Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[linux-2.6-microblaze.git] / virt / kvm / arm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/virt.h>
32 #include <asm/system_misc.h>
33
34 #include "trace.h"
35
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static pgd_t *merged_hyp_pgd;
39 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
40
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
44
45 #define S2_PGD_SIZE     (PTRS_PER_S2_PGD * sizeof(pgd_t))
46 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
47
48 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
49 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
50
51 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
52 {
53         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
54 }
55
56 /**
57  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
58  * @kvm:        pointer to kvm structure.
59  *
60  * Interface to HYP function to flush all VM TLB entries
61  */
62 void kvm_flush_remote_tlbs(struct kvm *kvm)
63 {
64         kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
65 }
66
67 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
68 {
69         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
70 }
71
72 /*
73  * D-Cache management functions. They take the page table entries by
74  * value, as they are flushing the cache using the kernel mapping (or
75  * kmap on 32bit).
76  */
77 static void kvm_flush_dcache_pte(pte_t pte)
78 {
79         __kvm_flush_dcache_pte(pte);
80 }
81
82 static void kvm_flush_dcache_pmd(pmd_t pmd)
83 {
84         __kvm_flush_dcache_pmd(pmd);
85 }
86
87 static void kvm_flush_dcache_pud(pud_t pud)
88 {
89         __kvm_flush_dcache_pud(pud);
90 }
91
92 static bool kvm_is_device_pfn(unsigned long pfn)
93 {
94         return !pfn_valid(pfn);
95 }
96
97 /**
98  * stage2_dissolve_pmd() - clear and flush huge PMD entry
99  * @kvm:        pointer to kvm structure.
100  * @addr:       IPA
101  * @pmd:        pmd pointer for IPA
102  *
103  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
104  * pages in the range dirty.
105  */
106 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
107 {
108         if (!pmd_thp_or_huge(*pmd))
109                 return;
110
111         pmd_clear(pmd);
112         kvm_tlb_flush_vmid_ipa(kvm, addr);
113         put_page(virt_to_page(pmd));
114 }
115
116 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
117                                   int min, int max)
118 {
119         void *page;
120
121         BUG_ON(max > KVM_NR_MEM_OBJS);
122         if (cache->nobjs >= min)
123                 return 0;
124         while (cache->nobjs < max) {
125                 page = (void *)__get_free_page(PGALLOC_GFP);
126                 if (!page)
127                         return -ENOMEM;
128                 cache->objects[cache->nobjs++] = page;
129         }
130         return 0;
131 }
132
133 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
134 {
135         while (mc->nobjs)
136                 free_page((unsigned long)mc->objects[--mc->nobjs]);
137 }
138
139 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
140 {
141         void *p;
142
143         BUG_ON(!mc || !mc->nobjs);
144         p = mc->objects[--mc->nobjs];
145         return p;
146 }
147
148 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
149 {
150         pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
151         stage2_pgd_clear(pgd);
152         kvm_tlb_flush_vmid_ipa(kvm, addr);
153         stage2_pud_free(pud_table);
154         put_page(virt_to_page(pgd));
155 }
156
157 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
158 {
159         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
160         VM_BUG_ON(stage2_pud_huge(*pud));
161         stage2_pud_clear(pud);
162         kvm_tlb_flush_vmid_ipa(kvm, addr);
163         stage2_pmd_free(pmd_table);
164         put_page(virt_to_page(pud));
165 }
166
167 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
168 {
169         pte_t *pte_table = pte_offset_kernel(pmd, 0);
170         VM_BUG_ON(pmd_thp_or_huge(*pmd));
171         pmd_clear(pmd);
172         kvm_tlb_flush_vmid_ipa(kvm, addr);
173         pte_free_kernel(NULL, pte_table);
174         put_page(virt_to_page(pmd));
175 }
176
177 /*
178  * Unmapping vs dcache management:
179  *
180  * If a guest maps certain memory pages as uncached, all writes will
181  * bypass the data cache and go directly to RAM.  However, the CPUs
182  * can still speculate reads (not writes) and fill cache lines with
183  * data.
184  *
185  * Those cache lines will be *clean* cache lines though, so a
186  * clean+invalidate operation is equivalent to an invalidate
187  * operation, because no cache lines are marked dirty.
188  *
189  * Those clean cache lines could be filled prior to an uncached write
190  * by the guest, and the cache coherent IO subsystem would therefore
191  * end up writing old data to disk.
192  *
193  * This is why right after unmapping a page/section and invalidating
194  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
195  * the IO subsystem will never hit in the cache.
196  */
197 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
198                        phys_addr_t addr, phys_addr_t end)
199 {
200         phys_addr_t start_addr = addr;
201         pte_t *pte, *start_pte;
202
203         start_pte = pte = pte_offset_kernel(pmd, addr);
204         do {
205                 if (!pte_none(*pte)) {
206                         pte_t old_pte = *pte;
207
208                         kvm_set_pte(pte, __pte(0));
209                         kvm_tlb_flush_vmid_ipa(kvm, addr);
210
211                         /* No need to invalidate the cache for device mappings */
212                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
213                                 kvm_flush_dcache_pte(old_pte);
214
215                         put_page(virt_to_page(pte));
216                 }
217         } while (pte++, addr += PAGE_SIZE, addr != end);
218
219         if (stage2_pte_table_empty(start_pte))
220                 clear_stage2_pmd_entry(kvm, pmd, start_addr);
221 }
222
223 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
224                        phys_addr_t addr, phys_addr_t end)
225 {
226         phys_addr_t next, start_addr = addr;
227         pmd_t *pmd, *start_pmd;
228
229         start_pmd = pmd = stage2_pmd_offset(pud, addr);
230         do {
231                 next = stage2_pmd_addr_end(addr, end);
232                 if (!pmd_none(*pmd)) {
233                         if (pmd_thp_or_huge(*pmd)) {
234                                 pmd_t old_pmd = *pmd;
235
236                                 pmd_clear(pmd);
237                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
238
239                                 kvm_flush_dcache_pmd(old_pmd);
240
241                                 put_page(virt_to_page(pmd));
242                         } else {
243                                 unmap_stage2_ptes(kvm, pmd, addr, next);
244                         }
245                 }
246         } while (pmd++, addr = next, addr != end);
247
248         if (stage2_pmd_table_empty(start_pmd))
249                 clear_stage2_pud_entry(kvm, pud, start_addr);
250 }
251
252 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
253                        phys_addr_t addr, phys_addr_t end)
254 {
255         phys_addr_t next, start_addr = addr;
256         pud_t *pud, *start_pud;
257
258         start_pud = pud = stage2_pud_offset(pgd, addr);
259         do {
260                 next = stage2_pud_addr_end(addr, end);
261                 if (!stage2_pud_none(*pud)) {
262                         if (stage2_pud_huge(*pud)) {
263                                 pud_t old_pud = *pud;
264
265                                 stage2_pud_clear(pud);
266                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
267                                 kvm_flush_dcache_pud(old_pud);
268                                 put_page(virt_to_page(pud));
269                         } else {
270                                 unmap_stage2_pmds(kvm, pud, addr, next);
271                         }
272                 }
273         } while (pud++, addr = next, addr != end);
274
275         if (stage2_pud_table_empty(start_pud))
276                 clear_stage2_pgd_entry(kvm, pgd, start_addr);
277 }
278
279 /**
280  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
281  * @kvm:   The VM pointer
282  * @start: The intermediate physical base address of the range to unmap
283  * @size:  The size of the area to unmap
284  *
285  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
286  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
287  * destroying the VM), otherwise another faulting VCPU may come in and mess
288  * with things behind our backs.
289  */
290 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
291 {
292         pgd_t *pgd;
293         phys_addr_t addr = start, end = start + size;
294         phys_addr_t next;
295
296         assert_spin_locked(&kvm->mmu_lock);
297         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
298         do {
299                 /*
300                  * Make sure the page table is still active, as another thread
301                  * could have possibly freed the page table, while we released
302                  * the lock.
303                  */
304                 if (!READ_ONCE(kvm->arch.pgd))
305                         break;
306                 next = stage2_pgd_addr_end(addr, end);
307                 if (!stage2_pgd_none(*pgd))
308                         unmap_stage2_puds(kvm, pgd, addr, next);
309                 /*
310                  * If the range is too large, release the kvm->mmu_lock
311                  * to prevent starvation and lockup detector warnings.
312                  */
313                 if (next != end)
314                         cond_resched_lock(&kvm->mmu_lock);
315         } while (pgd++, addr = next, addr != end);
316 }
317
318 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
319                               phys_addr_t addr, phys_addr_t end)
320 {
321         pte_t *pte;
322
323         pte = pte_offset_kernel(pmd, addr);
324         do {
325                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
326                         kvm_flush_dcache_pte(*pte);
327         } while (pte++, addr += PAGE_SIZE, addr != end);
328 }
329
330 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
331                               phys_addr_t addr, phys_addr_t end)
332 {
333         pmd_t *pmd;
334         phys_addr_t next;
335
336         pmd = stage2_pmd_offset(pud, addr);
337         do {
338                 next = stage2_pmd_addr_end(addr, end);
339                 if (!pmd_none(*pmd)) {
340                         if (pmd_thp_or_huge(*pmd))
341                                 kvm_flush_dcache_pmd(*pmd);
342                         else
343                                 stage2_flush_ptes(kvm, pmd, addr, next);
344                 }
345         } while (pmd++, addr = next, addr != end);
346 }
347
348 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
349                               phys_addr_t addr, phys_addr_t end)
350 {
351         pud_t *pud;
352         phys_addr_t next;
353
354         pud = stage2_pud_offset(pgd, addr);
355         do {
356                 next = stage2_pud_addr_end(addr, end);
357                 if (!stage2_pud_none(*pud)) {
358                         if (stage2_pud_huge(*pud))
359                                 kvm_flush_dcache_pud(*pud);
360                         else
361                                 stage2_flush_pmds(kvm, pud, addr, next);
362                 }
363         } while (pud++, addr = next, addr != end);
364 }
365
366 static void stage2_flush_memslot(struct kvm *kvm,
367                                  struct kvm_memory_slot *memslot)
368 {
369         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
370         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
371         phys_addr_t next;
372         pgd_t *pgd;
373
374         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
375         do {
376                 next = stage2_pgd_addr_end(addr, end);
377                 stage2_flush_puds(kvm, pgd, addr, next);
378         } while (pgd++, addr = next, addr != end);
379 }
380
381 /**
382  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
383  * @kvm: The struct kvm pointer
384  *
385  * Go through the stage 2 page tables and invalidate any cache lines
386  * backing memory already mapped to the VM.
387  */
388 static void stage2_flush_vm(struct kvm *kvm)
389 {
390         struct kvm_memslots *slots;
391         struct kvm_memory_slot *memslot;
392         int idx;
393
394         idx = srcu_read_lock(&kvm->srcu);
395         spin_lock(&kvm->mmu_lock);
396
397         slots = kvm_memslots(kvm);
398         kvm_for_each_memslot(memslot, slots)
399                 stage2_flush_memslot(kvm, memslot);
400
401         spin_unlock(&kvm->mmu_lock);
402         srcu_read_unlock(&kvm->srcu, idx);
403 }
404
405 static void clear_hyp_pgd_entry(pgd_t *pgd)
406 {
407         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
408         pgd_clear(pgd);
409         pud_free(NULL, pud_table);
410         put_page(virt_to_page(pgd));
411 }
412
413 static void clear_hyp_pud_entry(pud_t *pud)
414 {
415         pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
416         VM_BUG_ON(pud_huge(*pud));
417         pud_clear(pud);
418         pmd_free(NULL, pmd_table);
419         put_page(virt_to_page(pud));
420 }
421
422 static void clear_hyp_pmd_entry(pmd_t *pmd)
423 {
424         pte_t *pte_table = pte_offset_kernel(pmd, 0);
425         VM_BUG_ON(pmd_thp_or_huge(*pmd));
426         pmd_clear(pmd);
427         pte_free_kernel(NULL, pte_table);
428         put_page(virt_to_page(pmd));
429 }
430
431 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
432 {
433         pte_t *pte, *start_pte;
434
435         start_pte = pte = pte_offset_kernel(pmd, addr);
436         do {
437                 if (!pte_none(*pte)) {
438                         kvm_set_pte(pte, __pte(0));
439                         put_page(virt_to_page(pte));
440                 }
441         } while (pte++, addr += PAGE_SIZE, addr != end);
442
443         if (hyp_pte_table_empty(start_pte))
444                 clear_hyp_pmd_entry(pmd);
445 }
446
447 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
448 {
449         phys_addr_t next;
450         pmd_t *pmd, *start_pmd;
451
452         start_pmd = pmd = pmd_offset(pud, addr);
453         do {
454                 next = pmd_addr_end(addr, end);
455                 /* Hyp doesn't use huge pmds */
456                 if (!pmd_none(*pmd))
457                         unmap_hyp_ptes(pmd, addr, next);
458         } while (pmd++, addr = next, addr != end);
459
460         if (hyp_pmd_table_empty(start_pmd))
461                 clear_hyp_pud_entry(pud);
462 }
463
464 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
465 {
466         phys_addr_t next;
467         pud_t *pud, *start_pud;
468
469         start_pud = pud = pud_offset(pgd, addr);
470         do {
471                 next = pud_addr_end(addr, end);
472                 /* Hyp doesn't use huge puds */
473                 if (!pud_none(*pud))
474                         unmap_hyp_pmds(pud, addr, next);
475         } while (pud++, addr = next, addr != end);
476
477         if (hyp_pud_table_empty(start_pud))
478                 clear_hyp_pgd_entry(pgd);
479 }
480
481 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
482 {
483         pgd_t *pgd;
484         phys_addr_t addr = start, end = start + size;
485         phys_addr_t next;
486
487         /*
488          * We don't unmap anything from HYP, except at the hyp tear down.
489          * Hence, we don't have to invalidate the TLBs here.
490          */
491         pgd = pgdp + pgd_index(addr);
492         do {
493                 next = pgd_addr_end(addr, end);
494                 if (!pgd_none(*pgd))
495                         unmap_hyp_puds(pgd, addr, next);
496         } while (pgd++, addr = next, addr != end);
497 }
498
499 /**
500  * free_hyp_pgds - free Hyp-mode page tables
501  *
502  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
503  * therefore contains either mappings in the kernel memory area (above
504  * PAGE_OFFSET), or device mappings in the vmalloc range (from
505  * VMALLOC_START to VMALLOC_END).
506  *
507  * boot_hyp_pgd should only map two pages for the init code.
508  */
509 void free_hyp_pgds(void)
510 {
511         unsigned long addr;
512
513         mutex_lock(&kvm_hyp_pgd_mutex);
514
515         if (boot_hyp_pgd) {
516                 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
517                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
518                 boot_hyp_pgd = NULL;
519         }
520
521         if (hyp_pgd) {
522                 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
523                 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
524                         unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
525                 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
526                         unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
527
528                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
529                 hyp_pgd = NULL;
530         }
531         if (merged_hyp_pgd) {
532                 clear_page(merged_hyp_pgd);
533                 free_page((unsigned long)merged_hyp_pgd);
534                 merged_hyp_pgd = NULL;
535         }
536
537         mutex_unlock(&kvm_hyp_pgd_mutex);
538 }
539
540 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
541                                     unsigned long end, unsigned long pfn,
542                                     pgprot_t prot)
543 {
544         pte_t *pte;
545         unsigned long addr;
546
547         addr = start;
548         do {
549                 pte = pte_offset_kernel(pmd, addr);
550                 kvm_set_pte(pte, pfn_pte(pfn, prot));
551                 get_page(virt_to_page(pte));
552                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
553                 pfn++;
554         } while (addr += PAGE_SIZE, addr != end);
555 }
556
557 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
558                                    unsigned long end, unsigned long pfn,
559                                    pgprot_t prot)
560 {
561         pmd_t *pmd;
562         pte_t *pte;
563         unsigned long addr, next;
564
565         addr = start;
566         do {
567                 pmd = pmd_offset(pud, addr);
568
569                 BUG_ON(pmd_sect(*pmd));
570
571                 if (pmd_none(*pmd)) {
572                         pte = pte_alloc_one_kernel(NULL, addr);
573                         if (!pte) {
574                                 kvm_err("Cannot allocate Hyp pte\n");
575                                 return -ENOMEM;
576                         }
577                         pmd_populate_kernel(NULL, pmd, pte);
578                         get_page(virt_to_page(pmd));
579                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
580                 }
581
582                 next = pmd_addr_end(addr, end);
583
584                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
585                 pfn += (next - addr) >> PAGE_SHIFT;
586         } while (addr = next, addr != end);
587
588         return 0;
589 }
590
591 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
592                                    unsigned long end, unsigned long pfn,
593                                    pgprot_t prot)
594 {
595         pud_t *pud;
596         pmd_t *pmd;
597         unsigned long addr, next;
598         int ret;
599
600         addr = start;
601         do {
602                 pud = pud_offset(pgd, addr);
603
604                 if (pud_none_or_clear_bad(pud)) {
605                         pmd = pmd_alloc_one(NULL, addr);
606                         if (!pmd) {
607                                 kvm_err("Cannot allocate Hyp pmd\n");
608                                 return -ENOMEM;
609                         }
610                         pud_populate(NULL, pud, pmd);
611                         get_page(virt_to_page(pud));
612                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
613                 }
614
615                 next = pud_addr_end(addr, end);
616                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
617                 if (ret)
618                         return ret;
619                 pfn += (next - addr) >> PAGE_SHIFT;
620         } while (addr = next, addr != end);
621
622         return 0;
623 }
624
625 static int __create_hyp_mappings(pgd_t *pgdp,
626                                  unsigned long start, unsigned long end,
627                                  unsigned long pfn, pgprot_t prot)
628 {
629         pgd_t *pgd;
630         pud_t *pud;
631         unsigned long addr, next;
632         int err = 0;
633
634         mutex_lock(&kvm_hyp_pgd_mutex);
635         addr = start & PAGE_MASK;
636         end = PAGE_ALIGN(end);
637         do {
638                 pgd = pgdp + pgd_index(addr);
639
640                 if (pgd_none(*pgd)) {
641                         pud = pud_alloc_one(NULL, addr);
642                         if (!pud) {
643                                 kvm_err("Cannot allocate Hyp pud\n");
644                                 err = -ENOMEM;
645                                 goto out;
646                         }
647                         pgd_populate(NULL, pgd, pud);
648                         get_page(virt_to_page(pgd));
649                         kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
650                 }
651
652                 next = pgd_addr_end(addr, end);
653                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
654                 if (err)
655                         goto out;
656                 pfn += (next - addr) >> PAGE_SHIFT;
657         } while (addr = next, addr != end);
658 out:
659         mutex_unlock(&kvm_hyp_pgd_mutex);
660         return err;
661 }
662
663 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
664 {
665         if (!is_vmalloc_addr(kaddr)) {
666                 BUG_ON(!virt_addr_valid(kaddr));
667                 return __pa(kaddr);
668         } else {
669                 return page_to_phys(vmalloc_to_page(kaddr)) +
670                        offset_in_page(kaddr);
671         }
672 }
673
674 /**
675  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
676  * @from:       The virtual kernel start address of the range
677  * @to:         The virtual kernel end address of the range (exclusive)
678  * @prot:       The protection to be applied to this range
679  *
680  * The same virtual address as the kernel virtual address is also used
681  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
682  * physical pages.
683  */
684 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
685 {
686         phys_addr_t phys_addr;
687         unsigned long virt_addr;
688         unsigned long start = kern_hyp_va((unsigned long)from);
689         unsigned long end = kern_hyp_va((unsigned long)to);
690
691         if (is_kernel_in_hyp_mode())
692                 return 0;
693
694         start = start & PAGE_MASK;
695         end = PAGE_ALIGN(end);
696
697         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
698                 int err;
699
700                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
701                 err = __create_hyp_mappings(hyp_pgd, virt_addr,
702                                             virt_addr + PAGE_SIZE,
703                                             __phys_to_pfn(phys_addr),
704                                             prot);
705                 if (err)
706                         return err;
707         }
708
709         return 0;
710 }
711
712 /**
713  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
714  * @from:       The kernel start VA of the range
715  * @to:         The kernel end VA of the range (exclusive)
716  * @phys_addr:  The physical start address which gets mapped
717  *
718  * The resulting HYP VA is the same as the kernel VA, modulo
719  * HYP_PAGE_OFFSET.
720  */
721 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
722 {
723         unsigned long start = kern_hyp_va((unsigned long)from);
724         unsigned long end = kern_hyp_va((unsigned long)to);
725
726         if (is_kernel_in_hyp_mode())
727                 return 0;
728
729         /* Check for a valid kernel IO mapping */
730         if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
731                 return -EINVAL;
732
733         return __create_hyp_mappings(hyp_pgd, start, end,
734                                      __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
735 }
736
737 /**
738  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
739  * @kvm:        The KVM struct pointer for the VM.
740  *
741  * Allocates only the stage-2 HW PGD level table(s) (can support either full
742  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
743  * allocated pages.
744  *
745  * Note we don't need locking here as this is only called when the VM is
746  * created, which can only be done once.
747  */
748 int kvm_alloc_stage2_pgd(struct kvm *kvm)
749 {
750         pgd_t *pgd;
751
752         if (kvm->arch.pgd != NULL) {
753                 kvm_err("kvm_arch already initialized?\n");
754                 return -EINVAL;
755         }
756
757         /* Allocate the HW PGD, making sure that each page gets its own refcount */
758         pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
759         if (!pgd)
760                 return -ENOMEM;
761
762         kvm->arch.pgd = pgd;
763         return 0;
764 }
765
766 static void stage2_unmap_memslot(struct kvm *kvm,
767                                  struct kvm_memory_slot *memslot)
768 {
769         hva_t hva = memslot->userspace_addr;
770         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
771         phys_addr_t size = PAGE_SIZE * memslot->npages;
772         hva_t reg_end = hva + size;
773
774         /*
775          * A memory region could potentially cover multiple VMAs, and any holes
776          * between them, so iterate over all of them to find out if we should
777          * unmap any of them.
778          *
779          *     +--------------------------------------------+
780          * +---------------+----------------+   +----------------+
781          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
782          * +---------------+----------------+   +----------------+
783          *     |               memory region                |
784          *     +--------------------------------------------+
785          */
786         do {
787                 struct vm_area_struct *vma = find_vma(current->mm, hva);
788                 hva_t vm_start, vm_end;
789
790                 if (!vma || vma->vm_start >= reg_end)
791                         break;
792
793                 /*
794                  * Take the intersection of this VMA with the memory region
795                  */
796                 vm_start = max(hva, vma->vm_start);
797                 vm_end = min(reg_end, vma->vm_end);
798
799                 if (!(vma->vm_flags & VM_PFNMAP)) {
800                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
801                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
802                 }
803                 hva = vm_end;
804         } while (hva < reg_end);
805 }
806
807 /**
808  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
809  * @kvm: The struct kvm pointer
810  *
811  * Go through the memregions and unmap any reguler RAM
812  * backing memory already mapped to the VM.
813  */
814 void stage2_unmap_vm(struct kvm *kvm)
815 {
816         struct kvm_memslots *slots;
817         struct kvm_memory_slot *memslot;
818         int idx;
819
820         idx = srcu_read_lock(&kvm->srcu);
821         down_read(&current->mm->mmap_sem);
822         spin_lock(&kvm->mmu_lock);
823
824         slots = kvm_memslots(kvm);
825         kvm_for_each_memslot(memslot, slots)
826                 stage2_unmap_memslot(kvm, memslot);
827
828         spin_unlock(&kvm->mmu_lock);
829         up_read(&current->mm->mmap_sem);
830         srcu_read_unlock(&kvm->srcu, idx);
831 }
832
833 /**
834  * kvm_free_stage2_pgd - free all stage-2 tables
835  * @kvm:        The KVM struct pointer for the VM.
836  *
837  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
838  * underlying level-2 and level-3 tables before freeing the actual level-1 table
839  * and setting the struct pointer to NULL.
840  */
841 void kvm_free_stage2_pgd(struct kvm *kvm)
842 {
843         void *pgd = NULL;
844
845         spin_lock(&kvm->mmu_lock);
846         if (kvm->arch.pgd) {
847                 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
848                 pgd = READ_ONCE(kvm->arch.pgd);
849                 kvm->arch.pgd = NULL;
850         }
851         spin_unlock(&kvm->mmu_lock);
852
853         /* Free the HW pgd, one page at a time */
854         if (pgd)
855                 free_pages_exact(pgd, S2_PGD_SIZE);
856 }
857
858 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
859                              phys_addr_t addr)
860 {
861         pgd_t *pgd;
862         pud_t *pud;
863
864         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
865         if (WARN_ON(stage2_pgd_none(*pgd))) {
866                 if (!cache)
867                         return NULL;
868                 pud = mmu_memory_cache_alloc(cache);
869                 stage2_pgd_populate(pgd, pud);
870                 get_page(virt_to_page(pgd));
871         }
872
873         return stage2_pud_offset(pgd, addr);
874 }
875
876 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
877                              phys_addr_t addr)
878 {
879         pud_t *pud;
880         pmd_t *pmd;
881
882         pud = stage2_get_pud(kvm, cache, addr);
883         if (!pud)
884                 return NULL;
885
886         if (stage2_pud_none(*pud)) {
887                 if (!cache)
888                         return NULL;
889                 pmd = mmu_memory_cache_alloc(cache);
890                 stage2_pud_populate(pud, pmd);
891                 get_page(virt_to_page(pud));
892         }
893
894         return stage2_pmd_offset(pud, addr);
895 }
896
897 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
898                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
899 {
900         pmd_t *pmd, old_pmd;
901
902         pmd = stage2_get_pmd(kvm, cache, addr);
903         VM_BUG_ON(!pmd);
904
905         /*
906          * Mapping in huge pages should only happen through a fault.  If a
907          * page is merged into a transparent huge page, the individual
908          * subpages of that huge page should be unmapped through MMU
909          * notifiers before we get here.
910          *
911          * Merging of CompoundPages is not supported; they should become
912          * splitting first, unmapped, merged, and mapped back in on-demand.
913          */
914         VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
915
916         old_pmd = *pmd;
917         if (pmd_present(old_pmd)) {
918                 pmd_clear(pmd);
919                 kvm_tlb_flush_vmid_ipa(kvm, addr);
920         } else {
921                 get_page(virt_to_page(pmd));
922         }
923
924         kvm_set_pmd(pmd, *new_pmd);
925         return 0;
926 }
927
928 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
929                           phys_addr_t addr, const pte_t *new_pte,
930                           unsigned long flags)
931 {
932         pmd_t *pmd;
933         pte_t *pte, old_pte;
934         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
935         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
936
937         VM_BUG_ON(logging_active && !cache);
938
939         /* Create stage-2 page table mapping - Levels 0 and 1 */
940         pmd = stage2_get_pmd(kvm, cache, addr);
941         if (!pmd) {
942                 /*
943                  * Ignore calls from kvm_set_spte_hva for unallocated
944                  * address ranges.
945                  */
946                 return 0;
947         }
948
949         /*
950          * While dirty page logging - dissolve huge PMD, then continue on to
951          * allocate page.
952          */
953         if (logging_active)
954                 stage2_dissolve_pmd(kvm, addr, pmd);
955
956         /* Create stage-2 page mappings - Level 2 */
957         if (pmd_none(*pmd)) {
958                 if (!cache)
959                         return 0; /* ignore calls from kvm_set_spte_hva */
960                 pte = mmu_memory_cache_alloc(cache);
961                 pmd_populate_kernel(NULL, pmd, pte);
962                 get_page(virt_to_page(pmd));
963         }
964
965         pte = pte_offset_kernel(pmd, addr);
966
967         if (iomap && pte_present(*pte))
968                 return -EFAULT;
969
970         /* Create 2nd stage page table mapping - Level 3 */
971         old_pte = *pte;
972         if (pte_present(old_pte)) {
973                 kvm_set_pte(pte, __pte(0));
974                 kvm_tlb_flush_vmid_ipa(kvm, addr);
975         } else {
976                 get_page(virt_to_page(pte));
977         }
978
979         kvm_set_pte(pte, *new_pte);
980         return 0;
981 }
982
983 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
984 static int stage2_ptep_test_and_clear_young(pte_t *pte)
985 {
986         if (pte_young(*pte)) {
987                 *pte = pte_mkold(*pte);
988                 return 1;
989         }
990         return 0;
991 }
992 #else
993 static int stage2_ptep_test_and_clear_young(pte_t *pte)
994 {
995         return __ptep_test_and_clear_young(pte);
996 }
997 #endif
998
999 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1000 {
1001         return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1002 }
1003
1004 /**
1005  * kvm_phys_addr_ioremap - map a device range to guest IPA
1006  *
1007  * @kvm:        The KVM pointer
1008  * @guest_ipa:  The IPA at which to insert the mapping
1009  * @pa:         The physical address of the device
1010  * @size:       The size of the mapping
1011  */
1012 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1013                           phys_addr_t pa, unsigned long size, bool writable)
1014 {
1015         phys_addr_t addr, end;
1016         int ret = 0;
1017         unsigned long pfn;
1018         struct kvm_mmu_memory_cache cache = { 0, };
1019
1020         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1021         pfn = __phys_to_pfn(pa);
1022
1023         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1024                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1025
1026                 if (writable)
1027                         pte = kvm_s2pte_mkwrite(pte);
1028
1029                 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1030                                                 KVM_NR_MEM_OBJS);
1031                 if (ret)
1032                         goto out;
1033                 spin_lock(&kvm->mmu_lock);
1034                 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1035                                                 KVM_S2PTE_FLAG_IS_IOMAP);
1036                 spin_unlock(&kvm->mmu_lock);
1037                 if (ret)
1038                         goto out;
1039
1040                 pfn++;
1041         }
1042
1043 out:
1044         mmu_free_memory_cache(&cache);
1045         return ret;
1046 }
1047
1048 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1049 {
1050         kvm_pfn_t pfn = *pfnp;
1051         gfn_t gfn = *ipap >> PAGE_SHIFT;
1052
1053         if (PageTransCompoundMap(pfn_to_page(pfn))) {
1054                 unsigned long mask;
1055                 /*
1056                  * The address we faulted on is backed by a transparent huge
1057                  * page.  However, because we map the compound huge page and
1058                  * not the individual tail page, we need to transfer the
1059                  * refcount to the head page.  We have to be careful that the
1060                  * THP doesn't start to split while we are adjusting the
1061                  * refcounts.
1062                  *
1063                  * We are sure this doesn't happen, because mmu_notifier_retry
1064                  * was successful and we are holding the mmu_lock, so if this
1065                  * THP is trying to split, it will be blocked in the mmu
1066                  * notifier before touching any of the pages, specifically
1067                  * before being able to call __split_huge_page_refcount().
1068                  *
1069                  * We can therefore safely transfer the refcount from PG_tail
1070                  * to PG_head and switch the pfn from a tail page to the head
1071                  * page accordingly.
1072                  */
1073                 mask = PTRS_PER_PMD - 1;
1074                 VM_BUG_ON((gfn & mask) != (pfn & mask));
1075                 if (pfn & mask) {
1076                         *ipap &= PMD_MASK;
1077                         kvm_release_pfn_clean(pfn);
1078                         pfn &= ~mask;
1079                         kvm_get_pfn(pfn);
1080                         *pfnp = pfn;
1081                 }
1082
1083                 return true;
1084         }
1085
1086         return false;
1087 }
1088
1089 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1090 {
1091         if (kvm_vcpu_trap_is_iabt(vcpu))
1092                 return false;
1093
1094         return kvm_vcpu_dabt_iswrite(vcpu);
1095 }
1096
1097 /**
1098  * stage2_wp_ptes - write protect PMD range
1099  * @pmd:        pointer to pmd entry
1100  * @addr:       range start address
1101  * @end:        range end address
1102  */
1103 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1104 {
1105         pte_t *pte;
1106
1107         pte = pte_offset_kernel(pmd, addr);
1108         do {
1109                 if (!pte_none(*pte)) {
1110                         if (!kvm_s2pte_readonly(pte))
1111                                 kvm_set_s2pte_readonly(pte);
1112                 }
1113         } while (pte++, addr += PAGE_SIZE, addr != end);
1114 }
1115
1116 /**
1117  * stage2_wp_pmds - write protect PUD range
1118  * @pud:        pointer to pud entry
1119  * @addr:       range start address
1120  * @end:        range end address
1121  */
1122 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1123 {
1124         pmd_t *pmd;
1125         phys_addr_t next;
1126
1127         pmd = stage2_pmd_offset(pud, addr);
1128
1129         do {
1130                 next = stage2_pmd_addr_end(addr, end);
1131                 if (!pmd_none(*pmd)) {
1132                         if (pmd_thp_or_huge(*pmd)) {
1133                                 if (!kvm_s2pmd_readonly(pmd))
1134                                         kvm_set_s2pmd_readonly(pmd);
1135                         } else {
1136                                 stage2_wp_ptes(pmd, addr, next);
1137                         }
1138                 }
1139         } while (pmd++, addr = next, addr != end);
1140 }
1141
1142 /**
1143   * stage2_wp_puds - write protect PGD range
1144   * @pgd:       pointer to pgd entry
1145   * @addr:      range start address
1146   * @end:       range end address
1147   *
1148   * Process PUD entries, for a huge PUD we cause a panic.
1149   */
1150 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1151 {
1152         pud_t *pud;
1153         phys_addr_t next;
1154
1155         pud = stage2_pud_offset(pgd, addr);
1156         do {
1157                 next = stage2_pud_addr_end(addr, end);
1158                 if (!stage2_pud_none(*pud)) {
1159                         /* TODO:PUD not supported, revisit later if supported */
1160                         BUG_ON(stage2_pud_huge(*pud));
1161                         stage2_wp_pmds(pud, addr, next);
1162                 }
1163         } while (pud++, addr = next, addr != end);
1164 }
1165
1166 /**
1167  * stage2_wp_range() - write protect stage2 memory region range
1168  * @kvm:        The KVM pointer
1169  * @addr:       Start address of range
1170  * @end:        End address of range
1171  */
1172 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1173 {
1174         pgd_t *pgd;
1175         phys_addr_t next;
1176
1177         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1178         do {
1179                 /*
1180                  * Release kvm_mmu_lock periodically if the memory region is
1181                  * large. Otherwise, we may see kernel panics with
1182                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1183                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1184                  * will also starve other vCPUs. We have to also make sure
1185                  * that the page tables are not freed while we released
1186                  * the lock.
1187                  */
1188                 cond_resched_lock(&kvm->mmu_lock);
1189                 if (!READ_ONCE(kvm->arch.pgd))
1190                         break;
1191                 next = stage2_pgd_addr_end(addr, end);
1192                 if (stage2_pgd_present(*pgd))
1193                         stage2_wp_puds(pgd, addr, next);
1194         } while (pgd++, addr = next, addr != end);
1195 }
1196
1197 /**
1198  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1199  * @kvm:        The KVM pointer
1200  * @slot:       The memory slot to write protect
1201  *
1202  * Called to start logging dirty pages after memory region
1203  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1204  * all present PMD and PTEs are write protected in the memory region.
1205  * Afterwards read of dirty page log can be called.
1206  *
1207  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1208  * serializing operations for VM memory regions.
1209  */
1210 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1211 {
1212         struct kvm_memslots *slots = kvm_memslots(kvm);
1213         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1214         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1215         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1216
1217         spin_lock(&kvm->mmu_lock);
1218         stage2_wp_range(kvm, start, end);
1219         spin_unlock(&kvm->mmu_lock);
1220         kvm_flush_remote_tlbs(kvm);
1221 }
1222
1223 /**
1224  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1225  * @kvm:        The KVM pointer
1226  * @slot:       The memory slot associated with mask
1227  * @gfn_offset: The gfn offset in memory slot
1228  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1229  *              slot to be write protected
1230  *
1231  * Walks bits set in mask write protects the associated pte's. Caller must
1232  * acquire kvm_mmu_lock.
1233  */
1234 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1235                 struct kvm_memory_slot *slot,
1236                 gfn_t gfn_offset, unsigned long mask)
1237 {
1238         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1239         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1240         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1241
1242         stage2_wp_range(kvm, start, end);
1243 }
1244
1245 /*
1246  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1247  * dirty pages.
1248  *
1249  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1250  * enable dirty logging for them.
1251  */
1252 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1253                 struct kvm_memory_slot *slot,
1254                 gfn_t gfn_offset, unsigned long mask)
1255 {
1256         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1257 }
1258
1259 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1260                                       unsigned long size)
1261 {
1262         __coherent_cache_guest_page(vcpu, pfn, size);
1263 }
1264
1265 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1266                           struct kvm_memory_slot *memslot, unsigned long hva,
1267                           unsigned long fault_status)
1268 {
1269         int ret;
1270         bool write_fault, writable, hugetlb = false, force_pte = false;
1271         unsigned long mmu_seq;
1272         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1273         struct kvm *kvm = vcpu->kvm;
1274         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1275         struct vm_area_struct *vma;
1276         kvm_pfn_t pfn;
1277         pgprot_t mem_type = PAGE_S2;
1278         bool logging_active = memslot_is_logging(memslot);
1279         unsigned long flags = 0;
1280
1281         write_fault = kvm_is_write_fault(vcpu);
1282         if (fault_status == FSC_PERM && !write_fault) {
1283                 kvm_err("Unexpected L2 read permission error\n");
1284                 return -EFAULT;
1285         }
1286
1287         /* Let's check if we will get back a huge page backed by hugetlbfs */
1288         down_read(&current->mm->mmap_sem);
1289         vma = find_vma_intersection(current->mm, hva, hva + 1);
1290         if (unlikely(!vma)) {
1291                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1292                 up_read(&current->mm->mmap_sem);
1293                 return -EFAULT;
1294         }
1295
1296         if (is_vm_hugetlb_page(vma) && !logging_active) {
1297                 hugetlb = true;
1298                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1299         } else {
1300                 /*
1301                  * Pages belonging to memslots that don't have the same
1302                  * alignment for userspace and IPA cannot be mapped using
1303                  * block descriptors even if the pages belong to a THP for
1304                  * the process, because the stage-2 block descriptor will
1305                  * cover more than a single THP and we loose atomicity for
1306                  * unmapping, updates, and splits of the THP or other pages
1307                  * in the stage-2 block range.
1308                  */
1309                 if ((memslot->userspace_addr & ~PMD_MASK) !=
1310                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1311                         force_pte = true;
1312         }
1313         up_read(&current->mm->mmap_sem);
1314
1315         /* We need minimum second+third level pages */
1316         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1317                                      KVM_NR_MEM_OBJS);
1318         if (ret)
1319                 return ret;
1320
1321         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1322         /*
1323          * Ensure the read of mmu_notifier_seq happens before we call
1324          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1325          * the page we just got a reference to gets unmapped before we have a
1326          * chance to grab the mmu_lock, which ensure that if the page gets
1327          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1328          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1329          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1330          */
1331         smp_rmb();
1332
1333         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1334         if (is_error_noslot_pfn(pfn))
1335                 return -EFAULT;
1336
1337         if (kvm_is_device_pfn(pfn)) {
1338                 mem_type = PAGE_S2_DEVICE;
1339                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1340         } else if (logging_active) {
1341                 /*
1342                  * Faults on pages in a memslot with logging enabled
1343                  * should not be mapped with huge pages (it introduces churn
1344                  * and performance degradation), so force a pte mapping.
1345                  */
1346                 force_pte = true;
1347                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1348
1349                 /*
1350                  * Only actually map the page as writable if this was a write
1351                  * fault.
1352                  */
1353                 if (!write_fault)
1354                         writable = false;
1355         }
1356
1357         spin_lock(&kvm->mmu_lock);
1358         if (mmu_notifier_retry(kvm, mmu_seq))
1359                 goto out_unlock;
1360
1361         if (!hugetlb && !force_pte)
1362                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1363
1364         if (hugetlb) {
1365                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1366                 new_pmd = pmd_mkhuge(new_pmd);
1367                 if (writable) {
1368                         new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1369                         kvm_set_pfn_dirty(pfn);
1370                 }
1371                 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
1372                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1373         } else {
1374                 pte_t new_pte = pfn_pte(pfn, mem_type);
1375
1376                 if (writable) {
1377                         new_pte = kvm_s2pte_mkwrite(new_pte);
1378                         kvm_set_pfn_dirty(pfn);
1379                         mark_page_dirty(kvm, gfn);
1380                 }
1381                 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
1382                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1383         }
1384
1385 out_unlock:
1386         spin_unlock(&kvm->mmu_lock);
1387         kvm_set_pfn_accessed(pfn);
1388         kvm_release_pfn_clean(pfn);
1389         return ret;
1390 }
1391
1392 /*
1393  * Resolve the access fault by making the page young again.
1394  * Note that because the faulting entry is guaranteed not to be
1395  * cached in the TLB, we don't need to invalidate anything.
1396  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1397  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1398  */
1399 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1400 {
1401         pmd_t *pmd;
1402         pte_t *pte;
1403         kvm_pfn_t pfn;
1404         bool pfn_valid = false;
1405
1406         trace_kvm_access_fault(fault_ipa);
1407
1408         spin_lock(&vcpu->kvm->mmu_lock);
1409
1410         pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1411         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1412                 goto out;
1413
1414         if (pmd_thp_or_huge(*pmd)) {    /* THP, HugeTLB */
1415                 *pmd = pmd_mkyoung(*pmd);
1416                 pfn = pmd_pfn(*pmd);
1417                 pfn_valid = true;
1418                 goto out;
1419         }
1420
1421         pte = pte_offset_kernel(pmd, fault_ipa);
1422         if (pte_none(*pte))             /* Nothing there either */
1423                 goto out;
1424
1425         *pte = pte_mkyoung(*pte);       /* Just a page... */
1426         pfn = pte_pfn(*pte);
1427         pfn_valid = true;
1428 out:
1429         spin_unlock(&vcpu->kvm->mmu_lock);
1430         if (pfn_valid)
1431                 kvm_set_pfn_accessed(pfn);
1432 }
1433
1434 static bool is_abort_sea(unsigned long fault_status)
1435 {
1436         switch (fault_status) {
1437         case FSC_SEA:
1438         case FSC_SEA_TTW0:
1439         case FSC_SEA_TTW1:
1440         case FSC_SEA_TTW2:
1441         case FSC_SEA_TTW3:
1442         case FSC_SECC:
1443         case FSC_SECC_TTW0:
1444         case FSC_SECC_TTW1:
1445         case FSC_SECC_TTW2:
1446         case FSC_SECC_TTW3:
1447                 return true;
1448         default:
1449                 return false;
1450         }
1451 }
1452
1453 /**
1454  * kvm_handle_guest_abort - handles all 2nd stage aborts
1455  * @vcpu:       the VCPU pointer
1456  * @run:        the kvm_run structure
1457  *
1458  * Any abort that gets to the host is almost guaranteed to be caused by a
1459  * missing second stage translation table entry, which can mean that either the
1460  * guest simply needs more memory and we must allocate an appropriate page or it
1461  * can mean that the guest tried to access I/O memory, which is emulated by user
1462  * space. The distinction is based on the IPA causing the fault and whether this
1463  * memory region has been registered as standard RAM by user space.
1464  */
1465 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1466 {
1467         unsigned long fault_status;
1468         phys_addr_t fault_ipa;
1469         struct kvm_memory_slot *memslot;
1470         unsigned long hva;
1471         bool is_iabt, write_fault, writable;
1472         gfn_t gfn;
1473         int ret, idx;
1474
1475         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1476
1477         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1478
1479         /*
1480          * The host kernel will handle the synchronous external abort. There
1481          * is no need to pass the error into the guest.
1482          */
1483         if (is_abort_sea(fault_status)) {
1484                 if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1485                         return 1;
1486         }
1487
1488         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1489         if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) {
1490                 kvm_inject_vabt(vcpu);
1491                 return 1;
1492         }
1493
1494         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1495                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1496
1497         /* Check the stage-2 fault is trans. fault or write fault */
1498         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1499             fault_status != FSC_ACCESS) {
1500                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1501                         kvm_vcpu_trap_get_class(vcpu),
1502                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1503                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1504                 return -EFAULT;
1505         }
1506
1507         idx = srcu_read_lock(&vcpu->kvm->srcu);
1508
1509         gfn = fault_ipa >> PAGE_SHIFT;
1510         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1511         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1512         write_fault = kvm_is_write_fault(vcpu);
1513         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1514                 if (is_iabt) {
1515                         /* Prefetch Abort on I/O address */
1516                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1517                         ret = 1;
1518                         goto out_unlock;
1519                 }
1520
1521                 /*
1522                  * Check for a cache maintenance operation. Since we
1523                  * ended-up here, we know it is outside of any memory
1524                  * slot. But we can't find out if that is for a device,
1525                  * or if the guest is just being stupid. The only thing
1526                  * we know for sure is that this range cannot be cached.
1527                  *
1528                  * So let's assume that the guest is just being
1529                  * cautious, and skip the instruction.
1530                  */
1531                 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1532                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1533                         ret = 1;
1534                         goto out_unlock;
1535                 }
1536
1537                 /*
1538                  * The IPA is reported as [MAX:12], so we need to
1539                  * complement it with the bottom 12 bits from the
1540                  * faulting VA. This is always 12 bits, irrespective
1541                  * of the page size.
1542                  */
1543                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1544                 ret = io_mem_abort(vcpu, run, fault_ipa);
1545                 goto out_unlock;
1546         }
1547
1548         /* Userspace should not be able to register out-of-bounds IPAs */
1549         VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1550
1551         if (fault_status == FSC_ACCESS) {
1552                 handle_access_fault(vcpu, fault_ipa);
1553                 ret = 1;
1554                 goto out_unlock;
1555         }
1556
1557         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1558         if (ret == 0)
1559                 ret = 1;
1560 out_unlock:
1561         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1562         return ret;
1563 }
1564
1565 static int handle_hva_to_gpa(struct kvm *kvm,
1566                              unsigned long start,
1567                              unsigned long end,
1568                              int (*handler)(struct kvm *kvm,
1569                                             gpa_t gpa, u64 size,
1570                                             void *data),
1571                              void *data)
1572 {
1573         struct kvm_memslots *slots;
1574         struct kvm_memory_slot *memslot;
1575         int ret = 0;
1576
1577         slots = kvm_memslots(kvm);
1578
1579         /* we only care about the pages that the guest sees */
1580         kvm_for_each_memslot(memslot, slots) {
1581                 unsigned long hva_start, hva_end;
1582                 gfn_t gpa;
1583
1584                 hva_start = max(start, memslot->userspace_addr);
1585                 hva_end = min(end, memslot->userspace_addr +
1586                                         (memslot->npages << PAGE_SHIFT));
1587                 if (hva_start >= hva_end)
1588                         continue;
1589
1590                 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1591                 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1592         }
1593
1594         return ret;
1595 }
1596
1597 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1598 {
1599         unmap_stage2_range(kvm, gpa, size);
1600         return 0;
1601 }
1602
1603 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1604 {
1605         unsigned long end = hva + PAGE_SIZE;
1606
1607         if (!kvm->arch.pgd)
1608                 return 0;
1609
1610         trace_kvm_unmap_hva(hva);
1611         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1612         return 0;
1613 }
1614
1615 int kvm_unmap_hva_range(struct kvm *kvm,
1616                         unsigned long start, unsigned long end)
1617 {
1618         if (!kvm->arch.pgd)
1619                 return 0;
1620
1621         trace_kvm_unmap_hva_range(start, end);
1622         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1623         return 0;
1624 }
1625
1626 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1627 {
1628         pte_t *pte = (pte_t *)data;
1629
1630         WARN_ON(size != PAGE_SIZE);
1631         /*
1632          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1633          * flag clear because MMU notifiers will have unmapped a huge PMD before
1634          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1635          * therefore stage2_set_pte() never needs to clear out a huge PMD
1636          * through this calling path.
1637          */
1638         stage2_set_pte(kvm, NULL, gpa, pte, 0);
1639         return 0;
1640 }
1641
1642
1643 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1644 {
1645         unsigned long end = hva + PAGE_SIZE;
1646         pte_t stage2_pte;
1647
1648         if (!kvm->arch.pgd)
1649                 return;
1650
1651         trace_kvm_set_spte_hva(hva);
1652         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1653         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1654 }
1655
1656 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1657 {
1658         pmd_t *pmd;
1659         pte_t *pte;
1660
1661         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1662         pmd = stage2_get_pmd(kvm, NULL, gpa);
1663         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1664                 return 0;
1665
1666         if (pmd_thp_or_huge(*pmd))      /* THP, HugeTLB */
1667                 return stage2_pmdp_test_and_clear_young(pmd);
1668
1669         pte = pte_offset_kernel(pmd, gpa);
1670         if (pte_none(*pte))
1671                 return 0;
1672
1673         return stage2_ptep_test_and_clear_young(pte);
1674 }
1675
1676 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1677 {
1678         pmd_t *pmd;
1679         pte_t *pte;
1680
1681         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1682         pmd = stage2_get_pmd(kvm, NULL, gpa);
1683         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1684                 return 0;
1685
1686         if (pmd_thp_or_huge(*pmd))              /* THP, HugeTLB */
1687                 return pmd_young(*pmd);
1688
1689         pte = pte_offset_kernel(pmd, gpa);
1690         if (!pte_none(*pte))            /* Just a page... */
1691                 return pte_young(*pte);
1692
1693         return 0;
1694 }
1695
1696 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1697 {
1698         trace_kvm_age_hva(start, end);
1699         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1700 }
1701
1702 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1703 {
1704         trace_kvm_test_age_hva(hva);
1705         return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1706 }
1707
1708 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1709 {
1710         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1711 }
1712
1713 phys_addr_t kvm_mmu_get_httbr(void)
1714 {
1715         if (__kvm_cpu_uses_extended_idmap())
1716                 return virt_to_phys(merged_hyp_pgd);
1717         else
1718                 return virt_to_phys(hyp_pgd);
1719 }
1720
1721 phys_addr_t kvm_get_idmap_vector(void)
1722 {
1723         return hyp_idmap_vector;
1724 }
1725
1726 static int kvm_map_idmap_text(pgd_t *pgd)
1727 {
1728         int err;
1729
1730         /* Create the idmap in the boot page tables */
1731         err =   __create_hyp_mappings(pgd,
1732                                       hyp_idmap_start, hyp_idmap_end,
1733                                       __phys_to_pfn(hyp_idmap_start),
1734                                       PAGE_HYP_EXEC);
1735         if (err)
1736                 kvm_err("Failed to idmap %lx-%lx\n",
1737                         hyp_idmap_start, hyp_idmap_end);
1738
1739         return err;
1740 }
1741
1742 int kvm_mmu_init(void)
1743 {
1744         int err;
1745
1746         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1747         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1748         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1749
1750         /*
1751          * We rely on the linker script to ensure at build time that the HYP
1752          * init code does not cross a page boundary.
1753          */
1754         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1755
1756         kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
1757         kvm_info("HYP VA range: %lx:%lx\n",
1758                  kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1759
1760         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1761             hyp_idmap_start <  kern_hyp_va(~0UL) &&
1762             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1763                 /*
1764                  * The idmap page is intersecting with the VA space,
1765                  * it is not safe to continue further.
1766                  */
1767                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1768                 err = -EINVAL;
1769                 goto out;
1770         }
1771
1772         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1773         if (!hyp_pgd) {
1774                 kvm_err("Hyp mode PGD not allocated\n");
1775                 err = -ENOMEM;
1776                 goto out;
1777         }
1778
1779         if (__kvm_cpu_uses_extended_idmap()) {
1780                 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1781                                                          hyp_pgd_order);
1782                 if (!boot_hyp_pgd) {
1783                         kvm_err("Hyp boot PGD not allocated\n");
1784                         err = -ENOMEM;
1785                         goto out;
1786                 }
1787
1788                 err = kvm_map_idmap_text(boot_hyp_pgd);
1789                 if (err)
1790                         goto out;
1791
1792                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1793                 if (!merged_hyp_pgd) {
1794                         kvm_err("Failed to allocate extra HYP pgd\n");
1795                         goto out;
1796                 }
1797                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1798                                     hyp_idmap_start);
1799         } else {
1800                 err = kvm_map_idmap_text(hyp_pgd);
1801                 if (err)
1802                         goto out;
1803         }
1804
1805         return 0;
1806 out:
1807         free_hyp_pgds();
1808         return err;
1809 }
1810
1811 void kvm_arch_commit_memory_region(struct kvm *kvm,
1812                                    const struct kvm_userspace_memory_region *mem,
1813                                    const struct kvm_memory_slot *old,
1814                                    const struct kvm_memory_slot *new,
1815                                    enum kvm_mr_change change)
1816 {
1817         /*
1818          * At this point memslot has been committed and there is an
1819          * allocated dirty_bitmap[], dirty pages will be be tracked while the
1820          * memory slot is write protected.
1821          */
1822         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1823                 kvm_mmu_wp_memory_region(kvm, mem->slot);
1824 }
1825
1826 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1827                                    struct kvm_memory_slot *memslot,
1828                                    const struct kvm_userspace_memory_region *mem,
1829                                    enum kvm_mr_change change)
1830 {
1831         hva_t hva = mem->userspace_addr;
1832         hva_t reg_end = hva + mem->memory_size;
1833         bool writable = !(mem->flags & KVM_MEM_READONLY);
1834         int ret = 0;
1835
1836         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1837                         change != KVM_MR_FLAGS_ONLY)
1838                 return 0;
1839
1840         /*
1841          * Prevent userspace from creating a memory region outside of the IPA
1842          * space addressable by the KVM guest IPA space.
1843          */
1844         if (memslot->base_gfn + memslot->npages >=
1845             (KVM_PHYS_SIZE >> PAGE_SHIFT))
1846                 return -EFAULT;
1847
1848         down_read(&current->mm->mmap_sem);
1849         /*
1850          * A memory region could potentially cover multiple VMAs, and any holes
1851          * between them, so iterate over all of them to find out if we can map
1852          * any of them right now.
1853          *
1854          *     +--------------------------------------------+
1855          * +---------------+----------------+   +----------------+
1856          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1857          * +---------------+----------------+   +----------------+
1858          *     |               memory region                |
1859          *     +--------------------------------------------+
1860          */
1861         do {
1862                 struct vm_area_struct *vma = find_vma(current->mm, hva);
1863                 hva_t vm_start, vm_end;
1864
1865                 if (!vma || vma->vm_start >= reg_end)
1866                         break;
1867
1868                 /*
1869                  * Mapping a read-only VMA is only allowed if the
1870                  * memory region is configured as read-only.
1871                  */
1872                 if (writable && !(vma->vm_flags & VM_WRITE)) {
1873                         ret = -EPERM;
1874                         break;
1875                 }
1876
1877                 /*
1878                  * Take the intersection of this VMA with the memory region
1879                  */
1880                 vm_start = max(hva, vma->vm_start);
1881                 vm_end = min(reg_end, vma->vm_end);
1882
1883                 if (vma->vm_flags & VM_PFNMAP) {
1884                         gpa_t gpa = mem->guest_phys_addr +
1885                                     (vm_start - mem->userspace_addr);
1886                         phys_addr_t pa;
1887
1888                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1889                         pa += vm_start - vma->vm_start;
1890
1891                         /* IO region dirty page logging not allowed */
1892                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1893                                 ret = -EINVAL;
1894                                 goto out;
1895                         }
1896
1897                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1898                                                     vm_end - vm_start,
1899                                                     writable);
1900                         if (ret)
1901                                 break;
1902                 }
1903                 hva = vm_end;
1904         } while (hva < reg_end);
1905
1906         if (change == KVM_MR_FLAGS_ONLY)
1907                 goto out;
1908
1909         spin_lock(&kvm->mmu_lock);
1910         if (ret)
1911                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1912         else
1913                 stage2_flush_memslot(kvm, memslot);
1914         spin_unlock(&kvm->mmu_lock);
1915 out:
1916         up_read(&current->mm->mmap_sem);
1917         return ret;
1918 }
1919
1920 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1921                            struct kvm_memory_slot *dont)
1922 {
1923 }
1924
1925 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1926                             unsigned long npages)
1927 {
1928         return 0;
1929 }
1930
1931 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1932 {
1933 }
1934
1935 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1936 {
1937         kvm_free_stage2_pgd(kvm);
1938 }
1939
1940 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1941                                    struct kvm_memory_slot *slot)
1942 {
1943         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1944         phys_addr_t size = slot->npages << PAGE_SHIFT;
1945
1946         spin_lock(&kvm->mmu_lock);
1947         unmap_stage2_range(kvm, gpa, size);
1948         spin_unlock(&kvm->mmu_lock);
1949 }
1950
1951 /*
1952  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1953  *
1954  * Main problems:
1955  * - S/W ops are local to a CPU (not broadcast)
1956  * - We have line migration behind our back (speculation)
1957  * - System caches don't support S/W at all (damn!)
1958  *
1959  * In the face of the above, the best we can do is to try and convert
1960  * S/W ops to VA ops. Because the guest is not allowed to infer the
1961  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1962  * which is a rather good thing for us.
1963  *
1964  * Also, it is only used when turning caches on/off ("The expected
1965  * usage of the cache maintenance instructions that operate by set/way
1966  * is associated with the cache maintenance instructions associated
1967  * with the powerdown and powerup of caches, if this is required by
1968  * the implementation.").
1969  *
1970  * We use the following policy:
1971  *
1972  * - If we trap a S/W operation, we enable VM trapping to detect
1973  *   caches being turned on/off, and do a full clean.
1974  *
1975  * - We flush the caches on both caches being turned on and off.
1976  *
1977  * - Once the caches are enabled, we stop trapping VM ops.
1978  */
1979 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1980 {
1981         unsigned long hcr = vcpu_get_hcr(vcpu);
1982
1983         /*
1984          * If this is the first time we do a S/W operation
1985          * (i.e. HCR_TVM not set) flush the whole memory, and set the
1986          * VM trapping.
1987          *
1988          * Otherwise, rely on the VM trapping to wait for the MMU +
1989          * Caches to be turned off. At that point, we'll be able to
1990          * clean the caches again.
1991          */
1992         if (!(hcr & HCR_TVM)) {
1993                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1994                                         vcpu_has_cache_enabled(vcpu));
1995                 stage2_flush_vm(vcpu->kvm);
1996                 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1997         }
1998 }
1999
2000 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2001 {
2002         bool now_enabled = vcpu_has_cache_enabled(vcpu);
2003
2004         /*
2005          * If switching the MMU+caches on, need to invalidate the caches.
2006          * If switching it off, need to clean the caches.
2007          * Clean + invalidate does the trick always.
2008          */
2009         if (now_enabled != was_enabled)
2010                 stage2_flush_vm(vcpu->kvm);
2011
2012         /* Caches are now on, stop trapping VM ops (until a S/W op) */
2013         if (now_enabled)
2014                 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
2015
2016         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2017 }