Merge tag 's390-5.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-2.6-microblaze.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
1 /*
2  * VGICv3 MMIO handling functions
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13
14 #include <linux/irqchip/arm-gic-v3.h>
15 #include <linux/kvm.h>
16 #include <linux/kvm_host.h>
17 #include <kvm/iodev.h>
18 #include <kvm/arm_vgic.h>
19
20 #include <asm/kvm_emulate.h>
21 #include <asm/kvm_arm.h>
22 #include <asm/kvm_mmu.h>
23
24 #include "vgic.h"
25 #include "vgic-mmio.h"
26
27 /* extract @num bytes at @offset bytes offset in data */
28 unsigned long extract_bytes(u64 data, unsigned int offset,
29                             unsigned int num)
30 {
31         return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
32 }
33
34 /* allows updates of any half of a 64-bit register (or the whole thing) */
35 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
36                      unsigned long val)
37 {
38         int lower = (offset & 4) * 8;
39         int upper = lower + 8 * len - 1;
40
41         reg &= ~GENMASK_ULL(upper, lower);
42         val &= GENMASK_ULL(len * 8 - 1, 0);
43
44         return reg | ((u64)val << lower);
45 }
46
47 bool vgic_has_its(struct kvm *kvm)
48 {
49         struct vgic_dist *dist = &kvm->arch.vgic;
50
51         if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
52                 return false;
53
54         return dist->has_its;
55 }
56
57 bool vgic_supports_direct_msis(struct kvm *kvm)
58 {
59         return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
60 }
61
62 /*
63  * The Revision field in the IIDR have the following meanings:
64  *
65  * Revision 2: Interrupt groups are guest-configurable and signaled using
66  *             their configured groups.
67  */
68
69 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
70                                             gpa_t addr, unsigned int len)
71 {
72         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
73         u32 value = 0;
74
75         switch (addr & 0x0c) {
76         case GICD_CTLR:
77                 if (vgic->enabled)
78                         value |= GICD_CTLR_ENABLE_SS_G1;
79                 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
80                 break;
81         case GICD_TYPER:
82                 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
83                 value = (value >> 5) - 1;
84                 if (vgic_has_its(vcpu->kvm)) {
85                         value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
86                         value |= GICD_TYPER_LPIS;
87                 } else {
88                         value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
89                 }
90                 break;
91         case GICD_IIDR:
92                 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
93                         (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
94                         (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
95                 break;
96         default:
97                 return 0;
98         }
99
100         return value;
101 }
102
103 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
104                                     gpa_t addr, unsigned int len,
105                                     unsigned long val)
106 {
107         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
108         bool was_enabled = dist->enabled;
109
110         switch (addr & 0x0c) {
111         case GICD_CTLR:
112                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
113
114                 if (!was_enabled && dist->enabled)
115                         vgic_kick_vcpus(vcpu->kvm);
116                 break;
117         case GICD_TYPER:
118         case GICD_IIDR:
119                 return;
120         }
121 }
122
123 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
124                                            gpa_t addr, unsigned int len,
125                                            unsigned long val)
126 {
127         switch (addr & 0x0c) {
128         case GICD_IIDR:
129                 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
130                         return -EINVAL;
131         }
132
133         vgic_mmio_write_v3_misc(vcpu, addr, len, val);
134         return 0;
135 }
136
137 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
138                                             gpa_t addr, unsigned int len)
139 {
140         int intid = VGIC_ADDR_TO_INTID(addr, 64);
141         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
142         unsigned long ret = 0;
143
144         if (!irq)
145                 return 0;
146
147         /* The upper word is RAZ for us. */
148         if (!(addr & 4))
149                 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
150
151         vgic_put_irq(vcpu->kvm, irq);
152         return ret;
153 }
154
155 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
156                                     gpa_t addr, unsigned int len,
157                                     unsigned long val)
158 {
159         int intid = VGIC_ADDR_TO_INTID(addr, 64);
160         struct vgic_irq *irq;
161         unsigned long flags;
162
163         /* The upper word is WI for us since we don't implement Aff3. */
164         if (addr & 4)
165                 return;
166
167         irq = vgic_get_irq(vcpu->kvm, NULL, intid);
168
169         if (!irq)
170                 return;
171
172         raw_spin_lock_irqsave(&irq->irq_lock, flags);
173
174         /* We only care about and preserve Aff0, Aff1 and Aff2. */
175         irq->mpidr = val & GENMASK(23, 0);
176         irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
177
178         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
179         vgic_put_irq(vcpu->kvm, irq);
180 }
181
182 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
183                                              gpa_t addr, unsigned int len)
184 {
185         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
186
187         return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
188 }
189
190
191 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
192                                      gpa_t addr, unsigned int len,
193                                      unsigned long val)
194 {
195         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
196         bool was_enabled = vgic_cpu->lpis_enabled;
197
198         if (!vgic_has_its(vcpu->kvm))
199                 return;
200
201         vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
202
203         if (was_enabled && !vgic_cpu->lpis_enabled)
204                 vgic_flush_pending_lpis(vcpu);
205
206         if (!was_enabled && vgic_cpu->lpis_enabled)
207                 vgic_enable_lpis(vcpu);
208 }
209
210 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
211                                               gpa_t addr, unsigned int len)
212 {
213         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
214         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
215         struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
216         int target_vcpu_id = vcpu->vcpu_id;
217         gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
218                         (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
219         u64 value;
220
221         value = (u64)(mpidr & GENMASK(23, 0)) << 32;
222         value |= ((target_vcpu_id & 0xffff) << 8);
223
224         if (addr == last_rdist_typer)
225                 value |= GICR_TYPER_LAST;
226         if (vgic_has_its(vcpu->kvm))
227                 value |= GICR_TYPER_PLPIS;
228
229         return extract_bytes(value, addr & 7, len);
230 }
231
232 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
233                                              gpa_t addr, unsigned int len)
234 {
235         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
236 }
237
238 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
239                                               gpa_t addr, unsigned int len)
240 {
241         switch (addr & 0xffff) {
242         case GICD_PIDR2:
243                 /* report a GICv3 compliant implementation */
244                 return 0x3b;
245         }
246
247         return 0;
248 }
249
250 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
251                                                   gpa_t addr, unsigned int len)
252 {
253         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
254         u32 value = 0;
255         int i;
256
257         /*
258          * pending state of interrupt is latched in pending_latch variable.
259          * Userspace will save and restore pending state and line_level
260          * separately.
261          * Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
262          * for handling of ISPENDR and ICPENDR.
263          */
264         for (i = 0; i < len * 8; i++) {
265                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
266
267                 if (irq->pending_latch)
268                         value |= (1U << i);
269
270                 vgic_put_irq(vcpu->kvm, irq);
271         }
272
273         return value;
274 }
275
276 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
277                                          gpa_t addr, unsigned int len,
278                                          unsigned long val)
279 {
280         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
281         int i;
282         unsigned long flags;
283
284         for (i = 0; i < len * 8; i++) {
285                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
286
287                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
288                 if (test_bit(i, &val)) {
289                         /*
290                          * pending_latch is set irrespective of irq type
291                          * (level or edge) to avoid dependency that VM should
292                          * restore irq config before pending info.
293                          */
294                         irq->pending_latch = true;
295                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
296                 } else {
297                         irq->pending_latch = false;
298                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
299                 }
300
301                 vgic_put_irq(vcpu->kvm, irq);
302         }
303
304         return 0;
305 }
306
307 /* We want to avoid outer shareable. */
308 u64 vgic_sanitise_shareability(u64 field)
309 {
310         switch (field) {
311         case GIC_BASER_OuterShareable:
312                 return GIC_BASER_InnerShareable;
313         default:
314                 return field;
315         }
316 }
317
318 /* Avoid any inner non-cacheable mapping. */
319 u64 vgic_sanitise_inner_cacheability(u64 field)
320 {
321         switch (field) {
322         case GIC_BASER_CACHE_nCnB:
323         case GIC_BASER_CACHE_nC:
324                 return GIC_BASER_CACHE_RaWb;
325         default:
326                 return field;
327         }
328 }
329
330 /* Non-cacheable or same-as-inner are OK. */
331 u64 vgic_sanitise_outer_cacheability(u64 field)
332 {
333         switch (field) {
334         case GIC_BASER_CACHE_SameAsInner:
335         case GIC_BASER_CACHE_nC:
336                 return field;
337         default:
338                 return GIC_BASER_CACHE_nC;
339         }
340 }
341
342 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
343                         u64 (*sanitise_fn)(u64))
344 {
345         u64 field = (reg & field_mask) >> field_shift;
346
347         field = sanitise_fn(field) << field_shift;
348         return (reg & ~field_mask) | field;
349 }
350
351 #define PROPBASER_RES0_MASK                                             \
352         (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
353 #define PENDBASER_RES0_MASK                                             \
354         (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
355          GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
356
357 static u64 vgic_sanitise_pendbaser(u64 reg)
358 {
359         reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
360                                   GICR_PENDBASER_SHAREABILITY_SHIFT,
361                                   vgic_sanitise_shareability);
362         reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
363                                   GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
364                                   vgic_sanitise_inner_cacheability);
365         reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
366                                   GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
367                                   vgic_sanitise_outer_cacheability);
368
369         reg &= ~PENDBASER_RES0_MASK;
370
371         return reg;
372 }
373
374 static u64 vgic_sanitise_propbaser(u64 reg)
375 {
376         reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
377                                   GICR_PROPBASER_SHAREABILITY_SHIFT,
378                                   vgic_sanitise_shareability);
379         reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
380                                   GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
381                                   vgic_sanitise_inner_cacheability);
382         reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
383                                   GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
384                                   vgic_sanitise_outer_cacheability);
385
386         reg &= ~PROPBASER_RES0_MASK;
387         return reg;
388 }
389
390 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
391                                              gpa_t addr, unsigned int len)
392 {
393         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
394
395         return extract_bytes(dist->propbaser, addr & 7, len);
396 }
397
398 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
399                                      gpa_t addr, unsigned int len,
400                                      unsigned long val)
401 {
402         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
403         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
404         u64 old_propbaser, propbaser;
405
406         /* Storing a value with LPIs already enabled is undefined */
407         if (vgic_cpu->lpis_enabled)
408                 return;
409
410         do {
411                 old_propbaser = READ_ONCE(dist->propbaser);
412                 propbaser = old_propbaser;
413                 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
414                 propbaser = vgic_sanitise_propbaser(propbaser);
415         } while (cmpxchg64(&dist->propbaser, old_propbaser,
416                            propbaser) != old_propbaser);
417 }
418
419 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
420                                              gpa_t addr, unsigned int len)
421 {
422         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
423
424         return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
425 }
426
427 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
428                                      gpa_t addr, unsigned int len,
429                                      unsigned long val)
430 {
431         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
432         u64 old_pendbaser, pendbaser;
433
434         /* Storing a value with LPIs already enabled is undefined */
435         if (vgic_cpu->lpis_enabled)
436                 return;
437
438         do {
439                 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
440                 pendbaser = old_pendbaser;
441                 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
442                 pendbaser = vgic_sanitise_pendbaser(pendbaser);
443         } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
444                            pendbaser) != old_pendbaser);
445 }
446
447 /*
448  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
449  * redistributors, while SPIs are covered by registers in the distributor
450  * block. Trying to set private IRQs in this block gets ignored.
451  * We take some special care here to fix the calculation of the register
452  * offset.
453  */
454 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
455         {                                                               \
456                 .reg_offset = off,                                      \
457                 .bits_per_irq = bpi,                                    \
458                 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
459                 .access_flags = acc,                                    \
460                 .read = vgic_mmio_read_raz,                             \
461                 .write = vgic_mmio_write_wi,                            \
462         }, {                                                            \
463                 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
464                 .bits_per_irq = bpi,                                    \
465                 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
466                 .access_flags = acc,                                    \
467                 .read = rd,                                             \
468                 .write = wr,                                            \
469                 .uaccess_read = ur,                                     \
470                 .uaccess_write = uw,                                    \
471         }
472
473 static const struct vgic_register_region vgic_v3_dist_registers[] = {
474         REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
475                 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
476                 NULL, vgic_mmio_uaccess_write_v3_misc,
477                 16, VGIC_ACCESS_32bit),
478         REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
479                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
480                 VGIC_ACCESS_32bit),
481         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
482                 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
483                 VGIC_ACCESS_32bit),
484         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
485                 vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
486                 VGIC_ACCESS_32bit),
487         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
488                 vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
489                 VGIC_ACCESS_32bit),
490         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
491                 vgic_mmio_read_pending, vgic_mmio_write_spending,
492                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
493                 VGIC_ACCESS_32bit),
494         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
495                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
496                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
497                 VGIC_ACCESS_32bit),
498         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
499                 vgic_mmio_read_active, vgic_mmio_write_sactive,
500                 NULL, vgic_mmio_uaccess_write_sactive, 1,
501                 VGIC_ACCESS_32bit),
502         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
503                 vgic_mmio_read_active, vgic_mmio_write_cactive,
504                 NULL, vgic_mmio_uaccess_write_cactive,
505                 1, VGIC_ACCESS_32bit),
506         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
507                 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
508                 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
509         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
510                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
511                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
512         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
513                 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
514                 VGIC_ACCESS_32bit),
515         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
516                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
517                 VGIC_ACCESS_32bit),
518         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
519                 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
520                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
521         REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
522                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
523                 VGIC_ACCESS_32bit),
524 };
525
526 static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
527         REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
528                 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
529                 VGIC_ACCESS_32bit),
530         REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
531                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
532                 VGIC_ACCESS_32bit),
533         REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
534                 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
535                 VGIC_ACCESS_32bit),
536         REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
537                 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
538                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
539         REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
540                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
541                 VGIC_ACCESS_32bit),
542         REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
543                 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
544                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
545         REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
546                 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
547                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
548         REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
549                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
550                 VGIC_ACCESS_32bit),
551 };
552
553 static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
554         REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
555                 vgic_mmio_read_group, vgic_mmio_write_group, 4,
556                 VGIC_ACCESS_32bit),
557         REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
558                 vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
559                 VGIC_ACCESS_32bit),
560         REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
561                 vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
562                 VGIC_ACCESS_32bit),
563         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
564                 vgic_mmio_read_pending, vgic_mmio_write_spending,
565                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
566                 VGIC_ACCESS_32bit),
567         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
568                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
569                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
570                 VGIC_ACCESS_32bit),
571         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
572                 vgic_mmio_read_active, vgic_mmio_write_sactive,
573                 NULL, vgic_mmio_uaccess_write_sactive,
574                 4, VGIC_ACCESS_32bit),
575         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
576                 vgic_mmio_read_active, vgic_mmio_write_cactive,
577                 NULL, vgic_mmio_uaccess_write_cactive,
578                 4, VGIC_ACCESS_32bit),
579         REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
580                 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
581                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
582         REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
583                 vgic_mmio_read_config, vgic_mmio_write_config, 8,
584                 VGIC_ACCESS_32bit),
585         REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
586                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
587                 VGIC_ACCESS_32bit),
588         REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
589                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
590                 VGIC_ACCESS_32bit),
591 };
592
593 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
594 {
595         dev->regions = vgic_v3_dist_registers;
596         dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
597
598         kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
599
600         return SZ_64K;
601 }
602
603 /**
604  * vgic_register_redist_iodev - register a single redist iodev
605  * @vcpu:    The VCPU to which the redistributor belongs
606  *
607  * Register a KVM iodev for this VCPU's redistributor using the address
608  * provided.
609  *
610  * Return 0 on success, -ERRNO otherwise.
611  */
612 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
613 {
614         struct kvm *kvm = vcpu->kvm;
615         struct vgic_dist *vgic = &kvm->arch.vgic;
616         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
617         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
618         struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
619         struct vgic_redist_region *rdreg;
620         gpa_t rd_base, sgi_base;
621         int ret;
622
623         if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
624                 return 0;
625
626         /*
627          * We may be creating VCPUs before having set the base address for the
628          * redistributor region, in which case we will come back to this
629          * function for all VCPUs when the base address is set.  Just return
630          * without doing any work for now.
631          */
632         rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
633         if (!rdreg)
634                 return 0;
635
636         if (!vgic_v3_check_base(kvm))
637                 return -EINVAL;
638
639         vgic_cpu->rdreg = rdreg;
640
641         rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
642         sgi_base = rd_base + SZ_64K;
643
644         kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
645         rd_dev->base_addr = rd_base;
646         rd_dev->iodev_type = IODEV_REDIST;
647         rd_dev->regions = vgic_v3_rdbase_registers;
648         rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
649         rd_dev->redist_vcpu = vcpu;
650
651         mutex_lock(&kvm->slots_lock);
652         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
653                                       SZ_64K, &rd_dev->dev);
654         mutex_unlock(&kvm->slots_lock);
655
656         if (ret)
657                 return ret;
658
659         kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
660         sgi_dev->base_addr = sgi_base;
661         sgi_dev->iodev_type = IODEV_REDIST;
662         sgi_dev->regions = vgic_v3_sgibase_registers;
663         sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
664         sgi_dev->redist_vcpu = vcpu;
665
666         mutex_lock(&kvm->slots_lock);
667         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
668                                       SZ_64K, &sgi_dev->dev);
669         if (ret) {
670                 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
671                                           &rd_dev->dev);
672                 goto out;
673         }
674
675         rdreg->free_index++;
676 out:
677         mutex_unlock(&kvm->slots_lock);
678         return ret;
679 }
680
681 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
682 {
683         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
684         struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
685
686         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
687         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
688 }
689
690 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
691 {
692         struct kvm_vcpu *vcpu;
693         int c, ret = 0;
694
695         kvm_for_each_vcpu(c, vcpu, kvm) {
696                 ret = vgic_register_redist_iodev(vcpu);
697                 if (ret)
698                         break;
699         }
700
701         if (ret) {
702                 /* The current c failed, so we start with the previous one. */
703                 mutex_lock(&kvm->slots_lock);
704                 for (c--; c >= 0; c--) {
705                         vcpu = kvm_get_vcpu(kvm, c);
706                         vgic_unregister_redist_iodev(vcpu);
707                 }
708                 mutex_unlock(&kvm->slots_lock);
709         }
710
711         return ret;
712 }
713
714 /**
715  * vgic_v3_insert_redist_region - Insert a new redistributor region
716  *
717  * Performs various checks before inserting the rdist region in the list.
718  * Those tests depend on whether the size of the rdist region is known
719  * (ie. count != 0). The list is sorted by rdist region index.
720  *
721  * @kvm: kvm handle
722  * @index: redist region index
723  * @base: base of the new rdist region
724  * @count: number of redistributors the region is made of (0 in the old style
725  * single region, whose size is induced from the number of vcpus)
726  *
727  * Return 0 on success, < 0 otherwise
728  */
729 static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
730                                         gpa_t base, uint32_t count)
731 {
732         struct vgic_dist *d = &kvm->arch.vgic;
733         struct vgic_redist_region *rdreg;
734         struct list_head *rd_regions = &d->rd_regions;
735         size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
736         int ret;
737
738         /* single rdist region already set ?*/
739         if (!count && !list_empty(rd_regions))
740                 return -EINVAL;
741
742         /* cross the end of memory ? */
743         if (base + size < base)
744                 return -EINVAL;
745
746         if (list_empty(rd_regions)) {
747                 if (index != 0)
748                         return -EINVAL;
749         } else {
750                 rdreg = list_last_entry(rd_regions,
751                                         struct vgic_redist_region, list);
752                 if (index != rdreg->index + 1)
753                         return -EINVAL;
754
755                 /* Cannot add an explicitly sized regions after legacy region */
756                 if (!rdreg->count)
757                         return -EINVAL;
758         }
759
760         /*
761          * For legacy single-region redistributor regions (!count),
762          * check that the redistributor region does not overlap with the
763          * distributor's address space.
764          */
765         if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
766                 vgic_dist_overlap(kvm, base, size))
767                 return -EINVAL;
768
769         /* collision with any other rdist region? */
770         if (vgic_v3_rdist_overlap(kvm, base, size))
771                 return -EINVAL;
772
773         rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
774         if (!rdreg)
775                 return -ENOMEM;
776
777         rdreg->base = VGIC_ADDR_UNDEF;
778
779         ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
780         if (ret)
781                 goto free;
782
783         rdreg->base = base;
784         rdreg->count = count;
785         rdreg->free_index = 0;
786         rdreg->index = index;
787
788         list_add_tail(&rdreg->list, rd_regions);
789         return 0;
790 free:
791         kfree(rdreg);
792         return ret;
793 }
794
795 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
796 {
797         int ret;
798
799         ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
800         if (ret)
801                 return ret;
802
803         /*
804          * Register iodevs for each existing VCPU.  Adding more VCPUs
805          * afterwards will register the iodevs when needed.
806          */
807         ret = vgic_register_all_redist_iodevs(kvm);
808         if (ret)
809                 return ret;
810
811         return 0;
812 }
813
814 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
815 {
816         const struct vgic_register_region *region;
817         struct vgic_io_device iodev;
818         struct vgic_reg_attr reg_attr;
819         struct kvm_vcpu *vcpu;
820         gpa_t addr;
821         int ret;
822
823         ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
824         if (ret)
825                 return ret;
826
827         vcpu = reg_attr.vcpu;
828         addr = reg_attr.addr;
829
830         switch (attr->group) {
831         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
832                 iodev.regions = vgic_v3_dist_registers;
833                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
834                 iodev.base_addr = 0;
835                 break;
836         case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
837                 iodev.regions = vgic_v3_rdbase_registers;
838                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
839                 iodev.base_addr = 0;
840                 break;
841         }
842         case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
843                 u64 reg, id;
844
845                 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
846                 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
847         }
848         default:
849                 return -ENXIO;
850         }
851
852         /* We only support aligned 32-bit accesses. */
853         if (addr & 3)
854                 return -ENXIO;
855
856         region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
857         if (!region)
858                 return -ENXIO;
859
860         return 0;
861 }
862 /*
863  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
864  * generation register ICC_SGI1R_EL1) with a given VCPU.
865  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
866  * return -1.
867  */
868 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
869 {
870         unsigned long affinity;
871         int level0;
872
873         /*
874          * Split the current VCPU's MPIDR into affinity level 0 and the
875          * rest as this is what we have to compare against.
876          */
877         affinity = kvm_vcpu_get_mpidr_aff(vcpu);
878         level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
879         affinity &= ~MPIDR_LEVEL_MASK;
880
881         /* bail out if the upper three levels don't match */
882         if (sgi_aff != affinity)
883                 return -1;
884
885         /* Is this VCPU's bit set in the mask ? */
886         if (!(sgi_cpu_mask & BIT(level0)))
887                 return -1;
888
889         return level0;
890 }
891
892 /*
893  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
894  * so provide a wrapper to use the existing defines to isolate a certain
895  * affinity level.
896  */
897 #define SGI_AFFINITY_LEVEL(reg, level) \
898         ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
899         >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
900
901 /**
902  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
903  * @vcpu: The VCPU requesting a SGI
904  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
905  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
906  *
907  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
908  * This will trap in sys_regs.c and call this function.
909  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
910  * target processors as well as a bitmask of 16 Aff0 CPUs.
911  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
912  * check for matching ones. If this bit is set, we signal all, but not the
913  * calling VCPU.
914  */
915 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
916 {
917         struct kvm *kvm = vcpu->kvm;
918         struct kvm_vcpu *c_vcpu;
919         u16 target_cpus;
920         u64 mpidr;
921         int sgi, c;
922         int vcpu_id = vcpu->vcpu_id;
923         bool broadcast;
924         unsigned long flags;
925
926         sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
927         broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
928         target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
929         mpidr = SGI_AFFINITY_LEVEL(reg, 3);
930         mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
931         mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
932
933         /*
934          * We iterate over all VCPUs to find the MPIDRs matching the request.
935          * If we have handled one CPU, we clear its bit to detect early
936          * if we are already finished. This avoids iterating through all
937          * VCPUs when most of the times we just signal a single VCPU.
938          */
939         kvm_for_each_vcpu(c, c_vcpu, kvm) {
940                 struct vgic_irq *irq;
941
942                 /* Exit early if we have dealt with all requested CPUs */
943                 if (!broadcast && target_cpus == 0)
944                         break;
945
946                 /* Don't signal the calling VCPU */
947                 if (broadcast && c == vcpu_id)
948                         continue;
949
950                 if (!broadcast) {
951                         int level0;
952
953                         level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
954                         if (level0 == -1)
955                                 continue;
956
957                         /* remove this matching VCPU from the mask */
958                         target_cpus &= ~BIT(level0);
959                 }
960
961                 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
962
963                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
964
965                 /*
966                  * An access targetting Group0 SGIs can only generate
967                  * those, while an access targetting Group1 SGIs can
968                  * generate interrupts of either group.
969                  */
970                 if (!irq->group || allow_group1) {
971                         irq->pending_latch = true;
972                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
973                 } else {
974                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
975                 }
976
977                 vgic_put_irq(vcpu->kvm, irq);
978         }
979 }
980
981 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
982                          int offset, u32 *val)
983 {
984         struct vgic_io_device dev = {
985                 .regions = vgic_v3_dist_registers,
986                 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
987         };
988
989         return vgic_uaccess(vcpu, &dev, is_write, offset, val);
990 }
991
992 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
993                            int offset, u32 *val)
994 {
995         struct vgic_io_device rd_dev = {
996                 .regions = vgic_v3_rdbase_registers,
997                 .nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
998         };
999
1000         struct vgic_io_device sgi_dev = {
1001                 .regions = vgic_v3_sgibase_registers,
1002                 .nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
1003         };
1004
1005         /* SGI_base is the next 64K frame after RD_base */
1006         if (offset >= SZ_64K)
1007                 return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
1008                                     val);
1009         else
1010                 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1011 }
1012
1013 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1014                                     u32 intid, u64 *val)
1015 {
1016         if (intid % 32)
1017                 return -EINVAL;
1018
1019         if (is_write)
1020                 vgic_write_irq_line_level_info(vcpu, intid, *val);
1021         else
1022                 *val = vgic_read_irq_line_level_info(vcpu, intid);
1023
1024         return 0;
1025 }