Merge tag 's390-5.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-2.6-microblaze.git] / virt / kvm / arm / vgic / vgic-v3.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License version 2 as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program. If not, see <http://www.gnu.org/licenses/>.
13  */
14
15 #include <linux/irqchip/arm-gic-v3.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/arm_vgic.h>
19 #include <asm/kvm_hyp.h>
20 #include <asm/kvm_mmu.h>
21 #include <asm/kvm_asm.h>
22
23 #include "vgic.h"
24
25 static bool group0_trap;
26 static bool group1_trap;
27 static bool common_trap;
28 static bool gicv4_enable;
29
30 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
31 {
32         struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
33
34         cpuif->vgic_hcr |= ICH_HCR_UIE;
35 }
36
37 static bool lr_signals_eoi_mi(u64 lr_val)
38 {
39         return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
40                !(lr_val & ICH_LR_HW);
41 }
42
43 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
44 {
45         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
46         struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
47         u32 model = vcpu->kvm->arch.vgic.vgic_model;
48         int lr;
49
50         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
51
52         cpuif->vgic_hcr &= ~ICH_HCR_UIE;
53
54         for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
55                 u64 val = cpuif->vgic_lr[lr];
56                 u32 intid, cpuid;
57                 struct vgic_irq *irq;
58                 bool is_v2_sgi = false;
59
60                 cpuid = val & GICH_LR_PHYSID_CPUID;
61                 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
62
63                 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
64                         intid = val & ICH_LR_VIRTUAL_ID_MASK;
65                 } else {
66                         intid = val & GICH_LR_VIRTUALID;
67                         is_v2_sgi = vgic_irq_is_sgi(intid);
68                 }
69
70                 /* Notify fds when the guest EOI'ed a level-triggered IRQ */
71                 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
72                         kvm_notify_acked_irq(vcpu->kvm, 0,
73                                              intid - VGIC_NR_PRIVATE_IRQS);
74
75                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
76                 if (!irq)       /* An LPI could have been unmapped. */
77                         continue;
78
79                 raw_spin_lock(&irq->irq_lock);
80
81                 /* Always preserve the active bit */
82                 irq->active = !!(val & ICH_LR_ACTIVE_BIT);
83
84                 if (irq->active && is_v2_sgi)
85                         irq->active_source = cpuid;
86
87                 /* Edge is the only case where we preserve the pending bit */
88                 if (irq->config == VGIC_CONFIG_EDGE &&
89                     (val & ICH_LR_PENDING_BIT)) {
90                         irq->pending_latch = true;
91
92                         if (is_v2_sgi)
93                                 irq->source |= (1 << cpuid);
94                 }
95
96                 /*
97                  * Clear soft pending state when level irqs have been acked.
98                  */
99                 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
100                         irq->pending_latch = false;
101
102                 /*
103                  * Level-triggered mapped IRQs are special because we only
104                  * observe rising edges as input to the VGIC.
105                  *
106                  * If the guest never acked the interrupt we have to sample
107                  * the physical line and set the line level, because the
108                  * device state could have changed or we simply need to
109                  * process the still pending interrupt later.
110                  *
111                  * If this causes us to lower the level, we have to also clear
112                  * the physical active state, since we will otherwise never be
113                  * told when the interrupt becomes asserted again.
114                  */
115                 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
116                         irq->line_level = vgic_get_phys_line_level(irq);
117
118                         if (!irq->line_level)
119                                 vgic_irq_set_phys_active(irq, false);
120                 }
121
122                 raw_spin_unlock(&irq->irq_lock);
123                 vgic_put_irq(vcpu->kvm, irq);
124         }
125
126         vgic_cpu->used_lrs = 0;
127 }
128
129 /* Requires the irq to be locked already */
130 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
131 {
132         u32 model = vcpu->kvm->arch.vgic.vgic_model;
133         u64 val = irq->intid;
134         bool allow_pending = true, is_v2_sgi;
135
136         is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
137                      model == KVM_DEV_TYPE_ARM_VGIC_V2);
138
139         if (irq->active) {
140                 val |= ICH_LR_ACTIVE_BIT;
141                 if (is_v2_sgi)
142                         val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
143                 if (vgic_irq_is_multi_sgi(irq)) {
144                         allow_pending = false;
145                         val |= ICH_LR_EOI;
146                 }
147         }
148
149         if (irq->hw) {
150                 val |= ICH_LR_HW;
151                 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
152                 /*
153                  * Never set pending+active on a HW interrupt, as the
154                  * pending state is kept at the physical distributor
155                  * level.
156                  */
157                 if (irq->active)
158                         allow_pending = false;
159         } else {
160                 if (irq->config == VGIC_CONFIG_LEVEL) {
161                         val |= ICH_LR_EOI;
162
163                         /*
164                          * Software resampling doesn't work very well
165                          * if we allow P+A, so let's not do that.
166                          */
167                         if (irq->active)
168                                 allow_pending = false;
169                 }
170         }
171
172         if (allow_pending && irq_is_pending(irq)) {
173                 val |= ICH_LR_PENDING_BIT;
174
175                 if (irq->config == VGIC_CONFIG_EDGE)
176                         irq->pending_latch = false;
177
178                 if (vgic_irq_is_sgi(irq->intid) &&
179                     model == KVM_DEV_TYPE_ARM_VGIC_V2) {
180                         u32 src = ffs(irq->source);
181
182                         BUG_ON(!src);
183                         val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
184                         irq->source &= ~(1 << (src - 1));
185                         if (irq->source) {
186                                 irq->pending_latch = true;
187                                 val |= ICH_LR_EOI;
188                         }
189                 }
190         }
191
192         /*
193          * Level-triggered mapped IRQs are special because we only observe
194          * rising edges as input to the VGIC.  We therefore lower the line
195          * level here, so that we can take new virtual IRQs.  See
196          * vgic_v3_fold_lr_state for more info.
197          */
198         if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
199                 irq->line_level = false;
200
201         if (irq->group)
202                 val |= ICH_LR_GROUP;
203
204         val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
205
206         vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
207 }
208
209 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
210 {
211         vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
212 }
213
214 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
215 {
216         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
217         u32 model = vcpu->kvm->arch.vgic.vgic_model;
218         u32 vmcr;
219
220         if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
221                 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
222                         ICH_VMCR_ACK_CTL_MASK;
223                 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
224                         ICH_VMCR_FIQ_EN_MASK;
225         } else {
226                 /*
227                  * When emulating GICv3 on GICv3 with SRE=1 on the
228                  * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
229                  */
230                 vmcr = ICH_VMCR_FIQ_EN_MASK;
231         }
232
233         vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
234         vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
235         vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
236         vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
237         vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
238         vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
239         vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
240
241         cpu_if->vgic_vmcr = vmcr;
242 }
243
244 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
245 {
246         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
247         u32 model = vcpu->kvm->arch.vgic.vgic_model;
248         u32 vmcr;
249
250         vmcr = cpu_if->vgic_vmcr;
251
252         if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
253                 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
254                         ICH_VMCR_ACK_CTL_SHIFT;
255                 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
256                         ICH_VMCR_FIQ_EN_SHIFT;
257         } else {
258                 /*
259                  * When emulating GICv3 on GICv3 with SRE=1 on the
260                  * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
261                  */
262                 vmcrp->fiqen = 1;
263                 vmcrp->ackctl = 0;
264         }
265
266         vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
267         vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
268         vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
269         vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
270         vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
271         vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
272         vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
273 }
274
275 #define INITIAL_PENDBASER_VALUE                                           \
276         (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)            | \
277         GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)      | \
278         GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
279
280 void vgic_v3_enable(struct kvm_vcpu *vcpu)
281 {
282         struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
283
284         /*
285          * By forcing VMCR to zero, the GIC will restore the binary
286          * points to their reset values. Anything else resets to zero
287          * anyway.
288          */
289         vgic_v3->vgic_vmcr = 0;
290
291         /*
292          * If we are emulating a GICv3, we do it in an non-GICv2-compatible
293          * way, so we force SRE to 1 to demonstrate this to the guest.
294          * Also, we don't support any form of IRQ/FIQ bypass.
295          * This goes with the spec allowing the value to be RAO/WI.
296          */
297         if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
298                 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
299                                      ICC_SRE_EL1_DFB |
300                                      ICC_SRE_EL1_SRE);
301                 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
302         } else {
303                 vgic_v3->vgic_sre = 0;
304         }
305
306         vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
307                                            ICH_VTR_ID_BITS_MASK) >>
308                                            ICH_VTR_ID_BITS_SHIFT;
309         vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
310                                             ICH_VTR_PRI_BITS_MASK) >>
311                                             ICH_VTR_PRI_BITS_SHIFT) + 1;
312
313         /* Get the show on the road... */
314         vgic_v3->vgic_hcr = ICH_HCR_EN;
315         if (group0_trap)
316                 vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
317         if (group1_trap)
318                 vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
319         if (common_trap)
320                 vgic_v3->vgic_hcr |= ICH_HCR_TC;
321 }
322
323 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
324 {
325         struct kvm_vcpu *vcpu;
326         int byte_offset, bit_nr;
327         gpa_t pendbase, ptr;
328         bool status;
329         u8 val;
330         int ret;
331         unsigned long flags;
332
333 retry:
334         vcpu = irq->target_vcpu;
335         if (!vcpu)
336                 return 0;
337
338         pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
339
340         byte_offset = irq->intid / BITS_PER_BYTE;
341         bit_nr = irq->intid % BITS_PER_BYTE;
342         ptr = pendbase + byte_offset;
343
344         ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
345         if (ret)
346                 return ret;
347
348         status = val & (1 << bit_nr);
349
350         raw_spin_lock_irqsave(&irq->irq_lock, flags);
351         if (irq->target_vcpu != vcpu) {
352                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
353                 goto retry;
354         }
355         irq->pending_latch = status;
356         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
357
358         if (status) {
359                 /* clear consumed data */
360                 val &= ~(1 << bit_nr);
361                 ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
362                 if (ret)
363                         return ret;
364         }
365         return 0;
366 }
367
368 /**
369  * vgic_its_save_pending_tables - Save the pending tables into guest RAM
370  * kvm lock and all vcpu lock must be held
371  */
372 int vgic_v3_save_pending_tables(struct kvm *kvm)
373 {
374         struct vgic_dist *dist = &kvm->arch.vgic;
375         int last_byte_offset = -1;
376         struct vgic_irq *irq;
377         int ret;
378         u8 val;
379
380         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
381                 int byte_offset, bit_nr;
382                 struct kvm_vcpu *vcpu;
383                 gpa_t pendbase, ptr;
384                 bool stored;
385
386                 vcpu = irq->target_vcpu;
387                 if (!vcpu)
388                         continue;
389
390                 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
391
392                 byte_offset = irq->intid / BITS_PER_BYTE;
393                 bit_nr = irq->intid % BITS_PER_BYTE;
394                 ptr = pendbase + byte_offset;
395
396                 if (byte_offset != last_byte_offset) {
397                         ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
398                         if (ret)
399                                 return ret;
400                         last_byte_offset = byte_offset;
401                 }
402
403                 stored = val & (1U << bit_nr);
404                 if (stored == irq->pending_latch)
405                         continue;
406
407                 if (irq->pending_latch)
408                         val |= 1 << bit_nr;
409                 else
410                         val &= ~(1 << bit_nr);
411
412                 ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
413                 if (ret)
414                         return ret;
415         }
416         return 0;
417 }
418
419 /**
420  * vgic_v3_rdist_overlap - check if a region overlaps with any
421  * existing redistributor region
422  *
423  * @kvm: kvm handle
424  * @base: base of the region
425  * @size: size of region
426  *
427  * Return: true if there is an overlap
428  */
429 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
430 {
431         struct vgic_dist *d = &kvm->arch.vgic;
432         struct vgic_redist_region *rdreg;
433
434         list_for_each_entry(rdreg, &d->rd_regions, list) {
435                 if ((base + size > rdreg->base) &&
436                         (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
437                         return true;
438         }
439         return false;
440 }
441
442 /*
443  * Check for overlapping regions and for regions crossing the end of memory
444  * for base addresses which have already been set.
445  */
446 bool vgic_v3_check_base(struct kvm *kvm)
447 {
448         struct vgic_dist *d = &kvm->arch.vgic;
449         struct vgic_redist_region *rdreg;
450
451         if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
452             d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
453                 return false;
454
455         list_for_each_entry(rdreg, &d->rd_regions, list) {
456                 if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
457                         rdreg->base)
458                         return false;
459         }
460
461         if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
462                 return true;
463
464         return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
465                                       KVM_VGIC_V3_DIST_SIZE);
466 }
467
468 /**
469  * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
470  * which has free space to put a new rdist region.
471  *
472  * @rd_regions: redistributor region list head
473  *
474  * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
475  * Stride between redistributors is 0 and regions are filled in the index order.
476  *
477  * Return: the redist region handle, if any, that has space to map a new rdist
478  * region.
479  */
480 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
481 {
482         struct vgic_redist_region *rdreg;
483
484         list_for_each_entry(rdreg, rd_regions, list) {
485                 if (!vgic_v3_redist_region_full(rdreg))
486                         return rdreg;
487         }
488         return NULL;
489 }
490
491 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
492                                                            u32 index)
493 {
494         struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
495         struct vgic_redist_region *rdreg;
496
497         list_for_each_entry(rdreg, rd_regions, list) {
498                 if (rdreg->index == index)
499                         return rdreg;
500         }
501         return NULL;
502 }
503
504
505 int vgic_v3_map_resources(struct kvm *kvm)
506 {
507         struct vgic_dist *dist = &kvm->arch.vgic;
508         struct kvm_vcpu *vcpu;
509         int ret = 0;
510         int c;
511
512         if (vgic_ready(kvm))
513                 goto out;
514
515         kvm_for_each_vcpu(c, vcpu, kvm) {
516                 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
517
518                 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
519                         kvm_debug("vcpu %d redistributor base not set\n", c);
520                         ret = -ENXIO;
521                         goto out;
522                 }
523         }
524
525         if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
526                 kvm_err("Need to set vgic distributor addresses first\n");
527                 ret = -ENXIO;
528                 goto out;
529         }
530
531         if (!vgic_v3_check_base(kvm)) {
532                 kvm_err("VGIC redist and dist frames overlap\n");
533                 ret = -EINVAL;
534                 goto out;
535         }
536
537         /*
538          * For a VGICv3 we require the userland to explicitly initialize
539          * the VGIC before we need to use it.
540          */
541         if (!vgic_initialized(kvm)) {
542                 ret = -EBUSY;
543                 goto out;
544         }
545
546         ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
547         if (ret) {
548                 kvm_err("Unable to register VGICv3 dist MMIO regions\n");
549                 goto out;
550         }
551
552         dist->ready = true;
553
554 out:
555         return ret;
556 }
557
558 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
559
560 static int __init early_group0_trap_cfg(char *buf)
561 {
562         return strtobool(buf, &group0_trap);
563 }
564 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
565
566 static int __init early_group1_trap_cfg(char *buf)
567 {
568         return strtobool(buf, &group1_trap);
569 }
570 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
571
572 static int __init early_common_trap_cfg(char *buf)
573 {
574         return strtobool(buf, &common_trap);
575 }
576 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
577
578 static int __init early_gicv4_enable(char *buf)
579 {
580         return strtobool(buf, &gicv4_enable);
581 }
582 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
583
584 /**
585  * vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT
586  * @node:       pointer to the DT node
587  *
588  * Returns 0 if a GICv3 has been found, returns an error code otherwise
589  */
590 int vgic_v3_probe(const struct gic_kvm_info *info)
591 {
592         u32 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_ich_vtr_el2);
593         int ret;
594
595         /*
596          * The ListRegs field is 5 bits, but there is a architectural
597          * maximum of 16 list registers. Just ignore bit 4...
598          */
599         kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
600         kvm_vgic_global_state.can_emulate_gicv2 = false;
601         kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
602
603         /* GICv4 support? */
604         if (info->has_v4) {
605                 kvm_vgic_global_state.has_gicv4 = gicv4_enable;
606                 kvm_info("GICv4 support %sabled\n",
607                          gicv4_enable ? "en" : "dis");
608         }
609
610         if (!info->vcpu.start) {
611                 kvm_info("GICv3: no GICV resource entry\n");
612                 kvm_vgic_global_state.vcpu_base = 0;
613         } else if (!PAGE_ALIGNED(info->vcpu.start)) {
614                 pr_warn("GICV physical address 0x%llx not page aligned\n",
615                         (unsigned long long)info->vcpu.start);
616                 kvm_vgic_global_state.vcpu_base = 0;
617         } else {
618                 kvm_vgic_global_state.vcpu_base = info->vcpu.start;
619                 kvm_vgic_global_state.can_emulate_gicv2 = true;
620                 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
621                 if (ret) {
622                         kvm_err("Cannot register GICv2 KVM device.\n");
623                         return ret;
624                 }
625                 kvm_info("vgic-v2@%llx\n", info->vcpu.start);
626         }
627         ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
628         if (ret) {
629                 kvm_err("Cannot register GICv3 KVM device.\n");
630                 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
631                 return ret;
632         }
633
634         if (kvm_vgic_global_state.vcpu_base == 0)
635                 kvm_info("disabling GICv2 emulation\n");
636
637 #ifdef CONFIG_ARM64
638         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
639                 group0_trap = true;
640                 group1_trap = true;
641         }
642 #endif
643
644         if (group0_trap || group1_trap || common_trap) {
645                 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
646                          group0_trap ? "G0" : "",
647                          group1_trap ? "G1" : "",
648                          common_trap ? "C"  : "");
649                 static_branch_enable(&vgic_v3_cpuif_trap);
650         }
651
652         kvm_vgic_global_state.vctrl_base = NULL;
653         kvm_vgic_global_state.type = VGIC_V3;
654         kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
655
656         return 0;
657 }
658
659 void vgic_v3_load(struct kvm_vcpu *vcpu)
660 {
661         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
662
663         /*
664          * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
665          * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
666          * VMCR_EL2 save/restore in the world switch.
667          */
668         if (likely(cpu_if->vgic_sre))
669                 kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
670
671         kvm_call_hyp(__vgic_v3_restore_aprs, vcpu);
672
673         if (has_vhe())
674                 __vgic_v3_activate_traps(vcpu);
675 }
676
677 void vgic_v3_put(struct kvm_vcpu *vcpu)
678 {
679         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
680
681         if (likely(cpu_if->vgic_sre))
682                 cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
683
684         kvm_call_hyp(__vgic_v3_save_aprs, vcpu);
685
686         if (has_vhe())
687                 __vgic_v3_deactivate_traps(vcpu);
688 }