kvm: arm: Skip stage2 huge mappings for unaligned ipa backed by THP
[linux-2.6-microblaze.git] / virt / kvm / arm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <linux/sched/signal.h>
24 #include <trace/events/kvm.h>
25 #include <asm/pgalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_mmio.h>
30 #include <asm/kvm_ras.h>
31 #include <asm/kvm_asm.h>
32 #include <asm/kvm_emulate.h>
33 #include <asm/virt.h>
34
35 #include "trace.h"
36
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
45
46 static unsigned long io_map_base;
47
48 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
49
50 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
51 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
52
53 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
54 {
55         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
56 }
57
58 /**
59  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60  * @kvm:        pointer to kvm structure.
61  *
62  * Interface to HYP function to flush all VM TLB entries
63  */
64 void kvm_flush_remote_tlbs(struct kvm *kvm)
65 {
66         kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
67 }
68
69 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
70 {
71         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
72 }
73
74 /*
75  * D-Cache management functions. They take the page table entries by
76  * value, as they are flushing the cache using the kernel mapping (or
77  * kmap on 32bit).
78  */
79 static void kvm_flush_dcache_pte(pte_t pte)
80 {
81         __kvm_flush_dcache_pte(pte);
82 }
83
84 static void kvm_flush_dcache_pmd(pmd_t pmd)
85 {
86         __kvm_flush_dcache_pmd(pmd);
87 }
88
89 static void kvm_flush_dcache_pud(pud_t pud)
90 {
91         __kvm_flush_dcache_pud(pud);
92 }
93
94 static bool kvm_is_device_pfn(unsigned long pfn)
95 {
96         return !pfn_valid(pfn);
97 }
98
99 /**
100  * stage2_dissolve_pmd() - clear and flush huge PMD entry
101  * @kvm:        pointer to kvm structure.
102  * @addr:       IPA
103  * @pmd:        pmd pointer for IPA
104  *
105  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
106  */
107 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
108 {
109         if (!pmd_thp_or_huge(*pmd))
110                 return;
111
112         pmd_clear(pmd);
113         kvm_tlb_flush_vmid_ipa(kvm, addr);
114         put_page(virt_to_page(pmd));
115 }
116
117 /**
118  * stage2_dissolve_pud() - clear and flush huge PUD entry
119  * @kvm:        pointer to kvm structure.
120  * @addr:       IPA
121  * @pud:        pud pointer for IPA
122  *
123  * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
124  */
125 static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
126 {
127         if (!stage2_pud_huge(kvm, *pudp))
128                 return;
129
130         stage2_pud_clear(kvm, pudp);
131         kvm_tlb_flush_vmid_ipa(kvm, addr);
132         put_page(virt_to_page(pudp));
133 }
134
135 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
136                                   int min, int max)
137 {
138         void *page;
139
140         BUG_ON(max > KVM_NR_MEM_OBJS);
141         if (cache->nobjs >= min)
142                 return 0;
143         while (cache->nobjs < max) {
144                 page = (void *)__get_free_page(PGALLOC_GFP);
145                 if (!page)
146                         return -ENOMEM;
147                 cache->objects[cache->nobjs++] = page;
148         }
149         return 0;
150 }
151
152 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
153 {
154         while (mc->nobjs)
155                 free_page((unsigned long)mc->objects[--mc->nobjs]);
156 }
157
158 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
159 {
160         void *p;
161
162         BUG_ON(!mc || !mc->nobjs);
163         p = mc->objects[--mc->nobjs];
164         return p;
165 }
166
167 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
168 {
169         pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL);
170         stage2_pgd_clear(kvm, pgd);
171         kvm_tlb_flush_vmid_ipa(kvm, addr);
172         stage2_pud_free(kvm, pud_table);
173         put_page(virt_to_page(pgd));
174 }
175
176 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
177 {
178         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
179         VM_BUG_ON(stage2_pud_huge(kvm, *pud));
180         stage2_pud_clear(kvm, pud);
181         kvm_tlb_flush_vmid_ipa(kvm, addr);
182         stage2_pmd_free(kvm, pmd_table);
183         put_page(virt_to_page(pud));
184 }
185
186 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
187 {
188         pte_t *pte_table = pte_offset_kernel(pmd, 0);
189         VM_BUG_ON(pmd_thp_or_huge(*pmd));
190         pmd_clear(pmd);
191         kvm_tlb_flush_vmid_ipa(kvm, addr);
192         pte_free_kernel(NULL, pte_table);
193         put_page(virt_to_page(pmd));
194 }
195
196 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
197 {
198         WRITE_ONCE(*ptep, new_pte);
199         dsb(ishst);
200 }
201
202 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
203 {
204         WRITE_ONCE(*pmdp, new_pmd);
205         dsb(ishst);
206 }
207
208 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
209 {
210         kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
211 }
212
213 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
214 {
215         WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
216         dsb(ishst);
217 }
218
219 static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
220 {
221         WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
222         dsb(ishst);
223 }
224
225 /*
226  * Unmapping vs dcache management:
227  *
228  * If a guest maps certain memory pages as uncached, all writes will
229  * bypass the data cache and go directly to RAM.  However, the CPUs
230  * can still speculate reads (not writes) and fill cache lines with
231  * data.
232  *
233  * Those cache lines will be *clean* cache lines though, so a
234  * clean+invalidate operation is equivalent to an invalidate
235  * operation, because no cache lines are marked dirty.
236  *
237  * Those clean cache lines could be filled prior to an uncached write
238  * by the guest, and the cache coherent IO subsystem would therefore
239  * end up writing old data to disk.
240  *
241  * This is why right after unmapping a page/section and invalidating
242  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
243  * the IO subsystem will never hit in the cache.
244  *
245  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
246  * we then fully enforce cacheability of RAM, no matter what the guest
247  * does.
248  */
249 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
250                        phys_addr_t addr, phys_addr_t end)
251 {
252         phys_addr_t start_addr = addr;
253         pte_t *pte, *start_pte;
254
255         start_pte = pte = pte_offset_kernel(pmd, addr);
256         do {
257                 if (!pte_none(*pte)) {
258                         pte_t old_pte = *pte;
259
260                         kvm_set_pte(pte, __pte(0));
261                         kvm_tlb_flush_vmid_ipa(kvm, addr);
262
263                         /* No need to invalidate the cache for device mappings */
264                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
265                                 kvm_flush_dcache_pte(old_pte);
266
267                         put_page(virt_to_page(pte));
268                 }
269         } while (pte++, addr += PAGE_SIZE, addr != end);
270
271         if (stage2_pte_table_empty(kvm, start_pte))
272                 clear_stage2_pmd_entry(kvm, pmd, start_addr);
273 }
274
275 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
276                        phys_addr_t addr, phys_addr_t end)
277 {
278         phys_addr_t next, start_addr = addr;
279         pmd_t *pmd, *start_pmd;
280
281         start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
282         do {
283                 next = stage2_pmd_addr_end(kvm, addr, end);
284                 if (!pmd_none(*pmd)) {
285                         if (pmd_thp_or_huge(*pmd)) {
286                                 pmd_t old_pmd = *pmd;
287
288                                 pmd_clear(pmd);
289                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
290
291                                 kvm_flush_dcache_pmd(old_pmd);
292
293                                 put_page(virt_to_page(pmd));
294                         } else {
295                                 unmap_stage2_ptes(kvm, pmd, addr, next);
296                         }
297                 }
298         } while (pmd++, addr = next, addr != end);
299
300         if (stage2_pmd_table_empty(kvm, start_pmd))
301                 clear_stage2_pud_entry(kvm, pud, start_addr);
302 }
303
304 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
305                        phys_addr_t addr, phys_addr_t end)
306 {
307         phys_addr_t next, start_addr = addr;
308         pud_t *pud, *start_pud;
309
310         start_pud = pud = stage2_pud_offset(kvm, pgd, addr);
311         do {
312                 next = stage2_pud_addr_end(kvm, addr, end);
313                 if (!stage2_pud_none(kvm, *pud)) {
314                         if (stage2_pud_huge(kvm, *pud)) {
315                                 pud_t old_pud = *pud;
316
317                                 stage2_pud_clear(kvm, pud);
318                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
319                                 kvm_flush_dcache_pud(old_pud);
320                                 put_page(virt_to_page(pud));
321                         } else {
322                                 unmap_stage2_pmds(kvm, pud, addr, next);
323                         }
324                 }
325         } while (pud++, addr = next, addr != end);
326
327         if (stage2_pud_table_empty(kvm, start_pud))
328                 clear_stage2_pgd_entry(kvm, pgd, start_addr);
329 }
330
331 /**
332  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
333  * @kvm:   The VM pointer
334  * @start: The intermediate physical base address of the range to unmap
335  * @size:  The size of the area to unmap
336  *
337  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
338  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
339  * destroying the VM), otherwise another faulting VCPU may come in and mess
340  * with things behind our backs.
341  */
342 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
343 {
344         pgd_t *pgd;
345         phys_addr_t addr = start, end = start + size;
346         phys_addr_t next;
347
348         assert_spin_locked(&kvm->mmu_lock);
349         WARN_ON(size & ~PAGE_MASK);
350
351         pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
352         do {
353                 /*
354                  * Make sure the page table is still active, as another thread
355                  * could have possibly freed the page table, while we released
356                  * the lock.
357                  */
358                 if (!READ_ONCE(kvm->arch.pgd))
359                         break;
360                 next = stage2_pgd_addr_end(kvm, addr, end);
361                 if (!stage2_pgd_none(kvm, *pgd))
362                         unmap_stage2_puds(kvm, pgd, addr, next);
363                 /*
364                  * If the range is too large, release the kvm->mmu_lock
365                  * to prevent starvation and lockup detector warnings.
366                  */
367                 if (next != end)
368                         cond_resched_lock(&kvm->mmu_lock);
369         } while (pgd++, addr = next, addr != end);
370 }
371
372 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
373                               phys_addr_t addr, phys_addr_t end)
374 {
375         pte_t *pte;
376
377         pte = pte_offset_kernel(pmd, addr);
378         do {
379                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
380                         kvm_flush_dcache_pte(*pte);
381         } while (pte++, addr += PAGE_SIZE, addr != end);
382 }
383
384 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
385                               phys_addr_t addr, phys_addr_t end)
386 {
387         pmd_t *pmd;
388         phys_addr_t next;
389
390         pmd = stage2_pmd_offset(kvm, pud, addr);
391         do {
392                 next = stage2_pmd_addr_end(kvm, addr, end);
393                 if (!pmd_none(*pmd)) {
394                         if (pmd_thp_or_huge(*pmd))
395                                 kvm_flush_dcache_pmd(*pmd);
396                         else
397                                 stage2_flush_ptes(kvm, pmd, addr, next);
398                 }
399         } while (pmd++, addr = next, addr != end);
400 }
401
402 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
403                               phys_addr_t addr, phys_addr_t end)
404 {
405         pud_t *pud;
406         phys_addr_t next;
407
408         pud = stage2_pud_offset(kvm, pgd, addr);
409         do {
410                 next = stage2_pud_addr_end(kvm, addr, end);
411                 if (!stage2_pud_none(kvm, *pud)) {
412                         if (stage2_pud_huge(kvm, *pud))
413                                 kvm_flush_dcache_pud(*pud);
414                         else
415                                 stage2_flush_pmds(kvm, pud, addr, next);
416                 }
417         } while (pud++, addr = next, addr != end);
418 }
419
420 static void stage2_flush_memslot(struct kvm *kvm,
421                                  struct kvm_memory_slot *memslot)
422 {
423         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
424         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
425         phys_addr_t next;
426         pgd_t *pgd;
427
428         pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
429         do {
430                 next = stage2_pgd_addr_end(kvm, addr, end);
431                 if (!stage2_pgd_none(kvm, *pgd))
432                         stage2_flush_puds(kvm, pgd, addr, next);
433         } while (pgd++, addr = next, addr != end);
434 }
435
436 /**
437  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
438  * @kvm: The struct kvm pointer
439  *
440  * Go through the stage 2 page tables and invalidate any cache lines
441  * backing memory already mapped to the VM.
442  */
443 static void stage2_flush_vm(struct kvm *kvm)
444 {
445         struct kvm_memslots *slots;
446         struct kvm_memory_slot *memslot;
447         int idx;
448
449         idx = srcu_read_lock(&kvm->srcu);
450         spin_lock(&kvm->mmu_lock);
451
452         slots = kvm_memslots(kvm);
453         kvm_for_each_memslot(memslot, slots)
454                 stage2_flush_memslot(kvm, memslot);
455
456         spin_unlock(&kvm->mmu_lock);
457         srcu_read_unlock(&kvm->srcu, idx);
458 }
459
460 static void clear_hyp_pgd_entry(pgd_t *pgd)
461 {
462         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
463         pgd_clear(pgd);
464         pud_free(NULL, pud_table);
465         put_page(virt_to_page(pgd));
466 }
467
468 static void clear_hyp_pud_entry(pud_t *pud)
469 {
470         pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
471         VM_BUG_ON(pud_huge(*pud));
472         pud_clear(pud);
473         pmd_free(NULL, pmd_table);
474         put_page(virt_to_page(pud));
475 }
476
477 static void clear_hyp_pmd_entry(pmd_t *pmd)
478 {
479         pte_t *pte_table = pte_offset_kernel(pmd, 0);
480         VM_BUG_ON(pmd_thp_or_huge(*pmd));
481         pmd_clear(pmd);
482         pte_free_kernel(NULL, pte_table);
483         put_page(virt_to_page(pmd));
484 }
485
486 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
487 {
488         pte_t *pte, *start_pte;
489
490         start_pte = pte = pte_offset_kernel(pmd, addr);
491         do {
492                 if (!pte_none(*pte)) {
493                         kvm_set_pte(pte, __pte(0));
494                         put_page(virt_to_page(pte));
495                 }
496         } while (pte++, addr += PAGE_SIZE, addr != end);
497
498         if (hyp_pte_table_empty(start_pte))
499                 clear_hyp_pmd_entry(pmd);
500 }
501
502 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
503 {
504         phys_addr_t next;
505         pmd_t *pmd, *start_pmd;
506
507         start_pmd = pmd = pmd_offset(pud, addr);
508         do {
509                 next = pmd_addr_end(addr, end);
510                 /* Hyp doesn't use huge pmds */
511                 if (!pmd_none(*pmd))
512                         unmap_hyp_ptes(pmd, addr, next);
513         } while (pmd++, addr = next, addr != end);
514
515         if (hyp_pmd_table_empty(start_pmd))
516                 clear_hyp_pud_entry(pud);
517 }
518
519 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
520 {
521         phys_addr_t next;
522         pud_t *pud, *start_pud;
523
524         start_pud = pud = pud_offset(pgd, addr);
525         do {
526                 next = pud_addr_end(addr, end);
527                 /* Hyp doesn't use huge puds */
528                 if (!pud_none(*pud))
529                         unmap_hyp_pmds(pud, addr, next);
530         } while (pud++, addr = next, addr != end);
531
532         if (hyp_pud_table_empty(start_pud))
533                 clear_hyp_pgd_entry(pgd);
534 }
535
536 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
537 {
538         return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
539 }
540
541 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
542                               phys_addr_t start, u64 size)
543 {
544         pgd_t *pgd;
545         phys_addr_t addr = start, end = start + size;
546         phys_addr_t next;
547
548         /*
549          * We don't unmap anything from HYP, except at the hyp tear down.
550          * Hence, we don't have to invalidate the TLBs here.
551          */
552         pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
553         do {
554                 next = pgd_addr_end(addr, end);
555                 if (!pgd_none(*pgd))
556                         unmap_hyp_puds(pgd, addr, next);
557         } while (pgd++, addr = next, addr != end);
558 }
559
560 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
561 {
562         __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
563 }
564
565 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
566 {
567         __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
568 }
569
570 /**
571  * free_hyp_pgds - free Hyp-mode page tables
572  *
573  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
574  * therefore contains either mappings in the kernel memory area (above
575  * PAGE_OFFSET), or device mappings in the idmap range.
576  *
577  * boot_hyp_pgd should only map the idmap range, and is only used in
578  * the extended idmap case.
579  */
580 void free_hyp_pgds(void)
581 {
582         pgd_t *id_pgd;
583
584         mutex_lock(&kvm_hyp_pgd_mutex);
585
586         id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
587
588         if (id_pgd) {
589                 /* In case we never called hyp_mmu_init() */
590                 if (!io_map_base)
591                         io_map_base = hyp_idmap_start;
592                 unmap_hyp_idmap_range(id_pgd, io_map_base,
593                                       hyp_idmap_start + PAGE_SIZE - io_map_base);
594         }
595
596         if (boot_hyp_pgd) {
597                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
598                 boot_hyp_pgd = NULL;
599         }
600
601         if (hyp_pgd) {
602                 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
603                                 (uintptr_t)high_memory - PAGE_OFFSET);
604
605                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
606                 hyp_pgd = NULL;
607         }
608         if (merged_hyp_pgd) {
609                 clear_page(merged_hyp_pgd);
610                 free_page((unsigned long)merged_hyp_pgd);
611                 merged_hyp_pgd = NULL;
612         }
613
614         mutex_unlock(&kvm_hyp_pgd_mutex);
615 }
616
617 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
618                                     unsigned long end, unsigned long pfn,
619                                     pgprot_t prot)
620 {
621         pte_t *pte;
622         unsigned long addr;
623
624         addr = start;
625         do {
626                 pte = pte_offset_kernel(pmd, addr);
627                 kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
628                 get_page(virt_to_page(pte));
629                 pfn++;
630         } while (addr += PAGE_SIZE, addr != end);
631 }
632
633 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
634                                    unsigned long end, unsigned long pfn,
635                                    pgprot_t prot)
636 {
637         pmd_t *pmd;
638         pte_t *pte;
639         unsigned long addr, next;
640
641         addr = start;
642         do {
643                 pmd = pmd_offset(pud, addr);
644
645                 BUG_ON(pmd_sect(*pmd));
646
647                 if (pmd_none(*pmd)) {
648                         pte = pte_alloc_one_kernel(NULL);
649                         if (!pte) {
650                                 kvm_err("Cannot allocate Hyp pte\n");
651                                 return -ENOMEM;
652                         }
653                         kvm_pmd_populate(pmd, pte);
654                         get_page(virt_to_page(pmd));
655                 }
656
657                 next = pmd_addr_end(addr, end);
658
659                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
660                 pfn += (next - addr) >> PAGE_SHIFT;
661         } while (addr = next, addr != end);
662
663         return 0;
664 }
665
666 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
667                                    unsigned long end, unsigned long pfn,
668                                    pgprot_t prot)
669 {
670         pud_t *pud;
671         pmd_t *pmd;
672         unsigned long addr, next;
673         int ret;
674
675         addr = start;
676         do {
677                 pud = pud_offset(pgd, addr);
678
679                 if (pud_none_or_clear_bad(pud)) {
680                         pmd = pmd_alloc_one(NULL, addr);
681                         if (!pmd) {
682                                 kvm_err("Cannot allocate Hyp pmd\n");
683                                 return -ENOMEM;
684                         }
685                         kvm_pud_populate(pud, pmd);
686                         get_page(virt_to_page(pud));
687                 }
688
689                 next = pud_addr_end(addr, end);
690                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
691                 if (ret)
692                         return ret;
693                 pfn += (next - addr) >> PAGE_SHIFT;
694         } while (addr = next, addr != end);
695
696         return 0;
697 }
698
699 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
700                                  unsigned long start, unsigned long end,
701                                  unsigned long pfn, pgprot_t prot)
702 {
703         pgd_t *pgd;
704         pud_t *pud;
705         unsigned long addr, next;
706         int err = 0;
707
708         mutex_lock(&kvm_hyp_pgd_mutex);
709         addr = start & PAGE_MASK;
710         end = PAGE_ALIGN(end);
711         do {
712                 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
713
714                 if (pgd_none(*pgd)) {
715                         pud = pud_alloc_one(NULL, addr);
716                         if (!pud) {
717                                 kvm_err("Cannot allocate Hyp pud\n");
718                                 err = -ENOMEM;
719                                 goto out;
720                         }
721                         kvm_pgd_populate(pgd, pud);
722                         get_page(virt_to_page(pgd));
723                 }
724
725                 next = pgd_addr_end(addr, end);
726                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
727                 if (err)
728                         goto out;
729                 pfn += (next - addr) >> PAGE_SHIFT;
730         } while (addr = next, addr != end);
731 out:
732         mutex_unlock(&kvm_hyp_pgd_mutex);
733         return err;
734 }
735
736 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
737 {
738         if (!is_vmalloc_addr(kaddr)) {
739                 BUG_ON(!virt_addr_valid(kaddr));
740                 return __pa(kaddr);
741         } else {
742                 return page_to_phys(vmalloc_to_page(kaddr)) +
743                        offset_in_page(kaddr);
744         }
745 }
746
747 /**
748  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
749  * @from:       The virtual kernel start address of the range
750  * @to:         The virtual kernel end address of the range (exclusive)
751  * @prot:       The protection to be applied to this range
752  *
753  * The same virtual address as the kernel virtual address is also used
754  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
755  * physical pages.
756  */
757 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
758 {
759         phys_addr_t phys_addr;
760         unsigned long virt_addr;
761         unsigned long start = kern_hyp_va((unsigned long)from);
762         unsigned long end = kern_hyp_va((unsigned long)to);
763
764         if (is_kernel_in_hyp_mode())
765                 return 0;
766
767         start = start & PAGE_MASK;
768         end = PAGE_ALIGN(end);
769
770         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
771                 int err;
772
773                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
774                 err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
775                                             virt_addr, virt_addr + PAGE_SIZE,
776                                             __phys_to_pfn(phys_addr),
777                                             prot);
778                 if (err)
779                         return err;
780         }
781
782         return 0;
783 }
784
785 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
786                                         unsigned long *haddr, pgprot_t prot)
787 {
788         pgd_t *pgd = hyp_pgd;
789         unsigned long base;
790         int ret = 0;
791
792         mutex_lock(&kvm_hyp_pgd_mutex);
793
794         /*
795          * This assumes that we we have enough space below the idmap
796          * page to allocate our VAs. If not, the check below will
797          * kick. A potential alternative would be to detect that
798          * overflow and switch to an allocation above the idmap.
799          *
800          * The allocated size is always a multiple of PAGE_SIZE.
801          */
802         size = PAGE_ALIGN(size + offset_in_page(phys_addr));
803         base = io_map_base - size;
804
805         /*
806          * Verify that BIT(VA_BITS - 1) hasn't been flipped by
807          * allocating the new area, as it would indicate we've
808          * overflowed the idmap/IO address range.
809          */
810         if ((base ^ io_map_base) & BIT(VA_BITS - 1))
811                 ret = -ENOMEM;
812         else
813                 io_map_base = base;
814
815         mutex_unlock(&kvm_hyp_pgd_mutex);
816
817         if (ret)
818                 goto out;
819
820         if (__kvm_cpu_uses_extended_idmap())
821                 pgd = boot_hyp_pgd;
822
823         ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
824                                     base, base + size,
825                                     __phys_to_pfn(phys_addr), prot);
826         if (ret)
827                 goto out;
828
829         *haddr = base + offset_in_page(phys_addr);
830
831 out:
832         return ret;
833 }
834
835 /**
836  * create_hyp_io_mappings - Map IO into both kernel and HYP
837  * @phys_addr:  The physical start address which gets mapped
838  * @size:       Size of the region being mapped
839  * @kaddr:      Kernel VA for this mapping
840  * @haddr:      HYP VA for this mapping
841  */
842 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
843                            void __iomem **kaddr,
844                            void __iomem **haddr)
845 {
846         unsigned long addr;
847         int ret;
848
849         *kaddr = ioremap(phys_addr, size);
850         if (!*kaddr)
851                 return -ENOMEM;
852
853         if (is_kernel_in_hyp_mode()) {
854                 *haddr = *kaddr;
855                 return 0;
856         }
857
858         ret = __create_hyp_private_mapping(phys_addr, size,
859                                            &addr, PAGE_HYP_DEVICE);
860         if (ret) {
861                 iounmap(*kaddr);
862                 *kaddr = NULL;
863                 *haddr = NULL;
864                 return ret;
865         }
866
867         *haddr = (void __iomem *)addr;
868         return 0;
869 }
870
871 /**
872  * create_hyp_exec_mappings - Map an executable range into HYP
873  * @phys_addr:  The physical start address which gets mapped
874  * @size:       Size of the region being mapped
875  * @haddr:      HYP VA for this mapping
876  */
877 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
878                              void **haddr)
879 {
880         unsigned long addr;
881         int ret;
882
883         BUG_ON(is_kernel_in_hyp_mode());
884
885         ret = __create_hyp_private_mapping(phys_addr, size,
886                                            &addr, PAGE_HYP_EXEC);
887         if (ret) {
888                 *haddr = NULL;
889                 return ret;
890         }
891
892         *haddr = (void *)addr;
893         return 0;
894 }
895
896 /**
897  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
898  * @kvm:        The KVM struct pointer for the VM.
899  *
900  * Allocates only the stage-2 HW PGD level table(s) of size defined by
901  * stage2_pgd_size(kvm).
902  *
903  * Note we don't need locking here as this is only called when the VM is
904  * created, which can only be done once.
905  */
906 int kvm_alloc_stage2_pgd(struct kvm *kvm)
907 {
908         phys_addr_t pgd_phys;
909         pgd_t *pgd;
910
911         if (kvm->arch.pgd != NULL) {
912                 kvm_err("kvm_arch already initialized?\n");
913                 return -EINVAL;
914         }
915
916         /* Allocate the HW PGD, making sure that each page gets its own refcount */
917         pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
918         if (!pgd)
919                 return -ENOMEM;
920
921         pgd_phys = virt_to_phys(pgd);
922         if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
923                 return -EINVAL;
924
925         kvm->arch.pgd = pgd;
926         kvm->arch.pgd_phys = pgd_phys;
927         return 0;
928 }
929
930 static void stage2_unmap_memslot(struct kvm *kvm,
931                                  struct kvm_memory_slot *memslot)
932 {
933         hva_t hva = memslot->userspace_addr;
934         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
935         phys_addr_t size = PAGE_SIZE * memslot->npages;
936         hva_t reg_end = hva + size;
937
938         /*
939          * A memory region could potentially cover multiple VMAs, and any holes
940          * between them, so iterate over all of them to find out if we should
941          * unmap any of them.
942          *
943          *     +--------------------------------------------+
944          * +---------------+----------------+   +----------------+
945          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
946          * +---------------+----------------+   +----------------+
947          *     |               memory region                |
948          *     +--------------------------------------------+
949          */
950         do {
951                 struct vm_area_struct *vma = find_vma(current->mm, hva);
952                 hva_t vm_start, vm_end;
953
954                 if (!vma || vma->vm_start >= reg_end)
955                         break;
956
957                 /*
958                  * Take the intersection of this VMA with the memory region
959                  */
960                 vm_start = max(hva, vma->vm_start);
961                 vm_end = min(reg_end, vma->vm_end);
962
963                 if (!(vma->vm_flags & VM_PFNMAP)) {
964                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
965                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
966                 }
967                 hva = vm_end;
968         } while (hva < reg_end);
969 }
970
971 /**
972  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
973  * @kvm: The struct kvm pointer
974  *
975  * Go through the memregions and unmap any reguler RAM
976  * backing memory already mapped to the VM.
977  */
978 void stage2_unmap_vm(struct kvm *kvm)
979 {
980         struct kvm_memslots *slots;
981         struct kvm_memory_slot *memslot;
982         int idx;
983
984         idx = srcu_read_lock(&kvm->srcu);
985         down_read(&current->mm->mmap_sem);
986         spin_lock(&kvm->mmu_lock);
987
988         slots = kvm_memslots(kvm);
989         kvm_for_each_memslot(memslot, slots)
990                 stage2_unmap_memslot(kvm, memslot);
991
992         spin_unlock(&kvm->mmu_lock);
993         up_read(&current->mm->mmap_sem);
994         srcu_read_unlock(&kvm->srcu, idx);
995 }
996
997 /**
998  * kvm_free_stage2_pgd - free all stage-2 tables
999  * @kvm:        The KVM struct pointer for the VM.
1000  *
1001  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
1002  * underlying level-2 and level-3 tables before freeing the actual level-1 table
1003  * and setting the struct pointer to NULL.
1004  */
1005 void kvm_free_stage2_pgd(struct kvm *kvm)
1006 {
1007         void *pgd = NULL;
1008
1009         spin_lock(&kvm->mmu_lock);
1010         if (kvm->arch.pgd) {
1011                 unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
1012                 pgd = READ_ONCE(kvm->arch.pgd);
1013                 kvm->arch.pgd = NULL;
1014                 kvm->arch.pgd_phys = 0;
1015         }
1016         spin_unlock(&kvm->mmu_lock);
1017
1018         /* Free the HW pgd, one page at a time */
1019         if (pgd)
1020                 free_pages_exact(pgd, stage2_pgd_size(kvm));
1021 }
1022
1023 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1024                              phys_addr_t addr)
1025 {
1026         pgd_t *pgd;
1027         pud_t *pud;
1028
1029         pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1030         if (stage2_pgd_none(kvm, *pgd)) {
1031                 if (!cache)
1032                         return NULL;
1033                 pud = mmu_memory_cache_alloc(cache);
1034                 stage2_pgd_populate(kvm, pgd, pud);
1035                 get_page(virt_to_page(pgd));
1036         }
1037
1038         return stage2_pud_offset(kvm, pgd, addr);
1039 }
1040
1041 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1042                              phys_addr_t addr)
1043 {
1044         pud_t *pud;
1045         pmd_t *pmd;
1046
1047         pud = stage2_get_pud(kvm, cache, addr);
1048         if (!pud || stage2_pud_huge(kvm, *pud))
1049                 return NULL;
1050
1051         if (stage2_pud_none(kvm, *pud)) {
1052                 if (!cache)
1053                         return NULL;
1054                 pmd = mmu_memory_cache_alloc(cache);
1055                 stage2_pud_populate(kvm, pud, pmd);
1056                 get_page(virt_to_page(pud));
1057         }
1058
1059         return stage2_pmd_offset(kvm, pud, addr);
1060 }
1061
1062 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1063                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
1064 {
1065         pmd_t *pmd, old_pmd;
1066
1067 retry:
1068         pmd = stage2_get_pmd(kvm, cache, addr);
1069         VM_BUG_ON(!pmd);
1070
1071         old_pmd = *pmd;
1072         /*
1073          * Multiple vcpus faulting on the same PMD entry, can
1074          * lead to them sequentially updating the PMD with the
1075          * same value. Following the break-before-make
1076          * (pmd_clear() followed by tlb_flush()) process can
1077          * hinder forward progress due to refaults generated
1078          * on missing translations.
1079          *
1080          * Skip updating the page table if the entry is
1081          * unchanged.
1082          */
1083         if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1084                 return 0;
1085
1086         if (pmd_present(old_pmd)) {
1087                 /*
1088                  * If we already have PTE level mapping for this block,
1089                  * we must unmap it to avoid inconsistent TLB state and
1090                  * leaking the table page. We could end up in this situation
1091                  * if the memory slot was marked for dirty logging and was
1092                  * reverted, leaving PTE level mappings for the pages accessed
1093                  * during the period. So, unmap the PTE level mapping for this
1094                  * block and retry, as we could have released the upper level
1095                  * table in the process.
1096                  *
1097                  * Normal THP split/merge follows mmu_notifier callbacks and do
1098                  * get handled accordingly.
1099                  */
1100                 if (!pmd_thp_or_huge(old_pmd)) {
1101                         unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
1102                         goto retry;
1103                 }
1104                 /*
1105                  * Mapping in huge pages should only happen through a
1106                  * fault.  If a page is merged into a transparent huge
1107                  * page, the individual subpages of that huge page
1108                  * should be unmapped through MMU notifiers before we
1109                  * get here.
1110                  *
1111                  * Merging of CompoundPages is not supported; they
1112                  * should become splitting first, unmapped, merged,
1113                  * and mapped back in on-demand.
1114                  */
1115                 WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1116                 pmd_clear(pmd);
1117                 kvm_tlb_flush_vmid_ipa(kvm, addr);
1118         } else {
1119                 get_page(virt_to_page(pmd));
1120         }
1121
1122         kvm_set_pmd(pmd, *new_pmd);
1123         return 0;
1124 }
1125
1126 static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1127                                phys_addr_t addr, const pud_t *new_pudp)
1128 {
1129         pud_t *pudp, old_pud;
1130
1131 retry:
1132         pudp = stage2_get_pud(kvm, cache, addr);
1133         VM_BUG_ON(!pudp);
1134
1135         old_pud = *pudp;
1136
1137         /*
1138          * A large number of vcpus faulting on the same stage 2 entry,
1139          * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
1140          * Skip updating the page tables if there is no change.
1141          */
1142         if (pud_val(old_pud) == pud_val(*new_pudp))
1143                 return 0;
1144
1145         if (stage2_pud_present(kvm, old_pud)) {
1146                 /*
1147                  * If we already have table level mapping for this block, unmap
1148                  * the range for this block and retry.
1149                  */
1150                 if (!stage2_pud_huge(kvm, old_pud)) {
1151                         unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
1152                         goto retry;
1153                 }
1154
1155                 WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1156                 stage2_pud_clear(kvm, pudp);
1157                 kvm_tlb_flush_vmid_ipa(kvm, addr);
1158         } else {
1159                 get_page(virt_to_page(pudp));
1160         }
1161
1162         kvm_set_pud(pudp, *new_pudp);
1163         return 0;
1164 }
1165
1166 /*
1167  * stage2_get_leaf_entry - walk the stage2 VM page tables and return
1168  * true if a valid and present leaf-entry is found. A pointer to the
1169  * leaf-entry is returned in the appropriate level variable - pudpp,
1170  * pmdpp, ptepp.
1171  */
1172 static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
1173                                   pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1174 {
1175         pud_t *pudp;
1176         pmd_t *pmdp;
1177         pte_t *ptep;
1178
1179         *pudpp = NULL;
1180         *pmdpp = NULL;
1181         *ptepp = NULL;
1182
1183         pudp = stage2_get_pud(kvm, NULL, addr);
1184         if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
1185                 return false;
1186
1187         if (stage2_pud_huge(kvm, *pudp)) {
1188                 *pudpp = pudp;
1189                 return true;
1190         }
1191
1192         pmdp = stage2_pmd_offset(kvm, pudp, addr);
1193         if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1194                 return false;
1195
1196         if (pmd_thp_or_huge(*pmdp)) {
1197                 *pmdpp = pmdp;
1198                 return true;
1199         }
1200
1201         ptep = pte_offset_kernel(pmdp, addr);
1202         if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1203                 return false;
1204
1205         *ptepp = ptep;
1206         return true;
1207 }
1208
1209 static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
1210 {
1211         pud_t *pudp;
1212         pmd_t *pmdp;
1213         pte_t *ptep;
1214         bool found;
1215
1216         found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
1217         if (!found)
1218                 return false;
1219
1220         if (pudp)
1221                 return kvm_s2pud_exec(pudp);
1222         else if (pmdp)
1223                 return kvm_s2pmd_exec(pmdp);
1224         else
1225                 return kvm_s2pte_exec(ptep);
1226 }
1227
1228 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1229                           phys_addr_t addr, const pte_t *new_pte,
1230                           unsigned long flags)
1231 {
1232         pud_t *pud;
1233         pmd_t *pmd;
1234         pte_t *pte, old_pte;
1235         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1236         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1237
1238         VM_BUG_ON(logging_active && !cache);
1239
1240         /* Create stage-2 page table mapping - Levels 0 and 1 */
1241         pud = stage2_get_pud(kvm, cache, addr);
1242         if (!pud) {
1243                 /*
1244                  * Ignore calls from kvm_set_spte_hva for unallocated
1245                  * address ranges.
1246                  */
1247                 return 0;
1248         }
1249
1250         /*
1251          * While dirty page logging - dissolve huge PUD, then continue
1252          * on to allocate page.
1253          */
1254         if (logging_active)
1255                 stage2_dissolve_pud(kvm, addr, pud);
1256
1257         if (stage2_pud_none(kvm, *pud)) {
1258                 if (!cache)
1259                         return 0; /* ignore calls from kvm_set_spte_hva */
1260                 pmd = mmu_memory_cache_alloc(cache);
1261                 stage2_pud_populate(kvm, pud, pmd);
1262                 get_page(virt_to_page(pud));
1263         }
1264
1265         pmd = stage2_pmd_offset(kvm, pud, addr);
1266         if (!pmd) {
1267                 /*
1268                  * Ignore calls from kvm_set_spte_hva for unallocated
1269                  * address ranges.
1270                  */
1271                 return 0;
1272         }
1273
1274         /*
1275          * While dirty page logging - dissolve huge PMD, then continue on to
1276          * allocate page.
1277          */
1278         if (logging_active)
1279                 stage2_dissolve_pmd(kvm, addr, pmd);
1280
1281         /* Create stage-2 page mappings - Level 2 */
1282         if (pmd_none(*pmd)) {
1283                 if (!cache)
1284                         return 0; /* ignore calls from kvm_set_spte_hva */
1285                 pte = mmu_memory_cache_alloc(cache);
1286                 kvm_pmd_populate(pmd, pte);
1287                 get_page(virt_to_page(pmd));
1288         }
1289
1290         pte = pte_offset_kernel(pmd, addr);
1291
1292         if (iomap && pte_present(*pte))
1293                 return -EFAULT;
1294
1295         /* Create 2nd stage page table mapping - Level 3 */
1296         old_pte = *pte;
1297         if (pte_present(old_pte)) {
1298                 /* Skip page table update if there is no change */
1299                 if (pte_val(old_pte) == pte_val(*new_pte))
1300                         return 0;
1301
1302                 kvm_set_pte(pte, __pte(0));
1303                 kvm_tlb_flush_vmid_ipa(kvm, addr);
1304         } else {
1305                 get_page(virt_to_page(pte));
1306         }
1307
1308         kvm_set_pte(pte, *new_pte);
1309         return 0;
1310 }
1311
1312 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1313 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1314 {
1315         if (pte_young(*pte)) {
1316                 *pte = pte_mkold(*pte);
1317                 return 1;
1318         }
1319         return 0;
1320 }
1321 #else
1322 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1323 {
1324         return __ptep_test_and_clear_young(pte);
1325 }
1326 #endif
1327
1328 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1329 {
1330         return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1331 }
1332
1333 static int stage2_pudp_test_and_clear_young(pud_t *pud)
1334 {
1335         return stage2_ptep_test_and_clear_young((pte_t *)pud);
1336 }
1337
1338 /**
1339  * kvm_phys_addr_ioremap - map a device range to guest IPA
1340  *
1341  * @kvm:        The KVM pointer
1342  * @guest_ipa:  The IPA at which to insert the mapping
1343  * @pa:         The physical address of the device
1344  * @size:       The size of the mapping
1345  */
1346 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1347                           phys_addr_t pa, unsigned long size, bool writable)
1348 {
1349         phys_addr_t addr, end;
1350         int ret = 0;
1351         unsigned long pfn;
1352         struct kvm_mmu_memory_cache cache = { 0, };
1353
1354         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1355         pfn = __phys_to_pfn(pa);
1356
1357         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1358                 pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1359
1360                 if (writable)
1361                         pte = kvm_s2pte_mkwrite(pte);
1362
1363                 ret = mmu_topup_memory_cache(&cache,
1364                                              kvm_mmu_cache_min_pages(kvm),
1365                                              KVM_NR_MEM_OBJS);
1366                 if (ret)
1367                         goto out;
1368                 spin_lock(&kvm->mmu_lock);
1369                 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1370                                                 KVM_S2PTE_FLAG_IS_IOMAP);
1371                 spin_unlock(&kvm->mmu_lock);
1372                 if (ret)
1373                         goto out;
1374
1375                 pfn++;
1376         }
1377
1378 out:
1379         mmu_free_memory_cache(&cache);
1380         return ret;
1381 }
1382
1383 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1384 {
1385         kvm_pfn_t pfn = *pfnp;
1386         gfn_t gfn = *ipap >> PAGE_SHIFT;
1387         struct page *page = pfn_to_page(pfn);
1388
1389         /*
1390          * PageTransCompoundMap() returns true for THP and
1391          * hugetlbfs. Make sure the adjustment is done only for THP
1392          * pages.
1393          */
1394         if (!PageHuge(page) && PageTransCompoundMap(page)) {
1395                 unsigned long mask;
1396                 /*
1397                  * The address we faulted on is backed by a transparent huge
1398                  * page.  However, because we map the compound huge page and
1399                  * not the individual tail page, we need to transfer the
1400                  * refcount to the head page.  We have to be careful that the
1401                  * THP doesn't start to split while we are adjusting the
1402                  * refcounts.
1403                  *
1404                  * We are sure this doesn't happen, because mmu_notifier_retry
1405                  * was successful and we are holding the mmu_lock, so if this
1406                  * THP is trying to split, it will be blocked in the mmu
1407                  * notifier before touching any of the pages, specifically
1408                  * before being able to call __split_huge_page_refcount().
1409                  *
1410                  * We can therefore safely transfer the refcount from PG_tail
1411                  * to PG_head and switch the pfn from a tail page to the head
1412                  * page accordingly.
1413                  */
1414                 mask = PTRS_PER_PMD - 1;
1415                 VM_BUG_ON((gfn & mask) != (pfn & mask));
1416                 if (pfn & mask) {
1417                         *ipap &= PMD_MASK;
1418                         kvm_release_pfn_clean(pfn);
1419                         pfn &= ~mask;
1420                         kvm_get_pfn(pfn);
1421                         *pfnp = pfn;
1422                 }
1423
1424                 return true;
1425         }
1426
1427         return false;
1428 }
1429
1430 /**
1431  * stage2_wp_ptes - write protect PMD range
1432  * @pmd:        pointer to pmd entry
1433  * @addr:       range start address
1434  * @end:        range end address
1435  */
1436 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1437 {
1438         pte_t *pte;
1439
1440         pte = pte_offset_kernel(pmd, addr);
1441         do {
1442                 if (!pte_none(*pte)) {
1443                         if (!kvm_s2pte_readonly(pte))
1444                                 kvm_set_s2pte_readonly(pte);
1445                 }
1446         } while (pte++, addr += PAGE_SIZE, addr != end);
1447 }
1448
1449 /**
1450  * stage2_wp_pmds - write protect PUD range
1451  * kvm:         kvm instance for the VM
1452  * @pud:        pointer to pud entry
1453  * @addr:       range start address
1454  * @end:        range end address
1455  */
1456 static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
1457                            phys_addr_t addr, phys_addr_t end)
1458 {
1459         pmd_t *pmd;
1460         phys_addr_t next;
1461
1462         pmd = stage2_pmd_offset(kvm, pud, addr);
1463
1464         do {
1465                 next = stage2_pmd_addr_end(kvm, addr, end);
1466                 if (!pmd_none(*pmd)) {
1467                         if (pmd_thp_or_huge(*pmd)) {
1468                                 if (!kvm_s2pmd_readonly(pmd))
1469                                         kvm_set_s2pmd_readonly(pmd);
1470                         } else {
1471                                 stage2_wp_ptes(pmd, addr, next);
1472                         }
1473                 }
1474         } while (pmd++, addr = next, addr != end);
1475 }
1476
1477 /**
1478  * stage2_wp_puds - write protect PGD range
1479  * @pgd:        pointer to pgd entry
1480  * @addr:       range start address
1481  * @end:        range end address
1482  */
1483 static void  stage2_wp_puds(struct kvm *kvm, pgd_t *pgd,
1484                             phys_addr_t addr, phys_addr_t end)
1485 {
1486         pud_t *pud;
1487         phys_addr_t next;
1488
1489         pud = stage2_pud_offset(kvm, pgd, addr);
1490         do {
1491                 next = stage2_pud_addr_end(kvm, addr, end);
1492                 if (!stage2_pud_none(kvm, *pud)) {
1493                         if (stage2_pud_huge(kvm, *pud)) {
1494                                 if (!kvm_s2pud_readonly(pud))
1495                                         kvm_set_s2pud_readonly(pud);
1496                         } else {
1497                                 stage2_wp_pmds(kvm, pud, addr, next);
1498                         }
1499                 }
1500         } while (pud++, addr = next, addr != end);
1501 }
1502
1503 /**
1504  * stage2_wp_range() - write protect stage2 memory region range
1505  * @kvm:        The KVM pointer
1506  * @addr:       Start address of range
1507  * @end:        End address of range
1508  */
1509 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1510 {
1511         pgd_t *pgd;
1512         phys_addr_t next;
1513
1514         pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1515         do {
1516                 /*
1517                  * Release kvm_mmu_lock periodically if the memory region is
1518                  * large. Otherwise, we may see kernel panics with
1519                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1520                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1521                  * will also starve other vCPUs. We have to also make sure
1522                  * that the page tables are not freed while we released
1523                  * the lock.
1524                  */
1525                 cond_resched_lock(&kvm->mmu_lock);
1526                 if (!READ_ONCE(kvm->arch.pgd))
1527                         break;
1528                 next = stage2_pgd_addr_end(kvm, addr, end);
1529                 if (stage2_pgd_present(kvm, *pgd))
1530                         stage2_wp_puds(kvm, pgd, addr, next);
1531         } while (pgd++, addr = next, addr != end);
1532 }
1533
1534 /**
1535  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1536  * @kvm:        The KVM pointer
1537  * @slot:       The memory slot to write protect
1538  *
1539  * Called to start logging dirty pages after memory region
1540  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1541  * all present PUD, PMD and PTEs are write protected in the memory region.
1542  * Afterwards read of dirty page log can be called.
1543  *
1544  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1545  * serializing operations for VM memory regions.
1546  */
1547 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1548 {
1549         struct kvm_memslots *slots = kvm_memslots(kvm);
1550         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1551         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1552         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1553
1554         spin_lock(&kvm->mmu_lock);
1555         stage2_wp_range(kvm, start, end);
1556         spin_unlock(&kvm->mmu_lock);
1557         kvm_flush_remote_tlbs(kvm);
1558 }
1559
1560 /**
1561  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1562  * @kvm:        The KVM pointer
1563  * @slot:       The memory slot associated with mask
1564  * @gfn_offset: The gfn offset in memory slot
1565  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1566  *              slot to be write protected
1567  *
1568  * Walks bits set in mask write protects the associated pte's. Caller must
1569  * acquire kvm_mmu_lock.
1570  */
1571 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1572                 struct kvm_memory_slot *slot,
1573                 gfn_t gfn_offset, unsigned long mask)
1574 {
1575         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1576         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1577         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1578
1579         stage2_wp_range(kvm, start, end);
1580 }
1581
1582 /*
1583  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1584  * dirty pages.
1585  *
1586  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1587  * enable dirty logging for them.
1588  */
1589 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1590                 struct kvm_memory_slot *slot,
1591                 gfn_t gfn_offset, unsigned long mask)
1592 {
1593         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1594 }
1595
1596 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1597 {
1598         __clean_dcache_guest_page(pfn, size);
1599 }
1600
1601 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1602 {
1603         __invalidate_icache_guest_page(pfn, size);
1604 }
1605
1606 static void kvm_send_hwpoison_signal(unsigned long address,
1607                                      struct vm_area_struct *vma)
1608 {
1609         short lsb;
1610
1611         if (is_vm_hugetlb_page(vma))
1612                 lsb = huge_page_shift(hstate_vma(vma));
1613         else
1614                 lsb = PAGE_SHIFT;
1615
1616         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1617 }
1618
1619 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1620                                                unsigned long hva,
1621                                                unsigned long map_size)
1622 {
1623         gpa_t gpa_start;
1624         hva_t uaddr_start, uaddr_end;
1625         size_t size;
1626
1627         size = memslot->npages * PAGE_SIZE;
1628
1629         gpa_start = memslot->base_gfn << PAGE_SHIFT;
1630
1631         uaddr_start = memslot->userspace_addr;
1632         uaddr_end = uaddr_start + size;
1633
1634         /*
1635          * Pages belonging to memslots that don't have the same alignment
1636          * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1637          * PMD/PUD entries, because we'll end up mapping the wrong pages.
1638          *
1639          * Consider a layout like the following:
1640          *
1641          *    memslot->userspace_addr:
1642          *    +-----+--------------------+--------------------+---+
1643          *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1644          *    +-----+--------------------+--------------------+---+
1645          *
1646          *    memslot->base_gfn << PAGE_SIZE:
1647          *      +---+--------------------+--------------------+-----+
1648          *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1649          *      +---+--------------------+--------------------+-----+
1650          *
1651          * If we create those stage-2 blocks, we'll end up with this incorrect
1652          * mapping:
1653          *   d -> f
1654          *   e -> g
1655          *   f -> h
1656          */
1657         if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1658                 return false;
1659
1660         /*
1661          * Next, let's make sure we're not trying to map anything not covered
1662          * by the memslot. This means we have to prohibit block size mappings
1663          * for the beginning and end of a non-block aligned and non-block sized
1664          * memory slot (illustrated by the head and tail parts of the
1665          * userspace view above containing pages 'abcde' and 'xyz',
1666          * respectively).
1667          *
1668          * Note that it doesn't matter if we do the check using the
1669          * userspace_addr or the base_gfn, as both are equally aligned (per
1670          * the check above) and equally sized.
1671          */
1672         return (hva & ~(map_size - 1)) >= uaddr_start &&
1673                (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1674 }
1675
1676 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1677                           struct kvm_memory_slot *memslot, unsigned long hva,
1678                           unsigned long fault_status)
1679 {
1680         int ret;
1681         bool write_fault, writable, force_pte = false;
1682         bool exec_fault, needs_exec;
1683         unsigned long mmu_seq;
1684         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1685         struct kvm *kvm = vcpu->kvm;
1686         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1687         struct vm_area_struct *vma;
1688         kvm_pfn_t pfn;
1689         pgprot_t mem_type = PAGE_S2;
1690         bool logging_active = memslot_is_logging(memslot);
1691         unsigned long vma_pagesize, flags = 0;
1692
1693         write_fault = kvm_is_write_fault(vcpu);
1694         exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1695         VM_BUG_ON(write_fault && exec_fault);
1696
1697         if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1698                 kvm_err("Unexpected L2 read permission error\n");
1699                 return -EFAULT;
1700         }
1701
1702         /* Let's check if we will get back a huge page backed by hugetlbfs */
1703         down_read(&current->mm->mmap_sem);
1704         vma = find_vma_intersection(current->mm, hva, hva + 1);
1705         if (unlikely(!vma)) {
1706                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1707                 up_read(&current->mm->mmap_sem);
1708                 return -EFAULT;
1709         }
1710
1711         vma_pagesize = vma_kernel_pagesize(vma);
1712         if (logging_active ||
1713             !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
1714                 force_pte = true;
1715                 vma_pagesize = PAGE_SIZE;
1716         }
1717
1718         /*
1719          * The stage2 has a minimum of 2 level table (For arm64 see
1720          * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
1721          * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
1722          * As for PUD huge maps, we must make sure that we have at least
1723          * 3 levels, i.e, PMD is not folded.
1724          */
1725         if (vma_pagesize == PMD_SIZE ||
1726             (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1727                 gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1728         up_read(&current->mm->mmap_sem);
1729
1730         /* We need minimum second+third level pages */
1731         ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
1732                                      KVM_NR_MEM_OBJS);
1733         if (ret)
1734                 return ret;
1735
1736         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1737         /*
1738          * Ensure the read of mmu_notifier_seq happens before we call
1739          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1740          * the page we just got a reference to gets unmapped before we have a
1741          * chance to grab the mmu_lock, which ensure that if the page gets
1742          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1743          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1744          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1745          */
1746         smp_rmb();
1747
1748         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1749         if (pfn == KVM_PFN_ERR_HWPOISON) {
1750                 kvm_send_hwpoison_signal(hva, vma);
1751                 return 0;
1752         }
1753         if (is_error_noslot_pfn(pfn))
1754                 return -EFAULT;
1755
1756         if (kvm_is_device_pfn(pfn)) {
1757                 mem_type = PAGE_S2_DEVICE;
1758                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1759         } else if (logging_active) {
1760                 /*
1761                  * Faults on pages in a memslot with logging enabled
1762                  * should not be mapped with huge pages (it introduces churn
1763                  * and performance degradation), so force a pte mapping.
1764                  */
1765                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1766
1767                 /*
1768                  * Only actually map the page as writable if this was a write
1769                  * fault.
1770                  */
1771                 if (!write_fault)
1772                         writable = false;
1773         }
1774
1775         spin_lock(&kvm->mmu_lock);
1776         if (mmu_notifier_retry(kvm, mmu_seq))
1777                 goto out_unlock;
1778
1779         if (vma_pagesize == PAGE_SIZE && !force_pte) {
1780                 /*
1781                  * Only PMD_SIZE transparent hugepages(THP) are
1782                  * currently supported. This code will need to be
1783                  * updated to support other THP sizes.
1784                  *
1785                  * Make sure the host VA and the guest IPA are sufficiently
1786                  * aligned and that the block is contained within the memslot.
1787                  */
1788                 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
1789                     transparent_hugepage_adjust(&pfn, &fault_ipa))
1790                         vma_pagesize = PMD_SIZE;
1791         }
1792
1793         if (writable)
1794                 kvm_set_pfn_dirty(pfn);
1795
1796         if (fault_status != FSC_PERM)
1797                 clean_dcache_guest_page(pfn, vma_pagesize);
1798
1799         if (exec_fault)
1800                 invalidate_icache_guest_page(pfn, vma_pagesize);
1801
1802         /*
1803          * If we took an execution fault we have made the
1804          * icache/dcache coherent above and should now let the s2
1805          * mapping be executable.
1806          *
1807          * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1808          * execute permissions, and we preserve whatever we have.
1809          */
1810         needs_exec = exec_fault ||
1811                 (fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));
1812
1813         if (vma_pagesize == PUD_SIZE) {
1814                 pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
1815
1816                 new_pud = kvm_pud_mkhuge(new_pud);
1817                 if (writable)
1818                         new_pud = kvm_s2pud_mkwrite(new_pud);
1819
1820                 if (needs_exec)
1821                         new_pud = kvm_s2pud_mkexec(new_pud);
1822
1823                 ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
1824         } else if (vma_pagesize == PMD_SIZE) {
1825                 pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
1826
1827                 new_pmd = kvm_pmd_mkhuge(new_pmd);
1828
1829                 if (writable)
1830                         new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1831
1832                 if (needs_exec)
1833                         new_pmd = kvm_s2pmd_mkexec(new_pmd);
1834
1835                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1836         } else {
1837                 pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1838
1839                 if (writable) {
1840                         new_pte = kvm_s2pte_mkwrite(new_pte);
1841                         mark_page_dirty(kvm, gfn);
1842                 }
1843
1844                 if (needs_exec)
1845                         new_pte = kvm_s2pte_mkexec(new_pte);
1846
1847                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1848         }
1849
1850 out_unlock:
1851         spin_unlock(&kvm->mmu_lock);
1852         kvm_set_pfn_accessed(pfn);
1853         kvm_release_pfn_clean(pfn);
1854         return ret;
1855 }
1856
1857 /*
1858  * Resolve the access fault by making the page young again.
1859  * Note that because the faulting entry is guaranteed not to be
1860  * cached in the TLB, we don't need to invalidate anything.
1861  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1862  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1863  */
1864 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1865 {
1866         pud_t *pud;
1867         pmd_t *pmd;
1868         pte_t *pte;
1869         kvm_pfn_t pfn;
1870         bool pfn_valid = false;
1871
1872         trace_kvm_access_fault(fault_ipa);
1873
1874         spin_lock(&vcpu->kvm->mmu_lock);
1875
1876         if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
1877                 goto out;
1878
1879         if (pud) {              /* HugeTLB */
1880                 *pud = kvm_s2pud_mkyoung(*pud);
1881                 pfn = kvm_pud_pfn(*pud);
1882                 pfn_valid = true;
1883         } else  if (pmd) {      /* THP, HugeTLB */
1884                 *pmd = pmd_mkyoung(*pmd);
1885                 pfn = pmd_pfn(*pmd);
1886                 pfn_valid = true;
1887         } else {
1888                 *pte = pte_mkyoung(*pte);       /* Just a page... */
1889                 pfn = pte_pfn(*pte);
1890                 pfn_valid = true;
1891         }
1892
1893 out:
1894         spin_unlock(&vcpu->kvm->mmu_lock);
1895         if (pfn_valid)
1896                 kvm_set_pfn_accessed(pfn);
1897 }
1898
1899 /**
1900  * kvm_handle_guest_abort - handles all 2nd stage aborts
1901  * @vcpu:       the VCPU pointer
1902  * @run:        the kvm_run structure
1903  *
1904  * Any abort that gets to the host is almost guaranteed to be caused by a
1905  * missing second stage translation table entry, which can mean that either the
1906  * guest simply needs more memory and we must allocate an appropriate page or it
1907  * can mean that the guest tried to access I/O memory, which is emulated by user
1908  * space. The distinction is based on the IPA causing the fault and whether this
1909  * memory region has been registered as standard RAM by user space.
1910  */
1911 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1912 {
1913         unsigned long fault_status;
1914         phys_addr_t fault_ipa;
1915         struct kvm_memory_slot *memslot;
1916         unsigned long hva;
1917         bool is_iabt, write_fault, writable;
1918         gfn_t gfn;
1919         int ret, idx;
1920
1921         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1922
1923         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1924         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1925
1926         /* Synchronous External Abort? */
1927         if (kvm_vcpu_dabt_isextabt(vcpu)) {
1928                 /*
1929                  * For RAS the host kernel may handle this abort.
1930                  * There is no need to pass the error into the guest.
1931                  */
1932                 if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1933                         return 1;
1934
1935                 if (unlikely(!is_iabt)) {
1936                         kvm_inject_vabt(vcpu);
1937                         return 1;
1938                 }
1939         }
1940
1941         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1942                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1943
1944         /* Check the stage-2 fault is trans. fault or write fault */
1945         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1946             fault_status != FSC_ACCESS) {
1947                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1948                         kvm_vcpu_trap_get_class(vcpu),
1949                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1950                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1951                 return -EFAULT;
1952         }
1953
1954         idx = srcu_read_lock(&vcpu->kvm->srcu);
1955
1956         gfn = fault_ipa >> PAGE_SHIFT;
1957         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1958         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1959         write_fault = kvm_is_write_fault(vcpu);
1960         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1961                 if (is_iabt) {
1962                         /* Prefetch Abort on I/O address */
1963                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1964                         ret = 1;
1965                         goto out_unlock;
1966                 }
1967
1968                 /*
1969                  * Check for a cache maintenance operation. Since we
1970                  * ended-up here, we know it is outside of any memory
1971                  * slot. But we can't find out if that is for a device,
1972                  * or if the guest is just being stupid. The only thing
1973                  * we know for sure is that this range cannot be cached.
1974                  *
1975                  * So let's assume that the guest is just being
1976                  * cautious, and skip the instruction.
1977                  */
1978                 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1979                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1980                         ret = 1;
1981                         goto out_unlock;
1982                 }
1983
1984                 /*
1985                  * The IPA is reported as [MAX:12], so we need to
1986                  * complement it with the bottom 12 bits from the
1987                  * faulting VA. This is always 12 bits, irrespective
1988                  * of the page size.
1989                  */
1990                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1991                 ret = io_mem_abort(vcpu, run, fault_ipa);
1992                 goto out_unlock;
1993         }
1994
1995         /* Userspace should not be able to register out-of-bounds IPAs */
1996         VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1997
1998         if (fault_status == FSC_ACCESS) {
1999                 handle_access_fault(vcpu, fault_ipa);
2000                 ret = 1;
2001                 goto out_unlock;
2002         }
2003
2004         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
2005         if (ret == 0)
2006                 ret = 1;
2007 out_unlock:
2008         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2009         return ret;
2010 }
2011
2012 static int handle_hva_to_gpa(struct kvm *kvm,
2013                              unsigned long start,
2014                              unsigned long end,
2015                              int (*handler)(struct kvm *kvm,
2016                                             gpa_t gpa, u64 size,
2017                                             void *data),
2018                              void *data)
2019 {
2020         struct kvm_memslots *slots;
2021         struct kvm_memory_slot *memslot;
2022         int ret = 0;
2023
2024         slots = kvm_memslots(kvm);
2025
2026         /* we only care about the pages that the guest sees */
2027         kvm_for_each_memslot(memslot, slots) {
2028                 unsigned long hva_start, hva_end;
2029                 gfn_t gpa;
2030
2031                 hva_start = max(start, memslot->userspace_addr);
2032                 hva_end = min(end, memslot->userspace_addr +
2033                                         (memslot->npages << PAGE_SHIFT));
2034                 if (hva_start >= hva_end)
2035                         continue;
2036
2037                 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
2038                 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2039         }
2040
2041         return ret;
2042 }
2043
2044 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2045 {
2046         unmap_stage2_range(kvm, gpa, size);
2047         return 0;
2048 }
2049
2050 int kvm_unmap_hva_range(struct kvm *kvm,
2051                         unsigned long start, unsigned long end)
2052 {
2053         if (!kvm->arch.pgd)
2054                 return 0;
2055
2056         trace_kvm_unmap_hva_range(start, end);
2057         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
2058         return 0;
2059 }
2060
2061 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2062 {
2063         pte_t *pte = (pte_t *)data;
2064
2065         WARN_ON(size != PAGE_SIZE);
2066         /*
2067          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
2068          * flag clear because MMU notifiers will have unmapped a huge PMD before
2069          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
2070          * therefore stage2_set_pte() never needs to clear out a huge PMD
2071          * through this calling path.
2072          */
2073         stage2_set_pte(kvm, NULL, gpa, pte, 0);
2074         return 0;
2075 }
2076
2077
2078 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2079 {
2080         unsigned long end = hva + PAGE_SIZE;
2081         kvm_pfn_t pfn = pte_pfn(pte);
2082         pte_t stage2_pte;
2083
2084         if (!kvm->arch.pgd)
2085                 return 0;
2086
2087         trace_kvm_set_spte_hva(hva);
2088
2089         /*
2090          * We've moved a page around, probably through CoW, so let's treat it
2091          * just like a translation fault and clean the cache to the PoC.
2092          */
2093         clean_dcache_guest_page(pfn, PAGE_SIZE);
2094         stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2095         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2096
2097         return 0;
2098 }
2099
2100 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2101 {
2102         pud_t *pud;
2103         pmd_t *pmd;
2104         pte_t *pte;
2105
2106         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2107         if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2108                 return 0;
2109
2110         if (pud)
2111                 return stage2_pudp_test_and_clear_young(pud);
2112         else if (pmd)
2113                 return stage2_pmdp_test_and_clear_young(pmd);
2114         else
2115                 return stage2_ptep_test_and_clear_young(pte);
2116 }
2117
2118 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2119 {
2120         pud_t *pud;
2121         pmd_t *pmd;
2122         pte_t *pte;
2123
2124         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2125         if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2126                 return 0;
2127
2128         if (pud)
2129                 return kvm_s2pud_young(*pud);
2130         else if (pmd)
2131                 return pmd_young(*pmd);
2132         else
2133                 return pte_young(*pte);
2134 }
2135
2136 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2137 {
2138         if (!kvm->arch.pgd)
2139                 return 0;
2140         trace_kvm_age_hva(start, end);
2141         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
2142 }
2143
2144 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2145 {
2146         if (!kvm->arch.pgd)
2147                 return 0;
2148         trace_kvm_test_age_hva(hva);
2149         return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
2150 }
2151
2152 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
2153 {
2154         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
2155 }
2156
2157 phys_addr_t kvm_mmu_get_httbr(void)
2158 {
2159         if (__kvm_cpu_uses_extended_idmap())
2160                 return virt_to_phys(merged_hyp_pgd);
2161         else
2162                 return virt_to_phys(hyp_pgd);
2163 }
2164
2165 phys_addr_t kvm_get_idmap_vector(void)
2166 {
2167         return hyp_idmap_vector;
2168 }
2169
2170 static int kvm_map_idmap_text(pgd_t *pgd)
2171 {
2172         int err;
2173
2174         /* Create the idmap in the boot page tables */
2175         err =   __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2176                                       hyp_idmap_start, hyp_idmap_end,
2177                                       __phys_to_pfn(hyp_idmap_start),
2178                                       PAGE_HYP_EXEC);
2179         if (err)
2180                 kvm_err("Failed to idmap %lx-%lx\n",
2181                         hyp_idmap_start, hyp_idmap_end);
2182
2183         return err;
2184 }
2185
2186 int kvm_mmu_init(void)
2187 {
2188         int err;
2189
2190         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
2191         hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2192         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
2193         hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2194         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
2195
2196         /*
2197          * We rely on the linker script to ensure at build time that the HYP
2198          * init code does not cross a page boundary.
2199          */
2200         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2201
2202         kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2203         kvm_debug("HYP VA range: %lx:%lx\n",
2204                   kern_hyp_va(PAGE_OFFSET),
2205                   kern_hyp_va((unsigned long)high_memory - 1));
2206
2207         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2208             hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2209             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2210                 /*
2211                  * The idmap page is intersecting with the VA space,
2212                  * it is not safe to continue further.
2213                  */
2214                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2215                 err = -EINVAL;
2216                 goto out;
2217         }
2218
2219         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2220         if (!hyp_pgd) {
2221                 kvm_err("Hyp mode PGD not allocated\n");
2222                 err = -ENOMEM;
2223                 goto out;
2224         }
2225
2226         if (__kvm_cpu_uses_extended_idmap()) {
2227                 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2228                                                          hyp_pgd_order);
2229                 if (!boot_hyp_pgd) {
2230                         kvm_err("Hyp boot PGD not allocated\n");
2231                         err = -ENOMEM;
2232                         goto out;
2233                 }
2234
2235                 err = kvm_map_idmap_text(boot_hyp_pgd);
2236                 if (err)
2237                         goto out;
2238
2239                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2240                 if (!merged_hyp_pgd) {
2241                         kvm_err("Failed to allocate extra HYP pgd\n");
2242                         goto out;
2243                 }
2244                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2245                                     hyp_idmap_start);
2246         } else {
2247                 err = kvm_map_idmap_text(hyp_pgd);
2248                 if (err)
2249                         goto out;
2250         }
2251
2252         io_map_base = hyp_idmap_start;
2253         return 0;
2254 out:
2255         free_hyp_pgds();
2256         return err;
2257 }
2258
2259 void kvm_arch_commit_memory_region(struct kvm *kvm,
2260                                    const struct kvm_userspace_memory_region *mem,
2261                                    const struct kvm_memory_slot *old,
2262                                    const struct kvm_memory_slot *new,
2263                                    enum kvm_mr_change change)
2264 {
2265         /*
2266          * At this point memslot has been committed and there is an
2267          * allocated dirty_bitmap[], dirty pages will be be tracked while the
2268          * memory slot is write protected.
2269          */
2270         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
2271                 kvm_mmu_wp_memory_region(kvm, mem->slot);
2272 }
2273
2274 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2275                                    struct kvm_memory_slot *memslot,
2276                                    const struct kvm_userspace_memory_region *mem,
2277                                    enum kvm_mr_change change)
2278 {
2279         hva_t hva = mem->userspace_addr;
2280         hva_t reg_end = hva + mem->memory_size;
2281         bool writable = !(mem->flags & KVM_MEM_READONLY);
2282         int ret = 0;
2283
2284         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2285                         change != KVM_MR_FLAGS_ONLY)
2286                 return 0;
2287
2288         /*
2289          * Prevent userspace from creating a memory region outside of the IPA
2290          * space addressable by the KVM guest IPA space.
2291          */
2292         if (memslot->base_gfn + memslot->npages >=
2293             (kvm_phys_size(kvm) >> PAGE_SHIFT))
2294                 return -EFAULT;
2295
2296         down_read(&current->mm->mmap_sem);
2297         /*
2298          * A memory region could potentially cover multiple VMAs, and any holes
2299          * between them, so iterate over all of them to find out if we can map
2300          * any of them right now.
2301          *
2302          *     +--------------------------------------------+
2303          * +---------------+----------------+   +----------------+
2304          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2305          * +---------------+----------------+   +----------------+
2306          *     |               memory region                |
2307          *     +--------------------------------------------+
2308          */
2309         do {
2310                 struct vm_area_struct *vma = find_vma(current->mm, hva);
2311                 hva_t vm_start, vm_end;
2312
2313                 if (!vma || vma->vm_start >= reg_end)
2314                         break;
2315
2316                 /*
2317                  * Mapping a read-only VMA is only allowed if the
2318                  * memory region is configured as read-only.
2319                  */
2320                 if (writable && !(vma->vm_flags & VM_WRITE)) {
2321                         ret = -EPERM;
2322                         break;
2323                 }
2324
2325                 /*
2326                  * Take the intersection of this VMA with the memory region
2327                  */
2328                 vm_start = max(hva, vma->vm_start);
2329                 vm_end = min(reg_end, vma->vm_end);
2330
2331                 if (vma->vm_flags & VM_PFNMAP) {
2332                         gpa_t gpa = mem->guest_phys_addr +
2333                                     (vm_start - mem->userspace_addr);
2334                         phys_addr_t pa;
2335
2336                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2337                         pa += vm_start - vma->vm_start;
2338
2339                         /* IO region dirty page logging not allowed */
2340                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2341                                 ret = -EINVAL;
2342                                 goto out;
2343                         }
2344
2345                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2346                                                     vm_end - vm_start,
2347                                                     writable);
2348                         if (ret)
2349                                 break;
2350                 }
2351                 hva = vm_end;
2352         } while (hva < reg_end);
2353
2354         if (change == KVM_MR_FLAGS_ONLY)
2355                 goto out;
2356
2357         spin_lock(&kvm->mmu_lock);
2358         if (ret)
2359                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2360         else
2361                 stage2_flush_memslot(kvm, memslot);
2362         spin_unlock(&kvm->mmu_lock);
2363 out:
2364         up_read(&current->mm->mmap_sem);
2365         return ret;
2366 }
2367
2368 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
2369                            struct kvm_memory_slot *dont)
2370 {
2371 }
2372
2373 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2374                             unsigned long npages)
2375 {
2376         return 0;
2377 }
2378
2379 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2380 {
2381 }
2382
2383 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2384 {
2385         kvm_free_stage2_pgd(kvm);
2386 }
2387
2388 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2389                                    struct kvm_memory_slot *slot)
2390 {
2391         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2392         phys_addr_t size = slot->npages << PAGE_SHIFT;
2393
2394         spin_lock(&kvm->mmu_lock);
2395         unmap_stage2_range(kvm, gpa, size);
2396         spin_unlock(&kvm->mmu_lock);
2397 }
2398
2399 /*
2400  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2401  *
2402  * Main problems:
2403  * - S/W ops are local to a CPU (not broadcast)
2404  * - We have line migration behind our back (speculation)
2405  * - System caches don't support S/W at all (damn!)
2406  *
2407  * In the face of the above, the best we can do is to try and convert
2408  * S/W ops to VA ops. Because the guest is not allowed to infer the
2409  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2410  * which is a rather good thing for us.
2411  *
2412  * Also, it is only used when turning caches on/off ("The expected
2413  * usage of the cache maintenance instructions that operate by set/way
2414  * is associated with the cache maintenance instructions associated
2415  * with the powerdown and powerup of caches, if this is required by
2416  * the implementation.").
2417  *
2418  * We use the following policy:
2419  *
2420  * - If we trap a S/W operation, we enable VM trapping to detect
2421  *   caches being turned on/off, and do a full clean.
2422  *
2423  * - We flush the caches on both caches being turned on and off.
2424  *
2425  * - Once the caches are enabled, we stop trapping VM ops.
2426  */
2427 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2428 {
2429         unsigned long hcr = *vcpu_hcr(vcpu);
2430
2431         /*
2432          * If this is the first time we do a S/W operation
2433          * (i.e. HCR_TVM not set) flush the whole memory, and set the
2434          * VM trapping.
2435          *
2436          * Otherwise, rely on the VM trapping to wait for the MMU +
2437          * Caches to be turned off. At that point, we'll be able to
2438          * clean the caches again.
2439          */
2440         if (!(hcr & HCR_TVM)) {
2441                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2442                                         vcpu_has_cache_enabled(vcpu));
2443                 stage2_flush_vm(vcpu->kvm);
2444                 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2445         }
2446 }
2447
2448 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2449 {
2450         bool now_enabled = vcpu_has_cache_enabled(vcpu);
2451
2452         /*
2453          * If switching the MMU+caches on, need to invalidate the caches.
2454          * If switching it off, need to clean the caches.
2455          * Clean + invalidate does the trick always.
2456          */
2457         if (now_enabled != was_enabled)
2458                 stage2_flush_vm(vcpu->kvm);
2459
2460         /* Caches are now on, stop trapping VM ops (until a S/W op) */
2461         if (now_enabled)
2462                 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2463
2464         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2465 }