24f8c978cfd4e802b483c26a01ad47036b85ea83
[linux-2.6-microblaze.git] / tools / perf / util / machine.c
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16
17 static void machine__remove_thread(struct machine *machine, struct thread *th);
18
19 static void dsos__init(struct dsos *dsos)
20 {
21         INIT_LIST_HEAD(&dsos->head);
22         dsos->root = RB_ROOT;
23 }
24
25 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
26 {
27         map_groups__init(&machine->kmaps, machine);
28         RB_CLEAR_NODE(&machine->rb_node);
29         dsos__init(&machine->user_dsos);
30         dsos__init(&machine->kernel_dsos);
31
32         machine->threads = RB_ROOT;
33         INIT_LIST_HEAD(&machine->dead_threads);
34         machine->last_match = NULL;
35
36         machine->vdso_info = NULL;
37
38         machine->pid = pid;
39
40         machine->symbol_filter = NULL;
41         machine->id_hdr_size = 0;
42         machine->comm_exec = false;
43         machine->kernel_start = 0;
44
45         machine->root_dir = strdup(root_dir);
46         if (machine->root_dir == NULL)
47                 return -ENOMEM;
48
49         if (pid != HOST_KERNEL_ID) {
50                 struct thread *thread = machine__findnew_thread(machine, -1,
51                                                                 pid);
52                 char comm[64];
53
54                 if (thread == NULL)
55                         return -ENOMEM;
56
57                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
58                 thread__set_comm(thread, comm, 0);
59         }
60
61         machine->current_tid = NULL;
62
63         return 0;
64 }
65
66 struct machine *machine__new_host(void)
67 {
68         struct machine *machine = malloc(sizeof(*machine));
69
70         if (machine != NULL) {
71                 machine__init(machine, "", HOST_KERNEL_ID);
72
73                 if (machine__create_kernel_maps(machine) < 0)
74                         goto out_delete;
75         }
76
77         return machine;
78 out_delete:
79         free(machine);
80         return NULL;
81 }
82
83 static void dsos__delete(struct dsos *dsos)
84 {
85         struct dso *pos, *n;
86
87         list_for_each_entry_safe(pos, n, &dsos->head, node) {
88                 RB_CLEAR_NODE(&pos->rb_node);
89                 list_del(&pos->node);
90                 dso__delete(pos);
91         }
92 }
93
94 void machine__delete_threads(struct machine *machine)
95 {
96         struct rb_node *nd = rb_first(&machine->threads);
97
98         while (nd) {
99                 struct thread *t = rb_entry(nd, struct thread, rb_node);
100
101                 nd = rb_next(nd);
102                 machine__remove_thread(machine, t);
103         }
104 }
105
106 void machine__exit(struct machine *machine)
107 {
108         map_groups__exit(&machine->kmaps);
109         dsos__delete(&machine->user_dsos);
110         dsos__delete(&machine->kernel_dsos);
111         vdso__exit(machine);
112         zfree(&machine->root_dir);
113         zfree(&machine->current_tid);
114 }
115
116 void machine__delete(struct machine *machine)
117 {
118         machine__exit(machine);
119         free(machine);
120 }
121
122 void machines__init(struct machines *machines)
123 {
124         machine__init(&machines->host, "", HOST_KERNEL_ID);
125         machines->guests = RB_ROOT;
126         machines->symbol_filter = NULL;
127 }
128
129 void machines__exit(struct machines *machines)
130 {
131         machine__exit(&machines->host);
132         /* XXX exit guest */
133 }
134
135 struct machine *machines__add(struct machines *machines, pid_t pid,
136                               const char *root_dir)
137 {
138         struct rb_node **p = &machines->guests.rb_node;
139         struct rb_node *parent = NULL;
140         struct machine *pos, *machine = malloc(sizeof(*machine));
141
142         if (machine == NULL)
143                 return NULL;
144
145         if (machine__init(machine, root_dir, pid) != 0) {
146                 free(machine);
147                 return NULL;
148         }
149
150         machine->symbol_filter = machines->symbol_filter;
151
152         while (*p != NULL) {
153                 parent = *p;
154                 pos = rb_entry(parent, struct machine, rb_node);
155                 if (pid < pos->pid)
156                         p = &(*p)->rb_left;
157                 else
158                         p = &(*p)->rb_right;
159         }
160
161         rb_link_node(&machine->rb_node, parent, p);
162         rb_insert_color(&machine->rb_node, &machines->guests);
163
164         return machine;
165 }
166
167 void machines__set_symbol_filter(struct machines *machines,
168                                  symbol_filter_t symbol_filter)
169 {
170         struct rb_node *nd;
171
172         machines->symbol_filter = symbol_filter;
173         machines->host.symbol_filter = symbol_filter;
174
175         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
176                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
177
178                 machine->symbol_filter = symbol_filter;
179         }
180 }
181
182 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
183 {
184         struct rb_node *nd;
185
186         machines->host.comm_exec = comm_exec;
187
188         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
189                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
190
191                 machine->comm_exec = comm_exec;
192         }
193 }
194
195 struct machine *machines__find(struct machines *machines, pid_t pid)
196 {
197         struct rb_node **p = &machines->guests.rb_node;
198         struct rb_node *parent = NULL;
199         struct machine *machine;
200         struct machine *default_machine = NULL;
201
202         if (pid == HOST_KERNEL_ID)
203                 return &machines->host;
204
205         while (*p != NULL) {
206                 parent = *p;
207                 machine = rb_entry(parent, struct machine, rb_node);
208                 if (pid < machine->pid)
209                         p = &(*p)->rb_left;
210                 else if (pid > machine->pid)
211                         p = &(*p)->rb_right;
212                 else
213                         return machine;
214                 if (!machine->pid)
215                         default_machine = machine;
216         }
217
218         return default_machine;
219 }
220
221 struct machine *machines__findnew(struct machines *machines, pid_t pid)
222 {
223         char path[PATH_MAX];
224         const char *root_dir = "";
225         struct machine *machine = machines__find(machines, pid);
226
227         if (machine && (machine->pid == pid))
228                 goto out;
229
230         if ((pid != HOST_KERNEL_ID) &&
231             (pid != DEFAULT_GUEST_KERNEL_ID) &&
232             (symbol_conf.guestmount)) {
233                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
234                 if (access(path, R_OK)) {
235                         static struct strlist *seen;
236
237                         if (!seen)
238                                 seen = strlist__new(true, NULL);
239
240                         if (!strlist__has_entry(seen, path)) {
241                                 pr_err("Can't access file %s\n", path);
242                                 strlist__add(seen, path);
243                         }
244                         machine = NULL;
245                         goto out;
246                 }
247                 root_dir = path;
248         }
249
250         machine = machines__add(machines, pid, root_dir);
251 out:
252         return machine;
253 }
254
255 void machines__process_guests(struct machines *machines,
256                               machine__process_t process, void *data)
257 {
258         struct rb_node *nd;
259
260         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
261                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
262                 process(pos, data);
263         }
264 }
265
266 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
267 {
268         if (machine__is_host(machine))
269                 snprintf(bf, size, "[%s]", "kernel.kallsyms");
270         else if (machine__is_default_guest(machine))
271                 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
272         else {
273                 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
274                          machine->pid);
275         }
276
277         return bf;
278 }
279
280 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
281 {
282         struct rb_node *node;
283         struct machine *machine;
284
285         machines->host.id_hdr_size = id_hdr_size;
286
287         for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
288                 machine = rb_entry(node, struct machine, rb_node);
289                 machine->id_hdr_size = id_hdr_size;
290         }
291
292         return;
293 }
294
295 static void machine__update_thread_pid(struct machine *machine,
296                                        struct thread *th, pid_t pid)
297 {
298         struct thread *leader;
299
300         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
301                 return;
302
303         th->pid_ = pid;
304
305         if (th->pid_ == th->tid)
306                 return;
307
308         leader = machine__findnew_thread(machine, th->pid_, th->pid_);
309         if (!leader)
310                 goto out_err;
311
312         if (!leader->mg)
313                 leader->mg = map_groups__new(machine);
314
315         if (!leader->mg)
316                 goto out_err;
317
318         if (th->mg == leader->mg)
319                 return;
320
321         if (th->mg) {
322                 /*
323                  * Maps are created from MMAP events which provide the pid and
324                  * tid.  Consequently there never should be any maps on a thread
325                  * with an unknown pid.  Just print an error if there are.
326                  */
327                 if (!map_groups__empty(th->mg))
328                         pr_err("Discarding thread maps for %d:%d\n",
329                                th->pid_, th->tid);
330                 map_groups__delete(th->mg);
331         }
332
333         th->mg = map_groups__get(leader->mg);
334
335         return;
336
337 out_err:
338         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
339 }
340
341 static struct thread *__machine__findnew_thread(struct machine *machine,
342                                                 pid_t pid, pid_t tid,
343                                                 bool create)
344 {
345         struct rb_node **p = &machine->threads.rb_node;
346         struct rb_node *parent = NULL;
347         struct thread *th;
348
349         /*
350          * Front-end cache - TID lookups come in blocks,
351          * so most of the time we dont have to look up
352          * the full rbtree:
353          */
354         th = machine->last_match;
355         if (th != NULL) {
356                 if (th->tid == tid) {
357                         machine__update_thread_pid(machine, th, pid);
358                         return th;
359                 }
360
361                 thread__zput(machine->last_match);
362         }
363
364         while (*p != NULL) {
365                 parent = *p;
366                 th = rb_entry(parent, struct thread, rb_node);
367
368                 if (th->tid == tid) {
369                         machine->last_match = thread__get(th);
370                         machine__update_thread_pid(machine, th, pid);
371                         return th;
372                 }
373
374                 if (tid < th->tid)
375                         p = &(*p)->rb_left;
376                 else
377                         p = &(*p)->rb_right;
378         }
379
380         if (!create)
381                 return NULL;
382
383         th = thread__new(pid, tid);
384         if (th != NULL) {
385                 rb_link_node(&th->rb_node, parent, p);
386                 rb_insert_color(&th->rb_node, &machine->threads);
387
388                 /*
389                  * We have to initialize map_groups separately
390                  * after rb tree is updated.
391                  *
392                  * The reason is that we call machine__findnew_thread
393                  * within thread__init_map_groups to find the thread
394                  * leader and that would screwed the rb tree.
395                  */
396                 if (thread__init_map_groups(th, machine)) {
397                         rb_erase(&th->rb_node, &machine->threads);
398                         thread__delete(th);
399                         return NULL;
400                 }
401                 /*
402                  * It is now in the rbtree, get a ref
403                  */
404                 thread__get(th);
405                 machine->last_match = thread__get(th);
406         }
407
408         return th;
409 }
410
411 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
412                                        pid_t tid)
413 {
414         return __machine__findnew_thread(machine, pid, tid, true);
415 }
416
417 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
418                                     pid_t tid)
419 {
420         return __machine__findnew_thread(machine, pid, tid, false);
421 }
422
423 struct comm *machine__thread_exec_comm(struct machine *machine,
424                                        struct thread *thread)
425 {
426         if (machine->comm_exec)
427                 return thread__exec_comm(thread);
428         else
429                 return thread__comm(thread);
430 }
431
432 int machine__process_comm_event(struct machine *machine, union perf_event *event,
433                                 struct perf_sample *sample)
434 {
435         struct thread *thread = machine__findnew_thread(machine,
436                                                         event->comm.pid,
437                                                         event->comm.tid);
438         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
439
440         if (exec)
441                 machine->comm_exec = true;
442
443         if (dump_trace)
444                 perf_event__fprintf_comm(event, stdout);
445
446         if (thread == NULL ||
447             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
448                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
449                 return -1;
450         }
451
452         return 0;
453 }
454
455 int machine__process_lost_event(struct machine *machine __maybe_unused,
456                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
457 {
458         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
459                     event->lost.id, event->lost.lost);
460         return 0;
461 }
462
463 struct map *machine__new_module(struct machine *machine, u64 start,
464                                 const char *filename)
465 {
466         struct map *map;
467         struct dso *dso = __dsos__findnew(&machine->kernel_dsos, filename);
468         bool compressed;
469
470         if (dso == NULL)
471                 return NULL;
472
473         map = map__new2(start, dso, MAP__FUNCTION);
474         if (map == NULL)
475                 return NULL;
476
477         if (machine__is_host(machine))
478                 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
479         else
480                 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
481
482         /* _KMODULE_COMP should be next to _KMODULE */
483         if (is_kernel_module(filename, &compressed) && compressed)
484                 dso->symtab_type++;
485
486         map_groups__insert(&machine->kmaps, map);
487         return map;
488 }
489
490 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
491 {
492         struct rb_node *nd;
493         size_t ret = __dsos__fprintf(&machines->host.kernel_dsos.head, fp) +
494                      __dsos__fprintf(&machines->host.user_dsos.head, fp);
495
496         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
497                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
498                 ret += __dsos__fprintf(&pos->kernel_dsos.head, fp);
499                 ret += __dsos__fprintf(&pos->user_dsos.head, fp);
500         }
501
502         return ret;
503 }
504
505 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
506                                      bool (skip)(struct dso *dso, int parm), int parm)
507 {
508         return __dsos__fprintf_buildid(&m->kernel_dsos.head, fp, skip, parm) +
509                __dsos__fprintf_buildid(&m->user_dsos.head, fp, skip, parm);
510 }
511
512 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
513                                      bool (skip)(struct dso *dso, int parm), int parm)
514 {
515         struct rb_node *nd;
516         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
517
518         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
519                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
520                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
521         }
522         return ret;
523 }
524
525 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
526 {
527         int i;
528         size_t printed = 0;
529         struct dso *kdso = machine->vmlinux_maps[MAP__FUNCTION]->dso;
530
531         if (kdso->has_build_id) {
532                 char filename[PATH_MAX];
533                 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
534                         printed += fprintf(fp, "[0] %s\n", filename);
535         }
536
537         for (i = 0; i < vmlinux_path__nr_entries; ++i)
538                 printed += fprintf(fp, "[%d] %s\n",
539                                    i + kdso->has_build_id, vmlinux_path[i]);
540
541         return printed;
542 }
543
544 size_t machine__fprintf(struct machine *machine, FILE *fp)
545 {
546         size_t ret = 0;
547         struct rb_node *nd;
548
549         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
550                 struct thread *pos = rb_entry(nd, struct thread, rb_node);
551
552                 ret += thread__fprintf(pos, fp);
553         }
554
555         return ret;
556 }
557
558 static struct dso *machine__get_kernel(struct machine *machine)
559 {
560         const char *vmlinux_name = NULL;
561         struct dso *kernel;
562
563         if (machine__is_host(machine)) {
564                 vmlinux_name = symbol_conf.vmlinux_name;
565                 if (!vmlinux_name)
566                         vmlinux_name = "[kernel.kallsyms]";
567
568                 kernel = dso__kernel_findnew(machine, vmlinux_name,
569                                              "[kernel]",
570                                              DSO_TYPE_KERNEL);
571         } else {
572                 char bf[PATH_MAX];
573
574                 if (machine__is_default_guest(machine))
575                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
576                 if (!vmlinux_name)
577                         vmlinux_name = machine__mmap_name(machine, bf,
578                                                           sizeof(bf));
579
580                 kernel = dso__kernel_findnew(machine, vmlinux_name,
581                                              "[guest.kernel]",
582                                              DSO_TYPE_GUEST_KERNEL);
583         }
584
585         if (kernel != NULL && (!kernel->has_build_id))
586                 dso__read_running_kernel_build_id(kernel, machine);
587
588         return kernel;
589 }
590
591 struct process_args {
592         u64 start;
593 };
594
595 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
596                                            size_t bufsz)
597 {
598         if (machine__is_default_guest(machine))
599                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
600         else
601                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
602 }
603
604 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
605
606 /* Figure out the start address of kernel map from /proc/kallsyms.
607  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
608  * symbol_name if it's not that important.
609  */
610 static u64 machine__get_running_kernel_start(struct machine *machine,
611                                              const char **symbol_name)
612 {
613         char filename[PATH_MAX];
614         int i;
615         const char *name;
616         u64 addr = 0;
617
618         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
619
620         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
621                 return 0;
622
623         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
624                 addr = kallsyms__get_function_start(filename, name);
625                 if (addr)
626                         break;
627         }
628
629         if (symbol_name)
630                 *symbol_name = name;
631
632         return addr;
633 }
634
635 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
636 {
637         enum map_type type;
638         u64 start = machine__get_running_kernel_start(machine, NULL);
639
640         for (type = 0; type < MAP__NR_TYPES; ++type) {
641                 struct kmap *kmap;
642
643                 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
644                 if (machine->vmlinux_maps[type] == NULL)
645                         return -1;
646
647                 machine->vmlinux_maps[type]->map_ip =
648                         machine->vmlinux_maps[type]->unmap_ip =
649                                 identity__map_ip;
650                 kmap = map__kmap(machine->vmlinux_maps[type]);
651                 kmap->kmaps = &machine->kmaps;
652                 map_groups__insert(&machine->kmaps,
653                                    machine->vmlinux_maps[type]);
654         }
655
656         return 0;
657 }
658
659 void machine__destroy_kernel_maps(struct machine *machine)
660 {
661         enum map_type type;
662
663         for (type = 0; type < MAP__NR_TYPES; ++type) {
664                 struct kmap *kmap;
665
666                 if (machine->vmlinux_maps[type] == NULL)
667                         continue;
668
669                 kmap = map__kmap(machine->vmlinux_maps[type]);
670                 map_groups__remove(&machine->kmaps,
671                                    machine->vmlinux_maps[type]);
672                 if (kmap->ref_reloc_sym) {
673                         /*
674                          * ref_reloc_sym is shared among all maps, so free just
675                          * on one of them.
676                          */
677                         if (type == MAP__FUNCTION) {
678                                 zfree((char **)&kmap->ref_reloc_sym->name);
679                                 zfree(&kmap->ref_reloc_sym);
680                         } else
681                                 kmap->ref_reloc_sym = NULL;
682                 }
683
684                 map__delete(machine->vmlinux_maps[type]);
685                 machine->vmlinux_maps[type] = NULL;
686         }
687 }
688
689 int machines__create_guest_kernel_maps(struct machines *machines)
690 {
691         int ret = 0;
692         struct dirent **namelist = NULL;
693         int i, items = 0;
694         char path[PATH_MAX];
695         pid_t pid;
696         char *endp;
697
698         if (symbol_conf.default_guest_vmlinux_name ||
699             symbol_conf.default_guest_modules ||
700             symbol_conf.default_guest_kallsyms) {
701                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
702         }
703
704         if (symbol_conf.guestmount) {
705                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
706                 if (items <= 0)
707                         return -ENOENT;
708                 for (i = 0; i < items; i++) {
709                         if (!isdigit(namelist[i]->d_name[0])) {
710                                 /* Filter out . and .. */
711                                 continue;
712                         }
713                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
714                         if ((*endp != '\0') ||
715                             (endp == namelist[i]->d_name) ||
716                             (errno == ERANGE)) {
717                                 pr_debug("invalid directory (%s). Skipping.\n",
718                                          namelist[i]->d_name);
719                                 continue;
720                         }
721                         sprintf(path, "%s/%s/proc/kallsyms",
722                                 symbol_conf.guestmount,
723                                 namelist[i]->d_name);
724                         ret = access(path, R_OK);
725                         if (ret) {
726                                 pr_debug("Can't access file %s\n", path);
727                                 goto failure;
728                         }
729                         machines__create_kernel_maps(machines, pid);
730                 }
731 failure:
732                 free(namelist);
733         }
734
735         return ret;
736 }
737
738 void machines__destroy_kernel_maps(struct machines *machines)
739 {
740         struct rb_node *next = rb_first(&machines->guests);
741
742         machine__destroy_kernel_maps(&machines->host);
743
744         while (next) {
745                 struct machine *pos = rb_entry(next, struct machine, rb_node);
746
747                 next = rb_next(&pos->rb_node);
748                 rb_erase(&pos->rb_node, &machines->guests);
749                 machine__delete(pos);
750         }
751 }
752
753 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
754 {
755         struct machine *machine = machines__findnew(machines, pid);
756
757         if (machine == NULL)
758                 return -1;
759
760         return machine__create_kernel_maps(machine);
761 }
762
763 int machine__load_kallsyms(struct machine *machine, const char *filename,
764                            enum map_type type, symbol_filter_t filter)
765 {
766         struct map *map = machine->vmlinux_maps[type];
767         int ret = dso__load_kallsyms(map->dso, filename, map, filter);
768
769         if (ret > 0) {
770                 dso__set_loaded(map->dso, type);
771                 /*
772                  * Since /proc/kallsyms will have multiple sessions for the
773                  * kernel, with modules between them, fixup the end of all
774                  * sections.
775                  */
776                 __map_groups__fixup_end(&machine->kmaps, type);
777         }
778
779         return ret;
780 }
781
782 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
783                                symbol_filter_t filter)
784 {
785         struct map *map = machine->vmlinux_maps[type];
786         int ret = dso__load_vmlinux_path(map->dso, map, filter);
787
788         if (ret > 0)
789                 dso__set_loaded(map->dso, type);
790
791         return ret;
792 }
793
794 static void map_groups__fixup_end(struct map_groups *mg)
795 {
796         int i;
797         for (i = 0; i < MAP__NR_TYPES; ++i)
798                 __map_groups__fixup_end(mg, i);
799 }
800
801 static char *get_kernel_version(const char *root_dir)
802 {
803         char version[PATH_MAX];
804         FILE *file;
805         char *name, *tmp;
806         const char *prefix = "Linux version ";
807
808         sprintf(version, "%s/proc/version", root_dir);
809         file = fopen(version, "r");
810         if (!file)
811                 return NULL;
812
813         version[0] = '\0';
814         tmp = fgets(version, sizeof(version), file);
815         fclose(file);
816
817         name = strstr(version, prefix);
818         if (!name)
819                 return NULL;
820         name += strlen(prefix);
821         tmp = strchr(name, ' ');
822         if (tmp)
823                 *tmp = '\0';
824
825         return strdup(name);
826 }
827
828 static int map_groups__set_modules_path_dir(struct map_groups *mg,
829                                 const char *dir_name, int depth)
830 {
831         struct dirent *dent;
832         DIR *dir = opendir(dir_name);
833         int ret = 0;
834
835         if (!dir) {
836                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
837                 return -1;
838         }
839
840         while ((dent = readdir(dir)) != NULL) {
841                 char path[PATH_MAX];
842                 struct stat st;
843
844                 /*sshfs might return bad dent->d_type, so we have to stat*/
845                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
846                 if (stat(path, &st))
847                         continue;
848
849                 if (S_ISDIR(st.st_mode)) {
850                         if (!strcmp(dent->d_name, ".") ||
851                             !strcmp(dent->d_name, ".."))
852                                 continue;
853
854                         /* Do not follow top-level source and build symlinks */
855                         if (depth == 0) {
856                                 if (!strcmp(dent->d_name, "source") ||
857                                     !strcmp(dent->d_name, "build"))
858                                         continue;
859                         }
860
861                         ret = map_groups__set_modules_path_dir(mg, path,
862                                                                depth + 1);
863                         if (ret < 0)
864                                 goto out;
865                 } else {
866                         char *dot = strrchr(dent->d_name, '.'),
867                              dso_name[PATH_MAX];
868                         struct map *map;
869                         char *long_name;
870
871                         if (dot == NULL)
872                                 continue;
873
874                         /* On some system, modules are compressed like .ko.gz */
875                         if (is_supported_compression(dot + 1) &&
876                             is_kmodule_extension(dot - 2))
877                                 dot -= 3;
878
879                         snprintf(dso_name, sizeof(dso_name), "[%.*s]",
880                                  (int)(dot - dent->d_name), dent->d_name);
881
882                         strxfrchar(dso_name, '-', '_');
883                         map = map_groups__find_by_name(mg, MAP__FUNCTION,
884                                                        dso_name);
885                         if (map == NULL)
886                                 continue;
887
888                         long_name = strdup(path);
889                         if (long_name == NULL) {
890                                 ret = -1;
891                                 goto out;
892                         }
893                         dso__set_long_name(map->dso, long_name, true);
894                         dso__kernel_module_get_build_id(map->dso, "");
895                 }
896         }
897
898 out:
899         closedir(dir);
900         return ret;
901 }
902
903 static int machine__set_modules_path(struct machine *machine)
904 {
905         char *version;
906         char modules_path[PATH_MAX];
907
908         version = get_kernel_version(machine->root_dir);
909         if (!version)
910                 return -1;
911
912         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
913                  machine->root_dir, version);
914         free(version);
915
916         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
917 }
918
919 static int machine__create_module(void *arg, const char *name, u64 start)
920 {
921         struct machine *machine = arg;
922         struct map *map;
923
924         map = machine__new_module(machine, start, name);
925         if (map == NULL)
926                 return -1;
927
928         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
929
930         return 0;
931 }
932
933 static int machine__create_modules(struct machine *machine)
934 {
935         const char *modules;
936         char path[PATH_MAX];
937
938         if (machine__is_default_guest(machine)) {
939                 modules = symbol_conf.default_guest_modules;
940         } else {
941                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
942                 modules = path;
943         }
944
945         if (symbol__restricted_filename(modules, "/proc/modules"))
946                 return -1;
947
948         if (modules__parse(modules, machine, machine__create_module))
949                 return -1;
950
951         if (!machine__set_modules_path(machine))
952                 return 0;
953
954         pr_debug("Problems setting modules path maps, continuing anyway...\n");
955
956         return 0;
957 }
958
959 int machine__create_kernel_maps(struct machine *machine)
960 {
961         struct dso *kernel = machine__get_kernel(machine);
962         const char *name;
963         u64 addr = machine__get_running_kernel_start(machine, &name);
964         if (!addr)
965                 return -1;
966
967         if (kernel == NULL ||
968             __machine__create_kernel_maps(machine, kernel) < 0)
969                 return -1;
970
971         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
972                 if (machine__is_host(machine))
973                         pr_debug("Problems creating module maps, "
974                                  "continuing anyway...\n");
975                 else
976                         pr_debug("Problems creating module maps for guest %d, "
977                                  "continuing anyway...\n", machine->pid);
978         }
979
980         /*
981          * Now that we have all the maps created, just set the ->end of them:
982          */
983         map_groups__fixup_end(&machine->kmaps);
984
985         if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
986                                              addr)) {
987                 machine__destroy_kernel_maps(machine);
988                 return -1;
989         }
990
991         return 0;
992 }
993
994 static void machine__set_kernel_mmap_len(struct machine *machine,
995                                          union perf_event *event)
996 {
997         int i;
998
999         for (i = 0; i < MAP__NR_TYPES; i++) {
1000                 machine->vmlinux_maps[i]->start = event->mmap.start;
1001                 machine->vmlinux_maps[i]->end   = (event->mmap.start +
1002                                                    event->mmap.len);
1003                 /*
1004                  * Be a bit paranoid here, some perf.data file came with
1005                  * a zero sized synthesized MMAP event for the kernel.
1006                  */
1007                 if (machine->vmlinux_maps[i]->end == 0)
1008                         machine->vmlinux_maps[i]->end = ~0ULL;
1009         }
1010 }
1011
1012 static bool machine__uses_kcore(struct machine *machine)
1013 {
1014         struct dso *dso;
1015
1016         list_for_each_entry(dso, &machine->kernel_dsos.head, node) {
1017                 if (dso__is_kcore(dso))
1018                         return true;
1019         }
1020
1021         return false;
1022 }
1023
1024 static int machine__process_kernel_mmap_event(struct machine *machine,
1025                                               union perf_event *event)
1026 {
1027         struct map *map;
1028         char kmmap_prefix[PATH_MAX];
1029         enum dso_kernel_type kernel_type;
1030         bool is_kernel_mmap;
1031
1032         /* If we have maps from kcore then we do not need or want any others */
1033         if (machine__uses_kcore(machine))
1034                 return 0;
1035
1036         machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1037         if (machine__is_host(machine))
1038                 kernel_type = DSO_TYPE_KERNEL;
1039         else
1040                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1041
1042         is_kernel_mmap = memcmp(event->mmap.filename,
1043                                 kmmap_prefix,
1044                                 strlen(kmmap_prefix) - 1) == 0;
1045         if (event->mmap.filename[0] == '/' ||
1046             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1047
1048                 char short_module_name[1024];
1049                 char *name, *dot;
1050
1051                 if (event->mmap.filename[0] == '/') {
1052                         name = strrchr(event->mmap.filename, '/');
1053                         if (name == NULL)
1054                                 goto out_problem;
1055
1056                         ++name; /* skip / */
1057                         dot = strrchr(name, '.');
1058                         if (dot == NULL)
1059                                 goto out_problem;
1060                         /* On some system, modules are compressed like .ko.gz */
1061                         if (is_supported_compression(dot + 1))
1062                                 dot -= 3;
1063                         if (!is_kmodule_extension(dot + 1))
1064                                 goto out_problem;
1065                         snprintf(short_module_name, sizeof(short_module_name),
1066                                         "[%.*s]", (int)(dot - name), name);
1067                         strxfrchar(short_module_name, '-', '_');
1068                 } else
1069                         strcpy(short_module_name, event->mmap.filename);
1070
1071                 map = machine__new_module(machine, event->mmap.start,
1072                                           event->mmap.filename);
1073                 if (map == NULL)
1074                         goto out_problem;
1075
1076                 name = strdup(short_module_name);
1077                 if (name == NULL)
1078                         goto out_problem;
1079
1080                 dso__set_short_name(map->dso, name, true);
1081                 map->end = map->start + event->mmap.len;
1082         } else if (is_kernel_mmap) {
1083                 const char *symbol_name = (event->mmap.filename +
1084                                 strlen(kmmap_prefix));
1085                 /*
1086                  * Should be there already, from the build-id table in
1087                  * the header.
1088                  */
1089                 struct dso *kernel = NULL;
1090                 struct dso *dso;
1091
1092                 list_for_each_entry(dso, &machine->kernel_dsos.head, node) {
1093                         if (is_kernel_module(dso->long_name, NULL))
1094                                 continue;
1095
1096                         kernel = dso;
1097                         break;
1098                 }
1099
1100                 if (kernel == NULL)
1101                         kernel = __dsos__findnew(&machine->kernel_dsos,
1102                                                  kmmap_prefix);
1103                 if (kernel == NULL)
1104                         goto out_problem;
1105
1106                 kernel->kernel = kernel_type;
1107                 if (__machine__create_kernel_maps(machine, kernel) < 0)
1108                         goto out_problem;
1109
1110                 if (strstr(kernel->long_name, "vmlinux"))
1111                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1112
1113                 machine__set_kernel_mmap_len(machine, event);
1114
1115                 /*
1116                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1117                  * symbol. Effectively having zero here means that at record
1118                  * time /proc/sys/kernel/kptr_restrict was non zero.
1119                  */
1120                 if (event->mmap.pgoff != 0) {
1121                         maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1122                                                          symbol_name,
1123                                                          event->mmap.pgoff);
1124                 }
1125
1126                 if (machine__is_default_guest(machine)) {
1127                         /*
1128                          * preload dso of guest kernel and modules
1129                          */
1130                         dso__load(kernel, machine->vmlinux_maps[MAP__FUNCTION],
1131                                   NULL);
1132                 }
1133         }
1134         return 0;
1135 out_problem:
1136         return -1;
1137 }
1138
1139 int machine__process_mmap2_event(struct machine *machine,
1140                                  union perf_event *event,
1141                                  struct perf_sample *sample __maybe_unused)
1142 {
1143         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1144         struct thread *thread;
1145         struct map *map;
1146         enum map_type type;
1147         int ret = 0;
1148
1149         if (dump_trace)
1150                 perf_event__fprintf_mmap2(event, stdout);
1151
1152         if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1153             cpumode == PERF_RECORD_MISC_KERNEL) {
1154                 ret = machine__process_kernel_mmap_event(machine, event);
1155                 if (ret < 0)
1156                         goto out_problem;
1157                 return 0;
1158         }
1159
1160         thread = machine__findnew_thread(machine, event->mmap2.pid,
1161                                         event->mmap2.tid);
1162         if (thread == NULL)
1163                 goto out_problem;
1164
1165         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1166                 type = MAP__VARIABLE;
1167         else
1168                 type = MAP__FUNCTION;
1169
1170         map = map__new(machine, event->mmap2.start,
1171                         event->mmap2.len, event->mmap2.pgoff,
1172                         event->mmap2.pid, event->mmap2.maj,
1173                         event->mmap2.min, event->mmap2.ino,
1174                         event->mmap2.ino_generation,
1175                         event->mmap2.prot,
1176                         event->mmap2.flags,
1177                         event->mmap2.filename, type, thread);
1178
1179         if (map == NULL)
1180                 goto out_problem;
1181
1182         thread__insert_map(thread, map);
1183         return 0;
1184
1185 out_problem:
1186         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1187         return 0;
1188 }
1189
1190 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1191                                 struct perf_sample *sample __maybe_unused)
1192 {
1193         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1194         struct thread *thread;
1195         struct map *map;
1196         enum map_type type;
1197         int ret = 0;
1198
1199         if (dump_trace)
1200                 perf_event__fprintf_mmap(event, stdout);
1201
1202         if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1203             cpumode == PERF_RECORD_MISC_KERNEL) {
1204                 ret = machine__process_kernel_mmap_event(machine, event);
1205                 if (ret < 0)
1206                         goto out_problem;
1207                 return 0;
1208         }
1209
1210         thread = machine__findnew_thread(machine, event->mmap.pid,
1211                                          event->mmap.tid);
1212         if (thread == NULL)
1213                 goto out_problem;
1214
1215         if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1216                 type = MAP__VARIABLE;
1217         else
1218                 type = MAP__FUNCTION;
1219
1220         map = map__new(machine, event->mmap.start,
1221                         event->mmap.len, event->mmap.pgoff,
1222                         event->mmap.pid, 0, 0, 0, 0, 0, 0,
1223                         event->mmap.filename,
1224                         type, thread);
1225
1226         if (map == NULL)
1227                 goto out_problem;
1228
1229         thread__insert_map(thread, map);
1230         return 0;
1231
1232 out_problem:
1233         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1234         return 0;
1235 }
1236
1237 static void machine__remove_thread(struct machine *machine, struct thread *th)
1238 {
1239         if (machine->last_match == th)
1240                 thread__zput(machine->last_match);
1241
1242         rb_erase(&th->rb_node, &machine->threads);
1243         /*
1244          * Move it first to the dead_threads list, then drop the reference,
1245          * if this is the last reference, then the thread__delete destructor
1246          * will be called and we will remove it from the dead_threads list.
1247          */
1248         list_add_tail(&th->node, &machine->dead_threads);
1249         thread__put(th);
1250 }
1251
1252 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1253                                 struct perf_sample *sample)
1254 {
1255         struct thread *thread = machine__find_thread(machine,
1256                                                      event->fork.pid,
1257                                                      event->fork.tid);
1258         struct thread *parent = machine__findnew_thread(machine,
1259                                                         event->fork.ppid,
1260                                                         event->fork.ptid);
1261
1262         /* if a thread currently exists for the thread id remove it */
1263         if (thread != NULL)
1264                 machine__remove_thread(machine, thread);
1265
1266         thread = machine__findnew_thread(machine, event->fork.pid,
1267                                          event->fork.tid);
1268         if (dump_trace)
1269                 perf_event__fprintf_task(event, stdout);
1270
1271         if (thread == NULL || parent == NULL ||
1272             thread__fork(thread, parent, sample->time) < 0) {
1273                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1274                 return -1;
1275         }
1276
1277         return 0;
1278 }
1279
1280 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1281                                 struct perf_sample *sample __maybe_unused)
1282 {
1283         struct thread *thread = machine__find_thread(machine,
1284                                                      event->fork.pid,
1285                                                      event->fork.tid);
1286
1287         if (dump_trace)
1288                 perf_event__fprintf_task(event, stdout);
1289
1290         if (thread != NULL)
1291                 thread__exited(thread);
1292
1293         return 0;
1294 }
1295
1296 int machine__process_event(struct machine *machine, union perf_event *event,
1297                            struct perf_sample *sample)
1298 {
1299         int ret;
1300
1301         switch (event->header.type) {
1302         case PERF_RECORD_COMM:
1303                 ret = machine__process_comm_event(machine, event, sample); break;
1304         case PERF_RECORD_MMAP:
1305                 ret = machine__process_mmap_event(machine, event, sample); break;
1306         case PERF_RECORD_MMAP2:
1307                 ret = machine__process_mmap2_event(machine, event, sample); break;
1308         case PERF_RECORD_FORK:
1309                 ret = machine__process_fork_event(machine, event, sample); break;
1310         case PERF_RECORD_EXIT:
1311                 ret = machine__process_exit_event(machine, event, sample); break;
1312         case PERF_RECORD_LOST:
1313                 ret = machine__process_lost_event(machine, event, sample); break;
1314         default:
1315                 ret = -1;
1316                 break;
1317         }
1318
1319         return ret;
1320 }
1321
1322 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1323 {
1324         if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1325                 return 1;
1326         return 0;
1327 }
1328
1329 static void ip__resolve_ams(struct thread *thread,
1330                             struct addr_map_symbol *ams,
1331                             u64 ip)
1332 {
1333         struct addr_location al;
1334
1335         memset(&al, 0, sizeof(al));
1336         /*
1337          * We cannot use the header.misc hint to determine whether a
1338          * branch stack address is user, kernel, guest, hypervisor.
1339          * Branches may straddle the kernel/user/hypervisor boundaries.
1340          * Thus, we have to try consecutively until we find a match
1341          * or else, the symbol is unknown
1342          */
1343         thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1344
1345         ams->addr = ip;
1346         ams->al_addr = al.addr;
1347         ams->sym = al.sym;
1348         ams->map = al.map;
1349 }
1350
1351 static void ip__resolve_data(struct thread *thread,
1352                              u8 m, struct addr_map_symbol *ams, u64 addr)
1353 {
1354         struct addr_location al;
1355
1356         memset(&al, 0, sizeof(al));
1357
1358         thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1359         if (al.map == NULL) {
1360                 /*
1361                  * some shared data regions have execute bit set which puts
1362                  * their mapping in the MAP__FUNCTION type array.
1363                  * Check there as a fallback option before dropping the sample.
1364                  */
1365                 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1366         }
1367
1368         ams->addr = addr;
1369         ams->al_addr = al.addr;
1370         ams->sym = al.sym;
1371         ams->map = al.map;
1372 }
1373
1374 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1375                                      struct addr_location *al)
1376 {
1377         struct mem_info *mi = zalloc(sizeof(*mi));
1378
1379         if (!mi)
1380                 return NULL;
1381
1382         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1383         ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1384         mi->data_src.val = sample->data_src;
1385
1386         return mi;
1387 }
1388
1389 static int add_callchain_ip(struct thread *thread,
1390                             struct symbol **parent,
1391                             struct addr_location *root_al,
1392                             bool branch_history,
1393                             u64 ip)
1394 {
1395         struct addr_location al;
1396
1397         al.filtered = 0;
1398         al.sym = NULL;
1399         if (branch_history)
1400                 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1401                                                    ip, &al);
1402         else {
1403                 u8 cpumode = PERF_RECORD_MISC_USER;
1404
1405                 if (ip >= PERF_CONTEXT_MAX) {
1406                         switch (ip) {
1407                         case PERF_CONTEXT_HV:
1408                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;
1409                                 break;
1410                         case PERF_CONTEXT_KERNEL:
1411                                 cpumode = PERF_RECORD_MISC_KERNEL;
1412                                 break;
1413                         case PERF_CONTEXT_USER:
1414                                 cpumode = PERF_RECORD_MISC_USER;
1415                                 break;
1416                         default:
1417                                 pr_debug("invalid callchain context: "
1418                                          "%"PRId64"\n", (s64) ip);
1419                                 /*
1420                                  * It seems the callchain is corrupted.
1421                                  * Discard all.
1422                                  */
1423                                 callchain_cursor_reset(&callchain_cursor);
1424                                 return 1;
1425                         }
1426                         return 0;
1427                 }
1428                 thread__find_addr_location(thread, cpumode, MAP__FUNCTION,
1429                                    ip, &al);
1430         }
1431
1432         if (al.sym != NULL) {
1433                 if (sort__has_parent && !*parent &&
1434                     symbol__match_regex(al.sym, &parent_regex))
1435                         *parent = al.sym;
1436                 else if (have_ignore_callees && root_al &&
1437                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
1438                         /* Treat this symbol as the root,
1439                            forgetting its callees. */
1440                         *root_al = al;
1441                         callchain_cursor_reset(&callchain_cursor);
1442                 }
1443         }
1444
1445         return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1446 }
1447
1448 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1449                                            struct addr_location *al)
1450 {
1451         unsigned int i;
1452         const struct branch_stack *bs = sample->branch_stack;
1453         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1454
1455         if (!bi)
1456                 return NULL;
1457
1458         for (i = 0; i < bs->nr; i++) {
1459                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1460                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1461                 bi[i].flags = bs->entries[i].flags;
1462         }
1463         return bi;
1464 }
1465
1466 #define CHASHSZ 127
1467 #define CHASHBITS 7
1468 #define NO_ENTRY 0xff
1469
1470 #define PERF_MAX_BRANCH_DEPTH 127
1471
1472 /* Remove loops. */
1473 static int remove_loops(struct branch_entry *l, int nr)
1474 {
1475         int i, j, off;
1476         unsigned char chash[CHASHSZ];
1477
1478         memset(chash, NO_ENTRY, sizeof(chash));
1479
1480         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1481
1482         for (i = 0; i < nr; i++) {
1483                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1484
1485                 /* no collision handling for now */
1486                 if (chash[h] == NO_ENTRY) {
1487                         chash[h] = i;
1488                 } else if (l[chash[h]].from == l[i].from) {
1489                         bool is_loop = true;
1490                         /* check if it is a real loop */
1491                         off = 0;
1492                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
1493                                 if (l[j].from != l[i + off].from) {
1494                                         is_loop = false;
1495                                         break;
1496                                 }
1497                         if (is_loop) {
1498                                 memmove(l + i, l + i + off,
1499                                         (nr - (i + off)) * sizeof(*l));
1500                                 nr -= off;
1501                         }
1502                 }
1503         }
1504         return nr;
1505 }
1506
1507 /*
1508  * Recolve LBR callstack chain sample
1509  * Return:
1510  * 1 on success get LBR callchain information
1511  * 0 no available LBR callchain information, should try fp
1512  * negative error code on other errors.
1513  */
1514 static int resolve_lbr_callchain_sample(struct thread *thread,
1515                                         struct perf_sample *sample,
1516                                         struct symbol **parent,
1517                                         struct addr_location *root_al,
1518                                         int max_stack)
1519 {
1520         struct ip_callchain *chain = sample->callchain;
1521         int chain_nr = min(max_stack, (int)chain->nr);
1522         int i, j, err;
1523         u64 ip;
1524
1525         for (i = 0; i < chain_nr; i++) {
1526                 if (chain->ips[i] == PERF_CONTEXT_USER)
1527                         break;
1528         }
1529
1530         /* LBR only affects the user callchain */
1531         if (i != chain_nr) {
1532                 struct branch_stack *lbr_stack = sample->branch_stack;
1533                 int lbr_nr = lbr_stack->nr;
1534                 /*
1535                  * LBR callstack can only get user call chain.
1536                  * The mix_chain_nr is kernel call chain
1537                  * number plus LBR user call chain number.
1538                  * i is kernel call chain number,
1539                  * 1 is PERF_CONTEXT_USER,
1540                  * lbr_nr + 1 is the user call chain number.
1541                  * For details, please refer to the comments
1542                  * in callchain__printf
1543                  */
1544                 int mix_chain_nr = i + 1 + lbr_nr + 1;
1545
1546                 if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
1547                         pr_warning("corrupted callchain. skipping...\n");
1548                         return 0;
1549                 }
1550
1551                 for (j = 0; j < mix_chain_nr; j++) {
1552                         if (callchain_param.order == ORDER_CALLEE) {
1553                                 if (j < i + 1)
1554                                         ip = chain->ips[j];
1555                                 else if (j > i + 1)
1556                                         ip = lbr_stack->entries[j - i - 2].from;
1557                                 else
1558                                         ip = lbr_stack->entries[0].to;
1559                         } else {
1560                                 if (j < lbr_nr)
1561                                         ip = lbr_stack->entries[lbr_nr - j - 1].from;
1562                                 else if (j > lbr_nr)
1563                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
1564                                 else
1565                                         ip = lbr_stack->entries[0].to;
1566                         }
1567
1568                         err = add_callchain_ip(thread, parent, root_al, false, ip);
1569                         if (err)
1570                                 return (err < 0) ? err : 0;
1571                 }
1572                 return 1;
1573         }
1574
1575         return 0;
1576 }
1577
1578 static int thread__resolve_callchain_sample(struct thread *thread,
1579                                             struct perf_evsel *evsel,
1580                                             struct perf_sample *sample,
1581                                             struct symbol **parent,
1582                                             struct addr_location *root_al,
1583                                             int max_stack)
1584 {
1585         struct branch_stack *branch = sample->branch_stack;
1586         struct ip_callchain *chain = sample->callchain;
1587         int chain_nr = min(max_stack, (int)chain->nr);
1588         int i, j, err;
1589         int skip_idx = -1;
1590         int first_call = 0;
1591
1592         callchain_cursor_reset(&callchain_cursor);
1593
1594         if (has_branch_callstack(evsel)) {
1595                 err = resolve_lbr_callchain_sample(thread, sample, parent,
1596                                                    root_al, max_stack);
1597                 if (err)
1598                         return (err < 0) ? err : 0;
1599         }
1600
1601         /*
1602          * Based on DWARF debug information, some architectures skip
1603          * a callchain entry saved by the kernel.
1604          */
1605         if (chain->nr < PERF_MAX_STACK_DEPTH)
1606                 skip_idx = arch_skip_callchain_idx(thread, chain);
1607
1608         /*
1609          * Add branches to call stack for easier browsing. This gives
1610          * more context for a sample than just the callers.
1611          *
1612          * This uses individual histograms of paths compared to the
1613          * aggregated histograms the normal LBR mode uses.
1614          *
1615          * Limitations for now:
1616          * - No extra filters
1617          * - No annotations (should annotate somehow)
1618          */
1619
1620         if (branch && callchain_param.branch_callstack) {
1621                 int nr = min(max_stack, (int)branch->nr);
1622                 struct branch_entry be[nr];
1623
1624                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1625                         pr_warning("corrupted branch chain. skipping...\n");
1626                         goto check_calls;
1627                 }
1628
1629                 for (i = 0; i < nr; i++) {
1630                         if (callchain_param.order == ORDER_CALLEE) {
1631                                 be[i] = branch->entries[i];
1632                                 /*
1633                                  * Check for overlap into the callchain.
1634                                  * The return address is one off compared to
1635                                  * the branch entry. To adjust for this
1636                                  * assume the calling instruction is not longer
1637                                  * than 8 bytes.
1638                                  */
1639                                 if (i == skip_idx ||
1640                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
1641                                         first_call++;
1642                                 else if (be[i].from < chain->ips[first_call] &&
1643                                     be[i].from >= chain->ips[first_call] - 8)
1644                                         first_call++;
1645                         } else
1646                                 be[i] = branch->entries[branch->nr - i - 1];
1647                 }
1648
1649                 nr = remove_loops(be, nr);
1650
1651                 for (i = 0; i < nr; i++) {
1652                         err = add_callchain_ip(thread, parent, root_al,
1653                                                true, be[i].to);
1654                         if (!err)
1655                                 err = add_callchain_ip(thread, parent, root_al,
1656                                                        true, be[i].from);
1657                         if (err == -EINVAL)
1658                                 break;
1659                         if (err)
1660                                 return err;
1661                 }
1662                 chain_nr -= nr;
1663         }
1664
1665 check_calls:
1666         if (chain->nr > PERF_MAX_STACK_DEPTH) {
1667                 pr_warning("corrupted callchain. skipping...\n");
1668                 return 0;
1669         }
1670
1671         for (i = first_call; i < chain_nr; i++) {
1672                 u64 ip;
1673
1674                 if (callchain_param.order == ORDER_CALLEE)
1675                         j = i;
1676                 else
1677                         j = chain->nr - i - 1;
1678
1679 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1680                 if (j == skip_idx)
1681                         continue;
1682 #endif
1683                 ip = chain->ips[j];
1684
1685                 err = add_callchain_ip(thread, parent, root_al, false, ip);
1686
1687                 if (err)
1688                         return (err < 0) ? err : 0;
1689         }
1690
1691         return 0;
1692 }
1693
1694 static int unwind_entry(struct unwind_entry *entry, void *arg)
1695 {
1696         struct callchain_cursor *cursor = arg;
1697         return callchain_cursor_append(cursor, entry->ip,
1698                                        entry->map, entry->sym);
1699 }
1700
1701 int thread__resolve_callchain(struct thread *thread,
1702                               struct perf_evsel *evsel,
1703                               struct perf_sample *sample,
1704                               struct symbol **parent,
1705                               struct addr_location *root_al,
1706                               int max_stack)
1707 {
1708         int ret = thread__resolve_callchain_sample(thread, evsel,
1709                                                    sample, parent,
1710                                                    root_al, max_stack);
1711         if (ret)
1712                 return ret;
1713
1714         /* Can we do dwarf post unwind? */
1715         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1716               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1717                 return 0;
1718
1719         /* Bail out if nothing was captured. */
1720         if ((!sample->user_regs.regs) ||
1721             (!sample->user_stack.size))
1722                 return 0;
1723
1724         return unwind__get_entries(unwind_entry, &callchain_cursor,
1725                                    thread, sample, max_stack);
1726
1727 }
1728
1729 int machine__for_each_thread(struct machine *machine,
1730                              int (*fn)(struct thread *thread, void *p),
1731                              void *priv)
1732 {
1733         struct rb_node *nd;
1734         struct thread *thread;
1735         int rc = 0;
1736
1737         for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1738                 thread = rb_entry(nd, struct thread, rb_node);
1739                 rc = fn(thread, priv);
1740                 if (rc != 0)
1741                         return rc;
1742         }
1743
1744         list_for_each_entry(thread, &machine->dead_threads, node) {
1745                 rc = fn(thread, priv);
1746                 if (rc != 0)
1747                         return rc;
1748         }
1749         return rc;
1750 }
1751
1752 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1753                                   struct target *target, struct thread_map *threads,
1754                                   perf_event__handler_t process, bool data_mmap)
1755 {
1756         if (target__has_task(target))
1757                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
1758         else if (target__has_cpu(target))
1759                 return perf_event__synthesize_threads(tool, process, machine, data_mmap);
1760         /* command specified */
1761         return 0;
1762 }
1763
1764 pid_t machine__get_current_tid(struct machine *machine, int cpu)
1765 {
1766         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
1767                 return -1;
1768
1769         return machine->current_tid[cpu];
1770 }
1771
1772 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
1773                              pid_t tid)
1774 {
1775         struct thread *thread;
1776
1777         if (cpu < 0)
1778                 return -EINVAL;
1779
1780         if (!machine->current_tid) {
1781                 int i;
1782
1783                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
1784                 if (!machine->current_tid)
1785                         return -ENOMEM;
1786                 for (i = 0; i < MAX_NR_CPUS; i++)
1787                         machine->current_tid[i] = -1;
1788         }
1789
1790         if (cpu >= MAX_NR_CPUS) {
1791                 pr_err("Requested CPU %d too large. ", cpu);
1792                 pr_err("Consider raising MAX_NR_CPUS\n");
1793                 return -EINVAL;
1794         }
1795
1796         machine->current_tid[cpu] = tid;
1797
1798         thread = machine__findnew_thread(machine, pid, tid);
1799         if (!thread)
1800                 return -ENOMEM;
1801
1802         thread->cpu = cpu;
1803
1804         return 0;
1805 }
1806
1807 int machine__get_kernel_start(struct machine *machine)
1808 {
1809         struct map *map = machine__kernel_map(machine, MAP__FUNCTION);
1810         int err = 0;
1811
1812         /*
1813          * The only addresses above 2^63 are kernel addresses of a 64-bit
1814          * kernel.  Note that addresses are unsigned so that on a 32-bit system
1815          * all addresses including kernel addresses are less than 2^32.  In
1816          * that case (32-bit system), if the kernel mapping is unknown, all
1817          * addresses will be assumed to be in user space - see
1818          * machine__kernel_ip().
1819          */
1820         machine->kernel_start = 1ULL << 63;
1821         if (map) {
1822                 err = map__load(map, machine->symbol_filter);
1823                 if (map->start)
1824                         machine->kernel_start = map->start;
1825         }
1826         return err;
1827 }