bf3ff09315722e476e9734278b1f55ec31900c38
[linux-2.6-microblaze.git] / virt / kvm / arm / vgic / vgic-its.c
1 /*
2  * GICv3 ITS emulation
3  *
4  * Copyright (C) 2015,2016 ARM Ltd.
5  * Author: Andre Przywara <andre.przywara@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26
27 #include <linux/irqchip/arm-gic-v3.h>
28
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_arm.h>
31 #include <asm/kvm_mmu.h>
32
33 #include "vgic.h"
34 #include "vgic-mmio.h"
35
36 /*
37  * Creates a new (reference to a) struct vgic_irq for a given LPI.
38  * If this LPI is already mapped on another ITS, we increase its refcount
39  * and return a pointer to the existing structure.
40  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
41  * This function returns a pointer to the _unlocked_ structure.
42  */
43 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
44 {
45         struct vgic_dist *dist = &kvm->arch.vgic;
46         struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
47
48         /* In this case there is no put, since we keep the reference. */
49         if (irq)
50                 return irq;
51
52         irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
53         if (!irq)
54                 return ERR_PTR(-ENOMEM);
55
56         INIT_LIST_HEAD(&irq->lpi_list);
57         INIT_LIST_HEAD(&irq->ap_list);
58         spin_lock_init(&irq->irq_lock);
59
60         irq->config = VGIC_CONFIG_EDGE;
61         kref_init(&irq->refcount);
62         irq->intid = intid;
63
64         spin_lock(&dist->lpi_list_lock);
65
66         /*
67          * There could be a race with another vgic_add_lpi(), so we need to
68          * check that we don't add a second list entry with the same LPI.
69          */
70         list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
71                 if (oldirq->intid != intid)
72                         continue;
73
74                 /* Someone was faster with adding this LPI, lets use that. */
75                 kfree(irq);
76                 irq = oldirq;
77
78                 /*
79                  * This increases the refcount, the caller is expected to
80                  * call vgic_put_irq() on the returned pointer once it's
81                  * finished with the IRQ.
82                  */
83                 vgic_get_irq_kref(irq);
84
85                 goto out_unlock;
86         }
87
88         list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
89         dist->lpi_list_count++;
90
91 out_unlock:
92         spin_unlock(&dist->lpi_list_lock);
93
94         return irq;
95 }
96
97 struct its_device {
98         struct list_head dev_list;
99
100         /* the head for the list of ITTEs */
101         struct list_head itt_head;
102         u32 device_id;
103 };
104
105 #define COLLECTION_NOT_MAPPED ((u32)~0)
106
107 struct its_collection {
108         struct list_head coll_list;
109
110         u32 collection_id;
111         u32 target_addr;
112 };
113
114 #define its_is_collection_mapped(coll) ((coll) && \
115                                 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
116
117 struct its_ite {
118         struct list_head ite_list;
119
120         struct vgic_irq *irq;
121         struct its_collection *collection;
122         u32 lpi;
123         u32 event_id;
124 };
125
126 /*
127  * Find and returns a device in the device table for an ITS.
128  * Must be called with the its_lock mutex held.
129  */
130 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
131 {
132         struct its_device *device;
133
134         list_for_each_entry(device, &its->device_list, dev_list)
135                 if (device_id == device->device_id)
136                         return device;
137
138         return NULL;
139 }
140
141 /*
142  * Find and returns an interrupt translation table entry (ITTE) for a given
143  * Device ID/Event ID pair on an ITS.
144  * Must be called with the its_lock mutex held.
145  */
146 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
147                                   u32 event_id)
148 {
149         struct its_device *device;
150         struct its_ite *ite;
151
152         device = find_its_device(its, device_id);
153         if (device == NULL)
154                 return NULL;
155
156         list_for_each_entry(ite, &device->itt_head, ite_list)
157                 if (ite->event_id == event_id)
158                         return ite;
159
160         return NULL;
161 }
162
163 /* To be used as an iterator this macro misses the enclosing parentheses */
164 #define for_each_lpi_its(dev, ite, its) \
165         list_for_each_entry(dev, &(its)->device_list, dev_list) \
166                 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
167
168 /*
169  * We only implement 48 bits of PA at the moment, although the ITS
170  * supports more. Let's be restrictive here.
171  */
172 #define BASER_ADDRESS(x)        ((x) & GENMASK_ULL(47, 16))
173 #define CBASER_ADDRESS(x)       ((x) & GENMASK_ULL(47, 12))
174 #define PENDBASER_ADDRESS(x)    ((x) & GENMASK_ULL(47, 16))
175 #define PROPBASER_ADDRESS(x)    ((x) & GENMASK_ULL(47, 12))
176
177 #define GIC_LPI_OFFSET 8192
178
179 /*
180  * Finds and returns a collection in the ITS collection table.
181  * Must be called with the its_lock mutex held.
182  */
183 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
184 {
185         struct its_collection *collection;
186
187         list_for_each_entry(collection, &its->collection_list, coll_list) {
188                 if (coll_id == collection->collection_id)
189                         return collection;
190         }
191
192         return NULL;
193 }
194
195 #define LPI_PROP_ENABLE_BIT(p)  ((p) & LPI_PROP_ENABLED)
196 #define LPI_PROP_PRIORITY(p)    ((p) & 0xfc)
197
198 /*
199  * Reads the configuration data for a given LPI from guest memory and
200  * updates the fields in struct vgic_irq.
201  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
202  * VCPU. Unconditionally applies if filter_vcpu is NULL.
203  */
204 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
205                              struct kvm_vcpu *filter_vcpu)
206 {
207         u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
208         u8 prop;
209         int ret;
210
211         ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
212                              &prop, 1);
213
214         if (ret)
215                 return ret;
216
217         spin_lock(&irq->irq_lock);
218
219         if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
220                 irq->priority = LPI_PROP_PRIORITY(prop);
221                 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
222
223                 vgic_queue_irq_unlock(kvm, irq);
224         } else {
225                 spin_unlock(&irq->irq_lock);
226         }
227
228         return 0;
229 }
230
231 /*
232  * Create a snapshot of the current LPI list, so that we can enumerate all
233  * LPIs without holding any lock.
234  * Returns the array length and puts the kmalloc'ed array into intid_ptr.
235  */
236 static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
237 {
238         struct vgic_dist *dist = &kvm->arch.vgic;
239         struct vgic_irq *irq;
240         u32 *intids;
241         int irq_count = dist->lpi_list_count, i = 0;
242
243         /*
244          * We use the current value of the list length, which may change
245          * after the kmalloc. We don't care, because the guest shouldn't
246          * change anything while the command handling is still running,
247          * and in the worst case we would miss a new IRQ, which one wouldn't
248          * expect to be covered by this command anyway.
249          */
250         intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
251         if (!intids)
252                 return -ENOMEM;
253
254         spin_lock(&dist->lpi_list_lock);
255         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
256                 /* We don't need to "get" the IRQ, as we hold the list lock. */
257                 intids[i] = irq->intid;
258                 if (++i == irq_count)
259                         break;
260         }
261         spin_unlock(&dist->lpi_list_lock);
262
263         *intid_ptr = intids;
264         return irq_count;
265 }
266
267 /*
268  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
269  * is targeting) to the VGIC's view, which deals with target VCPUs.
270  * Needs to be called whenever either the collection for a LPIs has
271  * changed or the collection itself got retargeted.
272  */
273 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
274 {
275         struct kvm_vcpu *vcpu;
276
277         if (!its_is_collection_mapped(ite->collection))
278                 return;
279
280         vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
281
282         spin_lock(&ite->irq->irq_lock);
283         ite->irq->target_vcpu = vcpu;
284         spin_unlock(&ite->irq->irq_lock);
285 }
286
287 /*
288  * Updates the target VCPU for every LPI targeting this collection.
289  * Must be called with the its_lock mutex held.
290  */
291 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
292                                        struct its_collection *coll)
293 {
294         struct its_device *device;
295         struct its_ite *ite;
296
297         for_each_lpi_its(device, ite, its) {
298                 if (!ite->collection || coll != ite->collection)
299                         continue;
300
301                 update_affinity_ite(kvm, ite);
302         }
303 }
304
305 static u32 max_lpis_propbaser(u64 propbaser)
306 {
307         int nr_idbits = (propbaser & 0x1f) + 1;
308
309         return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
310 }
311
312 /*
313  * Scan the whole LPI pending table and sync the pending bit in there
314  * with our own data structures. This relies on the LPI being
315  * mapped before.
316  */
317 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
318 {
319         gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
320         struct vgic_irq *irq;
321         int last_byte_offset = -1;
322         int ret = 0;
323         u32 *intids;
324         int nr_irqs, i;
325
326         nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids);
327         if (nr_irqs < 0)
328                 return nr_irqs;
329
330         for (i = 0; i < nr_irqs; i++) {
331                 int byte_offset, bit_nr;
332                 u8 pendmask;
333
334                 byte_offset = intids[i] / BITS_PER_BYTE;
335                 bit_nr = intids[i] % BITS_PER_BYTE;
336
337                 /*
338                  * For contiguously allocated LPIs chances are we just read
339                  * this very same byte in the last iteration. Reuse that.
340                  */
341                 if (byte_offset != last_byte_offset) {
342                         ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
343                                              &pendmask, 1);
344                         if (ret) {
345                                 kfree(intids);
346                                 return ret;
347                         }
348                         last_byte_offset = byte_offset;
349                 }
350
351                 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
352                 spin_lock(&irq->irq_lock);
353                 irq->pending_latch = pendmask & (1U << bit_nr);
354                 vgic_queue_irq_unlock(vcpu->kvm, irq);
355                 vgic_put_irq(vcpu->kvm, irq);
356         }
357
358         kfree(intids);
359
360         return ret;
361 }
362
363 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
364                                               struct vgic_its *its,
365                                               gpa_t addr, unsigned int len)
366 {
367         u64 reg = GITS_TYPER_PLPIS;
368
369         /*
370          * We use linear CPU numbers for redistributor addressing,
371          * so GITS_TYPER.PTA is 0.
372          * Also we force all PROPBASER registers to be the same, so
373          * CommonLPIAff is 0 as well.
374          * To avoid memory waste in the guest, we keep the number of IDBits and
375          * DevBits low - as least for the time being.
376          */
377         reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT;
378         reg |= 0x0f << GITS_TYPER_IDBITS_SHIFT;
379
380         return extract_bytes(reg, addr & 7, len);
381 }
382
383 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
384                                              struct vgic_its *its,
385                                              gpa_t addr, unsigned int len)
386 {
387         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
388 }
389
390 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
391                                                struct vgic_its *its,
392                                                gpa_t addr, unsigned int len)
393 {
394         switch (addr & 0xffff) {
395         case GITS_PIDR0:
396                 return 0x92;    /* part number, bits[7:0] */
397         case GITS_PIDR1:
398                 return 0xb4;    /* part number, bits[11:8] */
399         case GITS_PIDR2:
400                 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
401         case GITS_PIDR4:
402                 return 0x40;    /* This is a 64K software visible page */
403         /* The following are the ID registers for (any) GIC. */
404         case GITS_CIDR0:
405                 return 0x0d;
406         case GITS_CIDR1:
407                 return 0xf0;
408         case GITS_CIDR2:
409                 return 0x05;
410         case GITS_CIDR3:
411                 return 0xb1;
412         }
413
414         return 0;
415 }
416
417 /*
418  * Find the target VCPU and the LPI number for a given devid/eventid pair
419  * and make this IRQ pending, possibly injecting it.
420  * Must be called with the its_lock mutex held.
421  * Returns 0 on success, a positive error value for any ITS mapping
422  * related errors and negative error values for generic errors.
423  */
424 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
425                                 u32 devid, u32 eventid)
426 {
427         struct kvm_vcpu *vcpu;
428         struct its_ite *ite;
429
430         if (!its->enabled)
431                 return -EBUSY;
432
433         ite = find_ite(its, devid, eventid);
434         if (!ite || !its_is_collection_mapped(ite->collection))
435                 return E_ITS_INT_UNMAPPED_INTERRUPT;
436
437         vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
438         if (!vcpu)
439                 return E_ITS_INT_UNMAPPED_INTERRUPT;
440
441         if (!vcpu->arch.vgic_cpu.lpis_enabled)
442                 return -EBUSY;
443
444         spin_lock(&ite->irq->irq_lock);
445         ite->irq->pending_latch = true;
446         vgic_queue_irq_unlock(kvm, ite->irq);
447
448         return 0;
449 }
450
451 static struct vgic_io_device *vgic_get_its_iodev(struct kvm_io_device *dev)
452 {
453         struct vgic_io_device *iodev;
454
455         if (dev->ops != &kvm_io_gic_ops)
456                 return NULL;
457
458         iodev = container_of(dev, struct vgic_io_device, dev);
459
460         if (iodev->iodev_type != IODEV_ITS)
461                 return NULL;
462
463         return iodev;
464 }
465
466 /*
467  * Queries the KVM IO bus framework to get the ITS pointer from the given
468  * doorbell address.
469  * We then call vgic_its_trigger_msi() with the decoded data.
470  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
471  */
472 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
473 {
474         u64 address;
475         struct kvm_io_device *kvm_io_dev;
476         struct vgic_io_device *iodev;
477         int ret;
478
479         if (!vgic_has_its(kvm))
480                 return -ENODEV;
481
482         if (!(msi->flags & KVM_MSI_VALID_DEVID))
483                 return -EINVAL;
484
485         address = (u64)msi->address_hi << 32 | msi->address_lo;
486
487         kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
488         if (!kvm_io_dev)
489                 return -EINVAL;
490
491         iodev = vgic_get_its_iodev(kvm_io_dev);
492         if (!iodev)
493                 return -EINVAL;
494
495         mutex_lock(&iodev->its->its_lock);
496         ret = vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
497         mutex_unlock(&iodev->its->its_lock);
498
499         if (ret < 0)
500                 return ret;
501
502         /*
503          * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
504          * if the guest has blocked the MSI. So we map any LPI mapping
505          * related error to that.
506          */
507         if (ret)
508                 return 0;
509         else
510                 return 1;
511 }
512
513 /* Requires the its_lock to be held. */
514 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
515 {
516         list_del(&ite->ite_list);
517
518         /* This put matches the get in vgic_add_lpi. */
519         if (ite->irq)
520                 vgic_put_irq(kvm, ite->irq);
521
522         kfree(ite);
523 }
524
525 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
526 {
527         return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
528 }
529
530 #define its_cmd_get_command(cmd)        its_cmd_mask_field(cmd, 0,  0,  8)
531 #define its_cmd_get_deviceid(cmd)       its_cmd_mask_field(cmd, 0, 32, 32)
532 #define its_cmd_get_id(cmd)             its_cmd_mask_field(cmd, 1,  0, 32)
533 #define its_cmd_get_physical_id(cmd)    its_cmd_mask_field(cmd, 1, 32, 32)
534 #define its_cmd_get_collection(cmd)     its_cmd_mask_field(cmd, 2,  0, 16)
535 #define its_cmd_get_target_addr(cmd)    its_cmd_mask_field(cmd, 2, 16, 32)
536 #define its_cmd_get_validbit(cmd)       its_cmd_mask_field(cmd, 2, 63,  1)
537
538 /*
539  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
540  * Must be called with the its_lock mutex held.
541  */
542 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
543                                        u64 *its_cmd)
544 {
545         u32 device_id = its_cmd_get_deviceid(its_cmd);
546         u32 event_id = its_cmd_get_id(its_cmd);
547         struct its_ite *ite;
548
549
550         ite = find_ite(its, device_id, event_id);
551         if (ite && ite->collection) {
552                 /*
553                  * Though the spec talks about removing the pending state, we
554                  * don't bother here since we clear the ITTE anyway and the
555                  * pending state is a property of the ITTE struct.
556                  */
557                 its_free_ite(kvm, ite);
558                 return 0;
559         }
560
561         return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
562 }
563
564 /*
565  * The MOVI command moves an ITTE to a different collection.
566  * Must be called with the its_lock mutex held.
567  */
568 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
569                                     u64 *its_cmd)
570 {
571         u32 device_id = its_cmd_get_deviceid(its_cmd);
572         u32 event_id = its_cmd_get_id(its_cmd);
573         u32 coll_id = its_cmd_get_collection(its_cmd);
574         struct kvm_vcpu *vcpu;
575         struct its_ite *ite;
576         struct its_collection *collection;
577
578         ite = find_ite(its, device_id, event_id);
579         if (!ite)
580                 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
581
582         if (!its_is_collection_mapped(ite->collection))
583                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
584
585         collection = find_collection(its, coll_id);
586         if (!its_is_collection_mapped(collection))
587                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
588
589         ite->collection = collection;
590         vcpu = kvm_get_vcpu(kvm, collection->target_addr);
591
592         spin_lock(&ite->irq->irq_lock);
593         ite->irq->target_vcpu = vcpu;
594         spin_unlock(&ite->irq->irq_lock);
595
596         return 0;
597 }
598
599 /*
600  * Check whether an ID can be stored into the corresponding guest table.
601  * For a direct table this is pretty easy, but gets a bit nasty for
602  * indirect tables. We check whether the resulting guest physical address
603  * is actually valid (covered by a memslot and guest accessbible).
604  * For this we have to read the respective first level entry.
605  */
606 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id)
607 {
608         int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
609         int index;
610         u64 indirect_ptr;
611         gfn_t gfn;
612         int esz = GITS_BASER_ENTRY_SIZE(baser);
613
614         if (!(baser & GITS_BASER_INDIRECT)) {
615                 phys_addr_t addr;
616
617                 if (id >= (l1_tbl_size / esz))
618                         return false;
619
620                 addr = BASER_ADDRESS(baser) + id * esz;
621                 gfn = addr >> PAGE_SHIFT;
622
623                 return kvm_is_visible_gfn(its->dev->kvm, gfn);
624         }
625
626         /* calculate and check the index into the 1st level */
627         index = id / (SZ_64K / esz);
628         if (index >= (l1_tbl_size / sizeof(u64)))
629                 return false;
630
631         /* Each 1st level entry is represented by a 64-bit value. */
632         if (kvm_read_guest(its->dev->kvm,
633                            BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
634                            &indirect_ptr, sizeof(indirect_ptr)))
635                 return false;
636
637         indirect_ptr = le64_to_cpu(indirect_ptr);
638
639         /* check the valid bit of the first level entry */
640         if (!(indirect_ptr & BIT_ULL(63)))
641                 return false;
642
643         /*
644          * Mask the guest physical address and calculate the frame number.
645          * Any address beyond our supported 48 bits of PA will be caught
646          * by the actual check in the final step.
647          */
648         indirect_ptr &= GENMASK_ULL(51, 16);
649
650         /* Find the address of the actual entry */
651         index = id % (SZ_64K / esz);
652         indirect_ptr += index * esz;
653         gfn = indirect_ptr >> PAGE_SHIFT;
654
655         return kvm_is_visible_gfn(its->dev->kvm, gfn);
656 }
657
658 static int vgic_its_alloc_collection(struct vgic_its *its,
659                                      struct its_collection **colp,
660                                      u32 coll_id)
661 {
662         struct its_collection *collection;
663
664         if (!vgic_its_check_id(its, its->baser_coll_table, coll_id))
665                 return E_ITS_MAPC_COLLECTION_OOR;
666
667         collection = kzalloc(sizeof(*collection), GFP_KERNEL);
668
669         collection->collection_id = coll_id;
670         collection->target_addr = COLLECTION_NOT_MAPPED;
671
672         list_add_tail(&collection->coll_list, &its->collection_list);
673         *colp = collection;
674
675         return 0;
676 }
677
678 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
679 {
680         struct its_collection *collection;
681         struct its_device *device;
682         struct its_ite *ite;
683
684         /*
685          * Clearing the mapping for that collection ID removes the
686          * entry from the list. If there wasn't any before, we can
687          * go home early.
688          */
689         collection = find_collection(its, coll_id);
690         if (!collection)
691                 return;
692
693         for_each_lpi_its(device, ite, its)
694                 if (ite->collection &&
695                     ite->collection->collection_id == coll_id)
696                         ite->collection = NULL;
697
698         list_del(&collection->coll_list);
699         kfree(collection);
700 }
701
702 /*
703  * The MAPTI and MAPI commands map LPIs to ITTEs.
704  * Must be called with its_lock mutex held.
705  */
706 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
707                                     u64 *its_cmd)
708 {
709         u32 device_id = its_cmd_get_deviceid(its_cmd);
710         u32 event_id = its_cmd_get_id(its_cmd);
711         u32 coll_id = its_cmd_get_collection(its_cmd);
712         struct its_ite *ite;
713         struct its_device *device;
714         struct its_collection *collection, *new_coll = NULL;
715         int lpi_nr;
716         struct vgic_irq *irq;
717
718         device = find_its_device(its, device_id);
719         if (!device)
720                 return E_ITS_MAPTI_UNMAPPED_DEVICE;
721
722         if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
723                 lpi_nr = its_cmd_get_physical_id(its_cmd);
724         else
725                 lpi_nr = event_id;
726         if (lpi_nr < GIC_LPI_OFFSET ||
727             lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
728                 return E_ITS_MAPTI_PHYSICALID_OOR;
729
730         /* If there is an existing mapping, behavior is UNPREDICTABLE. */
731         if (find_ite(its, device_id, event_id))
732                 return 0;
733
734         collection = find_collection(its, coll_id);
735         if (!collection) {
736                 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
737                 if (ret)
738                         return ret;
739                 new_coll = collection;
740         }
741
742         ite = kzalloc(sizeof(struct its_ite), GFP_KERNEL);
743         if (!ite) {
744                 if (new_coll)
745                         vgic_its_free_collection(its, coll_id);
746                 return -ENOMEM;
747         }
748
749         ite->event_id   = event_id;
750         list_add_tail(&ite->ite_list, &device->itt_head);
751
752         ite->collection = collection;
753         ite->lpi = lpi_nr;
754
755         irq = vgic_add_lpi(kvm, lpi_nr);
756         if (IS_ERR(irq)) {
757                 if (new_coll)
758                         vgic_its_free_collection(its, coll_id);
759                 its_free_ite(kvm, ite);
760                 return PTR_ERR(irq);
761         }
762         ite->irq = irq;
763
764         update_affinity_ite(kvm, ite);
765
766         /*
767          * We "cache" the configuration table entries in out struct vgic_irq's.
768          * However we only have those structs for mapped IRQs, so we read in
769          * the respective config data from memory here upon mapping the LPI.
770          */
771         update_lpi_config(kvm, ite->irq, NULL);
772
773         return 0;
774 }
775
776 /* Requires the its_lock to be held. */
777 static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
778 {
779         struct its_ite *ite, *temp;
780
781         /*
782          * The spec says that unmapping a device with still valid
783          * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
784          * since we cannot leave the memory unreferenced.
785          */
786         list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
787                 its_free_ite(kvm, ite);
788
789         list_del(&device->dev_list);
790         kfree(device);
791 }
792
793 /*
794  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
795  * Must be called with the its_lock mutex held.
796  */
797 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
798                                     u64 *its_cmd)
799 {
800         u32 device_id = its_cmd_get_deviceid(its_cmd);
801         bool valid = its_cmd_get_validbit(its_cmd);
802         struct its_device *device;
803
804         if (!vgic_its_check_id(its, its->baser_device_table, device_id))
805                 return E_ITS_MAPD_DEVICE_OOR;
806
807         device = find_its_device(its, device_id);
808
809         /*
810          * The spec says that calling MAPD on an already mapped device
811          * invalidates all cached data for this device. We implement this
812          * by removing the mapping and re-establishing it.
813          */
814         if (device)
815                 vgic_its_unmap_device(kvm, device);
816
817         /*
818          * The spec does not say whether unmapping a not-mapped device
819          * is an error, so we are done in any case.
820          */
821         if (!valid)
822                 return 0;
823
824         device = kzalloc(sizeof(struct its_device), GFP_KERNEL);
825         if (!device)
826                 return -ENOMEM;
827
828         device->device_id = device_id;
829         INIT_LIST_HEAD(&device->itt_head);
830
831         list_add_tail(&device->dev_list, &its->device_list);
832
833         return 0;
834 }
835
836 /*
837  * The MAPC command maps collection IDs to redistributors.
838  * Must be called with the its_lock mutex held.
839  */
840 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
841                                     u64 *its_cmd)
842 {
843         u16 coll_id;
844         u32 target_addr;
845         struct its_collection *collection;
846         bool valid;
847
848         valid = its_cmd_get_validbit(its_cmd);
849         coll_id = its_cmd_get_collection(its_cmd);
850         target_addr = its_cmd_get_target_addr(its_cmd);
851
852         if (target_addr >= atomic_read(&kvm->online_vcpus))
853                 return E_ITS_MAPC_PROCNUM_OOR;
854
855         if (!valid) {
856                 vgic_its_free_collection(its, coll_id);
857         } else {
858                 collection = find_collection(its, coll_id);
859
860                 if (!collection) {
861                         int ret;
862
863                         ret = vgic_its_alloc_collection(its, &collection,
864                                                         coll_id);
865                         if (ret)
866                                 return ret;
867                         collection->target_addr = target_addr;
868                 } else {
869                         collection->target_addr = target_addr;
870                         update_affinity_collection(kvm, its, collection);
871                 }
872         }
873
874         return 0;
875 }
876
877 /*
878  * The CLEAR command removes the pending state for a particular LPI.
879  * Must be called with the its_lock mutex held.
880  */
881 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
882                                      u64 *its_cmd)
883 {
884         u32 device_id = its_cmd_get_deviceid(its_cmd);
885         u32 event_id = its_cmd_get_id(its_cmd);
886         struct its_ite *ite;
887
888
889         ite = find_ite(its, device_id, event_id);
890         if (!ite)
891                 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
892
893         ite->irq->pending_latch = false;
894
895         return 0;
896 }
897
898 /*
899  * The INV command syncs the configuration bits from the memory table.
900  * Must be called with the its_lock mutex held.
901  */
902 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
903                                    u64 *its_cmd)
904 {
905         u32 device_id = its_cmd_get_deviceid(its_cmd);
906         u32 event_id = its_cmd_get_id(its_cmd);
907         struct its_ite *ite;
908
909
910         ite = find_ite(its, device_id, event_id);
911         if (!ite)
912                 return E_ITS_INV_UNMAPPED_INTERRUPT;
913
914         return update_lpi_config(kvm, ite->irq, NULL);
915 }
916
917 /*
918  * The INVALL command requests flushing of all IRQ data in this collection.
919  * Find the VCPU mapped to that collection, then iterate over the VM's list
920  * of mapped LPIs and update the configuration for each IRQ which targets
921  * the specified vcpu. The configuration will be read from the in-memory
922  * configuration table.
923  * Must be called with the its_lock mutex held.
924  */
925 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
926                                       u64 *its_cmd)
927 {
928         u32 coll_id = its_cmd_get_collection(its_cmd);
929         struct its_collection *collection;
930         struct kvm_vcpu *vcpu;
931         struct vgic_irq *irq;
932         u32 *intids;
933         int irq_count, i;
934
935         collection = find_collection(its, coll_id);
936         if (!its_is_collection_mapped(collection))
937                 return E_ITS_INVALL_UNMAPPED_COLLECTION;
938
939         vcpu = kvm_get_vcpu(kvm, collection->target_addr);
940
941         irq_count = vgic_copy_lpi_list(kvm, &intids);
942         if (irq_count < 0)
943                 return irq_count;
944
945         for (i = 0; i < irq_count; i++) {
946                 irq = vgic_get_irq(kvm, NULL, intids[i]);
947                 if (!irq)
948                         continue;
949                 update_lpi_config(kvm, irq, vcpu);
950                 vgic_put_irq(kvm, irq);
951         }
952
953         kfree(intids);
954
955         return 0;
956 }
957
958 /*
959  * The MOVALL command moves the pending state of all IRQs targeting one
960  * redistributor to another. We don't hold the pending state in the VCPUs,
961  * but in the IRQs instead, so there is really not much to do for us here.
962  * However the spec says that no IRQ must target the old redistributor
963  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
964  * This command affects all LPIs in the system that target that redistributor.
965  */
966 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
967                                       u64 *its_cmd)
968 {
969         struct vgic_dist *dist = &kvm->arch.vgic;
970         u32 target1_addr = its_cmd_get_target_addr(its_cmd);
971         u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
972         struct kvm_vcpu *vcpu1, *vcpu2;
973         struct vgic_irq *irq;
974
975         if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
976             target2_addr >= atomic_read(&kvm->online_vcpus))
977                 return E_ITS_MOVALL_PROCNUM_OOR;
978
979         if (target1_addr == target2_addr)
980                 return 0;
981
982         vcpu1 = kvm_get_vcpu(kvm, target1_addr);
983         vcpu2 = kvm_get_vcpu(kvm, target2_addr);
984
985         spin_lock(&dist->lpi_list_lock);
986
987         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
988                 spin_lock(&irq->irq_lock);
989
990                 if (irq->target_vcpu == vcpu1)
991                         irq->target_vcpu = vcpu2;
992
993                 spin_unlock(&irq->irq_lock);
994         }
995
996         spin_unlock(&dist->lpi_list_lock);
997
998         return 0;
999 }
1000
1001 /*
1002  * The INT command injects the LPI associated with that DevID/EvID pair.
1003  * Must be called with the its_lock mutex held.
1004  */
1005 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1006                                    u64 *its_cmd)
1007 {
1008         u32 msi_data = its_cmd_get_id(its_cmd);
1009         u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1010
1011         return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1012 }
1013
1014 /*
1015  * This function is called with the its_cmd lock held, but the ITS data
1016  * structure lock dropped.
1017  */
1018 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1019                                    u64 *its_cmd)
1020 {
1021         int ret = -ENODEV;
1022
1023         mutex_lock(&its->its_lock);
1024         switch (its_cmd_get_command(its_cmd)) {
1025         case GITS_CMD_MAPD:
1026                 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1027                 break;
1028         case GITS_CMD_MAPC:
1029                 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1030                 break;
1031         case GITS_CMD_MAPI:
1032                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1033                 break;
1034         case GITS_CMD_MAPTI:
1035                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1036                 break;
1037         case GITS_CMD_MOVI:
1038                 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1039                 break;
1040         case GITS_CMD_DISCARD:
1041                 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1042                 break;
1043         case GITS_CMD_CLEAR:
1044                 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1045                 break;
1046         case GITS_CMD_MOVALL:
1047                 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1048                 break;
1049         case GITS_CMD_INT:
1050                 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1051                 break;
1052         case GITS_CMD_INV:
1053                 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1054                 break;
1055         case GITS_CMD_INVALL:
1056                 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1057                 break;
1058         case GITS_CMD_SYNC:
1059                 /* we ignore this command: we are in sync all of the time */
1060                 ret = 0;
1061                 break;
1062         }
1063         mutex_unlock(&its->its_lock);
1064
1065         return ret;
1066 }
1067
1068 static u64 vgic_sanitise_its_baser(u64 reg)
1069 {
1070         reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1071                                   GITS_BASER_SHAREABILITY_SHIFT,
1072                                   vgic_sanitise_shareability);
1073         reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1074                                   GITS_BASER_INNER_CACHEABILITY_SHIFT,
1075                                   vgic_sanitise_inner_cacheability);
1076         reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1077                                   GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1078                                   vgic_sanitise_outer_cacheability);
1079
1080         /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1081         reg &= ~GENMASK_ULL(15, 12);
1082
1083         /* We support only one (ITS) page size: 64K */
1084         reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1085
1086         return reg;
1087 }
1088
1089 static u64 vgic_sanitise_its_cbaser(u64 reg)
1090 {
1091         reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1092                                   GITS_CBASER_SHAREABILITY_SHIFT,
1093                                   vgic_sanitise_shareability);
1094         reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1095                                   GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1096                                   vgic_sanitise_inner_cacheability);
1097         reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1098                                   GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1099                                   vgic_sanitise_outer_cacheability);
1100
1101         /*
1102          * Sanitise the physical address to be 64k aligned.
1103          * Also limit the physical addresses to 48 bits.
1104          */
1105         reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1106
1107         return reg;
1108 }
1109
1110 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1111                                                struct vgic_its *its,
1112                                                gpa_t addr, unsigned int len)
1113 {
1114         return extract_bytes(its->cbaser, addr & 7, len);
1115 }
1116
1117 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1118                                        gpa_t addr, unsigned int len,
1119                                        unsigned long val)
1120 {
1121         /* When GITS_CTLR.Enable is 1, this register is RO. */
1122         if (its->enabled)
1123                 return;
1124
1125         mutex_lock(&its->cmd_lock);
1126         its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1127         its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1128         its->creadr = 0;
1129         /*
1130          * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1131          * it to CREADR to make sure we start with an empty command buffer.
1132          */
1133         its->cwriter = its->creadr;
1134         mutex_unlock(&its->cmd_lock);
1135 }
1136
1137 #define ITS_CMD_BUFFER_SIZE(baser)      ((((baser) & 0xff) + 1) << 12)
1138 #define ITS_CMD_SIZE                    32
1139 #define ITS_CMD_OFFSET(reg)             ((reg) & GENMASK(19, 5))
1140
1141 /* Must be called with the cmd_lock held. */
1142 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1143 {
1144         gpa_t cbaser;
1145         u64 cmd_buf[4];
1146
1147         /* Commands are only processed when the ITS is enabled. */
1148         if (!its->enabled)
1149                 return;
1150
1151         cbaser = CBASER_ADDRESS(its->cbaser);
1152
1153         while (its->cwriter != its->creadr) {
1154                 int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1155                                          cmd_buf, ITS_CMD_SIZE);
1156                 /*
1157                  * If kvm_read_guest() fails, this could be due to the guest
1158                  * programming a bogus value in CBASER or something else going
1159                  * wrong from which we cannot easily recover.
1160                  * According to section 6.3.2 in the GICv3 spec we can just
1161                  * ignore that command then.
1162                  */
1163                 if (!ret)
1164                         vgic_its_handle_command(kvm, its, cmd_buf);
1165
1166                 its->creadr += ITS_CMD_SIZE;
1167                 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1168                         its->creadr = 0;
1169         }
1170 }
1171
1172 /*
1173  * By writing to CWRITER the guest announces new commands to be processed.
1174  * To avoid any races in the first place, we take the its_cmd lock, which
1175  * protects our ring buffer variables, so that there is only one user
1176  * per ITS handling commands at a given time.
1177  */
1178 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1179                                         gpa_t addr, unsigned int len,
1180                                         unsigned long val)
1181 {
1182         u64 reg;
1183
1184         if (!its)
1185                 return;
1186
1187         mutex_lock(&its->cmd_lock);
1188
1189         reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1190         reg = ITS_CMD_OFFSET(reg);
1191         if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1192                 mutex_unlock(&its->cmd_lock);
1193                 return;
1194         }
1195         its->cwriter = reg;
1196
1197         vgic_its_process_commands(kvm, its);
1198
1199         mutex_unlock(&its->cmd_lock);
1200 }
1201
1202 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1203                                                 struct vgic_its *its,
1204                                                 gpa_t addr, unsigned int len)
1205 {
1206         return extract_bytes(its->cwriter, addr & 0x7, len);
1207 }
1208
1209 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1210                                                struct vgic_its *its,
1211                                                gpa_t addr, unsigned int len)
1212 {
1213         return extract_bytes(its->creadr, addr & 0x7, len);
1214 }
1215
1216 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1217                                               struct vgic_its *its,
1218                                               gpa_t addr, unsigned int len,
1219                                               unsigned long val)
1220 {
1221         u32 cmd_offset;
1222         int ret = 0;
1223
1224         mutex_lock(&its->cmd_lock);
1225
1226         if (its->enabled) {
1227                 ret = -EBUSY;
1228                 goto out;
1229         }
1230
1231         cmd_offset = ITS_CMD_OFFSET(val);
1232         if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1233                 ret = -EINVAL;
1234                 goto out;
1235         }
1236
1237         its->creadr = cmd_offset;
1238 out:
1239         mutex_unlock(&its->cmd_lock);
1240         return ret;
1241 }
1242
1243 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1244 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1245                                               struct vgic_its *its,
1246                                               gpa_t addr, unsigned int len)
1247 {
1248         u64 reg;
1249
1250         switch (BASER_INDEX(addr)) {
1251         case 0:
1252                 reg = its->baser_device_table;
1253                 break;
1254         case 1:
1255                 reg = its->baser_coll_table;
1256                 break;
1257         default:
1258                 reg = 0;
1259                 break;
1260         }
1261
1262         return extract_bytes(reg, addr & 7, len);
1263 }
1264
1265 #define GITS_BASER_RO_MASK      (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1266 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1267                                       struct vgic_its *its,
1268                                       gpa_t addr, unsigned int len,
1269                                       unsigned long val)
1270 {
1271         u64 entry_size, device_type;
1272         u64 reg, *regptr, clearbits = 0;
1273
1274         /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1275         if (its->enabled)
1276                 return;
1277
1278         switch (BASER_INDEX(addr)) {
1279         case 0:
1280                 regptr = &its->baser_device_table;
1281                 entry_size = 8;
1282                 device_type = GITS_BASER_TYPE_DEVICE;
1283                 break;
1284         case 1:
1285                 regptr = &its->baser_coll_table;
1286                 entry_size = 8;
1287                 device_type = GITS_BASER_TYPE_COLLECTION;
1288                 clearbits = GITS_BASER_INDIRECT;
1289                 break;
1290         default:
1291                 return;
1292         }
1293
1294         reg = update_64bit_reg(*regptr, addr & 7, len, val);
1295         reg &= ~GITS_BASER_RO_MASK;
1296         reg &= ~clearbits;
1297
1298         reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1299         reg |= device_type << GITS_BASER_TYPE_SHIFT;
1300         reg = vgic_sanitise_its_baser(reg);
1301
1302         *regptr = reg;
1303 }
1304
1305 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1306                                              struct vgic_its *its,
1307                                              gpa_t addr, unsigned int len)
1308 {
1309         u32 reg = 0;
1310
1311         mutex_lock(&its->cmd_lock);
1312         if (its->creadr == its->cwriter)
1313                 reg |= GITS_CTLR_QUIESCENT;
1314         if (its->enabled)
1315                 reg |= GITS_CTLR_ENABLE;
1316         mutex_unlock(&its->cmd_lock);
1317
1318         return reg;
1319 }
1320
1321 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1322                                      gpa_t addr, unsigned int len,
1323                                      unsigned long val)
1324 {
1325         mutex_lock(&its->cmd_lock);
1326
1327         its->enabled = !!(val & GITS_CTLR_ENABLE);
1328
1329         /*
1330          * Try to process any pending commands. This function bails out early
1331          * if the ITS is disabled or no commands have been queued.
1332          */
1333         vgic_its_process_commands(kvm, its);
1334
1335         mutex_unlock(&its->cmd_lock);
1336 }
1337
1338 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)             \
1339 {                                                               \
1340         .reg_offset = off,                                      \
1341         .len = length,                                          \
1342         .access_flags = acc,                                    \
1343         .its_read = rd,                                         \
1344         .its_write = wr,                                        \
1345 }
1346
1347 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1348 {                                                               \
1349         .reg_offset = off,                                      \
1350         .len = length,                                          \
1351         .access_flags = acc,                                    \
1352         .its_read = rd,                                         \
1353         .its_write = wr,                                        \
1354         .uaccess_its_write = uwr,                               \
1355 }
1356
1357 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1358                               gpa_t addr, unsigned int len, unsigned long val)
1359 {
1360         /* Ignore */
1361 }
1362
1363 static struct vgic_register_region its_registers[] = {
1364         REGISTER_ITS_DESC(GITS_CTLR,
1365                 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1366                 VGIC_ACCESS_32bit),
1367         REGISTER_ITS_DESC(GITS_IIDR,
1368                 vgic_mmio_read_its_iidr, its_mmio_write_wi, 4,
1369                 VGIC_ACCESS_32bit),
1370         REGISTER_ITS_DESC(GITS_TYPER,
1371                 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1372                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1373         REGISTER_ITS_DESC(GITS_CBASER,
1374                 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1375                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1376         REGISTER_ITS_DESC(GITS_CWRITER,
1377                 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1378                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1379         REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1380                 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1381                 vgic_mmio_uaccess_write_its_creadr, 8,
1382                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1383         REGISTER_ITS_DESC(GITS_BASER,
1384                 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1385                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1386         REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1387                 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1388                 VGIC_ACCESS_32bit),
1389 };
1390
1391 /* This is called on setting the LPI enable bit in the redistributor. */
1392 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1393 {
1394         if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1395                 its_sync_lpi_pending_table(vcpu);
1396 }
1397
1398 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its)
1399 {
1400         struct vgic_io_device *iodev = &its->iodev;
1401         int ret;
1402
1403         if (!its->initialized)
1404                 return -EBUSY;
1405
1406         if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base))
1407                 return -ENXIO;
1408
1409         iodev->regions = its_registers;
1410         iodev->nr_regions = ARRAY_SIZE(its_registers);
1411         kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1412
1413         iodev->base_addr = its->vgic_its_base;
1414         iodev->iodev_type = IODEV_ITS;
1415         iodev->its = its;
1416         mutex_lock(&kvm->slots_lock);
1417         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1418                                       KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1419         mutex_unlock(&kvm->slots_lock);
1420
1421         return ret;
1422 }
1423
1424 #define INITIAL_BASER_VALUE                                               \
1425         (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)                | \
1426          GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)         | \
1427          GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)             | \
1428          ((8ULL - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)                    | \
1429          GITS_BASER_PAGE_SIZE_64K)
1430
1431 #define INITIAL_PROPBASER_VALUE                                           \
1432         (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)            | \
1433          GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)     | \
1434          GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1435
1436 static int vgic_its_create(struct kvm_device *dev, u32 type)
1437 {
1438         struct vgic_its *its;
1439
1440         if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1441                 return -ENODEV;
1442
1443         its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1444         if (!its)
1445                 return -ENOMEM;
1446
1447         mutex_init(&its->its_lock);
1448         mutex_init(&its->cmd_lock);
1449
1450         its->vgic_its_base = VGIC_ADDR_UNDEF;
1451
1452         INIT_LIST_HEAD(&its->device_list);
1453         INIT_LIST_HEAD(&its->collection_list);
1454
1455         dev->kvm->arch.vgic.has_its = true;
1456         its->initialized = false;
1457         its->enabled = false;
1458         its->dev = dev;
1459
1460         its->baser_device_table = INITIAL_BASER_VALUE                   |
1461                 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1462         its->baser_coll_table = INITIAL_BASER_VALUE |
1463                 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1464         dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1465
1466         dev->private = its;
1467
1468         return 0;
1469 }
1470
1471 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1472 {
1473         struct kvm *kvm = kvm_dev->kvm;
1474         struct vgic_its *its = kvm_dev->private;
1475         struct its_device *dev;
1476         struct its_ite *ite;
1477         struct list_head *dev_cur, *dev_temp;
1478         struct list_head *cur, *temp;
1479
1480         /*
1481          * We may end up here without the lists ever having been initialized.
1482          * Check this and bail out early to avoid dereferencing a NULL pointer.
1483          */
1484         if (!its->device_list.next)
1485                 return;
1486
1487         mutex_lock(&its->its_lock);
1488         list_for_each_safe(dev_cur, dev_temp, &its->device_list) {
1489                 dev = container_of(dev_cur, struct its_device, dev_list);
1490                 list_for_each_safe(cur, temp, &dev->itt_head) {
1491                         ite = (container_of(cur, struct its_ite, ite_list));
1492                         its_free_ite(kvm, ite);
1493                 }
1494                 list_del(dev_cur);
1495                 kfree(dev);
1496         }
1497
1498         list_for_each_safe(cur, temp, &its->collection_list) {
1499                 list_del(cur);
1500                 kfree(container_of(cur, struct its_collection, coll_list));
1501         }
1502         mutex_unlock(&its->its_lock);
1503
1504         kfree(its);
1505 }
1506
1507 int vgic_its_has_attr_regs(struct kvm_device *dev,
1508                            struct kvm_device_attr *attr)
1509 {
1510         const struct vgic_register_region *region;
1511         gpa_t offset = attr->attr;
1512         int align;
1513
1514         align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1515
1516         if (offset & align)
1517                 return -EINVAL;
1518
1519         region = vgic_find_mmio_region(its_registers,
1520                                        ARRAY_SIZE(its_registers),
1521                                        offset);
1522         if (!region)
1523                 return -ENXIO;
1524
1525         return 0;
1526 }
1527
1528 int vgic_its_attr_regs_access(struct kvm_device *dev,
1529                               struct kvm_device_attr *attr,
1530                               u64 *reg, bool is_write)
1531 {
1532         const struct vgic_register_region *region;
1533         struct vgic_its *its;
1534         gpa_t addr, offset;
1535         unsigned int len;
1536         int align, ret = 0;
1537
1538         its = dev->private;
1539         offset = attr->attr;
1540
1541         /*
1542          * Although the spec supports upper/lower 32-bit accesses to
1543          * 64-bit ITS registers, the userspace ABI requires 64-bit
1544          * accesses to all 64-bit wide registers. We therefore only
1545          * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1546          * registers
1547          */
1548         if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1549                 align = 0x3;
1550         else
1551                 align = 0x7;
1552
1553         if (offset & align)
1554                 return -EINVAL;
1555
1556         mutex_lock(&dev->kvm->lock);
1557
1558         if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1559                 ret = -ENXIO;
1560                 goto out;
1561         }
1562
1563         region = vgic_find_mmio_region(its_registers,
1564                                        ARRAY_SIZE(its_registers),
1565                                        offset);
1566         if (!region) {
1567                 ret = -ENXIO;
1568                 goto out;
1569         }
1570
1571         if (!lock_all_vcpus(dev->kvm)) {
1572                 ret = -EBUSY;
1573                 goto out;
1574         }
1575
1576         addr = its->vgic_its_base + offset;
1577
1578         len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1579
1580         if (is_write) {
1581                 if (region->uaccess_its_write)
1582                         ret = region->uaccess_its_write(dev->kvm, its, addr,
1583                                                         len, *reg);
1584                 else
1585                         region->its_write(dev->kvm, its, addr, len, *reg);
1586         } else {
1587                 *reg = region->its_read(dev->kvm, its, addr, len);
1588         }
1589         unlock_all_vcpus(dev->kvm);
1590 out:
1591         mutex_unlock(&dev->kvm->lock);
1592         return ret;
1593 }
1594
1595 static int vgic_its_has_attr(struct kvm_device *dev,
1596                              struct kvm_device_attr *attr)
1597 {
1598         switch (attr->group) {
1599         case KVM_DEV_ARM_VGIC_GRP_ADDR:
1600                 switch (attr->attr) {
1601                 case KVM_VGIC_ITS_ADDR_TYPE:
1602                         return 0;
1603                 }
1604                 break;
1605         case KVM_DEV_ARM_VGIC_GRP_CTRL:
1606                 switch (attr->attr) {
1607                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1608                         return 0;
1609                 }
1610                 break;
1611         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
1612                 return vgic_its_has_attr_regs(dev, attr);
1613         }
1614         return -ENXIO;
1615 }
1616
1617 static int vgic_its_set_attr(struct kvm_device *dev,
1618                              struct kvm_device_attr *attr)
1619 {
1620         struct vgic_its *its = dev->private;
1621         int ret;
1622
1623         switch (attr->group) {
1624         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1625                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1626                 unsigned long type = (unsigned long)attr->attr;
1627                 u64 addr;
1628
1629                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1630                         return -ENODEV;
1631
1632                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1633                         return -EFAULT;
1634
1635                 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
1636                                         addr, SZ_64K);
1637                 if (ret)
1638                         return ret;
1639
1640                 its->vgic_its_base = addr;
1641
1642                 return 0;
1643         }
1644         case KVM_DEV_ARM_VGIC_GRP_CTRL:
1645                 switch (attr->attr) {
1646                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1647                         its->initialized = true;
1648
1649                         return 0;
1650                 }
1651                 break;
1652         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
1653                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1654                 u64 reg;
1655
1656                 if (get_user(reg, uaddr))
1657                         return -EFAULT;
1658
1659                 return vgic_its_attr_regs_access(dev, attr, &reg, true);
1660         }
1661         }
1662         return -ENXIO;
1663 }
1664
1665 static int vgic_its_get_attr(struct kvm_device *dev,
1666                              struct kvm_device_attr *attr)
1667 {
1668         switch (attr->group) {
1669         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1670                 struct vgic_its *its = dev->private;
1671                 u64 addr = its->vgic_its_base;
1672                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1673                 unsigned long type = (unsigned long)attr->attr;
1674
1675                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
1676                         return -ENODEV;
1677
1678                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1679                         return -EFAULT;
1680                 break;
1681         }
1682         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
1683                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1684                 u64 reg;
1685                 int ret;
1686
1687                 ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
1688                 if (ret)
1689                         return ret;
1690                 return put_user(reg, uaddr);
1691         }
1692         default:
1693                 return -ENXIO;
1694         }
1695
1696         return 0;
1697 }
1698
1699 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
1700         .name = "kvm-arm-vgic-its",
1701         .create = vgic_its_create,
1702         .destroy = vgic_its_destroy,
1703         .set_attr = vgic_its_set_attr,
1704         .get_attr = vgic_its_get_attr,
1705         .has_attr = vgic_its_has_attr,
1706 };
1707
1708 int kvm_vgic_register_its_device(void)
1709 {
1710         return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
1711                                        KVM_DEV_TYPE_ARM_VGIC_ITS);
1712 }
1713
1714 /*
1715  * Registers all ITSes with the kvm_io_bus framework.
1716  * To follow the existing VGIC initialization sequence, this has to be
1717  * done as late as possible, just before the first VCPU runs.
1718  */
1719 int vgic_register_its_iodevs(struct kvm *kvm)
1720 {
1721         struct kvm_device *dev;
1722         int ret = 0;
1723
1724         list_for_each_entry(dev, &kvm->devices, vm_node) {
1725                 if (dev->ops != &kvm_arm_vgic_its_ops)
1726                         continue;
1727
1728                 ret = vgic_register_its_iodev(kvm, dev->private);
1729                 if (ret)
1730                         return ret;
1731                 /*
1732                  * We don't need to care about tearing down previously
1733                  * registered ITSes, as the kvm_io_bus framework removes
1734                  * them for us if the VM gets destroyed.
1735                  */
1736         }
1737
1738         return ret;
1739 }