ARC: [plat-hsdk]: unify memory apertures configuration
[linux-2.6-microblaze.git] / virt / kvm / arm / vgic / vgic-v2.c
1 /*
2  * Copyright (C) 2015, 2016 ARM Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16
17 #include <linux/irqchip/arm-gic.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_host.h>
20 #include <kvm/arm_vgic.h>
21 #include <asm/kvm_mmu.h>
22
23 #include "vgic.h"
24
25 static inline void vgic_v2_write_lr(int lr, u32 val)
26 {
27         void __iomem *base = kvm_vgic_global_state.vctrl_base;
28
29         writel_relaxed(val, base + GICH_LR0 + (lr * 4));
30 }
31
32 void vgic_v2_init_lrs(void)
33 {
34         int i;
35
36         for (i = 0; i < kvm_vgic_global_state.nr_lr; i++)
37                 vgic_v2_write_lr(i, 0);
38 }
39
40 void vgic_v2_set_underflow(struct kvm_vcpu *vcpu)
41 {
42         struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;
43
44         cpuif->vgic_hcr |= GICH_HCR_UIE;
45 }
46
47 static bool lr_signals_eoi_mi(u32 lr_val)
48 {
49         return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) &&
50                !(lr_val & GICH_LR_HW);
51 }
52
53 /*
54  * transfer the content of the LRs back into the corresponding ap_list:
55  * - active bit is transferred as is
56  * - pending bit is
57  *   - transferred as is in case of edge sensitive IRQs
58  *   - set to the line-level (resample time) for level sensitive IRQs
59  */
60 void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
61 {
62         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
63         struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2;
64         int lr;
65
66         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
67
68         cpuif->vgic_hcr &= ~GICH_HCR_UIE;
69
70         for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
71                 u32 val = cpuif->vgic_lr[lr];
72                 u32 cpuid, intid = val & GICH_LR_VIRTUALID;
73                 struct vgic_irq *irq;
74
75                 /* Extract the source vCPU id from the LR */
76                 cpuid = val & GICH_LR_PHYSID_CPUID;
77                 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
78                 cpuid &= 7;
79
80                 /* Notify fds when the guest EOI'ed a level-triggered SPI */
81                 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
82                         kvm_notify_acked_irq(vcpu->kvm, 0,
83                                              intid - VGIC_NR_PRIVATE_IRQS);
84
85                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
86
87                 raw_spin_lock(&irq->irq_lock);
88
89                 /* Always preserve the active bit */
90                 irq->active = !!(val & GICH_LR_ACTIVE_BIT);
91
92                 if (irq->active && vgic_irq_is_sgi(intid))
93                         irq->active_source = cpuid;
94
95                 /* Edge is the only case where we preserve the pending bit */
96                 if (irq->config == VGIC_CONFIG_EDGE &&
97                     (val & GICH_LR_PENDING_BIT)) {
98                         irq->pending_latch = true;
99
100                         if (vgic_irq_is_sgi(intid))
101                                 irq->source |= (1 << cpuid);
102                 }
103
104                 /*
105                  * Clear soft pending state when level irqs have been acked.
106                  */
107                 if (irq->config == VGIC_CONFIG_LEVEL && !(val & GICH_LR_STATE))
108                         irq->pending_latch = false;
109
110                 /*
111                  * Level-triggered mapped IRQs are special because we only
112                  * observe rising edges as input to the VGIC.
113                  *
114                  * If the guest never acked the interrupt we have to sample
115                  * the physical line and set the line level, because the
116                  * device state could have changed or we simply need to
117                  * process the still pending interrupt later.
118                  *
119                  * If this causes us to lower the level, we have to also clear
120                  * the physical active state, since we will otherwise never be
121                  * told when the interrupt becomes asserted again.
122                  */
123                 if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT)) {
124                         irq->line_level = vgic_get_phys_line_level(irq);
125
126                         if (!irq->line_level)
127                                 vgic_irq_set_phys_active(irq, false);
128                 }
129
130                 raw_spin_unlock(&irq->irq_lock);
131                 vgic_put_irq(vcpu->kvm, irq);
132         }
133
134         vgic_cpu->used_lrs = 0;
135 }
136
137 /*
138  * Populates the particular LR with the state of a given IRQ:
139  * - for an edge sensitive IRQ the pending state is cleared in struct vgic_irq
140  * - for a level sensitive IRQ the pending state value is unchanged;
141  *   it is dictated directly by the input level
142  *
143  * If @irq describes an SGI with multiple sources, we choose the
144  * lowest-numbered source VCPU and clear that bit in the source bitmap.
145  *
146  * The irq_lock must be held by the caller.
147  */
148 void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
149 {
150         u32 val = irq->intid;
151         bool allow_pending = true;
152
153         if (irq->active) {
154                 val |= GICH_LR_ACTIVE_BIT;
155                 if (vgic_irq_is_sgi(irq->intid))
156                         val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
157                 if (vgic_irq_is_multi_sgi(irq)) {
158                         allow_pending = false;
159                         val |= GICH_LR_EOI;
160                 }
161         }
162
163         if (irq->group)
164                 val |= GICH_LR_GROUP1;
165
166         if (irq->hw) {
167                 val |= GICH_LR_HW;
168                 val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT;
169                 /*
170                  * Never set pending+active on a HW interrupt, as the
171                  * pending state is kept at the physical distributor
172                  * level.
173                  */
174                 if (irq->active)
175                         allow_pending = false;
176         } else {
177                 if (irq->config == VGIC_CONFIG_LEVEL) {
178                         val |= GICH_LR_EOI;
179
180                         /*
181                          * Software resampling doesn't work very well
182                          * if we allow P+A, so let's not do that.
183                          */
184                         if (irq->active)
185                                 allow_pending = false;
186                 }
187         }
188
189         if (allow_pending && irq_is_pending(irq)) {
190                 val |= GICH_LR_PENDING_BIT;
191
192                 if (irq->config == VGIC_CONFIG_EDGE)
193                         irq->pending_latch = false;
194
195                 if (vgic_irq_is_sgi(irq->intid)) {
196                         u32 src = ffs(irq->source);
197
198                         BUG_ON(!src);
199                         val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
200                         irq->source &= ~(1 << (src - 1));
201                         if (irq->source) {
202                                 irq->pending_latch = true;
203                                 val |= GICH_LR_EOI;
204                         }
205                 }
206         }
207
208         /*
209          * Level-triggered mapped IRQs are special because we only observe
210          * rising edges as input to the VGIC.  We therefore lower the line
211          * level here, so that we can take new virtual IRQs.  See
212          * vgic_v2_fold_lr_state for more info.
213          */
214         if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT))
215                 irq->line_level = false;
216
217         /* The GICv2 LR only holds five bits of priority. */
218         val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT;
219
220         vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val;
221 }
222
223 void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr)
224 {
225         vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0;
226 }
227
228 void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
229 {
230         struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
231         u32 vmcr;
232
233         vmcr = (vmcrp->grpen0 << GICH_VMCR_ENABLE_GRP0_SHIFT) &
234                 GICH_VMCR_ENABLE_GRP0_MASK;
235         vmcr |= (vmcrp->grpen1 << GICH_VMCR_ENABLE_GRP1_SHIFT) &
236                 GICH_VMCR_ENABLE_GRP1_MASK;
237         vmcr |= (vmcrp->ackctl << GICH_VMCR_ACK_CTL_SHIFT) &
238                 GICH_VMCR_ACK_CTL_MASK;
239         vmcr |= (vmcrp->fiqen << GICH_VMCR_FIQ_EN_SHIFT) &
240                 GICH_VMCR_FIQ_EN_MASK;
241         vmcr |= (vmcrp->cbpr << GICH_VMCR_CBPR_SHIFT) &
242                 GICH_VMCR_CBPR_MASK;
243         vmcr |= (vmcrp->eoim << GICH_VMCR_EOI_MODE_SHIFT) &
244                 GICH_VMCR_EOI_MODE_MASK;
245         vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) &
246                 GICH_VMCR_ALIAS_BINPOINT_MASK;
247         vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) &
248                 GICH_VMCR_BINPOINT_MASK;
249         vmcr |= ((vmcrp->pmr >> GICV_PMR_PRIORITY_SHIFT) <<
250                  GICH_VMCR_PRIMASK_SHIFT) & GICH_VMCR_PRIMASK_MASK;
251
252         cpu_if->vgic_vmcr = vmcr;
253 }
254
255 void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
256 {
257         struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
258         u32 vmcr;
259
260         vmcr = cpu_if->vgic_vmcr;
261
262         vmcrp->grpen0 = (vmcr & GICH_VMCR_ENABLE_GRP0_MASK) >>
263                 GICH_VMCR_ENABLE_GRP0_SHIFT;
264         vmcrp->grpen1 = (vmcr & GICH_VMCR_ENABLE_GRP1_MASK) >>
265                 GICH_VMCR_ENABLE_GRP1_SHIFT;
266         vmcrp->ackctl = (vmcr & GICH_VMCR_ACK_CTL_MASK) >>
267                 GICH_VMCR_ACK_CTL_SHIFT;
268         vmcrp->fiqen = (vmcr & GICH_VMCR_FIQ_EN_MASK) >>
269                 GICH_VMCR_FIQ_EN_SHIFT;
270         vmcrp->cbpr = (vmcr & GICH_VMCR_CBPR_MASK) >>
271                 GICH_VMCR_CBPR_SHIFT;
272         vmcrp->eoim = (vmcr & GICH_VMCR_EOI_MODE_MASK) >>
273                 GICH_VMCR_EOI_MODE_SHIFT;
274
275         vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >>
276                         GICH_VMCR_ALIAS_BINPOINT_SHIFT;
277         vmcrp->bpr  = (vmcr & GICH_VMCR_BINPOINT_MASK) >>
278                         GICH_VMCR_BINPOINT_SHIFT;
279         vmcrp->pmr  = ((vmcr & GICH_VMCR_PRIMASK_MASK) >>
280                         GICH_VMCR_PRIMASK_SHIFT) << GICV_PMR_PRIORITY_SHIFT;
281 }
282
283 void vgic_v2_enable(struct kvm_vcpu *vcpu)
284 {
285         /*
286          * By forcing VMCR to zero, the GIC will restore the binary
287          * points to their reset values. Anything else resets to zero
288          * anyway.
289          */
290         vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0;
291
292         /* Get the show on the road... */
293         vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN;
294 }
295
296 /* check for overlapping regions and for regions crossing the end of memory */
297 static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base)
298 {
299         if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base)
300                 return false;
301         if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base)
302                 return false;
303
304         if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base)
305                 return true;
306         if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base)
307                 return true;
308
309         return false;
310 }
311
312 int vgic_v2_map_resources(struct kvm *kvm)
313 {
314         struct vgic_dist *dist = &kvm->arch.vgic;
315         int ret = 0;
316
317         if (vgic_ready(kvm))
318                 goto out;
319
320         if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
321             IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) {
322                 kvm_err("Need to set vgic cpu and dist addresses first\n");
323                 ret = -ENXIO;
324                 goto out;
325         }
326
327         if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) {
328                 kvm_err("VGIC CPU and dist frames overlap\n");
329                 ret = -EINVAL;
330                 goto out;
331         }
332
333         /*
334          * Initialize the vgic if this hasn't already been done on demand by
335          * accessing the vgic state from userspace.
336          */
337         ret = vgic_init(kvm);
338         if (ret) {
339                 kvm_err("Unable to initialize VGIC dynamic data structures\n");
340                 goto out;
341         }
342
343         ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V2);
344         if (ret) {
345                 kvm_err("Unable to register VGIC MMIO regions\n");
346                 goto out;
347         }
348
349         if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) {
350                 ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base,
351                                             kvm_vgic_global_state.vcpu_base,
352                                             KVM_VGIC_V2_CPU_SIZE, true);
353                 if (ret) {
354                         kvm_err("Unable to remap VGIC CPU to VCPU\n");
355                         goto out;
356                 }
357         }
358
359         dist->ready = true;
360
361 out:
362         return ret;
363 }
364
365 DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap);
366
367 /**
368  * vgic_v2_probe - probe for a GICv2 compatible interrupt controller in DT
369  * @node:       pointer to the DT node
370  *
371  * Returns 0 if a GICv2 has been found, returns an error code otherwise
372  */
373 int vgic_v2_probe(const struct gic_kvm_info *info)
374 {
375         int ret;
376         u32 vtr;
377
378         if (!info->vctrl.start) {
379                 kvm_err("GICH not present in the firmware table\n");
380                 return -ENXIO;
381         }
382
383         if (!PAGE_ALIGNED(info->vcpu.start) ||
384             !PAGE_ALIGNED(resource_size(&info->vcpu))) {
385                 kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n");
386
387                 ret = create_hyp_io_mappings(info->vcpu.start,
388                                              resource_size(&info->vcpu),
389                                              &kvm_vgic_global_state.vcpu_base_va,
390                                              &kvm_vgic_global_state.vcpu_hyp_va);
391                 if (ret) {
392                         kvm_err("Cannot map GICV into hyp\n");
393                         goto out;
394                 }
395
396                 static_branch_enable(&vgic_v2_cpuif_trap);
397         }
398
399         ret = create_hyp_io_mappings(info->vctrl.start,
400                                      resource_size(&info->vctrl),
401                                      &kvm_vgic_global_state.vctrl_base,
402                                      &kvm_vgic_global_state.vctrl_hyp);
403         if (ret) {
404                 kvm_err("Cannot map VCTRL into hyp\n");
405                 goto out;
406         }
407
408         vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR);
409         kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1;
410
411         ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
412         if (ret) {
413                 kvm_err("Cannot register GICv2 KVM device\n");
414                 goto out;
415         }
416
417         kvm_vgic_global_state.can_emulate_gicv2 = true;
418         kvm_vgic_global_state.vcpu_base = info->vcpu.start;
419         kvm_vgic_global_state.type = VGIC_V2;
420         kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS;
421
422         kvm_debug("vgic-v2@%llx\n", info->vctrl.start);
423
424         return 0;
425 out:
426         if (kvm_vgic_global_state.vctrl_base)
427                 iounmap(kvm_vgic_global_state.vctrl_base);
428         if (kvm_vgic_global_state.vcpu_base_va)
429                 iounmap(kvm_vgic_global_state.vcpu_base_va);
430
431         return ret;
432 }
433
434 static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base)
435 {
436         struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
437         u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
438         u64 elrsr;
439         int i;
440
441         elrsr = readl_relaxed(base + GICH_ELRSR0);
442         if (unlikely(used_lrs > 32))
443                 elrsr |= ((u64)readl_relaxed(base + GICH_ELRSR1)) << 32;
444
445         for (i = 0; i < used_lrs; i++) {
446                 if (elrsr & (1UL << i))
447                         cpu_if->vgic_lr[i] &= ~GICH_LR_STATE;
448                 else
449                         cpu_if->vgic_lr[i] = readl_relaxed(base + GICH_LR0 + (i * 4));
450
451                 writel_relaxed(0, base + GICH_LR0 + (i * 4));
452         }
453 }
454
455 void vgic_v2_save_state(struct kvm_vcpu *vcpu)
456 {
457         void __iomem *base = kvm_vgic_global_state.vctrl_base;
458         u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
459
460         if (!base)
461                 return;
462
463         if (used_lrs) {
464                 save_lrs(vcpu, base);
465                 writel_relaxed(0, base + GICH_HCR);
466         }
467 }
468
469 void vgic_v2_restore_state(struct kvm_vcpu *vcpu)
470 {
471         struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
472         void __iomem *base = kvm_vgic_global_state.vctrl_base;
473         u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
474         int i;
475
476         if (!base)
477                 return;
478
479         if (used_lrs) {
480                 writel_relaxed(cpu_if->vgic_hcr, base + GICH_HCR);
481                 for (i = 0; i < used_lrs; i++) {
482                         writel_relaxed(cpu_if->vgic_lr[i],
483                                        base + GICH_LR0 + (i * 4));
484                 }
485         }
486 }
487
488 void vgic_v2_load(struct kvm_vcpu *vcpu)
489 {
490         struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
491
492         writel_relaxed(cpu_if->vgic_vmcr,
493                        kvm_vgic_global_state.vctrl_base + GICH_VMCR);
494         writel_relaxed(cpu_if->vgic_apr,
495                        kvm_vgic_global_state.vctrl_base + GICH_APR);
496 }
497
498 void vgic_v2_put(struct kvm_vcpu *vcpu)
499 {
500         struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
501
502         cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR);
503         cpu_if->vgic_apr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_APR);
504 }