling
2532  *  @dy_eligible each time a VCPU checked for eligibility.)
2533  *
2534  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2535  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2536  *  burning. Giving priority for a potential lock-holder increases lock
2537  *  progress.
2538  *
2539  *  Since algorithm is based on heuristics, accessing another VCPU data without
2540  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2541  *  and continue with next VCPU and so on.
2542  */
2543 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2544 {
2545 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2546         bool eligible;
2547
2548         eligible = !vcpu->spin_loop.in_spin_loop ||
2549                     vcpu->spin_loop.dy_eligible;
2550
2551         if (vcpu->spin_loop.in_spin_loop)
2552                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2553
2554         return eligible;
2555 #else
2556         return true;
2557 #endif
2558 }
2559
2560 /*
2561  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2562  * a vcpu_load/vcpu_put pair.  However, for most architectures
2563  * kvm_arch_vcpu_runnable does not require vcpu_load.
2564  */
2565 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2566 {
2567         return kvm_arch_vcpu_runnable(vcpu);
2568 }
2569
2570 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2571 {
2572         if (kvm_arch_dy_runnable(vcpu))
2573                 return true;
2574
2575 #ifdef CONFIG_KVM_ASYNC_PF
2576         if (!list_empty_careful(&vcpu->async_pf.done))
2577                 return true;
2578 #endif
2579
2580         return false;
2581 }
2582
2583 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2584 {
2585         struct kvm *kvm = me->kvm;
2586         struct kvm_vcpu *vcpu;
2587         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2588         int yielded = 0;
2589         int try = 3;
2590         int pass;
2591         int i;
2592
2593         kvm_vcpu_set_in_spin_loop(me, true);
2594         /*
2595          * We boost the priority of a VCPU that is runnable but not
2596          * currently running, because it got preempted by something
2597          * else and called schedule in __vcpu_run.  Hopefully that
2598          * VCPU is holding the lock that we need and will release it.
2599          * We approximate round-robin by starting at the last boosted VCPU.
2600          */
2601         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2602                 kvm_for_each_vcpu(i, vcpu, kvm) {
2603                         if (!pass && i <= last_boosted_vcpu) {
2604                                 i = last_boosted_vcpu;
2605                                 continue;
2606                         } else if (pass && i > last_boosted_vcpu)
2607                                 break;
2608                         if (!READ_ONCE(vcpu->ready))
2609                                 continue;
2610                         if (vcpu == me)
2611                                 continue;
2612                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2613                                 continue;
2614                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2615                                 !kvm_arch_vcpu_in_kernel(vcpu))
2616                                 continue;
2617                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2618                                 continue;
2619
2620                         yielded = kvm_vcpu_yield_to(vcpu);
2621                         if (yielded > 0) {
2622                                 kvm->last_boosted_vcpu = i;
2623                                 break;
2624                         } else if (yielded < 0) {
2625                                 try--;
2626                                 if (!try)
2627                                         break;
2628                         }
2629                 }
2630         }
2631         kvm_vcpu_set_in_spin_loop(me, false);
2632
2633         /* Ensure vcpu is not eligible during next spinloop */
2634         kvm_vcpu_set_dy_eligible(me, false);
2635 }
2636 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2637
2638 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2639 {
2640         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2641         struct page *page;
2642
2643         if (vmf->pgoff == 0)
2644                 page = virt_to_page(vcpu->run);
2645 #ifdef CONFIG_X86
2646         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2647                 page = virt_to_page(vcpu->arch.pio_data);
2648 #endif
2649 #ifdef CONFIG_KVM_MMIO
2650         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2651                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2652 #endif
2653         else
2654                 return kvm_arch_vcpu_fault(vcpu, vmf);
2655         get_page(page);
2656         vmf->page = page;
2657         return 0;
2658 }
2659
2660 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2661         .fault = kvm_vcpu_fault,
2662 };
2663
2664 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2665 {
2666         vma->vm_ops = &kvm_vcpu_vm_ops;
2667         return 0;
2668 }
2669
2670 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2671 {
2672         struct kvm_vcpu *vcpu = filp->private_data;
2673
2674         debugfs_remove_recursive(vcpu->debugfs_dentry);
2675         kvm_put_kvm(vcpu->kvm);
2676         return 0;
2677 }
2678
2679 static struct file_operations kvm_vcpu_fops = {
2680         .release        = kvm_vcpu_release,
2681         .unlocked_ioctl = kvm_vcpu_ioctl,
2682         .mmap           = kvm_vcpu_mmap,
2683         .llseek         = noop_llseek,
2684         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2685 };
2686
2687 /*
2688  * Allocates an inode for the vcpu.
2689  */
2690 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2691 {
2692         char name[8 + 1 + ITOA_MAX_LEN + 1];
2693
2694         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2695         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2696 }
2697
2698 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2699 {
2700 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2701         char dir_name[ITOA_MAX_LEN * 2];
2702
2703         if (!debugfs_initialized())
2704                 return;
2705
2706         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2707         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2708                                                   vcpu->kvm->debugfs_dentry);
2709
2710         kvm_arch_create_vcpu_debugfs(vcpu);
2711 #endif
2712 }
2713
2714 /*
2715  * Creates some virtual cpus.  Good luck creating more than one.
2716  */
2717 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2718 {
2719         int r;
2720         struct kvm_vcpu *vcpu;
2721
2722         if (id >= KVM_MAX_VCPU_ID)
2723                 return -EINVAL;
2724
2725         mutex_lock(&kvm->lock);
2726         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2727                 mutex_unlock(&kvm->lock);
2728                 return -EINVAL;
2729         }
2730
2731         kvm->created_vcpus++;
2732         mutex_unlock(&kvm->lock);
2733
2734         vcpu = kvm_arch_vcpu_create(kvm, id);
2735         if (IS_ERR(vcpu)) {
2736                 r = PTR_ERR(vcpu);
2737                 goto vcpu_decrement;
2738         }
2739
2740         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2741
2742         r = kvm_arch_vcpu_setup(vcpu);
2743         if (r)
2744                 goto vcpu_destroy;
2745
2746         kvm_create_vcpu_debugfs(vcpu);
2747
2748         mutex_lock(&kvm->lock);
2749         if (kvm_get_vcpu_by_id(kvm, id)) {
2750                 r = -EEXIST;
2751                 goto unlock_vcpu_destroy;
2752         }
2753
2754         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
2755         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
2756
2757         /* Now it's all set up, let userspace reach it */
2758         kvm_get_kvm(kvm);
2759         r = create_vcpu_fd(vcpu);
2760         if (r < 0) {
2761                 kvm_put_kvm_no_destroy(kvm);
2762                 goto unlock_vcpu_destroy;
2763         }
2764
2765         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
2766
2767         /*
2768          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2769          * before kvm->online_vcpu's incremented value.
2770          */
2771         smp_wmb();
2772         atomic_inc(&kvm->online_vcpus);
2773
2774         mutex_unlock(&kvm->lock);
2775         kvm_arch_vcpu_postcreate(vcpu);
2776         return r;
2777
2778 unlock_vcpu_destroy:
2779         mutex_unlock(&kvm->lock);
2780         debugfs_remove_recursive(vcpu->debugfs_dentry);
2781 vcpu_destroy:
2782         kvm_arch_vcpu_destroy(vcpu);
2783 vcpu_decrement:
2784         mutex_lock(&kvm->lock);
2785         kvm->created_vcpus--;
2786         mutex_unlock(&kvm->lock);
2787         return r;
2788 }
2789
2790 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2791 {
2792         if (sigset) {
2793                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2794                 vcpu->sigset_active = 1;
2795                 vcpu->sigset = *sigset;
2796         } else
2797                 vcpu->sigset_active = 0;
2798         return 0;
2799 }
2800
2801 static long kvm_vcpu_ioctl(struct file *filp,
2802                            unsigned int ioctl, unsigned long arg)
2803 {
2804         struct kvm_vcpu *vcpu = filp->private_data;
2805         void __user *argp = (void __user *)arg;
2806         int r;
2807         struct kvm_fpu *fpu = NULL;
2808         struct kvm_sregs *kvm_sregs = NULL;
2809
2810         if (vcpu->kvm->mm != current->mm)
2811                 return -EIO;
2812
2813         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2814                 return -EINVAL;
2815
2816         /*
2817          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2818          * execution; mutex_lock() would break them.
2819          */
2820         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2821         if (r != -ENOIOCTLCMD)
2822                 return r;
2823
2824         if (mutex_lock_killable(&vcpu->mutex))
2825                 return -EINTR;
2826         switch (ioctl) {
2827         case KVM_RUN: {
2828                 struct pid *oldpid;
2829                 r = -EINVAL;
2830                 if (arg)
2831                         goto out;
2832                 oldpid = rcu_access_pointer(vcpu->pid);
2833                 if (unlikely(oldpid != task_pid(current))) {
2834                         /* The thread running this VCPU changed. */
2835                         struct pid *newpid;
2836
2837                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2838                         if (r)
2839                                 break;
2840
2841                         newpid = get_task_pid(current, PIDTYPE_PID);
2842                         rcu_assign_pointer(vcpu->pid, newpid);
2843                         if (oldpid)
2844                                 synchronize_rcu();
2845                         put_pid(oldpid);
2846                 }
2847                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2848                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2849                 break;
2850         }
2851         case KVM_GET_REGS: {
2852                 struct kvm_regs *kvm_regs;
2853
2854                 r = -ENOMEM;
2855                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2856                 if (!kvm_regs)
2857                         goto out;
2858                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2859                 if (r)
2860                         goto out_free1;
2861                 r = -EFAULT;
2862                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2863                         goto out_free1;
2864                 r = 0;
2865 out_free1:
2866                 kfree(kvm_regs);
2867                 break;
2868         }
2869         case KVM_SET_REGS: {
2870                 struct kvm_regs *kvm_regs;
2871
2872                 r = -ENOMEM;
2873                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2874                 if (IS_ERR(kvm_regs)) {
2875                         r = PTR_ERR(kvm_regs);
2876                         goto out;
2877                 }
2878                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2879                 kfree(kvm_regs);
2880                 break;
2881         }
2882         case KVM_GET_SREGS: {
2883                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2884                                     GFP_KERNEL_ACCOUNT);
2885                 r = -ENOMEM;
2886                 if (!kvm_sregs)
2887                         goto out;
2888                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2889                 if (r)
2890                         goto out;
2891                 r = -EFAULT;
2892                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2893                         goto out;
2894                 r = 0;
2895                 break;
2896         }
2897         case KVM_SET_SREGS: {
2898                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2899                 if (IS_ERR(kvm_sregs)) {
2900                         r = PTR_ERR(kvm_sregs);
2901                         kvm_sregs = NULL;
2902                         goto out;
2903                 }
2904                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2905                 break;
2906         }
2907         case KVM_GET_MP_STATE: {
2908                 struct kvm_mp_state mp_state;
2909
2910                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2911                 if (r)
2912                         goto out;
2913                 r = -EFAULT;
2914                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2915                         goto out;
2916                 r = 0;
2917                 break;
2918         }
2919         case KVM_SET_MP_STATE: {
2920                 struct kvm_mp_state mp_state;
2921
2922                 r = -EFAULT;
2923                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2924                         goto out;
2925                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2926                 break;
2927         }
2928         case KVM_TRANSLATE: {
2929                 struct kvm_translation tr;
2930
2931                 r = -EFAULT;
2932                 if (copy_from_user(&tr, argp, sizeof(tr)))
2933                         goto out;
2934                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2935                 if (r)
2936                         goto out;
2937                 r = -EFAULT;
2938                 if (copy_to_user(argp, &tr, sizeof(tr)))
2939                         goto out;
2940                 r = 0;
2941                 break;
2942         }
2943         case KVM_SET_GUEST_DEBUG: {
2944                 struct kvm_guest_debug dbg;
2945
2946                 r = -EFAULT;
2947                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2948                         goto out;
2949                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2950                 break;
2951         }
2952         case KVM_SET_SIGNAL_MASK: {
2953                 struct kvm_signal_mask __user *sigmask_arg = argp;
2954                 struct kvm_signal_mask kvm_sigmask;
2955                 sigset_t sigset, *p;
2956
2957                 p = NULL;
2958                 if (argp) {
2959                         r = -EFAULT;
2960                         if (copy_from_user(&kvm_sigmask, argp,
2961                                            sizeof(kvm_sigmask)))
2962                                 goto out;
2963                         r = -EINVAL;
2964                         if (kvm_sigmask.len != sizeof(sigset))
2965                                 goto out;
2966                         r = -EFAULT;
2967                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2968                                            sizeof(sigset)))
2969                                 goto out;
2970                         p = &sigset;
2971                 }
2972                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2973                 break;
2974         }
2975         case KVM_GET_FPU: {
2976                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2977                 r = -ENOMEM;
2978                 if (!fpu)
2979                         goto out;
2980                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2981                 if (r)
2982                         goto out;
2983                 r = -EFAULT;
2984                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2985                         goto out;
2986                 r = 0;
2987                 break;
2988         }
2989         case KVM_SET_FPU: {
2990                 fpu = memdup_user(argp, sizeof(*fpu));
2991                 if (IS_ERR(fpu)) {
2992                         r = PTR_ERR(fpu);
2993                         fpu = NULL;
2994                         goto out;
2995                 }
2996                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2997                 break;
2998         }
2999         default:
3000                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3001         }
3002 out:
3003         mutex_unlock(&vcpu->mutex);
3004         kfree(fpu);
3005         kfree(kvm_sregs);
3006         return r;
3007 }
3008
3009 #ifdef CONFIG_KVM_COMPAT
3010 static long kvm_vcpu_compat_ioctl(struct file *filp,
3011                                   unsigned int ioctl, unsigned long arg)
3012 {
3013         struct kvm_vcpu *vcpu = filp->private_data;
3014         void __user *argp = compat_ptr(arg);
3015         int r;
3016
3017         if (vcpu->kvm->mm != current->mm)
3018                 return -EIO;
3019
3020         switch (ioctl) {
3021         case KVM_SET_SIGNAL_MASK: {
3022                 struct kvm_signal_mask __user *sigmask_arg = argp;
3023                 struct kvm_signal_mask kvm_sigmask;
3024                 sigset_t sigset;
3025
3026                 if (argp) {
3027                         r = -EFAULT;
3028                         if (copy_from_user(&kvm_sigmask, argp,
3029                                            sizeof(kvm_sigmask)))
3030                                 goto out;
3031                         r = -EINVAL;
3032                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3033                                 goto out;
3034                         r = -EFAULT;
3035                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3036                                 goto out;
3037                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3038                 } else
3039                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3040                 break;
3041         }
3042         default:
3043                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3044         }
3045
3046 out:
3047         return r;
3048 }
3049 #endif
3050
3051 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3052 {
3053         struct kvm_device *dev = filp->private_data;
3054
3055         if (dev->ops->mmap)
3056                 return dev->ops->mmap(dev, vma);
3057
3058         return -ENODEV;
3059 }
3060
3061 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3062                                  int (*accessor)(struct kvm_device *dev,
3063                                                  struct kvm_device_attr *attr),
3064                                  unsigned long arg)
3065 {
3066         struct kvm_device_attr attr;
3067
3068         if (!accessor)
3069                 return -EPERM;
3070
3071         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3072                 return -EFAULT;
3073
3074         return accessor(dev, &attr);
3075 }
3076
3077 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3078                              unsigned long arg)
3079 {
3080         struct kvm_device *dev = filp->private_data;
3081
3082         if (dev->kvm->mm != current->mm)
3083                 return -EIO;
3084
3085         switch (ioctl) {
3086         case KVM_SET_DEVICE_ATTR:
3087                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3088         case KVM_GET_DEVICE_ATTR:
3089                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3090         case KVM_HAS_DEVICE_ATTR:
3091                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3092         default:
3093                 if (dev->ops->ioctl)
3094                         return dev->ops->ioctl(dev, ioctl, arg);
3095
3096                 return -ENOTTY;
3097         }
3098 }
3099
3100 static int kvm_device_release(struct inode *inode, struct file *filp)
3101 {
3102         struct kvm_device *dev = filp->private_data;
3103         struct kvm *kvm = dev->kvm;
3104
3105         if (dev->ops->release) {
3106                 mutex_lock(&kvm->lock);
3107                 list_del(&dev->vm_node);
3108                 dev->ops->release(dev);
3109                 mutex_unlock(&kvm->lock);
3110         }
3111
3112         kvm_put_kvm(kvm);
3113         return 0;
3114 }
3115
3116 static const struct file_operations kvm_device_fops = {
3117         .unlocked_ioctl = kvm_device_ioctl,
3118         .release = kvm_device_release,
3119         KVM_COMPAT(kvm_device_ioctl),
3120         .mmap = kvm_device_mmap,
3121 };
3122
3123 struct kvm_device *kvm_device_from_filp(struct file *filp)
3124 {
3125         if (filp->f_op != &kvm_device_fops)
3126                 return NULL;
3127
3128         return filp->private_data;
3129 }
3130
3131 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3132 #ifdef CONFIG_KVM_MPIC
3133         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3134         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3135 #endif
3136 };
3137
3138 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3139 {
3140         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3141                 return -ENOSPC;
3142
3143         if (kvm_device_ops_table[type] != NULL)
3144                 return -EEXIST;
3145
3146         kvm_device_ops_table[type] = ops;
3147         return 0;
3148 }
3149
3150 void kvm_unregister_device_ops(u32 type)
3151 {
3152         if (kvm_device_ops_table[type] != NULL)
3153                 kvm_device_ops_table[type] = NULL;
3154 }
3155
3156 static int kvm_ioctl_create_device(struct kvm *kvm,
3157                                    struct kvm_create_device *cd)
3158 {
3159         const struct kvm_device_ops *ops = NULL;
3160         struct kvm_device *dev;
3161         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3162         int type;
3163         int ret;
3164
3165         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3166                 return -ENODEV;
3167
3168         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3169         ops = kvm_device_ops_table[type];
3170         if (ops == NULL)
3171                 return -ENODEV;
3172
3173         if (test)
3174                 return 0;
3175
3176         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3177         if (!dev)
3178                 return -ENOMEM;
3179
3180         dev->ops = ops;
3181         dev->kvm = kvm;
3182
3183         mutex_lock(&kvm->lock);
3184         ret = ops->create(dev, type);
3185         if (ret < 0) {
3186                 mutex_unlock(&kvm->lock);
3187                 kfree(dev);
3188                 return ret;
3189         }
3190         list_add(&dev->vm_node, &kvm->devices);
3191         mutex_unlock(&kvm->lock);
3192
3193         if (ops->init)
3194                 ops->init(dev);
3195
3196         kvm_get_kvm(kvm);
3197         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3198         if (ret < 0) {
3199                 kvm_put_kvm_no_destroy(kvm);
3200                 mutex_lock(&kvm->lock);
3201                 list_del(&dev->vm_node);
3202                 mutex_unlock(&kvm->lock);
3203                 ops->destroy(dev);
3204                 return ret;
3205         }
3206
3207         cd->fd = ret;
3208         return 0;
3209 }
3210
3211 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3212 {
3213         switch (arg) {
3214         case KVM_CAP_USER_MEMORY:
3215         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3216         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3217         case KVM_CAP_INTERNAL_ERROR_DATA:
3218 #ifdef CONFIG_HAVE_KVM_MSI
3219         case KVM_CAP_SIGNAL_MSI:
3220 #endif
3221 #ifdef CONFIG_HAVE_KVM_IRQFD
3222         case KVM_CAP_IRQFD:
3223         case KVM_CAP_IRQFD_RESAMPLE:
3224 #endif
3225         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3226         case KVM_CAP_CHECK_EXTENSION_VM:
3227         case KVM_CAP_ENABLE_CAP_VM:
3228 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3229         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3230 #endif
3231                 return 1;
3232 #ifdef CONFIG_KVM_MMIO
3233         case KVM_CAP_COALESCED_MMIO:
3234                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3235         case KVM_CAP_COALESCED_PIO:
3236                 return 1;
3237 #endif
3238 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3239         case KVM_CAP_IRQ_ROUTING:
3240                 return KVM_MAX_IRQ_ROUTES;
3241 #endif
3242 #if KVM_ADDRESS_SPACE_NUM > 1
3243         case KVM_CAP_MULTI_ADDRESS_SPACE:
3244                 return KVM_ADDRESS_SPACE_NUM;
3245 #endif
3246         case KVM_CAP_NR_MEMSLOTS:
3247                 return KVM_USER_MEM_SLOTS;
3248         default:
3249                 break;
3250         }
3251         return kvm_vm_ioctl_check_extension(kvm, arg);
3252 }
3253
3254 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3255                                                   struct kvm_enable_cap *cap)
3256 {
3257         return -EINVAL;
3258 }
3259
3260 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3261                                            struct kvm_enable_cap *cap)
3262 {
3263         switch (cap->cap) {
3264 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3265         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3266                 if (cap->flags || (cap->args[0] & ~1))
3267                         return -EINVAL;
3268                 kvm->manual_dirty_log_protect = cap->args[0];
3269                 return 0;
3270 #endif
3271         default:
3272                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3273         }
3274 }
3275
3276 static long kvm_vm_ioctl(struct file *filp,
3277                            unsigned int ioctl, unsigned long arg)
3278 {
3279         struct kvm *kvm = filp->private_data;
3280         void __user *argp = (void __user *)arg;
3281         int r;
3282
3283         if (kvm->mm != current->mm)
3284                 return -EIO;
3285         switch (ioctl) {
3286         case KVM_CREATE_VCPU:
3287                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3288                 break;
3289         case KVM_ENABLE_CAP: {
3290                 struct kvm_enable_cap cap;
3291
3292                 r = -EFAULT;
3293                 if (copy_from_user(&cap, argp, sizeof(cap)))
3294                         goto out;
3295                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3296                 break;
3297         }
3298         case KVM_SET_USER_MEMORY_REGION: {
3299                 struct kvm_userspace_memory_region kvm_userspace_mem;
3300
3301                 r = -EFAULT;
3302                 if (copy_from_user(&kvm_userspace_mem, argp,
3303                                                 sizeof(kvm_userspace_mem)))
3304                         goto out;
3305
3306                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3307                 break;
3308         }
3309         case KVM_GET_DIRTY_LOG: {
3310                 struct kvm_dirty_log log;
3311
3312                 r = -EFAULT;
3313                 if (copy_from_user(&log, argp, sizeof(log)))
3314                         goto out;
3315                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3316                 break;
3317         }
3318 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3319         case KVM_CLEAR_DIRTY_LOG: {
3320                 struct kvm_clear_dirty_log log;
3321
3322                 r = -EFAULT;
3323                 if (copy_from_user(&log, argp, sizeof(log)))
3324                         goto out;
3325                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3326                 break;
3327         }
3328 #endif
3329 #ifdef CONFIG_KVM_MMIO
3330         case KVM_REGISTER_COALESCED_MMIO: {
3331                 struct kvm_coalesced_mmio_zone zone;
3332
3333                 r = -EFAULT;
3334                 if (copy_from_user(&zone, argp, sizeof(zone)))
3335                         goto out;
3336                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3337                 break;
3338         }
3339         case KVM_UNREGISTER_COALESCED_MMIO: {
3340                 struct kvm_coalesced_mmio_zone zone;
3341
3342                 r = -EFAULT;
3343                 if (copy_from_user(&zone, argp, sizeof(zone)))
3344                         goto out;
3345                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3346                 break;
3347         }
3348 #endif
3349         case KVM_IRQFD: {
3350                 struct kvm_irqfd data;
3351
3352                 r = -EFAULT;
3353                 if (copy_from_user(&data, argp, sizeof(data)))
3354                         goto out;
3355                 r = kvm_irqfd(kvm, &data);
3356                 break;
3357         }
3358         case KVM_IOEVENTFD: {
3359                 struct kvm_ioeventfd data;
3360
3361                 r = -EFAULT;
3362                 if (copy_from_user(&data, argp, sizeof(data)))
3363                         goto out;
3364                 r = kvm_ioeventfd(kvm, &data);
3365                 break;
3366         }
3367 #ifdef CONFIG_HAVE_KVM_MSI
3368         case KVM_SIGNAL_MSI: {
3369                 struct kvm_msi msi;
3370
3371                 r = -EFAULT;
3372                 if (copy_from_user(&msi, argp, sizeof(msi)))
3373                         goto out;
3374                 r = kvm_send_userspace_msi(kvm, &msi);
3375                 break;
3376         }
3377 #endif
3378 #ifdef __KVM_HAVE_IRQ_LINE
3379         case KVM_IRQ_LINE_STATUS:
3380         case KVM_IRQ_LINE: {
3381                 struct kvm_irq_level irq_event;
3382
3383                 r = -EFAULT;
3384                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3385                         goto out;
3386
3387                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3388                                         ioctl == KVM_IRQ_LINE_STATUS);
3389                 if (r)
3390                         goto out;
3391
3392                 r = -EFAULT;
3393                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3394                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3395                                 goto out;
3396                 }
3397
3398                 r = 0;
3399                 break;
3400         }
3401 #endif
3402 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3403         case KVM_SET_GSI_ROUTING: {
3404                 struct kvm_irq_routing routing;
3405                 struct kvm_irq_routing __user *urouting;
3406                 struct kvm_irq_routing_entry *entries = NULL;
3407
3408                 r = -EFAULT;
3409                 if (copy_from_user(&routing, argp, sizeof(routing)))
3410                         goto out;
3411                 r = -EINVAL;
3412                 if (!kvm_arch_can_set_irq_routing(kvm))
3413                         goto out;
3414                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3415                         goto out;
3416                 if (routing.flags)
3417                         goto out;
3418                 if (routing.nr) {
3419                         r = -ENOMEM;
3420                         entries = vmalloc(array_size(sizeof(*entries),
3421                                                      routing.nr));
3422                         if (!entries)
3423                                 goto out;
3424                         r = -EFAULT;
3425                         urouting = argp;
3426                         if (copy_from_user(entries, urouting->entries,
3427                                            routing.nr * sizeof(*entries)))
3428                                 goto out_free_irq_routing;
3429                 }
3430                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3431                                         routing.flags);
3432 out_free_irq_routing:
3433                 vfree(entries);
3434                 break;
3435         }
3436 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3437         case KVM_CREATE_DEVICE: {
3438                 struct kvm_create_device cd;
3439
3440                 r = -EFAULT;
3441                 if (copy_from_user(&cd, argp, sizeof(cd)))
3442                         goto out;
3443
3444                 r = kvm_ioctl_create_device(kvm, &cd);
3445                 if (r)
3446                         goto out;
3447
3448                 r = -EFAULT;
3449                 if (copy_to_user(argp, &cd, sizeof(cd)))
3450                         goto out;
3451
3452                 r = 0;
3453                 break;
3454         }
3455         case KVM_CHECK_EXTENSION:
3456                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3457                 break;
3458         default:
3459                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3460         }
3461 out:
3462         return r;
3463 }
3464
3465 #ifdef CONFIG_KVM_COMPAT
3466 struct compat_kvm_dirty_log {
3467         __u32 slot;
3468         __u32 padding1;
3469         union {
3470                 compat_uptr_t dirty_bitmap; /* one bit per page */
3471                 __u64 padding2;
3472         };
3473 };
3474
3475 static long kvm_vm_compat_ioctl(struct file *filp,
3476                            unsigned int ioctl, unsigned long arg)
3477 {
3478         struct kvm *kvm = filp->private_data;
3479         int r;
3480
3481         if (kvm->mm != current->mm)
3482                 return -EIO;
3483         switch (ioctl) {
3484         case KVM_GET_DIRTY_LOG: {
3485                 struct compat_kvm_dirty_log compat_log;
3486                 struct kvm_dirty_log log;
3487
3488                 if (copy_from_user(&compat_log, (void __user *)arg,
3489                                    sizeof(compat_log)))
3490                         return -EFAULT;
3491                 log.slot         = compat_log.slot;
3492                 log.padding1     = compat_log.padding1;
3493                 log.padding2     = compat_log.padding2;
3494                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3495
3496                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3497                 break;
3498         }
3499         default:
3500                 r = kvm_vm_ioctl(filp, ioctl, arg);
3501         }
3502         return r;
3503 }
3504 #endif
3505
3506 static struct file_operations kvm_vm_fops = {
3507         .release        = kvm_vm_release,
3508         .unlocked_ioctl = kvm_vm_ioctl,
3509         .llseek         = noop_llseek,
3510         KVM_COMPAT(kvm_vm_compat_ioctl),
3511 };
3512
3513 static int kvm_dev_ioctl_create_vm(unsigned long type)
3514 {
3515         int r;
3516         struct kvm *kvm;
3517         struct file *file;
3518
3519         kvm = kvm_create_vm(type);
3520         if (IS_ERR(kvm))
3521                 return PTR_ERR(kvm);
3522 #ifdef CONFIG_KVM_MMIO
3523         r = kvm_coalesced_mmio_init(kvm);
3524         if (r < 0)
3525                 goto put_kvm;
3526 #endif
3527         r = get_unused_fd_flags(O_CLOEXEC);
3528         if (r < 0)
3529                 goto put_kvm;
3530
3531         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3532         if (IS_ERR(file)) {
3533                 put_unused_fd(r);
3534                 r = PTR_ERR(file);
3535                 goto put_kvm;
3536         }
3537
3538         /*
3539          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3540          * already set, with ->release() being kvm_vm_release().  In error
3541          * cases it will be called by the final fput(file) and will take
3542          * care of doing kvm_put_kvm(kvm).
3543          */
3544         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3545                 put_unused_fd(r);
3546                 fput(file);
3547                 return -ENOMEM;
3548         }
3549         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3550
3551         fd_install(r, file);
3552         return r;
3553
3554 put_kvm:
3555         kvm_put_kvm(kvm);
3556         return r;
3557 }
3558
3559 static long kvm_dev_ioctl(struct file *filp,
3560                           unsigned int ioctl, unsigned long arg)
3561 {
3562         long r = -EINVAL;
3563
3564         switch (ioctl) {
3565         case KVM_GET_API_VERSION:
3566                 if (arg)
3567                         goto out;
3568                 r = KVM_API_VERSION;
3569                 break;
3570         case KVM_CREATE_VM:
3571                 r = kvm_dev_ioctl_create_vm(arg);
3572                 break;
3573         case KVM_CHECK_EXTENSION:
3574                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3575                 break;
3576         case KVM_GET_VCPU_MMAP_SIZE:
3577                 if (arg)
3578                         goto out;
3579                 r = PAGE_SIZE;     /* struct kvm_run */
3580 #ifdef CONFIG_X86
3581                 r += PAGE_SIZE;    /* pio data page */
3582 #endif
3583 #ifdef CONFIG_KVM_MMIO
3584                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3585 #endif
3586                 break;
3587         case KVM_TRACE_ENABLE:
3588         case KVM_TRACE_PAUSE:
3589         case KVM_TRACE_DISABLE:
3590                 r = -EOPNOTSUPP;
3591                 break;
3592         default:
3593                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3594         }
3595 out:
3596         return r;
3597 }
3598
3599 static struct file_operations kvm_chardev_ops = {
3600         .unlocked_ioctl = kvm_dev_ioctl,
3601         .llseek         = noop_llseek,
3602         KVM_COMPAT(kvm_dev_ioctl),
3603 };
3604
3605 static struct miscdevice kvm_dev = {
3606         KVM_MINOR,
3607         "kvm",
3608         &kvm_chardev_ops,
3609 };
3610
3611 static void hardware_enable_nolock(void *junk)
3612 {
3613         int cpu = raw_smp_processor_id();
3614         int r;
3615
3616         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3617                 return;
3618
3619         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3620
3621         r = kvm_arch_hardware_enable();
3622
3623         if (r) {
3624                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3625                 atomic_inc(&hardware_enable_failed);
3626                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3627         }
3628 }
3629
3630 static int kvm_starting_cpu(unsigned int cpu)
3631 {
3632         raw_spin_lock(&kvm_count_lock);
3633         if (kvm_usage_count)
3634                 hardware_enable_nolock(NULL);
3635         raw_spin_unlock(&kvm_count_lock);
3636         return 0;
3637 }
3638
3639 static void hardware_disable_nolock(void *junk)
3640 {
3641         int cpu = raw_smp_processor_id();
3642
3643         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3644                 return;
3645         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3646         kvm_arch_hardware_disable();
3647 }
3648
3649 static int kvm_dying_cpu(unsigned int cpu)
3650 {
3651         raw_spin_lock(&kvm_count_lock);
3652         if (kvm_usage_count)
3653                 hardware_disable_nolock(NULL);
3654         raw_spin_unlock(&kvm_count_lock);
3655         return 0;
3656 }
3657
3658 static void hardware_disable_all_nolock(void)
3659 {
3660         BUG_ON(!kvm_usage_count);
3661
3662         kvm_usage_count--;
3663         if (!kvm_usage_count)
3664                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3665 }
3666
3667 static void hardware_disable_all(void)
3668 {
3669         raw_spin_lock(&kvm_count_lock);
3670         hardware_disable_all_nolock();
3671         raw_spin_unlock(&kvm_count_lock);
3672 }
3673
3674 static int hardware_enable_all(void)
3675 {
3676         int r = 0;
3677
3678         raw_spin_lock(&kvm_count_lock);
3679
3680         kvm_usage_count++;
3681         if (kvm_usage_count == 1) {
3682                 atomic_set(&hardware_enable_failed, 0);
3683                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3684
3685                 if (atomic_read(&hardware_enable_failed)) {
3686                         hardware_disable_all_nolock();
3687                         r = -EBUSY;
3688                 }
3689         }
3690
3691         raw_spin_unlock(&kvm_count_lock);
3692
3693         return r;
3694 }
3695
3696 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3697                       void *v)
3698 {
3699         /*
3700          * Some (well, at least mine) BIOSes hang on reboot if
3701          * in vmx root mode.
3702          *
3703          * And Intel TXT required VMX off for all cpu when system shutdown.
3704          */
3705         pr_info("kvm: exiting hardware virtualization\n");
3706         kvm_rebooting = true;
3707         on_each_cpu(hardware_disable_nolock, NULL, 1);
3708         return NOTIFY_OK;
3709 }
3710
3711 static struct notifier_block kvm_reboot_notifier = {
3712         .notifier_call = kvm_reboot,
3713         .priority = 0,
3714 };
3715
3716 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3717 {
3718         int i;
3719
3720         for (i = 0; i < bus->dev_count; i++) {
3721                 struct kvm_io_device *pos = bus->range[i].dev;
3722
3723                 kvm_iodevice_destructor(pos);
3724         }
3725         kfree(bus);
3726 }
3727
3728 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3729                                  const struct kvm_io_range *r2)
3730 {
3731         gpa_t addr1 = r1->addr;
3732         gpa_t addr2 = r2->addr;
3733
3734         if (addr1 < addr2)
3735                 return -1;
3736
3737         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3738          * accept any overlapping write.  Any order is acceptable for
3739          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3740          * we process all of them.
3741          */
3742         if (r2->len) {
3743                 addr1 += r1->len;
3744                 addr2 += r2->len;
3745         }
3746
3747         if (addr1 > addr2)
3748                 return 1;
3749
3750         return 0;
3751 }
3752
3753 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3754 {
3755         return kvm_io_bus_cmp(p1, p2);
3756 }
3757
3758 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3759                              gpa_t addr, int len)
3760 {
3761         struct kvm_io_range *range, key;
3762         int off;
3763
3764         key = (struct kvm_io_range) {
3765                 .addr = addr,
3766                 .len = len,
3767         };
3768
3769         range = bsearch(&key, bus->range, bus->dev_count,
3770                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3771         if (range == NULL)
3772                 return -ENOENT;
3773
3774         off = range - bus->range;
3775
3776         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3777                 off--;
3778
3779         return off;
3780 }
3781
3782 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3783                               struct kvm_io_range *range, const void *val)
3784 {
3785         int idx;
3786
3787         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3788         if (idx < 0)
3789                 return -EOPNOTSUPP;
3790
3791         while (idx < bus->dev_count &&
3792                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3793                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3794                                         range->len, val))
3795                         return idx;
3796                 idx++;
3797         }
3798
3799         return -EOPNOTSUPP;
3800 }
3801
3802 /* kvm_io_bus_write - called under kvm->slots_lock */
3803 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3804                      int len, const void *val)
3805 {
3806         struct kvm_io_bus *bus;
3807         struct kvm_io_range range;
3808         int r;
3809
3810         range = (struct kvm_io_range) {
3811                 .addr = addr,
3812                 .len = len,
3813         };
3814
3815         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3816         if (!bus)
3817                 return -ENOMEM;
3818         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3819         return r < 0 ? r : 0;
3820 }
3821 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3822
3823 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3824 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3825                             gpa_t addr, int len, const void *val, long cookie)
3826 {
3827         struct kvm_io_bus *bus;
3828         struct kvm_io_range range;
3829
3830         range = (struct kvm_io_range) {
3831                 .addr = addr,
3832                 .len = len,
3833         };
3834
3835         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3836         if (!bus)
3837                 return -ENOMEM;
3838
3839         /* First try the device referenced by cookie. */
3840         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3841             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3842                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3843                                         val))
3844                         return cookie;
3845
3846         /*
3847          * cookie contained garbage; fall back to search and return the
3848          * correct cookie value.
3849          */
3850         return __kvm_io_bus_write(vcpu, bus, &range, val);
3851 }
3852
3853 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3854                              struct kvm_io_range *range, void *val)
3855 {
3856         int idx;
3857
3858         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3859         if (idx < 0)
3860                 return -EOPNOTSUPP;
3861
3862         while (idx < bus->dev_count &&
3863                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3864                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3865                                        range->len, val))
3866                         return idx;
3867                 idx++;
3868         }
3869
3870         return -EOPNOTSUPP;
3871 }
3872
3873 /* kvm_io_bus_read - called under kvm->slots_lock */
3874 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3875                     int len, void *val)
3876 {
3877         struct kvm_io_bus *bus;
3878         struct kvm_io_range range;
3879         int r;
3880
3881         range = (struct kvm_io_range) {
3882                 .addr = addr,
3883                 .len = len,
3884         };
3885
3886         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3887         if (!bus)
3888                 return -ENOMEM;
3889         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3890         return r < 0 ? r : 0;
3891 }
3892
3893 /* Caller must hold slots_lock. */
3894 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3895                             int len, struct kvm_io_device *dev)
3896 {
3897         int i;
3898         struct kvm_io_bus *new_bus, *bus;
3899         struct kvm_io_range range;
3900
3901         bus = kvm_get_bus(kvm, bus_idx);
3902         if (!bus)
3903                 return -ENOMEM;
3904
3905         /* exclude ioeventfd which is limited by maximum fd */
3906         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3907                 return -ENOSPC;
3908
3909         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3910                           GFP_KERNEL_ACCOUNT);
3911         if (!new_bus)
3912                 return -ENOMEM;
3913
3914         range = (struct kvm_io_range) {
3915                 .addr = addr,
3916                 .len = len,
3917                 .dev = dev,
3918         };
3919
3920         for (i = 0; i < bus->dev_count; i++)
3921                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3922                         break;
3923
3924         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3925         new_bus->dev_count++;
3926         new_bus->range[i] = range;
3927         memcpy(new_bus->range + i + 1, bus->range + i,
3928                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3929         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3930         synchronize_srcu_expedited(&kvm->srcu);
3931         kfree(bus);
3932
3933         return 0;
3934 }
3935
3936 /* Caller must hold slots_lock. */
3937 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3938                                struct kvm_io_device *dev)
3939 {
3940         int i;
3941         struct kvm_io_bus *new_bus, *bus;
3942
3943         bus = kvm_get_bus(kvm, bus_idx);
3944         if (!bus)
3945                 return;
3946
3947         for (i = 0; i < bus->dev_count; i++)
3948                 if (bus->range[i].dev == dev) {
3949                         break;
3950                 }
3951
3952         if (i == bus->dev_count)
3953                 return;
3954
3955         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3956                           GFP_KERNEL_ACCOUNT);
3957         if (!new_bus)  {
3958                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3959                 goto broken;
3960         }
3961
3962         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3963         new_bus->dev_count--;
3964         memcpy(new_bus->range + i, bus->range + i + 1,
3965                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3966
3967 broken:
3968         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3969         synchronize_srcu_expedited(&kvm->srcu);
3970         kfree(bus);
3971         return;
3972 }
3973
3974 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3975                                          gpa_t addr)
3976 {
3977         struct kvm_io_bus *bus;
3978         int dev_idx, srcu_idx;
3979         struct kvm_io_device *iodev = NULL;
3980
3981         srcu_idx = srcu_read_lock(&kvm->srcu);
3982
3983         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3984         if (!bus)
3985                 goto out_unlock;
3986
3987         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3988         if (dev_idx < 0)
3989                 goto out_unlock;
3990
3991         iodev = bus->range[dev_idx].dev;
3992
3993 out_unlock:
3994         srcu_read_unlock(&kvm->srcu, srcu_idx);
3995
3996         return iodev;
3997 }
3998 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3999
4000 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4001                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4002                            const char *fmt)
4003 {
4004         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4005                                           inode->i_private;
4006
4007         /* The debugfs files are a reference to the kvm struct which
4008          * is still valid when kvm_destroy_vm is called.
4009          * To avoid the race between open and the removal of the debugfs
4010          * directory we test against the users count.
4011          */
4012         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4013                 return -ENOENT;
4014
4015         if (simple_attr_open(inode, file, get,
4016                              stat_data->mode & S_IWUGO ? set : NULL,
4017                              fmt)) {
4018                 kvm_put_kvm(stat_data->kvm);
4019                 return -ENOMEM;
4020         }
4021
4022         return 0;
4023 }
4024
4025 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4026 {
4027         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4028                                           inode->i_private;
4029
4030         simple_attr_release(inode, file);
4031         kvm_put_kvm(stat_data->kvm);
4032
4033         return 0;
4034 }
4035
4036 static int vm_stat_get_per_vm(void *data, u64 *val)
4037 {
4038         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4039
4040         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
4041
4042         return 0;
4043 }
4044
4045 static int vm_stat_clear_per_vm(void *data, u64 val)
4046 {
4047         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4048
4049         if (val)
4050                 return -EINVAL;
4051
4052         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
4053
4054         return 0;
4055 }
4056
4057 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
4058 {
4059         __simple_attr_check_format("%llu\n", 0ull);
4060         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
4061                                 vm_stat_clear_per_vm, "%llu\n");
4062 }
4063
4064 static const struct file_operations vm_stat_get_per_vm_fops = {
4065         .owner   = THIS_MODULE,
4066         .open    = vm_stat_get_per_vm_open,
4067         .release = kvm_debugfs_release,
4068         .read    = simple_attr_read,
4069         .write   = simple_attr_write,
4070         .llseek  = no_llseek,
4071 };
4072
4073 static int vcpu_stat_get_per_vm(void *data, u64 *val)
4074 {
4075         int i;
4076         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4077         struct kvm_vcpu *vcpu;
4078
4079         *val = 0;
4080
4081         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4082                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
4083
4084         return 0;
4085 }
4086
4087 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4088 {
4089         int i;
4090         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4091         struct kvm_vcpu *vcpu;
4092
4093         if (val)
4094                 return -EINVAL;
4095
4096         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4097                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4098
4099         return 0;
4100 }
4101
4102 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4103 {
4104         __simple_attr_check_format("%llu\n", 0ull);
4105         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4106                                  vcpu_stat_clear_per_vm, "%llu\n");
4107 }
4108
4109 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4110         .owner   = THIS_MODULE,
4111         .open    = vcpu_stat_get_per_vm_open,
4112         .release = kvm_debugfs_release,
4113         .read    = simple_attr_read,
4114         .write   = simple_attr_write,
4115         .llseek  = no_llseek,
4116 };
4117
4118 static const struct file_operations *stat_fops_per_vm[] = {
4119         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4120         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4121 };
4122
4123 static int vm_stat_get(void *_offset, u64 *val)
4124 {
4125         unsigned offset = (long)_offset;
4126         struct kvm *kvm;
4127         struct kvm_stat_data stat_tmp = {.offset = offset};
4128         u64 tmp_val;
4129
4130         *val = 0;
4131         mutex_lock(&kvm_lock);
4132         list_for_each_entry(kvm, &vm_list, vm_list) {
4133                 stat_tmp.kvm = kvm;
4134                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4135                 *val += tmp_val;
4136         }
4137         mutex_unlock(&kvm_lock);
4138         return 0;
4139 }
4140
4141 static int vm_stat_clear(void *_offset, u64 val)
4142 {
4143         unsigned offset = (long)_offset;
4144         struct kvm *kvm;
4145         struct kvm_stat_data stat_tmp = {.offset = offset};
4146
4147         if (val)
4148                 return -EINVAL;
4149
4150         mutex_lock(&kvm_lock);
4151         list_for_each_entry(kvm, &vm_list, vm_list) {
4152                 stat_tmp.kvm = kvm;
4153                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4154         }
4155         mutex_unlock(&kvm_lock);
4156
4157         return 0;
4158 }
4159
4160 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4161
4162 static int vcpu_stat_get(void *_offset, u64 *val)
4163 {
4164         unsigned offset = (long)_offset;
4165         struct kvm *kvm;
4166         struct kvm_stat_data stat_tmp = {.offset = offset};
4167         u64 tmp_val;
4168
4169         *val = 0;
4170         mutex_lock(&kvm_lock);
4171         list_for_each_entry(kvm, &vm_list, vm_list) {
4172                 stat_tmp.kvm = kvm;
4173                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4174                 *val += tmp_val;
4175         }
4176         mutex_unlock(&kvm_lock);
4177         return 0;
4178 }
4179
4180 static int vcpu_stat_clear(void *_offset, u64 val)
4181 {
4182         unsigned offset = (long)_offset;
4183         struct kvm *kvm;
4184         struct kvm_stat_data stat_tmp = {.offset = offset};
4185
4186         if (val)
4187                 return -EINVAL;
4188
4189         mutex_lock(&kvm_lock);
4190         list_for_each_entry(kvm, &vm_list, vm_list) {
4191                 stat_tmp.kvm = kvm;
4192                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4193         }
4194         mutex_unlock(&kvm_lock);
4195
4196         return 0;
4197 }
4198
4199 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4200                         "%llu\n");
4201
4202 static const struct file_operations *stat_fops[] = {
4203         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4204         [KVM_STAT_VM]   = &vm_stat_fops,
4205 };
4206
4207 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4208 {
4209         struct kobj_uevent_env *env;
4210         unsigned long long created, active;
4211
4212         if (!kvm_dev.this_device || !kvm)
4213                 return;
4214
4215         mutex_lock(&kvm_lock);
4216         if (type == KVM_EVENT_CREATE_VM) {
4217                 kvm_createvm_count++;
4218                 kvm_active_vms++;
4219         } else if (type == KVM_EVENT_DESTROY_VM) {
4220                 kvm_active_vms--;
4221         }
4222         created = kvm_createvm_count;
4223         active = kvm_active_vms;
4224         mutex_unlock(&kvm_lock);
4225
4226         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4227         if (!env)
4228                 return;
4229
4230         add_uevent_var(env, "CREATED=%llu", created);
4231         add_uevent_var(env, "COUNT=%llu", active);
4232
4233         if (type == KVM_EVENT_CREATE_VM) {
4234                 add_uevent_var(env, "EVENT=create");
4235                 kvm->userspace_pid = task_pid_nr(current);
4236         } else if (type == KVM_EVENT_DESTROY_VM) {
4237                 add_uevent_var(env, "EVENT=destroy");
4238         }
4239         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4240
4241         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4242                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4243
4244                 if (p) {
4245                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4246                         if (!IS_ERR(tmp))
4247                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4248                         kfree(p);
4249                 }
4250         }
4251         /* no need for checks, since we are adding at most only 5 keys */
4252         env->envp[env->envp_idx++] = NULL;
4253         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4254         kfree(env);
4255 }
4256
4257 static void kvm_init_debug(void)
4258 {
4259         struct kvm_stats_debugfs_item *p;
4260
4261         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4262
4263         kvm_debugfs_num_entries = 0;
4264         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4265                 int mode = p->mode ? p->mode : 0644;
4266                 debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4267                                     (void *)(long)p->offset,
4268                                     stat_fops[p->kind]);
4269         }
4270 }
4271
4272 static int kvm_suspend(void)
4273 {
4274         if (kvm_usage_count)
4275                 hardware_disable_nolock(NULL);
4276         return 0;
4277 }
4278
4279 static void kvm_resume(void)
4280 {
4281         if (kvm_usage_count) {
4282 #ifdef CONFIG_LOCKDEP
4283                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4284 #endif
4285                 hardware_enable_nolock(NULL);
4286         }
4287 }
4288
4289 static struct syscore_ops kvm_syscore_ops = {
4290         .suspend = kvm_suspend,
4291         .resume = kvm_resume,
4292 };
4293
4294 static inline
4295 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4296 {
4297         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4298 }
4299
4300 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4301 {
4302         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4303
4304         WRITE_ONCE(vcpu->preempted, false);
4305         WRITE_ONCE(vcpu->ready, false);
4306
4307         kvm_arch_sched_in(vcpu, cpu);
4308
4309         kvm_arch_vcpu_load(vcpu, cpu);
4310 }
4311
4312 static void kvm_sched_out(struct preempt_notifier *pn,
4313                           struct task_struct *next)
4314 {
4315         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4316
4317         if (current->state == TASK_RUNNING) {
4318                 WRITE_ONCE(vcpu->preempted, true);
4319                 WRITE_ONCE(vcpu->ready, true);
4320         }
4321         kvm_arch_vcpu_put(vcpu);
4322 }
4323
4324 static void check_processor_compat(void *rtn)
4325 {
4326         *(int *)rtn = kvm_arch_check_processor_compat();
4327 }
4328
4329 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4330                   struct module *module)
4331 {
4332         int r;
4333         int cpu;
4334
4335         r = kvm_arch_init(opaque);
4336         if (r)
4337                 goto out_fail;
4338
4339         /*
4340          * kvm_arch_init makes sure there's at most one caller
4341          * for architectures that support multiple implementations,
4342          * like intel and amd on x86.
4343          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4344          * conflicts in case kvm is already setup for another implementation.
4345          */
4346         r = kvm_irqfd_init();
4347         if (r)
4348                 goto out_irqfd;
4349
4350         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4351                 r = -ENOMEM;
4352                 goto out_free_0;
4353         }
4354
4355         r = kvm_arch_hardware_setup();
4356         if (r < 0)
4357                 goto out_free_1;
4358
4359         for_each_online_cpu(cpu) {
4360                 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4361                 if (r < 0)
4362                         goto out_free_2;
4363         }
4364
4365         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4366                                       kvm_starting_cpu, kvm_dying_cpu);
4367         if (r)
4368                 goto out_free_2;
4369         register_reboot_notifier(&kvm_reboot_notifier);
4370
4371         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4372         if (!vcpu_align)
4373                 vcpu_align = __alignof__(struct kvm_vcpu);
4374         kvm_vcpu_cache =
4375                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4376                                            SLAB_ACCOUNT,
4377                                            offsetof(struct kvm_vcpu, arch),
4378                                            sizeof_field(struct kvm_vcpu, arch),
4379                                            NULL);
4380         if (!kvm_vcpu_cache) {
4381                 r = -ENOMEM;
4382                 goto out_free_3;
4383         }
4384
4385         r = kvm_async_pf_init();
4386         if (r)
4387                 goto out_free;
4388
4389         kvm_chardev_ops.owner = module;
4390         kvm_vm_fops.owner = module;
4391         kvm_vcpu_fops.owner = module;
4392
4393         r = misc_register(&kvm_dev);
4394         if (r) {
4395                 pr_err("kvm: misc device register failed\n");
4396                 goto out_unreg;
4397         }
4398
4399         register_syscore_ops(&kvm_syscore_ops);
4400
4401         kvm_preempt_ops.sched_in = kvm_sched_in;
4402         kvm_preempt_ops.sched_out = kvm_sched_out;
4403
4404         kvm_init_debug();
4405
4406         r = kvm_vfio_ops_init();
4407         WARN_ON(r);
4408
4409         return 0;
4410
4411 out_unreg:
4412         kvm_async_pf_deinit();
4413 out_free:
4414         kmem_cache_destroy(kvm_vcpu_cache);
4415 out_free_3:
4416         unregister_reboot_notifier(&kvm_reboot_notifier);
4417         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4418 out_free_2:
4419         kvm_arch_hardware_unsetup();
4420 out_free_1:
4421         free_cpumask_var(cpus_hardware_enabled);
4422 out_free_0:
4423         kvm_irqfd_exit();
4424 out_irqfd:
4425         kvm_arch_exit();
4426 out_fail:
4427         return r;
4428 }
4429 EXPORT_SYMBOL_GPL(kvm_init);
4430
4431 void kvm_exit(void)
4432 {
4433         debugfs_remove_recursive(kvm_debugfs_dir);
4434         misc_deregister(&kvm_dev);
4435         kmem_cache_destroy(kvm_vcpu_cache);
4436         kvm_async_pf_deinit();
4437         unregister_syscore_ops(&kvm_syscore_ops);
4438         unregister_reboot_notifier(&kvm_reboot_notifier);
4439         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4440         on_each_cpu(hardware_disable_nolock, NULL, 1);
4441         kvm_arch_hardware_unsetup();
4442         kvm_arch_exit();
4443         kvm_irqfd_exit();
4444         free_cpumask_var(cpus_hardware_enabled);
4445         kvm_vfio_ops_exit();
4446 }
4447 EXPORT_SYMBOL_GPL(kvm_exit);
4448
4449 struct kvm_vm_worker_thread_context {
4450         struct kvm *kvm;
4451         struct task_struct *parent;
4452         struct completion init_done;
4453         kvm_vm_thread_fn_t thread_fn;
4454         uintptr_t data;
4455         int err;
4456 };
4457
4458 static int kvm_vm_worker_thread(void *context)
4459 {
4460         /*
4461          * The init_context is allocated on the stack of the parent thread, so
4462          * we have to locally copy anything that is needed beyond initialization
4463          */
4464         struct kvm_vm_worker_thread_context *init_context = context;
4465         struct kvm *kvm = init_context->kvm;
4466         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4467         uintptr_t data = init_context->data;
4468         int err;
4469
4470         err = kthread_park(current);
4471         /* kthread_park(current) is never supposed to return an error */
4472         WARN_ON(err != 0);
4473         if (err)
4474                 goto init_complete;
4475
4476         err = cgroup_attach_task_all(init_context->parent, current);
4477         if (err) {
4478                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4479                         __func__, err);
4480                 goto init_complete;
4481         }
4482
4483         set_user_nice(current, task_nice(init_context->parent));
4484
4485 init_complete:
4486         init_context->err = err;
4487         complete(&init_context->init_done);
4488         init_context = NULL;
4489
4490         if (err)
4491                 return err;
4492
4493         /* Wait to be woken up by the spawner before proceeding. */
4494         kthread_parkme();
4495
4496         if (!kthread_should_stop())
4497                 err = thread_fn(kvm, data);
4498
4499         return err;
4500 }
4501
4502 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4503                                 uintptr_t data, const char *name,
4504                                 struct task_struct **thread_ptr)
4505 {
4506         struct kvm_vm_worker_thread_context init_context = {};
4507         struct task_struct *thread;
4508
4509         *thread_ptr = NULL;
4510         init_context.kvm = kvm;
4511         init_context.parent = current;
4512         init_context.thread_fn = thread_fn;
4513         init_context.data = data;
4514         init_completion(&init_context.init_done);
4515
4516         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4517                              "%s-%d", name, task_pid_nr(current));
4518         if (IS_ERR(thread))
4519                 return PTR_ERR(thread);
4520
4521         /* kthread_run is never supposed to return NULL */
4522         WARN_ON(thread == NULL);
4523
4524         wait_for_completion(&init_context.init_done);
4525
4526         if (!init_context.err)
4527                 *thread_ptr = thread;
4528
4529         return init_context.err;
4530 }