b70174e748684c5a01005dced63e21fa883f735a
[linux-2.6-microblaze.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/uaccess.h>
28
29 #include <linux/irqchip/arm-gic.h>
30
31 #include <asm/kvm_emulate.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_mmu.h>
34 #include <trace/events/kvm.h>
35 #include <asm/kvm.h>
36 #include <kvm/iodev.h>
37
38 /*
39  * How the whole thing works (courtesy of Christoffer Dall):
40  *
41  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
42  *   something is pending on the CPU interface.
43  * - Interrupts that are pending on the distributor are stored on the
44  *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
45  *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
46  *   arch. timers).
47  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
48  *   recalculated
49  * - To calculate the oracle, we need info for each cpu from
50  *   compute_pending_for_cpu, which considers:
51  *   - PPI: dist->irq_pending & dist->irq_enable
52  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
53  *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
54  *     registers, stored on each vcpu. We only keep one bit of
55  *     information per interrupt, making sure that only one vcpu can
56  *     accept the interrupt.
57  * - If any of the above state changes, we must recalculate the oracle.
58  * - The same is true when injecting an interrupt, except that we only
59  *   consider a single interrupt at a time. The irq_spi_cpu array
60  *   contains the target CPU for each SPI.
61  *
62  * The handling of level interrupts adds some extra complexity. We
63  * need to track when the interrupt has been EOIed, so we can sample
64  * the 'line' again. This is achieved as such:
65  *
66  * - When a level interrupt is moved onto a vcpu, the corresponding
67  *   bit in irq_queued is set. As long as this bit is set, the line
68  *   will be ignored for further interrupts. The interrupt is injected
69  *   into the vcpu with the GICH_LR_EOI bit set (generate a
70  *   maintenance interrupt on EOI).
71  * - When the interrupt is EOIed, the maintenance interrupt fires,
72  *   and clears the corresponding bit in irq_queued. This allows the
73  *   interrupt line to be sampled again.
74  * - Note that level-triggered interrupts can also be set to pending from
75  *   writes to GICD_ISPENDRn and lowering the external input line does not
76  *   cause the interrupt to become inactive in such a situation.
77  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
78  *   inactive as long as the external input line is held high.
79  */
80
81 #include "vgic.h"
82
83 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
84 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
85 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
86 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
87
88 static const struct vgic_ops *vgic_ops;
89 static const struct vgic_params *vgic;
90
91 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
92 {
93         vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
94 }
95
96 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
97 {
98         return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
99 }
100
101 int kvm_vgic_map_resources(struct kvm *kvm)
102 {
103         return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
104 }
105
106 /*
107  * struct vgic_bitmap contains a bitmap made of unsigned longs, but
108  * extracts u32s out of them.
109  *
110  * This does not work on 64-bit BE systems, because the bitmap access
111  * will store two consecutive 32-bit words with the higher-addressed
112  * register's bits at the lower index and the lower-addressed register's
113  * bits at the higher index.
114  *
115  * Therefore, swizzle the register index when accessing the 32-bit word
116  * registers to access the right register's value.
117  */
118 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
119 #define REG_OFFSET_SWIZZLE      1
120 #else
121 #define REG_OFFSET_SWIZZLE      0
122 #endif
123
124 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
125 {
126         int nr_longs;
127
128         nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
129
130         b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
131         if (!b->private)
132                 return -ENOMEM;
133
134         b->shared = b->private + nr_cpus;
135
136         return 0;
137 }
138
139 static void vgic_free_bitmap(struct vgic_bitmap *b)
140 {
141         kfree(b->private);
142         b->private = NULL;
143         b->shared = NULL;
144 }
145
146 /*
147  * Call this function to convert a u64 value to an unsigned long * bitmask
148  * in a way that works on both 32-bit and 64-bit LE and BE platforms.
149  *
150  * Warning: Calling this function may modify *val.
151  */
152 static unsigned long *u64_to_bitmask(u64 *val)
153 {
154 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
155         *val = (*val >> 32) | (*val << 32);
156 #endif
157         return (unsigned long *)val;
158 }
159
160 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
161 {
162         offset >>= 2;
163         if (!offset)
164                 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
165         else
166                 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
167 }
168
169 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
170                                    int cpuid, int irq)
171 {
172         if (irq < VGIC_NR_PRIVATE_IRQS)
173                 return test_bit(irq, x->private + cpuid);
174
175         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
176 }
177
178 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
179                              int irq, int val)
180 {
181         unsigned long *reg;
182
183         if (irq < VGIC_NR_PRIVATE_IRQS) {
184                 reg = x->private + cpuid;
185         } else {
186                 reg = x->shared;
187                 irq -= VGIC_NR_PRIVATE_IRQS;
188         }
189
190         if (val)
191                 set_bit(irq, reg);
192         else
193                 clear_bit(irq, reg);
194 }
195
196 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
197 {
198         return x->private + cpuid;
199 }
200
201 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
202 {
203         return x->shared;
204 }
205
206 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
207 {
208         int size;
209
210         size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
211         size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
212
213         x->private = kzalloc(size, GFP_KERNEL);
214         if (!x->private)
215                 return -ENOMEM;
216
217         x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
218         return 0;
219 }
220
221 static void vgic_free_bytemap(struct vgic_bytemap *b)
222 {
223         kfree(b->private);
224         b->private = NULL;
225         b->shared = NULL;
226 }
227
228 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
229 {
230         u32 *reg;
231
232         if (offset < VGIC_NR_PRIVATE_IRQS) {
233                 reg = x->private;
234                 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
235         } else {
236                 reg = x->shared;
237                 offset -= VGIC_NR_PRIVATE_IRQS;
238         }
239
240         return reg + (offset / sizeof(u32));
241 }
242
243 #define VGIC_CFG_LEVEL  0
244 #define VGIC_CFG_EDGE   1
245
246 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
247 {
248         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
249         int irq_val;
250
251         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
252         return irq_val == VGIC_CFG_EDGE;
253 }
254
255 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
256 {
257         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
258
259         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
260 }
261
262 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
263 {
264         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
265
266         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
267 }
268
269 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
270 {
271         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
272
273         return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
274 }
275
276 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
277 {
278         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
279
280         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
281 }
282
283 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
284 {
285         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
286
287         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
288 }
289
290 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
291 {
292         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
293
294         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
295 }
296
297 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
298 {
299         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
300
301         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
302 }
303
304 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
305 {
306         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
307
308         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
309 }
310
311 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
312 {
313         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
314
315         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
316 }
317
318 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
319 {
320         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
321
322         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
323 }
324
325 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
326 {
327         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
328
329         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
330 }
331
332 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
333 {
334         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
335
336         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
337 }
338
339 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
340 {
341         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
342
343         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
344 }
345
346 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
347 {
348         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
349
350         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
351 }
352
353 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
354 {
355         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
356
357         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
358 }
359
360 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
361 {
362         if (irq < VGIC_NR_PRIVATE_IRQS)
363                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
364         else
365                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
366                         vcpu->arch.vgic_cpu.pending_shared);
367 }
368
369 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
370 {
371         if (irq < VGIC_NR_PRIVATE_IRQS)
372                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
373         else
374                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
375                           vcpu->arch.vgic_cpu.pending_shared);
376 }
377
378 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
379 {
380         return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
381 }
382
383 /**
384  * vgic_reg_access - access vgic register
385  * @mmio:   pointer to the data describing the mmio access
386  * @reg:    pointer to the virtual backing of vgic distributor data
387  * @offset: least significant 2 bits used for word offset
388  * @mode:   ACCESS_ mode (see defines above)
389  *
390  * Helper to make vgic register access easier using one of the access
391  * modes defined for vgic register access
392  * (read,raz,write-ignored,setbit,clearbit,write)
393  */
394 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
395                      phys_addr_t offset, int mode)
396 {
397         int word_offset = (offset & 3) * 8;
398         u32 mask = (1UL << (mmio->len * 8)) - 1;
399         u32 regval;
400
401         /*
402          * Any alignment fault should have been delivered to the guest
403          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
404          */
405
406         if (reg) {
407                 regval = *reg;
408         } else {
409                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
410                 regval = 0;
411         }
412
413         if (mmio->is_write) {
414                 u32 data = mmio_data_read(mmio, mask) << word_offset;
415                 switch (ACCESS_WRITE_MASK(mode)) {
416                 case ACCESS_WRITE_IGNORED:
417                         return;
418
419                 case ACCESS_WRITE_SETBIT:
420                         regval |= data;
421                         break;
422
423                 case ACCESS_WRITE_CLEARBIT:
424                         regval &= ~data;
425                         break;
426
427                 case ACCESS_WRITE_VALUE:
428                         regval = (regval & ~(mask << word_offset)) | data;
429                         break;
430                 }
431                 *reg = regval;
432         } else {
433                 switch (ACCESS_READ_MASK(mode)) {
434                 case ACCESS_READ_RAZ:
435                         regval = 0;
436                         /* fall through */
437
438                 case ACCESS_READ_VALUE:
439                         mmio_data_write(mmio, mask, regval >> word_offset);
440                 }
441         }
442 }
443
444 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
445                         phys_addr_t offset)
446 {
447         vgic_reg_access(mmio, NULL, offset,
448                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
449         return false;
450 }
451
452 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
453                             phys_addr_t offset, int vcpu_id, int access)
454 {
455         u32 *reg;
456         int mode = ACCESS_READ_VALUE | access;
457         struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
458
459         reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
460         vgic_reg_access(mmio, reg, offset, mode);
461         if (mmio->is_write) {
462                 if (access & ACCESS_WRITE_CLEARBIT) {
463                         if (offset < 4) /* Force SGI enabled */
464                                 *reg |= 0xffff;
465                         vgic_retire_disabled_irqs(target_vcpu);
466                 }
467                 vgic_update_state(kvm);
468                 return true;
469         }
470
471         return false;
472 }
473
474 bool vgic_handle_set_pending_reg(struct kvm *kvm,
475                                  struct kvm_exit_mmio *mmio,
476                                  phys_addr_t offset, int vcpu_id)
477 {
478         u32 *reg, orig;
479         u32 level_mask;
480         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
481         struct vgic_dist *dist = &kvm->arch.vgic;
482
483         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
484         level_mask = (~(*reg));
485
486         /* Mark both level and edge triggered irqs as pending */
487         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
488         orig = *reg;
489         vgic_reg_access(mmio, reg, offset, mode);
490
491         if (mmio->is_write) {
492                 /* Set the soft-pending flag only for level-triggered irqs */
493                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
494                                           vcpu_id, offset);
495                 vgic_reg_access(mmio, reg, offset, mode);
496                 *reg &= level_mask;
497
498                 /* Ignore writes to SGIs */
499                 if (offset < 2) {
500                         *reg &= ~0xffff;
501                         *reg |= orig & 0xffff;
502                 }
503
504                 vgic_update_state(kvm);
505                 return true;
506         }
507
508         return false;
509 }
510
511 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
512                                    struct kvm_exit_mmio *mmio,
513                                    phys_addr_t offset, int vcpu_id)
514 {
515         u32 *level_active;
516         u32 *reg, orig;
517         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
518         struct vgic_dist *dist = &kvm->arch.vgic;
519
520         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
521         orig = *reg;
522         vgic_reg_access(mmio, reg, offset, mode);
523         if (mmio->is_write) {
524                 /* Re-set level triggered level-active interrupts */
525                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
526                                           vcpu_id, offset);
527                 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
528                 *reg |= *level_active;
529
530                 /* Ignore writes to SGIs */
531                 if (offset < 2) {
532                         *reg &= ~0xffff;
533                         *reg |= orig & 0xffff;
534                 }
535
536                 /* Clear soft-pending flags */
537                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
538                                           vcpu_id, offset);
539                 vgic_reg_access(mmio, reg, offset, mode);
540
541                 vgic_update_state(kvm);
542                 return true;
543         }
544         return false;
545 }
546
547 bool vgic_handle_set_active_reg(struct kvm *kvm,
548                                 struct kvm_exit_mmio *mmio,
549                                 phys_addr_t offset, int vcpu_id)
550 {
551         u32 *reg;
552         struct vgic_dist *dist = &kvm->arch.vgic;
553
554         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
555         vgic_reg_access(mmio, reg, offset,
556                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
557
558         if (mmio->is_write) {
559                 vgic_update_state(kvm);
560                 return true;
561         }
562
563         return false;
564 }
565
566 bool vgic_handle_clear_active_reg(struct kvm *kvm,
567                                   struct kvm_exit_mmio *mmio,
568                                   phys_addr_t offset, int vcpu_id)
569 {
570         u32 *reg;
571         struct vgic_dist *dist = &kvm->arch.vgic;
572
573         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
574         vgic_reg_access(mmio, reg, offset,
575                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
576
577         if (mmio->is_write) {
578                 vgic_update_state(kvm);
579                 return true;
580         }
581
582         return false;
583 }
584
585 static u32 vgic_cfg_expand(u16 val)
586 {
587         u32 res = 0;
588         int i;
589
590         /*
591          * Turn a 16bit value like abcd...mnop into a 32bit word
592          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
593          */
594         for (i = 0; i < 16; i++)
595                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
596
597         return res;
598 }
599
600 static u16 vgic_cfg_compress(u32 val)
601 {
602         u16 res = 0;
603         int i;
604
605         /*
606          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
607          * abcd...mnop which is what we really care about.
608          */
609         for (i = 0; i < 16; i++)
610                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
611
612         return res;
613 }
614
615 /*
616  * The distributor uses 2 bits per IRQ for the CFG register, but the
617  * LSB is always 0. As such, we only keep the upper bit, and use the
618  * two above functions to compress/expand the bits
619  */
620 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
621                          phys_addr_t offset)
622 {
623         u32 val;
624
625         if (offset & 4)
626                 val = *reg >> 16;
627         else
628                 val = *reg & 0xffff;
629
630         val = vgic_cfg_expand(val);
631         vgic_reg_access(mmio, &val, offset,
632                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
633         if (mmio->is_write) {
634                 if (offset < 8) {
635                         *reg = ~0U; /* Force PPIs/SGIs to 1 */
636                         return false;
637                 }
638
639                 val = vgic_cfg_compress(val);
640                 if (offset & 4) {
641                         *reg &= 0xffff;
642                         *reg |= val << 16;
643                 } else {
644                         *reg &= 0xffff << 16;
645                         *reg |= val;
646                 }
647         }
648
649         return false;
650 }
651
652 /**
653  * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
654  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
655  *
656  * Move any IRQs that have already been assigned to LRs back to the
657  * emulated distributor state so that the complete emulated state can be read
658  * from the main emulation structures without investigating the LRs.
659  */
660 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
661 {
662         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
663         int i;
664
665         for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
666                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
667
668                 /*
669                  * There are three options for the state bits:
670                  *
671                  * 01: pending
672                  * 10: active
673                  * 11: pending and active
674                  */
675                 BUG_ON(!(lr.state & LR_STATE_MASK));
676
677                 /* Reestablish SGI source for pending and active IRQs */
678                 if (lr.irq < VGIC_NR_SGIS)
679                         add_sgi_source(vcpu, lr.irq, lr.source);
680
681                 /*
682                  * If the LR holds an active (10) or a pending and active (11)
683                  * interrupt then move the active state to the
684                  * distributor tracking bit.
685                  */
686                 if (lr.state & LR_STATE_ACTIVE) {
687                         vgic_irq_set_active(vcpu, lr.irq);
688                         lr.state &= ~LR_STATE_ACTIVE;
689                 }
690
691                 /*
692                  * Reestablish the pending state on the distributor and the
693                  * CPU interface.  It may have already been pending, but that
694                  * is fine, then we are only setting a few bits that were
695                  * already set.
696                  */
697                 if (lr.state & LR_STATE_PENDING) {
698                         vgic_dist_irq_set_pending(vcpu, lr.irq);
699                         lr.state &= ~LR_STATE_PENDING;
700                 }
701
702                 vgic_set_lr(vcpu, i, lr);
703
704                 /*
705                  * Mark the LR as free for other use.
706                  */
707                 BUG_ON(lr.state & LR_STATE_MASK);
708                 vgic_retire_lr(i, lr.irq, vcpu);
709                 vgic_irq_clear_queued(vcpu, lr.irq);
710
711                 /* Finally update the VGIC state. */
712                 vgic_update_state(vcpu->kvm);
713         }
714 }
715
716 const
717 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
718                                       int len, gpa_t offset)
719 {
720         while (ranges->len) {
721                 if (offset >= ranges->base &&
722                     (offset + len) <= (ranges->base + ranges->len))
723                         return ranges;
724                 ranges++;
725         }
726
727         return NULL;
728 }
729
730 static bool vgic_validate_access(const struct vgic_dist *dist,
731                                  const struct vgic_io_range *range,
732                                  unsigned long offset)
733 {
734         int irq;
735
736         if (!range->bits_per_irq)
737                 return true;    /* Not an irq-based access */
738
739         irq = offset * 8 / range->bits_per_irq;
740         if (irq >= dist->nr_irqs)
741                 return false;
742
743         return true;
744 }
745
746 /*
747  * Call the respective handler function for the given range.
748  * We split up any 64 bit accesses into two consecutive 32 bit
749  * handler calls and merge the result afterwards.
750  * We do this in a little endian fashion regardless of the host's
751  * or guest's endianness, because the GIC is always LE and the rest of
752  * the code (vgic_reg_access) also puts it in a LE fashion already.
753  * At this point we have already identified the handle function, so
754  * range points to that one entry and offset is relative to this.
755  */
756 static bool call_range_handler(struct kvm_vcpu *vcpu,
757                                struct kvm_exit_mmio *mmio,
758                                unsigned long offset,
759                                const struct vgic_io_range *range)
760 {
761         struct kvm_exit_mmio mmio32;
762         bool ret;
763
764         if (likely(mmio->len <= 4))
765                 return range->handle_mmio(vcpu, mmio, offset);
766
767         /*
768          * Any access bigger than 4 bytes (that we currently handle in KVM)
769          * is actually 8 bytes long, caused by a 64-bit access
770          */
771
772         mmio32.len = 4;
773         mmio32.is_write = mmio->is_write;
774         mmio32.private = mmio->private;
775
776         mmio32.phys_addr = mmio->phys_addr + 4;
777         mmio32.data = &((u32 *)mmio->data)[1];
778         ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
779
780         mmio32.phys_addr = mmio->phys_addr;
781         mmio32.data = &((u32 *)mmio->data)[0];
782         ret |= range->handle_mmio(vcpu, &mmio32, offset);
783
784         return ret;
785 }
786
787 /**
788  * vgic_handle_mmio_access - handle an in-kernel MMIO access
789  * This is called by the read/write KVM IO device wrappers below.
790  * @vcpu:       pointer to the vcpu performing the access
791  * @this:       pointer to the KVM IO device in charge
792  * @addr:       guest physical address of the access
793  * @len:        size of the access
794  * @val:        pointer to the data region
795  * @is_write:   read or write access
796  *
797  * returns true if the MMIO access could be performed
798  */
799 static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
800                                    struct kvm_io_device *this, gpa_t addr,
801                                    int len, void *val, bool is_write)
802 {
803         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
804         struct vgic_io_device *iodev = container_of(this,
805                                                     struct vgic_io_device, dev);
806         struct kvm_run *run = vcpu->run;
807         const struct vgic_io_range *range;
808         struct kvm_exit_mmio mmio;
809         bool updated_state;
810         gpa_t offset;
811
812         offset = addr - iodev->addr;
813         range = vgic_find_range(iodev->reg_ranges, len, offset);
814         if (unlikely(!range || !range->handle_mmio)) {
815                 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
816                 return -ENXIO;
817         }
818
819         mmio.phys_addr = addr;
820         mmio.len = len;
821         mmio.is_write = is_write;
822         mmio.data = val;
823         mmio.private = iodev->redist_vcpu;
824
825         spin_lock(&dist->lock);
826         offset -= range->base;
827         if (vgic_validate_access(dist, range, offset)) {
828                 updated_state = call_range_handler(vcpu, &mmio, offset, range);
829         } else {
830                 if (!is_write)
831                         memset(val, 0, len);
832                 updated_state = false;
833         }
834         spin_unlock(&dist->lock);
835         run->mmio.is_write      = is_write;
836         run->mmio.len           = len;
837         run->mmio.phys_addr     = addr;
838         memcpy(run->mmio.data, val, len);
839
840         kvm_handle_mmio_return(vcpu, run);
841
842         if (updated_state)
843                 vgic_kick_vcpus(vcpu->kvm);
844
845         return 0;
846 }
847
848 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
849                                  struct kvm_io_device *this,
850                                  gpa_t addr, int len, void *val)
851 {
852         return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
853 }
854
855 static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
856                                   struct kvm_io_device *this,
857                                   gpa_t addr, int len, const void *val)
858 {
859         return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
860                                        true);
861 }
862
863 struct kvm_io_device_ops vgic_io_ops = {
864         .read   = vgic_handle_mmio_read,
865         .write  = vgic_handle_mmio_write,
866 };
867
868 /**
869  * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
870  * @kvm:            The VM structure pointer
871  * @base:           The (guest) base address for the register frame
872  * @len:            Length of the register frame window
873  * @ranges:         Describing the handler functions for each register
874  * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
875  * @iodev:          Points to memory to be passed on to the handler
876  *
877  * @iodev stores the parameters of this function to be usable by the handler
878  * respectively the dispatcher function (since the KVM I/O bus framework lacks
879  * an opaque parameter). Initialization is done in this function, but the
880  * reference should be valid and unique for the whole VGIC lifetime.
881  * If the register frame is not mapped for a specific VCPU, pass -1 to
882  * @redist_vcpu_id.
883  */
884 int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
885                              const struct vgic_io_range *ranges,
886                              int redist_vcpu_id,
887                              struct vgic_io_device *iodev)
888 {
889         struct kvm_vcpu *vcpu = NULL;
890         int ret;
891
892         if (redist_vcpu_id >= 0)
893                 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
894
895         iodev->addr             = base;
896         iodev->len              = len;
897         iodev->reg_ranges       = ranges;
898         iodev->redist_vcpu      = vcpu;
899
900         kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
901
902         mutex_lock(&kvm->slots_lock);
903
904         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
905                                       &iodev->dev);
906         mutex_unlock(&kvm->slots_lock);
907
908         /* Mark the iodev as invalid if registration fails. */
909         if (ret)
910                 iodev->dev.ops = NULL;
911
912         return ret;
913 }
914
915 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
916 {
917         return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
918 }
919
920 static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
921 {
922         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
923         unsigned long *active, *enabled, *act_percpu, *act_shared;
924         unsigned long active_private, active_shared;
925         int nr_shared = vgic_nr_shared_irqs(dist);
926         int vcpu_id;
927
928         vcpu_id = vcpu->vcpu_id;
929         act_percpu = vcpu->arch.vgic_cpu.active_percpu;
930         act_shared = vcpu->arch.vgic_cpu.active_shared;
931
932         active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
933         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
934         bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
935
936         active = vgic_bitmap_get_shared_map(&dist->irq_active);
937         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
938         bitmap_and(act_shared, active, enabled, nr_shared);
939         bitmap_and(act_shared, act_shared,
940                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
941                    nr_shared);
942
943         active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
944         active_shared = find_first_bit(act_shared, nr_shared);
945
946         return (active_private < VGIC_NR_PRIVATE_IRQS ||
947                 active_shared < nr_shared);
948 }
949
950 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
951 {
952         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
953         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
954         unsigned long pending_private, pending_shared;
955         int nr_shared = vgic_nr_shared_irqs(dist);
956         int vcpu_id;
957
958         vcpu_id = vcpu->vcpu_id;
959         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
960         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
961
962         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
963         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
964         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
965
966         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
967         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
968         bitmap_and(pend_shared, pending, enabled, nr_shared);
969         bitmap_and(pend_shared, pend_shared,
970                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
971                    nr_shared);
972
973         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
974         pending_shared = find_first_bit(pend_shared, nr_shared);
975         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
976                 pending_shared < vgic_nr_shared_irqs(dist));
977 }
978
979 /*
980  * Update the interrupt state and determine which CPUs have pending
981  * or active interrupts. Must be called with distributor lock held.
982  */
983 void vgic_update_state(struct kvm *kvm)
984 {
985         struct vgic_dist *dist = &kvm->arch.vgic;
986         struct kvm_vcpu *vcpu;
987         int c;
988
989         if (!dist->enabled) {
990                 set_bit(0, dist->irq_pending_on_cpu);
991                 return;
992         }
993
994         kvm_for_each_vcpu(c, vcpu, kvm) {
995                 if (compute_pending_for_cpu(vcpu))
996                         set_bit(c, dist->irq_pending_on_cpu);
997
998                 if (compute_active_for_cpu(vcpu))
999                         set_bit(c, dist->irq_active_on_cpu);
1000                 else
1001                         clear_bit(c, dist->irq_active_on_cpu);
1002         }
1003 }
1004
1005 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1006 {
1007         return vgic_ops->get_lr(vcpu, lr);
1008 }
1009
1010 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1011                                struct vgic_lr vlr)
1012 {
1013         vgic_ops->set_lr(vcpu, lr, vlr);
1014 }
1015
1016 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1017                                struct vgic_lr vlr)
1018 {
1019         vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1020 }
1021
1022 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1023 {
1024         return vgic_ops->get_elrsr(vcpu);
1025 }
1026
1027 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1028 {
1029         return vgic_ops->get_eisr(vcpu);
1030 }
1031
1032 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1033 {
1034         return vgic_ops->get_interrupt_status(vcpu);
1035 }
1036
1037 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1038 {
1039         vgic_ops->enable_underflow(vcpu);
1040 }
1041
1042 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1043 {
1044         vgic_ops->disable_underflow(vcpu);
1045 }
1046
1047 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1048 {
1049         vgic_ops->get_vmcr(vcpu, vmcr);
1050 }
1051
1052 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1053 {
1054         vgic_ops->set_vmcr(vcpu, vmcr);
1055 }
1056
1057 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1058 {
1059         vgic_ops->enable(vcpu);
1060 }
1061
1062 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1063 {
1064         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1065         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1066
1067         vlr.state = 0;
1068         vgic_set_lr(vcpu, lr_nr, vlr);
1069         clear_bit(lr_nr, vgic_cpu->lr_used);
1070         vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1071 }
1072
1073 /*
1074  * An interrupt may have been disabled after being made pending on the
1075  * CPU interface (the classic case is a timer running while we're
1076  * rebooting the guest - the interrupt would kick as soon as the CPU
1077  * interface gets enabled, with deadly consequences).
1078  *
1079  * The solution is to examine already active LRs, and check the
1080  * interrupt is still enabled. If not, just retire it.
1081  */
1082 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1083 {
1084         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1085         int lr;
1086
1087         for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1088                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1089
1090                 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1091                         vgic_retire_lr(lr, vlr.irq, vcpu);
1092                         if (vgic_irq_is_queued(vcpu, vlr.irq))
1093                                 vgic_irq_clear_queued(vcpu, vlr.irq);
1094                 }
1095         }
1096 }
1097
1098 static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1099                                  int lr_nr, struct vgic_lr vlr)
1100 {
1101         if (vgic_irq_is_active(vcpu, irq)) {
1102                 vlr.state |= LR_STATE_ACTIVE;
1103                 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1104                 vgic_irq_clear_active(vcpu, irq);
1105                 vgic_update_state(vcpu->kvm);
1106         } else if (vgic_dist_irq_is_pending(vcpu, irq)) {
1107                 vlr.state |= LR_STATE_PENDING;
1108                 kvm_debug("Set pending: 0x%x\n", vlr.state);
1109         }
1110
1111         if (!vgic_irq_is_edge(vcpu, irq))
1112                 vlr.state |= LR_EOI_INT;
1113
1114         vgic_set_lr(vcpu, lr_nr, vlr);
1115 }
1116
1117 /*
1118  * Queue an interrupt to a CPU virtual interface. Return true on success,
1119  * or false if it wasn't possible to queue it.
1120  * sgi_source must be zero for any non-SGI interrupts.
1121  */
1122 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1123 {
1124         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1125         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1126         struct vgic_lr vlr;
1127         int lr;
1128
1129         /* Sanitize the input... */
1130         BUG_ON(sgi_source_id & ~7);
1131         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1132         BUG_ON(irq >= dist->nr_irqs);
1133
1134         kvm_debug("Queue IRQ%d\n", irq);
1135
1136         lr = vgic_cpu->vgic_irq_lr_map[irq];
1137
1138         /* Do we have an active interrupt for the same CPUID? */
1139         if (lr != LR_EMPTY) {
1140                 vlr = vgic_get_lr(vcpu, lr);
1141                 if (vlr.source == sgi_source_id) {
1142                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1143                         BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1144                         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1145                         return true;
1146                 }
1147         }
1148
1149         /* Try to use another LR for this interrupt */
1150         lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1151                                vgic->nr_lr);
1152         if (lr >= vgic->nr_lr)
1153                 return false;
1154
1155         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1156         vgic_cpu->vgic_irq_lr_map[irq] = lr;
1157         set_bit(lr, vgic_cpu->lr_used);
1158
1159         vlr.irq = irq;
1160         vlr.source = sgi_source_id;
1161         vlr.state = 0;
1162         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1163
1164         return true;
1165 }
1166
1167 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1168 {
1169         if (!vgic_can_sample_irq(vcpu, irq))
1170                 return true; /* level interrupt, already queued */
1171
1172         if (vgic_queue_irq(vcpu, 0, irq)) {
1173                 if (vgic_irq_is_edge(vcpu, irq)) {
1174                         vgic_dist_irq_clear_pending(vcpu, irq);
1175                         vgic_cpu_irq_clear(vcpu, irq);
1176                 } else {
1177                         vgic_irq_set_queued(vcpu, irq);
1178                 }
1179
1180                 return true;
1181         }
1182
1183         return false;
1184 }
1185
1186 /*
1187  * Fill the list registers with pending interrupts before running the
1188  * guest.
1189  */
1190 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1191 {
1192         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1193         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1194         unsigned long *pa_percpu, *pa_shared;
1195         int i, vcpu_id;
1196         int overflow = 0;
1197         int nr_shared = vgic_nr_shared_irqs(dist);
1198
1199         vcpu_id = vcpu->vcpu_id;
1200
1201         pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1202         pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1203
1204         bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1205                   VGIC_NR_PRIVATE_IRQS);
1206         bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1207                   nr_shared);
1208         /*
1209          * We may not have any pending interrupt, or the interrupts
1210          * may have been serviced from another vcpu. In all cases,
1211          * move along.
1212          */
1213         if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
1214                 goto epilog;
1215
1216         /* SGIs */
1217         for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1218                 if (!queue_sgi(vcpu, i))
1219                         overflow = 1;
1220         }
1221
1222         /* PPIs */
1223         for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1224                 if (!vgic_queue_hwirq(vcpu, i))
1225                         overflow = 1;
1226         }
1227
1228         /* SPIs */
1229         for_each_set_bit(i, pa_shared, nr_shared) {
1230                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1231                         overflow = 1;
1232         }
1233
1234
1235
1236
1237 epilog:
1238         if (overflow) {
1239                 vgic_enable_underflow(vcpu);
1240         } else {
1241                 vgic_disable_underflow(vcpu);
1242                 /*
1243                  * We're about to run this VCPU, and we've consumed
1244                  * everything the distributor had in store for
1245                  * us. Claim we don't have anything pending. We'll
1246                  * adjust that if needed while exiting.
1247                  */
1248                 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1249         }
1250 }
1251
1252 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1253 {
1254         u32 status = vgic_get_interrupt_status(vcpu);
1255         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1256         bool level_pending = false;
1257         struct kvm *kvm = vcpu->kvm;
1258
1259         kvm_debug("STATUS = %08x\n", status);
1260
1261         if (status & INT_STATUS_EOI) {
1262                 /*
1263                  * Some level interrupts have been EOIed. Clear their
1264                  * active bit.
1265                  */
1266                 u64 eisr = vgic_get_eisr(vcpu);
1267                 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1268                 int lr;
1269
1270                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1271                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1272                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1273
1274                         spin_lock(&dist->lock);
1275                         vgic_irq_clear_queued(vcpu, vlr.irq);
1276                         WARN_ON(vlr.state & LR_STATE_MASK);
1277                         vlr.state = 0;
1278                         vgic_set_lr(vcpu, lr, vlr);
1279
1280                         /*
1281                          * If the IRQ was EOIed it was also ACKed and we we
1282                          * therefore assume we can clear the soft pending
1283                          * state (should it had been set) for this interrupt.
1284                          *
1285                          * Note: if the IRQ soft pending state was set after
1286                          * the IRQ was acked, it actually shouldn't be
1287                          * cleared, but we have no way of knowing that unless
1288                          * we start trapping ACKs when the soft-pending state
1289                          * is set.
1290                          */
1291                         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1292
1293                         /*
1294                          * kvm_notify_acked_irq calls kvm_set_irq()
1295                          * to reset the IRQ level. Need to release the
1296                          * lock for kvm_set_irq to grab it.
1297                          */
1298                         spin_unlock(&dist->lock);
1299
1300                         kvm_notify_acked_irq(kvm, 0,
1301                                              vlr.irq - VGIC_NR_PRIVATE_IRQS);
1302                         spin_lock(&dist->lock);
1303
1304                         /* Any additional pending interrupt? */
1305                         if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1306                                 vgic_cpu_irq_set(vcpu, vlr.irq);
1307                                 level_pending = true;
1308                         } else {
1309                                 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1310                                 vgic_cpu_irq_clear(vcpu, vlr.irq);
1311                         }
1312
1313                         spin_unlock(&dist->lock);
1314
1315                         /*
1316                          * Despite being EOIed, the LR may not have
1317                          * been marked as empty.
1318                          */
1319                         vgic_sync_lr_elrsr(vcpu, lr, vlr);
1320                 }
1321         }
1322
1323         if (status & INT_STATUS_UNDERFLOW)
1324                 vgic_disable_underflow(vcpu);
1325
1326         return level_pending;
1327 }
1328
1329 /* Sync back the VGIC state after a guest run */
1330 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1331 {
1332         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1333         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1334         u64 elrsr;
1335         unsigned long *elrsr_ptr;
1336         int lr, pending;
1337         bool level_pending;
1338
1339         level_pending = vgic_process_maintenance(vcpu);
1340         elrsr = vgic_get_elrsr(vcpu);
1341         elrsr_ptr = u64_to_bitmask(&elrsr);
1342
1343         /* Clear mappings for empty LRs */
1344         for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1345                 struct vgic_lr vlr;
1346
1347                 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1348                         continue;
1349
1350                 vlr = vgic_get_lr(vcpu, lr);
1351
1352                 BUG_ON(vlr.irq >= dist->nr_irqs);
1353                 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1354         }
1355
1356         /* Check if we still have something up our sleeve... */
1357         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1358         if (level_pending || pending < vgic->nr_lr)
1359                 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1360 }
1361
1362 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1363 {
1364         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1365
1366         if (!irqchip_in_kernel(vcpu->kvm))
1367                 return;
1368
1369         spin_lock(&dist->lock);
1370         __kvm_vgic_flush_hwstate(vcpu);
1371         spin_unlock(&dist->lock);
1372 }
1373
1374 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1375 {
1376         if (!irqchip_in_kernel(vcpu->kvm))
1377                 return;
1378
1379         __kvm_vgic_sync_hwstate(vcpu);
1380 }
1381
1382 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1383 {
1384         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1385
1386         if (!irqchip_in_kernel(vcpu->kvm))
1387                 return 0;
1388
1389         return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1390 }
1391
1392 int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1393 {
1394         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1395
1396         if (!irqchip_in_kernel(vcpu->kvm))
1397                 return 0;
1398
1399         return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1400 }
1401
1402
1403 void vgic_kick_vcpus(struct kvm *kvm)
1404 {
1405         struct kvm_vcpu *vcpu;
1406         int c;
1407
1408         /*
1409          * We've injected an interrupt, time to find out who deserves
1410          * a good kick...
1411          */
1412         kvm_for_each_vcpu(c, vcpu, kvm) {
1413                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1414                         kvm_vcpu_kick(vcpu);
1415         }
1416 }
1417
1418 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1419 {
1420         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1421
1422         /*
1423          * Only inject an interrupt if:
1424          * - edge triggered and we have a rising edge
1425          * - level triggered and we change level
1426          */
1427         if (edge_triggered) {
1428                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1429                 return level > state;
1430         } else {
1431                 int state = vgic_dist_irq_get_level(vcpu, irq);
1432                 return level != state;
1433         }
1434 }
1435
1436 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1437                                   unsigned int irq_num, bool level)
1438 {
1439         struct vgic_dist *dist = &kvm->arch.vgic;
1440         struct kvm_vcpu *vcpu;
1441         int edge_triggered, level_triggered;
1442         int enabled;
1443         bool ret = true, can_inject = true;
1444
1445         spin_lock(&dist->lock);
1446
1447         vcpu = kvm_get_vcpu(kvm, cpuid);
1448         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1449         level_triggered = !edge_triggered;
1450
1451         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1452                 ret = false;
1453                 goto out;
1454         }
1455
1456         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1457                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1458                 if (cpuid == VCPU_NOT_ALLOCATED) {
1459                         /* Pretend we use CPU0, and prevent injection */
1460                         cpuid = 0;
1461                         can_inject = false;
1462                 }
1463                 vcpu = kvm_get_vcpu(kvm, cpuid);
1464         }
1465
1466         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1467
1468         if (level) {
1469                 if (level_triggered)
1470                         vgic_dist_irq_set_level(vcpu, irq_num);
1471                 vgic_dist_irq_set_pending(vcpu, irq_num);
1472         } else {
1473                 if (level_triggered) {
1474                         vgic_dist_irq_clear_level(vcpu, irq_num);
1475                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1476                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1477                 }
1478
1479                 ret = false;
1480                 goto out;
1481         }
1482
1483         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1484
1485         if (!enabled || !can_inject) {
1486                 ret = false;
1487                 goto out;
1488         }
1489
1490         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1491                 /*
1492                  * Level interrupt in progress, will be picked up
1493                  * when EOId.
1494                  */
1495                 ret = false;
1496                 goto out;
1497         }
1498
1499         if (level) {
1500                 vgic_cpu_irq_set(vcpu, irq_num);
1501                 set_bit(cpuid, dist->irq_pending_on_cpu);
1502         }
1503
1504 out:
1505         spin_unlock(&dist->lock);
1506
1507         return ret ? cpuid : -EINVAL;
1508 }
1509
1510 /**
1511  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1512  * @kvm:     The VM structure pointer
1513  * @cpuid:   The CPU for PPIs
1514  * @irq_num: The IRQ number that is assigned to the device
1515  * @level:   Edge-triggered:  true:  to trigger the interrupt
1516  *                            false: to ignore the call
1517  *           Level-sensitive  true:  activates an interrupt
1518  *                            false: deactivates an interrupt
1519  *
1520  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1521  * level-sensitive interrupts.  You can think of the level parameter as 1
1522  * being HIGH and 0 being LOW and all devices being active-HIGH.
1523  */
1524 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1525                         bool level)
1526 {
1527         int ret = 0;
1528         int vcpu_id;
1529
1530         if (unlikely(!vgic_initialized(kvm))) {
1531                 /*
1532                  * We only provide the automatic initialization of the VGIC
1533                  * for the legacy case of a GICv2. Any other type must
1534                  * be explicitly initialized once setup with the respective
1535                  * KVM device call.
1536                  */
1537                 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1538                         ret = -EBUSY;
1539                         goto out;
1540                 }
1541                 mutex_lock(&kvm->lock);
1542                 ret = vgic_init(kvm);
1543                 mutex_unlock(&kvm->lock);
1544
1545                 if (ret)
1546                         goto out;
1547         }
1548
1549         vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1550         if (vcpu_id >= 0) {
1551                 /* kick the specified vcpu */
1552                 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1553         }
1554
1555 out:
1556         return ret;
1557 }
1558
1559 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1560 {
1561         /*
1562          * We cannot rely on the vgic maintenance interrupt to be
1563          * delivered synchronously. This means we can only use it to
1564          * exit the VM, and we perform the handling of EOIed
1565          * interrupts on the exit path (see vgic_process_maintenance).
1566          */
1567         return IRQ_HANDLED;
1568 }
1569
1570 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1571 {
1572         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1573
1574         kfree(vgic_cpu->pending_shared);
1575         kfree(vgic_cpu->active_shared);
1576         kfree(vgic_cpu->pend_act_shared);
1577         kfree(vgic_cpu->vgic_irq_lr_map);
1578         vgic_cpu->pending_shared = NULL;
1579         vgic_cpu->active_shared = NULL;
1580         vgic_cpu->pend_act_shared = NULL;
1581         vgic_cpu->vgic_irq_lr_map = NULL;
1582 }
1583
1584 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1585 {
1586         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1587
1588         int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1589         vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1590         vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1591         vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1592         vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1593
1594         if (!vgic_cpu->pending_shared
1595                 || !vgic_cpu->active_shared
1596                 || !vgic_cpu->pend_act_shared
1597                 || !vgic_cpu->vgic_irq_lr_map) {
1598                 kvm_vgic_vcpu_destroy(vcpu);
1599                 return -ENOMEM;
1600         }
1601
1602         memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1603
1604         /*
1605          * Store the number of LRs per vcpu, so we don't have to go
1606          * all the way to the distributor structure to find out. Only
1607          * assembly code should use this one.
1608          */
1609         vgic_cpu->nr_lr = vgic->nr_lr;
1610
1611         return 0;
1612 }
1613
1614 /**
1615  * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1616  *
1617  * The host's GIC naturally limits the maximum amount of VCPUs a guest
1618  * can use.
1619  */
1620 int kvm_vgic_get_max_vcpus(void)
1621 {
1622         return vgic->max_gic_vcpus;
1623 }
1624
1625 void kvm_vgic_destroy(struct kvm *kvm)
1626 {
1627         struct vgic_dist *dist = &kvm->arch.vgic;
1628         struct kvm_vcpu *vcpu;
1629         int i;
1630
1631         kvm_for_each_vcpu(i, vcpu, kvm)
1632                 kvm_vgic_vcpu_destroy(vcpu);
1633
1634         vgic_free_bitmap(&dist->irq_enabled);
1635         vgic_free_bitmap(&dist->irq_level);
1636         vgic_free_bitmap(&dist->irq_pending);
1637         vgic_free_bitmap(&dist->irq_soft_pend);
1638         vgic_free_bitmap(&dist->irq_queued);
1639         vgic_free_bitmap(&dist->irq_cfg);
1640         vgic_free_bytemap(&dist->irq_priority);
1641         if (dist->irq_spi_target) {
1642                 for (i = 0; i < dist->nr_cpus; i++)
1643                         vgic_free_bitmap(&dist->irq_spi_target[i]);
1644         }
1645         kfree(dist->irq_sgi_sources);
1646         kfree(dist->irq_spi_cpu);
1647         kfree(dist->irq_spi_mpidr);
1648         kfree(dist->irq_spi_target);
1649         kfree(dist->irq_pending_on_cpu);
1650         kfree(dist->irq_active_on_cpu);
1651         dist->irq_sgi_sources = NULL;
1652         dist->irq_spi_cpu = NULL;
1653         dist->irq_spi_target = NULL;
1654         dist->irq_pending_on_cpu = NULL;
1655         dist->irq_active_on_cpu = NULL;
1656         dist->nr_cpus = 0;
1657 }
1658
1659 /*
1660  * Allocate and initialize the various data structures. Must be called
1661  * with kvm->lock held!
1662  */
1663 int vgic_init(struct kvm *kvm)
1664 {
1665         struct vgic_dist *dist = &kvm->arch.vgic;
1666         struct kvm_vcpu *vcpu;
1667         int nr_cpus, nr_irqs;
1668         int ret, i, vcpu_id;
1669
1670         if (vgic_initialized(kvm))
1671                 return 0;
1672
1673         nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1674         if (!nr_cpus)           /* No vcpus? Can't be good... */
1675                 return -ENODEV;
1676
1677         /*
1678          * If nobody configured the number of interrupts, use the
1679          * legacy one.
1680          */
1681         if (!dist->nr_irqs)
1682                 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1683
1684         nr_irqs = dist->nr_irqs;
1685
1686         ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1687         ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1688         ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1689         ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1690         ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1691         ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
1692         ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1693         ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1694
1695         if (ret)
1696                 goto out;
1697
1698         dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1699         dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1700         dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1701                                        GFP_KERNEL);
1702         dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1703                                            GFP_KERNEL);
1704         dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1705                                            GFP_KERNEL);
1706         if (!dist->irq_sgi_sources ||
1707             !dist->irq_spi_cpu ||
1708             !dist->irq_spi_target ||
1709             !dist->irq_pending_on_cpu ||
1710             !dist->irq_active_on_cpu) {
1711                 ret = -ENOMEM;
1712                 goto out;
1713         }
1714
1715         for (i = 0; i < nr_cpus; i++)
1716                 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1717                                         nr_cpus, nr_irqs);
1718
1719         if (ret)
1720                 goto out;
1721
1722         ret = kvm->arch.vgic.vm_ops.init_model(kvm);
1723         if (ret)
1724                 goto out;
1725
1726         kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
1727                 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1728                 if (ret) {
1729                         kvm_err("VGIC: Failed to allocate vcpu memory\n");
1730                         break;
1731                 }
1732
1733                 for (i = 0; i < dist->nr_irqs; i++) {
1734                         if (i < VGIC_NR_PPIS)
1735                                 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1736                                                         vcpu->vcpu_id, i, 1);
1737                         if (i < VGIC_NR_PRIVATE_IRQS)
1738                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1739                                                         vcpu->vcpu_id, i,
1740                                                         VGIC_CFG_EDGE);
1741                 }
1742
1743                 vgic_enable(vcpu);
1744         }
1745
1746 out:
1747         if (ret)
1748                 kvm_vgic_destroy(kvm);
1749
1750         return ret;
1751 }
1752
1753 static int init_vgic_model(struct kvm *kvm, int type)
1754 {
1755         switch (type) {
1756         case KVM_DEV_TYPE_ARM_VGIC_V2:
1757                 vgic_v2_init_emulation(kvm);
1758                 break;
1759 #ifdef CONFIG_ARM_GIC_V3
1760         case KVM_DEV_TYPE_ARM_VGIC_V3:
1761                 vgic_v3_init_emulation(kvm);
1762                 break;
1763 #endif
1764         default:
1765                 return -ENODEV;
1766         }
1767
1768         if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
1769                 return -E2BIG;
1770
1771         return 0;
1772 }
1773
1774 int kvm_vgic_create(struct kvm *kvm, u32 type)
1775 {
1776         int i, vcpu_lock_idx = -1, ret;
1777         struct kvm_vcpu *vcpu;
1778
1779         mutex_lock(&kvm->lock);
1780
1781         if (irqchip_in_kernel(kvm)) {
1782                 ret = -EEXIST;
1783                 goto out;
1784         }
1785
1786         /*
1787          * This function is also called by the KVM_CREATE_IRQCHIP handler,
1788          * which had no chance yet to check the availability of the GICv2
1789          * emulation. So check this here again. KVM_CREATE_DEVICE does
1790          * the proper checks already.
1791          */
1792         if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2)
1793                 return -ENODEV;
1794
1795         /*
1796          * Any time a vcpu is run, vcpu_load is called which tries to grab the
1797          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
1798          * that no other VCPUs are run while we create the vgic.
1799          */
1800         ret = -EBUSY;
1801         kvm_for_each_vcpu(i, vcpu, kvm) {
1802                 if (!mutex_trylock(&vcpu->mutex))
1803                         goto out_unlock;
1804                 vcpu_lock_idx = i;
1805         }
1806
1807         kvm_for_each_vcpu(i, vcpu, kvm) {
1808                 if (vcpu->arch.has_run_once)
1809                         goto out_unlock;
1810         }
1811         ret = 0;
1812
1813         ret = init_vgic_model(kvm, type);
1814         if (ret)
1815                 goto out_unlock;
1816
1817         spin_lock_init(&kvm->arch.vgic.lock);
1818         kvm->arch.vgic.in_kernel = true;
1819         kvm->arch.vgic.vgic_model = type;
1820         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1821         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1822         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1823         kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
1824
1825 out_unlock:
1826         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1827                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1828                 mutex_unlock(&vcpu->mutex);
1829         }
1830
1831 out:
1832         mutex_unlock(&kvm->lock);
1833         return ret;
1834 }
1835
1836 static int vgic_ioaddr_overlap(struct kvm *kvm)
1837 {
1838         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1839         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1840
1841         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1842                 return 0;
1843         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1844             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1845                 return -EBUSY;
1846         return 0;
1847 }
1848
1849 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1850                               phys_addr_t addr, phys_addr_t size)
1851 {
1852         int ret;
1853
1854         if (addr & ~KVM_PHYS_MASK)
1855                 return -E2BIG;
1856
1857         if (addr & (SZ_4K - 1))
1858                 return -EINVAL;
1859
1860         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1861                 return -EEXIST;
1862         if (addr + size < addr)
1863                 return -EINVAL;
1864
1865         *ioaddr = addr;
1866         ret = vgic_ioaddr_overlap(kvm);
1867         if (ret)
1868                 *ioaddr = VGIC_ADDR_UNDEF;
1869
1870         return ret;
1871 }
1872
1873 /**
1874  * kvm_vgic_addr - set or get vgic VM base addresses
1875  * @kvm:   pointer to the vm struct
1876  * @type:  the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
1877  * @addr:  pointer to address value
1878  * @write: if true set the address in the VM address space, if false read the
1879  *          address
1880  *
1881  * Set or get the vgic base addresses for the distributor and the virtual CPU
1882  * interface in the VM physical address space.  These addresses are properties
1883  * of the emulated core/SoC and therefore user space initially knows this
1884  * information.
1885  */
1886 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1887 {
1888         int r = 0;
1889         struct vgic_dist *vgic = &kvm->arch.vgic;
1890         int type_needed;
1891         phys_addr_t *addr_ptr, block_size;
1892         phys_addr_t alignment;
1893
1894         mutex_lock(&kvm->lock);
1895         switch (type) {
1896         case KVM_VGIC_V2_ADDR_TYPE_DIST:
1897                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1898                 addr_ptr = &vgic->vgic_dist_base;
1899                 block_size = KVM_VGIC_V2_DIST_SIZE;
1900                 alignment = SZ_4K;
1901                 break;
1902         case KVM_VGIC_V2_ADDR_TYPE_CPU:
1903                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1904                 addr_ptr = &vgic->vgic_cpu_base;
1905                 block_size = KVM_VGIC_V2_CPU_SIZE;
1906                 alignment = SZ_4K;
1907                 break;
1908 #ifdef CONFIG_ARM_GIC_V3
1909         case KVM_VGIC_V3_ADDR_TYPE_DIST:
1910                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1911                 addr_ptr = &vgic->vgic_dist_base;
1912                 block_size = KVM_VGIC_V3_DIST_SIZE;
1913                 alignment = SZ_64K;
1914                 break;
1915         case KVM_VGIC_V3_ADDR_TYPE_REDIST:
1916                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1917                 addr_ptr = &vgic->vgic_redist_base;
1918                 block_size = KVM_VGIC_V3_REDIST_SIZE;
1919                 alignment = SZ_64K;
1920                 break;
1921 #endif
1922         default:
1923                 r = -ENODEV;
1924                 goto out;
1925         }
1926
1927         if (vgic->vgic_model != type_needed) {
1928                 r = -ENODEV;
1929                 goto out;
1930         }
1931
1932         if (write) {
1933                 if (!IS_ALIGNED(*addr, alignment))
1934                         r = -EINVAL;
1935                 else
1936                         r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
1937                                                block_size);
1938         } else {
1939                 *addr = *addr_ptr;
1940         }
1941
1942 out:
1943         mutex_unlock(&kvm->lock);
1944         return r;
1945 }
1946
1947 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1948 {
1949         int r;
1950
1951         switch (attr->group) {
1952         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1953                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1954                 u64 addr;
1955                 unsigned long type = (unsigned long)attr->attr;
1956
1957                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1958                         return -EFAULT;
1959
1960                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1961                 return (r == -ENODEV) ? -ENXIO : r;
1962         }
1963         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1964                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1965                 u32 val;
1966                 int ret = 0;
1967
1968                 if (get_user(val, uaddr))
1969                         return -EFAULT;
1970
1971                 /*
1972                  * We require:
1973                  * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
1974                  * - at most 1024 interrupts
1975                  * - a multiple of 32 interrupts
1976                  */
1977                 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
1978                     val > VGIC_MAX_IRQS ||
1979                     (val & 31))
1980                         return -EINVAL;
1981
1982                 mutex_lock(&dev->kvm->lock);
1983
1984                 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
1985                         ret = -EBUSY;
1986                 else
1987                         dev->kvm->arch.vgic.nr_irqs = val;
1988
1989                 mutex_unlock(&dev->kvm->lock);
1990
1991                 return ret;
1992         }
1993         case KVM_DEV_ARM_VGIC_GRP_CTRL: {
1994                 switch (attr->attr) {
1995                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1996                         r = vgic_init(dev->kvm);
1997                         return r;
1998                 }
1999                 break;
2000         }
2001         }
2002
2003         return -ENXIO;
2004 }
2005
2006 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2007 {
2008         int r = -ENXIO;
2009
2010         switch (attr->group) {
2011         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2012                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2013                 u64 addr;
2014                 unsigned long type = (unsigned long)attr->attr;
2015
2016                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2017                 if (r)
2018                         return (r == -ENODEV) ? -ENXIO : r;
2019
2020                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2021                         return -EFAULT;
2022                 break;
2023         }
2024         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2025                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2026
2027                 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2028                 break;
2029         }
2030
2031         }
2032
2033         return r;
2034 }
2035
2036 int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2037 {
2038         if (vgic_find_range(ranges, 4, offset))
2039                 return 0;
2040         else
2041                 return -ENXIO;
2042 }
2043
2044 static void vgic_init_maintenance_interrupt(void *info)
2045 {
2046         enable_percpu_irq(vgic->maint_irq, 0);
2047 }
2048
2049 static int vgic_cpu_notify(struct notifier_block *self,
2050                            unsigned long action, void *cpu)
2051 {
2052         switch (action) {
2053         case CPU_STARTING:
2054         case CPU_STARTING_FROZEN:
2055                 vgic_init_maintenance_interrupt(NULL);
2056                 break;
2057         case CPU_DYING:
2058         case CPU_DYING_FROZEN:
2059                 disable_percpu_irq(vgic->maint_irq);
2060                 break;
2061         }
2062
2063         return NOTIFY_OK;
2064 }
2065
2066 static struct notifier_block vgic_cpu_nb = {
2067         .notifier_call = vgic_cpu_notify,
2068 };
2069
2070 static const struct of_device_id vgic_ids[] = {
2071         { .compatible = "arm,cortex-a15-gic",   .data = vgic_v2_probe, },
2072         { .compatible = "arm,cortex-a7-gic",    .data = vgic_v2_probe, },
2073         { .compatible = "arm,gic-400",          .data = vgic_v2_probe, },
2074         { .compatible = "arm,gic-v3",           .data = vgic_v3_probe, },
2075         {},
2076 };
2077
2078 int kvm_vgic_hyp_init(void)
2079 {
2080         const struct of_device_id *matched_id;
2081         const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2082                                 const struct vgic_params **);
2083         struct device_node *vgic_node;
2084         int ret;
2085
2086         vgic_node = of_find_matching_node_and_match(NULL,
2087                                                     vgic_ids, &matched_id);
2088         if (!vgic_node) {
2089                 kvm_err("error: no compatible GIC node found\n");
2090                 return -ENODEV;
2091         }
2092
2093         vgic_probe = matched_id->data;
2094         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2095         if (ret)
2096                 return ret;
2097
2098         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2099                                  "vgic", kvm_get_running_vcpus());
2100         if (ret) {
2101                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2102                 return ret;
2103         }
2104
2105         ret = __register_cpu_notifier(&vgic_cpu_nb);
2106         if (ret) {
2107                 kvm_err("Cannot register vgic CPU notifier\n");
2108                 goto out_free_irq;
2109         }
2110
2111         /* Callback into for arch code for setup */
2112         vgic_arch_setup(vgic);
2113
2114         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2115
2116         return 0;
2117
2118 out_free_irq:
2119         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2120         return ret;
2121 }
2122
2123 int kvm_irq_map_gsi(struct kvm *kvm,
2124                     struct kvm_kernel_irq_routing_entry *entries,
2125                     int gsi)
2126 {
2127         return gsi;
2128 }
2129
2130 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2131 {
2132         return pin;
2133 }
2134
2135 int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2136                 u32 irq, int level, bool line_status)
2137 {
2138         unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2139
2140         trace_kvm_set_irq(irq, level, irq_source_id);
2141
2142         BUG_ON(!vgic_initialized(kvm));
2143
2144         if (spi > kvm->arch.vgic.nr_irqs)
2145                 return -EINVAL;
2146         return kvm_vgic_inject_irq(kvm, 0, spi, level);
2147
2148 }
2149
2150 /* MSI not implemented yet */
2151 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2152                 struct kvm *kvm, int irq_source_id,
2153                 int level, bool line_status)
2154 {
2155         return 0;
2156 }