Merge tag 'devicetree-fixes-for-5.3-3' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / virt / kvm / arm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23 #include <kvm/arm_pmu.h>
24 #include <kvm/arm_psci.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace.h"
28
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_emulate.h>
40 #include <asm/kvm_coproc.h>
41 #include <asm/sections.h>
42
43 #ifdef REQUIRES_VIRT
44 __asm__(".arch_extension        virt");
45 #endif
46
47 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
48 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
49
50 /* Per-CPU variable containing the currently running vcpu. */
51 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
52
53 /* The VMID used in the VTTBR */
54 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
55 static u32 kvm_next_vmid;
56 static DEFINE_SPINLOCK(kvm_vmid_lock);
57
58 static bool vgic_present;
59
60 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
61
62 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
63 {
64         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
65 }
66
67 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
68
69 /**
70  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
71  * Must be called from non-preemptible context
72  */
73 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
74 {
75         return __this_cpu_read(kvm_arm_running_vcpu);
76 }
77
78 /**
79  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
80  */
81 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
82 {
83         return &kvm_arm_running_vcpu;
84 }
85
86 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
87 {
88         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
89 }
90
91 int kvm_arch_hardware_setup(void)
92 {
93         return 0;
94 }
95
96 int kvm_arch_check_processor_compat(void)
97 {
98         return 0;
99 }
100
101
102 /**
103  * kvm_arch_init_vm - initializes a VM data structure
104  * @kvm:        pointer to the KVM struct
105  */
106 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
107 {
108         int ret, cpu;
109
110         ret = kvm_arm_setup_stage2(kvm, type);
111         if (ret)
112                 return ret;
113
114         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
115         if (!kvm->arch.last_vcpu_ran)
116                 return -ENOMEM;
117
118         for_each_possible_cpu(cpu)
119                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
120
121         ret = kvm_alloc_stage2_pgd(kvm);
122         if (ret)
123                 goto out_fail_alloc;
124
125         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
126         if (ret)
127                 goto out_free_stage2_pgd;
128
129         kvm_vgic_early_init(kvm);
130
131         /* Mark the initial VMID generation invalid */
132         kvm->arch.vmid.vmid_gen = 0;
133
134         /* The maximum number of VCPUs is limited by the host's GIC model */
135         kvm->arch.max_vcpus = vgic_present ?
136                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
137
138         return ret;
139 out_free_stage2_pgd:
140         kvm_free_stage2_pgd(kvm);
141 out_fail_alloc:
142         free_percpu(kvm->arch.last_vcpu_ran);
143         kvm->arch.last_vcpu_ran = NULL;
144         return ret;
145 }
146
147 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
148 {
149         return 0;
150 }
151
152 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153 {
154         return VM_FAULT_SIGBUS;
155 }
156
157
158 /**
159  * kvm_arch_destroy_vm - destroy the VM data structure
160  * @kvm:        pointer to the KVM struct
161  */
162 void kvm_arch_destroy_vm(struct kvm *kvm)
163 {
164         int i;
165
166         kvm_vgic_destroy(kvm);
167
168         free_percpu(kvm->arch.last_vcpu_ran);
169         kvm->arch.last_vcpu_ran = NULL;
170
171         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
172                 if (kvm->vcpus[i]) {
173                         kvm_arch_vcpu_free(kvm->vcpus[i]);
174                         kvm->vcpus[i] = NULL;
175                 }
176         }
177         atomic_set(&kvm->online_vcpus, 0);
178 }
179
180 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
181 {
182         int r;
183         switch (ext) {
184         case KVM_CAP_IRQCHIP:
185                 r = vgic_present;
186                 break;
187         case KVM_CAP_IOEVENTFD:
188         case KVM_CAP_DEVICE_CTRL:
189         case KVM_CAP_USER_MEMORY:
190         case KVM_CAP_SYNC_MMU:
191         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
192         case KVM_CAP_ONE_REG:
193         case KVM_CAP_ARM_PSCI:
194         case KVM_CAP_ARM_PSCI_0_2:
195         case KVM_CAP_READONLY_MEM:
196         case KVM_CAP_MP_STATE:
197         case KVM_CAP_IMMEDIATE_EXIT:
198         case KVM_CAP_VCPU_EVENTS:
199                 r = 1;
200                 break;
201         case KVM_CAP_ARM_SET_DEVICE_ADDR:
202                 r = 1;
203                 break;
204         case KVM_CAP_NR_VCPUS:
205                 r = num_online_cpus();
206                 break;
207         case KVM_CAP_MAX_VCPUS:
208                 r = KVM_MAX_VCPUS;
209                 break;
210         case KVM_CAP_MAX_VCPU_ID:
211                 r = KVM_MAX_VCPU_ID;
212                 break;
213         case KVM_CAP_MSI_DEVID:
214                 if (!kvm)
215                         r = -EINVAL;
216                 else
217                         r = kvm->arch.vgic.msis_require_devid;
218                 break;
219         case KVM_CAP_ARM_USER_IRQ:
220                 /*
221                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
222                  * (bump this number if adding more devices)
223                  */
224                 r = 1;
225                 break;
226         default:
227                 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
228                 break;
229         }
230         return r;
231 }
232
233 long kvm_arch_dev_ioctl(struct file *filp,
234                         unsigned int ioctl, unsigned long arg)
235 {
236         return -EINVAL;
237 }
238
239 struct kvm *kvm_arch_alloc_vm(void)
240 {
241         if (!has_vhe())
242                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
243
244         return vzalloc(sizeof(struct kvm));
245 }
246
247 void kvm_arch_free_vm(struct kvm *kvm)
248 {
249         if (!has_vhe())
250                 kfree(kvm);
251         else
252                 vfree(kvm);
253 }
254
255 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
256 {
257         int err;
258         struct kvm_vcpu *vcpu;
259
260         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
261                 err = -EBUSY;
262                 goto out;
263         }
264
265         if (id >= kvm->arch.max_vcpus) {
266                 err = -EINVAL;
267                 goto out;
268         }
269
270         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
271         if (!vcpu) {
272                 err = -ENOMEM;
273                 goto out;
274         }
275
276         err = kvm_vcpu_init(vcpu, kvm, id);
277         if (err)
278                 goto free_vcpu;
279
280         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
281         if (err)
282                 goto vcpu_uninit;
283
284         return vcpu;
285 vcpu_uninit:
286         kvm_vcpu_uninit(vcpu);
287 free_vcpu:
288         kmem_cache_free(kvm_vcpu_cache, vcpu);
289 out:
290         return ERR_PTR(err);
291 }
292
293 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
294 {
295 }
296
297 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
298 {
299         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
300                 static_branch_dec(&userspace_irqchip_in_use);
301
302         kvm_mmu_free_memory_caches(vcpu);
303         kvm_timer_vcpu_terminate(vcpu);
304         kvm_pmu_vcpu_destroy(vcpu);
305         kvm_vcpu_uninit(vcpu);
306         kmem_cache_free(kvm_vcpu_cache, vcpu);
307 }
308
309 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
310 {
311         kvm_arch_vcpu_free(vcpu);
312 }
313
314 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
315 {
316         return kvm_timer_is_pending(vcpu);
317 }
318
319 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
320 {
321         /*
322          * If we're about to block (most likely because we've just hit a
323          * WFI), we need to sync back the state of the GIC CPU interface
324          * so that we have the lastest PMR and group enables. This ensures
325          * that kvm_arch_vcpu_runnable has up-to-date data to decide
326          * whether we have pending interrupts.
327          */
328         preempt_disable();
329         kvm_vgic_vmcr_sync(vcpu);
330         preempt_enable();
331
332         kvm_vgic_v4_enable_doorbell(vcpu);
333 }
334
335 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
336 {
337         kvm_vgic_v4_disable_doorbell(vcpu);
338 }
339
340 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
341 {
342         /* Force users to call KVM_ARM_VCPU_INIT */
343         vcpu->arch.target = -1;
344         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
345
346         /* Set up the timer */
347         kvm_timer_vcpu_init(vcpu);
348
349         kvm_pmu_vcpu_init(vcpu);
350
351         kvm_arm_reset_debug_ptr(vcpu);
352
353         return kvm_vgic_vcpu_init(vcpu);
354 }
355
356 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
357 {
358         int *last_ran;
359         kvm_host_data_t *cpu_data;
360
361         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
362         cpu_data = this_cpu_ptr(&kvm_host_data);
363
364         /*
365          * We might get preempted before the vCPU actually runs, but
366          * over-invalidation doesn't affect correctness.
367          */
368         if (*last_ran != vcpu->vcpu_id) {
369                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
370                 *last_ran = vcpu->vcpu_id;
371         }
372
373         vcpu->cpu = cpu;
374         vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
375
376         kvm_arm_set_running_vcpu(vcpu);
377         kvm_vgic_load(vcpu);
378         kvm_timer_vcpu_load(vcpu);
379         kvm_vcpu_load_sysregs(vcpu);
380         kvm_arch_vcpu_load_fp(vcpu);
381         kvm_vcpu_pmu_restore_guest(vcpu);
382
383         if (single_task_running())
384                 vcpu_clear_wfe_traps(vcpu);
385         else
386                 vcpu_set_wfe_traps(vcpu);
387
388         vcpu_ptrauth_setup_lazy(vcpu);
389 }
390
391 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
392 {
393         kvm_arch_vcpu_put_fp(vcpu);
394         kvm_vcpu_put_sysregs(vcpu);
395         kvm_timer_vcpu_put(vcpu);
396         kvm_vgic_put(vcpu);
397         kvm_vcpu_pmu_restore_host(vcpu);
398
399         vcpu->cpu = -1;
400
401         kvm_arm_set_running_vcpu(NULL);
402 }
403
404 static void vcpu_power_off(struct kvm_vcpu *vcpu)
405 {
406         vcpu->arch.power_off = true;
407         kvm_make_request(KVM_REQ_SLEEP, vcpu);
408         kvm_vcpu_kick(vcpu);
409 }
410
411 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
412                                     struct kvm_mp_state *mp_state)
413 {
414         if (vcpu->arch.power_off)
415                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
416         else
417                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
418
419         return 0;
420 }
421
422 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
423                                     struct kvm_mp_state *mp_state)
424 {
425         int ret = 0;
426
427         switch (mp_state->mp_state) {
428         case KVM_MP_STATE_RUNNABLE:
429                 vcpu->arch.power_off = false;
430                 break;
431         case KVM_MP_STATE_STOPPED:
432                 vcpu_power_off(vcpu);
433                 break;
434         default:
435                 ret = -EINVAL;
436         }
437
438         return ret;
439 }
440
441 /**
442  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
443  * @v:          The VCPU pointer
444  *
445  * If the guest CPU is not waiting for interrupts or an interrupt line is
446  * asserted, the CPU is by definition runnable.
447  */
448 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
449 {
450         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
451         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
452                 && !v->arch.power_off && !v->arch.pause);
453 }
454
455 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
456 {
457         return vcpu_mode_priv(vcpu);
458 }
459
460 /* Just ensure a guest exit from a particular CPU */
461 static void exit_vm_noop(void *info)
462 {
463 }
464
465 void force_vm_exit(const cpumask_t *mask)
466 {
467         preempt_disable();
468         smp_call_function_many(mask, exit_vm_noop, NULL, true);
469         preempt_enable();
470 }
471
472 /**
473  * need_new_vmid_gen - check that the VMID is still valid
474  * @vmid: The VMID to check
475  *
476  * return true if there is a new generation of VMIDs being used
477  *
478  * The hardware supports a limited set of values with the value zero reserved
479  * for the host, so we check if an assigned value belongs to a previous
480  * generation, which which requires us to assign a new value. If we're the
481  * first to use a VMID for the new generation, we must flush necessary caches
482  * and TLBs on all CPUs.
483  */
484 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
485 {
486         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
487         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
488         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
489 }
490
491 /**
492  * update_vmid - Update the vmid with a valid VMID for the current generation
493  * @kvm: The guest that struct vmid belongs to
494  * @vmid: The stage-2 VMID information struct
495  */
496 static void update_vmid(struct kvm_vmid *vmid)
497 {
498         if (!need_new_vmid_gen(vmid))
499                 return;
500
501         spin_lock(&kvm_vmid_lock);
502
503         /*
504          * We need to re-check the vmid_gen here to ensure that if another vcpu
505          * already allocated a valid vmid for this vm, then this vcpu should
506          * use the same vmid.
507          */
508         if (!need_new_vmid_gen(vmid)) {
509                 spin_unlock(&kvm_vmid_lock);
510                 return;
511         }
512
513         /* First user of a new VMID generation? */
514         if (unlikely(kvm_next_vmid == 0)) {
515                 atomic64_inc(&kvm_vmid_gen);
516                 kvm_next_vmid = 1;
517
518                 /*
519                  * On SMP we know no other CPUs can use this CPU's or each
520                  * other's VMID after force_vm_exit returns since the
521                  * kvm_vmid_lock blocks them from reentry to the guest.
522                  */
523                 force_vm_exit(cpu_all_mask);
524                 /*
525                  * Now broadcast TLB + ICACHE invalidation over the inner
526                  * shareable domain to make sure all data structures are
527                  * clean.
528                  */
529                 kvm_call_hyp(__kvm_flush_vm_context);
530         }
531
532         vmid->vmid = kvm_next_vmid;
533         kvm_next_vmid++;
534         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
535
536         smp_wmb();
537         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
538
539         spin_unlock(&kvm_vmid_lock);
540 }
541
542 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
543 {
544         struct kvm *kvm = vcpu->kvm;
545         int ret = 0;
546
547         if (likely(vcpu->arch.has_run_once))
548                 return 0;
549
550         if (!kvm_arm_vcpu_is_finalized(vcpu))
551                 return -EPERM;
552
553         vcpu->arch.has_run_once = true;
554
555         if (likely(irqchip_in_kernel(kvm))) {
556                 /*
557                  * Map the VGIC hardware resources before running a vcpu the
558                  * first time on this VM.
559                  */
560                 if (unlikely(!vgic_ready(kvm))) {
561                         ret = kvm_vgic_map_resources(kvm);
562                         if (ret)
563                                 return ret;
564                 }
565         } else {
566                 /*
567                  * Tell the rest of the code that there are userspace irqchip
568                  * VMs in the wild.
569                  */
570                 static_branch_inc(&userspace_irqchip_in_use);
571         }
572
573         ret = kvm_timer_enable(vcpu);
574         if (ret)
575                 return ret;
576
577         ret = kvm_arm_pmu_v3_enable(vcpu);
578
579         return ret;
580 }
581
582 bool kvm_arch_intc_initialized(struct kvm *kvm)
583 {
584         return vgic_initialized(kvm);
585 }
586
587 void kvm_arm_halt_guest(struct kvm *kvm)
588 {
589         int i;
590         struct kvm_vcpu *vcpu;
591
592         kvm_for_each_vcpu(i, vcpu, kvm)
593                 vcpu->arch.pause = true;
594         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
595 }
596
597 void kvm_arm_resume_guest(struct kvm *kvm)
598 {
599         int i;
600         struct kvm_vcpu *vcpu;
601
602         kvm_for_each_vcpu(i, vcpu, kvm) {
603                 vcpu->arch.pause = false;
604                 swake_up_one(kvm_arch_vcpu_wq(vcpu));
605         }
606 }
607
608 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
609 {
610         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
611
612         swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
613                                        (!vcpu->arch.pause)));
614
615         if (vcpu->arch.power_off || vcpu->arch.pause) {
616                 /* Awaken to handle a signal, request we sleep again later. */
617                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
618         }
619
620         /*
621          * Make sure we will observe a potential reset request if we've
622          * observed a change to the power state. Pairs with the smp_wmb() in
623          * kvm_psci_vcpu_on().
624          */
625         smp_rmb();
626 }
627
628 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
629 {
630         return vcpu->arch.target >= 0;
631 }
632
633 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
634 {
635         if (kvm_request_pending(vcpu)) {
636                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
637                         vcpu_req_sleep(vcpu);
638
639                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
640                         kvm_reset_vcpu(vcpu);
641
642                 /*
643                  * Clear IRQ_PENDING requests that were made to guarantee
644                  * that a VCPU sees new virtual interrupts.
645                  */
646                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
647         }
648 }
649
650 /**
651  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
652  * @vcpu:       The VCPU pointer
653  * @run:        The kvm_run structure pointer used for userspace state exchange
654  *
655  * This function is called through the VCPU_RUN ioctl called from user space. It
656  * will execute VM code in a loop until the time slice for the process is used
657  * or some emulation is needed from user space in which case the function will
658  * return with return value 0 and with the kvm_run structure filled in with the
659  * required data for the requested emulation.
660  */
661 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
662 {
663         int ret;
664
665         if (unlikely(!kvm_vcpu_initialized(vcpu)))
666                 return -ENOEXEC;
667
668         ret = kvm_vcpu_first_run_init(vcpu);
669         if (ret)
670                 return ret;
671
672         if (run->exit_reason == KVM_EXIT_MMIO) {
673                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
674                 if (ret)
675                         return ret;
676         }
677
678         if (run->immediate_exit)
679                 return -EINTR;
680
681         vcpu_load(vcpu);
682
683         kvm_sigset_activate(vcpu);
684
685         ret = 1;
686         run->exit_reason = KVM_EXIT_UNKNOWN;
687         while (ret > 0) {
688                 /*
689                  * Check conditions before entering the guest
690                  */
691                 cond_resched();
692
693                 update_vmid(&vcpu->kvm->arch.vmid);
694
695                 check_vcpu_requests(vcpu);
696
697                 /*
698                  * Preparing the interrupts to be injected also
699                  * involves poking the GIC, which must be done in a
700                  * non-preemptible context.
701                  */
702                 preempt_disable();
703
704                 kvm_pmu_flush_hwstate(vcpu);
705
706                 local_irq_disable();
707
708                 kvm_vgic_flush_hwstate(vcpu);
709
710                 /*
711                  * Exit if we have a signal pending so that we can deliver the
712                  * signal to user space.
713                  */
714                 if (signal_pending(current)) {
715                         ret = -EINTR;
716                         run->exit_reason = KVM_EXIT_INTR;
717                 }
718
719                 /*
720                  * If we're using a userspace irqchip, then check if we need
721                  * to tell a userspace irqchip about timer or PMU level
722                  * changes and if so, exit to userspace (the actual level
723                  * state gets updated in kvm_timer_update_run and
724                  * kvm_pmu_update_run below).
725                  */
726                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
727                         if (kvm_timer_should_notify_user(vcpu) ||
728                             kvm_pmu_should_notify_user(vcpu)) {
729                                 ret = -EINTR;
730                                 run->exit_reason = KVM_EXIT_INTR;
731                         }
732                 }
733
734                 /*
735                  * Ensure we set mode to IN_GUEST_MODE after we disable
736                  * interrupts and before the final VCPU requests check.
737                  * See the comment in kvm_vcpu_exiting_guest_mode() and
738                  * Documentation/virt/kvm/vcpu-requests.rst
739                  */
740                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
741
742                 if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
743                     kvm_request_pending(vcpu)) {
744                         vcpu->mode = OUTSIDE_GUEST_MODE;
745                         isb(); /* Ensure work in x_flush_hwstate is committed */
746                         kvm_pmu_sync_hwstate(vcpu);
747                         if (static_branch_unlikely(&userspace_irqchip_in_use))
748                                 kvm_timer_sync_hwstate(vcpu);
749                         kvm_vgic_sync_hwstate(vcpu);
750                         local_irq_enable();
751                         preempt_enable();
752                         continue;
753                 }
754
755                 kvm_arm_setup_debug(vcpu);
756
757                 /**************************************************************
758                  * Enter the guest
759                  */
760                 trace_kvm_entry(*vcpu_pc(vcpu));
761                 guest_enter_irqoff();
762
763                 if (has_vhe()) {
764                         kvm_arm_vhe_guest_enter();
765                         ret = kvm_vcpu_run_vhe(vcpu);
766                         kvm_arm_vhe_guest_exit();
767                 } else {
768                         ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
769                 }
770
771                 vcpu->mode = OUTSIDE_GUEST_MODE;
772                 vcpu->stat.exits++;
773                 /*
774                  * Back from guest
775                  *************************************************************/
776
777                 kvm_arm_clear_debug(vcpu);
778
779                 /*
780                  * We must sync the PMU state before the vgic state so
781                  * that the vgic can properly sample the updated state of the
782                  * interrupt line.
783                  */
784                 kvm_pmu_sync_hwstate(vcpu);
785
786                 /*
787                  * Sync the vgic state before syncing the timer state because
788                  * the timer code needs to know if the virtual timer
789                  * interrupts are active.
790                  */
791                 kvm_vgic_sync_hwstate(vcpu);
792
793                 /*
794                  * Sync the timer hardware state before enabling interrupts as
795                  * we don't want vtimer interrupts to race with syncing the
796                  * timer virtual interrupt state.
797                  */
798                 if (static_branch_unlikely(&userspace_irqchip_in_use))
799                         kvm_timer_sync_hwstate(vcpu);
800
801                 kvm_arch_vcpu_ctxsync_fp(vcpu);
802
803                 /*
804                  * We may have taken a host interrupt in HYP mode (ie
805                  * while executing the guest). This interrupt is still
806                  * pending, as we haven't serviced it yet!
807                  *
808                  * We're now back in SVC mode, with interrupts
809                  * disabled.  Enabling the interrupts now will have
810                  * the effect of taking the interrupt again, in SVC
811                  * mode this time.
812                  */
813                 local_irq_enable();
814
815                 /*
816                  * We do local_irq_enable() before calling guest_exit() so
817                  * that if a timer interrupt hits while running the guest we
818                  * account that tick as being spent in the guest.  We enable
819                  * preemption after calling guest_exit() so that if we get
820                  * preempted we make sure ticks after that is not counted as
821                  * guest time.
822                  */
823                 guest_exit();
824                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
825
826                 /* Exit types that need handling before we can be preempted */
827                 handle_exit_early(vcpu, run, ret);
828
829                 preempt_enable();
830
831                 ret = handle_exit(vcpu, run, ret);
832         }
833
834         /* Tell userspace about in-kernel device output levels */
835         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
836                 kvm_timer_update_run(vcpu);
837                 kvm_pmu_update_run(vcpu);
838         }
839
840         kvm_sigset_deactivate(vcpu);
841
842         vcpu_put(vcpu);
843         return ret;
844 }
845
846 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
847 {
848         int bit_index;
849         bool set;
850         unsigned long *hcr;
851
852         if (number == KVM_ARM_IRQ_CPU_IRQ)
853                 bit_index = __ffs(HCR_VI);
854         else /* KVM_ARM_IRQ_CPU_FIQ */
855                 bit_index = __ffs(HCR_VF);
856
857         hcr = vcpu_hcr(vcpu);
858         if (level)
859                 set = test_and_set_bit(bit_index, hcr);
860         else
861                 set = test_and_clear_bit(bit_index, hcr);
862
863         /*
864          * If we didn't change anything, no need to wake up or kick other CPUs
865          */
866         if (set == level)
867                 return 0;
868
869         /*
870          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
871          * trigger a world-switch round on the running physical CPU to set the
872          * virtual IRQ/FIQ fields in the HCR appropriately.
873          */
874         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
875         kvm_vcpu_kick(vcpu);
876
877         return 0;
878 }
879
880 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
881                           bool line_status)
882 {
883         u32 irq = irq_level->irq;
884         unsigned int irq_type, vcpu_idx, irq_num;
885         int nrcpus = atomic_read(&kvm->online_vcpus);
886         struct kvm_vcpu *vcpu = NULL;
887         bool level = irq_level->level;
888
889         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
890         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
891         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
892
893         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
894
895         switch (irq_type) {
896         case KVM_ARM_IRQ_TYPE_CPU:
897                 if (irqchip_in_kernel(kvm))
898                         return -ENXIO;
899
900                 if (vcpu_idx >= nrcpus)
901                         return -EINVAL;
902
903                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
904                 if (!vcpu)
905                         return -EINVAL;
906
907                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
908                         return -EINVAL;
909
910                 return vcpu_interrupt_line(vcpu, irq_num, level);
911         case KVM_ARM_IRQ_TYPE_PPI:
912                 if (!irqchip_in_kernel(kvm))
913                         return -ENXIO;
914
915                 if (vcpu_idx >= nrcpus)
916                         return -EINVAL;
917
918                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
919                 if (!vcpu)
920                         return -EINVAL;
921
922                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
923                         return -EINVAL;
924
925                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
926         case KVM_ARM_IRQ_TYPE_SPI:
927                 if (!irqchip_in_kernel(kvm))
928                         return -ENXIO;
929
930                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
931                         return -EINVAL;
932
933                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
934         }
935
936         return -EINVAL;
937 }
938
939 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
940                                const struct kvm_vcpu_init *init)
941 {
942         unsigned int i, ret;
943         int phys_target = kvm_target_cpu();
944
945         if (init->target != phys_target)
946                 return -EINVAL;
947
948         /*
949          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
950          * use the same target.
951          */
952         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
953                 return -EINVAL;
954
955         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
956         for (i = 0; i < sizeof(init->features) * 8; i++) {
957                 bool set = (init->features[i / 32] & (1 << (i % 32)));
958
959                 if (set && i >= KVM_VCPU_MAX_FEATURES)
960                         return -ENOENT;
961
962                 /*
963                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
964                  * use the same feature set.
965                  */
966                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
967                     test_bit(i, vcpu->arch.features) != set)
968                         return -EINVAL;
969
970                 if (set)
971                         set_bit(i, vcpu->arch.features);
972         }
973
974         vcpu->arch.target = phys_target;
975
976         /* Now we know what it is, we can reset it. */
977         ret = kvm_reset_vcpu(vcpu);
978         if (ret) {
979                 vcpu->arch.target = -1;
980                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
981         }
982
983         return ret;
984 }
985
986 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
987                                          struct kvm_vcpu_init *init)
988 {
989         int ret;
990
991         ret = kvm_vcpu_set_target(vcpu, init);
992         if (ret)
993                 return ret;
994
995         /*
996          * Ensure a rebooted VM will fault in RAM pages and detect if the
997          * guest MMU is turned off and flush the caches as needed.
998          */
999         if (vcpu->arch.has_run_once)
1000                 stage2_unmap_vm(vcpu->kvm);
1001
1002         vcpu_reset_hcr(vcpu);
1003
1004         /*
1005          * Handle the "start in power-off" case.
1006          */
1007         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1008                 vcpu_power_off(vcpu);
1009         else
1010                 vcpu->arch.power_off = false;
1011
1012         return 0;
1013 }
1014
1015 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1016                                  struct kvm_device_attr *attr)
1017 {
1018         int ret = -ENXIO;
1019
1020         switch (attr->group) {
1021         default:
1022                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1023                 break;
1024         }
1025
1026         return ret;
1027 }
1028
1029 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1030                                  struct kvm_device_attr *attr)
1031 {
1032         int ret = -ENXIO;
1033
1034         switch (attr->group) {
1035         default:
1036                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1037                 break;
1038         }
1039
1040         return ret;
1041 }
1042
1043 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1044                                  struct kvm_device_attr *attr)
1045 {
1046         int ret = -ENXIO;
1047
1048         switch (attr->group) {
1049         default:
1050                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1051                 break;
1052         }
1053
1054         return ret;
1055 }
1056
1057 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1058                                    struct kvm_vcpu_events *events)
1059 {
1060         memset(events, 0, sizeof(*events));
1061
1062         return __kvm_arm_vcpu_get_events(vcpu, events);
1063 }
1064
1065 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1066                                    struct kvm_vcpu_events *events)
1067 {
1068         int i;
1069
1070         /* check whether the reserved field is zero */
1071         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1072                 if (events->reserved[i])
1073                         return -EINVAL;
1074
1075         /* check whether the pad field is zero */
1076         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1077                 if (events->exception.pad[i])
1078                         return -EINVAL;
1079
1080         return __kvm_arm_vcpu_set_events(vcpu, events);
1081 }
1082
1083 long kvm_arch_vcpu_ioctl(struct file *filp,
1084                          unsigned int ioctl, unsigned long arg)
1085 {
1086         struct kvm_vcpu *vcpu = filp->private_data;
1087         void __user *argp = (void __user *)arg;
1088         struct kvm_device_attr attr;
1089         long r;
1090
1091         switch (ioctl) {
1092         case KVM_ARM_VCPU_INIT: {
1093                 struct kvm_vcpu_init init;
1094
1095                 r = -EFAULT;
1096                 if (copy_from_user(&init, argp, sizeof(init)))
1097                         break;
1098
1099                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1100                 break;
1101         }
1102         case KVM_SET_ONE_REG:
1103         case KVM_GET_ONE_REG: {
1104                 struct kvm_one_reg reg;
1105
1106                 r = -ENOEXEC;
1107                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1108                         break;
1109
1110                 r = -EFAULT;
1111                 if (copy_from_user(&reg, argp, sizeof(reg)))
1112                         break;
1113
1114                 if (ioctl == KVM_SET_ONE_REG)
1115                         r = kvm_arm_set_reg(vcpu, &reg);
1116                 else
1117                         r = kvm_arm_get_reg(vcpu, &reg);
1118                 break;
1119         }
1120         case KVM_GET_REG_LIST: {
1121                 struct kvm_reg_list __user *user_list = argp;
1122                 struct kvm_reg_list reg_list;
1123                 unsigned n;
1124
1125                 r = -ENOEXEC;
1126                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1127                         break;
1128
1129                 r = -EPERM;
1130                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1131                         break;
1132
1133                 r = -EFAULT;
1134                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1135                         break;
1136                 n = reg_list.n;
1137                 reg_list.n = kvm_arm_num_regs(vcpu);
1138                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1139                         break;
1140                 r = -E2BIG;
1141                 if (n < reg_list.n)
1142                         break;
1143                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1144                 break;
1145         }
1146         case KVM_SET_DEVICE_ATTR: {
1147                 r = -EFAULT;
1148                 if (copy_from_user(&attr, argp, sizeof(attr)))
1149                         break;
1150                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1151                 break;
1152         }
1153         case KVM_GET_DEVICE_ATTR: {
1154                 r = -EFAULT;
1155                 if (copy_from_user(&attr, argp, sizeof(attr)))
1156                         break;
1157                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1158                 break;
1159         }
1160         case KVM_HAS_DEVICE_ATTR: {
1161                 r = -EFAULT;
1162                 if (copy_from_user(&attr, argp, sizeof(attr)))
1163                         break;
1164                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1165                 break;
1166         }
1167         case KVM_GET_VCPU_EVENTS: {
1168                 struct kvm_vcpu_events events;
1169
1170                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1171                         return -EINVAL;
1172
1173                 if (copy_to_user(argp, &events, sizeof(events)))
1174                         return -EFAULT;
1175
1176                 return 0;
1177         }
1178         case KVM_SET_VCPU_EVENTS: {
1179                 struct kvm_vcpu_events events;
1180
1181                 if (copy_from_user(&events, argp, sizeof(events)))
1182                         return -EFAULT;
1183
1184                 return kvm_arm_vcpu_set_events(vcpu, &events);
1185         }
1186         case KVM_ARM_VCPU_FINALIZE: {
1187                 int what;
1188
1189                 if (!kvm_vcpu_initialized(vcpu))
1190                         return -ENOEXEC;
1191
1192                 if (get_user(what, (const int __user *)argp))
1193                         return -EFAULT;
1194
1195                 return kvm_arm_vcpu_finalize(vcpu, what);
1196         }
1197         default:
1198                 r = -EINVAL;
1199         }
1200
1201         return r;
1202 }
1203
1204 /**
1205  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1206  * @kvm: kvm instance
1207  * @log: slot id and address to which we copy the log
1208  *
1209  * Steps 1-4 below provide general overview of dirty page logging. See
1210  * kvm_get_dirty_log_protect() function description for additional details.
1211  *
1212  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1213  * always flush the TLB (step 4) even if previous step failed  and the dirty
1214  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1215  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1216  * writes will be marked dirty for next log read.
1217  *
1218  *   1. Take a snapshot of the bit and clear it if needed.
1219  *   2. Write protect the corresponding page.
1220  *   3. Copy the snapshot to the userspace.
1221  *   4. Flush TLB's if needed.
1222  */
1223 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1224 {
1225         bool flush = false;
1226         int r;
1227
1228         mutex_lock(&kvm->slots_lock);
1229
1230         r = kvm_get_dirty_log_protect(kvm, log, &flush);
1231
1232         if (flush)
1233                 kvm_flush_remote_tlbs(kvm);
1234
1235         mutex_unlock(&kvm->slots_lock);
1236         return r;
1237 }
1238
1239 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1240 {
1241         bool flush = false;
1242         int r;
1243
1244         mutex_lock(&kvm->slots_lock);
1245
1246         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1247
1248         if (flush)
1249                 kvm_flush_remote_tlbs(kvm);
1250
1251         mutex_unlock(&kvm->slots_lock);
1252         return r;
1253 }
1254
1255 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1256                                         struct kvm_arm_device_addr *dev_addr)
1257 {
1258         unsigned long dev_id, type;
1259
1260         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1261                 KVM_ARM_DEVICE_ID_SHIFT;
1262         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1263                 KVM_ARM_DEVICE_TYPE_SHIFT;
1264
1265         switch (dev_id) {
1266         case KVM_ARM_DEVICE_VGIC_V2:
1267                 if (!vgic_present)
1268                         return -ENXIO;
1269                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1270         default:
1271                 return -ENODEV;
1272         }
1273 }
1274
1275 long kvm_arch_vm_ioctl(struct file *filp,
1276                        unsigned int ioctl, unsigned long arg)
1277 {
1278         struct kvm *kvm = filp->private_data;
1279         void __user *argp = (void __user *)arg;
1280
1281         switch (ioctl) {
1282         case KVM_CREATE_IRQCHIP: {
1283                 int ret;
1284                 if (!vgic_present)
1285                         return -ENXIO;
1286                 mutex_lock(&kvm->lock);
1287                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1288                 mutex_unlock(&kvm->lock);
1289                 return ret;
1290         }
1291         case KVM_ARM_SET_DEVICE_ADDR: {
1292                 struct kvm_arm_device_addr dev_addr;
1293
1294                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1295                         return -EFAULT;
1296                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1297         }
1298         case KVM_ARM_PREFERRED_TARGET: {
1299                 int err;
1300                 struct kvm_vcpu_init init;
1301
1302                 err = kvm_vcpu_preferred_target(&init);
1303                 if (err)
1304                         return err;
1305
1306                 if (copy_to_user(argp, &init, sizeof(init)))
1307                         return -EFAULT;
1308
1309                 return 0;
1310         }
1311         default:
1312                 return -EINVAL;
1313         }
1314 }
1315
1316 static void cpu_init_hyp_mode(void *dummy)
1317 {
1318         phys_addr_t pgd_ptr;
1319         unsigned long hyp_stack_ptr;
1320         unsigned long stack_page;
1321         unsigned long vector_ptr;
1322
1323         /* Switch from the HYP stub to our own HYP init vector */
1324         __hyp_set_vectors(kvm_get_idmap_vector());
1325
1326         pgd_ptr = kvm_mmu_get_httbr();
1327         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1328         hyp_stack_ptr = stack_page + PAGE_SIZE;
1329         vector_ptr = (unsigned long)kvm_get_hyp_vector();
1330
1331         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1332         __cpu_init_stage2();
1333 }
1334
1335 static void cpu_hyp_reset(void)
1336 {
1337         if (!is_kernel_in_hyp_mode())
1338                 __hyp_reset_vectors();
1339 }
1340
1341 static void cpu_hyp_reinit(void)
1342 {
1343         kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
1344
1345         cpu_hyp_reset();
1346
1347         if (is_kernel_in_hyp_mode())
1348                 kvm_timer_init_vhe();
1349         else
1350                 cpu_init_hyp_mode(NULL);
1351
1352         kvm_arm_init_debug();
1353
1354         if (vgic_present)
1355                 kvm_vgic_init_cpu_hardware();
1356 }
1357
1358 static void _kvm_arch_hardware_enable(void *discard)
1359 {
1360         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1361                 cpu_hyp_reinit();
1362                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1363         }
1364 }
1365
1366 int kvm_arch_hardware_enable(void)
1367 {
1368         _kvm_arch_hardware_enable(NULL);
1369         return 0;
1370 }
1371
1372 static void _kvm_arch_hardware_disable(void *discard)
1373 {
1374         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1375                 cpu_hyp_reset();
1376                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1377         }
1378 }
1379
1380 void kvm_arch_hardware_disable(void)
1381 {
1382         _kvm_arch_hardware_disable(NULL);
1383 }
1384
1385 #ifdef CONFIG_CPU_PM
1386 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1387                                     unsigned long cmd,
1388                                     void *v)
1389 {
1390         /*
1391          * kvm_arm_hardware_enabled is left with its old value over
1392          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1393          * re-enable hyp.
1394          */
1395         switch (cmd) {
1396         case CPU_PM_ENTER:
1397                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1398                         /*
1399                          * don't update kvm_arm_hardware_enabled here
1400                          * so that the hardware will be re-enabled
1401                          * when we resume. See below.
1402                          */
1403                         cpu_hyp_reset();
1404
1405                 return NOTIFY_OK;
1406         case CPU_PM_ENTER_FAILED:
1407         case CPU_PM_EXIT:
1408                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1409                         /* The hardware was enabled before suspend. */
1410                         cpu_hyp_reinit();
1411
1412                 return NOTIFY_OK;
1413
1414         default:
1415                 return NOTIFY_DONE;
1416         }
1417 }
1418
1419 static struct notifier_block hyp_init_cpu_pm_nb = {
1420         .notifier_call = hyp_init_cpu_pm_notifier,
1421 };
1422
1423 static void __init hyp_cpu_pm_init(void)
1424 {
1425         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1426 }
1427 static void __init hyp_cpu_pm_exit(void)
1428 {
1429         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1430 }
1431 #else
1432 static inline void hyp_cpu_pm_init(void)
1433 {
1434 }
1435 static inline void hyp_cpu_pm_exit(void)
1436 {
1437 }
1438 #endif
1439
1440 static int init_common_resources(void)
1441 {
1442         kvm_set_ipa_limit();
1443
1444         return 0;
1445 }
1446
1447 static int init_subsystems(void)
1448 {
1449         int err = 0;
1450
1451         /*
1452          * Enable hardware so that subsystem initialisation can access EL2.
1453          */
1454         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1455
1456         /*
1457          * Register CPU lower-power notifier
1458          */
1459         hyp_cpu_pm_init();
1460
1461         /*
1462          * Init HYP view of VGIC
1463          */
1464         err = kvm_vgic_hyp_init();
1465         switch (err) {
1466         case 0:
1467                 vgic_present = true;
1468                 break;
1469         case -ENODEV:
1470         case -ENXIO:
1471                 vgic_present = false;
1472                 err = 0;
1473                 break;
1474         default:
1475                 goto out;
1476         }
1477
1478         /*
1479          * Init HYP architected timer support
1480          */
1481         err = kvm_timer_hyp_init(vgic_present);
1482         if (err)
1483                 goto out;
1484
1485         kvm_perf_init();
1486         kvm_coproc_table_init();
1487
1488 out:
1489         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1490
1491         return err;
1492 }
1493
1494 static void teardown_hyp_mode(void)
1495 {
1496         int cpu;
1497
1498         free_hyp_pgds();
1499         for_each_possible_cpu(cpu)
1500                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1501         hyp_cpu_pm_exit();
1502 }
1503
1504 /**
1505  * Inits Hyp-mode on all online CPUs
1506  */
1507 static int init_hyp_mode(void)
1508 {
1509         int cpu;
1510         int err = 0;
1511
1512         /*
1513          * Allocate Hyp PGD and setup Hyp identity mapping
1514          */
1515         err = kvm_mmu_init();
1516         if (err)
1517                 goto out_err;
1518
1519         /*
1520          * Allocate stack pages for Hypervisor-mode
1521          */
1522         for_each_possible_cpu(cpu) {
1523                 unsigned long stack_page;
1524
1525                 stack_page = __get_free_page(GFP_KERNEL);
1526                 if (!stack_page) {
1527                         err = -ENOMEM;
1528                         goto out_err;
1529                 }
1530
1531                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1532         }
1533
1534         /*
1535          * Map the Hyp-code called directly from the host
1536          */
1537         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1538                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1539         if (err) {
1540                 kvm_err("Cannot map world-switch code\n");
1541                 goto out_err;
1542         }
1543
1544         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1545                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1546         if (err) {
1547                 kvm_err("Cannot map rodata section\n");
1548                 goto out_err;
1549         }
1550
1551         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1552                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1553         if (err) {
1554                 kvm_err("Cannot map bss section\n");
1555                 goto out_err;
1556         }
1557
1558         err = kvm_map_vectors();
1559         if (err) {
1560                 kvm_err("Cannot map vectors\n");
1561                 goto out_err;
1562         }
1563
1564         /*
1565          * Map the Hyp stack pages
1566          */
1567         for_each_possible_cpu(cpu) {
1568                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1569                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1570                                           PAGE_HYP);
1571
1572                 if (err) {
1573                         kvm_err("Cannot map hyp stack\n");
1574                         goto out_err;
1575                 }
1576         }
1577
1578         for_each_possible_cpu(cpu) {
1579                 kvm_host_data_t *cpu_data;
1580
1581                 cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
1582                 err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1583
1584                 if (err) {
1585                         kvm_err("Cannot map host CPU state: %d\n", err);
1586                         goto out_err;
1587                 }
1588         }
1589
1590         err = hyp_map_aux_data();
1591         if (err)
1592                 kvm_err("Cannot map host auxiliary data: %d\n", err);
1593
1594         return 0;
1595
1596 out_err:
1597         teardown_hyp_mode();
1598         kvm_err("error initializing Hyp mode: %d\n", err);
1599         return err;
1600 }
1601
1602 static void check_kvm_target_cpu(void *ret)
1603 {
1604         *(int *)ret = kvm_target_cpu();
1605 }
1606
1607 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1608 {
1609         struct kvm_vcpu *vcpu;
1610         int i;
1611
1612         mpidr &= MPIDR_HWID_BITMASK;
1613         kvm_for_each_vcpu(i, vcpu, kvm) {
1614                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1615                         return vcpu;
1616         }
1617         return NULL;
1618 }
1619
1620 bool kvm_arch_has_irq_bypass(void)
1621 {
1622         return true;
1623 }
1624
1625 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1626                                       struct irq_bypass_producer *prod)
1627 {
1628         struct kvm_kernel_irqfd *irqfd =
1629                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1630
1631         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1632                                           &irqfd->irq_entry);
1633 }
1634 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1635                                       struct irq_bypass_producer *prod)
1636 {
1637         struct kvm_kernel_irqfd *irqfd =
1638                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1639
1640         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1641                                      &irqfd->irq_entry);
1642 }
1643
1644 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1645 {
1646         struct kvm_kernel_irqfd *irqfd =
1647                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1648
1649         kvm_arm_halt_guest(irqfd->kvm);
1650 }
1651
1652 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1653 {
1654         struct kvm_kernel_irqfd *irqfd =
1655                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1656
1657         kvm_arm_resume_guest(irqfd->kvm);
1658 }
1659
1660 /**
1661  * Initialize Hyp-mode and memory mappings on all CPUs.
1662  */
1663 int kvm_arch_init(void *opaque)
1664 {
1665         int err;
1666         int ret, cpu;
1667         bool in_hyp_mode;
1668
1669         if (!is_hyp_mode_available()) {
1670                 kvm_info("HYP mode not available\n");
1671                 return -ENODEV;
1672         }
1673
1674         in_hyp_mode = is_kernel_in_hyp_mode();
1675
1676         if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1677                 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1678                 return -ENODEV;
1679         }
1680
1681         for_each_online_cpu(cpu) {
1682                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1683                 if (ret < 0) {
1684                         kvm_err("Error, CPU %d not supported!\n", cpu);
1685                         return -ENODEV;
1686                 }
1687         }
1688
1689         err = init_common_resources();
1690         if (err)
1691                 return err;
1692
1693         err = kvm_arm_init_sve();
1694         if (err)
1695                 return err;
1696
1697         if (!in_hyp_mode) {
1698                 err = init_hyp_mode();
1699                 if (err)
1700                         goto out_err;
1701         }
1702
1703         err = init_subsystems();
1704         if (err)
1705                 goto out_hyp;
1706
1707         if (in_hyp_mode)
1708                 kvm_info("VHE mode initialized successfully\n");
1709         else
1710                 kvm_info("Hyp mode initialized successfully\n");
1711
1712         return 0;
1713
1714 out_hyp:
1715         if (!in_hyp_mode)
1716                 teardown_hyp_mode();
1717 out_err:
1718         return err;
1719 }
1720
1721 /* NOP: Compiling as a module not supported */
1722 void kvm_arch_exit(void)
1723 {
1724         kvm_perf_teardown();
1725 }
1726
1727 static int arm_init(void)
1728 {
1729         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1730         return rc;
1731 }
1732
1733 module_init(arm_init);