KVM: arm/arm64: vgic: Kick new VCPU on interrupt migration
[linux-2.6-microblaze.git] / virt / kvm / arm / vgic / vgic.c
1 /*
2  * Copyright (C) 2015, 2016 ARM Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16
17 #include <linux/kvm.h>
18 #include <linux/kvm_host.h>
19 #include <linux/list_sort.h>
20 #include <linux/interrupt.h>
21 #include <linux/irq.h>
22 #include <asm/kvm_hyp.h>
23
24 #include "vgic.h"
25
26 #define CREATE_TRACE_POINTS
27 #include "trace.h"
28
29 #ifdef CONFIG_DEBUG_SPINLOCK
30 #define DEBUG_SPINLOCK_BUG_ON(p) BUG_ON(p)
31 #else
32 #define DEBUG_SPINLOCK_BUG_ON(p)
33 #endif
34
35 struct vgic_global kvm_vgic_global_state __ro_after_init = {
36         .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
37 };
38
39 /*
40  * Locking order is always:
41  * kvm->lock (mutex)
42  *   its->cmd_lock (mutex)
43  *     its->its_lock (mutex)
44  *       vgic_cpu->ap_list_lock
45  *         kvm->lpi_list_lock
46  *           vgic_irq->irq_lock
47  *
48  * If you need to take multiple locks, always take the upper lock first,
49  * then the lower ones, e.g. first take the its_lock, then the irq_lock.
50  * If you are already holding a lock and need to take a higher one, you
51  * have to drop the lower ranking lock first and re-aquire it after having
52  * taken the upper one.
53  *
54  * When taking more than one ap_list_lock at the same time, always take the
55  * lowest numbered VCPU's ap_list_lock first, so:
56  *   vcpuX->vcpu_id < vcpuY->vcpu_id:
57  *     spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
58  *     spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
59  *
60  * Since the VGIC must support injecting virtual interrupts from ISRs, we have
61  * to use the spin_lock_irqsave/spin_unlock_irqrestore versions of outer
62  * spinlocks for any lock that may be taken while injecting an interrupt.
63  */
64
65 /*
66  * Iterate over the VM's list of mapped LPIs to find the one with a
67  * matching interrupt ID and return a reference to the IRQ structure.
68  */
69 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
70 {
71         struct vgic_dist *dist = &kvm->arch.vgic;
72         struct vgic_irq *irq = NULL;
73
74         spin_lock(&dist->lpi_list_lock);
75
76         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
77                 if (irq->intid != intid)
78                         continue;
79
80                 /*
81                  * This increases the refcount, the caller is expected to
82                  * call vgic_put_irq() later once it's finished with the IRQ.
83                  */
84                 vgic_get_irq_kref(irq);
85                 goto out_unlock;
86         }
87         irq = NULL;
88
89 out_unlock:
90         spin_unlock(&dist->lpi_list_lock);
91
92         return irq;
93 }
94
95 /*
96  * This looks up the virtual interrupt ID to get the corresponding
97  * struct vgic_irq. It also increases the refcount, so any caller is expected
98  * to call vgic_put_irq() once it's finished with this IRQ.
99  */
100 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
101                               u32 intid)
102 {
103         /* SGIs and PPIs */
104         if (intid <= VGIC_MAX_PRIVATE)
105                 return &vcpu->arch.vgic_cpu.private_irqs[intid];
106
107         /* SPIs */
108         if (intid <= VGIC_MAX_SPI)
109                 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
110
111         /* LPIs */
112         if (intid >= VGIC_MIN_LPI)
113                 return vgic_get_lpi(kvm, intid);
114
115         WARN(1, "Looking up struct vgic_irq for reserved INTID");
116         return NULL;
117 }
118
119 /*
120  * We can't do anything in here, because we lack the kvm pointer to
121  * lock and remove the item from the lpi_list. So we keep this function
122  * empty and use the return value of kref_put() to trigger the freeing.
123  */
124 static void vgic_irq_release(struct kref *ref)
125 {
126 }
127
128 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
129 {
130         struct vgic_dist *dist = &kvm->arch.vgic;
131
132         if (irq->intid < VGIC_MIN_LPI)
133                 return;
134
135         spin_lock(&dist->lpi_list_lock);
136         if (!kref_put(&irq->refcount, vgic_irq_release)) {
137                 spin_unlock(&dist->lpi_list_lock);
138                 return;
139         };
140
141         list_del(&irq->lpi_list);
142         dist->lpi_list_count--;
143         spin_unlock(&dist->lpi_list_lock);
144
145         kfree(irq);
146 }
147
148 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
149 {
150         WARN_ON(irq_set_irqchip_state(irq->host_irq,
151                                       IRQCHIP_STATE_PENDING,
152                                       pending));
153 }
154
155 bool vgic_get_phys_line_level(struct vgic_irq *irq)
156 {
157         bool line_level;
158
159         BUG_ON(!irq->hw);
160
161         if (irq->get_input_level)
162                 return irq->get_input_level(irq->intid);
163
164         WARN_ON(irq_get_irqchip_state(irq->host_irq,
165                                       IRQCHIP_STATE_PENDING,
166                                       &line_level));
167         return line_level;
168 }
169
170 /* Set/Clear the physical active state */
171 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
172 {
173
174         BUG_ON(!irq->hw);
175         WARN_ON(irq_set_irqchip_state(irq->host_irq,
176                                       IRQCHIP_STATE_ACTIVE,
177                                       active));
178 }
179
180 /**
181  * kvm_vgic_target_oracle - compute the target vcpu for an irq
182  *
183  * @irq:        The irq to route. Must be already locked.
184  *
185  * Based on the current state of the interrupt (enabled, pending,
186  * active, vcpu and target_vcpu), compute the next vcpu this should be
187  * given to. Return NULL if this shouldn't be injected at all.
188  *
189  * Requires the IRQ lock to be held.
190  */
191 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
192 {
193         DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
194
195         /* If the interrupt is active, it must stay on the current vcpu */
196         if (irq->active)
197                 return irq->vcpu ? : irq->target_vcpu;
198
199         /*
200          * If the IRQ is not active but enabled and pending, we should direct
201          * it to its configured target VCPU.
202          * If the distributor is disabled, pending interrupts shouldn't be
203          * forwarded.
204          */
205         if (irq->enabled && irq_is_pending(irq)) {
206                 if (unlikely(irq->target_vcpu &&
207                              !irq->target_vcpu->kvm->arch.vgic.enabled))
208                         return NULL;
209
210                 return irq->target_vcpu;
211         }
212
213         /* If neither active nor pending and enabled, then this IRQ should not
214          * be queued to any VCPU.
215          */
216         return NULL;
217 }
218
219 /*
220  * The order of items in the ap_lists defines how we'll pack things in LRs as
221  * well, the first items in the list being the first things populated in the
222  * LRs.
223  *
224  * A hard rule is that active interrupts can never be pushed out of the LRs
225  * (and therefore take priority) since we cannot reliably trap on deactivation
226  * of IRQs and therefore they have to be present in the LRs.
227  *
228  * Otherwise things should be sorted by the priority field and the GIC
229  * hardware support will take care of preemption of priority groups etc.
230  *
231  * Return negative if "a" sorts before "b", 0 to preserve order, and positive
232  * to sort "b" before "a".
233  */
234 static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b)
235 {
236         struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
237         struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
238         bool penda, pendb;
239         int ret;
240
241         spin_lock(&irqa->irq_lock);
242         spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
243
244         if (irqa->active || irqb->active) {
245                 ret = (int)irqb->active - (int)irqa->active;
246                 goto out;
247         }
248
249         penda = irqa->enabled && irq_is_pending(irqa);
250         pendb = irqb->enabled && irq_is_pending(irqb);
251
252         if (!penda || !pendb) {
253                 ret = (int)pendb - (int)penda;
254                 goto out;
255         }
256
257         /* Both pending and enabled, sort by priority */
258         ret = irqa->priority - irqb->priority;
259 out:
260         spin_unlock(&irqb->irq_lock);
261         spin_unlock(&irqa->irq_lock);
262         return ret;
263 }
264
265 /* Must be called with the ap_list_lock held */
266 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
267 {
268         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
269
270         DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
271
272         list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
273 }
274
275 /*
276  * Only valid injection if changing level for level-triggered IRQs or for a
277  * rising edge, and in-kernel connected IRQ lines can only be controlled by
278  * their owner.
279  */
280 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
281 {
282         if (irq->owner != owner)
283                 return false;
284
285         switch (irq->config) {
286         case VGIC_CONFIG_LEVEL:
287                 return irq->line_level != level;
288         case VGIC_CONFIG_EDGE:
289                 return level;
290         }
291
292         return false;
293 }
294
295 /*
296  * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
297  * Do the queuing if necessary, taking the right locks in the right order.
298  * Returns true when the IRQ was queued, false otherwise.
299  *
300  * Needs to be entered with the IRQ lock already held, but will return
301  * with all locks dropped.
302  */
303 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
304                            unsigned long flags)
305 {
306         struct kvm_vcpu *vcpu;
307
308         DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
309
310 retry:
311         vcpu = vgic_target_oracle(irq);
312         if (irq->vcpu || !vcpu) {
313                 /*
314                  * If this IRQ is already on a VCPU's ap_list, then it
315                  * cannot be moved or modified and there is no more work for
316                  * us to do.
317                  *
318                  * Otherwise, if the irq is not pending and enabled, it does
319                  * not need to be inserted into an ap_list and there is also
320                  * no more work for us to do.
321                  */
322                 spin_unlock_irqrestore(&irq->irq_lock, flags);
323
324                 /*
325                  * We have to kick the VCPU here, because we could be
326                  * queueing an edge-triggered interrupt for which we
327                  * get no EOI maintenance interrupt. In that case,
328                  * while the IRQ is already on the VCPU's AP list, the
329                  * VCPU could have EOI'ed the original interrupt and
330                  * won't see this one until it exits for some other
331                  * reason.
332                  */
333                 if (vcpu) {
334                         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
335                         kvm_vcpu_kick(vcpu);
336                 }
337                 return false;
338         }
339
340         /*
341          * We must unlock the irq lock to take the ap_list_lock where
342          * we are going to insert this new pending interrupt.
343          */
344         spin_unlock_irqrestore(&irq->irq_lock, flags);
345
346         /* someone can do stuff here, which we re-check below */
347
348         spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
349         spin_lock(&irq->irq_lock);
350
351         /*
352          * Did something change behind our backs?
353          *
354          * There are two cases:
355          * 1) The irq lost its pending state or was disabled behind our
356          *    backs and/or it was queued to another VCPU's ap_list.
357          * 2) Someone changed the affinity on this irq behind our
358          *    backs and we are now holding the wrong ap_list_lock.
359          *
360          * In both cases, drop the locks and retry.
361          */
362
363         if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
364                 spin_unlock(&irq->irq_lock);
365                 spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
366
367                 spin_lock_irqsave(&irq->irq_lock, flags);
368                 goto retry;
369         }
370
371         /*
372          * Grab a reference to the irq to reflect the fact that it is
373          * now in the ap_list.
374          */
375         vgic_get_irq_kref(irq);
376         list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
377         irq->vcpu = vcpu;
378
379         spin_unlock(&irq->irq_lock);
380         spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
381
382         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
383         kvm_vcpu_kick(vcpu);
384
385         return true;
386 }
387
388 /**
389  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
390  * @kvm:     The VM structure pointer
391  * @cpuid:   The CPU for PPIs
392  * @intid:   The INTID to inject a new state to.
393  * @level:   Edge-triggered:  true:  to trigger the interrupt
394  *                            false: to ignore the call
395  *           Level-sensitive  true:  raise the input signal
396  *                            false: lower the input signal
397  * @owner:   The opaque pointer to the owner of the IRQ being raised to verify
398  *           that the caller is allowed to inject this IRQ.  Userspace
399  *           injections will have owner == NULL.
400  *
401  * The VGIC is not concerned with devices being active-LOW or active-HIGH for
402  * level-sensitive interrupts.  You can think of the level parameter as 1
403  * being HIGH and 0 being LOW and all devices being active-HIGH.
404  */
405 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
406                         bool level, void *owner)
407 {
408         struct kvm_vcpu *vcpu;
409         struct vgic_irq *irq;
410         unsigned long flags;
411         int ret;
412
413         trace_vgic_update_irq_pending(cpuid, intid, level);
414
415         ret = vgic_lazy_init(kvm);
416         if (ret)
417                 return ret;
418
419         vcpu = kvm_get_vcpu(kvm, cpuid);
420         if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
421                 return -EINVAL;
422
423         irq = vgic_get_irq(kvm, vcpu, intid);
424         if (!irq)
425                 return -EINVAL;
426
427         spin_lock_irqsave(&irq->irq_lock, flags);
428
429         if (!vgic_validate_injection(irq, level, owner)) {
430                 /* Nothing to see here, move along... */
431                 spin_unlock_irqrestore(&irq->irq_lock, flags);
432                 vgic_put_irq(kvm, irq);
433                 return 0;
434         }
435
436         if (irq->config == VGIC_CONFIG_LEVEL)
437                 irq->line_level = level;
438         else
439                 irq->pending_latch = true;
440
441         vgic_queue_irq_unlock(kvm, irq, flags);
442         vgic_put_irq(kvm, irq);
443
444         return 0;
445 }
446
447 /* @irq->irq_lock must be held */
448 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
449                             unsigned int host_irq,
450                             bool (*get_input_level)(int vindid))
451 {
452         struct irq_desc *desc;
453         struct irq_data *data;
454
455         /*
456          * Find the physical IRQ number corresponding to @host_irq
457          */
458         desc = irq_to_desc(host_irq);
459         if (!desc) {
460                 kvm_err("%s: no interrupt descriptor\n", __func__);
461                 return -EINVAL;
462         }
463         data = irq_desc_get_irq_data(desc);
464         while (data->parent_data)
465                 data = data->parent_data;
466
467         irq->hw = true;
468         irq->host_irq = host_irq;
469         irq->hwintid = data->hwirq;
470         irq->get_input_level = get_input_level;
471         return 0;
472 }
473
474 /* @irq->irq_lock must be held */
475 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
476 {
477         irq->hw = false;
478         irq->hwintid = 0;
479         irq->get_input_level = NULL;
480 }
481
482 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
483                           u32 vintid, bool (*get_input_level)(int vindid))
484 {
485         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
486         unsigned long flags;
487         int ret;
488
489         BUG_ON(!irq);
490
491         spin_lock_irqsave(&irq->irq_lock, flags);
492         ret = kvm_vgic_map_irq(vcpu, irq, host_irq, get_input_level);
493         spin_unlock_irqrestore(&irq->irq_lock, flags);
494         vgic_put_irq(vcpu->kvm, irq);
495
496         return ret;
497 }
498
499 /**
500  * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
501  * @vcpu: The VCPU pointer
502  * @vintid: The INTID of the interrupt
503  *
504  * Reset the active and pending states of a mapped interrupt.  Kernel
505  * subsystems injecting mapped interrupts should reset their interrupt lines
506  * when we are doing a reset of the VM.
507  */
508 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
509 {
510         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
511         unsigned long flags;
512
513         if (!irq->hw)
514                 goto out;
515
516         spin_lock_irqsave(&irq->irq_lock, flags);
517         irq->active = false;
518         irq->pending_latch = false;
519         irq->line_level = false;
520         spin_unlock_irqrestore(&irq->irq_lock, flags);
521 out:
522         vgic_put_irq(vcpu->kvm, irq);
523 }
524
525 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
526 {
527         struct vgic_irq *irq;
528         unsigned long flags;
529
530         if (!vgic_initialized(vcpu->kvm))
531                 return -EAGAIN;
532
533         irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
534         BUG_ON(!irq);
535
536         spin_lock_irqsave(&irq->irq_lock, flags);
537         kvm_vgic_unmap_irq(irq);
538         spin_unlock_irqrestore(&irq->irq_lock, flags);
539         vgic_put_irq(vcpu->kvm, irq);
540
541         return 0;
542 }
543
544 /**
545  * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
546  *
547  * @vcpu:   Pointer to the VCPU (used for PPIs)
548  * @intid:  The virtual INTID identifying the interrupt (PPI or SPI)
549  * @owner:  Opaque pointer to the owner
550  *
551  * Returns 0 if intid is not already used by another in-kernel device and the
552  * owner is set, otherwise returns an error code.
553  */
554 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
555 {
556         struct vgic_irq *irq;
557         unsigned long flags;
558         int ret = 0;
559
560         if (!vgic_initialized(vcpu->kvm))
561                 return -EAGAIN;
562
563         /* SGIs and LPIs cannot be wired up to any device */
564         if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
565                 return -EINVAL;
566
567         irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
568         spin_lock_irqsave(&irq->irq_lock, flags);
569         if (irq->owner && irq->owner != owner)
570                 ret = -EEXIST;
571         else
572                 irq->owner = owner;
573         spin_unlock_irqrestore(&irq->irq_lock, flags);
574
575         return ret;
576 }
577
578 /**
579  * vgic_prune_ap_list - Remove non-relevant interrupts from the list
580  *
581  * @vcpu: The VCPU pointer
582  *
583  * Go over the list of "interesting" interrupts, and prune those that we
584  * won't have to consider in the near future.
585  */
586 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
587 {
588         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
589         struct vgic_irq *irq, *tmp;
590         unsigned long flags;
591
592 retry:
593         spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
594
595         list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
596                 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
597                 bool target_vcpu_needs_kick = false;
598
599                 spin_lock(&irq->irq_lock);
600
601                 BUG_ON(vcpu != irq->vcpu);
602
603                 target_vcpu = vgic_target_oracle(irq);
604
605                 if (!target_vcpu) {
606                         /*
607                          * We don't need to process this interrupt any
608                          * further, move it off the list.
609                          */
610                         list_del(&irq->ap_list);
611                         irq->vcpu = NULL;
612                         spin_unlock(&irq->irq_lock);
613
614                         /*
615                          * This vgic_put_irq call matches the
616                          * vgic_get_irq_kref in vgic_queue_irq_unlock,
617                          * where we added the LPI to the ap_list. As
618                          * we remove the irq from the list, we drop
619                          * also drop the refcount.
620                          */
621                         vgic_put_irq(vcpu->kvm, irq);
622                         continue;
623                 }
624
625                 if (target_vcpu == vcpu) {
626                         /* We're on the right CPU */
627                         spin_unlock(&irq->irq_lock);
628                         continue;
629                 }
630
631                 /* This interrupt looks like it has to be migrated. */
632
633                 spin_unlock(&irq->irq_lock);
634                 spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
635
636                 /*
637                  * Ensure locking order by always locking the smallest
638                  * ID first.
639                  */
640                 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
641                         vcpuA = vcpu;
642                         vcpuB = target_vcpu;
643                 } else {
644                         vcpuA = target_vcpu;
645                         vcpuB = vcpu;
646                 }
647
648                 spin_lock_irqsave(&vcpuA->arch.vgic_cpu.ap_list_lock, flags);
649                 spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
650                                  SINGLE_DEPTH_NESTING);
651                 spin_lock(&irq->irq_lock);
652
653                 /*
654                  * If the affinity has been preserved, move the
655                  * interrupt around. Otherwise, it means things have
656                  * changed while the interrupt was unlocked, and we
657                  * need to replay this.
658                  *
659                  * In all cases, we cannot trust the list not to have
660                  * changed, so we restart from the beginning.
661                  */
662                 if (target_vcpu == vgic_target_oracle(irq)) {
663                         struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
664
665                         list_del(&irq->ap_list);
666                         irq->vcpu = target_vcpu;
667                         list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
668                         target_vcpu_needs_kick = true;
669                 }
670
671                 spin_unlock(&irq->irq_lock);
672                 spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
673                 spin_unlock_irqrestore(&vcpuA->arch.vgic_cpu.ap_list_lock, flags);
674
675                 if (target_vcpu_needs_kick) {
676                         kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
677                         kvm_vcpu_kick(target_vcpu);
678                 }
679
680                 goto retry;
681         }
682
683         spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
684 }
685
686 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
687 {
688         if (kvm_vgic_global_state.type == VGIC_V2)
689                 vgic_v2_fold_lr_state(vcpu);
690         else
691                 vgic_v3_fold_lr_state(vcpu);
692 }
693
694 /* Requires the irq_lock to be held. */
695 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
696                                     struct vgic_irq *irq, int lr)
697 {
698         DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
699
700         if (kvm_vgic_global_state.type == VGIC_V2)
701                 vgic_v2_populate_lr(vcpu, irq, lr);
702         else
703                 vgic_v3_populate_lr(vcpu, irq, lr);
704 }
705
706 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
707 {
708         if (kvm_vgic_global_state.type == VGIC_V2)
709                 vgic_v2_clear_lr(vcpu, lr);
710         else
711                 vgic_v3_clear_lr(vcpu, lr);
712 }
713
714 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
715 {
716         if (kvm_vgic_global_state.type == VGIC_V2)
717                 vgic_v2_set_underflow(vcpu);
718         else
719                 vgic_v3_set_underflow(vcpu);
720 }
721
722 static inline void vgic_set_npie(struct kvm_vcpu *vcpu)
723 {
724         if (kvm_vgic_global_state.type == VGIC_V2)
725                 vgic_v2_set_npie(vcpu);
726         else
727                 vgic_v3_set_npie(vcpu);
728 }
729
730 /* Requires the ap_list_lock to be held. */
731 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
732                                  bool *multi_sgi)
733 {
734         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
735         struct vgic_irq *irq;
736         int count = 0;
737
738         *multi_sgi = false;
739
740         DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
741
742         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
743                 spin_lock(&irq->irq_lock);
744                 /* GICv2 SGIs can count for more than one... */
745                 if (vgic_irq_is_sgi(irq->intid) && irq->source) {
746                         int w = hweight8(irq->source);
747
748                         count += w;
749                         *multi_sgi |= (w > 1);
750                 } else {
751                         count++;
752                 }
753                 spin_unlock(&irq->irq_lock);
754         }
755         return count;
756 }
757
758 /* Requires the VCPU's ap_list_lock to be held. */
759 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
760 {
761         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
762         struct vgic_irq *irq;
763         int count;
764         bool npie = false;
765         bool multi_sgi;
766         u8 prio = 0xff;
767
768         DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
769
770         count = compute_ap_list_depth(vcpu, &multi_sgi);
771         if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
772                 vgic_sort_ap_list(vcpu);
773
774         count = 0;
775
776         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
777                 spin_lock(&irq->irq_lock);
778
779                 /*
780                  * If we have multi-SGIs in the pipeline, we need to
781                  * guarantee that they are all seen before any IRQ of
782                  * lower priority. In that case, we need to filter out
783                  * these interrupts by exiting early. This is easy as
784                  * the AP list has been sorted already.
785                  */
786                 if (multi_sgi && irq->priority > prio) {
787                         spin_unlock(&irq->irq_lock);
788                         break;
789                 }
790
791                 if (likely(vgic_target_oracle(irq) == vcpu)) {
792                         vgic_populate_lr(vcpu, irq, count++);
793
794                         if (irq->source) {
795                                 npie = true;
796                                 prio = irq->priority;
797                         }
798                 }
799
800                 spin_unlock(&irq->irq_lock);
801
802                 if (count == kvm_vgic_global_state.nr_lr) {
803                         if (!list_is_last(&irq->ap_list,
804                                           &vgic_cpu->ap_list_head))
805                                 vgic_set_underflow(vcpu);
806                         break;
807                 }
808         }
809
810         if (npie)
811                 vgic_set_npie(vcpu);
812
813         vcpu->arch.vgic_cpu.used_lrs = count;
814
815         /* Nuke remaining LRs */
816         for ( ; count < kvm_vgic_global_state.nr_lr; count++)
817                 vgic_clear_lr(vcpu, count);
818 }
819
820 static inline bool can_access_vgic_from_kernel(void)
821 {
822         /*
823          * GICv2 can always be accessed from the kernel because it is
824          * memory-mapped, and VHE systems can access GICv3 EL2 system
825          * registers.
826          */
827         return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
828 }
829
830 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
831 {
832         if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
833                 vgic_v2_save_state(vcpu);
834         else
835                 __vgic_v3_save_state(vcpu);
836 }
837
838 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
839 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
840 {
841         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
842
843         WARN_ON(vgic_v4_sync_hwstate(vcpu));
844
845         /* An empty ap_list_head implies used_lrs == 0 */
846         if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
847                 return;
848
849         if (can_access_vgic_from_kernel())
850                 vgic_save_state(vcpu);
851
852         if (vgic_cpu->used_lrs)
853                 vgic_fold_lr_state(vcpu);
854         vgic_prune_ap_list(vcpu);
855 }
856
857 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
858 {
859         if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
860                 vgic_v2_restore_state(vcpu);
861         else
862                 __vgic_v3_restore_state(vcpu);
863 }
864
865 /* Flush our emulation state into the GIC hardware before entering the guest. */
866 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
867 {
868         WARN_ON(vgic_v4_flush_hwstate(vcpu));
869
870         /*
871          * If there are no virtual interrupts active or pending for this
872          * VCPU, then there is no work to do and we can bail out without
873          * taking any lock.  There is a potential race with someone injecting
874          * interrupts to the VCPU, but it is a benign race as the VCPU will
875          * either observe the new interrupt before or after doing this check,
876          * and introducing additional synchronization mechanism doesn't change
877          * this.
878          */
879         if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
880                 return;
881
882         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
883
884         spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
885         vgic_flush_lr_state(vcpu);
886         spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
887
888         if (can_access_vgic_from_kernel())
889                 vgic_restore_state(vcpu);
890 }
891
892 void kvm_vgic_load(struct kvm_vcpu *vcpu)
893 {
894         if (unlikely(!vgic_initialized(vcpu->kvm)))
895                 return;
896
897         if (kvm_vgic_global_state.type == VGIC_V2)
898                 vgic_v2_load(vcpu);
899         else
900                 vgic_v3_load(vcpu);
901 }
902
903 void kvm_vgic_put(struct kvm_vcpu *vcpu)
904 {
905         if (unlikely(!vgic_initialized(vcpu->kvm)))
906                 return;
907
908         if (kvm_vgic_global_state.type == VGIC_V2)
909                 vgic_v2_put(vcpu);
910         else
911                 vgic_v3_put(vcpu);
912 }
913
914 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
915 {
916         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
917         struct vgic_irq *irq;
918         bool pending = false;
919         unsigned long flags;
920
921         if (!vcpu->kvm->arch.vgic.enabled)
922                 return false;
923
924         if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
925                 return true;
926
927         spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
928
929         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
930                 spin_lock(&irq->irq_lock);
931                 pending = irq_is_pending(irq) && irq->enabled;
932                 spin_unlock(&irq->irq_lock);
933
934                 if (pending)
935                         break;
936         }
937
938         spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
939
940         return pending;
941 }
942
943 void vgic_kick_vcpus(struct kvm *kvm)
944 {
945         struct kvm_vcpu *vcpu;
946         int c;
947
948         /*
949          * We've injected an interrupt, time to find out who deserves
950          * a good kick...
951          */
952         kvm_for_each_vcpu(c, vcpu, kvm) {
953                 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
954                         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
955                         kvm_vcpu_kick(vcpu);
956                 }
957         }
958 }
959
960 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
961 {
962         struct vgic_irq *irq;
963         bool map_is_active;
964         unsigned long flags;
965
966         if (!vgic_initialized(vcpu->kvm))
967                 return false;
968
969         irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
970         spin_lock_irqsave(&irq->irq_lock, flags);
971         map_is_active = irq->hw && irq->active;
972         spin_unlock_irqrestore(&irq->irq_lock, flags);
973         vgic_put_irq(vcpu->kvm, irq);
974
975         return map_is_active;
976 }
977