Merge tag 'powerpc-4.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-microblaze.git] / tools / perf / util / intel-pt.c
1 /*
2  * intel_pt.c: Intel Processor Trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15
16 #include <stdio.h>
17 #include <stdbool.h>
18 #include <errno.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21
22 #include "../perf.h"
23 #include "session.h"
24 #include "machine.h"
25 #include "sort.h"
26 #include "tool.h"
27 #include "event.h"
28 #include "evlist.h"
29 #include "evsel.h"
30 #include "map.h"
31 #include "color.h"
32 #include "util.h"
33 #include "thread.h"
34 #include "thread-stack.h"
35 #include "symbol.h"
36 #include "callchain.h"
37 #include "dso.h"
38 #include "debug.h"
39 #include "auxtrace.h"
40 #include "tsc.h"
41 #include "intel-pt.h"
42 #include "config.h"
43
44 #include "intel-pt-decoder/intel-pt-log.h"
45 #include "intel-pt-decoder/intel-pt-decoder.h"
46 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
47 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
48
49 #define MAX_TIMESTAMP (~0ULL)
50
51 struct intel_pt {
52         struct auxtrace auxtrace;
53         struct auxtrace_queues queues;
54         struct auxtrace_heap heap;
55         u32 auxtrace_type;
56         struct perf_session *session;
57         struct machine *machine;
58         struct perf_evsel *switch_evsel;
59         struct thread *unknown_thread;
60         bool timeless_decoding;
61         bool sampling_mode;
62         bool snapshot_mode;
63         bool per_cpu_mmaps;
64         bool have_tsc;
65         bool data_queued;
66         bool est_tsc;
67         bool sync_switch;
68         bool mispred_all;
69         int have_sched_switch;
70         u32 pmu_type;
71         u64 kernel_start;
72         u64 switch_ip;
73         u64 ptss_ip;
74
75         struct perf_tsc_conversion tc;
76         bool cap_user_time_zero;
77
78         struct itrace_synth_opts synth_opts;
79
80         bool sample_instructions;
81         u64 instructions_sample_type;
82         u64 instructions_sample_period;
83         u64 instructions_id;
84
85         bool sample_branches;
86         u32 branches_filter;
87         u64 branches_sample_type;
88         u64 branches_id;
89
90         bool sample_transactions;
91         u64 transactions_sample_type;
92         u64 transactions_id;
93
94         bool synth_needs_swap;
95
96         u64 tsc_bit;
97         u64 mtc_bit;
98         u64 mtc_freq_bits;
99         u32 tsc_ctc_ratio_n;
100         u32 tsc_ctc_ratio_d;
101         u64 cyc_bit;
102         u64 noretcomp_bit;
103         unsigned max_non_turbo_ratio;
104
105         unsigned long num_events;
106
107         char *filter;
108         struct addr_filters filts;
109 };
110
111 enum switch_state {
112         INTEL_PT_SS_NOT_TRACING,
113         INTEL_PT_SS_UNKNOWN,
114         INTEL_PT_SS_TRACING,
115         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
116         INTEL_PT_SS_EXPECTING_SWITCH_IP,
117 };
118
119 struct intel_pt_queue {
120         struct intel_pt *pt;
121         unsigned int queue_nr;
122         struct auxtrace_buffer *buffer;
123         void *decoder;
124         const struct intel_pt_state *state;
125         struct ip_callchain *chain;
126         struct branch_stack *last_branch;
127         struct branch_stack *last_branch_rb;
128         size_t last_branch_pos;
129         union perf_event *event_buf;
130         bool on_heap;
131         bool stop;
132         bool step_through_buffers;
133         bool use_buffer_pid_tid;
134         pid_t pid, tid;
135         int cpu;
136         int switch_state;
137         pid_t next_tid;
138         struct thread *thread;
139         bool exclude_kernel;
140         bool have_sample;
141         u64 time;
142         u64 timestamp;
143         u32 flags;
144         u16 insn_len;
145         u64 last_insn_cnt;
146 };
147
148 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
149                           unsigned char *buf, size_t len)
150 {
151         struct intel_pt_pkt packet;
152         size_t pos = 0;
153         int ret, pkt_len, i;
154         char desc[INTEL_PT_PKT_DESC_MAX];
155         const char *color = PERF_COLOR_BLUE;
156
157         color_fprintf(stdout, color,
158                       ". ... Intel Processor Trace data: size %zu bytes\n",
159                       len);
160
161         while (len) {
162                 ret = intel_pt_get_packet(buf, len, &packet);
163                 if (ret > 0)
164                         pkt_len = ret;
165                 else
166                         pkt_len = 1;
167                 printf(".");
168                 color_fprintf(stdout, color, "  %08x: ", pos);
169                 for (i = 0; i < pkt_len; i++)
170                         color_fprintf(stdout, color, " %02x", buf[i]);
171                 for (; i < 16; i++)
172                         color_fprintf(stdout, color, "   ");
173                 if (ret > 0) {
174                         ret = intel_pt_pkt_desc(&packet, desc,
175                                                 INTEL_PT_PKT_DESC_MAX);
176                         if (ret > 0)
177                                 color_fprintf(stdout, color, " %s\n", desc);
178                 } else {
179                         color_fprintf(stdout, color, " Bad packet!\n");
180                 }
181                 pos += pkt_len;
182                 buf += pkt_len;
183                 len -= pkt_len;
184         }
185 }
186
187 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
188                                 size_t len)
189 {
190         printf(".\n");
191         intel_pt_dump(pt, buf, len);
192 }
193
194 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
195                                    struct auxtrace_buffer *b)
196 {
197         void *start;
198
199         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
200                                       pt->have_tsc);
201         if (!start)
202                 return -EINVAL;
203         b->use_size = b->data + b->size - start;
204         b->use_data = start;
205         return 0;
206 }
207
208 static void intel_pt_use_buffer_pid_tid(struct intel_pt_queue *ptq,
209                                         struct auxtrace_queue *queue,
210                                         struct auxtrace_buffer *buffer)
211 {
212         if (queue->cpu == -1 && buffer->cpu != -1)
213                 ptq->cpu = buffer->cpu;
214
215         ptq->pid = buffer->pid;
216         ptq->tid = buffer->tid;
217
218         intel_pt_log("queue %u cpu %d pid %d tid %d\n",
219                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
220
221         thread__zput(ptq->thread);
222
223         if (ptq->tid != -1) {
224                 if (ptq->pid != -1)
225                         ptq->thread = machine__findnew_thread(ptq->pt->machine,
226                                                               ptq->pid,
227                                                               ptq->tid);
228                 else
229                         ptq->thread = machine__find_thread(ptq->pt->machine, -1,
230                                                            ptq->tid);
231         }
232 }
233
234 /* This function assumes data is processed sequentially only */
235 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
236 {
237         struct intel_pt_queue *ptq = data;
238         struct auxtrace_buffer *buffer = ptq->buffer, *old_buffer = buffer;
239         struct auxtrace_queue *queue;
240
241         if (ptq->stop) {
242                 b->len = 0;
243                 return 0;
244         }
245
246         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
247 next:
248         buffer = auxtrace_buffer__next(queue, buffer);
249         if (!buffer) {
250                 if (old_buffer)
251                         auxtrace_buffer__drop_data(old_buffer);
252                 b->len = 0;
253                 return 0;
254         }
255
256         ptq->buffer = buffer;
257
258         if (!buffer->data) {
259                 int fd = perf_data_file__fd(ptq->pt->session->file);
260
261                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
262                 if (!buffer->data)
263                         return -ENOMEM;
264         }
265
266         if (ptq->pt->snapshot_mode && !buffer->consecutive && old_buffer &&
267             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
268                 return -ENOMEM;
269
270         if (buffer->use_data) {
271                 b->len = buffer->use_size;
272                 b->buf = buffer->use_data;
273         } else {
274                 b->len = buffer->size;
275                 b->buf = buffer->data;
276         }
277         b->ref_timestamp = buffer->reference;
278
279         /*
280          * If in snapshot mode and the buffer has no usable data, get next
281          * buffer and again check overlap against old_buffer.
282          */
283         if (ptq->pt->snapshot_mode && !b->len)
284                 goto next;
285
286         if (old_buffer)
287                 auxtrace_buffer__drop_data(old_buffer);
288
289         if (!old_buffer || ptq->pt->sampling_mode || (ptq->pt->snapshot_mode &&
290                                                       !buffer->consecutive)) {
291                 b->consecutive = false;
292                 b->trace_nr = buffer->buffer_nr + 1;
293         } else {
294                 b->consecutive = true;
295         }
296
297         if (ptq->use_buffer_pid_tid && (ptq->pid != buffer->pid ||
298                                         ptq->tid != buffer->tid))
299                 intel_pt_use_buffer_pid_tid(ptq, queue, buffer);
300
301         if (ptq->step_through_buffers)
302                 ptq->stop = true;
303
304         if (!b->len)
305                 return intel_pt_get_trace(b, data);
306
307         return 0;
308 }
309
310 struct intel_pt_cache_entry {
311         struct auxtrace_cache_entry     entry;
312         u64                             insn_cnt;
313         u64                             byte_cnt;
314         enum intel_pt_insn_op           op;
315         enum intel_pt_insn_branch       branch;
316         int                             length;
317         int32_t                         rel;
318 };
319
320 static int intel_pt_config_div(const char *var, const char *value, void *data)
321 {
322         int *d = data;
323         long val;
324
325         if (!strcmp(var, "intel-pt.cache-divisor")) {
326                 val = strtol(value, NULL, 0);
327                 if (val > 0 && val <= INT_MAX)
328                         *d = val;
329         }
330
331         return 0;
332 }
333
334 static int intel_pt_cache_divisor(void)
335 {
336         static int d;
337
338         if (d)
339                 return d;
340
341         perf_config(intel_pt_config_div, &d);
342
343         if (!d)
344                 d = 64;
345
346         return d;
347 }
348
349 static unsigned int intel_pt_cache_size(struct dso *dso,
350                                         struct machine *machine)
351 {
352         off_t size;
353
354         size = dso__data_size(dso, machine);
355         size /= intel_pt_cache_divisor();
356         if (size < 1000)
357                 return 10;
358         if (size > (1 << 21))
359                 return 21;
360         return 32 - __builtin_clz(size);
361 }
362
363 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
364                                              struct machine *machine)
365 {
366         struct auxtrace_cache *c;
367         unsigned int bits;
368
369         if (dso->auxtrace_cache)
370                 return dso->auxtrace_cache;
371
372         bits = intel_pt_cache_size(dso, machine);
373
374         /* Ignoring cache creation failure */
375         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
376
377         dso->auxtrace_cache = c;
378
379         return c;
380 }
381
382 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
383                               u64 offset, u64 insn_cnt, u64 byte_cnt,
384                               struct intel_pt_insn *intel_pt_insn)
385 {
386         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
387         struct intel_pt_cache_entry *e;
388         int err;
389
390         if (!c)
391                 return -ENOMEM;
392
393         e = auxtrace_cache__alloc_entry(c);
394         if (!e)
395                 return -ENOMEM;
396
397         e->insn_cnt = insn_cnt;
398         e->byte_cnt = byte_cnt;
399         e->op = intel_pt_insn->op;
400         e->branch = intel_pt_insn->branch;
401         e->length = intel_pt_insn->length;
402         e->rel = intel_pt_insn->rel;
403
404         err = auxtrace_cache__add(c, offset, &e->entry);
405         if (err)
406                 auxtrace_cache__free_entry(c, e);
407
408         return err;
409 }
410
411 static struct intel_pt_cache_entry *
412 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
413 {
414         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
415
416         if (!c)
417                 return NULL;
418
419         return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
420 }
421
422 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
423                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
424                                    uint64_t to_ip, uint64_t max_insn_cnt,
425                                    void *data)
426 {
427         struct intel_pt_queue *ptq = data;
428         struct machine *machine = ptq->pt->machine;
429         struct thread *thread;
430         struct addr_location al;
431         unsigned char buf[1024];
432         size_t bufsz;
433         ssize_t len;
434         int x86_64;
435         u8 cpumode;
436         u64 offset, start_offset, start_ip;
437         u64 insn_cnt = 0;
438         bool one_map = true;
439
440         if (to_ip && *ip == to_ip)
441                 goto out_no_cache;
442
443         bufsz = intel_pt_insn_max_size();
444
445         if (*ip >= ptq->pt->kernel_start)
446                 cpumode = PERF_RECORD_MISC_KERNEL;
447         else
448                 cpumode = PERF_RECORD_MISC_USER;
449
450         thread = ptq->thread;
451         if (!thread) {
452                 if (cpumode != PERF_RECORD_MISC_KERNEL)
453                         return -EINVAL;
454                 thread = ptq->pt->unknown_thread;
455         }
456
457         while (1) {
458                 thread__find_addr_map(thread, cpumode, MAP__FUNCTION, *ip, &al);
459                 if (!al.map || !al.map->dso)
460                         return -EINVAL;
461
462                 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
463                     dso__data_status_seen(al.map->dso,
464                                           DSO_DATA_STATUS_SEEN_ITRACE))
465                         return -ENOENT;
466
467                 offset = al.map->map_ip(al.map, *ip);
468
469                 if (!to_ip && one_map) {
470                         struct intel_pt_cache_entry *e;
471
472                         e = intel_pt_cache_lookup(al.map->dso, machine, offset);
473                         if (e &&
474                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
475                                 *insn_cnt_ptr = e->insn_cnt;
476                                 *ip += e->byte_cnt;
477                                 intel_pt_insn->op = e->op;
478                                 intel_pt_insn->branch = e->branch;
479                                 intel_pt_insn->length = e->length;
480                                 intel_pt_insn->rel = e->rel;
481                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
482                                 return 0;
483                         }
484                 }
485
486                 start_offset = offset;
487                 start_ip = *ip;
488
489                 /* Load maps to ensure dso->is_64_bit has been updated */
490                 map__load(al.map);
491
492                 x86_64 = al.map->dso->is_64_bit;
493
494                 while (1) {
495                         len = dso__data_read_offset(al.map->dso, machine,
496                                                     offset, buf, bufsz);
497                         if (len <= 0)
498                                 return -EINVAL;
499
500                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
501                                 return -EINVAL;
502
503                         intel_pt_log_insn(intel_pt_insn, *ip);
504
505                         insn_cnt += 1;
506
507                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
508                                 goto out;
509
510                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
511                                 goto out_no_cache;
512
513                         *ip += intel_pt_insn->length;
514
515                         if (to_ip && *ip == to_ip)
516                                 goto out_no_cache;
517
518                         if (*ip >= al.map->end)
519                                 break;
520
521                         offset += intel_pt_insn->length;
522                 }
523                 one_map = false;
524         }
525 out:
526         *insn_cnt_ptr = insn_cnt;
527
528         if (!one_map)
529                 goto out_no_cache;
530
531         /*
532          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
533          * entries.
534          */
535         if (to_ip) {
536                 struct intel_pt_cache_entry *e;
537
538                 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
539                 if (e)
540                         return 0;
541         }
542
543         /* Ignore cache errors */
544         intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
545                            *ip - start_ip, intel_pt_insn);
546
547         return 0;
548
549 out_no_cache:
550         *insn_cnt_ptr = insn_cnt;
551         return 0;
552 }
553
554 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
555                                   uint64_t offset, const char *filename)
556 {
557         struct addr_filter *filt;
558         bool have_filter   = false;
559         bool hit_tracestop = false;
560         bool hit_filter    = false;
561
562         list_for_each_entry(filt, &pt->filts.head, list) {
563                 if (filt->start)
564                         have_filter = true;
565
566                 if ((filename && !filt->filename) ||
567                     (!filename && filt->filename) ||
568                     (filename && strcmp(filename, filt->filename)))
569                         continue;
570
571                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
572                         continue;
573
574                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
575                              ip, offset, filename ? filename : "[kernel]",
576                              filt->start ? "filter" : "stop",
577                              filt->addr, filt->size);
578
579                 if (filt->start)
580                         hit_filter = true;
581                 else
582                         hit_tracestop = true;
583         }
584
585         if (!hit_tracestop && !hit_filter)
586                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
587                              ip, offset, filename ? filename : "[kernel]");
588
589         return hit_tracestop || (have_filter && !hit_filter);
590 }
591
592 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
593 {
594         struct intel_pt_queue *ptq = data;
595         struct thread *thread;
596         struct addr_location al;
597         u8 cpumode;
598         u64 offset;
599
600         if (ip >= ptq->pt->kernel_start)
601                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
602
603         cpumode = PERF_RECORD_MISC_USER;
604
605         thread = ptq->thread;
606         if (!thread)
607                 return -EINVAL;
608
609         thread__find_addr_map(thread, cpumode, MAP__FUNCTION, ip, &al);
610         if (!al.map || !al.map->dso)
611                 return -EINVAL;
612
613         offset = al.map->map_ip(al.map, ip);
614
615         return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
616                                      al.map->dso->long_name);
617 }
618
619 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
620 {
621         return __intel_pt_pgd_ip(ip, data) > 0;
622 }
623
624 static bool intel_pt_get_config(struct intel_pt *pt,
625                                 struct perf_event_attr *attr, u64 *config)
626 {
627         if (attr->type == pt->pmu_type) {
628                 if (config)
629                         *config = attr->config;
630                 return true;
631         }
632
633         return false;
634 }
635
636 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
637 {
638         struct perf_evsel *evsel;
639
640         evlist__for_each_entry(pt->session->evlist, evsel) {
641                 if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
642                     !evsel->attr.exclude_kernel)
643                         return false;
644         }
645         return true;
646 }
647
648 static bool intel_pt_return_compression(struct intel_pt *pt)
649 {
650         struct perf_evsel *evsel;
651         u64 config;
652
653         if (!pt->noretcomp_bit)
654                 return true;
655
656         evlist__for_each_entry(pt->session->evlist, evsel) {
657                 if (intel_pt_get_config(pt, &evsel->attr, &config) &&
658                     (config & pt->noretcomp_bit))
659                         return false;
660         }
661         return true;
662 }
663
664 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
665 {
666         struct perf_evsel *evsel;
667         unsigned int shift;
668         u64 config;
669
670         if (!pt->mtc_freq_bits)
671                 return 0;
672
673         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
674                 config >>= 1;
675
676         evlist__for_each_entry(pt->session->evlist, evsel) {
677                 if (intel_pt_get_config(pt, &evsel->attr, &config))
678                         return (config & pt->mtc_freq_bits) >> shift;
679         }
680         return 0;
681 }
682
683 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
684 {
685         struct perf_evsel *evsel;
686         bool timeless_decoding = true;
687         u64 config;
688
689         if (!pt->tsc_bit || !pt->cap_user_time_zero)
690                 return true;
691
692         evlist__for_each_entry(pt->session->evlist, evsel) {
693                 if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME))
694                         return true;
695                 if (intel_pt_get_config(pt, &evsel->attr, &config)) {
696                         if (config & pt->tsc_bit)
697                                 timeless_decoding = false;
698                         else
699                                 return true;
700                 }
701         }
702         return timeless_decoding;
703 }
704
705 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
706 {
707         struct perf_evsel *evsel;
708
709         evlist__for_each_entry(pt->session->evlist, evsel) {
710                 if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
711                     !evsel->attr.exclude_kernel)
712                         return true;
713         }
714         return false;
715 }
716
717 static bool intel_pt_have_tsc(struct intel_pt *pt)
718 {
719         struct perf_evsel *evsel;
720         bool have_tsc = false;
721         u64 config;
722
723         if (!pt->tsc_bit)
724                 return false;
725
726         evlist__for_each_entry(pt->session->evlist, evsel) {
727                 if (intel_pt_get_config(pt, &evsel->attr, &config)) {
728                         if (config & pt->tsc_bit)
729                                 have_tsc = true;
730                         else
731                                 return false;
732                 }
733         }
734         return have_tsc;
735 }
736
737 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
738 {
739         u64 quot, rem;
740
741         quot = ns / pt->tc.time_mult;
742         rem  = ns % pt->tc.time_mult;
743         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
744                 pt->tc.time_mult;
745 }
746
747 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
748                                                    unsigned int queue_nr)
749 {
750         struct intel_pt_params params = { .get_trace = 0, };
751         struct intel_pt_queue *ptq;
752
753         ptq = zalloc(sizeof(struct intel_pt_queue));
754         if (!ptq)
755                 return NULL;
756
757         if (pt->synth_opts.callchain) {
758                 size_t sz = sizeof(struct ip_callchain);
759
760                 sz += pt->synth_opts.callchain_sz * sizeof(u64);
761                 ptq->chain = zalloc(sz);
762                 if (!ptq->chain)
763                         goto out_free;
764         }
765
766         if (pt->synth_opts.last_branch) {
767                 size_t sz = sizeof(struct branch_stack);
768
769                 sz += pt->synth_opts.last_branch_sz *
770                       sizeof(struct branch_entry);
771                 ptq->last_branch = zalloc(sz);
772                 if (!ptq->last_branch)
773                         goto out_free;
774                 ptq->last_branch_rb = zalloc(sz);
775                 if (!ptq->last_branch_rb)
776                         goto out_free;
777         }
778
779         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
780         if (!ptq->event_buf)
781                 goto out_free;
782
783         ptq->pt = pt;
784         ptq->queue_nr = queue_nr;
785         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
786         ptq->pid = -1;
787         ptq->tid = -1;
788         ptq->cpu = -1;
789         ptq->next_tid = -1;
790
791         params.get_trace = intel_pt_get_trace;
792         params.walk_insn = intel_pt_walk_next_insn;
793         params.data = ptq;
794         params.return_compression = intel_pt_return_compression(pt);
795         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
796         params.mtc_period = intel_pt_mtc_period(pt);
797         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
798         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
799
800         if (pt->filts.cnt > 0)
801                 params.pgd_ip = intel_pt_pgd_ip;
802
803         if (pt->synth_opts.instructions) {
804                 if (pt->synth_opts.period) {
805                         switch (pt->synth_opts.period_type) {
806                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
807                                 params.period_type =
808                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
809                                 params.period = pt->synth_opts.period;
810                                 break;
811                         case PERF_ITRACE_PERIOD_TICKS:
812                                 params.period_type = INTEL_PT_PERIOD_TICKS;
813                                 params.period = pt->synth_opts.period;
814                                 break;
815                         case PERF_ITRACE_PERIOD_NANOSECS:
816                                 params.period_type = INTEL_PT_PERIOD_TICKS;
817                                 params.period = intel_pt_ns_to_ticks(pt,
818                                                         pt->synth_opts.period);
819                                 break;
820                         default:
821                                 break;
822                         }
823                 }
824
825                 if (!params.period) {
826                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
827                         params.period = 1;
828                 }
829         }
830
831         ptq->decoder = intel_pt_decoder_new(&params);
832         if (!ptq->decoder)
833                 goto out_free;
834
835         return ptq;
836
837 out_free:
838         zfree(&ptq->event_buf);
839         zfree(&ptq->last_branch);
840         zfree(&ptq->last_branch_rb);
841         zfree(&ptq->chain);
842         free(ptq);
843         return NULL;
844 }
845
846 static void intel_pt_free_queue(void *priv)
847 {
848         struct intel_pt_queue *ptq = priv;
849
850         if (!ptq)
851                 return;
852         thread__zput(ptq->thread);
853         intel_pt_decoder_free(ptq->decoder);
854         zfree(&ptq->event_buf);
855         zfree(&ptq->last_branch);
856         zfree(&ptq->last_branch_rb);
857         zfree(&ptq->chain);
858         free(ptq);
859 }
860
861 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
862                                      struct auxtrace_queue *queue)
863 {
864         struct intel_pt_queue *ptq = queue->priv;
865
866         if (queue->tid == -1 || pt->have_sched_switch) {
867                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
868                 thread__zput(ptq->thread);
869         }
870
871         if (!ptq->thread && ptq->tid != -1)
872                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
873
874         if (ptq->thread) {
875                 ptq->pid = ptq->thread->pid_;
876                 if (queue->cpu == -1)
877                         ptq->cpu = ptq->thread->cpu;
878         }
879 }
880
881 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
882 {
883         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
884                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
885         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
886                 if (ptq->state->to_ip)
887                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
888                                      PERF_IP_FLAG_ASYNC |
889                                      PERF_IP_FLAG_INTERRUPT;
890                 else
891                         ptq->flags = PERF_IP_FLAG_BRANCH |
892                                      PERF_IP_FLAG_TRACE_END;
893                 ptq->insn_len = 0;
894         } else {
895                 if (ptq->state->from_ip)
896                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
897                 else
898                         ptq->flags = PERF_IP_FLAG_BRANCH |
899                                      PERF_IP_FLAG_TRACE_BEGIN;
900                 if (ptq->state->flags & INTEL_PT_IN_TX)
901                         ptq->flags |= PERF_IP_FLAG_IN_TX;
902                 ptq->insn_len = ptq->state->insn_len;
903         }
904 }
905
906 static int intel_pt_setup_queue(struct intel_pt *pt,
907                                 struct auxtrace_queue *queue,
908                                 unsigned int queue_nr)
909 {
910         struct intel_pt_queue *ptq = queue->priv;
911
912         if (list_empty(&queue->head))
913                 return 0;
914
915         if (!ptq) {
916                 ptq = intel_pt_alloc_queue(pt, queue_nr);
917                 if (!ptq)
918                         return -ENOMEM;
919                 queue->priv = ptq;
920
921                 if (queue->cpu != -1)
922                         ptq->cpu = queue->cpu;
923                 ptq->tid = queue->tid;
924
925                 if (pt->sampling_mode) {
926                         if (pt->timeless_decoding)
927                                 ptq->step_through_buffers = true;
928                         if (pt->timeless_decoding || !pt->have_sched_switch)
929                                 ptq->use_buffer_pid_tid = true;
930                 }
931         }
932
933         if (!ptq->on_heap &&
934             (!pt->sync_switch ||
935              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
936                 const struct intel_pt_state *state;
937                 int ret;
938
939                 if (pt->timeless_decoding)
940                         return 0;
941
942                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
943                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
944                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
945                 while (1) {
946                         state = intel_pt_decode(ptq->decoder);
947                         if (state->err) {
948                                 if (state->err == INTEL_PT_ERR_NODATA) {
949                                         intel_pt_log("queue %u has no timestamp\n",
950                                                      queue_nr);
951                                         return 0;
952                                 }
953                                 continue;
954                         }
955                         if (state->timestamp)
956                                 break;
957                 }
958
959                 ptq->timestamp = state->timestamp;
960                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
961                              queue_nr, ptq->timestamp);
962                 ptq->state = state;
963                 ptq->have_sample = true;
964                 intel_pt_sample_flags(ptq);
965                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
966                 if (ret)
967                         return ret;
968                 ptq->on_heap = true;
969         }
970
971         return 0;
972 }
973
974 static int intel_pt_setup_queues(struct intel_pt *pt)
975 {
976         unsigned int i;
977         int ret;
978
979         for (i = 0; i < pt->queues.nr_queues; i++) {
980                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
981                 if (ret)
982                         return ret;
983         }
984         return 0;
985 }
986
987 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
988 {
989         struct branch_stack *bs_src = ptq->last_branch_rb;
990         struct branch_stack *bs_dst = ptq->last_branch;
991         size_t nr = 0;
992
993         bs_dst->nr = bs_src->nr;
994
995         if (!bs_src->nr)
996                 return;
997
998         nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
999         memcpy(&bs_dst->entries[0],
1000                &bs_src->entries[ptq->last_branch_pos],
1001                sizeof(struct branch_entry) * nr);
1002
1003         if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1004                 memcpy(&bs_dst->entries[nr],
1005                        &bs_src->entries[0],
1006                        sizeof(struct branch_entry) * ptq->last_branch_pos);
1007         }
1008 }
1009
1010 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1011 {
1012         ptq->last_branch_pos = 0;
1013         ptq->last_branch_rb->nr = 0;
1014 }
1015
1016 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1017 {
1018         const struct intel_pt_state *state = ptq->state;
1019         struct branch_stack *bs = ptq->last_branch_rb;
1020         struct branch_entry *be;
1021
1022         if (!ptq->last_branch_pos)
1023                 ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1024
1025         ptq->last_branch_pos -= 1;
1026
1027         be              = &bs->entries[ptq->last_branch_pos];
1028         be->from        = state->from_ip;
1029         be->to          = state->to_ip;
1030         be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1031         be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1032         /* No support for mispredict */
1033         be->flags.mispred = ptq->pt->mispred_all;
1034
1035         if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1036                 bs->nr += 1;
1037 }
1038
1039 static int intel_pt_inject_event(union perf_event *event,
1040                                  struct perf_sample *sample, u64 type,
1041                                  bool swapped)
1042 {
1043         event->header.size = perf_event__sample_event_size(sample, type, 0);
1044         return perf_event__synthesize_sample(event, type, 0, sample, swapped);
1045 }
1046
1047 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1048 {
1049         int ret;
1050         struct intel_pt *pt = ptq->pt;
1051         union perf_event *event = ptq->event_buf;
1052         struct perf_sample sample = { .ip = 0, };
1053         struct dummy_branch_stack {
1054                 u64                     nr;
1055                 struct branch_entry     entries;
1056         } dummy_bs;
1057
1058         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1059                 return 0;
1060
1061         if (pt->synth_opts.initial_skip &&
1062             pt->num_events++ < pt->synth_opts.initial_skip)
1063                 return 0;
1064
1065         event->sample.header.type = PERF_RECORD_SAMPLE;
1066         event->sample.header.misc = PERF_RECORD_MISC_USER;
1067         event->sample.header.size = sizeof(struct perf_event_header);
1068
1069         if (!pt->timeless_decoding)
1070                 sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1071
1072         sample.cpumode = PERF_RECORD_MISC_USER;
1073         sample.ip = ptq->state->from_ip;
1074         sample.pid = ptq->pid;
1075         sample.tid = ptq->tid;
1076         sample.addr = ptq->state->to_ip;
1077         sample.id = ptq->pt->branches_id;
1078         sample.stream_id = ptq->pt->branches_id;
1079         sample.period = 1;
1080         sample.cpu = ptq->cpu;
1081         sample.flags = ptq->flags;
1082         sample.insn_len = ptq->insn_len;
1083
1084         /*
1085          * perf report cannot handle events without a branch stack when using
1086          * SORT_MODE__BRANCH so make a dummy one.
1087          */
1088         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1089                 dummy_bs = (struct dummy_branch_stack){
1090                         .nr = 1,
1091                         .entries = {
1092                                 .from = sample.ip,
1093                                 .to = sample.addr,
1094                         },
1095                 };
1096                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1097         }
1098
1099         if (pt->synth_opts.inject) {
1100                 ret = intel_pt_inject_event(event, &sample,
1101                                             pt->branches_sample_type,
1102                                             pt->synth_needs_swap);
1103                 if (ret)
1104                         return ret;
1105         }
1106
1107         ret = perf_session__deliver_synth_event(pt->session, event, &sample);
1108         if (ret)
1109                 pr_err("Intel Processor Trace: failed to deliver branch event, error %d\n",
1110                        ret);
1111
1112         return ret;
1113 }
1114
1115 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1116 {
1117         int ret;
1118         struct intel_pt *pt = ptq->pt;
1119         union perf_event *event = ptq->event_buf;
1120         struct perf_sample sample = { .ip = 0, };
1121
1122         if (pt->synth_opts.initial_skip &&
1123             pt->num_events++ < pt->synth_opts.initial_skip)
1124                 return 0;
1125
1126         event->sample.header.type = PERF_RECORD_SAMPLE;
1127         event->sample.header.misc = PERF_RECORD_MISC_USER;
1128         event->sample.header.size = sizeof(struct perf_event_header);
1129
1130         if (!pt->timeless_decoding)
1131                 sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1132
1133         sample.cpumode = PERF_RECORD_MISC_USER;
1134         sample.ip = ptq->state->from_ip;
1135         sample.pid = ptq->pid;
1136         sample.tid = ptq->tid;
1137         sample.addr = ptq->state->to_ip;
1138         sample.id = ptq->pt->instructions_id;
1139         sample.stream_id = ptq->pt->instructions_id;
1140         sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1141         sample.cpu = ptq->cpu;
1142         sample.flags = ptq->flags;
1143         sample.insn_len = ptq->insn_len;
1144
1145         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1146
1147         if (pt->synth_opts.callchain) {
1148                 thread_stack__sample(ptq->thread, ptq->chain,
1149                                      pt->synth_opts.callchain_sz, sample.ip);
1150                 sample.callchain = ptq->chain;
1151         }
1152
1153         if (pt->synth_opts.last_branch) {
1154                 intel_pt_copy_last_branch_rb(ptq);
1155                 sample.branch_stack = ptq->last_branch;
1156         }
1157
1158         if (pt->synth_opts.inject) {
1159                 ret = intel_pt_inject_event(event, &sample,
1160                                             pt->instructions_sample_type,
1161                                             pt->synth_needs_swap);
1162                 if (ret)
1163                         return ret;
1164         }
1165
1166         ret = perf_session__deliver_synth_event(pt->session, event, &sample);
1167         if (ret)
1168                 pr_err("Intel Processor Trace: failed to deliver instruction event, error %d\n",
1169                        ret);
1170
1171         if (pt->synth_opts.last_branch)
1172                 intel_pt_reset_last_branch_rb(ptq);
1173
1174         return ret;
1175 }
1176
1177 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1178 {
1179         int ret;
1180         struct intel_pt *pt = ptq->pt;
1181         union perf_event *event = ptq->event_buf;
1182         struct perf_sample sample = { .ip = 0, };
1183
1184         if (pt->synth_opts.initial_skip &&
1185             pt->num_events++ < pt->synth_opts.initial_skip)
1186                 return 0;
1187
1188         event->sample.header.type = PERF_RECORD_SAMPLE;
1189         event->sample.header.misc = PERF_RECORD_MISC_USER;
1190         event->sample.header.size = sizeof(struct perf_event_header);
1191
1192         if (!pt->timeless_decoding)
1193                 sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1194
1195         sample.cpumode = PERF_RECORD_MISC_USER;
1196         sample.ip = ptq->state->from_ip;
1197         sample.pid = ptq->pid;
1198         sample.tid = ptq->tid;
1199         sample.addr = ptq->state->to_ip;
1200         sample.id = ptq->pt->transactions_id;
1201         sample.stream_id = ptq->pt->transactions_id;
1202         sample.period = 1;
1203         sample.cpu = ptq->cpu;
1204         sample.flags = ptq->flags;
1205         sample.insn_len = ptq->insn_len;
1206
1207         if (pt->synth_opts.callchain) {
1208                 thread_stack__sample(ptq->thread, ptq->chain,
1209                                      pt->synth_opts.callchain_sz, sample.ip);
1210                 sample.callchain = ptq->chain;
1211         }
1212
1213         if (pt->synth_opts.last_branch) {
1214                 intel_pt_copy_last_branch_rb(ptq);
1215                 sample.branch_stack = ptq->last_branch;
1216         }
1217
1218         if (pt->synth_opts.inject) {
1219                 ret = intel_pt_inject_event(event, &sample,
1220                                             pt->transactions_sample_type,
1221                                             pt->synth_needs_swap);
1222                 if (ret)
1223                         return ret;
1224         }
1225
1226         ret = perf_session__deliver_synth_event(pt->session, event, &sample);
1227         if (ret)
1228                 pr_err("Intel Processor Trace: failed to deliver transaction event, error %d\n",
1229                        ret);
1230
1231         if (pt->synth_opts.last_branch)
1232                 intel_pt_reset_last_branch_rb(ptq);
1233
1234         return ret;
1235 }
1236
1237 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1238                                 pid_t pid, pid_t tid, u64 ip)
1239 {
1240         union perf_event event;
1241         char msg[MAX_AUXTRACE_ERROR_MSG];
1242         int err;
1243
1244         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1245
1246         auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1247                              code, cpu, pid, tid, ip, msg);
1248
1249         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1250         if (err)
1251                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1252                        err);
1253
1254         return err;
1255 }
1256
1257 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1258 {
1259         struct auxtrace_queue *queue;
1260         pid_t tid = ptq->next_tid;
1261         int err;
1262
1263         if (tid == -1)
1264                 return 0;
1265
1266         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1267
1268         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1269
1270         queue = &pt->queues.queue_array[ptq->queue_nr];
1271         intel_pt_set_pid_tid_cpu(pt, queue);
1272
1273         ptq->next_tid = -1;
1274
1275         return err;
1276 }
1277
1278 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1279 {
1280         struct intel_pt *pt = ptq->pt;
1281
1282         return ip == pt->switch_ip &&
1283                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1284                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1285                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1286 }
1287
1288 static int intel_pt_sample(struct intel_pt_queue *ptq)
1289 {
1290         const struct intel_pt_state *state = ptq->state;
1291         struct intel_pt *pt = ptq->pt;
1292         int err;
1293
1294         if (!ptq->have_sample)
1295                 return 0;
1296
1297         ptq->have_sample = false;
1298
1299         if (pt->sample_instructions &&
1300             (state->type & INTEL_PT_INSTRUCTION) &&
1301             (!pt->synth_opts.initial_skip ||
1302              pt->num_events++ >= pt->synth_opts.initial_skip)) {
1303                 err = intel_pt_synth_instruction_sample(ptq);
1304                 if (err)
1305                         return err;
1306         }
1307
1308         if (pt->sample_transactions &&
1309             (state->type & INTEL_PT_TRANSACTION) &&
1310             (!pt->synth_opts.initial_skip ||
1311              pt->num_events++ >= pt->synth_opts.initial_skip)) {
1312                 err = intel_pt_synth_transaction_sample(ptq);
1313                 if (err)
1314                         return err;
1315         }
1316
1317         if (!(state->type & INTEL_PT_BRANCH))
1318                 return 0;
1319
1320         if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1321                 thread_stack__event(ptq->thread, ptq->flags, state->from_ip,
1322                                     state->to_ip, ptq->insn_len,
1323                                     state->trace_nr);
1324         else
1325                 thread_stack__set_trace_nr(ptq->thread, state->trace_nr);
1326
1327         if (pt->sample_branches) {
1328                 err = intel_pt_synth_branch_sample(ptq);
1329                 if (err)
1330                         return err;
1331         }
1332
1333         if (pt->synth_opts.last_branch)
1334                 intel_pt_update_last_branch_rb(ptq);
1335
1336         if (!pt->sync_switch)
1337                 return 0;
1338
1339         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1340                 switch (ptq->switch_state) {
1341                 case INTEL_PT_SS_UNKNOWN:
1342                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1343                         err = intel_pt_next_tid(pt, ptq);
1344                         if (err)
1345                                 return err;
1346                         ptq->switch_state = INTEL_PT_SS_TRACING;
1347                         break;
1348                 default:
1349                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
1350                         return 1;
1351                 }
1352         } else if (!state->to_ip) {
1353                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
1354         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
1355                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
1356         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1357                    state->to_ip == pt->ptss_ip &&
1358                    (ptq->flags & PERF_IP_FLAG_CALL)) {
1359                 ptq->switch_state = INTEL_PT_SS_TRACING;
1360         }
1361
1362         return 0;
1363 }
1364
1365 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
1366 {
1367         struct machine *machine = pt->machine;
1368         struct map *map;
1369         struct symbol *sym, *start;
1370         u64 ip, switch_ip = 0;
1371         const char *ptss;
1372
1373         if (ptss_ip)
1374                 *ptss_ip = 0;
1375
1376         map = machine__kernel_map(machine);
1377         if (!map)
1378                 return 0;
1379
1380         if (map__load(map))
1381                 return 0;
1382
1383         start = dso__first_symbol(map->dso, MAP__FUNCTION);
1384
1385         for (sym = start; sym; sym = dso__next_symbol(sym)) {
1386                 if (sym->binding == STB_GLOBAL &&
1387                     !strcmp(sym->name, "__switch_to")) {
1388                         ip = map->unmap_ip(map, sym->start);
1389                         if (ip >= map->start && ip < map->end) {
1390                                 switch_ip = ip;
1391                                 break;
1392                         }
1393                 }
1394         }
1395
1396         if (!switch_ip || !ptss_ip)
1397                 return 0;
1398
1399         if (pt->have_sched_switch == 1)
1400                 ptss = "perf_trace_sched_switch";
1401         else
1402                 ptss = "__perf_event_task_sched_out";
1403
1404         for (sym = start; sym; sym = dso__next_symbol(sym)) {
1405                 if (!strcmp(sym->name, ptss)) {
1406                         ip = map->unmap_ip(map, sym->start);
1407                         if (ip >= map->start && ip < map->end) {
1408                                 *ptss_ip = ip;
1409                                 break;
1410                         }
1411                 }
1412         }
1413
1414         return switch_ip;
1415 }
1416
1417 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
1418 {
1419         const struct intel_pt_state *state = ptq->state;
1420         struct intel_pt *pt = ptq->pt;
1421         int err;
1422
1423         if (!pt->kernel_start) {
1424                 pt->kernel_start = machine__kernel_start(pt->machine);
1425                 if (pt->per_cpu_mmaps &&
1426                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
1427                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
1428                     !pt->sampling_mode) {
1429                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
1430                         if (pt->switch_ip) {
1431                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
1432                                              pt->switch_ip, pt->ptss_ip);
1433                                 pt->sync_switch = true;
1434                         }
1435                 }
1436         }
1437
1438         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1439                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1440         while (1) {
1441                 err = intel_pt_sample(ptq);
1442                 if (err)
1443                         return err;
1444
1445                 state = intel_pt_decode(ptq->decoder);
1446                 if (state->err) {
1447                         if (state->err == INTEL_PT_ERR_NODATA)
1448                                 return 1;
1449                         if (pt->sync_switch &&
1450                             state->from_ip >= pt->kernel_start) {
1451                                 pt->sync_switch = false;
1452                                 intel_pt_next_tid(pt, ptq);
1453                         }
1454                         if (pt->synth_opts.errors) {
1455                                 err = intel_pt_synth_error(pt, state->err,
1456                                                            ptq->cpu, ptq->pid,
1457                                                            ptq->tid,
1458                                                            state->from_ip);
1459                                 if (err)
1460                                         return err;
1461                         }
1462                         continue;
1463                 }
1464
1465                 ptq->state = state;
1466                 ptq->have_sample = true;
1467                 intel_pt_sample_flags(ptq);
1468
1469                 /* Use estimated TSC upon return to user space */
1470                 if (pt->est_tsc &&
1471                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
1472                     state->to_ip && state->to_ip < pt->kernel_start) {
1473                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1474                                      state->timestamp, state->est_timestamp);
1475                         ptq->timestamp = state->est_timestamp;
1476                 /* Use estimated TSC in unknown switch state */
1477                 } else if (pt->sync_switch &&
1478                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1479                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
1480                            ptq->next_tid == -1) {
1481                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1482                                      state->timestamp, state->est_timestamp);
1483                         ptq->timestamp = state->est_timestamp;
1484                 } else if (state->timestamp > ptq->timestamp) {
1485                         ptq->timestamp = state->timestamp;
1486                 }
1487
1488                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
1489                         *timestamp = ptq->timestamp;
1490                         return 0;
1491                 }
1492         }
1493         return 0;
1494 }
1495
1496 static inline int intel_pt_update_queues(struct intel_pt *pt)
1497 {
1498         if (pt->queues.new_data) {
1499                 pt->queues.new_data = false;
1500                 return intel_pt_setup_queues(pt);
1501         }
1502         return 0;
1503 }
1504
1505 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
1506 {
1507         unsigned int queue_nr;
1508         u64 ts;
1509         int ret;
1510
1511         while (1) {
1512                 struct auxtrace_queue *queue;
1513                 struct intel_pt_queue *ptq;
1514
1515                 if (!pt->heap.heap_cnt)
1516                         return 0;
1517
1518                 if (pt->heap.heap_array[0].ordinal >= timestamp)
1519                         return 0;
1520
1521                 queue_nr = pt->heap.heap_array[0].queue_nr;
1522                 queue = &pt->queues.queue_array[queue_nr];
1523                 ptq = queue->priv;
1524
1525                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
1526                              queue_nr, pt->heap.heap_array[0].ordinal,
1527                              timestamp);
1528
1529                 auxtrace_heap__pop(&pt->heap);
1530
1531                 if (pt->heap.heap_cnt) {
1532                         ts = pt->heap.heap_array[0].ordinal + 1;
1533                         if (ts > timestamp)
1534                                 ts = timestamp;
1535                 } else {
1536                         ts = timestamp;
1537                 }
1538
1539                 intel_pt_set_pid_tid_cpu(pt, queue);
1540
1541                 ret = intel_pt_run_decoder(ptq, &ts);
1542
1543                 if (ret < 0) {
1544                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
1545                         return ret;
1546                 }
1547
1548                 if (!ret) {
1549                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
1550                         if (ret < 0)
1551                                 return ret;
1552                 } else {
1553                         ptq->on_heap = false;
1554                 }
1555         }
1556
1557         return 0;
1558 }
1559
1560 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
1561                                             u64 time_)
1562 {
1563         struct auxtrace_queues *queues = &pt->queues;
1564         unsigned int i;
1565         u64 ts = 0;
1566
1567         for (i = 0; i < queues->nr_queues; i++) {
1568                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1569                 struct intel_pt_queue *ptq = queue->priv;
1570
1571                 if (ptq && (tid == -1 || ptq->tid == tid)) {
1572                         ptq->time = time_;
1573                         intel_pt_set_pid_tid_cpu(pt, queue);
1574                         intel_pt_run_decoder(ptq, &ts);
1575                 }
1576         }
1577         return 0;
1578 }
1579
1580 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
1581 {
1582         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
1583                                     sample->pid, sample->tid, 0);
1584 }
1585
1586 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
1587 {
1588         unsigned i, j;
1589
1590         if (cpu < 0 || !pt->queues.nr_queues)
1591                 return NULL;
1592
1593         if ((unsigned)cpu >= pt->queues.nr_queues)
1594                 i = pt->queues.nr_queues - 1;
1595         else
1596                 i = cpu;
1597
1598         if (pt->queues.queue_array[i].cpu == cpu)
1599                 return pt->queues.queue_array[i].priv;
1600
1601         for (j = 0; i > 0; j++) {
1602                 if (pt->queues.queue_array[--i].cpu == cpu)
1603                         return pt->queues.queue_array[i].priv;
1604         }
1605
1606         for (; j < pt->queues.nr_queues; j++) {
1607                 if (pt->queues.queue_array[j].cpu == cpu)
1608                         return pt->queues.queue_array[j].priv;
1609         }
1610
1611         return NULL;
1612 }
1613
1614 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
1615                                 u64 timestamp)
1616 {
1617         struct intel_pt_queue *ptq;
1618         int err;
1619
1620         if (!pt->sync_switch)
1621                 return 1;
1622
1623         ptq = intel_pt_cpu_to_ptq(pt, cpu);
1624         if (!ptq)
1625                 return 1;
1626
1627         switch (ptq->switch_state) {
1628         case INTEL_PT_SS_NOT_TRACING:
1629                 ptq->next_tid = -1;
1630                 break;
1631         case INTEL_PT_SS_UNKNOWN:
1632         case INTEL_PT_SS_TRACING:
1633                 ptq->next_tid = tid;
1634                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
1635                 return 0;
1636         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
1637                 if (!ptq->on_heap) {
1638                         ptq->timestamp = perf_time_to_tsc(timestamp,
1639                                                           &pt->tc);
1640                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
1641                                                  ptq->timestamp);
1642                         if (err)
1643                                 return err;
1644                         ptq->on_heap = true;
1645                 }
1646                 ptq->switch_state = INTEL_PT_SS_TRACING;
1647                 break;
1648         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1649                 ptq->next_tid = tid;
1650                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
1651                 break;
1652         default:
1653                 break;
1654         }
1655
1656         return 1;
1657 }
1658
1659 static int intel_pt_process_switch(struct intel_pt *pt,
1660                                    struct perf_sample *sample)
1661 {
1662         struct perf_evsel *evsel;
1663         pid_t tid;
1664         int cpu, ret;
1665
1666         evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
1667         if (evsel != pt->switch_evsel)
1668                 return 0;
1669
1670         tid = perf_evsel__intval(evsel, sample, "next_pid");
1671         cpu = sample->cpu;
1672
1673         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1674                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
1675                      &pt->tc));
1676
1677         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1678         if (ret <= 0)
1679                 return ret;
1680
1681         return machine__set_current_tid(pt->machine, cpu, -1, tid);
1682 }
1683
1684 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
1685                                    struct perf_sample *sample)
1686 {
1687         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
1688         pid_t pid, tid;
1689         int cpu, ret;
1690
1691         cpu = sample->cpu;
1692
1693         if (pt->have_sched_switch == 3) {
1694                 if (!out)
1695                         return 0;
1696                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
1697                         pr_err("Expecting CPU-wide context switch event\n");
1698                         return -EINVAL;
1699                 }
1700                 pid = event->context_switch.next_prev_pid;
1701                 tid = event->context_switch.next_prev_tid;
1702         } else {
1703                 if (out)
1704                         return 0;
1705                 pid = sample->pid;
1706                 tid = sample->tid;
1707         }
1708
1709         if (tid == -1) {
1710                 pr_err("context_switch event has no tid\n");
1711                 return -EINVAL;
1712         }
1713
1714         intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1715                      cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
1716                      &pt->tc));
1717
1718         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1719         if (ret <= 0)
1720                 return ret;
1721
1722         return machine__set_current_tid(pt->machine, cpu, pid, tid);
1723 }
1724
1725 static int intel_pt_process_itrace_start(struct intel_pt *pt,
1726                                          union perf_event *event,
1727                                          struct perf_sample *sample)
1728 {
1729         if (!pt->per_cpu_mmaps)
1730                 return 0;
1731
1732         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1733                      sample->cpu, event->itrace_start.pid,
1734                      event->itrace_start.tid, sample->time,
1735                      perf_time_to_tsc(sample->time, &pt->tc));
1736
1737         return machine__set_current_tid(pt->machine, sample->cpu,
1738                                         event->itrace_start.pid,
1739                                         event->itrace_start.tid);
1740 }
1741
1742 static int intel_pt_process_event(struct perf_session *session,
1743                                   union perf_event *event,
1744                                   struct perf_sample *sample,
1745                                   struct perf_tool *tool)
1746 {
1747         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1748                                            auxtrace);
1749         u64 timestamp;
1750         int err = 0;
1751
1752         if (dump_trace)
1753                 return 0;
1754
1755         if (!tool->ordered_events) {
1756                 pr_err("Intel Processor Trace requires ordered events\n");
1757                 return -EINVAL;
1758         }
1759
1760         if (sample->time && sample->time != (u64)-1)
1761                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
1762         else
1763                 timestamp = 0;
1764
1765         if (timestamp || pt->timeless_decoding) {
1766                 err = intel_pt_update_queues(pt);
1767                 if (err)
1768                         return err;
1769         }
1770
1771         if (pt->timeless_decoding) {
1772                 if (event->header.type == PERF_RECORD_EXIT) {
1773                         err = intel_pt_process_timeless_queues(pt,
1774                                                                event->fork.tid,
1775                                                                sample->time);
1776                 }
1777         } else if (timestamp) {
1778                 err = intel_pt_process_queues(pt, timestamp);
1779         }
1780         if (err)
1781                 return err;
1782
1783         if (event->header.type == PERF_RECORD_AUX &&
1784             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
1785             pt->synth_opts.errors) {
1786                 err = intel_pt_lost(pt, sample);
1787                 if (err)
1788                         return err;
1789         }
1790
1791         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
1792                 err = intel_pt_process_switch(pt, sample);
1793         else if (event->header.type == PERF_RECORD_ITRACE_START)
1794                 err = intel_pt_process_itrace_start(pt, event, sample);
1795         else if (event->header.type == PERF_RECORD_SWITCH ||
1796                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
1797                 err = intel_pt_context_switch(pt, event, sample);
1798
1799         intel_pt_log("event %s (%u): cpu %d time %"PRIu64" tsc %#"PRIx64"\n",
1800                      perf_event__name(event->header.type), event->header.type,
1801                      sample->cpu, sample->time, timestamp);
1802
1803         return err;
1804 }
1805
1806 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
1807 {
1808         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1809                                            auxtrace);
1810         int ret;
1811
1812         if (dump_trace)
1813                 return 0;
1814
1815         if (!tool->ordered_events)
1816                 return -EINVAL;
1817
1818         ret = intel_pt_update_queues(pt);
1819         if (ret < 0)
1820                 return ret;
1821
1822         if (pt->timeless_decoding)
1823                 return intel_pt_process_timeless_queues(pt, -1,
1824                                                         MAX_TIMESTAMP - 1);
1825
1826         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
1827 }
1828
1829 static void intel_pt_free_events(struct perf_session *session)
1830 {
1831         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1832                                            auxtrace);
1833         struct auxtrace_queues *queues = &pt->queues;
1834         unsigned int i;
1835
1836         for (i = 0; i < queues->nr_queues; i++) {
1837                 intel_pt_free_queue(queues->queue_array[i].priv);
1838                 queues->queue_array[i].priv = NULL;
1839         }
1840         intel_pt_log_disable();
1841         auxtrace_queues__free(queues);
1842 }
1843
1844 static void intel_pt_free(struct perf_session *session)
1845 {
1846         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1847                                            auxtrace);
1848
1849         auxtrace_heap__free(&pt->heap);
1850         intel_pt_free_events(session);
1851         session->auxtrace = NULL;
1852         thread__put(pt->unknown_thread);
1853         addr_filters__exit(&pt->filts);
1854         zfree(&pt->filter);
1855         free(pt);
1856 }
1857
1858 static int intel_pt_process_auxtrace_event(struct perf_session *session,
1859                                            union perf_event *event,
1860                                            struct perf_tool *tool __maybe_unused)
1861 {
1862         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1863                                            auxtrace);
1864
1865         if (pt->sampling_mode)
1866                 return 0;
1867
1868         if (!pt->data_queued) {
1869                 struct auxtrace_buffer *buffer;
1870                 off_t data_offset;
1871                 int fd = perf_data_file__fd(session->file);
1872                 int err;
1873
1874                 if (perf_data_file__is_pipe(session->file)) {
1875                         data_offset = 0;
1876                 } else {
1877                         data_offset = lseek(fd, 0, SEEK_CUR);
1878                         if (data_offset == -1)
1879                                 return -errno;
1880                 }
1881
1882                 err = auxtrace_queues__add_event(&pt->queues, session, event,
1883                                                  data_offset, &buffer);
1884                 if (err)
1885                         return err;
1886
1887                 /* Dump here now we have copied a piped trace out of the pipe */
1888                 if (dump_trace) {
1889                         if (auxtrace_buffer__get_data(buffer, fd)) {
1890                                 intel_pt_dump_event(pt, buffer->data,
1891                                                     buffer->size);
1892                                 auxtrace_buffer__put_data(buffer);
1893                         }
1894                 }
1895         }
1896
1897         return 0;
1898 }
1899
1900 struct intel_pt_synth {
1901         struct perf_tool dummy_tool;
1902         struct perf_session *session;
1903 };
1904
1905 static int intel_pt_event_synth(struct perf_tool *tool,
1906                                 union perf_event *event,
1907                                 struct perf_sample *sample __maybe_unused,
1908                                 struct machine *machine __maybe_unused)
1909 {
1910         struct intel_pt_synth *intel_pt_synth =
1911                         container_of(tool, struct intel_pt_synth, dummy_tool);
1912
1913         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
1914                                                  NULL);
1915 }
1916
1917 static int intel_pt_synth_event(struct perf_session *session,
1918                                 struct perf_event_attr *attr, u64 id)
1919 {
1920         struct intel_pt_synth intel_pt_synth;
1921
1922         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
1923         intel_pt_synth.session = session;
1924
1925         return perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
1926                                            &id, intel_pt_event_synth);
1927 }
1928
1929 static int intel_pt_synth_events(struct intel_pt *pt,
1930                                  struct perf_session *session)
1931 {
1932         struct perf_evlist *evlist = session->evlist;
1933         struct perf_evsel *evsel;
1934         struct perf_event_attr attr;
1935         bool found = false;
1936         u64 id;
1937         int err;
1938
1939         evlist__for_each_entry(evlist, evsel) {
1940                 if (evsel->attr.type == pt->pmu_type && evsel->ids) {
1941                         found = true;
1942                         break;
1943                 }
1944         }
1945
1946         if (!found) {
1947                 pr_debug("There are no selected events with Intel Processor Trace data\n");
1948                 return 0;
1949         }
1950
1951         memset(&attr, 0, sizeof(struct perf_event_attr));
1952         attr.size = sizeof(struct perf_event_attr);
1953         attr.type = PERF_TYPE_HARDWARE;
1954         attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
1955         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1956                             PERF_SAMPLE_PERIOD;
1957         if (pt->timeless_decoding)
1958                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1959         else
1960                 attr.sample_type |= PERF_SAMPLE_TIME;
1961         if (!pt->per_cpu_mmaps)
1962                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
1963         attr.exclude_user = evsel->attr.exclude_user;
1964         attr.exclude_kernel = evsel->attr.exclude_kernel;
1965         attr.exclude_hv = evsel->attr.exclude_hv;
1966         attr.exclude_host = evsel->attr.exclude_host;
1967         attr.exclude_guest = evsel->attr.exclude_guest;
1968         attr.sample_id_all = evsel->attr.sample_id_all;
1969         attr.read_format = evsel->attr.read_format;
1970
1971         id = evsel->id[0] + 1000000000;
1972         if (!id)
1973                 id = 1;
1974
1975         if (pt->synth_opts.instructions) {
1976                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1977                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
1978                         attr.sample_period =
1979                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
1980                 else
1981                         attr.sample_period = pt->synth_opts.period;
1982                 pt->instructions_sample_period = attr.sample_period;
1983                 if (pt->synth_opts.callchain)
1984                         attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
1985                 if (pt->synth_opts.last_branch)
1986                         attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1987                 pr_debug("Synthesizing 'instructions' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
1988                          id, (u64)attr.sample_type);
1989                 err = intel_pt_synth_event(session, &attr, id);
1990                 if (err) {
1991                         pr_err("%s: failed to synthesize 'instructions' event type\n",
1992                                __func__);
1993                         return err;
1994                 }
1995                 pt->sample_instructions = true;
1996                 pt->instructions_sample_type = attr.sample_type;
1997                 pt->instructions_id = id;
1998                 id += 1;
1999         }
2000
2001         if (pt->synth_opts.transactions) {
2002                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2003                 attr.sample_period = 1;
2004                 if (pt->synth_opts.callchain)
2005                         attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2006                 if (pt->synth_opts.last_branch)
2007                         attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2008                 pr_debug("Synthesizing 'transactions' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2009                          id, (u64)attr.sample_type);
2010                 err = intel_pt_synth_event(session, &attr, id);
2011                 if (err) {
2012                         pr_err("%s: failed to synthesize 'transactions' event type\n",
2013                                __func__);
2014                         return err;
2015                 }
2016                 pt->sample_transactions = true;
2017                 pt->transactions_id = id;
2018                 id += 1;
2019                 evlist__for_each_entry(evlist, evsel) {
2020                         if (evsel->id && evsel->id[0] == pt->transactions_id) {
2021                                 if (evsel->name)
2022                                         zfree(&evsel->name);
2023                                 evsel->name = strdup("transactions");
2024                                 break;
2025                         }
2026                 }
2027         }
2028
2029         if (pt->synth_opts.branches) {
2030                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2031                 attr.sample_period = 1;
2032                 attr.sample_type |= PERF_SAMPLE_ADDR;
2033                 attr.sample_type &= ~(u64)PERF_SAMPLE_CALLCHAIN;
2034                 attr.sample_type &= ~(u64)PERF_SAMPLE_BRANCH_STACK;
2035                 pr_debug("Synthesizing 'branches' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2036                          id, (u64)attr.sample_type);
2037                 err = intel_pt_synth_event(session, &attr, id);
2038                 if (err) {
2039                         pr_err("%s: failed to synthesize 'branches' event type\n",
2040                                __func__);
2041                         return err;
2042                 }
2043                 pt->sample_branches = true;
2044                 pt->branches_sample_type = attr.sample_type;
2045                 pt->branches_id = id;
2046         }
2047
2048         pt->synth_needs_swap = evsel->needs_swap;
2049
2050         return 0;
2051 }
2052
2053 static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist)
2054 {
2055         struct perf_evsel *evsel;
2056
2057         evlist__for_each_entry_reverse(evlist, evsel) {
2058                 const char *name = perf_evsel__name(evsel);
2059
2060                 if (!strcmp(name, "sched:sched_switch"))
2061                         return evsel;
2062         }
2063
2064         return NULL;
2065 }
2066
2067 static bool intel_pt_find_switch(struct perf_evlist *evlist)
2068 {
2069         struct perf_evsel *evsel;
2070
2071         evlist__for_each_entry(evlist, evsel) {
2072                 if (evsel->attr.context_switch)
2073                         return true;
2074         }
2075
2076         return false;
2077 }
2078
2079 static int intel_pt_perf_config(const char *var, const char *value, void *data)
2080 {
2081         struct intel_pt *pt = data;
2082
2083         if (!strcmp(var, "intel-pt.mispred-all"))
2084                 pt->mispred_all = perf_config_bool(var, value);
2085
2086         return 0;
2087 }
2088
2089 static const char * const intel_pt_info_fmts[] = {
2090         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
2091         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
2092         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
2093         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
2094         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
2095         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
2096         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
2097         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
2098         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
2099         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
2100         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
2101         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
2102         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
2103         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
2104         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
2105         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
2106 };
2107
2108 static void intel_pt_print_info(u64 *arr, int start, int finish)
2109 {
2110         int i;
2111
2112         if (!dump_trace)
2113                 return;
2114
2115         for (i = start; i <= finish; i++)
2116                 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
2117 }
2118
2119 static void intel_pt_print_info_str(const char *name, const char *str)
2120 {
2121         if (!dump_trace)
2122                 return;
2123
2124         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
2125 }
2126
2127 static bool intel_pt_has(struct auxtrace_info_event *auxtrace_info, int pos)
2128 {
2129         return auxtrace_info->header.size >=
2130                 sizeof(struct auxtrace_info_event) + (sizeof(u64) * (pos + 1));
2131 }
2132
2133 int intel_pt_process_auxtrace_info(union perf_event *event,
2134                                    struct perf_session *session)
2135 {
2136         struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
2137         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
2138         struct intel_pt *pt;
2139         void *info_end;
2140         u64 *info;
2141         int err;
2142
2143         if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
2144                                         min_sz)
2145                 return -EINVAL;
2146
2147         pt = zalloc(sizeof(struct intel_pt));
2148         if (!pt)
2149                 return -ENOMEM;
2150
2151         addr_filters__init(&pt->filts);
2152
2153         perf_config(intel_pt_perf_config, pt);
2154
2155         err = auxtrace_queues__init(&pt->queues);
2156         if (err)
2157                 goto err_free;
2158
2159         intel_pt_log_set_name(INTEL_PT_PMU_NAME);
2160
2161         pt->session = session;
2162         pt->machine = &session->machines.host; /* No kvm support */
2163         pt->auxtrace_type = auxtrace_info->type;
2164         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
2165         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
2166         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
2167         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
2168         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
2169         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
2170         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
2171         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
2172         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
2173         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
2174         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
2175                             INTEL_PT_PER_CPU_MMAPS);
2176
2177         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
2178                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
2179                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
2180                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
2181                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
2182                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
2183                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
2184                                     INTEL_PT_CYC_BIT);
2185         }
2186
2187         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
2188                 pt->max_non_turbo_ratio =
2189                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
2190                 intel_pt_print_info(&auxtrace_info->priv[0],
2191                                     INTEL_PT_MAX_NONTURBO_RATIO,
2192                                     INTEL_PT_MAX_NONTURBO_RATIO);
2193         }
2194
2195         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
2196         info_end = (void *)info + auxtrace_info->header.size;
2197
2198         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
2199                 size_t len;
2200
2201                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
2202                 intel_pt_print_info(&auxtrace_info->priv[0],
2203                                     INTEL_PT_FILTER_STR_LEN,
2204                                     INTEL_PT_FILTER_STR_LEN);
2205                 if (len) {
2206                         const char *filter = (const char *)info;
2207
2208                         len = roundup(len + 1, 8);
2209                         info += len >> 3;
2210                         if ((void *)info > info_end) {
2211                                 pr_err("%s: bad filter string length\n", __func__);
2212                                 err = -EINVAL;
2213                                 goto err_free_queues;
2214                         }
2215                         pt->filter = memdup(filter, len);
2216                         if (!pt->filter) {
2217                                 err = -ENOMEM;
2218                                 goto err_free_queues;
2219                         }
2220                         if (session->header.needs_swap)
2221                                 mem_bswap_64(pt->filter, len);
2222                         if (pt->filter[len - 1]) {
2223                                 pr_err("%s: filter string not null terminated\n", __func__);
2224                                 err = -EINVAL;
2225                                 goto err_free_queues;
2226                         }
2227                         err = addr_filters__parse_bare_filter(&pt->filts,
2228                                                               filter);
2229                         if (err)
2230                                 goto err_free_queues;
2231                 }
2232                 intel_pt_print_info_str("Filter string", pt->filter);
2233         }
2234
2235         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
2236         pt->have_tsc = intel_pt_have_tsc(pt);
2237         pt->sampling_mode = false;
2238         pt->est_tsc = !pt->timeless_decoding;
2239
2240         pt->unknown_thread = thread__new(999999999, 999999999);
2241         if (!pt->unknown_thread) {
2242                 err = -ENOMEM;
2243                 goto err_free_queues;
2244         }
2245
2246         /*
2247          * Since this thread will not be kept in any rbtree not in a
2248          * list, initialize its list node so that at thread__put() the
2249          * current thread lifetime assuption is kept and we don't segfault
2250          * at list_del_init().
2251          */
2252         INIT_LIST_HEAD(&pt->unknown_thread->node);
2253
2254         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
2255         if (err)
2256                 goto err_delete_thread;
2257         if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
2258                 err = -ENOMEM;
2259                 goto err_delete_thread;
2260         }
2261
2262         pt->auxtrace.process_event = intel_pt_process_event;
2263         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
2264         pt->auxtrace.flush_events = intel_pt_flush;
2265         pt->auxtrace.free_events = intel_pt_free_events;
2266         pt->auxtrace.free = intel_pt_free;
2267         session->auxtrace = &pt->auxtrace;
2268
2269         if (dump_trace)
2270                 return 0;
2271
2272         if (pt->have_sched_switch == 1) {
2273                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
2274                 if (!pt->switch_evsel) {
2275                         pr_err("%s: missing sched_switch event\n", __func__);
2276                         err = -EINVAL;
2277                         goto err_delete_thread;
2278                 }
2279         } else if (pt->have_sched_switch == 2 &&
2280                    !intel_pt_find_switch(session->evlist)) {
2281                 pr_err("%s: missing context_switch attribute flag\n", __func__);
2282                 err = -EINVAL;
2283                 goto err_delete_thread;
2284         }
2285
2286         if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
2287                 pt->synth_opts = *session->itrace_synth_opts;
2288         } else {
2289                 itrace_synth_opts__set_default(&pt->synth_opts);
2290                 if (use_browser != -1) {
2291                         pt->synth_opts.branches = false;
2292                         pt->synth_opts.callchain = true;
2293                 }
2294                 if (session->itrace_synth_opts)
2295                         pt->synth_opts.thread_stack =
2296                                 session->itrace_synth_opts->thread_stack;
2297         }
2298
2299         if (pt->synth_opts.log)
2300                 intel_pt_log_enable();
2301
2302         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
2303         if (pt->tc.time_mult) {
2304                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
2305
2306                 if (!pt->max_non_turbo_ratio)
2307                         pt->max_non_turbo_ratio =
2308                                         (tsc_freq + 50000000) / 100000000;
2309                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
2310                 intel_pt_log("Maximum non-turbo ratio %u\n",
2311                              pt->max_non_turbo_ratio);
2312         }
2313
2314         if (pt->synth_opts.calls)
2315                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
2316                                        PERF_IP_FLAG_TRACE_END;
2317         if (pt->synth_opts.returns)
2318                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
2319                                        PERF_IP_FLAG_TRACE_BEGIN;
2320
2321         if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
2322                 symbol_conf.use_callchain = true;
2323                 if (callchain_register_param(&callchain_param) < 0) {
2324                         symbol_conf.use_callchain = false;
2325                         pt->synth_opts.callchain = false;
2326                 }
2327         }
2328
2329         err = intel_pt_synth_events(pt, session);
2330         if (err)
2331                 goto err_delete_thread;
2332
2333         err = auxtrace_queues__process_index(&pt->queues, session);
2334         if (err)
2335                 goto err_delete_thread;
2336
2337         if (pt->queues.populated)
2338                 pt->data_queued = true;
2339
2340         if (pt->timeless_decoding)
2341                 pr_debug2("Intel PT decoding without timestamps\n");
2342
2343         return 0;
2344
2345 err_delete_thread:
2346         thread__zput(pt->unknown_thread);
2347 err_free_queues:
2348         intel_pt_log_disable();
2349         auxtrace_queues__free(&pt->queues);
2350         session->auxtrace = NULL;
2351 err_free:
2352         addr_filters__exit(&pt->filts);
2353         zfree(&pt->filter);
2354         free(pt);
2355         return err;
2356 }