b553a8fa643026f050ef97b138e81b17397e3390
[linux-2.6-microblaze.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33 #include <trace/events/kvm.h>
34 #include <asm/kvm.h>
35 #include <kvm/iodev.h>
36
37 /*
38  * How the whole thing works (courtesy of Christoffer Dall):
39  *
40  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
41  *   something is pending on the CPU interface.
42  * - Interrupts that are pending on the distributor are stored on the
43  *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
44  *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
45  *   arch. timers).
46  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
47  *   recalculated
48  * - To calculate the oracle, we need info for each cpu from
49  *   compute_pending_for_cpu, which considers:
50  *   - PPI: dist->irq_pending & dist->irq_enable
51  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
52  *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
53  *     registers, stored on each vcpu. We only keep one bit of
54  *     information per interrupt, making sure that only one vcpu can
55  *     accept the interrupt.
56  * - If any of the above state changes, we must recalculate the oracle.
57  * - The same is true when injecting an interrupt, except that we only
58  *   consider a single interrupt at a time. The irq_spi_cpu array
59  *   contains the target CPU for each SPI.
60  *
61  * The handling of level interrupts adds some extra complexity. We
62  * need to track when the interrupt has been EOIed, so we can sample
63  * the 'line' again. This is achieved as such:
64  *
65  * - When a level interrupt is moved onto a vcpu, the corresponding
66  *   bit in irq_queued is set. As long as this bit is set, the line
67  *   will be ignored for further interrupts. The interrupt is injected
68  *   into the vcpu with the GICH_LR_EOI bit set (generate a
69  *   maintenance interrupt on EOI).
70  * - When the interrupt is EOIed, the maintenance interrupt fires,
71  *   and clears the corresponding bit in irq_queued. This allows the
72  *   interrupt line to be sampled again.
73  * - Note that level-triggered interrupts can also be set to pending from
74  *   writes to GICD_ISPENDRn and lowering the external input line does not
75  *   cause the interrupt to become inactive in such a situation.
76  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
77  *   inactive as long as the external input line is held high.
78  *
79  *
80  * Initialization rules: there are multiple stages to the vgic
81  * initialization, both for the distributor and the CPU interfaces.
82  *
83  * Distributor:
84  *
85  * - kvm_vgic_early_init(): initialization of static data that doesn't
86  *   depend on any sizing information or emulation type. No allocation
87  *   is allowed there.
88  *
89  * - vgic_init(): allocation and initialization of the generic data
90  *   structures that depend on sizing information (number of CPUs,
91  *   number of interrupts). Also initializes the vcpu specific data
92  *   structures. Can be executed lazily for GICv2.
93  *   [to be renamed to kvm_vgic_init??]
94  *
95  * CPU Interface:
96  *
97  * - kvm_vgic_cpu_early_init(): initialization of static data that
98  *   doesn't depend on any sizing information or emulation type. No
99  *   allocation is allowed there.
100  */
101
102 #include "vgic.h"
103
104 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
105 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
106 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
107 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
108 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
109                                                 int virt_irq);
110
111 static const struct vgic_ops *vgic_ops;
112 static const struct vgic_params *vgic;
113
114 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
115 {
116         vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
117 }
118
119 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
120 {
121         return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
122 }
123
124 int kvm_vgic_map_resources(struct kvm *kvm)
125 {
126         return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
127 }
128
129 /*
130  * struct vgic_bitmap contains a bitmap made of unsigned longs, but
131  * extracts u32s out of them.
132  *
133  * This does not work on 64-bit BE systems, because the bitmap access
134  * will store two consecutive 32-bit words with the higher-addressed
135  * register's bits at the lower index and the lower-addressed register's
136  * bits at the higher index.
137  *
138  * Therefore, swizzle the register index when accessing the 32-bit word
139  * registers to access the right register's value.
140  */
141 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
142 #define REG_OFFSET_SWIZZLE      1
143 #else
144 #define REG_OFFSET_SWIZZLE      0
145 #endif
146
147 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
148 {
149         int nr_longs;
150
151         nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
152
153         b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
154         if (!b->private)
155                 return -ENOMEM;
156
157         b->shared = b->private + nr_cpus;
158
159         return 0;
160 }
161
162 static void vgic_free_bitmap(struct vgic_bitmap *b)
163 {
164         kfree(b->private);
165         b->private = NULL;
166         b->shared = NULL;
167 }
168
169 /*
170  * Call this function to convert a u64 value to an unsigned long * bitmask
171  * in a way that works on both 32-bit and 64-bit LE and BE platforms.
172  *
173  * Warning: Calling this function may modify *val.
174  */
175 static unsigned long *u64_to_bitmask(u64 *val)
176 {
177 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
178         *val = (*val >> 32) | (*val << 32);
179 #endif
180         return (unsigned long *)val;
181 }
182
183 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
184 {
185         offset >>= 2;
186         if (!offset)
187                 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
188         else
189                 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
190 }
191
192 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
193                                    int cpuid, int irq)
194 {
195         if (irq < VGIC_NR_PRIVATE_IRQS)
196                 return test_bit(irq, x->private + cpuid);
197
198         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
199 }
200
201 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
202                              int irq, int val)
203 {
204         unsigned long *reg;
205
206         if (irq < VGIC_NR_PRIVATE_IRQS) {
207                 reg = x->private + cpuid;
208         } else {
209                 reg = x->shared;
210                 irq -= VGIC_NR_PRIVATE_IRQS;
211         }
212
213         if (val)
214                 set_bit(irq, reg);
215         else
216                 clear_bit(irq, reg);
217 }
218
219 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
220 {
221         return x->private + cpuid;
222 }
223
224 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
225 {
226         return x->shared;
227 }
228
229 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
230 {
231         int size;
232
233         size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
234         size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
235
236         x->private = kzalloc(size, GFP_KERNEL);
237         if (!x->private)
238                 return -ENOMEM;
239
240         x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
241         return 0;
242 }
243
244 static void vgic_free_bytemap(struct vgic_bytemap *b)
245 {
246         kfree(b->private);
247         b->private = NULL;
248         b->shared = NULL;
249 }
250
251 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
252 {
253         u32 *reg;
254
255         if (offset < VGIC_NR_PRIVATE_IRQS) {
256                 reg = x->private;
257                 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
258         } else {
259                 reg = x->shared;
260                 offset -= VGIC_NR_PRIVATE_IRQS;
261         }
262
263         return reg + (offset / sizeof(u32));
264 }
265
266 #define VGIC_CFG_LEVEL  0
267 #define VGIC_CFG_EDGE   1
268
269 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
270 {
271         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
272         int irq_val;
273
274         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
275         return irq_val == VGIC_CFG_EDGE;
276 }
277
278 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
279 {
280         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
281
282         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
283 }
284
285 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
286 {
287         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
288
289         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
290 }
291
292 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
293 {
294         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
295
296         return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
297 }
298
299 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
300 {
301         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
302
303         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
304 }
305
306 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
307 {
308         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
309
310         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
311 }
312
313 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
314 {
315         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
316
317         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
318 }
319
320 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
321 {
322         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
323
324         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
325 }
326
327 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
328 {
329         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
330
331         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
332 }
333
334 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
335 {
336         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
337
338         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
339 }
340
341 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
342 {
343         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
344
345         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
346 }
347
348 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
349 {
350         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
351
352         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
353 }
354
355 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
356 {
357         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
358
359         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
360 }
361
362 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
363 {
364         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
365
366         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
367 }
368
369 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
370 {
371         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
372
373         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
374 }
375
376 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
377 {
378         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
379
380         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
381 }
382
383 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
384 {
385         if (irq < VGIC_NR_PRIVATE_IRQS)
386                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
387         else
388                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
389                         vcpu->arch.vgic_cpu.pending_shared);
390 }
391
392 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
393 {
394         if (irq < VGIC_NR_PRIVATE_IRQS)
395                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
396         else
397                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
398                           vcpu->arch.vgic_cpu.pending_shared);
399 }
400
401 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
402 {
403         return !vgic_irq_is_queued(vcpu, irq);
404 }
405
406 /**
407  * vgic_reg_access - access vgic register
408  * @mmio:   pointer to the data describing the mmio access
409  * @reg:    pointer to the virtual backing of vgic distributor data
410  * @offset: least significant 2 bits used for word offset
411  * @mode:   ACCESS_ mode (see defines above)
412  *
413  * Helper to make vgic register access easier using one of the access
414  * modes defined for vgic register access
415  * (read,raz,write-ignored,setbit,clearbit,write)
416  */
417 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
418                      phys_addr_t offset, int mode)
419 {
420         int word_offset = (offset & 3) * 8;
421         u32 mask = (1UL << (mmio->len * 8)) - 1;
422         u32 regval;
423
424         /*
425          * Any alignment fault should have been delivered to the guest
426          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
427          */
428
429         if (reg) {
430                 regval = *reg;
431         } else {
432                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
433                 regval = 0;
434         }
435
436         if (mmio->is_write) {
437                 u32 data = mmio_data_read(mmio, mask) << word_offset;
438                 switch (ACCESS_WRITE_MASK(mode)) {
439                 case ACCESS_WRITE_IGNORED:
440                         return;
441
442                 case ACCESS_WRITE_SETBIT:
443                         regval |= data;
444                         break;
445
446                 case ACCESS_WRITE_CLEARBIT:
447                         regval &= ~data;
448                         break;
449
450                 case ACCESS_WRITE_VALUE:
451                         regval = (regval & ~(mask << word_offset)) | data;
452                         break;
453                 }
454                 *reg = regval;
455         } else {
456                 switch (ACCESS_READ_MASK(mode)) {
457                 case ACCESS_READ_RAZ:
458                         regval = 0;
459                         /* fall through */
460
461                 case ACCESS_READ_VALUE:
462                         mmio_data_write(mmio, mask, regval >> word_offset);
463                 }
464         }
465 }
466
467 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
468                         phys_addr_t offset)
469 {
470         vgic_reg_access(mmio, NULL, offset,
471                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
472         return false;
473 }
474
475 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
476                             phys_addr_t offset, int vcpu_id, int access)
477 {
478         u32 *reg;
479         int mode = ACCESS_READ_VALUE | access;
480         struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
481
482         reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
483         vgic_reg_access(mmio, reg, offset, mode);
484         if (mmio->is_write) {
485                 if (access & ACCESS_WRITE_CLEARBIT) {
486                         if (offset < 4) /* Force SGI enabled */
487                                 *reg |= 0xffff;
488                         vgic_retire_disabled_irqs(target_vcpu);
489                 }
490                 vgic_update_state(kvm);
491                 return true;
492         }
493
494         return false;
495 }
496
497 bool vgic_handle_set_pending_reg(struct kvm *kvm,
498                                  struct kvm_exit_mmio *mmio,
499                                  phys_addr_t offset, int vcpu_id)
500 {
501         u32 *reg, orig;
502         u32 level_mask;
503         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
504         struct vgic_dist *dist = &kvm->arch.vgic;
505
506         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
507         level_mask = (~(*reg));
508
509         /* Mark both level and edge triggered irqs as pending */
510         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
511         orig = *reg;
512         vgic_reg_access(mmio, reg, offset, mode);
513
514         if (mmio->is_write) {
515                 /* Set the soft-pending flag only for level-triggered irqs */
516                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
517                                           vcpu_id, offset);
518                 vgic_reg_access(mmio, reg, offset, mode);
519                 *reg &= level_mask;
520
521                 /* Ignore writes to SGIs */
522                 if (offset < 2) {
523                         *reg &= ~0xffff;
524                         *reg |= orig & 0xffff;
525                 }
526
527                 vgic_update_state(kvm);
528                 return true;
529         }
530
531         return false;
532 }
533
534 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
535                                    struct kvm_exit_mmio *mmio,
536                                    phys_addr_t offset, int vcpu_id)
537 {
538         u32 *level_active;
539         u32 *reg, orig;
540         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
541         struct vgic_dist *dist = &kvm->arch.vgic;
542
543         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
544         orig = *reg;
545         vgic_reg_access(mmio, reg, offset, mode);
546         if (mmio->is_write) {
547                 /* Re-set level triggered level-active interrupts */
548                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
549                                           vcpu_id, offset);
550                 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
551                 *reg |= *level_active;
552
553                 /* Ignore writes to SGIs */
554                 if (offset < 2) {
555                         *reg &= ~0xffff;
556                         *reg |= orig & 0xffff;
557                 }
558
559                 /* Clear soft-pending flags */
560                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
561                                           vcpu_id, offset);
562                 vgic_reg_access(mmio, reg, offset, mode);
563
564                 vgic_update_state(kvm);
565                 return true;
566         }
567         return false;
568 }
569
570 bool vgic_handle_set_active_reg(struct kvm *kvm,
571                                 struct kvm_exit_mmio *mmio,
572                                 phys_addr_t offset, int vcpu_id)
573 {
574         u32 *reg;
575         struct vgic_dist *dist = &kvm->arch.vgic;
576
577         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
578         vgic_reg_access(mmio, reg, offset,
579                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
580
581         if (mmio->is_write) {
582                 vgic_update_state(kvm);
583                 return true;
584         }
585
586         return false;
587 }
588
589 bool vgic_handle_clear_active_reg(struct kvm *kvm,
590                                   struct kvm_exit_mmio *mmio,
591                                   phys_addr_t offset, int vcpu_id)
592 {
593         u32 *reg;
594         struct vgic_dist *dist = &kvm->arch.vgic;
595
596         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
597         vgic_reg_access(mmio, reg, offset,
598                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
599
600         if (mmio->is_write) {
601                 vgic_update_state(kvm);
602                 return true;
603         }
604
605         return false;
606 }
607
608 static u32 vgic_cfg_expand(u16 val)
609 {
610         u32 res = 0;
611         int i;
612
613         /*
614          * Turn a 16bit value like abcd...mnop into a 32bit word
615          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
616          */
617         for (i = 0; i < 16; i++)
618                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
619
620         return res;
621 }
622
623 static u16 vgic_cfg_compress(u32 val)
624 {
625         u16 res = 0;
626         int i;
627
628         /*
629          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
630          * abcd...mnop which is what we really care about.
631          */
632         for (i = 0; i < 16; i++)
633                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
634
635         return res;
636 }
637
638 /*
639  * The distributor uses 2 bits per IRQ for the CFG register, but the
640  * LSB is always 0. As such, we only keep the upper bit, and use the
641  * two above functions to compress/expand the bits
642  */
643 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
644                          phys_addr_t offset)
645 {
646         u32 val;
647
648         if (offset & 4)
649                 val = *reg >> 16;
650         else
651                 val = *reg & 0xffff;
652
653         val = vgic_cfg_expand(val);
654         vgic_reg_access(mmio, &val, offset,
655                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
656         if (mmio->is_write) {
657                 if (offset < 8) {
658                         *reg = ~0U; /* Force PPIs/SGIs to 1 */
659                         return false;
660                 }
661
662                 val = vgic_cfg_compress(val);
663                 if (offset & 4) {
664                         *reg &= 0xffff;
665                         *reg |= val << 16;
666                 } else {
667                         *reg &= 0xffff << 16;
668                         *reg |= val;
669                 }
670         }
671
672         return false;
673 }
674
675 /**
676  * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
677  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
678  *
679  * Move any IRQs that have already been assigned to LRs back to the
680  * emulated distributor state so that the complete emulated state can be read
681  * from the main emulation structures without investigating the LRs.
682  */
683 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
684 {
685         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
686         int i;
687
688         for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
689                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
690
691                 /*
692                  * There are three options for the state bits:
693                  *
694                  * 01: pending
695                  * 10: active
696                  * 11: pending and active
697                  */
698                 BUG_ON(!(lr.state & LR_STATE_MASK));
699
700                 /* Reestablish SGI source for pending and active IRQs */
701                 if (lr.irq < VGIC_NR_SGIS)
702                         add_sgi_source(vcpu, lr.irq, lr.source);
703
704                 /*
705                  * If the LR holds an active (10) or a pending and active (11)
706                  * interrupt then move the active state to the
707                  * distributor tracking bit.
708                  */
709                 if (lr.state & LR_STATE_ACTIVE) {
710                         vgic_irq_set_active(vcpu, lr.irq);
711                         lr.state &= ~LR_STATE_ACTIVE;
712                 }
713
714                 /*
715                  * Reestablish the pending state on the distributor and the
716                  * CPU interface.  It may have already been pending, but that
717                  * is fine, then we are only setting a few bits that were
718                  * already set.
719                  */
720                 if (lr.state & LR_STATE_PENDING) {
721                         vgic_dist_irq_set_pending(vcpu, lr.irq);
722                         lr.state &= ~LR_STATE_PENDING;
723                 }
724
725                 vgic_set_lr(vcpu, i, lr);
726
727                 /*
728                  * Mark the LR as free for other use.
729                  */
730                 BUG_ON(lr.state & LR_STATE_MASK);
731                 vgic_retire_lr(i, lr.irq, vcpu);
732                 vgic_irq_clear_queued(vcpu, lr.irq);
733
734                 /* Finally update the VGIC state. */
735                 vgic_update_state(vcpu->kvm);
736         }
737 }
738
739 const
740 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
741                                       int len, gpa_t offset)
742 {
743         while (ranges->len) {
744                 if (offset >= ranges->base &&
745                     (offset + len) <= (ranges->base + ranges->len))
746                         return ranges;
747                 ranges++;
748         }
749
750         return NULL;
751 }
752
753 static bool vgic_validate_access(const struct vgic_dist *dist,
754                                  const struct vgic_io_range *range,
755                                  unsigned long offset)
756 {
757         int irq;
758
759         if (!range->bits_per_irq)
760                 return true;    /* Not an irq-based access */
761
762         irq = offset * 8 / range->bits_per_irq;
763         if (irq >= dist->nr_irqs)
764                 return false;
765
766         return true;
767 }
768
769 /*
770  * Call the respective handler function for the given range.
771  * We split up any 64 bit accesses into two consecutive 32 bit
772  * handler calls and merge the result afterwards.
773  * We do this in a little endian fashion regardless of the host's
774  * or guest's endianness, because the GIC is always LE and the rest of
775  * the code (vgic_reg_access) also puts it in a LE fashion already.
776  * At this point we have already identified the handle function, so
777  * range points to that one entry and offset is relative to this.
778  */
779 static bool call_range_handler(struct kvm_vcpu *vcpu,
780                                struct kvm_exit_mmio *mmio,
781                                unsigned long offset,
782                                const struct vgic_io_range *range)
783 {
784         struct kvm_exit_mmio mmio32;
785         bool ret;
786
787         if (likely(mmio->len <= 4))
788                 return range->handle_mmio(vcpu, mmio, offset);
789
790         /*
791          * Any access bigger than 4 bytes (that we currently handle in KVM)
792          * is actually 8 bytes long, caused by a 64-bit access
793          */
794
795         mmio32.len = 4;
796         mmio32.is_write = mmio->is_write;
797         mmio32.private = mmio->private;
798
799         mmio32.phys_addr = mmio->phys_addr + 4;
800         mmio32.data = &((u32 *)mmio->data)[1];
801         ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
802
803         mmio32.phys_addr = mmio->phys_addr;
804         mmio32.data = &((u32 *)mmio->data)[0];
805         ret |= range->handle_mmio(vcpu, &mmio32, offset);
806
807         return ret;
808 }
809
810 /**
811  * vgic_handle_mmio_access - handle an in-kernel MMIO access
812  * This is called by the read/write KVM IO device wrappers below.
813  * @vcpu:       pointer to the vcpu performing the access
814  * @this:       pointer to the KVM IO device in charge
815  * @addr:       guest physical address of the access
816  * @len:        size of the access
817  * @val:        pointer to the data region
818  * @is_write:   read or write access
819  *
820  * returns true if the MMIO access could be performed
821  */
822 static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
823                                    struct kvm_io_device *this, gpa_t addr,
824                                    int len, void *val, bool is_write)
825 {
826         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
827         struct vgic_io_device *iodev = container_of(this,
828                                                     struct vgic_io_device, dev);
829         struct kvm_run *run = vcpu->run;
830         const struct vgic_io_range *range;
831         struct kvm_exit_mmio mmio;
832         bool updated_state;
833         gpa_t offset;
834
835         offset = addr - iodev->addr;
836         range = vgic_find_range(iodev->reg_ranges, len, offset);
837         if (unlikely(!range || !range->handle_mmio)) {
838                 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
839                 return -ENXIO;
840         }
841
842         mmio.phys_addr = addr;
843         mmio.len = len;
844         mmio.is_write = is_write;
845         mmio.data = val;
846         mmio.private = iodev->redist_vcpu;
847
848         spin_lock(&dist->lock);
849         offset -= range->base;
850         if (vgic_validate_access(dist, range, offset)) {
851                 updated_state = call_range_handler(vcpu, &mmio, offset, range);
852         } else {
853                 if (!is_write)
854                         memset(val, 0, len);
855                 updated_state = false;
856         }
857         spin_unlock(&dist->lock);
858         run->mmio.is_write      = is_write;
859         run->mmio.len           = len;
860         run->mmio.phys_addr     = addr;
861         memcpy(run->mmio.data, val, len);
862
863         kvm_handle_mmio_return(vcpu, run);
864
865         if (updated_state)
866                 vgic_kick_vcpus(vcpu->kvm);
867
868         return 0;
869 }
870
871 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
872                                  struct kvm_io_device *this,
873                                  gpa_t addr, int len, void *val)
874 {
875         return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
876 }
877
878 static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
879                                   struct kvm_io_device *this,
880                                   gpa_t addr, int len, const void *val)
881 {
882         return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
883                                        true);
884 }
885
886 struct kvm_io_device_ops vgic_io_ops = {
887         .read   = vgic_handle_mmio_read,
888         .write  = vgic_handle_mmio_write,
889 };
890
891 /**
892  * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
893  * @kvm:            The VM structure pointer
894  * @base:           The (guest) base address for the register frame
895  * @len:            Length of the register frame window
896  * @ranges:         Describing the handler functions for each register
897  * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
898  * @iodev:          Points to memory to be passed on to the handler
899  *
900  * @iodev stores the parameters of this function to be usable by the handler
901  * respectively the dispatcher function (since the KVM I/O bus framework lacks
902  * an opaque parameter). Initialization is done in this function, but the
903  * reference should be valid and unique for the whole VGIC lifetime.
904  * If the register frame is not mapped for a specific VCPU, pass -1 to
905  * @redist_vcpu_id.
906  */
907 int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
908                              const struct vgic_io_range *ranges,
909                              int redist_vcpu_id,
910                              struct vgic_io_device *iodev)
911 {
912         struct kvm_vcpu *vcpu = NULL;
913         int ret;
914
915         if (redist_vcpu_id >= 0)
916                 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
917
918         iodev->addr             = base;
919         iodev->len              = len;
920         iodev->reg_ranges       = ranges;
921         iodev->redist_vcpu      = vcpu;
922
923         kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
924
925         mutex_lock(&kvm->slots_lock);
926
927         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
928                                       &iodev->dev);
929         mutex_unlock(&kvm->slots_lock);
930
931         /* Mark the iodev as invalid if registration fails. */
932         if (ret)
933                 iodev->dev.ops = NULL;
934
935         return ret;
936 }
937
938 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
939 {
940         return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
941 }
942
943 static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
944 {
945         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
946         unsigned long *active, *enabled, *act_percpu, *act_shared;
947         unsigned long active_private, active_shared;
948         int nr_shared = vgic_nr_shared_irqs(dist);
949         int vcpu_id;
950
951         vcpu_id = vcpu->vcpu_id;
952         act_percpu = vcpu->arch.vgic_cpu.active_percpu;
953         act_shared = vcpu->arch.vgic_cpu.active_shared;
954
955         active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
956         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
957         bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
958
959         active = vgic_bitmap_get_shared_map(&dist->irq_active);
960         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
961         bitmap_and(act_shared, active, enabled, nr_shared);
962         bitmap_and(act_shared, act_shared,
963                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
964                    nr_shared);
965
966         active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
967         active_shared = find_first_bit(act_shared, nr_shared);
968
969         return (active_private < VGIC_NR_PRIVATE_IRQS ||
970                 active_shared < nr_shared);
971 }
972
973 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
974 {
975         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
976         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
977         unsigned long pending_private, pending_shared;
978         int nr_shared = vgic_nr_shared_irqs(dist);
979         int vcpu_id;
980
981         vcpu_id = vcpu->vcpu_id;
982         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
983         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
984
985         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
986         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
987         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
988
989         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
990         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
991         bitmap_and(pend_shared, pending, enabled, nr_shared);
992         bitmap_and(pend_shared, pend_shared,
993                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
994                    nr_shared);
995
996         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
997         pending_shared = find_first_bit(pend_shared, nr_shared);
998         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
999                 pending_shared < vgic_nr_shared_irqs(dist));
1000 }
1001
1002 /*
1003  * Update the interrupt state and determine which CPUs have pending
1004  * or active interrupts. Must be called with distributor lock held.
1005  */
1006 void vgic_update_state(struct kvm *kvm)
1007 {
1008         struct vgic_dist *dist = &kvm->arch.vgic;
1009         struct kvm_vcpu *vcpu;
1010         int c;
1011
1012         if (!dist->enabled) {
1013                 set_bit(0, dist->irq_pending_on_cpu);
1014                 return;
1015         }
1016
1017         kvm_for_each_vcpu(c, vcpu, kvm) {
1018                 if (compute_pending_for_cpu(vcpu))
1019                         set_bit(c, dist->irq_pending_on_cpu);
1020
1021                 if (compute_active_for_cpu(vcpu))
1022                         set_bit(c, dist->irq_active_on_cpu);
1023                 else
1024                         clear_bit(c, dist->irq_active_on_cpu);
1025         }
1026 }
1027
1028 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1029 {
1030         return vgic_ops->get_lr(vcpu, lr);
1031 }
1032
1033 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1034                                struct vgic_lr vlr)
1035 {
1036         vgic_ops->set_lr(vcpu, lr, vlr);
1037 }
1038
1039 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1040                                struct vgic_lr vlr)
1041 {
1042         vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1043 }
1044
1045 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1046 {
1047         return vgic_ops->get_elrsr(vcpu);
1048 }
1049
1050 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1051 {
1052         return vgic_ops->get_eisr(vcpu);
1053 }
1054
1055 static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1056 {
1057         vgic_ops->clear_eisr(vcpu);
1058 }
1059
1060 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1061 {
1062         return vgic_ops->get_interrupt_status(vcpu);
1063 }
1064
1065 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1066 {
1067         vgic_ops->enable_underflow(vcpu);
1068 }
1069
1070 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1071 {
1072         vgic_ops->disable_underflow(vcpu);
1073 }
1074
1075 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1076 {
1077         vgic_ops->get_vmcr(vcpu, vmcr);
1078 }
1079
1080 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1081 {
1082         vgic_ops->set_vmcr(vcpu, vmcr);
1083 }
1084
1085 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1086 {
1087         vgic_ops->enable(vcpu);
1088 }
1089
1090 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1091 {
1092         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1093         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1094
1095         vlr.state = 0;
1096         vgic_set_lr(vcpu, lr_nr, vlr);
1097         clear_bit(lr_nr, vgic_cpu->lr_used);
1098         vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1099         vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1100 }
1101
1102 /*
1103  * An interrupt may have been disabled after being made pending on the
1104  * CPU interface (the classic case is a timer running while we're
1105  * rebooting the guest - the interrupt would kick as soon as the CPU
1106  * interface gets enabled, with deadly consequences).
1107  *
1108  * The solution is to examine already active LRs, and check the
1109  * interrupt is still enabled. If not, just retire it.
1110  */
1111 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1112 {
1113         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1114         int lr;
1115
1116         for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1117                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1118
1119                 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1120                         vgic_retire_lr(lr, vlr.irq, vcpu);
1121                         if (vgic_irq_is_queued(vcpu, vlr.irq))
1122                                 vgic_irq_clear_queued(vcpu, vlr.irq);
1123                 }
1124         }
1125 }
1126
1127 static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1128                                  int lr_nr, struct vgic_lr vlr)
1129 {
1130         if (vgic_irq_is_active(vcpu, irq)) {
1131                 vlr.state |= LR_STATE_ACTIVE;
1132                 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1133                 vgic_irq_clear_active(vcpu, irq);
1134                 vgic_update_state(vcpu->kvm);
1135         } else if (vgic_dist_irq_is_pending(vcpu, irq)) {
1136                 vlr.state |= LR_STATE_PENDING;
1137                 kvm_debug("Set pending: 0x%x\n", vlr.state);
1138         }
1139
1140         if (!vgic_irq_is_edge(vcpu, irq))
1141                 vlr.state |= LR_EOI_INT;
1142
1143         if (vlr.irq >= VGIC_NR_SGIS) {
1144                 struct irq_phys_map *map;
1145                 map = vgic_irq_map_search(vcpu, irq);
1146
1147                 /*
1148                  * If we have a mapping, and the virtual interrupt is
1149                  * being injected, then we must set the state to
1150                  * active in the physical world. Otherwise the
1151                  * physical interrupt will fire and the guest will
1152                  * exit before processing the virtual interrupt.
1153                  */
1154                 if (map) {
1155                         int ret;
1156
1157                         BUG_ON(!map->active);
1158                         vlr.hwirq = map->phys_irq;
1159                         vlr.state |= LR_HW;
1160                         vlr.state &= ~LR_EOI_INT;
1161
1162                         ret = irq_set_irqchip_state(map->irq,
1163                                                     IRQCHIP_STATE_ACTIVE,
1164                                                     true);
1165                         WARN_ON(ret);
1166
1167                         /*
1168                          * Make sure we're not going to sample this
1169                          * again, as a HW-backed interrupt cannot be
1170                          * in the PENDING_ACTIVE stage.
1171                          */
1172                         vgic_irq_set_queued(vcpu, irq);
1173                 }
1174         }
1175
1176         vgic_set_lr(vcpu, lr_nr, vlr);
1177         vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1178 }
1179
1180 /*
1181  * Queue an interrupt to a CPU virtual interface. Return true on success,
1182  * or false if it wasn't possible to queue it.
1183  * sgi_source must be zero for any non-SGI interrupts.
1184  */
1185 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1186 {
1187         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1188         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1189         struct vgic_lr vlr;
1190         int lr;
1191
1192         /* Sanitize the input... */
1193         BUG_ON(sgi_source_id & ~7);
1194         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1195         BUG_ON(irq >= dist->nr_irqs);
1196
1197         kvm_debug("Queue IRQ%d\n", irq);
1198
1199         lr = vgic_cpu->vgic_irq_lr_map[irq];
1200
1201         /* Do we have an active interrupt for the same CPUID? */
1202         if (lr != LR_EMPTY) {
1203                 vlr = vgic_get_lr(vcpu, lr);
1204                 if (vlr.source == sgi_source_id) {
1205                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1206                         BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1207                         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1208                         return true;
1209                 }
1210         }
1211
1212         /* Try to use another LR for this interrupt */
1213         lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1214                                vgic->nr_lr);
1215         if (lr >= vgic->nr_lr)
1216                 return false;
1217
1218         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1219         vgic_cpu->vgic_irq_lr_map[irq] = lr;
1220         set_bit(lr, vgic_cpu->lr_used);
1221
1222         vlr.irq = irq;
1223         vlr.source = sgi_source_id;
1224         vlr.state = 0;
1225         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1226
1227         return true;
1228 }
1229
1230 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1231 {
1232         if (!vgic_can_sample_irq(vcpu, irq))
1233                 return true; /* level interrupt, already queued */
1234
1235         if (vgic_queue_irq(vcpu, 0, irq)) {
1236                 if (vgic_irq_is_edge(vcpu, irq)) {
1237                         vgic_dist_irq_clear_pending(vcpu, irq);
1238                         vgic_cpu_irq_clear(vcpu, irq);
1239                 } else {
1240                         vgic_irq_set_queued(vcpu, irq);
1241                 }
1242
1243                 return true;
1244         }
1245
1246         return false;
1247 }
1248
1249 /*
1250  * Fill the list registers with pending interrupts before running the
1251  * guest.
1252  */
1253 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1254 {
1255         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1256         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1257         unsigned long *pa_percpu, *pa_shared;
1258         int i, vcpu_id;
1259         int overflow = 0;
1260         int nr_shared = vgic_nr_shared_irqs(dist);
1261
1262         vcpu_id = vcpu->vcpu_id;
1263
1264         pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1265         pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1266
1267         bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1268                   VGIC_NR_PRIVATE_IRQS);
1269         bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1270                   nr_shared);
1271         /*
1272          * We may not have any pending interrupt, or the interrupts
1273          * may have been serviced from another vcpu. In all cases,
1274          * move along.
1275          */
1276         if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
1277                 goto epilog;
1278
1279         /* SGIs */
1280         for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1281                 if (!queue_sgi(vcpu, i))
1282                         overflow = 1;
1283         }
1284
1285         /* PPIs */
1286         for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1287                 if (!vgic_queue_hwirq(vcpu, i))
1288                         overflow = 1;
1289         }
1290
1291         /* SPIs */
1292         for_each_set_bit(i, pa_shared, nr_shared) {
1293                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1294                         overflow = 1;
1295         }
1296
1297
1298
1299
1300 epilog:
1301         if (overflow) {
1302                 vgic_enable_underflow(vcpu);
1303         } else {
1304                 vgic_disable_underflow(vcpu);
1305                 /*
1306                  * We're about to run this VCPU, and we've consumed
1307                  * everything the distributor had in store for
1308                  * us. Claim we don't have anything pending. We'll
1309                  * adjust that if needed while exiting.
1310                  */
1311                 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1312         }
1313 }
1314
1315 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1316 {
1317         u32 status = vgic_get_interrupt_status(vcpu);
1318         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1319         bool level_pending = false;
1320         struct kvm *kvm = vcpu->kvm;
1321
1322         kvm_debug("STATUS = %08x\n", status);
1323
1324         if (status & INT_STATUS_EOI) {
1325                 /*
1326                  * Some level interrupts have been EOIed. Clear their
1327                  * active bit.
1328                  */
1329                 u64 eisr = vgic_get_eisr(vcpu);
1330                 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1331                 int lr;
1332
1333                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1334                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1335                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1336
1337                         spin_lock(&dist->lock);
1338                         vgic_irq_clear_queued(vcpu, vlr.irq);
1339                         WARN_ON(vlr.state & LR_STATE_MASK);
1340                         vlr.state = 0;
1341                         vgic_set_lr(vcpu, lr, vlr);
1342
1343                         /*
1344                          * If the IRQ was EOIed it was also ACKed and we we
1345                          * therefore assume we can clear the soft pending
1346                          * state (should it had been set) for this interrupt.
1347                          *
1348                          * Note: if the IRQ soft pending state was set after
1349                          * the IRQ was acked, it actually shouldn't be
1350                          * cleared, but we have no way of knowing that unless
1351                          * we start trapping ACKs when the soft-pending state
1352                          * is set.
1353                          */
1354                         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1355
1356                         /*
1357                          * kvm_notify_acked_irq calls kvm_set_irq()
1358                          * to reset the IRQ level. Need to release the
1359                          * lock for kvm_set_irq to grab it.
1360                          */
1361                         spin_unlock(&dist->lock);
1362
1363                         kvm_notify_acked_irq(kvm, 0,
1364                                              vlr.irq - VGIC_NR_PRIVATE_IRQS);
1365                         spin_lock(&dist->lock);
1366
1367                         /* Any additional pending interrupt? */
1368                         if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1369                                 vgic_cpu_irq_set(vcpu, vlr.irq);
1370                                 level_pending = true;
1371                         } else {
1372                                 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1373                                 vgic_cpu_irq_clear(vcpu, vlr.irq);
1374                         }
1375
1376                         spin_unlock(&dist->lock);
1377
1378                         /*
1379                          * Despite being EOIed, the LR may not have
1380                          * been marked as empty.
1381                          */
1382                         vgic_sync_lr_elrsr(vcpu, lr, vlr);
1383                 }
1384         }
1385
1386         if (status & INT_STATUS_UNDERFLOW)
1387                 vgic_disable_underflow(vcpu);
1388
1389         /*
1390          * In the next iterations of the vcpu loop, if we sync the vgic state
1391          * after flushing it, but before entering the guest (this happens for
1392          * pending signals and vmid rollovers), then make sure we don't pick
1393          * up any old maintenance interrupts here.
1394          */
1395         vgic_clear_eisr(vcpu);
1396
1397         return level_pending;
1398 }
1399
1400 /*
1401  * Save the physical active state, and reset it to inactive.
1402  *
1403  * Return 1 if HW interrupt went from active to inactive, and 0 otherwise.
1404  */
1405 static int vgic_sync_hwirq(struct kvm_vcpu *vcpu, struct vgic_lr vlr)
1406 {
1407         struct irq_phys_map *map;
1408         int ret;
1409
1410         if (!(vlr.state & LR_HW))
1411                 return 0;
1412
1413         map = vgic_irq_map_search(vcpu, vlr.irq);
1414         BUG_ON(!map || !map->active);
1415
1416         ret = irq_get_irqchip_state(map->irq,
1417                                     IRQCHIP_STATE_ACTIVE,
1418                                     &map->active);
1419
1420         WARN_ON(ret);
1421
1422         if (map->active) {
1423                 ret = irq_set_irqchip_state(map->irq,
1424                                             IRQCHIP_STATE_ACTIVE,
1425                                             false);
1426                 WARN_ON(ret);
1427                 return 0;
1428         }
1429
1430         return 1;
1431 }
1432
1433 /* Sync back the VGIC state after a guest run */
1434 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1435 {
1436         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1437         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1438         u64 elrsr;
1439         unsigned long *elrsr_ptr;
1440         int lr, pending;
1441         bool level_pending;
1442
1443         level_pending = vgic_process_maintenance(vcpu);
1444         elrsr = vgic_get_elrsr(vcpu);
1445         elrsr_ptr = u64_to_bitmask(&elrsr);
1446
1447         /* Deal with HW interrupts, and clear mappings for empty LRs */
1448         for (lr = 0; lr < vgic->nr_lr; lr++) {
1449                 struct vgic_lr vlr;
1450
1451                 if (!test_bit(lr, vgic_cpu->lr_used))
1452                         continue;
1453
1454                 vlr = vgic_get_lr(vcpu, lr);
1455                 if (vgic_sync_hwirq(vcpu, vlr)) {
1456                         /*
1457                          * So this is a HW interrupt that the guest
1458                          * EOI-ed. Clean the LR state and allow the
1459                          * interrupt to be sampled again.
1460                          */
1461                         vlr.state = 0;
1462                         vlr.hwirq = 0;
1463                         vgic_set_lr(vcpu, lr, vlr);
1464                         vgic_irq_clear_queued(vcpu, vlr.irq);
1465                         set_bit(lr, elrsr_ptr);
1466                 }
1467
1468                 if (!test_bit(lr, elrsr_ptr))
1469                         continue;
1470
1471                 clear_bit(lr, vgic_cpu->lr_used);
1472
1473                 BUG_ON(vlr.irq >= dist->nr_irqs);
1474                 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1475         }
1476
1477         /* Check if we still have something up our sleeve... */
1478         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1479         if (level_pending || pending < vgic->nr_lr)
1480                 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1481 }
1482
1483 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1484 {
1485         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1486
1487         if (!irqchip_in_kernel(vcpu->kvm))
1488                 return;
1489
1490         spin_lock(&dist->lock);
1491         __kvm_vgic_flush_hwstate(vcpu);
1492         spin_unlock(&dist->lock);
1493 }
1494
1495 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1496 {
1497         if (!irqchip_in_kernel(vcpu->kvm))
1498                 return;
1499
1500         __kvm_vgic_sync_hwstate(vcpu);
1501 }
1502
1503 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1504 {
1505         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1506
1507         if (!irqchip_in_kernel(vcpu->kvm))
1508                 return 0;
1509
1510         return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1511 }
1512
1513 int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1514 {
1515         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1516
1517         if (!irqchip_in_kernel(vcpu->kvm))
1518                 return 0;
1519
1520         return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1521 }
1522
1523
1524 void vgic_kick_vcpus(struct kvm *kvm)
1525 {
1526         struct kvm_vcpu *vcpu;
1527         int c;
1528
1529         /*
1530          * We've injected an interrupt, time to find out who deserves
1531          * a good kick...
1532          */
1533         kvm_for_each_vcpu(c, vcpu, kvm) {
1534                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1535                         kvm_vcpu_kick(vcpu);
1536         }
1537 }
1538
1539 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1540 {
1541         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1542
1543         /*
1544          * Only inject an interrupt if:
1545          * - edge triggered and we have a rising edge
1546          * - level triggered and we change level
1547          */
1548         if (edge_triggered) {
1549                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1550                 return level > state;
1551         } else {
1552                 int state = vgic_dist_irq_get_level(vcpu, irq);
1553                 return level != state;
1554         }
1555 }
1556
1557 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1558                                   unsigned int irq_num, bool level)
1559 {
1560         struct vgic_dist *dist = &kvm->arch.vgic;
1561         struct kvm_vcpu *vcpu;
1562         int edge_triggered, level_triggered;
1563         int enabled;
1564         bool ret = true, can_inject = true;
1565
1566         spin_lock(&dist->lock);
1567
1568         vcpu = kvm_get_vcpu(kvm, cpuid);
1569         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1570         level_triggered = !edge_triggered;
1571
1572         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1573                 ret = false;
1574                 goto out;
1575         }
1576
1577         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1578                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1579                 if (cpuid == VCPU_NOT_ALLOCATED) {
1580                         /* Pretend we use CPU0, and prevent injection */
1581                         cpuid = 0;
1582                         can_inject = false;
1583                 }
1584                 vcpu = kvm_get_vcpu(kvm, cpuid);
1585         }
1586
1587         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1588
1589         if (level) {
1590                 if (level_triggered)
1591                         vgic_dist_irq_set_level(vcpu, irq_num);
1592                 vgic_dist_irq_set_pending(vcpu, irq_num);
1593         } else {
1594                 if (level_triggered) {
1595                         vgic_dist_irq_clear_level(vcpu, irq_num);
1596                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1597                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1598                 }
1599
1600                 ret = false;
1601                 goto out;
1602         }
1603
1604         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1605
1606         if (!enabled || !can_inject) {
1607                 ret = false;
1608                 goto out;
1609         }
1610
1611         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1612                 /*
1613                  * Level interrupt in progress, will be picked up
1614                  * when EOId.
1615                  */
1616                 ret = false;
1617                 goto out;
1618         }
1619
1620         if (level) {
1621                 vgic_cpu_irq_set(vcpu, irq_num);
1622                 set_bit(cpuid, dist->irq_pending_on_cpu);
1623         }
1624
1625 out:
1626         spin_unlock(&dist->lock);
1627
1628         return ret ? cpuid : -EINVAL;
1629 }
1630
1631 /**
1632  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1633  * @kvm:     The VM structure pointer
1634  * @cpuid:   The CPU for PPIs
1635  * @irq_num: The IRQ number that is assigned to the device
1636  * @level:   Edge-triggered:  true:  to trigger the interrupt
1637  *                            false: to ignore the call
1638  *           Level-sensitive  true:  activates an interrupt
1639  *                            false: deactivates an interrupt
1640  *
1641  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1642  * level-sensitive interrupts.  You can think of the level parameter as 1
1643  * being HIGH and 0 being LOW and all devices being active-HIGH.
1644  */
1645 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1646                         bool level)
1647 {
1648         int ret = 0;
1649         int vcpu_id;
1650
1651         if (unlikely(!vgic_initialized(kvm))) {
1652                 /*
1653                  * We only provide the automatic initialization of the VGIC
1654                  * for the legacy case of a GICv2. Any other type must
1655                  * be explicitly initialized once setup with the respective
1656                  * KVM device call.
1657                  */
1658                 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1659                         ret = -EBUSY;
1660                         goto out;
1661                 }
1662                 mutex_lock(&kvm->lock);
1663                 ret = vgic_init(kvm);
1664                 mutex_unlock(&kvm->lock);
1665
1666                 if (ret)
1667                         goto out;
1668         }
1669
1670         if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1671                 return -EINVAL;
1672
1673         vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1674         if (vcpu_id >= 0) {
1675                 /* kick the specified vcpu */
1676                 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1677         }
1678
1679 out:
1680         return ret;
1681 }
1682
1683 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1684 {
1685         /*
1686          * We cannot rely on the vgic maintenance interrupt to be
1687          * delivered synchronously. This means we can only use it to
1688          * exit the VM, and we perform the handling of EOIed
1689          * interrupts on the exit path (see vgic_process_maintenance).
1690          */
1691         return IRQ_HANDLED;
1692 }
1693
1694 static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
1695                                                     int virt_irq)
1696 {
1697         if (virt_irq < VGIC_NR_PRIVATE_IRQS)
1698                 return &vcpu->arch.vgic_cpu.irq_phys_map_list;
1699         else
1700                 return &vcpu->kvm->arch.vgic.irq_phys_map_list;
1701 }
1702
1703 /**
1704  * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
1705  * @vcpu: The VCPU pointer
1706  * @virt_irq: The virtual irq number
1707  * @irq: The Linux IRQ number
1708  *
1709  * Establish a mapping between a guest visible irq (@virt_irq) and a
1710  * Linux irq (@irq). On injection, @virt_irq will be associated with
1711  * the physical interrupt represented by @irq. This mapping can be
1712  * established multiple times as long as the parameters are the same.
1713  *
1714  * Returns a valid pointer on success, and an error pointer otherwise
1715  */
1716 struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
1717                                            int virt_irq, int irq)
1718 {
1719         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1720         struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1721         struct irq_phys_map *map;
1722         struct irq_phys_map_entry *entry;
1723         struct irq_desc *desc;
1724         struct irq_data *data;
1725         int phys_irq;
1726
1727         desc = irq_to_desc(irq);
1728         if (!desc) {
1729                 kvm_err("%s: no interrupt descriptor\n", __func__);
1730                 return ERR_PTR(-EINVAL);
1731         }
1732
1733         data = irq_desc_get_irq_data(desc);
1734         while (data->parent_data)
1735                 data = data->parent_data;
1736
1737         phys_irq = data->hwirq;
1738
1739         /* Create a new mapping */
1740         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1741         if (!entry)
1742                 return ERR_PTR(-ENOMEM);
1743
1744         spin_lock(&dist->irq_phys_map_lock);
1745
1746         /* Try to match an existing mapping */
1747         map = vgic_irq_map_search(vcpu, virt_irq);
1748         if (map) {
1749                 /* Make sure this mapping matches */
1750                 if (map->phys_irq != phys_irq   ||
1751                     map->irq      != irq)
1752                         map = ERR_PTR(-EINVAL);
1753
1754                 /* Found an existing, valid mapping */
1755                 goto out;
1756         }
1757
1758         map           = &entry->map;
1759         map->virt_irq = virt_irq;
1760         map->phys_irq = phys_irq;
1761         map->irq      = irq;
1762
1763         list_add_tail_rcu(&entry->entry, root);
1764
1765 out:
1766         spin_unlock(&dist->irq_phys_map_lock);
1767         /* If we've found a hit in the existing list, free the useless
1768          * entry */
1769         if (IS_ERR(map) || map != &entry->map)
1770                 kfree(entry);
1771         return map;
1772 }
1773
1774 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
1775                                                 int virt_irq)
1776 {
1777         struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1778         struct irq_phys_map_entry *entry;
1779         struct irq_phys_map *map;
1780
1781         rcu_read_lock();
1782
1783         list_for_each_entry_rcu(entry, root, entry) {
1784                 map = &entry->map;
1785                 if (map->virt_irq == virt_irq) {
1786                         rcu_read_unlock();
1787                         return map;
1788                 }
1789         }
1790
1791         rcu_read_unlock();
1792
1793         return NULL;
1794 }
1795
1796 static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
1797 {
1798         struct irq_phys_map_entry *entry;
1799
1800         entry = container_of(rcu, struct irq_phys_map_entry, rcu);
1801         kfree(entry);
1802 }
1803
1804 /**
1805  * kvm_vgic_get_phys_irq_active - Return the active state of a mapped IRQ
1806  *
1807  * Return the logical active state of a mapped interrupt. This doesn't
1808  * necessarily reflects the current HW state.
1809  */
1810 bool kvm_vgic_get_phys_irq_active(struct irq_phys_map *map)
1811 {
1812         BUG_ON(!map);
1813         return map->active;
1814 }
1815
1816 /**
1817  * kvm_vgic_set_phys_irq_active - Set the active state of a mapped IRQ
1818  *
1819  * Set the logical active state of a mapped interrupt. This doesn't
1820  * immediately affects the HW state.
1821  */
1822 void kvm_vgic_set_phys_irq_active(struct irq_phys_map *map, bool active)
1823 {
1824         BUG_ON(!map);
1825         map->active = active;
1826 }
1827
1828 /**
1829  * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
1830  * @vcpu: The VCPU pointer
1831  * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
1832  *
1833  * Remove an existing mapping between virtual and physical interrupts.
1834  */
1835 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1836 {
1837         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1838         struct irq_phys_map_entry *entry;
1839         struct list_head *root;
1840
1841         if (!map)
1842                 return -EINVAL;
1843
1844         root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);
1845
1846         spin_lock(&dist->irq_phys_map_lock);
1847
1848         list_for_each_entry(entry, root, entry) {
1849                 if (&entry->map == map) {
1850                         list_del_rcu(&entry->entry);
1851                         call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1852                         break;
1853                 }
1854         }
1855
1856         spin_unlock(&dist->irq_phys_map_lock);
1857
1858         return 0;
1859 }
1860
1861 static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
1862 {
1863         struct vgic_dist *dist = &kvm->arch.vgic;
1864         struct irq_phys_map_entry *entry;
1865
1866         spin_lock(&dist->irq_phys_map_lock);
1867
1868         list_for_each_entry(entry, root, entry) {
1869                 list_del_rcu(&entry->entry);
1870                 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1871         }
1872
1873         spin_unlock(&dist->irq_phys_map_lock);
1874 }
1875
1876 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1877 {
1878         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1879
1880         kfree(vgic_cpu->pending_shared);
1881         kfree(vgic_cpu->active_shared);
1882         kfree(vgic_cpu->pend_act_shared);
1883         kfree(vgic_cpu->vgic_irq_lr_map);
1884         vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
1885         vgic_cpu->pending_shared = NULL;
1886         vgic_cpu->active_shared = NULL;
1887         vgic_cpu->pend_act_shared = NULL;
1888         vgic_cpu->vgic_irq_lr_map = NULL;
1889 }
1890
1891 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1892 {
1893         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1894
1895         int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1896         vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1897         vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1898         vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1899         vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1900
1901         if (!vgic_cpu->pending_shared
1902                 || !vgic_cpu->active_shared
1903                 || !vgic_cpu->pend_act_shared
1904                 || !vgic_cpu->vgic_irq_lr_map) {
1905                 kvm_vgic_vcpu_destroy(vcpu);
1906                 return -ENOMEM;
1907         }
1908
1909         memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1910
1911         /*
1912          * Store the number of LRs per vcpu, so we don't have to go
1913          * all the way to the distributor structure to find out. Only
1914          * assembly code should use this one.
1915          */
1916         vgic_cpu->nr_lr = vgic->nr_lr;
1917
1918         return 0;
1919 }
1920
1921 /**
1922  * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
1923  *
1924  * No memory allocation should be performed here, only static init.
1925  */
1926 void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
1927 {
1928         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1929         INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
1930 }
1931
1932 /**
1933  * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1934  *
1935  * The host's GIC naturally limits the maximum amount of VCPUs a guest
1936  * can use.
1937  */
1938 int kvm_vgic_get_max_vcpus(void)
1939 {
1940         return vgic->max_gic_vcpus;
1941 }
1942
1943 void kvm_vgic_destroy(struct kvm *kvm)
1944 {
1945         struct vgic_dist *dist = &kvm->arch.vgic;
1946         struct kvm_vcpu *vcpu;
1947         int i;
1948
1949         kvm_for_each_vcpu(i, vcpu, kvm)
1950                 kvm_vgic_vcpu_destroy(vcpu);
1951
1952         vgic_free_bitmap(&dist->irq_enabled);
1953         vgic_free_bitmap(&dist->irq_level);
1954         vgic_free_bitmap(&dist->irq_pending);
1955         vgic_free_bitmap(&dist->irq_soft_pend);
1956         vgic_free_bitmap(&dist->irq_queued);
1957         vgic_free_bitmap(&dist->irq_cfg);
1958         vgic_free_bytemap(&dist->irq_priority);
1959         if (dist->irq_spi_target) {
1960                 for (i = 0; i < dist->nr_cpus; i++)
1961                         vgic_free_bitmap(&dist->irq_spi_target[i]);
1962         }
1963         kfree(dist->irq_sgi_sources);
1964         kfree(dist->irq_spi_cpu);
1965         kfree(dist->irq_spi_mpidr);
1966         kfree(dist->irq_spi_target);
1967         kfree(dist->irq_pending_on_cpu);
1968         kfree(dist->irq_active_on_cpu);
1969         vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
1970         dist->irq_sgi_sources = NULL;
1971         dist->irq_spi_cpu = NULL;
1972         dist->irq_spi_target = NULL;
1973         dist->irq_pending_on_cpu = NULL;
1974         dist->irq_active_on_cpu = NULL;
1975         dist->nr_cpus = 0;
1976 }
1977
1978 /*
1979  * Allocate and initialize the various data structures. Must be called
1980  * with kvm->lock held!
1981  */
1982 int vgic_init(struct kvm *kvm)
1983 {
1984         struct vgic_dist *dist = &kvm->arch.vgic;
1985         struct kvm_vcpu *vcpu;
1986         int nr_cpus, nr_irqs;
1987         int ret, i, vcpu_id;
1988
1989         if (vgic_initialized(kvm))
1990                 return 0;
1991
1992         nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1993         if (!nr_cpus)           /* No vcpus? Can't be good... */
1994                 return -ENODEV;
1995
1996         /*
1997          * If nobody configured the number of interrupts, use the
1998          * legacy one.
1999          */
2000         if (!dist->nr_irqs)
2001                 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
2002
2003         nr_irqs = dist->nr_irqs;
2004
2005         ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
2006         ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
2007         ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
2008         ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
2009         ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
2010         ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
2011         ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
2012         ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
2013
2014         if (ret)
2015                 goto out;
2016
2017         dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
2018         dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
2019         dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
2020                                        GFP_KERNEL);
2021         dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2022                                            GFP_KERNEL);
2023         dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2024                                            GFP_KERNEL);
2025         if (!dist->irq_sgi_sources ||
2026             !dist->irq_spi_cpu ||
2027             !dist->irq_spi_target ||
2028             !dist->irq_pending_on_cpu ||
2029             !dist->irq_active_on_cpu) {
2030                 ret = -ENOMEM;
2031                 goto out;
2032         }
2033
2034         for (i = 0; i < nr_cpus; i++)
2035                 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
2036                                         nr_cpus, nr_irqs);
2037
2038         if (ret)
2039                 goto out;
2040
2041         ret = kvm->arch.vgic.vm_ops.init_model(kvm);
2042         if (ret)
2043                 goto out;
2044
2045         kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
2046                 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
2047                 if (ret) {
2048                         kvm_err("VGIC: Failed to allocate vcpu memory\n");
2049                         break;
2050                 }
2051
2052                 for (i = 0; i < dist->nr_irqs; i++) {
2053                         if (i < VGIC_NR_PPIS)
2054                                 vgic_bitmap_set_irq_val(&dist->irq_enabled,
2055                                                         vcpu->vcpu_id, i, 1);
2056                         if (i < VGIC_NR_PRIVATE_IRQS)
2057                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2058                                                         vcpu->vcpu_id, i,
2059                                                         VGIC_CFG_EDGE);
2060                 }
2061
2062                 vgic_enable(vcpu);
2063         }
2064
2065 out:
2066         if (ret)
2067                 kvm_vgic_destroy(kvm);
2068
2069         return ret;
2070 }
2071
2072 static int init_vgic_model(struct kvm *kvm, int type)
2073 {
2074         switch (type) {
2075         case KVM_DEV_TYPE_ARM_VGIC_V2:
2076                 vgic_v2_init_emulation(kvm);
2077                 break;
2078 #ifdef CONFIG_ARM_GIC_V3
2079         case KVM_DEV_TYPE_ARM_VGIC_V3:
2080                 vgic_v3_init_emulation(kvm);
2081                 break;
2082 #endif
2083         default:
2084                 return -ENODEV;
2085         }
2086
2087         if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
2088                 return -E2BIG;
2089
2090         return 0;
2091 }
2092
2093 /**
2094  * kvm_vgic_early_init - Earliest possible vgic initialization stage
2095  *
2096  * No memory allocation should be performed here, only static init.
2097  */
2098 void kvm_vgic_early_init(struct kvm *kvm)
2099 {
2100         spin_lock_init(&kvm->arch.vgic.lock);
2101         spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
2102         INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
2103 }
2104
2105 int kvm_vgic_create(struct kvm *kvm, u32 type)
2106 {
2107         int i, vcpu_lock_idx = -1, ret;
2108         struct kvm_vcpu *vcpu;
2109
2110         mutex_lock(&kvm->lock);
2111
2112         if (irqchip_in_kernel(kvm)) {
2113                 ret = -EEXIST;
2114                 goto out;
2115         }
2116
2117         /*
2118          * This function is also called by the KVM_CREATE_IRQCHIP handler,
2119          * which had no chance yet to check the availability of the GICv2
2120          * emulation. So check this here again. KVM_CREATE_DEVICE does
2121          * the proper checks already.
2122          */
2123         if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
2124                 ret = -ENODEV;
2125                 goto out;
2126         }
2127
2128         /*
2129          * Any time a vcpu is run, vcpu_load is called which tries to grab the
2130          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
2131          * that no other VCPUs are run while we create the vgic.
2132          */
2133         ret = -EBUSY;
2134         kvm_for_each_vcpu(i, vcpu, kvm) {
2135                 if (!mutex_trylock(&vcpu->mutex))
2136                         goto out_unlock;
2137                 vcpu_lock_idx = i;
2138         }
2139
2140         kvm_for_each_vcpu(i, vcpu, kvm) {
2141                 if (vcpu->arch.has_run_once)
2142                         goto out_unlock;
2143         }
2144         ret = 0;
2145
2146         ret = init_vgic_model(kvm, type);
2147         if (ret)
2148                 goto out_unlock;
2149
2150         kvm->arch.vgic.in_kernel = true;
2151         kvm->arch.vgic.vgic_model = type;
2152         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
2153         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
2154         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
2155         kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
2156
2157 out_unlock:
2158         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
2159                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
2160                 mutex_unlock(&vcpu->mutex);
2161         }
2162
2163 out:
2164         mutex_unlock(&kvm->lock);
2165         return ret;
2166 }
2167
2168 static int vgic_ioaddr_overlap(struct kvm *kvm)
2169 {
2170         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
2171         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
2172
2173         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
2174                 return 0;
2175         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
2176             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
2177                 return -EBUSY;
2178         return 0;
2179 }
2180
2181 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
2182                               phys_addr_t addr, phys_addr_t size)
2183 {
2184         int ret;
2185
2186         if (addr & ~KVM_PHYS_MASK)
2187                 return -E2BIG;
2188
2189         if (addr & (SZ_4K - 1))
2190                 return -EINVAL;
2191
2192         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2193                 return -EEXIST;
2194         if (addr + size < addr)
2195                 return -EINVAL;
2196
2197         *ioaddr = addr;
2198         ret = vgic_ioaddr_overlap(kvm);
2199         if (ret)
2200                 *ioaddr = VGIC_ADDR_UNDEF;
2201
2202         return ret;
2203 }
2204
2205 /**
2206  * kvm_vgic_addr - set or get vgic VM base addresses
2207  * @kvm:   pointer to the vm struct
2208  * @type:  the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
2209  * @addr:  pointer to address value
2210  * @write: if true set the address in the VM address space, if false read the
2211  *          address
2212  *
2213  * Set or get the vgic base addresses for the distributor and the virtual CPU
2214  * interface in the VM physical address space.  These addresses are properties
2215  * of the emulated core/SoC and therefore user space initially knows this
2216  * information.
2217  */
2218 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2219 {
2220         int r = 0;
2221         struct vgic_dist *vgic = &kvm->arch.vgic;
2222         int type_needed;
2223         phys_addr_t *addr_ptr, block_size;
2224         phys_addr_t alignment;
2225
2226         mutex_lock(&kvm->lock);
2227         switch (type) {
2228         case KVM_VGIC_V2_ADDR_TYPE_DIST:
2229                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2230                 addr_ptr = &vgic->vgic_dist_base;
2231                 block_size = KVM_VGIC_V2_DIST_SIZE;
2232                 alignment = SZ_4K;
2233                 break;
2234         case KVM_VGIC_V2_ADDR_TYPE_CPU:
2235                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2236                 addr_ptr = &vgic->vgic_cpu_base;
2237                 block_size = KVM_VGIC_V2_CPU_SIZE;
2238                 alignment = SZ_4K;
2239                 break;
2240 #ifdef CONFIG_ARM_GIC_V3
2241         case KVM_VGIC_V3_ADDR_TYPE_DIST:
2242                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2243                 addr_ptr = &vgic->vgic_dist_base;
2244                 block_size = KVM_VGIC_V3_DIST_SIZE;
2245                 alignment = SZ_64K;
2246                 break;
2247         case KVM_VGIC_V3_ADDR_TYPE_REDIST:
2248                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2249                 addr_ptr = &vgic->vgic_redist_base;
2250                 block_size = KVM_VGIC_V3_REDIST_SIZE;
2251                 alignment = SZ_64K;
2252                 break;
2253 #endif
2254         default:
2255                 r = -ENODEV;
2256                 goto out;
2257         }
2258
2259         if (vgic->vgic_model != type_needed) {
2260                 r = -ENODEV;
2261                 goto out;
2262         }
2263
2264         if (write) {
2265                 if (!IS_ALIGNED(*addr, alignment))
2266                         r = -EINVAL;
2267                 else
2268                         r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
2269                                                block_size);
2270         } else {
2271                 *addr = *addr_ptr;
2272         }
2273
2274 out:
2275         mutex_unlock(&kvm->lock);
2276         return r;
2277 }
2278
2279 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2280 {
2281         int r;
2282
2283         switch (attr->group) {
2284         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2285                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2286                 u64 addr;
2287                 unsigned long type = (unsigned long)attr->attr;
2288
2289                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2290                         return -EFAULT;
2291
2292                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2293                 return (r == -ENODEV) ? -ENXIO : r;
2294         }
2295         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2296                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2297                 u32 val;
2298                 int ret = 0;
2299
2300                 if (get_user(val, uaddr))
2301                         return -EFAULT;
2302
2303                 /*
2304                  * We require:
2305                  * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2306                  * - at most 1024 interrupts
2307                  * - a multiple of 32 interrupts
2308                  */
2309                 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2310                     val > VGIC_MAX_IRQS ||
2311                     (val & 31))
2312                         return -EINVAL;
2313
2314                 mutex_lock(&dev->kvm->lock);
2315
2316                 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2317                         ret = -EBUSY;
2318                 else
2319                         dev->kvm->arch.vgic.nr_irqs = val;
2320
2321                 mutex_unlock(&dev->kvm->lock);
2322
2323                 return ret;
2324         }
2325         case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2326                 switch (attr->attr) {
2327                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2328                         r = vgic_init(dev->kvm);
2329                         return r;
2330                 }
2331                 break;
2332         }
2333         }
2334
2335         return -ENXIO;
2336 }
2337
2338 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2339 {
2340         int r = -ENXIO;
2341
2342         switch (attr->group) {
2343         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2344                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2345                 u64 addr;
2346                 unsigned long type = (unsigned long)attr->attr;
2347
2348                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2349                 if (r)
2350                         return (r == -ENODEV) ? -ENXIO : r;
2351
2352                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2353                         return -EFAULT;
2354                 break;
2355         }
2356         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2357                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2358
2359                 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2360                 break;
2361         }
2362
2363         }
2364
2365         return r;
2366 }
2367
2368 int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2369 {
2370         if (vgic_find_range(ranges, 4, offset))
2371                 return 0;
2372         else
2373                 return -ENXIO;
2374 }
2375
2376 static void vgic_init_maintenance_interrupt(void *info)
2377 {
2378         enable_percpu_irq(vgic->maint_irq, 0);
2379 }
2380
2381 static int vgic_cpu_notify(struct notifier_block *self,
2382                            unsigned long action, void *cpu)
2383 {
2384         switch (action) {
2385         case CPU_STARTING:
2386         case CPU_STARTING_FROZEN:
2387                 vgic_init_maintenance_interrupt(NULL);
2388                 break;
2389         case CPU_DYING:
2390         case CPU_DYING_FROZEN:
2391                 disable_percpu_irq(vgic->maint_irq);
2392                 break;
2393         }
2394
2395         return NOTIFY_OK;
2396 }
2397
2398 static struct notifier_block vgic_cpu_nb = {
2399         .notifier_call = vgic_cpu_notify,
2400 };
2401
2402 static const struct of_device_id vgic_ids[] = {
2403         { .compatible = "arm,cortex-a15-gic",   .data = vgic_v2_probe, },
2404         { .compatible = "arm,cortex-a7-gic",    .data = vgic_v2_probe, },
2405         { .compatible = "arm,gic-400",          .data = vgic_v2_probe, },
2406         { .compatible = "arm,gic-v3",           .data = vgic_v3_probe, },
2407         {},
2408 };
2409
2410 int kvm_vgic_hyp_init(void)
2411 {
2412         const struct of_device_id *matched_id;
2413         const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2414                                 const struct vgic_params **);
2415         struct device_node *vgic_node;
2416         int ret;
2417
2418         vgic_node = of_find_matching_node_and_match(NULL,
2419                                                     vgic_ids, &matched_id);
2420         if (!vgic_node) {
2421                 kvm_err("error: no compatible GIC node found\n");
2422                 return -ENODEV;
2423         }
2424
2425         vgic_probe = matched_id->data;
2426         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2427         if (ret)
2428                 return ret;
2429
2430         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2431                                  "vgic", kvm_get_running_vcpus());
2432         if (ret) {
2433                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2434                 return ret;
2435         }
2436
2437         ret = __register_cpu_notifier(&vgic_cpu_nb);
2438         if (ret) {
2439                 kvm_err("Cannot register vgic CPU notifier\n");
2440                 goto out_free_irq;
2441         }
2442
2443         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2444
2445         return 0;
2446
2447 out_free_irq:
2448         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2449         return ret;
2450 }
2451
2452 int kvm_irq_map_gsi(struct kvm *kvm,
2453                     struct kvm_kernel_irq_routing_entry *entries,
2454                     int gsi)
2455 {
2456         return 0;
2457 }
2458
2459 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2460 {
2461         return pin;
2462 }
2463
2464 int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2465                 u32 irq, int level, bool line_status)
2466 {
2467         unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2468
2469         trace_kvm_set_irq(irq, level, irq_source_id);
2470
2471         BUG_ON(!vgic_initialized(kvm));
2472
2473         return kvm_vgic_inject_irq(kvm, 0, spi, level);
2474 }
2475
2476 /* MSI not implemented yet */
2477 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2478                 struct kvm *kvm, int irq_source_id,
2479                 int level, bool line_status)
2480 {
2481         return 0;
2482 }