KVM: selftests: Add PTE helper for x86-64 in preparation for hugepages
[linux-2.6-microblaze.git] / tools / testing / selftests / kvm / lib / x86_64 / processor.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/x86_64/processor.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "../kvm_util_internal.h"
11 #include "processor.h"
12
13 #ifndef NUM_INTERRUPTS
14 #define NUM_INTERRUPTS 256
15 #endif
16
17 #define DEFAULT_CODE_SELECTOR 0x8
18 #define DEFAULT_DATA_SELECTOR 0x10
19
20 vm_vaddr_t exception_handlers;
21
22 /* Virtual translation table structure declarations */
23 struct pageMapL4Entry {
24         uint64_t present:1;
25         uint64_t writable:1;
26         uint64_t user:1;
27         uint64_t write_through:1;
28         uint64_t cache_disable:1;
29         uint64_t accessed:1;
30         uint64_t ignored_06:1;
31         uint64_t page_size:1;
32         uint64_t ignored_11_08:4;
33         uint64_t pfn:40;
34         uint64_t ignored_62_52:11;
35         uint64_t execute_disable:1;
36 };
37
38 struct pageDirectoryPointerEntry {
39         uint64_t present:1;
40         uint64_t writable:1;
41         uint64_t user:1;
42         uint64_t write_through:1;
43         uint64_t cache_disable:1;
44         uint64_t accessed:1;
45         uint64_t ignored_06:1;
46         uint64_t page_size:1;
47         uint64_t ignored_11_08:4;
48         uint64_t pfn:40;
49         uint64_t ignored_62_52:11;
50         uint64_t execute_disable:1;
51 };
52
53 struct pageDirectoryEntry {
54         uint64_t present:1;
55         uint64_t writable:1;
56         uint64_t user:1;
57         uint64_t write_through:1;
58         uint64_t cache_disable:1;
59         uint64_t accessed:1;
60         uint64_t ignored_06:1;
61         uint64_t page_size:1;
62         uint64_t ignored_11_08:4;
63         uint64_t pfn:40;
64         uint64_t ignored_62_52:11;
65         uint64_t execute_disable:1;
66 };
67
68 struct pageTableEntry {
69         uint64_t present:1;
70         uint64_t writable:1;
71         uint64_t user:1;
72         uint64_t write_through:1;
73         uint64_t cache_disable:1;
74         uint64_t accessed:1;
75         uint64_t dirty:1;
76         uint64_t reserved_07:1;
77         uint64_t global:1;
78         uint64_t ignored_11_09:3;
79         uint64_t pfn:40;
80         uint64_t ignored_62_52:11;
81         uint64_t execute_disable:1;
82 };
83
84 void regs_dump(FILE *stream, struct kvm_regs *regs,
85                uint8_t indent)
86 {
87         fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
88                 "rcx: 0x%.16llx rdx: 0x%.16llx\n",
89                 indent, "",
90                 regs->rax, regs->rbx, regs->rcx, regs->rdx);
91         fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
92                 "rsp: 0x%.16llx rbp: 0x%.16llx\n",
93                 indent, "",
94                 regs->rsi, regs->rdi, regs->rsp, regs->rbp);
95         fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
96                 "r10: 0x%.16llx r11: 0x%.16llx\n",
97                 indent, "",
98                 regs->r8, regs->r9, regs->r10, regs->r11);
99         fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
100                 "r14: 0x%.16llx r15: 0x%.16llx\n",
101                 indent, "",
102                 regs->r12, regs->r13, regs->r14, regs->r15);
103         fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
104                 indent, "",
105                 regs->rip, regs->rflags);
106 }
107
108 /*
109  * Segment Dump
110  *
111  * Input Args:
112  *   stream  - Output FILE stream
113  *   segment - KVM segment
114  *   indent  - Left margin indent amount
115  *
116  * Output Args: None
117  *
118  * Return: None
119  *
120  * Dumps the state of the KVM segment given by @segment, to the FILE stream
121  * given by @stream.
122  */
123 static void segment_dump(FILE *stream, struct kvm_segment *segment,
124                          uint8_t indent)
125 {
126         fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
127                 "selector: 0x%.4x type: 0x%.2x\n",
128                 indent, "", segment->base, segment->limit,
129                 segment->selector, segment->type);
130         fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
131                 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
132                 indent, "", segment->present, segment->dpl,
133                 segment->db, segment->s, segment->l);
134         fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
135                 "unusable: 0x%.2x padding: 0x%.2x\n",
136                 indent, "", segment->g, segment->avl,
137                 segment->unusable, segment->padding);
138 }
139
140 /*
141  * dtable Dump
142  *
143  * Input Args:
144  *   stream - Output FILE stream
145  *   dtable - KVM dtable
146  *   indent - Left margin indent amount
147  *
148  * Output Args: None
149  *
150  * Return: None
151  *
152  * Dumps the state of the KVM dtable given by @dtable, to the FILE stream
153  * given by @stream.
154  */
155 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
156                         uint8_t indent)
157 {
158         fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
159                 "padding: 0x%.4x 0x%.4x 0x%.4x\n",
160                 indent, "", dtable->base, dtable->limit,
161                 dtable->padding[0], dtable->padding[1], dtable->padding[2]);
162 }
163
164 void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
165                 uint8_t indent)
166 {
167         unsigned int i;
168
169         fprintf(stream, "%*scs:\n", indent, "");
170         segment_dump(stream, &sregs->cs, indent + 2);
171         fprintf(stream, "%*sds:\n", indent, "");
172         segment_dump(stream, &sregs->ds, indent + 2);
173         fprintf(stream, "%*ses:\n", indent, "");
174         segment_dump(stream, &sregs->es, indent + 2);
175         fprintf(stream, "%*sfs:\n", indent, "");
176         segment_dump(stream, &sregs->fs, indent + 2);
177         fprintf(stream, "%*sgs:\n", indent, "");
178         segment_dump(stream, &sregs->gs, indent + 2);
179         fprintf(stream, "%*sss:\n", indent, "");
180         segment_dump(stream, &sregs->ss, indent + 2);
181         fprintf(stream, "%*str:\n", indent, "");
182         segment_dump(stream, &sregs->tr, indent + 2);
183         fprintf(stream, "%*sldt:\n", indent, "");
184         segment_dump(stream, &sregs->ldt, indent + 2);
185
186         fprintf(stream, "%*sgdt:\n", indent, "");
187         dtable_dump(stream, &sregs->gdt, indent + 2);
188         fprintf(stream, "%*sidt:\n", indent, "");
189         dtable_dump(stream, &sregs->idt, indent + 2);
190
191         fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
192                 "cr3: 0x%.16llx cr4: 0x%.16llx\n",
193                 indent, "",
194                 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
195         fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
196                 "apic_base: 0x%.16llx\n",
197                 indent, "",
198                 sregs->cr8, sregs->efer, sregs->apic_base);
199
200         fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
201         for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
202                 fprintf(stream, "%*s%.16llx\n", indent + 2, "",
203                         sregs->interrupt_bitmap[i]);
204         }
205 }
206
207 void virt_pgd_alloc(struct kvm_vm *vm)
208 {
209         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
210                 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
211
212         /* If needed, create page map l4 table. */
213         if (!vm->pgd_created) {
214                 vm->pgd = vm_alloc_page_table(vm);
215                 vm->pgd_created = true;
216         }
217 }
218
219 static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr,
220                           int level)
221 {
222         uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift);
223         int index = vaddr >> (vm->page_shift + level * 9) & 0x1ffu;
224
225         return &page_table[index];
226 }
227
228 void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
229 {
230         struct pageMapL4Entry *pml4e;
231         struct pageDirectoryPointerEntry *pdpe;
232         struct pageDirectoryEntry *pde;
233         struct pageTableEntry *pte;
234
235         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
236                 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
237
238         TEST_ASSERT((vaddr % vm->page_size) == 0,
239                 "Virtual address not on page boundary,\n"
240                 "  vaddr: 0x%lx vm->page_size: 0x%x",
241                 vaddr, vm->page_size);
242         TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
243                 (vaddr >> vm->page_shift)),
244                 "Invalid virtual address, vaddr: 0x%lx",
245                 vaddr);
246         TEST_ASSERT((paddr % vm->page_size) == 0,
247                 "Physical address not on page boundary,\n"
248                 "  paddr: 0x%lx vm->page_size: 0x%x",
249                 paddr, vm->page_size);
250         TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
251                 "Physical address beyond beyond maximum supported,\n"
252                 "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
253                 paddr, vm->max_gfn, vm->page_size);
254
255         /* Allocate page directory pointer table if not present. */
256         pml4e = virt_get_pte(vm, vm->pgd >> vm->page_shift, vaddr, 3);
257         if (!pml4e->present) {
258                 pml4e->pfn = vm_alloc_page_table(vm) >> vm->page_shift;
259                 pml4e->writable = true;
260                 pml4e->present = true;
261         }
262
263         /* Allocate page directory table if not present. */
264         pdpe = virt_get_pte(vm, pml4e->pfn, vaddr, 2);
265         if (!pdpe->present) {
266                 pdpe->pfn = vm_alloc_page_table(vm) >> vm->page_shift;
267                 pdpe->writable = true;
268                 pdpe->present = true;
269         }
270
271         /* Allocate page table if not present. */
272         pde = virt_get_pte(vm, pdpe->pfn, vaddr, 1);
273         if (!pde->present) {
274                 pde->pfn = vm_alloc_page_table(vm) >> vm->page_shift;
275                 pde->writable = true;
276                 pde->present = true;
277         }
278
279         /* Fill in page table entry. */
280         pte = virt_get_pte(vm, pde->pfn, vaddr, 0);
281         pte->pfn = paddr >> vm->page_shift;
282         pte->writable = true;
283         pte->present = 1;
284 }
285
286 void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
287 {
288         struct pageMapL4Entry *pml4e, *pml4e_start;
289         struct pageDirectoryPointerEntry *pdpe, *pdpe_start;
290         struct pageDirectoryEntry *pde, *pde_start;
291         struct pageTableEntry *pte, *pte_start;
292
293         if (!vm->pgd_created)
294                 return;
295
296         fprintf(stream, "%*s                                          "
297                 "                no\n", indent, "");
298         fprintf(stream, "%*s      index hvaddr         gpaddr         "
299                 "addr         w exec dirty\n",
300                 indent, "");
301         pml4e_start = (struct pageMapL4Entry *) addr_gpa2hva(vm,
302                 vm->pgd);
303         for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
304                 pml4e = &pml4e_start[n1];
305                 if (!pml4e->present)
306                         continue;
307                 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u "
308                         " %u\n",
309                         indent, "",
310                         pml4e - pml4e_start, pml4e,
311                         addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->pfn,
312                         pml4e->writable, pml4e->execute_disable);
313
314                 pdpe_start = addr_gpa2hva(vm, pml4e->pfn * vm->page_size);
315                 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
316                         pdpe = &pdpe_start[n2];
317                         if (!pdpe->present)
318                                 continue;
319                         fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10lx "
320                                 "%u  %u\n",
321                                 indent, "",
322                                 pdpe - pdpe_start, pdpe,
323                                 addr_hva2gpa(vm, pdpe),
324                                 (uint64_t) pdpe->pfn, pdpe->writable,
325                                 pdpe->execute_disable);
326
327                         pde_start = addr_gpa2hva(vm, pdpe->pfn * vm->page_size);
328                         for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
329                                 pde = &pde_start[n3];
330                                 if (!pde->present)
331                                         continue;
332                                 fprintf(stream, "%*spde   0x%-3zx %p "
333                                         "0x%-12lx 0x%-10lx %u  %u\n",
334                                         indent, "", pde - pde_start, pde,
335                                         addr_hva2gpa(vm, pde),
336                                         (uint64_t) pde->pfn, pde->writable,
337                                         pde->execute_disable);
338
339                                 pte_start = addr_gpa2hva(vm, pde->pfn * vm->page_size);
340                                 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
341                                         pte = &pte_start[n4];
342                                         if (!pte->present)
343                                                 continue;
344                                         fprintf(stream, "%*spte   0x%-3zx %p "
345                                                 "0x%-12lx 0x%-10lx %u  %u "
346                                                 "    %u    0x%-10lx\n",
347                                                 indent, "",
348                                                 pte - pte_start, pte,
349                                                 addr_hva2gpa(vm, pte),
350                                                 (uint64_t) pte->pfn,
351                                                 pte->writable,
352                                                 pte->execute_disable,
353                                                 pte->dirty,
354                                                 ((uint64_t) n1 << 27)
355                                                         | ((uint64_t) n2 << 18)
356                                                         | ((uint64_t) n3 << 9)
357                                                         | ((uint64_t) n4));
358                                 }
359                         }
360                 }
361         }
362 }
363
364 /*
365  * Set Unusable Segment
366  *
367  * Input Args: None
368  *
369  * Output Args:
370  *   segp - Pointer to segment register
371  *
372  * Return: None
373  *
374  * Sets the segment register pointed to by @segp to an unusable state.
375  */
376 static void kvm_seg_set_unusable(struct kvm_segment *segp)
377 {
378         memset(segp, 0, sizeof(*segp));
379         segp->unusable = true;
380 }
381
382 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
383 {
384         void *gdt = addr_gva2hva(vm, vm->gdt);
385         struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
386
387         desc->limit0 = segp->limit & 0xFFFF;
388         desc->base0 = segp->base & 0xFFFF;
389         desc->base1 = segp->base >> 16;
390         desc->type = segp->type;
391         desc->s = segp->s;
392         desc->dpl = segp->dpl;
393         desc->p = segp->present;
394         desc->limit1 = segp->limit >> 16;
395         desc->avl = segp->avl;
396         desc->l = segp->l;
397         desc->db = segp->db;
398         desc->g = segp->g;
399         desc->base2 = segp->base >> 24;
400         if (!segp->s)
401                 desc->base3 = segp->base >> 32;
402 }
403
404
405 /*
406  * Set Long Mode Flat Kernel Code Segment
407  *
408  * Input Args:
409  *   vm - VM whose GDT is being filled, or NULL to only write segp
410  *   selector - selector value
411  *
412  * Output Args:
413  *   segp - Pointer to KVM segment
414  *
415  * Return: None
416  *
417  * Sets up the KVM segment pointed to by @segp, to be a code segment
418  * with the selector value given by @selector.
419  */
420 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
421         struct kvm_segment *segp)
422 {
423         memset(segp, 0, sizeof(*segp));
424         segp->selector = selector;
425         segp->limit = 0xFFFFFFFFu;
426         segp->s = 0x1; /* kTypeCodeData */
427         segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
428                                           * | kFlagCodeReadable
429                                           */
430         segp->g = true;
431         segp->l = true;
432         segp->present = 1;
433         if (vm)
434                 kvm_seg_fill_gdt_64bit(vm, segp);
435 }
436
437 /*
438  * Set Long Mode Flat Kernel Data Segment
439  *
440  * Input Args:
441  *   vm - VM whose GDT is being filled, or NULL to only write segp
442  *   selector - selector value
443  *
444  * Output Args:
445  *   segp - Pointer to KVM segment
446  *
447  * Return: None
448  *
449  * Sets up the KVM segment pointed to by @segp, to be a data segment
450  * with the selector value given by @selector.
451  */
452 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
453         struct kvm_segment *segp)
454 {
455         memset(segp, 0, sizeof(*segp));
456         segp->selector = selector;
457         segp->limit = 0xFFFFFFFFu;
458         segp->s = 0x1; /* kTypeCodeData */
459         segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
460                                           * | kFlagDataWritable
461                                           */
462         segp->g = true;
463         segp->present = true;
464         if (vm)
465                 kvm_seg_fill_gdt_64bit(vm, segp);
466 }
467
468 vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
469 {
470         uint16_t index[4];
471         struct pageMapL4Entry *pml4e;
472         struct pageDirectoryPointerEntry *pdpe;
473         struct pageDirectoryEntry *pde;
474         struct pageTableEntry *pte;
475
476         TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
477                 "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
478
479         index[0] = (gva >> 12) & 0x1ffu;
480         index[1] = (gva >> 21) & 0x1ffu;
481         index[2] = (gva >> 30) & 0x1ffu;
482         index[3] = (gva >> 39) & 0x1ffu;
483
484         if (!vm->pgd_created)
485                 goto unmapped_gva;
486         pml4e = addr_gpa2hva(vm, vm->pgd);
487         if (!pml4e[index[3]].present)
488                 goto unmapped_gva;
489
490         pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size);
491         if (!pdpe[index[2]].present)
492                 goto unmapped_gva;
493
494         pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size);
495         if (!pde[index[1]].present)
496                 goto unmapped_gva;
497
498         pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size);
499         if (!pte[index[0]].present)
500                 goto unmapped_gva;
501
502         return (pte[index[0]].pfn * vm->page_size) + (gva & 0xfffu);
503
504 unmapped_gva:
505         TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
506         exit(EXIT_FAILURE);
507 }
508
509 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
510 {
511         if (!vm->gdt)
512                 vm->gdt = vm_vaddr_alloc_page(vm);
513
514         dt->base = vm->gdt;
515         dt->limit = getpagesize();
516 }
517
518 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
519                                 int selector)
520 {
521         if (!vm->tss)
522                 vm->tss = vm_vaddr_alloc_page(vm);
523
524         memset(segp, 0, sizeof(*segp));
525         segp->base = vm->tss;
526         segp->limit = 0x67;
527         segp->selector = selector;
528         segp->type = 0xb;
529         segp->present = 1;
530         kvm_seg_fill_gdt_64bit(vm, segp);
531 }
532
533 static void vcpu_setup(struct kvm_vm *vm, int vcpuid)
534 {
535         struct kvm_sregs sregs;
536
537         /* Set mode specific system register values. */
538         vcpu_sregs_get(vm, vcpuid, &sregs);
539
540         sregs.idt.limit = 0;
541
542         kvm_setup_gdt(vm, &sregs.gdt);
543
544         switch (vm->mode) {
545         case VM_MODE_PXXV48_4K:
546                 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
547                 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
548                 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
549
550                 kvm_seg_set_unusable(&sregs.ldt);
551                 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
552                 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
553                 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
554                 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
555                 break;
556
557         default:
558                 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
559         }
560
561         sregs.cr3 = vm->pgd;
562         vcpu_sregs_set(vm, vcpuid, &sregs);
563 }
564
565 void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
566 {
567         struct kvm_mp_state mp_state;
568         struct kvm_regs regs;
569         vm_vaddr_t stack_vaddr;
570         stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
571                                      DEFAULT_GUEST_STACK_VADDR_MIN);
572
573         /* Create VCPU */
574         vm_vcpu_add(vm, vcpuid);
575         vcpu_setup(vm, vcpuid);
576
577         /* Setup guest general purpose registers */
578         vcpu_regs_get(vm, vcpuid, &regs);
579         regs.rflags = regs.rflags | 0x2;
580         regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
581         regs.rip = (unsigned long) guest_code;
582         vcpu_regs_set(vm, vcpuid, &regs);
583
584         /* Setup the MP state */
585         mp_state.mp_state = 0;
586         vcpu_set_mp_state(vm, vcpuid, &mp_state);
587
588         /* Setup supported CPUIDs */
589         vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
590 }
591
592 /*
593  * Allocate an instance of struct kvm_cpuid2
594  *
595  * Input Args: None
596  *
597  * Output Args: None
598  *
599  * Return: A pointer to the allocated struct. The caller is responsible
600  * for freeing this struct.
601  *
602  * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
603  * array to be decided at allocation time, allocation is slightly
604  * complicated. This function uses a reasonable default length for
605  * the array and performs the appropriate allocation.
606  */
607 static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
608 {
609         struct kvm_cpuid2 *cpuid;
610         int nent = 100;
611         size_t size;
612
613         size = sizeof(*cpuid);
614         size += nent * sizeof(struct kvm_cpuid_entry2);
615         cpuid = malloc(size);
616         if (!cpuid) {
617                 perror("malloc");
618                 abort();
619         }
620
621         cpuid->nent = nent;
622
623         return cpuid;
624 }
625
626 /*
627  * KVM Supported CPUID Get
628  *
629  * Input Args: None
630  *
631  * Output Args:
632  *
633  * Return: The supported KVM CPUID
634  *
635  * Get the guest CPUID supported by KVM.
636  */
637 struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
638 {
639         static struct kvm_cpuid2 *cpuid;
640         int ret;
641         int kvm_fd;
642
643         if (cpuid)
644                 return cpuid;
645
646         cpuid = allocate_kvm_cpuid2();
647         kvm_fd = open_kvm_dev_path_or_exit();
648
649         ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
650         TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
651                     ret, errno);
652
653         close(kvm_fd);
654         return cpuid;
655 }
656
657 /*
658  * KVM Get MSR
659  *
660  * Input Args:
661  *   msr_index - Index of MSR
662  *
663  * Output Args: None
664  *
665  * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
666  *
667  * Get value of MSR for VCPU.
668  */
669 uint64_t kvm_get_feature_msr(uint64_t msr_index)
670 {
671         struct {
672                 struct kvm_msrs header;
673                 struct kvm_msr_entry entry;
674         } buffer = {};
675         int r, kvm_fd;
676
677         buffer.header.nmsrs = 1;
678         buffer.entry.index = msr_index;
679         kvm_fd = open_kvm_dev_path_or_exit();
680
681         r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
682         TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
683                 "  rc: %i errno: %i", r, errno);
684
685         close(kvm_fd);
686         return buffer.entry.data;
687 }
688
689 /*
690  * VM VCPU CPUID Set
691  *
692  * Input Args:
693  *   vm - Virtual Machine
694  *   vcpuid - VCPU id
695  *
696  * Output Args: None
697  *
698  * Return: KVM CPUID (KVM_GET_CPUID2)
699  *
700  * Set the VCPU's CPUID.
701  */
702 struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
703 {
704         struct vcpu *vcpu = vcpu_find(vm, vcpuid);
705         struct kvm_cpuid2 *cpuid;
706         int max_ent;
707         int rc = -1;
708
709         TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
710
711         cpuid = allocate_kvm_cpuid2();
712         max_ent = cpuid->nent;
713
714         for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) {
715                 rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid);
716                 if (!rc)
717                         break;
718
719                 TEST_ASSERT(rc == -1 && errno == E2BIG,
720                             "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d",
721                             rc, errno);
722         }
723
724         TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i",
725                     rc, errno);
726
727         return cpuid;
728 }
729
730
731
732 /*
733  * Locate a cpuid entry.
734  *
735  * Input Args:
736  *   function: The function of the cpuid entry to find.
737  *   index: The index of the cpuid entry.
738  *
739  * Output Args: None
740  *
741  * Return: A pointer to the cpuid entry. Never returns NULL.
742  */
743 struct kvm_cpuid_entry2 *
744 kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
745 {
746         struct kvm_cpuid2 *cpuid;
747         struct kvm_cpuid_entry2 *entry = NULL;
748         int i;
749
750         cpuid = kvm_get_supported_cpuid();
751         for (i = 0; i < cpuid->nent; i++) {
752                 if (cpuid->entries[i].function == function &&
753                     cpuid->entries[i].index == index) {
754                         entry = &cpuid->entries[i];
755                         break;
756                 }
757         }
758
759         TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
760                     function, index);
761         return entry;
762 }
763
764 /*
765  * VM VCPU CPUID Set
766  *
767  * Input Args:
768  *   vm - Virtual Machine
769  *   vcpuid - VCPU id
770  *   cpuid - The CPUID values to set.
771  *
772  * Output Args: None
773  *
774  * Return: void
775  *
776  * Set the VCPU's CPUID.
777  */
778 void vcpu_set_cpuid(struct kvm_vm *vm,
779                 uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
780 {
781         struct vcpu *vcpu = vcpu_find(vm, vcpuid);
782         int rc;
783
784         TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
785
786         rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
787         TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
788                     rc, errno);
789
790 }
791
792 /*
793  * VCPU Get MSR
794  *
795  * Input Args:
796  *   vm - Virtual Machine
797  *   vcpuid - VCPU ID
798  *   msr_index - Index of MSR
799  *
800  * Output Args: None
801  *
802  * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
803  *
804  * Get value of MSR for VCPU.
805  */
806 uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
807 {
808         struct vcpu *vcpu = vcpu_find(vm, vcpuid);
809         struct {
810                 struct kvm_msrs header;
811                 struct kvm_msr_entry entry;
812         } buffer = {};
813         int r;
814
815         TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
816         buffer.header.nmsrs = 1;
817         buffer.entry.index = msr_index;
818         r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
819         TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
820                 "  rc: %i errno: %i", r, errno);
821
822         return buffer.entry.data;
823 }
824
825 /*
826  * _VCPU Set MSR
827  *
828  * Input Args:
829  *   vm - Virtual Machine
830  *   vcpuid - VCPU ID
831  *   msr_index - Index of MSR
832  *   msr_value - New value of MSR
833  *
834  * Output Args: None
835  *
836  * Return: The result of KVM_SET_MSRS.
837  *
838  * Sets the value of an MSR for the given VCPU.
839  */
840 int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
841                   uint64_t msr_value)
842 {
843         struct vcpu *vcpu = vcpu_find(vm, vcpuid);
844         struct {
845                 struct kvm_msrs header;
846                 struct kvm_msr_entry entry;
847         } buffer = {};
848         int r;
849
850         TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
851         memset(&buffer, 0, sizeof(buffer));
852         buffer.header.nmsrs = 1;
853         buffer.entry.index = msr_index;
854         buffer.entry.data = msr_value;
855         r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
856         return r;
857 }
858
859 /*
860  * VCPU Set MSR
861  *
862  * Input Args:
863  *   vm - Virtual Machine
864  *   vcpuid - VCPU ID
865  *   msr_index - Index of MSR
866  *   msr_value - New value of MSR
867  *
868  * Output Args: None
869  *
870  * Return: On success, nothing. On failure a TEST_ASSERT is produced.
871  *
872  * Set value of MSR for VCPU.
873  */
874 void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
875         uint64_t msr_value)
876 {
877         int r;
878
879         r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value);
880         TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
881                 "  rc: %i errno: %i", r, errno);
882 }
883
884 void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
885 {
886         va_list ap;
887         struct kvm_regs regs;
888
889         TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
890                     "  num: %u\n",
891                     num);
892
893         va_start(ap, num);
894         vcpu_regs_get(vm, vcpuid, &regs);
895
896         if (num >= 1)
897                 regs.rdi = va_arg(ap, uint64_t);
898
899         if (num >= 2)
900                 regs.rsi = va_arg(ap, uint64_t);
901
902         if (num >= 3)
903                 regs.rdx = va_arg(ap, uint64_t);
904
905         if (num >= 4)
906                 regs.rcx = va_arg(ap, uint64_t);
907
908         if (num >= 5)
909                 regs.r8 = va_arg(ap, uint64_t);
910
911         if (num >= 6)
912                 regs.r9 = va_arg(ap, uint64_t);
913
914         vcpu_regs_set(vm, vcpuid, &regs);
915         va_end(ap);
916 }
917
918 void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
919 {
920         struct kvm_regs regs;
921         struct kvm_sregs sregs;
922
923         fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
924
925         fprintf(stream, "%*sregs:\n", indent + 2, "");
926         vcpu_regs_get(vm, vcpuid, &regs);
927         regs_dump(stream, &regs, indent + 4);
928
929         fprintf(stream, "%*ssregs:\n", indent + 2, "");
930         vcpu_sregs_get(vm, vcpuid, &sregs);
931         sregs_dump(stream, &sregs, indent + 4);
932 }
933
934 struct kvm_x86_state {
935         struct kvm_vcpu_events events;
936         struct kvm_mp_state mp_state;
937         struct kvm_regs regs;
938         struct kvm_xsave xsave;
939         struct kvm_xcrs xcrs;
940         struct kvm_sregs sregs;
941         struct kvm_debugregs debugregs;
942         union {
943                 struct kvm_nested_state nested;
944                 char nested_[16384];
945         };
946         struct kvm_msrs msrs;
947 };
948
949 static int kvm_get_num_msrs_fd(int kvm_fd)
950 {
951         struct kvm_msr_list nmsrs;
952         int r;
953
954         nmsrs.nmsrs = 0;
955         r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
956         TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
957                 r);
958
959         return nmsrs.nmsrs;
960 }
961
962 static int kvm_get_num_msrs(struct kvm_vm *vm)
963 {
964         return kvm_get_num_msrs_fd(vm->kvm_fd);
965 }
966
967 struct kvm_msr_list *kvm_get_msr_index_list(void)
968 {
969         struct kvm_msr_list *list;
970         int nmsrs, r, kvm_fd;
971
972         kvm_fd = open_kvm_dev_path_or_exit();
973
974         nmsrs = kvm_get_num_msrs_fd(kvm_fd);
975         list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
976         list->nmsrs = nmsrs;
977         r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
978         close(kvm_fd);
979
980         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
981                 r);
982
983         return list;
984 }
985
986 struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
987 {
988         struct vcpu *vcpu = vcpu_find(vm, vcpuid);
989         struct kvm_msr_list *list;
990         struct kvm_x86_state *state;
991         int nmsrs, r, i;
992         static int nested_size = -1;
993
994         if (nested_size == -1) {
995                 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
996                 TEST_ASSERT(nested_size <= sizeof(state->nested_),
997                             "Nested state size too big, %i > %zi",
998                             nested_size, sizeof(state->nested_));
999         }
1000
1001         /*
1002          * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1003          * guest state is consistent only after userspace re-enters the
1004          * kernel with KVM_RUN.  Complete IO prior to migrating state
1005          * to a new VM.
1006          */
1007         vcpu_run_complete_io(vm, vcpuid);
1008
1009         nmsrs = kvm_get_num_msrs(vm);
1010         list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1011         list->nmsrs = nmsrs;
1012         r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1013         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1014                 r);
1015
1016         state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
1017         r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
1018         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
1019                 r);
1020
1021         r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
1022         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
1023                 r);
1024
1025         r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
1026         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
1027                 r);
1028
1029         r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave);
1030         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
1031                 r);
1032
1033         if (kvm_check_cap(KVM_CAP_XCRS)) {
1034                 r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
1035                 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
1036                             r);
1037         }
1038
1039         r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
1040         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
1041                 r);
1042
1043         if (nested_size) {
1044                 state->nested.size = sizeof(state->nested_);
1045                 r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
1046                 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
1047                         r);
1048                 TEST_ASSERT(state->nested.size <= nested_size,
1049                         "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1050                         state->nested.size, nested_size);
1051         } else
1052                 state->nested.size = 0;
1053
1054         state->msrs.nmsrs = nmsrs;
1055         for (i = 0; i < nmsrs; i++)
1056                 state->msrs.entries[i].index = list->indices[i];
1057         r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
1058         TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)",
1059                 r, r == nmsrs ? -1 : list->indices[r]);
1060
1061         r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
1062         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
1063                 r);
1064
1065         free(list);
1066         return state;
1067 }
1068
1069 void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
1070 {
1071         struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1072         int r;
1073
1074         r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave);
1075         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
1076                 r);
1077
1078         if (kvm_check_cap(KVM_CAP_XCRS)) {
1079                 r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
1080                 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
1081                             r);
1082         }
1083
1084         r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
1085         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
1086                 r);
1087
1088         r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
1089         TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
1090                 r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
1091
1092         r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
1093         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
1094                 r);
1095
1096         r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
1097         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
1098                 r);
1099
1100         r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
1101         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
1102                 r);
1103
1104         r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
1105         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
1106                 r);
1107
1108         if (state->nested.size) {
1109                 r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
1110                 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
1111                         r);
1112         }
1113 }
1114
1115 bool is_intel_cpu(void)
1116 {
1117         int eax, ebx, ecx, edx;
1118         const uint32_t *chunk;
1119         const int leaf = 0;
1120
1121         __asm__ __volatile__(
1122                 "cpuid"
1123                 : /* output */ "=a"(eax), "=b"(ebx),
1124                   "=c"(ecx), "=d"(edx)
1125                 : /* input */ "0"(leaf), "2"(0));
1126
1127         chunk = (const uint32_t *)("GenuineIntel");
1128         return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
1129 }
1130
1131 uint32_t kvm_get_cpuid_max_basic(void)
1132 {
1133         return kvm_get_supported_cpuid_entry(0)->eax;
1134 }
1135
1136 uint32_t kvm_get_cpuid_max_extended(void)
1137 {
1138         return kvm_get_supported_cpuid_entry(0x80000000)->eax;
1139 }
1140
1141 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1142 {
1143         struct kvm_cpuid_entry2 *entry;
1144         bool pae;
1145
1146         /* SDM 4.1.4 */
1147         if (kvm_get_cpuid_max_extended() < 0x80000008) {
1148                 pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
1149                 *pa_bits = pae ? 36 : 32;
1150                 *va_bits = 32;
1151         } else {
1152                 entry = kvm_get_supported_cpuid_entry(0x80000008);
1153                 *pa_bits = entry->eax & 0xff;
1154                 *va_bits = (entry->eax >> 8) & 0xff;
1155         }
1156 }
1157
1158 struct idt_entry {
1159         uint16_t offset0;
1160         uint16_t selector;
1161         uint16_t ist : 3;
1162         uint16_t : 5;
1163         uint16_t type : 4;
1164         uint16_t : 1;
1165         uint16_t dpl : 2;
1166         uint16_t p : 1;
1167         uint16_t offset1;
1168         uint32_t offset2; uint32_t reserved;
1169 };
1170
1171 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1172                           int dpl, unsigned short selector)
1173 {
1174         struct idt_entry *base =
1175                 (struct idt_entry *)addr_gva2hva(vm, vm->idt);
1176         struct idt_entry *e = &base[vector];
1177
1178         memset(e, 0, sizeof(*e));
1179         e->offset0 = addr;
1180         e->selector = selector;
1181         e->ist = 0;
1182         e->type = 14;
1183         e->dpl = dpl;
1184         e->p = 1;
1185         e->offset1 = addr >> 16;
1186         e->offset2 = addr >> 32;
1187 }
1188
1189 void kvm_exit_unexpected_vector(uint32_t value)
1190 {
1191         outl(UNEXPECTED_VECTOR_PORT, value);
1192 }
1193
1194 void route_exception(struct ex_regs *regs)
1195 {
1196         typedef void(*handler)(struct ex_regs *);
1197         handler *handlers = (handler *)exception_handlers;
1198
1199         if (handlers && handlers[regs->vector]) {
1200                 handlers[regs->vector](regs);
1201                 return;
1202         }
1203
1204         kvm_exit_unexpected_vector(regs->vector);
1205 }
1206
1207 void vm_init_descriptor_tables(struct kvm_vm *vm)
1208 {
1209         extern void *idt_handlers;
1210         int i;
1211
1212         vm->idt = vm_vaddr_alloc_page(vm);
1213         vm->handlers = vm_vaddr_alloc_page(vm);
1214         /* Handlers have the same address in both address spaces.*/
1215         for (i = 0; i < NUM_INTERRUPTS; i++)
1216                 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1217                         DEFAULT_CODE_SELECTOR);
1218 }
1219
1220 void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid)
1221 {
1222         struct kvm_sregs sregs;
1223
1224         vcpu_sregs_get(vm, vcpuid, &sregs);
1225         sregs.idt.base = vm->idt;
1226         sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1227         sregs.gdt.base = vm->gdt;
1228         sregs.gdt.limit = getpagesize() - 1;
1229         kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1230         vcpu_sregs_set(vm, vcpuid, &sregs);
1231         *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1232 }
1233
1234 void vm_handle_exception(struct kvm_vm *vm, int vector,
1235                          void (*handler)(struct ex_regs *))
1236 {
1237         vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1238
1239         handlers[vector] = (vm_vaddr_t)handler;
1240 }
1241
1242 void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
1243 {
1244         if (vcpu_state(vm, vcpuid)->exit_reason == KVM_EXIT_IO
1245                 && vcpu_state(vm, vcpuid)->io.port == UNEXPECTED_VECTOR_PORT
1246                 && vcpu_state(vm, vcpuid)->io.size == 4) {
1247                 /* Grab pointer to io data */
1248                 uint32_t *data = (void *)vcpu_state(vm, vcpuid)
1249                         + vcpu_state(vm, vcpuid)->io.data_offset;
1250
1251                 TEST_ASSERT(false,
1252                             "Unexpected vectored event in guest (vector:0x%x)",
1253                             *data);
1254         }
1255 }
1256
1257 bool set_cpuid(struct kvm_cpuid2 *cpuid,
1258                struct kvm_cpuid_entry2 *ent)
1259 {
1260         int i;
1261
1262         for (i = 0; i < cpuid->nent; i++) {
1263                 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1264
1265                 if (cur->function != ent->function || cur->index != ent->index)
1266                         continue;
1267
1268                 memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2));
1269                 return true;
1270         }
1271
1272         return false;
1273 }
1274
1275 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1276                        uint64_t a3)
1277 {
1278         uint64_t r;
1279
1280         asm volatile("vmcall"
1281                      : "=a"(r)
1282                      : "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1283         return r;
1284 }
1285
1286 struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1287 {
1288         static struct kvm_cpuid2 *cpuid;
1289         int ret;
1290         int kvm_fd;
1291
1292         if (cpuid)
1293                 return cpuid;
1294
1295         cpuid = allocate_kvm_cpuid2();
1296         kvm_fd = open_kvm_dev_path_or_exit();
1297
1298         ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1299         TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n",
1300                     ret, errno);
1301
1302         close(kvm_fd);
1303         return cpuid;
1304 }
1305
1306 void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1307 {
1308         static struct kvm_cpuid2 *cpuid_full;
1309         struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1310         int i, nent = 0;
1311
1312         if (!cpuid_full) {
1313                 cpuid_sys = kvm_get_supported_cpuid();
1314                 cpuid_hv = kvm_get_supported_hv_cpuid();
1315
1316                 cpuid_full = malloc(sizeof(*cpuid_full) +
1317                                     (cpuid_sys->nent + cpuid_hv->nent) *
1318                                     sizeof(struct kvm_cpuid_entry2));
1319                 if (!cpuid_full) {
1320                         perror("malloc");
1321                         abort();
1322                 }
1323
1324                 /* Need to skip KVM CPUID leaves 0x400000xx */
1325                 for (i = 0; i < cpuid_sys->nent; i++) {
1326                         if (cpuid_sys->entries[i].function >= 0x40000000 &&
1327                             cpuid_sys->entries[i].function < 0x40000100)
1328                                 continue;
1329                         cpuid_full->entries[nent] = cpuid_sys->entries[i];
1330                         nent++;
1331                 }
1332
1333                 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1334                        cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1335                 cpuid_full->nent = nent + cpuid_hv->nent;
1336         }
1337
1338         vcpu_set_cpuid(vm, vcpuid, cpuid_full);
1339 }
1340
1341 struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1342 {
1343         static struct kvm_cpuid2 *cpuid;
1344
1345         cpuid = allocate_kvm_cpuid2();
1346
1347         vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1348
1349         return cpuid;
1350 }