Merge tag 'write-page-prefaulting' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / tools / testing / selftests / kvm / lib / x86_64 / processor.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/x86_64/processor.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "../kvm_util_internal.h"
11 #include "processor.h"
12
13 #ifndef NUM_INTERRUPTS
14 #define NUM_INTERRUPTS 256
15 #endif
16
17 #define DEFAULT_CODE_SELECTOR 0x8
18 #define DEFAULT_DATA_SELECTOR 0x10
19
20 vm_vaddr_t exception_handlers;
21
22 /* Virtual translation table structure declarations */
23 struct pageUpperEntry {
24         uint64_t present:1;
25         uint64_t writable:1;
26         uint64_t user:1;
27         uint64_t write_through:1;
28         uint64_t cache_disable:1;
29         uint64_t accessed:1;
30         uint64_t ignored_06:1;
31         uint64_t page_size:1;
32         uint64_t ignored_11_08:4;
33         uint64_t pfn:40;
34         uint64_t ignored_62_52:11;
35         uint64_t execute_disable:1;
36 };
37
38 struct pageTableEntry {
39         uint64_t present:1;
40         uint64_t writable:1;
41         uint64_t user:1;
42         uint64_t write_through:1;
43         uint64_t cache_disable:1;
44         uint64_t accessed:1;
45         uint64_t dirty:1;
46         uint64_t reserved_07:1;
47         uint64_t global:1;
48         uint64_t ignored_11_09:3;
49         uint64_t pfn:40;
50         uint64_t ignored_62_52:11;
51         uint64_t execute_disable:1;
52 };
53
54 void regs_dump(FILE *stream, struct kvm_regs *regs,
55                uint8_t indent)
56 {
57         fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
58                 "rcx: 0x%.16llx rdx: 0x%.16llx\n",
59                 indent, "",
60                 regs->rax, regs->rbx, regs->rcx, regs->rdx);
61         fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
62                 "rsp: 0x%.16llx rbp: 0x%.16llx\n",
63                 indent, "",
64                 regs->rsi, regs->rdi, regs->rsp, regs->rbp);
65         fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
66                 "r10: 0x%.16llx r11: 0x%.16llx\n",
67                 indent, "",
68                 regs->r8, regs->r9, regs->r10, regs->r11);
69         fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
70                 "r14: 0x%.16llx r15: 0x%.16llx\n",
71                 indent, "",
72                 regs->r12, regs->r13, regs->r14, regs->r15);
73         fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
74                 indent, "",
75                 regs->rip, regs->rflags);
76 }
77
78 /*
79  * Segment Dump
80  *
81  * Input Args:
82  *   stream  - Output FILE stream
83  *   segment - KVM segment
84  *   indent  - Left margin indent amount
85  *
86  * Output Args: None
87  *
88  * Return: None
89  *
90  * Dumps the state of the KVM segment given by @segment, to the FILE stream
91  * given by @stream.
92  */
93 static void segment_dump(FILE *stream, struct kvm_segment *segment,
94                          uint8_t indent)
95 {
96         fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
97                 "selector: 0x%.4x type: 0x%.2x\n",
98                 indent, "", segment->base, segment->limit,
99                 segment->selector, segment->type);
100         fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
101                 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
102                 indent, "", segment->present, segment->dpl,
103                 segment->db, segment->s, segment->l);
104         fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
105                 "unusable: 0x%.2x padding: 0x%.2x\n",
106                 indent, "", segment->g, segment->avl,
107                 segment->unusable, segment->padding);
108 }
109
110 /*
111  * dtable Dump
112  *
113  * Input Args:
114  *   stream - Output FILE stream
115  *   dtable - KVM dtable
116  *   indent - Left margin indent amount
117  *
118  * Output Args: None
119  *
120  * Return: None
121  *
122  * Dumps the state of the KVM dtable given by @dtable, to the FILE stream
123  * given by @stream.
124  */
125 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
126                         uint8_t indent)
127 {
128         fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
129                 "padding: 0x%.4x 0x%.4x 0x%.4x\n",
130                 indent, "", dtable->base, dtable->limit,
131                 dtable->padding[0], dtable->padding[1], dtable->padding[2]);
132 }
133
134 void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
135                 uint8_t indent)
136 {
137         unsigned int i;
138
139         fprintf(stream, "%*scs:\n", indent, "");
140         segment_dump(stream, &sregs->cs, indent + 2);
141         fprintf(stream, "%*sds:\n", indent, "");
142         segment_dump(stream, &sregs->ds, indent + 2);
143         fprintf(stream, "%*ses:\n", indent, "");
144         segment_dump(stream, &sregs->es, indent + 2);
145         fprintf(stream, "%*sfs:\n", indent, "");
146         segment_dump(stream, &sregs->fs, indent + 2);
147         fprintf(stream, "%*sgs:\n", indent, "");
148         segment_dump(stream, &sregs->gs, indent + 2);
149         fprintf(stream, "%*sss:\n", indent, "");
150         segment_dump(stream, &sregs->ss, indent + 2);
151         fprintf(stream, "%*str:\n", indent, "");
152         segment_dump(stream, &sregs->tr, indent + 2);
153         fprintf(stream, "%*sldt:\n", indent, "");
154         segment_dump(stream, &sregs->ldt, indent + 2);
155
156         fprintf(stream, "%*sgdt:\n", indent, "");
157         dtable_dump(stream, &sregs->gdt, indent + 2);
158         fprintf(stream, "%*sidt:\n", indent, "");
159         dtable_dump(stream, &sregs->idt, indent + 2);
160
161         fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
162                 "cr3: 0x%.16llx cr4: 0x%.16llx\n",
163                 indent, "",
164                 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
165         fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
166                 "apic_base: 0x%.16llx\n",
167                 indent, "",
168                 sregs->cr8, sregs->efer, sregs->apic_base);
169
170         fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
171         for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
172                 fprintf(stream, "%*s%.16llx\n", indent + 2, "",
173                         sregs->interrupt_bitmap[i]);
174         }
175 }
176
177 void virt_pgd_alloc(struct kvm_vm *vm)
178 {
179         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
180                 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
181
182         /* If needed, create page map l4 table. */
183         if (!vm->pgd_created) {
184                 vm->pgd = vm_alloc_page_table(vm);
185                 vm->pgd_created = true;
186         }
187 }
188
189 static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr,
190                           int level)
191 {
192         uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift);
193         int index = vaddr >> (vm->page_shift + level * 9) & 0x1ffu;
194
195         return &page_table[index];
196 }
197
198 static struct pageUpperEntry *virt_create_upper_pte(struct kvm_vm *vm,
199                                                     uint64_t pt_pfn,
200                                                     uint64_t vaddr,
201                                                     uint64_t paddr,
202                                                     int level,
203                                                     enum x86_page_size page_size)
204 {
205         struct pageUpperEntry *pte = virt_get_pte(vm, pt_pfn, vaddr, level);
206
207         if (!pte->present) {
208                 pte->writable = true;
209                 pte->present = true;
210                 pte->page_size = (level == page_size);
211                 if (pte->page_size)
212                         pte->pfn = paddr >> vm->page_shift;
213                 else
214                         pte->pfn = vm_alloc_page_table(vm) >> vm->page_shift;
215         } else {
216                 /*
217                  * Entry already present.  Assert that the caller doesn't want
218                  * a hugepage at this level, and that there isn't a hugepage at
219                  * this level.
220                  */
221                 TEST_ASSERT(level != page_size,
222                             "Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
223                             page_size, vaddr);
224                 TEST_ASSERT(!pte->page_size,
225                             "Cannot create page table at level: %u, vaddr: 0x%lx\n",
226                             level, vaddr);
227         }
228         return pte;
229 }
230
231 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
232                    enum x86_page_size page_size)
233 {
234         const uint64_t pg_size = 1ull << ((page_size * 9) + 12);
235         struct pageUpperEntry *pml4e, *pdpe, *pde;
236         struct pageTableEntry *pte;
237
238         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
239                     "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
240
241         TEST_ASSERT((vaddr % pg_size) == 0,
242                     "Virtual address not aligned,\n"
243                     "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
244         TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
245                     "Invalid virtual address, vaddr: 0x%lx", vaddr);
246         TEST_ASSERT((paddr % pg_size) == 0,
247                     "Physical address not aligned,\n"
248                     "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
249         TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
250                     "Physical address beyond maximum supported,\n"
251                     "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
252                     paddr, vm->max_gfn, vm->page_size);
253
254         /*
255          * Allocate upper level page tables, if not already present.  Return
256          * early if a hugepage was created.
257          */
258         pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift,
259                                       vaddr, paddr, 3, page_size);
260         if (pml4e->page_size)
261                 return;
262
263         pdpe = virt_create_upper_pte(vm, pml4e->pfn, vaddr, paddr, 2, page_size);
264         if (pdpe->page_size)
265                 return;
266
267         pde = virt_create_upper_pte(vm, pdpe->pfn, vaddr, paddr, 1, page_size);
268         if (pde->page_size)
269                 return;
270
271         /* Fill in page table entry. */
272         pte = virt_get_pte(vm, pde->pfn, vaddr, 0);
273         TEST_ASSERT(!pte->present,
274                     "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
275         pte->pfn = paddr >> vm->page_shift;
276         pte->writable = true;
277         pte->present = 1;
278 }
279
280 void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
281 {
282         __virt_pg_map(vm, vaddr, paddr, X86_PAGE_SIZE_4K);
283 }
284
285 static struct pageTableEntry *_vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid,
286                                                        uint64_t vaddr)
287 {
288         uint16_t index[4];
289         struct pageUpperEntry *pml4e, *pdpe, *pde;
290         struct pageTableEntry *pte;
291         struct kvm_cpuid_entry2 *entry;
292         struct kvm_sregs sregs;
293         int max_phy_addr;
294         /* Set the bottom 52 bits. */
295         uint64_t rsvd_mask = 0x000fffffffffffff;
296
297         entry = kvm_get_supported_cpuid_index(0x80000008, 0);
298         max_phy_addr = entry->eax & 0x000000ff;
299         /* Clear the bottom bits of the reserved mask. */
300         rsvd_mask = (rsvd_mask >> max_phy_addr) << max_phy_addr;
301
302         /*
303          * SDM vol 3, fig 4-11 "Formats of CR3 and Paging-Structure Entries
304          * with 4-Level Paging and 5-Level Paging".
305          * If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1,
306          * the XD flag (bit 63) is reserved.
307          */
308         vcpu_sregs_get(vm, vcpuid, &sregs);
309         if ((sregs.efer & EFER_NX) == 0) {
310                 rsvd_mask |= (1ull << 63);
311         }
312
313         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
314                 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
315         TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
316                 (vaddr >> vm->page_shift)),
317                 "Invalid virtual address, vaddr: 0x%lx",
318                 vaddr);
319         /*
320          * Based on the mode check above there are 48 bits in the vaddr, so
321          * shift 16 to sign extend the last bit (bit-47),
322          */
323         TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
324                 "Canonical check failed.  The virtual address is invalid.");
325
326         index[0] = (vaddr >> 12) & 0x1ffu;
327         index[1] = (vaddr >> 21) & 0x1ffu;
328         index[2] = (vaddr >> 30) & 0x1ffu;
329         index[3] = (vaddr >> 39) & 0x1ffu;
330
331         pml4e = addr_gpa2hva(vm, vm->pgd);
332         TEST_ASSERT(pml4e[index[3]].present,
333                 "Expected pml4e to be present for gva: 0x%08lx", vaddr);
334         TEST_ASSERT((*(uint64_t*)(&pml4e[index[3]]) &
335                 (rsvd_mask | (1ull << 7))) == 0,
336                 "Unexpected reserved bits set.");
337
338         pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size);
339         TEST_ASSERT(pdpe[index[2]].present,
340                 "Expected pdpe to be present for gva: 0x%08lx", vaddr);
341         TEST_ASSERT(pdpe[index[2]].page_size == 0,
342                 "Expected pdpe to map a pde not a 1-GByte page.");
343         TEST_ASSERT((*(uint64_t*)(&pdpe[index[2]]) & rsvd_mask) == 0,
344                 "Unexpected reserved bits set.");
345
346         pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size);
347         TEST_ASSERT(pde[index[1]].present,
348                 "Expected pde to be present for gva: 0x%08lx", vaddr);
349         TEST_ASSERT(pde[index[1]].page_size == 0,
350                 "Expected pde to map a pte not a 2-MByte page.");
351         TEST_ASSERT((*(uint64_t*)(&pde[index[1]]) & rsvd_mask) == 0,
352                 "Unexpected reserved bits set.");
353
354         pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size);
355         TEST_ASSERT(pte[index[0]].present,
356                 "Expected pte to be present for gva: 0x%08lx", vaddr);
357
358         return &pte[index[0]];
359 }
360
361 uint64_t vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr)
362 {
363         struct pageTableEntry *pte = _vm_get_page_table_entry(vm, vcpuid, vaddr);
364
365         return *(uint64_t *)pte;
366 }
367
368 void vm_set_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr,
369                              uint64_t pte)
370 {
371         struct pageTableEntry *new_pte = _vm_get_page_table_entry(vm, vcpuid,
372                                                                   vaddr);
373
374         *(uint64_t *)new_pte = pte;
375 }
376
377 void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
378 {
379         struct pageUpperEntry *pml4e, *pml4e_start;
380         struct pageUpperEntry *pdpe, *pdpe_start;
381         struct pageUpperEntry *pde, *pde_start;
382         struct pageTableEntry *pte, *pte_start;
383
384         if (!vm->pgd_created)
385                 return;
386
387         fprintf(stream, "%*s                                          "
388                 "                no\n", indent, "");
389         fprintf(stream, "%*s      index hvaddr         gpaddr         "
390                 "addr         w exec dirty\n",
391                 indent, "");
392         pml4e_start = (struct pageUpperEntry *) addr_gpa2hva(vm, vm->pgd);
393         for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
394                 pml4e = &pml4e_start[n1];
395                 if (!pml4e->present)
396                         continue;
397                 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u "
398                         " %u\n",
399                         indent, "",
400                         pml4e - pml4e_start, pml4e,
401                         addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->pfn,
402                         pml4e->writable, pml4e->execute_disable);
403
404                 pdpe_start = addr_gpa2hva(vm, pml4e->pfn * vm->page_size);
405                 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
406                         pdpe = &pdpe_start[n2];
407                         if (!pdpe->present)
408                                 continue;
409                         fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10lx "
410                                 "%u  %u\n",
411                                 indent, "",
412                                 pdpe - pdpe_start, pdpe,
413                                 addr_hva2gpa(vm, pdpe),
414                                 (uint64_t) pdpe->pfn, pdpe->writable,
415                                 pdpe->execute_disable);
416
417                         pde_start = addr_gpa2hva(vm, pdpe->pfn * vm->page_size);
418                         for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
419                                 pde = &pde_start[n3];
420                                 if (!pde->present)
421                                         continue;
422                                 fprintf(stream, "%*spde   0x%-3zx %p "
423                                         "0x%-12lx 0x%-10lx %u  %u\n",
424                                         indent, "", pde - pde_start, pde,
425                                         addr_hva2gpa(vm, pde),
426                                         (uint64_t) pde->pfn, pde->writable,
427                                         pde->execute_disable);
428
429                                 pte_start = addr_gpa2hva(vm, pde->pfn * vm->page_size);
430                                 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
431                                         pte = &pte_start[n4];
432                                         if (!pte->present)
433                                                 continue;
434                                         fprintf(stream, "%*spte   0x%-3zx %p "
435                                                 "0x%-12lx 0x%-10lx %u  %u "
436                                                 "    %u    0x%-10lx\n",
437                                                 indent, "",
438                                                 pte - pte_start, pte,
439                                                 addr_hva2gpa(vm, pte),
440                                                 (uint64_t) pte->pfn,
441                                                 pte->writable,
442                                                 pte->execute_disable,
443                                                 pte->dirty,
444                                                 ((uint64_t) n1 << 27)
445                                                         | ((uint64_t) n2 << 18)
446                                                         | ((uint64_t) n3 << 9)
447                                                         | ((uint64_t) n4));
448                                 }
449                         }
450                 }
451         }
452 }
453
454 /*
455  * Set Unusable Segment
456  *
457  * Input Args: None
458  *
459  * Output Args:
460  *   segp - Pointer to segment register
461  *
462  * Return: None
463  *
464  * Sets the segment register pointed to by @segp to an unusable state.
465  */
466 static void kvm_seg_set_unusable(struct kvm_segment *segp)
467 {
468         memset(segp, 0, sizeof(*segp));
469         segp->unusable = true;
470 }
471
472 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
473 {
474         void *gdt = addr_gva2hva(vm, vm->gdt);
475         struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
476
477         desc->limit0 = segp->limit & 0xFFFF;
478         desc->base0 = segp->base & 0xFFFF;
479         desc->base1 = segp->base >> 16;
480         desc->type = segp->type;
481         desc->s = segp->s;
482         desc->dpl = segp->dpl;
483         desc->p = segp->present;
484         desc->limit1 = segp->limit >> 16;
485         desc->avl = segp->avl;
486         desc->l = segp->l;
487         desc->db = segp->db;
488         desc->g = segp->g;
489         desc->base2 = segp->base >> 24;
490         if (!segp->s)
491                 desc->base3 = segp->base >> 32;
492 }
493
494
495 /*
496  * Set Long Mode Flat Kernel Code Segment
497  *
498  * Input Args:
499  *   vm - VM whose GDT is being filled, or NULL to only write segp
500  *   selector - selector value
501  *
502  * Output Args:
503  *   segp - Pointer to KVM segment
504  *
505  * Return: None
506  *
507  * Sets up the KVM segment pointed to by @segp, to be a code segment
508  * with the selector value given by @selector.
509  */
510 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
511         struct kvm_segment *segp)
512 {
513         memset(segp, 0, sizeof(*segp));
514         segp->selector = selector;
515         segp->limit = 0xFFFFFFFFu;
516         segp->s = 0x1; /* kTypeCodeData */
517         segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
518                                           * | kFlagCodeReadable
519                                           */
520         segp->g = true;
521         segp->l = true;
522         segp->present = 1;
523         if (vm)
524                 kvm_seg_fill_gdt_64bit(vm, segp);
525 }
526
527 /*
528  * Set Long Mode Flat Kernel Data Segment
529  *
530  * Input Args:
531  *   vm - VM whose GDT is being filled, or NULL to only write segp
532  *   selector - selector value
533  *
534  * Output Args:
535  *   segp - Pointer to KVM segment
536  *
537  * Return: None
538  *
539  * Sets up the KVM segment pointed to by @segp, to be a data segment
540  * with the selector value given by @selector.
541  */
542 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
543         struct kvm_segment *segp)
544 {
545         memset(segp, 0, sizeof(*segp));
546         segp->selector = selector;
547         segp->limit = 0xFFFFFFFFu;
548         segp->s = 0x1; /* kTypeCodeData */
549         segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
550                                           * | kFlagDataWritable
551                                           */
552         segp->g = true;
553         segp->present = true;
554         if (vm)
555                 kvm_seg_fill_gdt_64bit(vm, segp);
556 }
557
558 vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
559 {
560         uint16_t index[4];
561         struct pageUpperEntry *pml4e, *pdpe, *pde;
562         struct pageTableEntry *pte;
563
564         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
565                 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
566
567         index[0] = (gva >> 12) & 0x1ffu;
568         index[1] = (gva >> 21) & 0x1ffu;
569         index[2] = (gva >> 30) & 0x1ffu;
570         index[3] = (gva >> 39) & 0x1ffu;
571
572         if (!vm->pgd_created)
573                 goto unmapped_gva;
574         pml4e = addr_gpa2hva(vm, vm->pgd);
575         if (!pml4e[index[3]].present)
576                 goto unmapped_gva;
577
578         pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size);
579         if (!pdpe[index[2]].present)
580                 goto unmapped_gva;
581
582         pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size);
583         if (!pde[index[1]].present)
584                 goto unmapped_gva;
585
586         pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size);
587         if (!pte[index[0]].present)
588                 goto unmapped_gva;
589
590         return (pte[index[0]].pfn * vm->page_size) + (gva & 0xfffu);
591
592 unmapped_gva:
593         TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
594         exit(EXIT_FAILURE);
595 }
596
597 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
598 {
599         if (!vm->gdt)
600                 vm->gdt = vm_vaddr_alloc_page(vm);
601
602         dt->base = vm->gdt;
603         dt->limit = getpagesize();
604 }
605
606 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
607                                 int selector)
608 {
609         if (!vm->tss)
610                 vm->tss = vm_vaddr_alloc_page(vm);
611
612         memset(segp, 0, sizeof(*segp));
613         segp->base = vm->tss;
614         segp->limit = 0x67;
615         segp->selector = selector;
616         segp->type = 0xb;
617         segp->present = 1;
618         kvm_seg_fill_gdt_64bit(vm, segp);
619 }
620
621 static void vcpu_setup(struct kvm_vm *vm, int vcpuid)
622 {
623         struct kvm_sregs sregs;
624
625         /* Set mode specific system register values. */
626         vcpu_sregs_get(vm, vcpuid, &sregs);
627
628         sregs.idt.limit = 0;
629
630         kvm_setup_gdt(vm, &sregs.gdt);
631
632         switch (vm->mode) {
633         case VM_MODE_PXXV48_4K:
634                 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
635                 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
636                 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
637
638                 kvm_seg_set_unusable(&sregs.ldt);
639                 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
640                 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
641                 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
642                 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
643                 break;
644
645         default:
646                 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
647         }
648
649         sregs.cr3 = vm->pgd;
650         vcpu_sregs_set(vm, vcpuid, &sregs);
651 }
652
653 #define CPUID_XFD_BIT (1 << 4)
654 static bool is_xfd_supported(void)
655 {
656         int eax, ebx, ecx, edx;
657         const int leaf = 0xd, subleaf = 0x1;
658
659         __asm__ __volatile__(
660                 "cpuid"
661                 : /* output */ "=a"(eax), "=b"(ebx),
662                   "=c"(ecx), "=d"(edx)
663                 : /* input */ "0"(leaf), "2"(subleaf));
664
665         return !!(eax & CPUID_XFD_BIT);
666 }
667
668 void vm_xsave_req_perm(int bit)
669 {
670         int kvm_fd;
671         u64 bitmask;
672         long rc;
673         struct kvm_device_attr attr = {
674                 .group = 0,
675                 .attr = KVM_X86_XCOMP_GUEST_SUPP,
676                 .addr = (unsigned long) &bitmask
677         };
678
679         kvm_fd = open_kvm_dev_path_or_exit();
680         rc = ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
681         close(kvm_fd);
682         if (rc == -1 && (errno == ENXIO || errno == EINVAL))
683                 exit(KSFT_SKIP);
684         TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
685         if (!(bitmask & (1ULL << bit)))
686                 exit(KSFT_SKIP);
687
688         if (!is_xfd_supported())
689                 exit(KSFT_SKIP);
690
691         rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
692
693         /*
694          * The older kernel version(<5.15) can't support
695          * ARCH_REQ_XCOMP_GUEST_PERM and directly return.
696          */
697         if (rc)
698                 return;
699
700         rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
701         TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
702         TEST_ASSERT(bitmask & (1ULL << bit),
703                     "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx",
704                     bitmask);
705 }
706
707 void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
708 {
709         struct kvm_mp_state mp_state;
710         struct kvm_regs regs;
711         vm_vaddr_t stack_vaddr;
712         stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
713                                      DEFAULT_GUEST_STACK_VADDR_MIN);
714
715         /* Create VCPU */
716         vm_vcpu_add(vm, vcpuid);
717         vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
718         vcpu_setup(vm, vcpuid);
719
720         /* Setup guest general purpose registers */
721         vcpu_regs_get(vm, vcpuid, &regs);
722         regs.rflags = regs.rflags | 0x2;
723         regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
724         regs.rip = (unsigned long) guest_code;
725         vcpu_regs_set(vm, vcpuid, &regs);
726
727         /* Setup the MP state */
728         mp_state.mp_state = 0;
729         vcpu_set_mp_state(vm, vcpuid, &mp_state);
730 }
731
732 /*
733  * Allocate an instance of struct kvm_cpuid2
734  *
735  * Input Args: None
736  *
737  * Output Args: None
738  *
739  * Return: A pointer to the allocated struct. The caller is responsible
740  * for freeing this struct.
741  *
742  * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
743  * array to be decided at allocation time, allocation is slightly
744  * complicated. This function uses a reasonable default length for
745  * the array and performs the appropriate allocation.
746  */
747 static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
748 {
749         struct kvm_cpuid2 *cpuid;
750         int nent = 100;
751         size_t size;
752
753         size = sizeof(*cpuid);
754         size += nent * sizeof(struct kvm_cpuid_entry2);
755         cpuid = malloc(size);
756         if (!cpuid) {
757                 perror("malloc");
758                 abort();
759         }
760
761         cpuid->nent = nent;
762
763         return cpuid;
764 }
765
766 /*
767  * KVM Supported CPUID Get
768  *
769  * Input Args: None
770  *
771  * Output Args:
772  *
773  * Return: The supported KVM CPUID
774  *
775  * Get the guest CPUID supported by KVM.
776  */
777 struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
778 {
779         static struct kvm_cpuid2 *cpuid;
780         int ret;
781         int kvm_fd;
782
783         if (cpuid)
784                 return cpuid;
785
786         cpuid = allocate_kvm_cpuid2();
787         kvm_fd = open_kvm_dev_path_or_exit();
788
789         ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
790         TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
791                     ret, errno);
792
793         close(kvm_fd);
794         return cpuid;
795 }
796
797 /*
798  * KVM Get MSR
799  *
800  * Input Args:
801  *   msr_index - Index of MSR
802  *
803  * Output Args: None
804  *
805  * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
806  *
807  * Get value of MSR for VCPU.
808  */
809 uint64_t kvm_get_feature_msr(uint64_t msr_index)
810 {
811         struct {
812                 struct kvm_msrs header;
813                 struct kvm_msr_entry entry;
814         } buffer = {};
815         int r, kvm_fd;
816
817         buffer.header.nmsrs = 1;
818         buffer.entry.index = msr_index;
819         kvm_fd = open_kvm_dev_path_or_exit();
820
821         r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
822         TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
823                 "  rc: %i errno: %i", r, errno);
824
825         close(kvm_fd);
826         return buffer.entry.data;
827 }
828
829 /*
830  * VM VCPU CPUID Set
831  *
832  * Input Args:
833  *   vm - Virtual Machine
834  *   vcpuid - VCPU id
835  *
836  * Output Args: None
837  *
838  * Return: KVM CPUID (KVM_GET_CPUID2)
839  *
840  * Set the VCPU's CPUID.
841  */
842 struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
843 {
844         struct vcpu *vcpu = vcpu_find(vm, vcpuid);
845         struct kvm_cpuid2 *cpuid;
846         int max_ent;
847         int rc = -1;
848
849         TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
850
851         cpuid = allocate_kvm_cpuid2();
852         max_ent = cpuid->nent;
853
854         for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) {
855                 rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid);
856                 if (!rc)
857                         break;
858
859                 TEST_ASSERT(rc == -1 && errno == E2BIG,
860                             "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d",
861                             rc, errno);
862         }
863
864         TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i",
865                     rc, errno);
866
867         return cpuid;
868 }
869
870
871
872 /*
873  * Locate a cpuid entry.
874  *
875  * Input Args:
876  *   function: The function of the cpuid entry to find.
877  *   index: The index of the cpuid entry.
878  *
879  * Output Args: None
880  *
881  * Return: A pointer to the cpuid entry. Never returns NULL.
882  */
883 struct kvm_cpuid_entry2 *
884 kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
885 {
886         struct kvm_cpuid2 *cpuid;
887         struct kvm_cpuid_entry2 *entry = NULL;
888         int i;
889
890         cpuid = kvm_get_supported_cpuid();
891         for (i = 0; i < cpuid->nent; i++) {
892                 if (cpuid->entries[i].function == function &&
893                     cpuid->entries[i].index == index) {
894                         entry = &cpuid->entries[i];
895                         break;
896                 }
897         }
898
899         TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
900                     function, index);
901         return entry;
902 }
903
904
905 int __vcpu_set_cpuid(struct kvm_vm *vm, uint32_t vcpuid,
906                      struct kvm_cpuid2 *cpuid)
907 {
908         struct vcpu *vcpu = vcpu_find(vm, vcpuid);
909
910         TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
911
912         return ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
913 }
914
915 /*
916  * VM VCPU CPUID Set
917  *
918  * Input Args:
919  *   vm - Virtual Machine
920  *   vcpuid - VCPU id
921  *   cpuid - The CPUID values to set.
922  *
923  * Output Args: None
924  *
925  * Return: void
926  *
927  * Set the VCPU's CPUID.
928  */
929 void vcpu_set_cpuid(struct kvm_vm *vm,
930                 uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
931 {
932         int rc;
933
934         rc = __vcpu_set_cpuid(vm, vcpuid, cpuid);
935         TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
936                     rc, errno);
937
938 }
939
940 /*
941  * VCPU Get MSR
942  *
943  * Input Args:
944  *   vm - Virtual Machine
945  *   vcpuid - VCPU ID
946  *   msr_index - Index of MSR
947  *
948  * Output Args: None
949  *
950  * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
951  *
952  * Get value of MSR for VCPU.
953  */
954 uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
955 {
956         struct vcpu *vcpu = vcpu_find(vm, vcpuid);
957         struct {
958                 struct kvm_msrs header;
959                 struct kvm_msr_entry entry;
960         } buffer = {};
961         int r;
962
963         TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
964         buffer.header.nmsrs = 1;
965         buffer.entry.index = msr_index;
966         r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
967         TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
968                 "  rc: %i errno: %i", r, errno);
969
970         return buffer.entry.data;
971 }
972
973 /*
974  * _VCPU Set MSR
975  *
976  * Input Args:
977  *   vm - Virtual Machine
978  *   vcpuid - VCPU ID
979  *   msr_index - Index of MSR
980  *   msr_value - New value of MSR
981  *
982  * Output Args: None
983  *
984  * Return: The result of KVM_SET_MSRS.
985  *
986  * Sets the value of an MSR for the given VCPU.
987  */
988 int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
989                   uint64_t msr_value)
990 {
991         struct vcpu *vcpu = vcpu_find(vm, vcpuid);
992         struct {
993                 struct kvm_msrs header;
994                 struct kvm_msr_entry entry;
995         } buffer = {};
996         int r;
997
998         TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
999         memset(&buffer, 0, sizeof(buffer));
1000         buffer.header.nmsrs = 1;
1001         buffer.entry.index = msr_index;
1002         buffer.entry.data = msr_value;
1003         r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
1004         return r;
1005 }
1006
1007 /*
1008  * VCPU Set MSR
1009  *
1010  * Input Args:
1011  *   vm - Virtual Machine
1012  *   vcpuid - VCPU ID
1013  *   msr_index - Index of MSR
1014  *   msr_value - New value of MSR
1015  *
1016  * Output Args: None
1017  *
1018  * Return: On success, nothing. On failure a TEST_ASSERT is produced.
1019  *
1020  * Set value of MSR for VCPU.
1021  */
1022 void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
1023         uint64_t msr_value)
1024 {
1025         int r;
1026
1027         r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value);
1028         TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
1029                 "  rc: %i errno: %i", r, errno);
1030 }
1031
1032 void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
1033 {
1034         va_list ap;
1035         struct kvm_regs regs;
1036
1037         TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
1038                     "  num: %u\n",
1039                     num);
1040
1041         va_start(ap, num);
1042         vcpu_regs_get(vm, vcpuid, &regs);
1043
1044         if (num >= 1)
1045                 regs.rdi = va_arg(ap, uint64_t);
1046
1047         if (num >= 2)
1048                 regs.rsi = va_arg(ap, uint64_t);
1049
1050         if (num >= 3)
1051                 regs.rdx = va_arg(ap, uint64_t);
1052
1053         if (num >= 4)
1054                 regs.rcx = va_arg(ap, uint64_t);
1055
1056         if (num >= 5)
1057                 regs.r8 = va_arg(ap, uint64_t);
1058
1059         if (num >= 6)
1060                 regs.r9 = va_arg(ap, uint64_t);
1061
1062         vcpu_regs_set(vm, vcpuid, &regs);
1063         va_end(ap);
1064 }
1065
1066 void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
1067 {
1068         struct kvm_regs regs;
1069         struct kvm_sregs sregs;
1070
1071         fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
1072
1073         fprintf(stream, "%*sregs:\n", indent + 2, "");
1074         vcpu_regs_get(vm, vcpuid, &regs);
1075         regs_dump(stream, &regs, indent + 4);
1076
1077         fprintf(stream, "%*ssregs:\n", indent + 2, "");
1078         vcpu_sregs_get(vm, vcpuid, &sregs);
1079         sregs_dump(stream, &sregs, indent + 4);
1080 }
1081
1082 static int kvm_get_num_msrs_fd(int kvm_fd)
1083 {
1084         struct kvm_msr_list nmsrs;
1085         int r;
1086
1087         nmsrs.nmsrs = 0;
1088         r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
1089         TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
1090                 r);
1091
1092         return nmsrs.nmsrs;
1093 }
1094
1095 static int kvm_get_num_msrs(struct kvm_vm *vm)
1096 {
1097         return kvm_get_num_msrs_fd(vm->kvm_fd);
1098 }
1099
1100 struct kvm_msr_list *kvm_get_msr_index_list(void)
1101 {
1102         struct kvm_msr_list *list;
1103         int nmsrs, r, kvm_fd;
1104
1105         kvm_fd = open_kvm_dev_path_or_exit();
1106
1107         nmsrs = kvm_get_num_msrs_fd(kvm_fd);
1108         list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1109         list->nmsrs = nmsrs;
1110         r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1111         close(kvm_fd);
1112
1113         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1114                 r);
1115
1116         return list;
1117 }
1118
1119 static int vcpu_save_xsave_state(struct kvm_vm *vm, struct vcpu *vcpu,
1120                                  struct kvm_x86_state *state)
1121 {
1122         int size;
1123
1124         size = vm_check_cap(vm, KVM_CAP_XSAVE2);
1125         if (!size)
1126                 size = sizeof(struct kvm_xsave);
1127
1128         state->xsave = malloc(size);
1129         if (size == sizeof(struct kvm_xsave))
1130                 return ioctl(vcpu->fd, KVM_GET_XSAVE, state->xsave);
1131         else
1132                 return ioctl(vcpu->fd, KVM_GET_XSAVE2, state->xsave);
1133 }
1134
1135 struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
1136 {
1137         struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1138         struct kvm_msr_list *list;
1139         struct kvm_x86_state *state;
1140         int nmsrs, r, i;
1141         static int nested_size = -1;
1142
1143         if (nested_size == -1) {
1144                 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1145                 TEST_ASSERT(nested_size <= sizeof(state->nested_),
1146                             "Nested state size too big, %i > %zi",
1147                             nested_size, sizeof(state->nested_));
1148         }
1149
1150         /*
1151          * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1152          * guest state is consistent only after userspace re-enters the
1153          * kernel with KVM_RUN.  Complete IO prior to migrating state
1154          * to a new VM.
1155          */
1156         vcpu_run_complete_io(vm, vcpuid);
1157
1158         nmsrs = kvm_get_num_msrs(vm);
1159         list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1160         list->nmsrs = nmsrs;
1161         r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1162         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1163                     r);
1164
1165         state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
1166         r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
1167         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
1168                     r);
1169
1170         r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
1171         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
1172                     r);
1173
1174         r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
1175         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
1176                     r);
1177
1178         r = vcpu_save_xsave_state(vm, vcpu, state);
1179         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
1180                     r);
1181
1182         if (kvm_check_cap(KVM_CAP_XCRS)) {
1183                 r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
1184                 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
1185                             r);
1186         }
1187
1188         r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
1189         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
1190                     r);
1191
1192         if (nested_size) {
1193                 state->nested.size = sizeof(state->nested_);
1194                 r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
1195                 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
1196                             r);
1197                 TEST_ASSERT(state->nested.size <= nested_size,
1198                             "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1199                             state->nested.size, nested_size);
1200         } else
1201                 state->nested.size = 0;
1202
1203         state->msrs.nmsrs = nmsrs;
1204         for (i = 0; i < nmsrs; i++)
1205                 state->msrs.entries[i].index = list->indices[i];
1206         r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
1207         TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)",
1208                     r, r == nmsrs ? -1 : list->indices[r]);
1209
1210         r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
1211         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
1212                     r);
1213
1214         free(list);
1215         return state;
1216 }
1217
1218 void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
1219 {
1220         struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1221         int r;
1222
1223         r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
1224         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
1225                     r);
1226
1227         r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
1228         TEST_ASSERT(r == state->msrs.nmsrs,
1229                 "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
1230                 r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
1231
1232         if (kvm_check_cap(KVM_CAP_XCRS)) {
1233                 r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
1234                 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
1235                             r);
1236         }
1237
1238         r = ioctl(vcpu->fd, KVM_SET_XSAVE, state->xsave);
1239         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
1240                     r);
1241
1242         r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
1243         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
1244                     r);
1245
1246         r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
1247         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
1248                     r);
1249
1250         r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
1251         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
1252                     r);
1253
1254         r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
1255         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
1256                     r);
1257
1258         if (state->nested.size) {
1259                 r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
1260                 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
1261                             r);
1262         }
1263 }
1264
1265 void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1266 {
1267         free(state->xsave);
1268         free(state);
1269 }
1270
1271 static bool cpu_vendor_string_is(const char *vendor)
1272 {
1273         const uint32_t *chunk = (const uint32_t *)vendor;
1274         int eax, ebx, ecx, edx;
1275         const int leaf = 0;
1276
1277         __asm__ __volatile__(
1278                 "cpuid"
1279                 : /* output */ "=a"(eax), "=b"(ebx),
1280                   "=c"(ecx), "=d"(edx)
1281                 : /* input */ "0"(leaf), "2"(0));
1282
1283         return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
1284 }
1285
1286 bool is_intel_cpu(void)
1287 {
1288         return cpu_vendor_string_is("GenuineIntel");
1289 }
1290
1291 /*
1292  * Exclude early K5 samples with a vendor string of "AMDisbetter!"
1293  */
1294 bool is_amd_cpu(void)
1295 {
1296         return cpu_vendor_string_is("AuthenticAMD");
1297 }
1298
1299 uint32_t kvm_get_cpuid_max_basic(void)
1300 {
1301         return kvm_get_supported_cpuid_entry(0)->eax;
1302 }
1303
1304 uint32_t kvm_get_cpuid_max_extended(void)
1305 {
1306         return kvm_get_supported_cpuid_entry(0x80000000)->eax;
1307 }
1308
1309 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1310 {
1311         struct kvm_cpuid_entry2 *entry;
1312         bool pae;
1313
1314         /* SDM 4.1.4 */
1315         if (kvm_get_cpuid_max_extended() < 0x80000008) {
1316                 pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
1317                 *pa_bits = pae ? 36 : 32;
1318                 *va_bits = 32;
1319         } else {
1320                 entry = kvm_get_supported_cpuid_entry(0x80000008);
1321                 *pa_bits = entry->eax & 0xff;
1322                 *va_bits = (entry->eax >> 8) & 0xff;
1323         }
1324 }
1325
1326 struct idt_entry {
1327         uint16_t offset0;
1328         uint16_t selector;
1329         uint16_t ist : 3;
1330         uint16_t : 5;
1331         uint16_t type : 4;
1332         uint16_t : 1;
1333         uint16_t dpl : 2;
1334         uint16_t p : 1;
1335         uint16_t offset1;
1336         uint32_t offset2; uint32_t reserved;
1337 };
1338
1339 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1340                           int dpl, unsigned short selector)
1341 {
1342         struct idt_entry *base =
1343                 (struct idt_entry *)addr_gva2hva(vm, vm->idt);
1344         struct idt_entry *e = &base[vector];
1345
1346         memset(e, 0, sizeof(*e));
1347         e->offset0 = addr;
1348         e->selector = selector;
1349         e->ist = 0;
1350         e->type = 14;
1351         e->dpl = dpl;
1352         e->p = 1;
1353         e->offset1 = addr >> 16;
1354         e->offset2 = addr >> 32;
1355 }
1356
1357 void kvm_exit_unexpected_vector(uint32_t value)
1358 {
1359         ucall(UCALL_UNHANDLED, 1, value);
1360 }
1361
1362 void route_exception(struct ex_regs *regs)
1363 {
1364         typedef void(*handler)(struct ex_regs *);
1365         handler *handlers = (handler *)exception_handlers;
1366
1367         if (handlers && handlers[regs->vector]) {
1368                 handlers[regs->vector](regs);
1369                 return;
1370         }
1371
1372         kvm_exit_unexpected_vector(regs->vector);
1373 }
1374
1375 void vm_init_descriptor_tables(struct kvm_vm *vm)
1376 {
1377         extern void *idt_handlers;
1378         int i;
1379
1380         vm->idt = vm_vaddr_alloc_page(vm);
1381         vm->handlers = vm_vaddr_alloc_page(vm);
1382         /* Handlers have the same address in both address spaces.*/
1383         for (i = 0; i < NUM_INTERRUPTS; i++)
1384                 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1385                         DEFAULT_CODE_SELECTOR);
1386 }
1387
1388 void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid)
1389 {
1390         struct kvm_sregs sregs;
1391
1392         vcpu_sregs_get(vm, vcpuid, &sregs);
1393         sregs.idt.base = vm->idt;
1394         sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1395         sregs.gdt.base = vm->gdt;
1396         sregs.gdt.limit = getpagesize() - 1;
1397         kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1398         vcpu_sregs_set(vm, vcpuid, &sregs);
1399         *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1400 }
1401
1402 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1403                                void (*handler)(struct ex_regs *))
1404 {
1405         vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1406
1407         handlers[vector] = (vm_vaddr_t)handler;
1408 }
1409
1410 void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
1411 {
1412         struct ucall uc;
1413
1414         if (get_ucall(vm, vcpuid, &uc) == UCALL_UNHANDLED) {
1415                 uint64_t vector = uc.args[0];
1416
1417                 TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
1418                           vector);
1419         }
1420 }
1421
1422 struct kvm_cpuid_entry2 *get_cpuid(struct kvm_cpuid2 *cpuid, uint32_t function,
1423                                    uint32_t index)
1424 {
1425         int i;
1426
1427         for (i = 0; i < cpuid->nent; i++) {
1428                 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1429
1430                 if (cur->function == function && cur->index == index)
1431                         return cur;
1432         }
1433
1434         TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1435
1436         return NULL;
1437 }
1438
1439 bool set_cpuid(struct kvm_cpuid2 *cpuid,
1440                struct kvm_cpuid_entry2 *ent)
1441 {
1442         int i;
1443
1444         for (i = 0; i < cpuid->nent; i++) {
1445                 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1446
1447                 if (cur->function != ent->function || cur->index != ent->index)
1448                         continue;
1449
1450                 memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2));
1451                 return true;
1452         }
1453
1454         return false;
1455 }
1456
1457 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1458                        uint64_t a3)
1459 {
1460         uint64_t r;
1461
1462         asm volatile("vmcall"
1463                      : "=a"(r)
1464                      : "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1465         return r;
1466 }
1467
1468 struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1469 {
1470         static struct kvm_cpuid2 *cpuid;
1471         int ret;
1472         int kvm_fd;
1473
1474         if (cpuid)
1475                 return cpuid;
1476
1477         cpuid = allocate_kvm_cpuid2();
1478         kvm_fd = open_kvm_dev_path_or_exit();
1479
1480         ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1481         TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n",
1482                     ret, errno);
1483
1484         close(kvm_fd);
1485         return cpuid;
1486 }
1487
1488 void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1489 {
1490         static struct kvm_cpuid2 *cpuid_full;
1491         struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1492         int i, nent = 0;
1493
1494         if (!cpuid_full) {
1495                 cpuid_sys = kvm_get_supported_cpuid();
1496                 cpuid_hv = kvm_get_supported_hv_cpuid();
1497
1498                 cpuid_full = malloc(sizeof(*cpuid_full) +
1499                                     (cpuid_sys->nent + cpuid_hv->nent) *
1500                                     sizeof(struct kvm_cpuid_entry2));
1501                 if (!cpuid_full) {
1502                         perror("malloc");
1503                         abort();
1504                 }
1505
1506                 /* Need to skip KVM CPUID leaves 0x400000xx */
1507                 for (i = 0; i < cpuid_sys->nent; i++) {
1508                         if (cpuid_sys->entries[i].function >= 0x40000000 &&
1509                             cpuid_sys->entries[i].function < 0x40000100)
1510                                 continue;
1511                         cpuid_full->entries[nent] = cpuid_sys->entries[i];
1512                         nent++;
1513                 }
1514
1515                 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1516                        cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1517                 cpuid_full->nent = nent + cpuid_hv->nent;
1518         }
1519
1520         vcpu_set_cpuid(vm, vcpuid, cpuid_full);
1521 }
1522
1523 struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1524 {
1525         static struct kvm_cpuid2 *cpuid;
1526
1527         cpuid = allocate_kvm_cpuid2();
1528
1529         vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1530
1531         return cpuid;
1532 }
1533
1534 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1535 {
1536         const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1537         unsigned long ht_gfn, max_gfn, max_pfn;
1538         uint32_t eax, ebx, ecx, edx, max_ext_leaf;
1539
1540         max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
1541
1542         /* Avoid reserved HyperTransport region on AMD processors.  */
1543         if (!is_amd_cpu())
1544                 return max_gfn;
1545
1546         /* On parts with <40 physical address bits, the area is fully hidden */
1547         if (vm->pa_bits < 40)
1548                 return max_gfn;
1549
1550         /* Before family 17h, the HyperTransport area is just below 1T.  */
1551         ht_gfn = (1 << 28) - num_ht_pages;
1552         eax = 1;
1553         ecx = 0;
1554         cpuid(&eax, &ebx, &ecx, &edx);
1555         if (x86_family(eax) < 0x17)
1556                 goto done;
1557
1558         /*
1559          * Otherwise it's at the top of the physical address space, possibly
1560          * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX.  Use
1561          * the old conservative value if MAXPHYADDR is not enumerated.
1562          */
1563         eax = 0x80000000;
1564         cpuid(&eax, &ebx, &ecx, &edx);
1565         max_ext_leaf = eax;
1566         if (max_ext_leaf < 0x80000008)
1567                 goto done;
1568
1569         eax = 0x80000008;
1570         cpuid(&eax, &ebx, &ecx, &edx);
1571         max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1;
1572         if (max_ext_leaf >= 0x8000001f) {
1573                 eax = 0x8000001f;
1574                 cpuid(&eax, &ebx, &ecx, &edx);
1575                 max_pfn >>= (ebx >> 6) & 0x3f;
1576         }
1577
1578         ht_gfn = max_pfn - num_ht_pages;
1579 done:
1580         return min(max_gfn, ht_gfn - 1);
1581 }