Merge tag 'v6.9-rc-smb3-server-fixes' of git://git.samba.org/ksmbd
[linux-2.6-microblaze.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38 #include "arm64-frame-pointer-unwind-support.h"
39
40 #include <linux/ctype.h>
41 #include <symbol/kallsyms.h>
42 #include <linux/mman.h>
43 #include <linux/string.h>
44 #include <linux/zalloc.h>
45
46 static struct dso *machine__kernel_dso(struct machine *machine)
47 {
48         return map__dso(machine->vmlinux_map);
49 }
50
51 static void dsos__init(struct dsos *dsos)
52 {
53         INIT_LIST_HEAD(&dsos->head);
54         dsos->root = RB_ROOT;
55         init_rwsem(&dsos->lock);
56 }
57
58 static int machine__set_mmap_name(struct machine *machine)
59 {
60         if (machine__is_host(machine))
61                 machine->mmap_name = strdup("[kernel.kallsyms]");
62         else if (machine__is_default_guest(machine))
63                 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
64         else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
65                           machine->pid) < 0)
66                 machine->mmap_name = NULL;
67
68         return machine->mmap_name ? 0 : -ENOMEM;
69 }
70
71 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
72 {
73         char comm[64];
74
75         snprintf(comm, sizeof(comm), "[guest/%d]", pid);
76         thread__set_comm(thread, comm, 0);
77 }
78
79 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
80 {
81         int err = -ENOMEM;
82
83         memset(machine, 0, sizeof(*machine));
84         machine->kmaps = maps__new(machine);
85         if (machine->kmaps == NULL)
86                 return -ENOMEM;
87
88         RB_CLEAR_NODE(&machine->rb_node);
89         dsos__init(&machine->dsos);
90
91         threads__init(&machine->threads);
92
93         machine->vdso_info = NULL;
94         machine->env = NULL;
95
96         machine->pid = pid;
97
98         machine->id_hdr_size = 0;
99         machine->kptr_restrict_warned = false;
100         machine->comm_exec = false;
101         machine->kernel_start = 0;
102         machine->vmlinux_map = NULL;
103
104         machine->root_dir = strdup(root_dir);
105         if (machine->root_dir == NULL)
106                 goto out;
107
108         if (machine__set_mmap_name(machine))
109                 goto out;
110
111         if (pid != HOST_KERNEL_ID) {
112                 struct thread *thread = machine__findnew_thread(machine, -1,
113                                                                 pid);
114
115                 if (thread == NULL)
116                         goto out;
117
118                 thread__set_guest_comm(thread, pid);
119                 thread__put(thread);
120         }
121
122         machine->current_tid = NULL;
123         err = 0;
124
125 out:
126         if (err) {
127                 zfree(&machine->kmaps);
128                 zfree(&machine->root_dir);
129                 zfree(&machine->mmap_name);
130         }
131         return 0;
132 }
133
134 struct machine *machine__new_host(void)
135 {
136         struct machine *machine = malloc(sizeof(*machine));
137
138         if (machine != NULL) {
139                 machine__init(machine, "", HOST_KERNEL_ID);
140
141                 if (machine__create_kernel_maps(machine) < 0)
142                         goto out_delete;
143         }
144
145         return machine;
146 out_delete:
147         free(machine);
148         return NULL;
149 }
150
151 struct machine *machine__new_kallsyms(void)
152 {
153         struct machine *machine = machine__new_host();
154         /*
155          * FIXME:
156          * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
157          *    ask for not using the kcore parsing code, once this one is fixed
158          *    to create a map per module.
159          */
160         if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
161                 machine__delete(machine);
162                 machine = NULL;
163         }
164
165         return machine;
166 }
167
168 static void dsos__purge(struct dsos *dsos)
169 {
170         struct dso *pos, *n;
171
172         down_write(&dsos->lock);
173
174         list_for_each_entry_safe(pos, n, &dsos->head, node) {
175                 RB_CLEAR_NODE(&pos->rb_node);
176                 pos->root = NULL;
177                 list_del_init(&pos->node);
178                 dso__put(pos);
179         }
180
181         up_write(&dsos->lock);
182 }
183
184 static void dsos__exit(struct dsos *dsos)
185 {
186         dsos__purge(dsos);
187         exit_rwsem(&dsos->lock);
188 }
189
190 void machine__delete_threads(struct machine *machine)
191 {
192         threads__remove_all_threads(&machine->threads);
193 }
194
195 void machine__exit(struct machine *machine)
196 {
197         if (machine == NULL)
198                 return;
199
200         machine__destroy_kernel_maps(machine);
201         maps__zput(machine->kmaps);
202         dsos__exit(&machine->dsos);
203         machine__exit_vdso(machine);
204         zfree(&machine->root_dir);
205         zfree(&machine->mmap_name);
206         zfree(&machine->current_tid);
207         zfree(&machine->kallsyms_filename);
208
209         threads__exit(&machine->threads);
210 }
211
212 void machine__delete(struct machine *machine)
213 {
214         if (machine) {
215                 machine__exit(machine);
216                 free(machine);
217         }
218 }
219
220 void machines__init(struct machines *machines)
221 {
222         machine__init(&machines->host, "", HOST_KERNEL_ID);
223         machines->guests = RB_ROOT_CACHED;
224 }
225
226 void machines__exit(struct machines *machines)
227 {
228         machine__exit(&machines->host);
229         /* XXX exit guest */
230 }
231
232 struct machine *machines__add(struct machines *machines, pid_t pid,
233                               const char *root_dir)
234 {
235         struct rb_node **p = &machines->guests.rb_root.rb_node;
236         struct rb_node *parent = NULL;
237         struct machine *pos, *machine = malloc(sizeof(*machine));
238         bool leftmost = true;
239
240         if (machine == NULL)
241                 return NULL;
242
243         if (machine__init(machine, root_dir, pid) != 0) {
244                 free(machine);
245                 return NULL;
246         }
247
248         while (*p != NULL) {
249                 parent = *p;
250                 pos = rb_entry(parent, struct machine, rb_node);
251                 if (pid < pos->pid)
252                         p = &(*p)->rb_left;
253                 else {
254                         p = &(*p)->rb_right;
255                         leftmost = false;
256                 }
257         }
258
259         rb_link_node(&machine->rb_node, parent, p);
260         rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
261
262         machine->machines = machines;
263
264         return machine;
265 }
266
267 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
268 {
269         struct rb_node *nd;
270
271         machines->host.comm_exec = comm_exec;
272
273         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
274                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
275
276                 machine->comm_exec = comm_exec;
277         }
278 }
279
280 struct machine *machines__find(struct machines *machines, pid_t pid)
281 {
282         struct rb_node **p = &machines->guests.rb_root.rb_node;
283         struct rb_node *parent = NULL;
284         struct machine *machine;
285         struct machine *default_machine = NULL;
286
287         if (pid == HOST_KERNEL_ID)
288                 return &machines->host;
289
290         while (*p != NULL) {
291                 parent = *p;
292                 machine = rb_entry(parent, struct machine, rb_node);
293                 if (pid < machine->pid)
294                         p = &(*p)->rb_left;
295                 else if (pid > machine->pid)
296                         p = &(*p)->rb_right;
297                 else
298                         return machine;
299                 if (!machine->pid)
300                         default_machine = machine;
301         }
302
303         return default_machine;
304 }
305
306 struct machine *machines__findnew(struct machines *machines, pid_t pid)
307 {
308         char path[PATH_MAX];
309         const char *root_dir = "";
310         struct machine *machine = machines__find(machines, pid);
311
312         if (machine && (machine->pid == pid))
313                 goto out;
314
315         if ((pid != HOST_KERNEL_ID) &&
316             (pid != DEFAULT_GUEST_KERNEL_ID) &&
317             (symbol_conf.guestmount)) {
318                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
319                 if (access(path, R_OK)) {
320                         static struct strlist *seen;
321
322                         if (!seen)
323                                 seen = strlist__new(NULL, NULL);
324
325                         if (!strlist__has_entry(seen, path)) {
326                                 pr_err("Can't access file %s\n", path);
327                                 strlist__add(seen, path);
328                         }
329                         machine = NULL;
330                         goto out;
331                 }
332                 root_dir = path;
333         }
334
335         machine = machines__add(machines, pid, root_dir);
336 out:
337         return machine;
338 }
339
340 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
341 {
342         struct machine *machine = machines__find(machines, pid);
343
344         if (!machine)
345                 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
346         return machine;
347 }
348
349 /*
350  * A common case for KVM test programs is that the test program acts as the
351  * hypervisor, creating, running and destroying the virtual machine, and
352  * providing the guest object code from its own object code. In this case,
353  * the VM is not running an OS, but only the functions loaded into it by the
354  * hypervisor test program, and conveniently, loaded at the same virtual
355  * addresses.
356  *
357  * Normally to resolve addresses, MMAP events are needed to map addresses
358  * back to the object code and debug symbols for that object code.
359  *
360  * Currently, there is no way to get such mapping information from guests
361  * but, in the scenario described above, the guest has the same mappings
362  * as the hypervisor, so support for that scenario can be achieved.
363  *
364  * To support that, copy the host thread's maps to the guest thread's maps.
365  * Note, we do not discover the guest until we encounter a guest event,
366  * which works well because it is not until then that we know that the host
367  * thread's maps have been set up.
368  *
369  * This function returns the guest thread. Apart from keeping the data
370  * structures sane, using a thread belonging to the guest machine, instead
371  * of the host thread, allows it to have its own comm (refer
372  * thread__set_guest_comm()).
373  */
374 static struct thread *findnew_guest_code(struct machine *machine,
375                                          struct machine *host_machine,
376                                          pid_t pid)
377 {
378         struct thread *host_thread;
379         struct thread *thread;
380         int err;
381
382         if (!machine)
383                 return NULL;
384
385         thread = machine__findnew_thread(machine, -1, pid);
386         if (!thread)
387                 return NULL;
388
389         /* Assume maps are set up if there are any */
390         if (!maps__empty(thread__maps(thread)))
391                 return thread;
392
393         host_thread = machine__find_thread(host_machine, -1, pid);
394         if (!host_thread)
395                 goto out_err;
396
397         thread__set_guest_comm(thread, pid);
398
399         /*
400          * Guest code can be found in hypervisor process at the same address
401          * so copy host maps.
402          */
403         err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
404         thread__put(host_thread);
405         if (err)
406                 goto out_err;
407
408         return thread;
409
410 out_err:
411         thread__zput(thread);
412         return NULL;
413 }
414
415 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
416 {
417         struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
418         struct machine *machine = machines__findnew(machines, pid);
419
420         return findnew_guest_code(machine, host_machine, pid);
421 }
422
423 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
424 {
425         struct machines *machines = machine->machines;
426         struct machine *host_machine;
427
428         if (!machines)
429                 return NULL;
430
431         host_machine = machines__find(machines, HOST_KERNEL_ID);
432
433         return findnew_guest_code(machine, host_machine, pid);
434 }
435
436 void machines__process_guests(struct machines *machines,
437                               machine__process_t process, void *data)
438 {
439         struct rb_node *nd;
440
441         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
442                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
443                 process(pos, data);
444         }
445 }
446
447 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
448 {
449         struct rb_node *node;
450         struct machine *machine;
451
452         machines->host.id_hdr_size = id_hdr_size;
453
454         for (node = rb_first_cached(&machines->guests); node;
455              node = rb_next(node)) {
456                 machine = rb_entry(node, struct machine, rb_node);
457                 machine->id_hdr_size = id_hdr_size;
458         }
459
460         return;
461 }
462
463 static void machine__update_thread_pid(struct machine *machine,
464                                        struct thread *th, pid_t pid)
465 {
466         struct thread *leader;
467
468         if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
469                 return;
470
471         thread__set_pid(th, pid);
472
473         if (thread__pid(th) == thread__tid(th))
474                 return;
475
476         leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
477         if (!leader)
478                 goto out_err;
479
480         if (!thread__maps(leader))
481                 thread__set_maps(leader, maps__new(machine));
482
483         if (!thread__maps(leader))
484                 goto out_err;
485
486         if (thread__maps(th) == thread__maps(leader))
487                 goto out_put;
488
489         if (thread__maps(th)) {
490                 /*
491                  * Maps are created from MMAP events which provide the pid and
492                  * tid.  Consequently there never should be any maps on a thread
493                  * with an unknown pid.  Just print an error if there are.
494                  */
495                 if (!maps__empty(thread__maps(th)))
496                         pr_err("Discarding thread maps for %d:%d\n",
497                                 thread__pid(th), thread__tid(th));
498                 maps__put(thread__maps(th));
499         }
500
501         thread__set_maps(th, maps__get(thread__maps(leader)));
502 out_put:
503         thread__put(leader);
504         return;
505 out_err:
506         pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
507         goto out_put;
508 }
509
510 /*
511  * Caller must eventually drop thread->refcnt returned with a successful
512  * lookup/new thread inserted.
513  */
514 static struct thread *__machine__findnew_thread(struct machine *machine,
515                                                 pid_t pid,
516                                                 pid_t tid,
517                                                 bool create)
518 {
519         struct thread *th = threads__find(&machine->threads, tid);
520         bool created;
521
522         if (th) {
523                 machine__update_thread_pid(machine, th, pid);
524                 return th;
525         }
526         if (!create)
527                 return NULL;
528
529         th = threads__findnew(&machine->threads, pid, tid, &created);
530         if (created) {
531                 /*
532                  * We have to initialize maps separately after rb tree is
533                  * updated.
534                  *
535                  * The reason is that we call machine__findnew_thread within
536                  * thread__init_maps to find the thread leader and that would
537                  * screwed the rb tree.
538                  */
539                 if (thread__init_maps(th, machine)) {
540                         pr_err("Thread init failed thread %d\n", pid);
541                         threads__remove(&machine->threads, th);
542                         thread__put(th);
543                         return NULL;
544                 }
545         } else
546                 machine__update_thread_pid(machine, th, pid);
547
548         return th;
549 }
550
551 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
552 {
553         return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
554 }
555
556 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
557                                     pid_t tid)
558 {
559         return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
560 }
561
562 /*
563  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
564  * So here a single thread is created for that, but actually there is a separate
565  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
566  * is only 1. That causes problems for some tools, requiring workarounds. For
567  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
568  */
569 struct thread *machine__idle_thread(struct machine *machine)
570 {
571         struct thread *thread = machine__findnew_thread(machine, 0, 0);
572
573         if (!thread || thread__set_comm(thread, "swapper", 0) ||
574             thread__set_namespaces(thread, 0, NULL))
575                 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
576
577         return thread;
578 }
579
580 struct comm *machine__thread_exec_comm(struct machine *machine,
581                                        struct thread *thread)
582 {
583         if (machine->comm_exec)
584                 return thread__exec_comm(thread);
585         else
586                 return thread__comm(thread);
587 }
588
589 int machine__process_comm_event(struct machine *machine, union perf_event *event,
590                                 struct perf_sample *sample)
591 {
592         struct thread *thread = machine__findnew_thread(machine,
593                                                         event->comm.pid,
594                                                         event->comm.tid);
595         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
596         int err = 0;
597
598         if (exec)
599                 machine->comm_exec = true;
600
601         if (dump_trace)
602                 perf_event__fprintf_comm(event, stdout);
603
604         if (thread == NULL ||
605             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
606                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
607                 err = -1;
608         }
609
610         thread__put(thread);
611
612         return err;
613 }
614
615 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
616                                       union perf_event *event,
617                                       struct perf_sample *sample __maybe_unused)
618 {
619         struct thread *thread = machine__findnew_thread(machine,
620                                                         event->namespaces.pid,
621                                                         event->namespaces.tid);
622         int err = 0;
623
624         WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
625                   "\nWARNING: kernel seems to support more namespaces than perf"
626                   " tool.\nTry updating the perf tool..\n\n");
627
628         WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
629                   "\nWARNING: perf tool seems to support more namespaces than"
630                   " the kernel.\nTry updating the kernel..\n\n");
631
632         if (dump_trace)
633                 perf_event__fprintf_namespaces(event, stdout);
634
635         if (thread == NULL ||
636             thread__set_namespaces(thread, sample->time, &event->namespaces)) {
637                 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
638                 err = -1;
639         }
640
641         thread__put(thread);
642
643         return err;
644 }
645
646 int machine__process_cgroup_event(struct machine *machine,
647                                   union perf_event *event,
648                                   struct perf_sample *sample __maybe_unused)
649 {
650         struct cgroup *cgrp;
651
652         if (dump_trace)
653                 perf_event__fprintf_cgroup(event, stdout);
654
655         cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
656         if (cgrp == NULL)
657                 return -ENOMEM;
658
659         return 0;
660 }
661
662 int machine__process_lost_event(struct machine *machine __maybe_unused,
663                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
664 {
665         dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
666                     event->lost.id, event->lost.lost);
667         return 0;
668 }
669
670 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
671                                         union perf_event *event, struct perf_sample *sample)
672 {
673         dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
674                     sample->id, event->lost_samples.lost);
675         return 0;
676 }
677
678 static struct dso *machine__findnew_module_dso(struct machine *machine,
679                                                struct kmod_path *m,
680                                                const char *filename)
681 {
682         struct dso *dso;
683
684         down_write(&machine->dsos.lock);
685
686         dso = __dsos__find(&machine->dsos, m->name, true);
687         if (!dso) {
688                 dso = __dsos__addnew(&machine->dsos, m->name);
689                 if (dso == NULL)
690                         goto out_unlock;
691
692                 dso__set_module_info(dso, m, machine);
693                 dso__set_long_name(dso, strdup(filename), true);
694                 dso->kernel = DSO_SPACE__KERNEL;
695         }
696
697         dso__get(dso);
698 out_unlock:
699         up_write(&machine->dsos.lock);
700         return dso;
701 }
702
703 int machine__process_aux_event(struct machine *machine __maybe_unused,
704                                union perf_event *event)
705 {
706         if (dump_trace)
707                 perf_event__fprintf_aux(event, stdout);
708         return 0;
709 }
710
711 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
712                                         union perf_event *event)
713 {
714         if (dump_trace)
715                 perf_event__fprintf_itrace_start(event, stdout);
716         return 0;
717 }
718
719 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
720                                             union perf_event *event)
721 {
722         if (dump_trace)
723                 perf_event__fprintf_aux_output_hw_id(event, stdout);
724         return 0;
725 }
726
727 int machine__process_switch_event(struct machine *machine __maybe_unused,
728                                   union perf_event *event)
729 {
730         if (dump_trace)
731                 perf_event__fprintf_switch(event, stdout);
732         return 0;
733 }
734
735 static int machine__process_ksymbol_register(struct machine *machine,
736                                              union perf_event *event,
737                                              struct perf_sample *sample __maybe_unused)
738 {
739         struct symbol *sym;
740         struct dso *dso;
741         struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
742         int err = 0;
743
744         if (!map) {
745                 dso = dso__new(event->ksymbol.name);
746
747                 if (!dso) {
748                         err = -ENOMEM;
749                         goto out;
750                 }
751                 dso->kernel = DSO_SPACE__KERNEL;
752                 map = map__new2(0, dso);
753                 dso__put(dso);
754                 if (!map) {
755                         err = -ENOMEM;
756                         goto out;
757                 }
758                 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
759                         dso->binary_type = DSO_BINARY_TYPE__OOL;
760                         dso->data.file_size = event->ksymbol.len;
761                         dso__set_loaded(dso);
762                 }
763
764                 map__set_start(map, event->ksymbol.addr);
765                 map__set_end(map, map__start(map) + event->ksymbol.len);
766                 err = maps__insert(machine__kernel_maps(machine), map);
767                 if (err) {
768                         err = -ENOMEM;
769                         goto out;
770                 }
771
772                 dso__set_loaded(dso);
773
774                 if (is_bpf_image(event->ksymbol.name)) {
775                         dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
776                         dso__set_long_name(dso, "", false);
777                 }
778         } else {
779                 dso = map__dso(map);
780         }
781
782         sym = symbol__new(map__map_ip(map, map__start(map)),
783                           event->ksymbol.len,
784                           0, 0, event->ksymbol.name);
785         if (!sym) {
786                 err = -ENOMEM;
787                 goto out;
788         }
789         dso__insert_symbol(dso, sym);
790 out:
791         map__put(map);
792         return err;
793 }
794
795 static int machine__process_ksymbol_unregister(struct machine *machine,
796                                                union perf_event *event,
797                                                struct perf_sample *sample __maybe_unused)
798 {
799         struct symbol *sym;
800         struct map *map;
801
802         map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
803         if (!map)
804                 return 0;
805
806         if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
807                 maps__remove(machine__kernel_maps(machine), map);
808         else {
809                 struct dso *dso = map__dso(map);
810
811                 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
812                 if (sym)
813                         dso__delete_symbol(dso, sym);
814         }
815         map__put(map);
816         return 0;
817 }
818
819 int machine__process_ksymbol(struct machine *machine __maybe_unused,
820                              union perf_event *event,
821                              struct perf_sample *sample)
822 {
823         if (dump_trace)
824                 perf_event__fprintf_ksymbol(event, stdout);
825
826         if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
827                 return machine__process_ksymbol_unregister(machine, event,
828                                                            sample);
829         return machine__process_ksymbol_register(machine, event, sample);
830 }
831
832 int machine__process_text_poke(struct machine *machine, union perf_event *event,
833                                struct perf_sample *sample __maybe_unused)
834 {
835         struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
836         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
837         struct dso *dso = map ? map__dso(map) : NULL;
838
839         if (dump_trace)
840                 perf_event__fprintf_text_poke(event, machine, stdout);
841
842         if (!event->text_poke.new_len)
843                 goto out;
844
845         if (cpumode != PERF_RECORD_MISC_KERNEL) {
846                 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
847                 goto out;
848         }
849
850         if (dso) {
851                 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
852                 int ret;
853
854                 /*
855                  * Kernel maps might be changed when loading symbols so loading
856                  * must be done prior to using kernel maps.
857                  */
858                 map__load(map);
859                 ret = dso__data_write_cache_addr(dso, map, machine,
860                                                  event->text_poke.addr,
861                                                  new_bytes,
862                                                  event->text_poke.new_len);
863                 if (ret != event->text_poke.new_len)
864                         pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
865                                  event->text_poke.addr);
866         } else {
867                 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
868                          event->text_poke.addr);
869         }
870 out:
871         map__put(map);
872         return 0;
873 }
874
875 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
876                                               const char *filename)
877 {
878         struct map *map = NULL;
879         struct kmod_path m;
880         struct dso *dso;
881         int err;
882
883         if (kmod_path__parse_name(&m, filename))
884                 return NULL;
885
886         dso = machine__findnew_module_dso(machine, &m, filename);
887         if (dso == NULL)
888                 goto out;
889
890         map = map__new2(start, dso);
891         if (map == NULL)
892                 goto out;
893
894         err = maps__insert(machine__kernel_maps(machine), map);
895         /* If maps__insert failed, return NULL. */
896         if (err) {
897                 map__put(map);
898                 map = NULL;
899         }
900 out:
901         /* put the dso here, corresponding to  machine__findnew_module_dso */
902         dso__put(dso);
903         zfree(&m.name);
904         return map;
905 }
906
907 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
908 {
909         struct rb_node *nd;
910         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
911
912         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
913                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
914                 ret += __dsos__fprintf(&pos->dsos.head, fp);
915         }
916
917         return ret;
918 }
919
920 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
921                                      bool (skip)(struct dso *dso, int parm), int parm)
922 {
923         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
924 }
925
926 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
927                                      bool (skip)(struct dso *dso, int parm), int parm)
928 {
929         struct rb_node *nd;
930         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
931
932         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
933                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
934                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
935         }
936         return ret;
937 }
938
939 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
940 {
941         int i;
942         size_t printed = 0;
943         struct dso *kdso = machine__kernel_dso(machine);
944
945         if (kdso->has_build_id) {
946                 char filename[PATH_MAX];
947                 if (dso__build_id_filename(kdso, filename, sizeof(filename),
948                                            false))
949                         printed += fprintf(fp, "[0] %s\n", filename);
950         }
951
952         for (i = 0; i < vmlinux_path__nr_entries; ++i)
953                 printed += fprintf(fp, "[%d] %s\n",
954                                    i + kdso->has_build_id, vmlinux_path[i]);
955
956         return printed;
957 }
958
959 struct machine_fprintf_cb_args {
960         FILE *fp;
961         size_t printed;
962 };
963
964 static int machine_fprintf_cb(struct thread *thread, void *data)
965 {
966         struct machine_fprintf_cb_args *args = data;
967
968         /* TODO: handle fprintf errors. */
969         args->printed += thread__fprintf(thread, args->fp);
970         return 0;
971 }
972
973 size_t machine__fprintf(struct machine *machine, FILE *fp)
974 {
975         struct machine_fprintf_cb_args args = {
976                 .fp = fp,
977                 .printed = 0,
978         };
979         size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
980
981         machine__for_each_thread(machine, machine_fprintf_cb, &args);
982         return ret + args.printed;
983 }
984
985 static struct dso *machine__get_kernel(struct machine *machine)
986 {
987         const char *vmlinux_name = machine->mmap_name;
988         struct dso *kernel;
989
990         if (machine__is_host(machine)) {
991                 if (symbol_conf.vmlinux_name)
992                         vmlinux_name = symbol_conf.vmlinux_name;
993
994                 kernel = machine__findnew_kernel(machine, vmlinux_name,
995                                                  "[kernel]", DSO_SPACE__KERNEL);
996         } else {
997                 if (symbol_conf.default_guest_vmlinux_name)
998                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
999
1000                 kernel = machine__findnew_kernel(machine, vmlinux_name,
1001                                                  "[guest.kernel]",
1002                                                  DSO_SPACE__KERNEL_GUEST);
1003         }
1004
1005         if (kernel != NULL && (!kernel->has_build_id))
1006                 dso__read_running_kernel_build_id(kernel, machine);
1007
1008         return kernel;
1009 }
1010
1011 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1012                                     size_t bufsz)
1013 {
1014         if (machine__is_default_guest(machine))
1015                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1016         else
1017                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1018 }
1019
1020 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1021
1022 /* Figure out the start address of kernel map from /proc/kallsyms.
1023  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1024  * symbol_name if it's not that important.
1025  */
1026 static int machine__get_running_kernel_start(struct machine *machine,
1027                                              const char **symbol_name,
1028                                              u64 *start, u64 *end)
1029 {
1030         char filename[PATH_MAX];
1031         int i, err = -1;
1032         const char *name;
1033         u64 addr = 0;
1034
1035         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1036
1037         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1038                 return 0;
1039
1040         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1041                 err = kallsyms__get_function_start(filename, name, &addr);
1042                 if (!err)
1043                         break;
1044         }
1045
1046         if (err)
1047                 return -1;
1048
1049         if (symbol_name)
1050                 *symbol_name = name;
1051
1052         *start = addr;
1053
1054         err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1055         if (err)
1056                 err = kallsyms__get_function_start(filename, "_etext", &addr);
1057         if (!err)
1058                 *end = addr;
1059
1060         return 0;
1061 }
1062
1063 int machine__create_extra_kernel_map(struct machine *machine,
1064                                      struct dso *kernel,
1065                                      struct extra_kernel_map *xm)
1066 {
1067         struct kmap *kmap;
1068         struct map *map;
1069         int err;
1070
1071         map = map__new2(xm->start, kernel);
1072         if (!map)
1073                 return -ENOMEM;
1074
1075         map__set_end(map, xm->end);
1076         map__set_pgoff(map, xm->pgoff);
1077
1078         kmap = map__kmap(map);
1079
1080         strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1081
1082         err = maps__insert(machine__kernel_maps(machine), map);
1083
1084         if (!err) {
1085                 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1086                         kmap->name, map__start(map), map__end(map));
1087         }
1088
1089         map__put(map);
1090
1091         return err;
1092 }
1093
1094 static u64 find_entry_trampoline(struct dso *dso)
1095 {
1096         /* Duplicates are removed so lookup all aliases */
1097         const char *syms[] = {
1098                 "_entry_trampoline",
1099                 "__entry_trampoline_start",
1100                 "entry_SYSCALL_64_trampoline",
1101         };
1102         struct symbol *sym = dso__first_symbol(dso);
1103         unsigned int i;
1104
1105         for (; sym; sym = dso__next_symbol(sym)) {
1106                 if (sym->binding != STB_GLOBAL)
1107                         continue;
1108                 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1109                         if (!strcmp(sym->name, syms[i]))
1110                                 return sym->start;
1111                 }
1112         }
1113
1114         return 0;
1115 }
1116
1117 /*
1118  * These values can be used for kernels that do not have symbols for the entry
1119  * trampolines in kallsyms.
1120  */
1121 #define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
1122 #define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
1123 #define X86_64_ENTRY_TRAMPOLINE         0x6000
1124
1125 struct machine__map_x86_64_entry_trampolines_args {
1126         struct maps *kmaps;
1127         bool found;
1128 };
1129
1130 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1131 {
1132         struct machine__map_x86_64_entry_trampolines_args *args = data;
1133         struct map *dest_map;
1134         struct kmap *kmap = __map__kmap(map);
1135
1136         if (!kmap || !is_entry_trampoline(kmap->name))
1137                 return 0;
1138
1139         dest_map = maps__find(args->kmaps, map__pgoff(map));
1140         if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1141                 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1142
1143         map__put(dest_map);
1144         args->found = true;
1145         return 0;
1146 }
1147
1148 /* Map x86_64 PTI entry trampolines */
1149 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1150                                           struct dso *kernel)
1151 {
1152         struct machine__map_x86_64_entry_trampolines_args args = {
1153                 .kmaps = machine__kernel_maps(machine),
1154                 .found = false,
1155         };
1156         int nr_cpus_avail, cpu;
1157         u64 pgoff;
1158
1159         /*
1160          * In the vmlinux case, pgoff is a virtual address which must now be
1161          * mapped to a vmlinux offset.
1162          */
1163         maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1164
1165         if (args.found || machine->trampolines_mapped)
1166                 return 0;
1167
1168         pgoff = find_entry_trampoline(kernel);
1169         if (!pgoff)
1170                 return 0;
1171
1172         nr_cpus_avail = machine__nr_cpus_avail(machine);
1173
1174         /* Add a 1 page map for each CPU's entry trampoline */
1175         for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1176                 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1177                          cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1178                          X86_64_ENTRY_TRAMPOLINE;
1179                 struct extra_kernel_map xm = {
1180                         .start = va,
1181                         .end   = va + page_size,
1182                         .pgoff = pgoff,
1183                 };
1184
1185                 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1186
1187                 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1188                         return -1;
1189         }
1190
1191         machine->trampolines_mapped = nr_cpus_avail;
1192
1193         return 0;
1194 }
1195
1196 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1197                                              struct dso *kernel __maybe_unused)
1198 {
1199         return 0;
1200 }
1201
1202 static int
1203 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1204 {
1205         /* In case of renewal the kernel map, destroy previous one */
1206         machine__destroy_kernel_maps(machine);
1207
1208         map__put(machine->vmlinux_map);
1209         machine->vmlinux_map = map__new2(0, kernel);
1210         if (machine->vmlinux_map == NULL)
1211                 return -ENOMEM;
1212
1213         map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1214         return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1215 }
1216
1217 void machine__destroy_kernel_maps(struct machine *machine)
1218 {
1219         struct kmap *kmap;
1220         struct map *map = machine__kernel_map(machine);
1221
1222         if (map == NULL)
1223                 return;
1224
1225         kmap = map__kmap(map);
1226         maps__remove(machine__kernel_maps(machine), map);
1227         if (kmap && kmap->ref_reloc_sym) {
1228                 zfree((char **)&kmap->ref_reloc_sym->name);
1229                 zfree(&kmap->ref_reloc_sym);
1230         }
1231
1232         map__zput(machine->vmlinux_map);
1233 }
1234
1235 int machines__create_guest_kernel_maps(struct machines *machines)
1236 {
1237         int ret = 0;
1238         struct dirent **namelist = NULL;
1239         int i, items = 0;
1240         char path[PATH_MAX];
1241         pid_t pid;
1242         char *endp;
1243
1244         if (symbol_conf.default_guest_vmlinux_name ||
1245             symbol_conf.default_guest_modules ||
1246             symbol_conf.default_guest_kallsyms) {
1247                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1248         }
1249
1250         if (symbol_conf.guestmount) {
1251                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1252                 if (items <= 0)
1253                         return -ENOENT;
1254                 for (i = 0; i < items; i++) {
1255                         if (!isdigit(namelist[i]->d_name[0])) {
1256                                 /* Filter out . and .. */
1257                                 continue;
1258                         }
1259                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1260                         if ((*endp != '\0') ||
1261                             (endp == namelist[i]->d_name) ||
1262                             (errno == ERANGE)) {
1263                                 pr_debug("invalid directory (%s). Skipping.\n",
1264                                          namelist[i]->d_name);
1265                                 continue;
1266                         }
1267                         sprintf(path, "%s/%s/proc/kallsyms",
1268                                 symbol_conf.guestmount,
1269                                 namelist[i]->d_name);
1270                         ret = access(path, R_OK);
1271                         if (ret) {
1272                                 pr_debug("Can't access file %s\n", path);
1273                                 goto failure;
1274                         }
1275                         machines__create_kernel_maps(machines, pid);
1276                 }
1277 failure:
1278                 free(namelist);
1279         }
1280
1281         return ret;
1282 }
1283
1284 void machines__destroy_kernel_maps(struct machines *machines)
1285 {
1286         struct rb_node *next = rb_first_cached(&machines->guests);
1287
1288         machine__destroy_kernel_maps(&machines->host);
1289
1290         while (next) {
1291                 struct machine *pos = rb_entry(next, struct machine, rb_node);
1292
1293                 next = rb_next(&pos->rb_node);
1294                 rb_erase_cached(&pos->rb_node, &machines->guests);
1295                 machine__delete(pos);
1296         }
1297 }
1298
1299 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1300 {
1301         struct machine *machine = machines__findnew(machines, pid);
1302
1303         if (machine == NULL)
1304                 return -1;
1305
1306         return machine__create_kernel_maps(machine);
1307 }
1308
1309 int machine__load_kallsyms(struct machine *machine, const char *filename)
1310 {
1311         struct map *map = machine__kernel_map(machine);
1312         struct dso *dso = map__dso(map);
1313         int ret = __dso__load_kallsyms(dso, filename, map, true);
1314
1315         if (ret > 0) {
1316                 dso__set_loaded(dso);
1317                 /*
1318                  * Since /proc/kallsyms will have multiple sessions for the
1319                  * kernel, with modules between them, fixup the end of all
1320                  * sections.
1321                  */
1322                 maps__fixup_end(machine__kernel_maps(machine));
1323         }
1324
1325         return ret;
1326 }
1327
1328 int machine__load_vmlinux_path(struct machine *machine)
1329 {
1330         struct map *map = machine__kernel_map(machine);
1331         struct dso *dso = map__dso(map);
1332         int ret = dso__load_vmlinux_path(dso, map);
1333
1334         if (ret > 0)
1335                 dso__set_loaded(dso);
1336
1337         return ret;
1338 }
1339
1340 static char *get_kernel_version(const char *root_dir)
1341 {
1342         char version[PATH_MAX];
1343         FILE *file;
1344         char *name, *tmp;
1345         const char *prefix = "Linux version ";
1346
1347         sprintf(version, "%s/proc/version", root_dir);
1348         file = fopen(version, "r");
1349         if (!file)
1350                 return NULL;
1351
1352         tmp = fgets(version, sizeof(version), file);
1353         fclose(file);
1354         if (!tmp)
1355                 return NULL;
1356
1357         name = strstr(version, prefix);
1358         if (!name)
1359                 return NULL;
1360         name += strlen(prefix);
1361         tmp = strchr(name, ' ');
1362         if (tmp)
1363                 *tmp = '\0';
1364
1365         return strdup(name);
1366 }
1367
1368 static bool is_kmod_dso(struct dso *dso)
1369 {
1370         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1371                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1372 }
1373
1374 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1375 {
1376         char *long_name;
1377         struct dso *dso;
1378         struct map *map = maps__find_by_name(maps, m->name);
1379
1380         if (map == NULL)
1381                 return 0;
1382
1383         long_name = strdup(path);
1384         if (long_name == NULL) {
1385                 map__put(map);
1386                 return -ENOMEM;
1387         }
1388
1389         dso = map__dso(map);
1390         dso__set_long_name(dso, long_name, true);
1391         dso__kernel_module_get_build_id(dso, "");
1392
1393         /*
1394          * Full name could reveal us kmod compression, so
1395          * we need to update the symtab_type if needed.
1396          */
1397         if (m->comp && is_kmod_dso(dso)) {
1398                 dso->symtab_type++;
1399                 dso->comp = m->comp;
1400         }
1401         map__put(map);
1402         return 0;
1403 }
1404
1405 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1406 {
1407         struct dirent *dent;
1408         DIR *dir = opendir(dir_name);
1409         int ret = 0;
1410
1411         if (!dir) {
1412                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1413                 return -1;
1414         }
1415
1416         while ((dent = readdir(dir)) != NULL) {
1417                 char path[PATH_MAX];
1418                 struct stat st;
1419
1420                 /*sshfs might return bad dent->d_type, so we have to stat*/
1421                 path__join(path, sizeof(path), dir_name, dent->d_name);
1422                 if (stat(path, &st))
1423                         continue;
1424
1425                 if (S_ISDIR(st.st_mode)) {
1426                         if (!strcmp(dent->d_name, ".") ||
1427                             !strcmp(dent->d_name, ".."))
1428                                 continue;
1429
1430                         /* Do not follow top-level source and build symlinks */
1431                         if (depth == 0) {
1432                                 if (!strcmp(dent->d_name, "source") ||
1433                                     !strcmp(dent->d_name, "build"))
1434                                         continue;
1435                         }
1436
1437                         ret = maps__set_modules_path_dir(maps, path, depth + 1);
1438                         if (ret < 0)
1439                                 goto out;
1440                 } else {
1441                         struct kmod_path m;
1442
1443                         ret = kmod_path__parse_name(&m, dent->d_name);
1444                         if (ret)
1445                                 goto out;
1446
1447                         if (m.kmod)
1448                                 ret = maps__set_module_path(maps, path, &m);
1449
1450                         zfree(&m.name);
1451
1452                         if (ret)
1453                                 goto out;
1454                 }
1455         }
1456
1457 out:
1458         closedir(dir);
1459         return ret;
1460 }
1461
1462 static int machine__set_modules_path(struct machine *machine)
1463 {
1464         char *version;
1465         char modules_path[PATH_MAX];
1466
1467         version = get_kernel_version(machine->root_dir);
1468         if (!version)
1469                 return -1;
1470
1471         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1472                  machine->root_dir, version);
1473         free(version);
1474
1475         return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1476 }
1477 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1478                                 u64 *size __maybe_unused,
1479                                 const char *name __maybe_unused)
1480 {
1481         return 0;
1482 }
1483
1484 static int machine__create_module(void *arg, const char *name, u64 start,
1485                                   u64 size)
1486 {
1487         struct machine *machine = arg;
1488         struct map *map;
1489
1490         if (arch__fix_module_text_start(&start, &size, name) < 0)
1491                 return -1;
1492
1493         map = machine__addnew_module_map(machine, start, name);
1494         if (map == NULL)
1495                 return -1;
1496         map__set_end(map, start + size);
1497
1498         dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1499         map__put(map);
1500         return 0;
1501 }
1502
1503 static int machine__create_modules(struct machine *machine)
1504 {
1505         const char *modules;
1506         char path[PATH_MAX];
1507
1508         if (machine__is_default_guest(machine)) {
1509                 modules = symbol_conf.default_guest_modules;
1510         } else {
1511                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1512                 modules = path;
1513         }
1514
1515         if (symbol__restricted_filename(modules, "/proc/modules"))
1516                 return -1;
1517
1518         if (modules__parse(modules, machine, machine__create_module))
1519                 return -1;
1520
1521         if (!machine__set_modules_path(machine))
1522                 return 0;
1523
1524         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1525
1526         return 0;
1527 }
1528
1529 static void machine__set_kernel_mmap(struct machine *machine,
1530                                      u64 start, u64 end)
1531 {
1532         map__set_start(machine->vmlinux_map, start);
1533         map__set_end(machine->vmlinux_map, end);
1534         /*
1535          * Be a bit paranoid here, some perf.data file came with
1536          * a zero sized synthesized MMAP event for the kernel.
1537          */
1538         if (start == 0 && end == 0)
1539                 map__set_end(machine->vmlinux_map, ~0ULL);
1540 }
1541
1542 static int machine__update_kernel_mmap(struct machine *machine,
1543                                      u64 start, u64 end)
1544 {
1545         struct map *orig, *updated;
1546         int err;
1547
1548         orig = machine->vmlinux_map;
1549         updated = map__get(orig);
1550
1551         machine->vmlinux_map = updated;
1552         machine__set_kernel_mmap(machine, start, end);
1553         maps__remove(machine__kernel_maps(machine), orig);
1554         err = maps__insert(machine__kernel_maps(machine), updated);
1555         map__put(orig);
1556
1557         return err;
1558 }
1559
1560 int machine__create_kernel_maps(struct machine *machine)
1561 {
1562         struct dso *kernel = machine__get_kernel(machine);
1563         const char *name = NULL;
1564         u64 start = 0, end = ~0ULL;
1565         int ret;
1566
1567         if (kernel == NULL)
1568                 return -1;
1569
1570         ret = __machine__create_kernel_maps(machine, kernel);
1571         if (ret < 0)
1572                 goto out_put;
1573
1574         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1575                 if (machine__is_host(machine))
1576                         pr_debug("Problems creating module maps, "
1577                                  "continuing anyway...\n");
1578                 else
1579                         pr_debug("Problems creating module maps for guest %d, "
1580                                  "continuing anyway...\n", machine->pid);
1581         }
1582
1583         if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1584                 if (name &&
1585                     map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1586                         machine__destroy_kernel_maps(machine);
1587                         ret = -1;
1588                         goto out_put;
1589                 }
1590
1591                 /*
1592                  * we have a real start address now, so re-order the kmaps
1593                  * assume it's the last in the kmaps
1594                  */
1595                 ret = machine__update_kernel_mmap(machine, start, end);
1596                 if (ret < 0)
1597                         goto out_put;
1598         }
1599
1600         if (machine__create_extra_kernel_maps(machine, kernel))
1601                 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1602
1603         if (end == ~0ULL) {
1604                 /* update end address of the kernel map using adjacent module address */
1605                 struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1606                                                          machine__kernel_map(machine));
1607
1608                 if (next) {
1609                         machine__set_kernel_mmap(machine, start, map__start(next));
1610                         map__put(next);
1611                 }
1612         }
1613
1614 out_put:
1615         dso__put(kernel);
1616         return ret;
1617 }
1618
1619 static bool machine__uses_kcore(struct machine *machine)
1620 {
1621         struct dso *dso;
1622
1623         list_for_each_entry(dso, &machine->dsos.head, node) {
1624                 if (dso__is_kcore(dso))
1625                         return true;
1626         }
1627
1628         return false;
1629 }
1630
1631 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1632                                              struct extra_kernel_map *xm)
1633 {
1634         return machine__is(machine, "x86_64") &&
1635                is_entry_trampoline(xm->name);
1636 }
1637
1638 static int machine__process_extra_kernel_map(struct machine *machine,
1639                                              struct extra_kernel_map *xm)
1640 {
1641         struct dso *kernel = machine__kernel_dso(machine);
1642
1643         if (kernel == NULL)
1644                 return -1;
1645
1646         return machine__create_extra_kernel_map(machine, kernel, xm);
1647 }
1648
1649 static int machine__process_kernel_mmap_event(struct machine *machine,
1650                                               struct extra_kernel_map *xm,
1651                                               struct build_id *bid)
1652 {
1653         enum dso_space_type dso_space;
1654         bool is_kernel_mmap;
1655         const char *mmap_name = machine->mmap_name;
1656
1657         /* If we have maps from kcore then we do not need or want any others */
1658         if (machine__uses_kcore(machine))
1659                 return 0;
1660
1661         if (machine__is_host(machine))
1662                 dso_space = DSO_SPACE__KERNEL;
1663         else
1664                 dso_space = DSO_SPACE__KERNEL_GUEST;
1665
1666         is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1667         if (!is_kernel_mmap && !machine__is_host(machine)) {
1668                 /*
1669                  * If the event was recorded inside the guest and injected into
1670                  * the host perf.data file, then it will match a host mmap_name,
1671                  * so try that - see machine__set_mmap_name().
1672                  */
1673                 mmap_name = "[kernel.kallsyms]";
1674                 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1675         }
1676         if (xm->name[0] == '/' ||
1677             (!is_kernel_mmap && xm->name[0] == '[')) {
1678                 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1679
1680                 if (map == NULL)
1681                         goto out_problem;
1682
1683                 map__set_end(map, map__start(map) + xm->end - xm->start);
1684
1685                 if (build_id__is_defined(bid))
1686                         dso__set_build_id(map__dso(map), bid);
1687
1688                 map__put(map);
1689         } else if (is_kernel_mmap) {
1690                 const char *symbol_name = xm->name + strlen(mmap_name);
1691                 /*
1692                  * Should be there already, from the build-id table in
1693                  * the header.
1694                  */
1695                 struct dso *kernel = NULL;
1696                 struct dso *dso;
1697
1698                 down_read(&machine->dsos.lock);
1699
1700                 list_for_each_entry(dso, &machine->dsos.head, node) {
1701
1702                         /*
1703                          * The cpumode passed to is_kernel_module is not the
1704                          * cpumode of *this* event. If we insist on passing
1705                          * correct cpumode to is_kernel_module, we should
1706                          * record the cpumode when we adding this dso to the
1707                          * linked list.
1708                          *
1709                          * However we don't really need passing correct
1710                          * cpumode.  We know the correct cpumode must be kernel
1711                          * mode (if not, we should not link it onto kernel_dsos
1712                          * list).
1713                          *
1714                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1715                          * is_kernel_module() treats it as a kernel cpumode.
1716                          */
1717
1718                         if (!dso->kernel ||
1719                             is_kernel_module(dso->long_name,
1720                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1721                                 continue;
1722
1723
1724                         kernel = dso__get(dso);
1725                         break;
1726                 }
1727
1728                 up_read(&machine->dsos.lock);
1729
1730                 if (kernel == NULL)
1731                         kernel = machine__findnew_dso(machine, machine->mmap_name);
1732                 if (kernel == NULL)
1733                         goto out_problem;
1734
1735                 kernel->kernel = dso_space;
1736                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1737                         dso__put(kernel);
1738                         goto out_problem;
1739                 }
1740
1741                 if (strstr(kernel->long_name, "vmlinux"))
1742                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1743
1744                 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1745                         dso__put(kernel);
1746                         goto out_problem;
1747                 }
1748
1749                 if (build_id__is_defined(bid))
1750                         dso__set_build_id(kernel, bid);
1751
1752                 /*
1753                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1754                  * symbol. Effectively having zero here means that at record
1755                  * time /proc/sys/kernel/kptr_restrict was non zero.
1756                  */
1757                 if (xm->pgoff != 0) {
1758                         map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1759                                                         symbol_name,
1760                                                         xm->pgoff);
1761                 }
1762
1763                 if (machine__is_default_guest(machine)) {
1764                         /*
1765                          * preload dso of guest kernel and modules
1766                          */
1767                         dso__load(kernel, machine__kernel_map(machine));
1768                 }
1769                 dso__put(kernel);
1770         } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1771                 return machine__process_extra_kernel_map(machine, xm);
1772         }
1773         return 0;
1774 out_problem:
1775         return -1;
1776 }
1777
1778 int machine__process_mmap2_event(struct machine *machine,
1779                                  union perf_event *event,
1780                                  struct perf_sample *sample)
1781 {
1782         struct thread *thread;
1783         struct map *map;
1784         struct dso_id dso_id = {
1785                 .maj = event->mmap2.maj,
1786                 .min = event->mmap2.min,
1787                 .ino = event->mmap2.ino,
1788                 .ino_generation = event->mmap2.ino_generation,
1789         };
1790         struct build_id __bid, *bid = NULL;
1791         int ret = 0;
1792
1793         if (dump_trace)
1794                 perf_event__fprintf_mmap2(event, stdout);
1795
1796         if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1797                 bid = &__bid;
1798                 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1799         }
1800
1801         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1802             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1803                 struct extra_kernel_map xm = {
1804                         .start = event->mmap2.start,
1805                         .end   = event->mmap2.start + event->mmap2.len,
1806                         .pgoff = event->mmap2.pgoff,
1807                 };
1808
1809                 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1810                 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1811                 if (ret < 0)
1812                         goto out_problem;
1813                 return 0;
1814         }
1815
1816         thread = machine__findnew_thread(machine, event->mmap2.pid,
1817                                         event->mmap2.tid);
1818         if (thread == NULL)
1819                 goto out_problem;
1820
1821         map = map__new(machine, event->mmap2.start,
1822                         event->mmap2.len, event->mmap2.pgoff,
1823                         &dso_id, event->mmap2.prot,
1824                         event->mmap2.flags, bid,
1825                         event->mmap2.filename, thread);
1826
1827         if (map == NULL)
1828                 goto out_problem_map;
1829
1830         ret = thread__insert_map(thread, map);
1831         if (ret)
1832                 goto out_problem_insert;
1833
1834         thread__put(thread);
1835         map__put(map);
1836         return 0;
1837
1838 out_problem_insert:
1839         map__put(map);
1840 out_problem_map:
1841         thread__put(thread);
1842 out_problem:
1843         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1844         return 0;
1845 }
1846
1847 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1848                                 struct perf_sample *sample)
1849 {
1850         struct thread *thread;
1851         struct map *map;
1852         u32 prot = 0;
1853         int ret = 0;
1854
1855         if (dump_trace)
1856                 perf_event__fprintf_mmap(event, stdout);
1857
1858         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1859             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1860                 struct extra_kernel_map xm = {
1861                         .start = event->mmap.start,
1862                         .end   = event->mmap.start + event->mmap.len,
1863                         .pgoff = event->mmap.pgoff,
1864                 };
1865
1866                 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1867                 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1868                 if (ret < 0)
1869                         goto out_problem;
1870                 return 0;
1871         }
1872
1873         thread = machine__findnew_thread(machine, event->mmap.pid,
1874                                          event->mmap.tid);
1875         if (thread == NULL)
1876                 goto out_problem;
1877
1878         if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1879                 prot = PROT_EXEC;
1880
1881         map = map__new(machine, event->mmap.start,
1882                         event->mmap.len, event->mmap.pgoff,
1883                         NULL, prot, 0, NULL, event->mmap.filename, thread);
1884
1885         if (map == NULL)
1886                 goto out_problem_map;
1887
1888         ret = thread__insert_map(thread, map);
1889         if (ret)
1890                 goto out_problem_insert;
1891
1892         thread__put(thread);
1893         map__put(map);
1894         return 0;
1895
1896 out_problem_insert:
1897         map__put(map);
1898 out_problem_map:
1899         thread__put(thread);
1900 out_problem:
1901         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1902         return 0;
1903 }
1904
1905 void machine__remove_thread(struct machine *machine, struct thread *th)
1906 {
1907         return threads__remove(&machine->threads, th);
1908 }
1909
1910 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1911                                 struct perf_sample *sample)
1912 {
1913         struct thread *thread = machine__find_thread(machine,
1914                                                      event->fork.pid,
1915                                                      event->fork.tid);
1916         struct thread *parent = machine__findnew_thread(machine,
1917                                                         event->fork.ppid,
1918                                                         event->fork.ptid);
1919         bool do_maps_clone = true;
1920         int err = 0;
1921
1922         if (dump_trace)
1923                 perf_event__fprintf_task(event, stdout);
1924
1925         /*
1926          * There may be an existing thread that is not actually the parent,
1927          * either because we are processing events out of order, or because the
1928          * (fork) event that would have removed the thread was lost. Assume the
1929          * latter case and continue on as best we can.
1930          */
1931         if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1932                 dump_printf("removing erroneous parent thread %d/%d\n",
1933                             thread__pid(parent), thread__tid(parent));
1934                 machine__remove_thread(machine, parent);
1935                 thread__put(parent);
1936                 parent = machine__findnew_thread(machine, event->fork.ppid,
1937                                                  event->fork.ptid);
1938         }
1939
1940         /* if a thread currently exists for the thread id remove it */
1941         if (thread != NULL) {
1942                 machine__remove_thread(machine, thread);
1943                 thread__put(thread);
1944         }
1945
1946         thread = machine__findnew_thread(machine, event->fork.pid,
1947                                          event->fork.tid);
1948         /*
1949          * When synthesizing FORK events, we are trying to create thread
1950          * objects for the already running tasks on the machine.
1951          *
1952          * Normally, for a kernel FORK event, we want to clone the parent's
1953          * maps because that is what the kernel just did.
1954          *
1955          * But when synthesizing, this should not be done.  If we do, we end up
1956          * with overlapping maps as we process the synthesized MMAP2 events that
1957          * get delivered shortly thereafter.
1958          *
1959          * Use the FORK event misc flags in an internal way to signal this
1960          * situation, so we can elide the map clone when appropriate.
1961          */
1962         if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1963                 do_maps_clone = false;
1964
1965         if (thread == NULL || parent == NULL ||
1966             thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1967                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1968                 err = -1;
1969         }
1970         thread__put(thread);
1971         thread__put(parent);
1972
1973         return err;
1974 }
1975
1976 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1977                                 struct perf_sample *sample __maybe_unused)
1978 {
1979         struct thread *thread = machine__find_thread(machine,
1980                                                      event->fork.pid,
1981                                                      event->fork.tid);
1982
1983         if (dump_trace)
1984                 perf_event__fprintf_task(event, stdout);
1985
1986         if (thread != NULL) {
1987                 if (symbol_conf.keep_exited_threads)
1988                         thread__set_exited(thread, /*exited=*/true);
1989                 else
1990                         machine__remove_thread(machine, thread);
1991         }
1992         thread__put(thread);
1993         return 0;
1994 }
1995
1996 int machine__process_event(struct machine *machine, union perf_event *event,
1997                            struct perf_sample *sample)
1998 {
1999         int ret;
2000
2001         switch (event->header.type) {
2002         case PERF_RECORD_COMM:
2003                 ret = machine__process_comm_event(machine, event, sample); break;
2004         case PERF_RECORD_MMAP:
2005                 ret = machine__process_mmap_event(machine, event, sample); break;
2006         case PERF_RECORD_NAMESPACES:
2007                 ret = machine__process_namespaces_event(machine, event, sample); break;
2008         case PERF_RECORD_CGROUP:
2009                 ret = machine__process_cgroup_event(machine, event, sample); break;
2010         case PERF_RECORD_MMAP2:
2011                 ret = machine__process_mmap2_event(machine, event, sample); break;
2012         case PERF_RECORD_FORK:
2013                 ret = machine__process_fork_event(machine, event, sample); break;
2014         case PERF_RECORD_EXIT:
2015                 ret = machine__process_exit_event(machine, event, sample); break;
2016         case PERF_RECORD_LOST:
2017                 ret = machine__process_lost_event(machine, event, sample); break;
2018         case PERF_RECORD_AUX:
2019                 ret = machine__process_aux_event(machine, event); break;
2020         case PERF_RECORD_ITRACE_START:
2021                 ret = machine__process_itrace_start_event(machine, event); break;
2022         case PERF_RECORD_LOST_SAMPLES:
2023                 ret = machine__process_lost_samples_event(machine, event, sample); break;
2024         case PERF_RECORD_SWITCH:
2025         case PERF_RECORD_SWITCH_CPU_WIDE:
2026                 ret = machine__process_switch_event(machine, event); break;
2027         case PERF_RECORD_KSYMBOL:
2028                 ret = machine__process_ksymbol(machine, event, sample); break;
2029         case PERF_RECORD_BPF_EVENT:
2030                 ret = machine__process_bpf(machine, event, sample); break;
2031         case PERF_RECORD_TEXT_POKE:
2032                 ret = machine__process_text_poke(machine, event, sample); break;
2033         case PERF_RECORD_AUX_OUTPUT_HW_ID:
2034                 ret = machine__process_aux_output_hw_id_event(machine, event); break;
2035         default:
2036                 ret = -1;
2037                 break;
2038         }
2039
2040         return ret;
2041 }
2042
2043 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2044 {
2045         return regexec(regex, sym->name, 0, NULL, 0) == 0;
2046 }
2047
2048 static void ip__resolve_ams(struct thread *thread,
2049                             struct addr_map_symbol *ams,
2050                             u64 ip)
2051 {
2052         struct addr_location al;
2053
2054         addr_location__init(&al);
2055         /*
2056          * We cannot use the header.misc hint to determine whether a
2057          * branch stack address is user, kernel, guest, hypervisor.
2058          * Branches may straddle the kernel/user/hypervisor boundaries.
2059          * Thus, we have to try consecutively until we find a match
2060          * or else, the symbol is unknown
2061          */
2062         thread__find_cpumode_addr_location(thread, ip, &al);
2063
2064         ams->addr = ip;
2065         ams->al_addr = al.addr;
2066         ams->al_level = al.level;
2067         ams->ms.maps = maps__get(al.maps);
2068         ams->ms.sym = al.sym;
2069         ams->ms.map = map__get(al.map);
2070         ams->phys_addr = 0;
2071         ams->data_page_size = 0;
2072         addr_location__exit(&al);
2073 }
2074
2075 static void ip__resolve_data(struct thread *thread,
2076                              u8 m, struct addr_map_symbol *ams,
2077                              u64 addr, u64 phys_addr, u64 daddr_page_size)
2078 {
2079         struct addr_location al;
2080
2081         addr_location__init(&al);
2082
2083         thread__find_symbol(thread, m, addr, &al);
2084
2085         ams->addr = addr;
2086         ams->al_addr = al.addr;
2087         ams->al_level = al.level;
2088         ams->ms.maps = maps__get(al.maps);
2089         ams->ms.sym = al.sym;
2090         ams->ms.map = map__get(al.map);
2091         ams->phys_addr = phys_addr;
2092         ams->data_page_size = daddr_page_size;
2093         addr_location__exit(&al);
2094 }
2095
2096 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2097                                      struct addr_location *al)
2098 {
2099         struct mem_info *mi = mem_info__new();
2100
2101         if (!mi)
2102                 return NULL;
2103
2104         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2105         ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2106                          sample->addr, sample->phys_addr,
2107                          sample->data_page_size);
2108         mi->data_src.val = sample->data_src;
2109
2110         return mi;
2111 }
2112
2113 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2114 {
2115         struct map *map = ms->map;
2116         char *srcline = NULL;
2117         struct dso *dso;
2118
2119         if (!map || callchain_param.key == CCKEY_FUNCTION)
2120                 return srcline;
2121
2122         dso = map__dso(map);
2123         srcline = srcline__tree_find(&dso->srclines, ip);
2124         if (!srcline) {
2125                 bool show_sym = false;
2126                 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2127
2128                 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2129                                       ms->sym, show_sym, show_addr, ip);
2130                 srcline__tree_insert(&dso->srclines, ip, srcline);
2131         }
2132
2133         return srcline;
2134 }
2135
2136 struct iterations {
2137         int nr_loop_iter;
2138         u64 cycles;
2139 };
2140
2141 static int add_callchain_ip(struct thread *thread,
2142                             struct callchain_cursor *cursor,
2143                             struct symbol **parent,
2144                             struct addr_location *root_al,
2145                             u8 *cpumode,
2146                             u64 ip,
2147                             bool branch,
2148                             struct branch_flags *flags,
2149                             struct iterations *iter,
2150                             u64 branch_from)
2151 {
2152         struct map_symbol ms = {};
2153         struct addr_location al;
2154         int nr_loop_iter = 0, err = 0;
2155         u64 iter_cycles = 0;
2156         const char *srcline = NULL;
2157
2158         addr_location__init(&al);
2159         al.filtered = 0;
2160         al.sym = NULL;
2161         al.srcline = NULL;
2162         if (!cpumode) {
2163                 thread__find_cpumode_addr_location(thread, ip, &al);
2164         } else {
2165                 if (ip >= PERF_CONTEXT_MAX) {
2166                         switch (ip) {
2167                         case PERF_CONTEXT_HV:
2168                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2169                                 break;
2170                         case PERF_CONTEXT_KERNEL:
2171                                 *cpumode = PERF_RECORD_MISC_KERNEL;
2172                                 break;
2173                         case PERF_CONTEXT_USER:
2174                                 *cpumode = PERF_RECORD_MISC_USER;
2175                                 break;
2176                         default:
2177                                 pr_debug("invalid callchain context: "
2178                                          "%"PRId64"\n", (s64) ip);
2179                                 /*
2180                                  * It seems the callchain is corrupted.
2181                                  * Discard all.
2182                                  */
2183                                 callchain_cursor_reset(cursor);
2184                                 err = 1;
2185                                 goto out;
2186                         }
2187                         goto out;
2188                 }
2189                 thread__find_symbol(thread, *cpumode, ip, &al);
2190         }
2191
2192         if (al.sym != NULL) {
2193                 if (perf_hpp_list.parent && !*parent &&
2194                     symbol__match_regex(al.sym, &parent_regex))
2195                         *parent = al.sym;
2196                 else if (have_ignore_callees && root_al &&
2197                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
2198                         /* Treat this symbol as the root,
2199                            forgetting its callees. */
2200                         addr_location__copy(root_al, &al);
2201                         callchain_cursor_reset(cursor);
2202                 }
2203         }
2204
2205         if (symbol_conf.hide_unresolved && al.sym == NULL)
2206                 goto out;
2207
2208         if (iter) {
2209                 nr_loop_iter = iter->nr_loop_iter;
2210                 iter_cycles = iter->cycles;
2211         }
2212
2213         ms.maps = maps__get(al.maps);
2214         ms.map = map__get(al.map);
2215         ms.sym = al.sym;
2216         srcline = callchain_srcline(&ms, al.addr);
2217         err = callchain_cursor_append(cursor, ip, &ms,
2218                                       branch, flags, nr_loop_iter,
2219                                       iter_cycles, branch_from, srcline);
2220 out:
2221         addr_location__exit(&al);
2222         map_symbol__exit(&ms);
2223         return err;
2224 }
2225
2226 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2227                                            struct addr_location *al)
2228 {
2229         unsigned int i;
2230         const struct branch_stack *bs = sample->branch_stack;
2231         struct branch_entry *entries = perf_sample__branch_entries(sample);
2232         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2233
2234         if (!bi)
2235                 return NULL;
2236
2237         for (i = 0; i < bs->nr; i++) {
2238                 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2239                 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2240                 bi[i].flags = entries[i].flags;
2241         }
2242         return bi;
2243 }
2244
2245 static void save_iterations(struct iterations *iter,
2246                             struct branch_entry *be, int nr)
2247 {
2248         int i;
2249
2250         iter->nr_loop_iter++;
2251         iter->cycles = 0;
2252
2253         for (i = 0; i < nr; i++)
2254                 iter->cycles += be[i].flags.cycles;
2255 }
2256
2257 #define CHASHSZ 127
2258 #define CHASHBITS 7
2259 #define NO_ENTRY 0xff
2260
2261 #define PERF_MAX_BRANCH_DEPTH 127
2262
2263 /* Remove loops. */
2264 static int remove_loops(struct branch_entry *l, int nr,
2265                         struct iterations *iter)
2266 {
2267         int i, j, off;
2268         unsigned char chash[CHASHSZ];
2269
2270         memset(chash, NO_ENTRY, sizeof(chash));
2271
2272         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2273
2274         for (i = 0; i < nr; i++) {
2275                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2276
2277                 /* no collision handling for now */
2278                 if (chash[h] == NO_ENTRY) {
2279                         chash[h] = i;
2280                 } else if (l[chash[h]].from == l[i].from) {
2281                         bool is_loop = true;
2282                         /* check if it is a real loop */
2283                         off = 0;
2284                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
2285                                 if (l[j].from != l[i + off].from) {
2286                                         is_loop = false;
2287                                         break;
2288                                 }
2289                         if (is_loop) {
2290                                 j = nr - (i + off);
2291                                 if (j > 0) {
2292                                         save_iterations(iter + i + off,
2293                                                 l + i, off);
2294
2295                                         memmove(iter + i, iter + i + off,
2296                                                 j * sizeof(*iter));
2297
2298                                         memmove(l + i, l + i + off,
2299                                                 j * sizeof(*l));
2300                                 }
2301
2302                                 nr -= off;
2303                         }
2304                 }
2305         }
2306         return nr;
2307 }
2308
2309 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2310                                        struct callchain_cursor *cursor,
2311                                        struct perf_sample *sample,
2312                                        struct symbol **parent,
2313                                        struct addr_location *root_al,
2314                                        u64 branch_from,
2315                                        bool callee, int end)
2316 {
2317         struct ip_callchain *chain = sample->callchain;
2318         u8 cpumode = PERF_RECORD_MISC_USER;
2319         int err, i;
2320
2321         if (callee) {
2322                 for (i = 0; i < end + 1; i++) {
2323                         err = add_callchain_ip(thread, cursor, parent,
2324                                                root_al, &cpumode, chain->ips[i],
2325                                                false, NULL, NULL, branch_from);
2326                         if (err)
2327                                 return err;
2328                 }
2329                 return 0;
2330         }
2331
2332         for (i = end; i >= 0; i--) {
2333                 err = add_callchain_ip(thread, cursor, parent,
2334                                        root_al, &cpumode, chain->ips[i],
2335                                        false, NULL, NULL, branch_from);
2336                 if (err)
2337                         return err;
2338         }
2339
2340         return 0;
2341 }
2342
2343 static void save_lbr_cursor_node(struct thread *thread,
2344                                  struct callchain_cursor *cursor,
2345                                  int idx)
2346 {
2347         struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2348
2349         if (!lbr_stitch)
2350                 return;
2351
2352         if (cursor->pos == cursor->nr) {
2353                 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2354                 return;
2355         }
2356
2357         if (!cursor->curr)
2358                 cursor->curr = cursor->first;
2359         else
2360                 cursor->curr = cursor->curr->next;
2361         memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2362                sizeof(struct callchain_cursor_node));
2363
2364         lbr_stitch->prev_lbr_cursor[idx].valid = true;
2365         cursor->pos++;
2366 }
2367
2368 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2369                                     struct callchain_cursor *cursor,
2370                                     struct perf_sample *sample,
2371                                     struct symbol **parent,
2372                                     struct addr_location *root_al,
2373                                     u64 *branch_from,
2374                                     bool callee)
2375 {
2376         struct branch_stack *lbr_stack = sample->branch_stack;
2377         struct branch_entry *entries = perf_sample__branch_entries(sample);
2378         u8 cpumode = PERF_RECORD_MISC_USER;
2379         int lbr_nr = lbr_stack->nr;
2380         struct branch_flags *flags;
2381         int err, i;
2382         u64 ip;
2383
2384         /*
2385          * The curr and pos are not used in writing session. They are cleared
2386          * in callchain_cursor_commit() when the writing session is closed.
2387          * Using curr and pos to track the current cursor node.
2388          */
2389         if (thread__lbr_stitch(thread)) {
2390                 cursor->curr = NULL;
2391                 cursor->pos = cursor->nr;
2392                 if (cursor->nr) {
2393                         cursor->curr = cursor->first;
2394                         for (i = 0; i < (int)(cursor->nr - 1); i++)
2395                                 cursor->curr = cursor->curr->next;
2396                 }
2397         }
2398
2399         if (callee) {
2400                 /* Add LBR ip from first entries.to */
2401                 ip = entries[0].to;
2402                 flags = &entries[0].flags;
2403                 *branch_from = entries[0].from;
2404                 err = add_callchain_ip(thread, cursor, parent,
2405                                        root_al, &cpumode, ip,
2406                                        true, flags, NULL,
2407                                        *branch_from);
2408                 if (err)
2409                         return err;
2410
2411                 /*
2412                  * The number of cursor node increases.
2413                  * Move the current cursor node.
2414                  * But does not need to save current cursor node for entry 0.
2415                  * It's impossible to stitch the whole LBRs of previous sample.
2416                  */
2417                 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2418                         if (!cursor->curr)
2419                                 cursor->curr = cursor->first;
2420                         else
2421                                 cursor->curr = cursor->curr->next;
2422                         cursor->pos++;
2423                 }
2424
2425                 /* Add LBR ip from entries.from one by one. */
2426                 for (i = 0; i < lbr_nr; i++) {
2427                         ip = entries[i].from;
2428                         flags = &entries[i].flags;
2429                         err = add_callchain_ip(thread, cursor, parent,
2430                                                root_al, &cpumode, ip,
2431                                                true, flags, NULL,
2432                                                *branch_from);
2433                         if (err)
2434                                 return err;
2435                         save_lbr_cursor_node(thread, cursor, i);
2436                 }
2437                 return 0;
2438         }
2439
2440         /* Add LBR ip from entries.from one by one. */
2441         for (i = lbr_nr - 1; i >= 0; i--) {
2442                 ip = entries[i].from;
2443                 flags = &entries[i].flags;
2444                 err = add_callchain_ip(thread, cursor, parent,
2445                                        root_al, &cpumode, ip,
2446                                        true, flags, NULL,
2447                                        *branch_from);
2448                 if (err)
2449                         return err;
2450                 save_lbr_cursor_node(thread, cursor, i);
2451         }
2452
2453         if (lbr_nr > 0) {
2454                 /* Add LBR ip from first entries.to */
2455                 ip = entries[0].to;
2456                 flags = &entries[0].flags;
2457                 *branch_from = entries[0].from;
2458                 err = add_callchain_ip(thread, cursor, parent,
2459                                 root_al, &cpumode, ip,
2460                                 true, flags, NULL,
2461                                 *branch_from);
2462                 if (err)
2463                         return err;
2464         }
2465
2466         return 0;
2467 }
2468
2469 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2470                                              struct callchain_cursor *cursor)
2471 {
2472         struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2473         struct callchain_cursor_node *cnode;
2474         struct stitch_list *stitch_node;
2475         int err;
2476
2477         list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2478                 cnode = &stitch_node->cursor;
2479
2480                 err = callchain_cursor_append(cursor, cnode->ip,
2481                                               &cnode->ms,
2482                                               cnode->branch,
2483                                               &cnode->branch_flags,
2484                                               cnode->nr_loop_iter,
2485                                               cnode->iter_cycles,
2486                                               cnode->branch_from,
2487                                               cnode->srcline);
2488                 if (err)
2489                         return err;
2490         }
2491         return 0;
2492 }
2493
2494 static struct stitch_list *get_stitch_node(struct thread *thread)
2495 {
2496         struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2497         struct stitch_list *stitch_node;
2498
2499         if (!list_empty(&lbr_stitch->free_lists)) {
2500                 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2501                                                struct stitch_list, node);
2502                 list_del(&stitch_node->node);
2503
2504                 return stitch_node;
2505         }
2506
2507         return malloc(sizeof(struct stitch_list));
2508 }
2509
2510 static bool has_stitched_lbr(struct thread *thread,
2511                              struct perf_sample *cur,
2512                              struct perf_sample *prev,
2513                              unsigned int max_lbr,
2514                              bool callee)
2515 {
2516         struct branch_stack *cur_stack = cur->branch_stack;
2517         struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2518         struct branch_stack *prev_stack = prev->branch_stack;
2519         struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2520         struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2521         int i, j, nr_identical_branches = 0;
2522         struct stitch_list *stitch_node;
2523         u64 cur_base, distance;
2524
2525         if (!cur_stack || !prev_stack)
2526                 return false;
2527
2528         /* Find the physical index of the base-of-stack for current sample. */
2529         cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2530
2531         distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2532                                                      (max_lbr + prev_stack->hw_idx - cur_base);
2533         /* Previous sample has shorter stack. Nothing can be stitched. */
2534         if (distance + 1 > prev_stack->nr)
2535                 return false;
2536
2537         /*
2538          * Check if there are identical LBRs between two samples.
2539          * Identical LBRs must have same from, to and flags values. Also,
2540          * they have to be saved in the same LBR registers (same physical
2541          * index).
2542          *
2543          * Starts from the base-of-stack of current sample.
2544          */
2545         for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2546                 if ((prev_entries[i].from != cur_entries[j].from) ||
2547                     (prev_entries[i].to != cur_entries[j].to) ||
2548                     (prev_entries[i].flags.value != cur_entries[j].flags.value))
2549                         break;
2550                 nr_identical_branches++;
2551         }
2552
2553         if (!nr_identical_branches)
2554                 return false;
2555
2556         /*
2557          * Save the LBRs between the base-of-stack of previous sample
2558          * and the base-of-stack of current sample into lbr_stitch->lists.
2559          * These LBRs will be stitched later.
2560          */
2561         for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2562
2563                 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2564                         continue;
2565
2566                 stitch_node = get_stitch_node(thread);
2567                 if (!stitch_node)
2568                         return false;
2569
2570                 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2571                        sizeof(struct callchain_cursor_node));
2572
2573                 if (callee)
2574                         list_add(&stitch_node->node, &lbr_stitch->lists);
2575                 else
2576                         list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2577         }
2578
2579         return true;
2580 }
2581
2582 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2583 {
2584         if (thread__lbr_stitch(thread))
2585                 return true;
2586
2587         thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2588         if (!thread__lbr_stitch(thread))
2589                 goto err;
2590
2591         thread__lbr_stitch(thread)->prev_lbr_cursor =
2592                 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2593         if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2594                 goto free_lbr_stitch;
2595
2596         INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2597         INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2598
2599         return true;
2600
2601 free_lbr_stitch:
2602         free(thread__lbr_stitch(thread));
2603         thread__set_lbr_stitch(thread, NULL);
2604 err:
2605         pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2606         thread__set_lbr_stitch_enable(thread, false);
2607         return false;
2608 }
2609
2610 /*
2611  * Resolve LBR callstack chain sample
2612  * Return:
2613  * 1 on success get LBR callchain information
2614  * 0 no available LBR callchain information, should try fp
2615  * negative error code on other errors.
2616  */
2617 static int resolve_lbr_callchain_sample(struct thread *thread,
2618                                         struct callchain_cursor *cursor,
2619                                         struct perf_sample *sample,
2620                                         struct symbol **parent,
2621                                         struct addr_location *root_al,
2622                                         int max_stack,
2623                                         unsigned int max_lbr)
2624 {
2625         bool callee = (callchain_param.order == ORDER_CALLEE);
2626         struct ip_callchain *chain = sample->callchain;
2627         int chain_nr = min(max_stack, (int)chain->nr), i;
2628         struct lbr_stitch *lbr_stitch;
2629         bool stitched_lbr = false;
2630         u64 branch_from = 0;
2631         int err;
2632
2633         for (i = 0; i < chain_nr; i++) {
2634                 if (chain->ips[i] == PERF_CONTEXT_USER)
2635                         break;
2636         }
2637
2638         /* LBR only affects the user callchain */
2639         if (i == chain_nr)
2640                 return 0;
2641
2642         if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2643             (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2644                 lbr_stitch = thread__lbr_stitch(thread);
2645
2646                 stitched_lbr = has_stitched_lbr(thread, sample,
2647                                                 &lbr_stitch->prev_sample,
2648                                                 max_lbr, callee);
2649
2650                 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2651                         list_replace_init(&lbr_stitch->lists,
2652                                           &lbr_stitch->free_lists);
2653                 }
2654                 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2655         }
2656
2657         if (callee) {
2658                 /* Add kernel ip */
2659                 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2660                                                   parent, root_al, branch_from,
2661                                                   true, i);
2662                 if (err)
2663                         goto error;
2664
2665                 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2666                                                root_al, &branch_from, true);
2667                 if (err)
2668                         goto error;
2669
2670                 if (stitched_lbr) {
2671                         err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2672                         if (err)
2673                                 goto error;
2674                 }
2675
2676         } else {
2677                 if (stitched_lbr) {
2678                         err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2679                         if (err)
2680                                 goto error;
2681                 }
2682                 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2683                                                root_al, &branch_from, false);
2684                 if (err)
2685                         goto error;
2686
2687                 /* Add kernel ip */
2688                 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2689                                                   parent, root_al, branch_from,
2690                                                   false, i);
2691                 if (err)
2692                         goto error;
2693         }
2694         return 1;
2695
2696 error:
2697         return (err < 0) ? err : 0;
2698 }
2699
2700 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2701                              struct callchain_cursor *cursor,
2702                              struct symbol **parent,
2703                              struct addr_location *root_al,
2704                              u8 *cpumode, int ent)
2705 {
2706         int err = 0;
2707
2708         while (--ent >= 0) {
2709                 u64 ip = chain->ips[ent];
2710
2711                 if (ip >= PERF_CONTEXT_MAX) {
2712                         err = add_callchain_ip(thread, cursor, parent,
2713                                                root_al, cpumode, ip,
2714                                                false, NULL, NULL, 0);
2715                         break;
2716                 }
2717         }
2718         return err;
2719 }
2720
2721 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2722                 struct thread *thread, int usr_idx)
2723 {
2724         if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2725                 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2726         else
2727                 return 0;
2728 }
2729
2730 static int thread__resolve_callchain_sample(struct thread *thread,
2731                                             struct callchain_cursor *cursor,
2732                                             struct evsel *evsel,
2733                                             struct perf_sample *sample,
2734                                             struct symbol **parent,
2735                                             struct addr_location *root_al,
2736                                             int max_stack)
2737 {
2738         struct branch_stack *branch = sample->branch_stack;
2739         struct branch_entry *entries = perf_sample__branch_entries(sample);
2740         struct ip_callchain *chain = sample->callchain;
2741         int chain_nr = 0;
2742         u8 cpumode = PERF_RECORD_MISC_USER;
2743         int i, j, err, nr_entries, usr_idx;
2744         int skip_idx = -1;
2745         int first_call = 0;
2746         u64 leaf_frame_caller;
2747
2748         if (chain)
2749                 chain_nr = chain->nr;
2750
2751         if (evsel__has_branch_callstack(evsel)) {
2752                 struct perf_env *env = evsel__env(evsel);
2753
2754                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2755                                                    root_al, max_stack,
2756                                                    !env ? 0 : env->max_branches);
2757                 if (err)
2758                         return (err < 0) ? err : 0;
2759         }
2760
2761         /*
2762          * Based on DWARF debug information, some architectures skip
2763          * a callchain entry saved by the kernel.
2764          */
2765         skip_idx = arch_skip_callchain_idx(thread, chain);
2766
2767         /*
2768          * Add branches to call stack for easier browsing. This gives
2769          * more context for a sample than just the callers.
2770          *
2771          * This uses individual histograms of paths compared to the
2772          * aggregated histograms the normal LBR mode uses.
2773          *
2774          * Limitations for now:
2775          * - No extra filters
2776          * - No annotations (should annotate somehow)
2777          */
2778
2779         if (branch && callchain_param.branch_callstack) {
2780                 int nr = min(max_stack, (int)branch->nr);
2781                 struct branch_entry be[nr];
2782                 struct iterations iter[nr];
2783
2784                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2785                         pr_warning("corrupted branch chain. skipping...\n");
2786                         goto check_calls;
2787                 }
2788
2789                 for (i = 0; i < nr; i++) {
2790                         if (callchain_param.order == ORDER_CALLEE) {
2791                                 be[i] = entries[i];
2792
2793                                 if (chain == NULL)
2794                                         continue;
2795
2796                                 /*
2797                                  * Check for overlap into the callchain.
2798                                  * The return address is one off compared to
2799                                  * the branch entry. To adjust for this
2800                                  * assume the calling instruction is not longer
2801                                  * than 8 bytes.
2802                                  */
2803                                 if (i == skip_idx ||
2804                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
2805                                         first_call++;
2806                                 else if (be[i].from < chain->ips[first_call] &&
2807                                     be[i].from >= chain->ips[first_call] - 8)
2808                                         first_call++;
2809                         } else
2810                                 be[i] = entries[branch->nr - i - 1];
2811                 }
2812
2813                 memset(iter, 0, sizeof(struct iterations) * nr);
2814                 nr = remove_loops(be, nr, iter);
2815
2816                 for (i = 0; i < nr; i++) {
2817                         err = add_callchain_ip(thread, cursor, parent,
2818                                                root_al,
2819                                                NULL, be[i].to,
2820                                                true, &be[i].flags,
2821                                                NULL, be[i].from);
2822
2823                         if (!err)
2824                                 err = add_callchain_ip(thread, cursor, parent, root_al,
2825                                                        NULL, be[i].from,
2826                                                        true, &be[i].flags,
2827                                                        &iter[i], 0);
2828                         if (err == -EINVAL)
2829                                 break;
2830                         if (err)
2831                                 return err;
2832                 }
2833
2834                 if (chain_nr == 0)
2835                         return 0;
2836
2837                 chain_nr -= nr;
2838         }
2839
2840 check_calls:
2841         if (chain && callchain_param.order != ORDER_CALLEE) {
2842                 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2843                                         &cpumode, chain->nr - first_call);
2844                 if (err)
2845                         return (err < 0) ? err : 0;
2846         }
2847         for (i = first_call, nr_entries = 0;
2848              i < chain_nr && nr_entries < max_stack; i++) {
2849                 u64 ip;
2850
2851                 if (callchain_param.order == ORDER_CALLEE)
2852                         j = i;
2853                 else
2854                         j = chain->nr - i - 1;
2855
2856 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2857                 if (j == skip_idx)
2858                         continue;
2859 #endif
2860                 ip = chain->ips[j];
2861                 if (ip < PERF_CONTEXT_MAX)
2862                        ++nr_entries;
2863                 else if (callchain_param.order != ORDER_CALLEE) {
2864                         err = find_prev_cpumode(chain, thread, cursor, parent,
2865                                                 root_al, &cpumode, j);
2866                         if (err)
2867                                 return (err < 0) ? err : 0;
2868                         continue;
2869                 }
2870
2871                 /*
2872                  * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2873                  * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2874                  * the index will be different in order to add the missing frame
2875                  * at the right place.
2876                  */
2877
2878                 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2879
2880                 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2881
2882                         leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2883
2884                         /*
2885                          * check if leaf_frame_Caller != ip to not add the same
2886                          * value twice.
2887                          */
2888
2889                         if (leaf_frame_caller && leaf_frame_caller != ip) {
2890
2891                                 err = add_callchain_ip(thread, cursor, parent,
2892                                                root_al, &cpumode, leaf_frame_caller,
2893                                                false, NULL, NULL, 0);
2894                                 if (err)
2895                                         return (err < 0) ? err : 0;
2896                         }
2897                 }
2898
2899                 err = add_callchain_ip(thread, cursor, parent,
2900                                        root_al, &cpumode, ip,
2901                                        false, NULL, NULL, 0);
2902
2903                 if (err)
2904                         return (err < 0) ? err : 0;
2905         }
2906
2907         return 0;
2908 }
2909
2910 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2911 {
2912         struct symbol *sym = ms->sym;
2913         struct map *map = ms->map;
2914         struct inline_node *inline_node;
2915         struct inline_list *ilist;
2916         struct dso *dso;
2917         u64 addr;
2918         int ret = 1;
2919         struct map_symbol ilist_ms;
2920
2921         if (!symbol_conf.inline_name || !map || !sym)
2922                 return ret;
2923
2924         addr = map__dso_map_ip(map, ip);
2925         addr = map__rip_2objdump(map, addr);
2926         dso = map__dso(map);
2927
2928         inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
2929         if (!inline_node) {
2930                 inline_node = dso__parse_addr_inlines(dso, addr, sym);
2931                 if (!inline_node)
2932                         return ret;
2933                 inlines__tree_insert(&dso->inlined_nodes, inline_node);
2934         }
2935
2936         ilist_ms = (struct map_symbol) {
2937                 .maps = maps__get(ms->maps),
2938                 .map = map__get(map),
2939         };
2940         list_for_each_entry(ilist, &inline_node->val, list) {
2941                 ilist_ms.sym = ilist->symbol;
2942                 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2943                                               NULL, 0, 0, 0, ilist->srcline);
2944
2945                 if (ret != 0)
2946                         return ret;
2947         }
2948         map_symbol__exit(&ilist_ms);
2949
2950         return ret;
2951 }
2952
2953 static int unwind_entry(struct unwind_entry *entry, void *arg)
2954 {
2955         struct callchain_cursor *cursor = arg;
2956         const char *srcline = NULL;
2957         u64 addr = entry->ip;
2958
2959         if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2960                 return 0;
2961
2962         if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2963                 return 0;
2964
2965         /*
2966          * Convert entry->ip from a virtual address to an offset in
2967          * its corresponding binary.
2968          */
2969         if (entry->ms.map)
2970                 addr = map__dso_map_ip(entry->ms.map, entry->ip);
2971
2972         srcline = callchain_srcline(&entry->ms, addr);
2973         return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2974                                        false, NULL, 0, 0, 0, srcline);
2975 }
2976
2977 static int thread__resolve_callchain_unwind(struct thread *thread,
2978                                             struct callchain_cursor *cursor,
2979                                             struct evsel *evsel,
2980                                             struct perf_sample *sample,
2981                                             int max_stack)
2982 {
2983         /* Can we do dwarf post unwind? */
2984         if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2985               (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2986                 return 0;
2987
2988         /* Bail out if nothing was captured. */
2989         if ((!sample->user_regs.regs) ||
2990             (!sample->user_stack.size))
2991                 return 0;
2992
2993         return unwind__get_entries(unwind_entry, cursor,
2994                                    thread, sample, max_stack, false);
2995 }
2996
2997 int thread__resolve_callchain(struct thread *thread,
2998                               struct callchain_cursor *cursor,
2999                               struct evsel *evsel,
3000                               struct perf_sample *sample,
3001                               struct symbol **parent,
3002                               struct addr_location *root_al,
3003                               int max_stack)
3004 {
3005         int ret = 0;
3006
3007         if (cursor == NULL)
3008                 return -ENOMEM;
3009
3010         callchain_cursor_reset(cursor);
3011
3012         if (callchain_param.order == ORDER_CALLEE) {
3013                 ret = thread__resolve_callchain_sample(thread, cursor,
3014                                                        evsel, sample,
3015                                                        parent, root_al,
3016                                                        max_stack);
3017                 if (ret)
3018                         return ret;
3019                 ret = thread__resolve_callchain_unwind(thread, cursor,
3020                                                        evsel, sample,
3021                                                        max_stack);
3022         } else {
3023                 ret = thread__resolve_callchain_unwind(thread, cursor,
3024                                                        evsel, sample,
3025                                                        max_stack);
3026                 if (ret)
3027                         return ret;
3028                 ret = thread__resolve_callchain_sample(thread, cursor,
3029                                                        evsel, sample,
3030                                                        parent, root_al,
3031                                                        max_stack);
3032         }
3033
3034         return ret;
3035 }
3036
3037 int machine__for_each_thread(struct machine *machine,
3038                              int (*fn)(struct thread *thread, void *p),
3039                              void *priv)
3040 {
3041         return threads__for_each_thread(&machine->threads, fn, priv);
3042 }
3043
3044 int machines__for_each_thread(struct machines *machines,
3045                               int (*fn)(struct thread *thread, void *p),
3046                               void *priv)
3047 {
3048         struct rb_node *nd;
3049         int rc = 0;
3050
3051         rc = machine__for_each_thread(&machines->host, fn, priv);
3052         if (rc != 0)
3053                 return rc;
3054
3055         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3056                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3057
3058                 rc = machine__for_each_thread(machine, fn, priv);
3059                 if (rc != 0)
3060                         return rc;
3061         }
3062         return rc;
3063 }
3064
3065
3066 static int thread_list_cb(struct thread *thread, void *data)
3067 {
3068         struct list_head *list = data;
3069         struct thread_list *entry = malloc(sizeof(*entry));
3070
3071         if (!entry)
3072                 return -ENOMEM;
3073
3074         entry->thread = thread__get(thread);
3075         list_add_tail(&entry->list, list);
3076         return 0;
3077 }
3078
3079 int machine__thread_list(struct machine *machine, struct list_head *list)
3080 {
3081         return machine__for_each_thread(machine, thread_list_cb, list);
3082 }
3083
3084 void thread_list__delete(struct list_head *list)
3085 {
3086         struct thread_list *pos, *next;
3087
3088         list_for_each_entry_safe(pos, next, list, list) {
3089                 thread__zput(pos->thread);
3090                 list_del(&pos->list);
3091                 free(pos);
3092         }
3093 }
3094
3095 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3096 {
3097         if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3098                 return -1;
3099
3100         return machine->current_tid[cpu];
3101 }
3102
3103 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3104                              pid_t tid)
3105 {
3106         struct thread *thread;
3107         const pid_t init_val = -1;
3108
3109         if (cpu < 0)
3110                 return -EINVAL;
3111
3112         if (realloc_array_as_needed(machine->current_tid,
3113                                     machine->current_tid_sz,
3114                                     (unsigned int)cpu,
3115                                     &init_val))
3116                 return -ENOMEM;
3117
3118         machine->current_tid[cpu] = tid;
3119
3120         thread = machine__findnew_thread(machine, pid, tid);
3121         if (!thread)
3122                 return -ENOMEM;
3123
3124         thread__set_cpu(thread, cpu);
3125         thread__put(thread);
3126
3127         return 0;
3128 }
3129
3130 /*
3131  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3132  * machine__normalized_is() if a normalized arch is needed.
3133  */
3134 bool machine__is(struct machine *machine, const char *arch)
3135 {
3136         return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3137 }
3138
3139 bool machine__normalized_is(struct machine *machine, const char *arch)
3140 {
3141         return machine && !strcmp(perf_env__arch(machine->env), arch);
3142 }
3143
3144 int machine__nr_cpus_avail(struct machine *machine)
3145 {
3146         return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3147 }
3148
3149 int machine__get_kernel_start(struct machine *machine)
3150 {
3151         struct map *map = machine__kernel_map(machine);
3152         int err = 0;
3153
3154         /*
3155          * The only addresses above 2^63 are kernel addresses of a 64-bit
3156          * kernel.  Note that addresses are unsigned so that on a 32-bit system
3157          * all addresses including kernel addresses are less than 2^32.  In
3158          * that case (32-bit system), if the kernel mapping is unknown, all
3159          * addresses will be assumed to be in user space - see
3160          * machine__kernel_ip().
3161          */
3162         machine->kernel_start = 1ULL << 63;
3163         if (map) {
3164                 err = map__load(map);
3165                 /*
3166                  * On x86_64, PTI entry trampolines are less than the
3167                  * start of kernel text, but still above 2^63. So leave
3168                  * kernel_start = 1ULL << 63 for x86_64.
3169                  */
3170                 if (!err && !machine__is(machine, "x86_64"))
3171                         machine->kernel_start = map__start(map);
3172         }
3173         return err;
3174 }
3175
3176 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3177 {
3178         u8 addr_cpumode = cpumode;
3179         bool kernel_ip;
3180
3181         if (!machine->single_address_space)
3182                 goto out;
3183
3184         kernel_ip = machine__kernel_ip(machine, addr);
3185         switch (cpumode) {
3186         case PERF_RECORD_MISC_KERNEL:
3187         case PERF_RECORD_MISC_USER:
3188                 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3189                                            PERF_RECORD_MISC_USER;
3190                 break;
3191         case PERF_RECORD_MISC_GUEST_KERNEL:
3192         case PERF_RECORD_MISC_GUEST_USER:
3193                 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3194                                            PERF_RECORD_MISC_GUEST_USER;
3195                 break;
3196         default:
3197                 break;
3198         }
3199 out:
3200         return addr_cpumode;
3201 }
3202
3203 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3204 {
3205         return dsos__findnew_id(&machine->dsos, filename, id);
3206 }
3207
3208 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3209 {
3210         return machine__findnew_dso_id(machine, filename, NULL);
3211 }
3212
3213 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3214 {
3215         struct machine *machine = vmachine;
3216         struct map *map;
3217         struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3218
3219         if (sym == NULL)
3220                 return NULL;
3221
3222         *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3223         *addrp = map__unmap_ip(map, sym->start);
3224         return sym->name;
3225 }
3226
3227 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3228 {
3229         struct dso *pos;
3230         int err = 0;
3231
3232         list_for_each_entry(pos, &machine->dsos.head, node) {
3233                 if (fn(pos, machine, priv))
3234                         err = -1;
3235         }
3236         return err;
3237 }
3238
3239 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3240 {
3241         struct maps *maps = machine__kernel_maps(machine);
3242
3243         return maps__for_each_map(maps, fn, priv);
3244 }
3245
3246 bool machine__is_lock_function(struct machine *machine, u64 addr)
3247 {
3248         if (!machine->sched.text_start) {
3249                 struct map *kmap;
3250                 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3251
3252                 if (!sym) {
3253                         /* to avoid retry */
3254                         machine->sched.text_start = 1;
3255                         return false;
3256                 }
3257
3258                 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3259
3260                 /* should not fail from here */
3261                 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3262                 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3263
3264                 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3265                 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3266
3267                 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3268                 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3269         }
3270
3271         /* failed to get kernel symbols */
3272         if (machine->sched.text_start == 1)
3273                 return false;
3274
3275         /* mutex and rwsem functions are in sched text section */
3276         if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3277                 return true;
3278
3279         /* spinlock functions are in lock text section */
3280         if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3281                 return true;
3282
3283         return false;
3284 }