Merge tag 'nds32-for-linus-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / tools / perf / util / intel-pt.c
1 /*
2  * intel_pt.c: Intel Processor Trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15
16 #include <inttypes.h>
17 #include <stdio.h>
18 #include <stdbool.h>
19 #include <errno.h>
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22
23 #include "../perf.h"
24 #include "session.h"
25 #include "machine.h"
26 #include "memswap.h"
27 #include "sort.h"
28 #include "tool.h"
29 #include "event.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "map.h"
33 #include "color.h"
34 #include "util.h"
35 #include "thread.h"
36 #include "thread-stack.h"
37 #include "symbol.h"
38 #include "callchain.h"
39 #include "dso.h"
40 #include "debug.h"
41 #include "auxtrace.h"
42 #include "tsc.h"
43 #include "intel-pt.h"
44 #include "config.h"
45
46 #include "intel-pt-decoder/intel-pt-log.h"
47 #include "intel-pt-decoder/intel-pt-decoder.h"
48 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
49 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
50
51 #define MAX_TIMESTAMP (~0ULL)
52
53 struct intel_pt {
54         struct auxtrace auxtrace;
55         struct auxtrace_queues queues;
56         struct auxtrace_heap heap;
57         u32 auxtrace_type;
58         struct perf_session *session;
59         struct machine *machine;
60         struct perf_evsel *switch_evsel;
61         struct thread *unknown_thread;
62         bool timeless_decoding;
63         bool sampling_mode;
64         bool snapshot_mode;
65         bool per_cpu_mmaps;
66         bool have_tsc;
67         bool data_queued;
68         bool est_tsc;
69         bool sync_switch;
70         bool mispred_all;
71         int have_sched_switch;
72         u32 pmu_type;
73         u64 kernel_start;
74         u64 switch_ip;
75         u64 ptss_ip;
76
77         struct perf_tsc_conversion tc;
78         bool cap_user_time_zero;
79
80         struct itrace_synth_opts synth_opts;
81
82         bool sample_instructions;
83         u64 instructions_sample_type;
84         u64 instructions_id;
85
86         bool sample_branches;
87         u32 branches_filter;
88         u64 branches_sample_type;
89         u64 branches_id;
90
91         bool sample_transactions;
92         u64 transactions_sample_type;
93         u64 transactions_id;
94
95         bool sample_ptwrites;
96         u64 ptwrites_sample_type;
97         u64 ptwrites_id;
98
99         bool sample_pwr_events;
100         u64 pwr_events_sample_type;
101         u64 mwait_id;
102         u64 pwre_id;
103         u64 exstop_id;
104         u64 pwrx_id;
105         u64 cbr_id;
106
107         u64 tsc_bit;
108         u64 mtc_bit;
109         u64 mtc_freq_bits;
110         u32 tsc_ctc_ratio_n;
111         u32 tsc_ctc_ratio_d;
112         u64 cyc_bit;
113         u64 noretcomp_bit;
114         unsigned max_non_turbo_ratio;
115         unsigned cbr2khz;
116
117         unsigned long num_events;
118
119         char *filter;
120         struct addr_filters filts;
121 };
122
123 enum switch_state {
124         INTEL_PT_SS_NOT_TRACING,
125         INTEL_PT_SS_UNKNOWN,
126         INTEL_PT_SS_TRACING,
127         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
128         INTEL_PT_SS_EXPECTING_SWITCH_IP,
129 };
130
131 struct intel_pt_queue {
132         struct intel_pt *pt;
133         unsigned int queue_nr;
134         struct auxtrace_buffer *buffer;
135         struct auxtrace_buffer *old_buffer;
136         void *decoder;
137         const struct intel_pt_state *state;
138         struct ip_callchain *chain;
139         struct branch_stack *last_branch;
140         struct branch_stack *last_branch_rb;
141         size_t last_branch_pos;
142         union perf_event *event_buf;
143         bool on_heap;
144         bool stop;
145         bool step_through_buffers;
146         bool use_buffer_pid_tid;
147         bool sync_switch;
148         pid_t pid, tid;
149         int cpu;
150         int switch_state;
151         pid_t next_tid;
152         struct thread *thread;
153         bool exclude_kernel;
154         bool have_sample;
155         u64 time;
156         u64 timestamp;
157         u32 flags;
158         u16 insn_len;
159         u64 last_insn_cnt;
160         char insn[INTEL_PT_INSN_BUF_SZ];
161 };
162
163 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
164                           unsigned char *buf, size_t len)
165 {
166         struct intel_pt_pkt packet;
167         size_t pos = 0;
168         int ret, pkt_len, i;
169         char desc[INTEL_PT_PKT_DESC_MAX];
170         const char *color = PERF_COLOR_BLUE;
171
172         color_fprintf(stdout, color,
173                       ". ... Intel Processor Trace data: size %zu bytes\n",
174                       len);
175
176         while (len) {
177                 ret = intel_pt_get_packet(buf, len, &packet);
178                 if (ret > 0)
179                         pkt_len = ret;
180                 else
181                         pkt_len = 1;
182                 printf(".");
183                 color_fprintf(stdout, color, "  %08x: ", pos);
184                 for (i = 0; i < pkt_len; i++)
185                         color_fprintf(stdout, color, " %02x", buf[i]);
186                 for (; i < 16; i++)
187                         color_fprintf(stdout, color, "   ");
188                 if (ret > 0) {
189                         ret = intel_pt_pkt_desc(&packet, desc,
190                                                 INTEL_PT_PKT_DESC_MAX);
191                         if (ret > 0)
192                                 color_fprintf(stdout, color, " %s\n", desc);
193                 } else {
194                         color_fprintf(stdout, color, " Bad packet!\n");
195                 }
196                 pos += pkt_len;
197                 buf += pkt_len;
198                 len -= pkt_len;
199         }
200 }
201
202 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
203                                 size_t len)
204 {
205         printf(".\n");
206         intel_pt_dump(pt, buf, len);
207 }
208
209 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
210                                    struct auxtrace_buffer *b)
211 {
212         bool consecutive = false;
213         void *start;
214
215         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
216                                       pt->have_tsc, &consecutive);
217         if (!start)
218                 return -EINVAL;
219         b->use_size = b->data + b->size - start;
220         b->use_data = start;
221         if (b->use_size && consecutive)
222                 b->consecutive = true;
223         return 0;
224 }
225
226 /* This function assumes data is processed sequentially only */
227 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
228 {
229         struct intel_pt_queue *ptq = data;
230         struct auxtrace_buffer *buffer = ptq->buffer;
231         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
232         struct auxtrace_queue *queue;
233         bool might_overlap;
234
235         if (ptq->stop) {
236                 b->len = 0;
237                 return 0;
238         }
239
240         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
241
242         buffer = auxtrace_buffer__next(queue, buffer);
243         if (!buffer) {
244                 if (old_buffer)
245                         auxtrace_buffer__drop_data(old_buffer);
246                 b->len = 0;
247                 return 0;
248         }
249
250         ptq->buffer = buffer;
251
252         if (!buffer->data) {
253                 int fd = perf_data__fd(ptq->pt->session->data);
254
255                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
256                 if (!buffer->data)
257                         return -ENOMEM;
258         }
259
260         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
261         if (might_overlap && !buffer->consecutive && old_buffer &&
262             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
263                 return -ENOMEM;
264
265         if (buffer->use_data) {
266                 b->len = buffer->use_size;
267                 b->buf = buffer->use_data;
268         } else {
269                 b->len = buffer->size;
270                 b->buf = buffer->data;
271         }
272         b->ref_timestamp = buffer->reference;
273
274         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
275                 b->consecutive = false;
276                 b->trace_nr = buffer->buffer_nr + 1;
277         } else {
278                 b->consecutive = true;
279         }
280
281         if (ptq->step_through_buffers)
282                 ptq->stop = true;
283
284         if (b->len) {
285                 if (old_buffer)
286                         auxtrace_buffer__drop_data(old_buffer);
287                 ptq->old_buffer = buffer;
288         } else {
289                 auxtrace_buffer__drop_data(buffer);
290                 return intel_pt_get_trace(b, data);
291         }
292
293         return 0;
294 }
295
296 struct intel_pt_cache_entry {
297         struct auxtrace_cache_entry     entry;
298         u64                             insn_cnt;
299         u64                             byte_cnt;
300         enum intel_pt_insn_op           op;
301         enum intel_pt_insn_branch       branch;
302         int                             length;
303         int32_t                         rel;
304         char                            insn[INTEL_PT_INSN_BUF_SZ];
305 };
306
307 static int intel_pt_config_div(const char *var, const char *value, void *data)
308 {
309         int *d = data;
310         long val;
311
312         if (!strcmp(var, "intel-pt.cache-divisor")) {
313                 val = strtol(value, NULL, 0);
314                 if (val > 0 && val <= INT_MAX)
315                         *d = val;
316         }
317
318         return 0;
319 }
320
321 static int intel_pt_cache_divisor(void)
322 {
323         static int d;
324
325         if (d)
326                 return d;
327
328         perf_config(intel_pt_config_div, &d);
329
330         if (!d)
331                 d = 64;
332
333         return d;
334 }
335
336 static unsigned int intel_pt_cache_size(struct dso *dso,
337                                         struct machine *machine)
338 {
339         off_t size;
340
341         size = dso__data_size(dso, machine);
342         size /= intel_pt_cache_divisor();
343         if (size < 1000)
344                 return 10;
345         if (size > (1 << 21))
346                 return 21;
347         return 32 - __builtin_clz(size);
348 }
349
350 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
351                                              struct machine *machine)
352 {
353         struct auxtrace_cache *c;
354         unsigned int bits;
355
356         if (dso->auxtrace_cache)
357                 return dso->auxtrace_cache;
358
359         bits = intel_pt_cache_size(dso, machine);
360
361         /* Ignoring cache creation failure */
362         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
363
364         dso->auxtrace_cache = c;
365
366         return c;
367 }
368
369 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
370                               u64 offset, u64 insn_cnt, u64 byte_cnt,
371                               struct intel_pt_insn *intel_pt_insn)
372 {
373         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
374         struct intel_pt_cache_entry *e;
375         int err;
376
377         if (!c)
378                 return -ENOMEM;
379
380         e = auxtrace_cache__alloc_entry(c);
381         if (!e)
382                 return -ENOMEM;
383
384         e->insn_cnt = insn_cnt;
385         e->byte_cnt = byte_cnt;
386         e->op = intel_pt_insn->op;
387         e->branch = intel_pt_insn->branch;
388         e->length = intel_pt_insn->length;
389         e->rel = intel_pt_insn->rel;
390         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
391
392         err = auxtrace_cache__add(c, offset, &e->entry);
393         if (err)
394                 auxtrace_cache__free_entry(c, e);
395
396         return err;
397 }
398
399 static struct intel_pt_cache_entry *
400 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
401 {
402         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
403
404         if (!c)
405                 return NULL;
406
407         return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
408 }
409
410 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
411                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
412                                    uint64_t to_ip, uint64_t max_insn_cnt,
413                                    void *data)
414 {
415         struct intel_pt_queue *ptq = data;
416         struct machine *machine = ptq->pt->machine;
417         struct thread *thread;
418         struct addr_location al;
419         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
420         ssize_t len;
421         int x86_64;
422         u8 cpumode;
423         u64 offset, start_offset, start_ip;
424         u64 insn_cnt = 0;
425         bool one_map = true;
426
427         intel_pt_insn->length = 0;
428
429         if (to_ip && *ip == to_ip)
430                 goto out_no_cache;
431
432         if (*ip >= ptq->pt->kernel_start)
433                 cpumode = PERF_RECORD_MISC_KERNEL;
434         else
435                 cpumode = PERF_RECORD_MISC_USER;
436
437         thread = ptq->thread;
438         if (!thread) {
439                 if (cpumode != PERF_RECORD_MISC_KERNEL)
440                         return -EINVAL;
441                 thread = ptq->pt->unknown_thread;
442         }
443
444         while (1) {
445                 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
446                         return -EINVAL;
447
448                 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
449                     dso__data_status_seen(al.map->dso,
450                                           DSO_DATA_STATUS_SEEN_ITRACE))
451                         return -ENOENT;
452
453                 offset = al.map->map_ip(al.map, *ip);
454
455                 if (!to_ip && one_map) {
456                         struct intel_pt_cache_entry *e;
457
458                         e = intel_pt_cache_lookup(al.map->dso, machine, offset);
459                         if (e &&
460                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
461                                 *insn_cnt_ptr = e->insn_cnt;
462                                 *ip += e->byte_cnt;
463                                 intel_pt_insn->op = e->op;
464                                 intel_pt_insn->branch = e->branch;
465                                 intel_pt_insn->length = e->length;
466                                 intel_pt_insn->rel = e->rel;
467                                 memcpy(intel_pt_insn->buf, e->insn,
468                                        INTEL_PT_INSN_BUF_SZ);
469                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
470                                 return 0;
471                         }
472                 }
473
474                 start_offset = offset;
475                 start_ip = *ip;
476
477                 /* Load maps to ensure dso->is_64_bit has been updated */
478                 map__load(al.map);
479
480                 x86_64 = al.map->dso->is_64_bit;
481
482                 while (1) {
483                         len = dso__data_read_offset(al.map->dso, machine,
484                                                     offset, buf,
485                                                     INTEL_PT_INSN_BUF_SZ);
486                         if (len <= 0)
487                                 return -EINVAL;
488
489                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
490                                 return -EINVAL;
491
492                         intel_pt_log_insn(intel_pt_insn, *ip);
493
494                         insn_cnt += 1;
495
496                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
497                                 goto out;
498
499                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
500                                 goto out_no_cache;
501
502                         *ip += intel_pt_insn->length;
503
504                         if (to_ip && *ip == to_ip)
505                                 goto out_no_cache;
506
507                         if (*ip >= al.map->end)
508                                 break;
509
510                         offset += intel_pt_insn->length;
511                 }
512                 one_map = false;
513         }
514 out:
515         *insn_cnt_ptr = insn_cnt;
516
517         if (!one_map)
518                 goto out_no_cache;
519
520         /*
521          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
522          * entries.
523          */
524         if (to_ip) {
525                 struct intel_pt_cache_entry *e;
526
527                 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
528                 if (e)
529                         return 0;
530         }
531
532         /* Ignore cache errors */
533         intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
534                            *ip - start_ip, intel_pt_insn);
535
536         return 0;
537
538 out_no_cache:
539         *insn_cnt_ptr = insn_cnt;
540         return 0;
541 }
542
543 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
544                                   uint64_t offset, const char *filename)
545 {
546         struct addr_filter *filt;
547         bool have_filter   = false;
548         bool hit_tracestop = false;
549         bool hit_filter    = false;
550
551         list_for_each_entry(filt, &pt->filts.head, list) {
552                 if (filt->start)
553                         have_filter = true;
554
555                 if ((filename && !filt->filename) ||
556                     (!filename && filt->filename) ||
557                     (filename && strcmp(filename, filt->filename)))
558                         continue;
559
560                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
561                         continue;
562
563                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
564                              ip, offset, filename ? filename : "[kernel]",
565                              filt->start ? "filter" : "stop",
566                              filt->addr, filt->size);
567
568                 if (filt->start)
569                         hit_filter = true;
570                 else
571                         hit_tracestop = true;
572         }
573
574         if (!hit_tracestop && !hit_filter)
575                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
576                              ip, offset, filename ? filename : "[kernel]");
577
578         return hit_tracestop || (have_filter && !hit_filter);
579 }
580
581 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
582 {
583         struct intel_pt_queue *ptq = data;
584         struct thread *thread;
585         struct addr_location al;
586         u8 cpumode;
587         u64 offset;
588
589         if (ip >= ptq->pt->kernel_start)
590                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
591
592         cpumode = PERF_RECORD_MISC_USER;
593
594         thread = ptq->thread;
595         if (!thread)
596                 return -EINVAL;
597
598         if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
599                 return -EINVAL;
600
601         offset = al.map->map_ip(al.map, ip);
602
603         return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
604                                      al.map->dso->long_name);
605 }
606
607 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
608 {
609         return __intel_pt_pgd_ip(ip, data) > 0;
610 }
611
612 static bool intel_pt_get_config(struct intel_pt *pt,
613                                 struct perf_event_attr *attr, u64 *config)
614 {
615         if (attr->type == pt->pmu_type) {
616                 if (config)
617                         *config = attr->config;
618                 return true;
619         }
620
621         return false;
622 }
623
624 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
625 {
626         struct perf_evsel *evsel;
627
628         evlist__for_each_entry(pt->session->evlist, evsel) {
629                 if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
630                     !evsel->attr.exclude_kernel)
631                         return false;
632         }
633         return true;
634 }
635
636 static bool intel_pt_return_compression(struct intel_pt *pt)
637 {
638         struct perf_evsel *evsel;
639         u64 config;
640
641         if (!pt->noretcomp_bit)
642                 return true;
643
644         evlist__for_each_entry(pt->session->evlist, evsel) {
645                 if (intel_pt_get_config(pt, &evsel->attr, &config) &&
646                     (config & pt->noretcomp_bit))
647                         return false;
648         }
649         return true;
650 }
651
652 static bool intel_pt_branch_enable(struct intel_pt *pt)
653 {
654         struct perf_evsel *evsel;
655         u64 config;
656
657         evlist__for_each_entry(pt->session->evlist, evsel) {
658                 if (intel_pt_get_config(pt, &evsel->attr, &config) &&
659                     (config & 1) && !(config & 0x2000))
660                         return false;
661         }
662         return true;
663 }
664
665 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
666 {
667         struct perf_evsel *evsel;
668         unsigned int shift;
669         u64 config;
670
671         if (!pt->mtc_freq_bits)
672                 return 0;
673
674         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
675                 config >>= 1;
676
677         evlist__for_each_entry(pt->session->evlist, evsel) {
678                 if (intel_pt_get_config(pt, &evsel->attr, &config))
679                         return (config & pt->mtc_freq_bits) >> shift;
680         }
681         return 0;
682 }
683
684 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
685 {
686         struct perf_evsel *evsel;
687         bool timeless_decoding = true;
688         u64 config;
689
690         if (!pt->tsc_bit || !pt->cap_user_time_zero)
691                 return true;
692
693         evlist__for_each_entry(pt->session->evlist, evsel) {
694                 if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME))
695                         return true;
696                 if (intel_pt_get_config(pt, &evsel->attr, &config)) {
697                         if (config & pt->tsc_bit)
698                                 timeless_decoding = false;
699                         else
700                                 return true;
701                 }
702         }
703         return timeless_decoding;
704 }
705
706 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
707 {
708         struct perf_evsel *evsel;
709
710         evlist__for_each_entry(pt->session->evlist, evsel) {
711                 if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
712                     !evsel->attr.exclude_kernel)
713                         return true;
714         }
715         return false;
716 }
717
718 static bool intel_pt_have_tsc(struct intel_pt *pt)
719 {
720         struct perf_evsel *evsel;
721         bool have_tsc = false;
722         u64 config;
723
724         if (!pt->tsc_bit)
725                 return false;
726
727         evlist__for_each_entry(pt->session->evlist, evsel) {
728                 if (intel_pt_get_config(pt, &evsel->attr, &config)) {
729                         if (config & pt->tsc_bit)
730                                 have_tsc = true;
731                         else
732                                 return false;
733                 }
734         }
735         return have_tsc;
736 }
737
738 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
739 {
740         u64 quot, rem;
741
742         quot = ns / pt->tc.time_mult;
743         rem  = ns % pt->tc.time_mult;
744         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
745                 pt->tc.time_mult;
746 }
747
748 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
749                                                    unsigned int queue_nr)
750 {
751         struct intel_pt_params params = { .get_trace = 0, };
752         struct perf_env *env = pt->machine->env;
753         struct intel_pt_queue *ptq;
754
755         ptq = zalloc(sizeof(struct intel_pt_queue));
756         if (!ptq)
757                 return NULL;
758
759         if (pt->synth_opts.callchain) {
760                 size_t sz = sizeof(struct ip_callchain);
761
762                 sz += pt->synth_opts.callchain_sz * sizeof(u64);
763                 ptq->chain = zalloc(sz);
764                 if (!ptq->chain)
765                         goto out_free;
766         }
767
768         if (pt->synth_opts.last_branch) {
769                 size_t sz = sizeof(struct branch_stack);
770
771                 sz += pt->synth_opts.last_branch_sz *
772                       sizeof(struct branch_entry);
773                 ptq->last_branch = zalloc(sz);
774                 if (!ptq->last_branch)
775                         goto out_free;
776                 ptq->last_branch_rb = zalloc(sz);
777                 if (!ptq->last_branch_rb)
778                         goto out_free;
779         }
780
781         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
782         if (!ptq->event_buf)
783                 goto out_free;
784
785         ptq->pt = pt;
786         ptq->queue_nr = queue_nr;
787         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
788         ptq->pid = -1;
789         ptq->tid = -1;
790         ptq->cpu = -1;
791         ptq->next_tid = -1;
792
793         params.get_trace = intel_pt_get_trace;
794         params.walk_insn = intel_pt_walk_next_insn;
795         params.data = ptq;
796         params.return_compression = intel_pt_return_compression(pt);
797         params.branch_enable = intel_pt_branch_enable(pt);
798         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
799         params.mtc_period = intel_pt_mtc_period(pt);
800         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
801         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
802
803         if (pt->filts.cnt > 0)
804                 params.pgd_ip = intel_pt_pgd_ip;
805
806         if (pt->synth_opts.instructions) {
807                 if (pt->synth_opts.period) {
808                         switch (pt->synth_opts.period_type) {
809                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
810                                 params.period_type =
811                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
812                                 params.period = pt->synth_opts.period;
813                                 break;
814                         case PERF_ITRACE_PERIOD_TICKS:
815                                 params.period_type = INTEL_PT_PERIOD_TICKS;
816                                 params.period = pt->synth_opts.period;
817                                 break;
818                         case PERF_ITRACE_PERIOD_NANOSECS:
819                                 params.period_type = INTEL_PT_PERIOD_TICKS;
820                                 params.period = intel_pt_ns_to_ticks(pt,
821                                                         pt->synth_opts.period);
822                                 break;
823                         default:
824                                 break;
825                         }
826                 }
827
828                 if (!params.period) {
829                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
830                         params.period = 1;
831                 }
832         }
833
834         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
835                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
836
837         ptq->decoder = intel_pt_decoder_new(&params);
838         if (!ptq->decoder)
839                 goto out_free;
840
841         return ptq;
842
843 out_free:
844         zfree(&ptq->event_buf);
845         zfree(&ptq->last_branch);
846         zfree(&ptq->last_branch_rb);
847         zfree(&ptq->chain);
848         free(ptq);
849         return NULL;
850 }
851
852 static void intel_pt_free_queue(void *priv)
853 {
854         struct intel_pt_queue *ptq = priv;
855
856         if (!ptq)
857                 return;
858         thread__zput(ptq->thread);
859         intel_pt_decoder_free(ptq->decoder);
860         zfree(&ptq->event_buf);
861         zfree(&ptq->last_branch);
862         zfree(&ptq->last_branch_rb);
863         zfree(&ptq->chain);
864         free(ptq);
865 }
866
867 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
868                                      struct auxtrace_queue *queue)
869 {
870         struct intel_pt_queue *ptq = queue->priv;
871
872         if (queue->tid == -1 || pt->have_sched_switch) {
873                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
874                 thread__zput(ptq->thread);
875         }
876
877         if (!ptq->thread && ptq->tid != -1)
878                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
879
880         if (ptq->thread) {
881                 ptq->pid = ptq->thread->pid_;
882                 if (queue->cpu == -1)
883                         ptq->cpu = ptq->thread->cpu;
884         }
885 }
886
887 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
888 {
889         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
890                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
891         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
892                 if (ptq->state->to_ip)
893                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
894                                      PERF_IP_FLAG_ASYNC |
895                                      PERF_IP_FLAG_INTERRUPT;
896                 else
897                         ptq->flags = PERF_IP_FLAG_BRANCH |
898                                      PERF_IP_FLAG_TRACE_END;
899                 ptq->insn_len = 0;
900         } else {
901                 if (ptq->state->from_ip)
902                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
903                 else
904                         ptq->flags = PERF_IP_FLAG_BRANCH |
905                                      PERF_IP_FLAG_TRACE_BEGIN;
906                 if (ptq->state->flags & INTEL_PT_IN_TX)
907                         ptq->flags |= PERF_IP_FLAG_IN_TX;
908                 ptq->insn_len = ptq->state->insn_len;
909                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
910         }
911 }
912
913 static int intel_pt_setup_queue(struct intel_pt *pt,
914                                 struct auxtrace_queue *queue,
915                                 unsigned int queue_nr)
916 {
917         struct intel_pt_queue *ptq = queue->priv;
918
919         if (list_empty(&queue->head))
920                 return 0;
921
922         if (!ptq) {
923                 ptq = intel_pt_alloc_queue(pt, queue_nr);
924                 if (!ptq)
925                         return -ENOMEM;
926                 queue->priv = ptq;
927
928                 if (queue->cpu != -1)
929                         ptq->cpu = queue->cpu;
930                 ptq->tid = queue->tid;
931
932                 if (pt->sampling_mode && !pt->snapshot_mode &&
933                     pt->timeless_decoding)
934                         ptq->step_through_buffers = true;
935
936                 ptq->sync_switch = pt->sync_switch;
937         }
938
939         if (!ptq->on_heap &&
940             (!ptq->sync_switch ||
941              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
942                 const struct intel_pt_state *state;
943                 int ret;
944
945                 if (pt->timeless_decoding)
946                         return 0;
947
948                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
949                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
950                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
951                 while (1) {
952                         state = intel_pt_decode(ptq->decoder);
953                         if (state->err) {
954                                 if (state->err == INTEL_PT_ERR_NODATA) {
955                                         intel_pt_log("queue %u has no timestamp\n",
956                                                      queue_nr);
957                                         return 0;
958                                 }
959                                 continue;
960                         }
961                         if (state->timestamp)
962                                 break;
963                 }
964
965                 ptq->timestamp = state->timestamp;
966                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
967                              queue_nr, ptq->timestamp);
968                 ptq->state = state;
969                 ptq->have_sample = true;
970                 intel_pt_sample_flags(ptq);
971                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
972                 if (ret)
973                         return ret;
974                 ptq->on_heap = true;
975         }
976
977         return 0;
978 }
979
980 static int intel_pt_setup_queues(struct intel_pt *pt)
981 {
982         unsigned int i;
983         int ret;
984
985         for (i = 0; i < pt->queues.nr_queues; i++) {
986                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
987                 if (ret)
988                         return ret;
989         }
990         return 0;
991 }
992
993 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
994 {
995         struct branch_stack *bs_src = ptq->last_branch_rb;
996         struct branch_stack *bs_dst = ptq->last_branch;
997         size_t nr = 0;
998
999         bs_dst->nr = bs_src->nr;
1000
1001         if (!bs_src->nr)
1002                 return;
1003
1004         nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1005         memcpy(&bs_dst->entries[0],
1006                &bs_src->entries[ptq->last_branch_pos],
1007                sizeof(struct branch_entry) * nr);
1008
1009         if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1010                 memcpy(&bs_dst->entries[nr],
1011                        &bs_src->entries[0],
1012                        sizeof(struct branch_entry) * ptq->last_branch_pos);
1013         }
1014 }
1015
1016 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1017 {
1018         ptq->last_branch_pos = 0;
1019         ptq->last_branch_rb->nr = 0;
1020 }
1021
1022 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1023 {
1024         const struct intel_pt_state *state = ptq->state;
1025         struct branch_stack *bs = ptq->last_branch_rb;
1026         struct branch_entry *be;
1027
1028         if (!ptq->last_branch_pos)
1029                 ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1030
1031         ptq->last_branch_pos -= 1;
1032
1033         be              = &bs->entries[ptq->last_branch_pos];
1034         be->from        = state->from_ip;
1035         be->to          = state->to_ip;
1036         be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1037         be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1038         /* No support for mispredict */
1039         be->flags.mispred = ptq->pt->mispred_all;
1040
1041         if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1042                 bs->nr += 1;
1043 }
1044
1045 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1046 {
1047         return pt->synth_opts.initial_skip &&
1048                pt->num_events++ < pt->synth_opts.initial_skip;
1049 }
1050
1051 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1052                                    struct intel_pt_queue *ptq,
1053                                    union perf_event *event,
1054                                    struct perf_sample *sample)
1055 {
1056         event->sample.header.type = PERF_RECORD_SAMPLE;
1057         event->sample.header.misc = PERF_RECORD_MISC_USER;
1058         event->sample.header.size = sizeof(struct perf_event_header);
1059
1060         if (!pt->timeless_decoding)
1061                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1062
1063         sample->cpumode = PERF_RECORD_MISC_USER;
1064         sample->ip = ptq->state->from_ip;
1065         sample->pid = ptq->pid;
1066         sample->tid = ptq->tid;
1067         sample->addr = ptq->state->to_ip;
1068         sample->period = 1;
1069         sample->cpu = ptq->cpu;
1070         sample->flags = ptq->flags;
1071         sample->insn_len = ptq->insn_len;
1072         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1073 }
1074
1075 static int intel_pt_inject_event(union perf_event *event,
1076                                  struct perf_sample *sample, u64 type)
1077 {
1078         event->header.size = perf_event__sample_event_size(sample, type, 0);
1079         return perf_event__synthesize_sample(event, type, 0, sample);
1080 }
1081
1082 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1083                                       union perf_event *event,
1084                                       struct perf_sample *sample, u64 type)
1085 {
1086         if (!pt->synth_opts.inject)
1087                 return 0;
1088
1089         return intel_pt_inject_event(event, sample, type);
1090 }
1091
1092 static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
1093                                           union perf_event *event,
1094                                           struct perf_sample *sample, u64 type)
1095 {
1096         int ret;
1097
1098         ret = intel_pt_opt_inject(pt, event, sample, type);
1099         if (ret)
1100                 return ret;
1101
1102         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1103         if (ret)
1104                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1105
1106         return ret;
1107 }
1108
1109 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1110 {
1111         struct intel_pt *pt = ptq->pt;
1112         union perf_event *event = ptq->event_buf;
1113         struct perf_sample sample = { .ip = 0, };
1114         struct dummy_branch_stack {
1115                 u64                     nr;
1116                 struct branch_entry     entries;
1117         } dummy_bs;
1118
1119         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1120                 return 0;
1121
1122         if (intel_pt_skip_event(pt))
1123                 return 0;
1124
1125         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1126
1127         sample.id = ptq->pt->branches_id;
1128         sample.stream_id = ptq->pt->branches_id;
1129
1130         /*
1131          * perf report cannot handle events without a branch stack when using
1132          * SORT_MODE__BRANCH so make a dummy one.
1133          */
1134         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1135                 dummy_bs = (struct dummy_branch_stack){
1136                         .nr = 1,
1137                         .entries = {
1138                                 .from = sample.ip,
1139                                 .to = sample.addr,
1140                         },
1141                 };
1142                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1143         }
1144
1145         return intel_pt_deliver_synth_b_event(pt, event, &sample,
1146                                               pt->branches_sample_type);
1147 }
1148
1149 static void intel_pt_prep_sample(struct intel_pt *pt,
1150                                  struct intel_pt_queue *ptq,
1151                                  union perf_event *event,
1152                                  struct perf_sample *sample)
1153 {
1154         intel_pt_prep_b_sample(pt, ptq, event, sample);
1155
1156         if (pt->synth_opts.callchain) {
1157                 thread_stack__sample(ptq->thread, ptq->chain,
1158                                      pt->synth_opts.callchain_sz, sample->ip);
1159                 sample->callchain = ptq->chain;
1160         }
1161
1162         if (pt->synth_opts.last_branch) {
1163                 intel_pt_copy_last_branch_rb(ptq);
1164                 sample->branch_stack = ptq->last_branch;
1165         }
1166 }
1167
1168 static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
1169                                                struct intel_pt_queue *ptq,
1170                                                union perf_event *event,
1171                                                struct perf_sample *sample,
1172                                                u64 type)
1173 {
1174         int ret;
1175
1176         ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
1177
1178         if (pt->synth_opts.last_branch)
1179                 intel_pt_reset_last_branch_rb(ptq);
1180
1181         return ret;
1182 }
1183
1184 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1185 {
1186         struct intel_pt *pt = ptq->pt;
1187         union perf_event *event = ptq->event_buf;
1188         struct perf_sample sample = { .ip = 0, };
1189
1190         if (intel_pt_skip_event(pt))
1191                 return 0;
1192
1193         intel_pt_prep_sample(pt, ptq, event, &sample);
1194
1195         sample.id = ptq->pt->instructions_id;
1196         sample.stream_id = ptq->pt->instructions_id;
1197         sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1198
1199         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1200
1201         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1202                                             pt->instructions_sample_type);
1203 }
1204
1205 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1206 {
1207         struct intel_pt *pt = ptq->pt;
1208         union perf_event *event = ptq->event_buf;
1209         struct perf_sample sample = { .ip = 0, };
1210
1211         if (intel_pt_skip_event(pt))
1212                 return 0;
1213
1214         intel_pt_prep_sample(pt, ptq, event, &sample);
1215
1216         sample.id = ptq->pt->transactions_id;
1217         sample.stream_id = ptq->pt->transactions_id;
1218
1219         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1220                                             pt->transactions_sample_type);
1221 }
1222
1223 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1224                                    struct intel_pt_queue *ptq,
1225                                    union perf_event *event,
1226                                    struct perf_sample *sample)
1227 {
1228         intel_pt_prep_sample(pt, ptq, event, sample);
1229
1230         /*
1231          * Zero IP is used to mean "trace start" but that is not the case for
1232          * power or PTWRITE events with no IP, so clear the flags.
1233          */
1234         if (!sample->ip)
1235                 sample->flags = 0;
1236 }
1237
1238 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1239 {
1240         struct intel_pt *pt = ptq->pt;
1241         union perf_event *event = ptq->event_buf;
1242         struct perf_sample sample = { .ip = 0, };
1243         struct perf_synth_intel_ptwrite raw;
1244
1245         if (intel_pt_skip_event(pt))
1246                 return 0;
1247
1248         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1249
1250         sample.id = ptq->pt->ptwrites_id;
1251         sample.stream_id = ptq->pt->ptwrites_id;
1252
1253         raw.flags = 0;
1254         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1255         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1256
1257         sample.raw_size = perf_synth__raw_size(raw);
1258         sample.raw_data = perf_synth__raw_data(&raw);
1259
1260         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1261                                             pt->ptwrites_sample_type);
1262 }
1263
1264 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1265 {
1266         struct intel_pt *pt = ptq->pt;
1267         union perf_event *event = ptq->event_buf;
1268         struct perf_sample sample = { .ip = 0, };
1269         struct perf_synth_intel_cbr raw;
1270         u32 flags;
1271
1272         if (intel_pt_skip_event(pt))
1273                 return 0;
1274
1275         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1276
1277         sample.id = ptq->pt->cbr_id;
1278         sample.stream_id = ptq->pt->cbr_id;
1279
1280         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1281         raw.flags = cpu_to_le32(flags);
1282         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1283         raw.reserved3 = 0;
1284
1285         sample.raw_size = perf_synth__raw_size(raw);
1286         sample.raw_data = perf_synth__raw_data(&raw);
1287
1288         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1289                                             pt->pwr_events_sample_type);
1290 }
1291
1292 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1293 {
1294         struct intel_pt *pt = ptq->pt;
1295         union perf_event *event = ptq->event_buf;
1296         struct perf_sample sample = { .ip = 0, };
1297         struct perf_synth_intel_mwait raw;
1298
1299         if (intel_pt_skip_event(pt))
1300                 return 0;
1301
1302         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1303
1304         sample.id = ptq->pt->mwait_id;
1305         sample.stream_id = ptq->pt->mwait_id;
1306
1307         raw.reserved = 0;
1308         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1309
1310         sample.raw_size = perf_synth__raw_size(raw);
1311         sample.raw_data = perf_synth__raw_data(&raw);
1312
1313         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1314                                             pt->pwr_events_sample_type);
1315 }
1316
1317 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1318 {
1319         struct intel_pt *pt = ptq->pt;
1320         union perf_event *event = ptq->event_buf;
1321         struct perf_sample sample = { .ip = 0, };
1322         struct perf_synth_intel_pwre raw;
1323
1324         if (intel_pt_skip_event(pt))
1325                 return 0;
1326
1327         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1328
1329         sample.id = ptq->pt->pwre_id;
1330         sample.stream_id = ptq->pt->pwre_id;
1331
1332         raw.reserved = 0;
1333         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1334
1335         sample.raw_size = perf_synth__raw_size(raw);
1336         sample.raw_data = perf_synth__raw_data(&raw);
1337
1338         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1339                                             pt->pwr_events_sample_type);
1340 }
1341
1342 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1343 {
1344         struct intel_pt *pt = ptq->pt;
1345         union perf_event *event = ptq->event_buf;
1346         struct perf_sample sample = { .ip = 0, };
1347         struct perf_synth_intel_exstop raw;
1348
1349         if (intel_pt_skip_event(pt))
1350                 return 0;
1351
1352         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1353
1354         sample.id = ptq->pt->exstop_id;
1355         sample.stream_id = ptq->pt->exstop_id;
1356
1357         raw.flags = 0;
1358         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1359
1360         sample.raw_size = perf_synth__raw_size(raw);
1361         sample.raw_data = perf_synth__raw_data(&raw);
1362
1363         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1364                                             pt->pwr_events_sample_type);
1365 }
1366
1367 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1368 {
1369         struct intel_pt *pt = ptq->pt;
1370         union perf_event *event = ptq->event_buf;
1371         struct perf_sample sample = { .ip = 0, };
1372         struct perf_synth_intel_pwrx raw;
1373
1374         if (intel_pt_skip_event(pt))
1375                 return 0;
1376
1377         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1378
1379         sample.id = ptq->pt->pwrx_id;
1380         sample.stream_id = ptq->pt->pwrx_id;
1381
1382         raw.reserved = 0;
1383         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1384
1385         sample.raw_size = perf_synth__raw_size(raw);
1386         sample.raw_data = perf_synth__raw_data(&raw);
1387
1388         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1389                                             pt->pwr_events_sample_type);
1390 }
1391
1392 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1393                                 pid_t pid, pid_t tid, u64 ip)
1394 {
1395         union perf_event event;
1396         char msg[MAX_AUXTRACE_ERROR_MSG];
1397         int err;
1398
1399         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1400
1401         auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1402                              code, cpu, pid, tid, ip, msg);
1403
1404         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1405         if (err)
1406                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1407                        err);
1408
1409         return err;
1410 }
1411
1412 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1413 {
1414         struct auxtrace_queue *queue;
1415         pid_t tid = ptq->next_tid;
1416         int err;
1417
1418         if (tid == -1)
1419                 return 0;
1420
1421         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1422
1423         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1424
1425         queue = &pt->queues.queue_array[ptq->queue_nr];
1426         intel_pt_set_pid_tid_cpu(pt, queue);
1427
1428         ptq->next_tid = -1;
1429
1430         return err;
1431 }
1432
1433 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1434 {
1435         struct intel_pt *pt = ptq->pt;
1436
1437         return ip == pt->switch_ip &&
1438                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1439                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1440                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1441 }
1442
1443 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1444                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT | \
1445                           INTEL_PT_CBR_CHG)
1446
1447 static int intel_pt_sample(struct intel_pt_queue *ptq)
1448 {
1449         const struct intel_pt_state *state = ptq->state;
1450         struct intel_pt *pt = ptq->pt;
1451         int err;
1452
1453         if (!ptq->have_sample)
1454                 return 0;
1455
1456         ptq->have_sample = false;
1457
1458         if (pt->sample_pwr_events && (state->type & INTEL_PT_PWR_EVT)) {
1459                 if (state->type & INTEL_PT_CBR_CHG) {
1460                         err = intel_pt_synth_cbr_sample(ptq);
1461                         if (err)
1462                                 return err;
1463                 }
1464                 if (state->type & INTEL_PT_MWAIT_OP) {
1465                         err = intel_pt_synth_mwait_sample(ptq);
1466                         if (err)
1467                                 return err;
1468                 }
1469                 if (state->type & INTEL_PT_PWR_ENTRY) {
1470                         err = intel_pt_synth_pwre_sample(ptq);
1471                         if (err)
1472                                 return err;
1473                 }
1474                 if (state->type & INTEL_PT_EX_STOP) {
1475                         err = intel_pt_synth_exstop_sample(ptq);
1476                         if (err)
1477                                 return err;
1478                 }
1479                 if (state->type & INTEL_PT_PWR_EXIT) {
1480                         err = intel_pt_synth_pwrx_sample(ptq);
1481                         if (err)
1482                                 return err;
1483                 }
1484         }
1485
1486         if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1487                 err = intel_pt_synth_instruction_sample(ptq);
1488                 if (err)
1489                         return err;
1490         }
1491
1492         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1493                 err = intel_pt_synth_transaction_sample(ptq);
1494                 if (err)
1495                         return err;
1496         }
1497
1498         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1499                 err = intel_pt_synth_ptwrite_sample(ptq);
1500                 if (err)
1501                         return err;
1502         }
1503
1504         if (!(state->type & INTEL_PT_BRANCH))
1505                 return 0;
1506
1507         if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1508                 thread_stack__event(ptq->thread, ptq->flags, state->from_ip,
1509                                     state->to_ip, ptq->insn_len,
1510                                     state->trace_nr);
1511         else
1512                 thread_stack__set_trace_nr(ptq->thread, state->trace_nr);
1513
1514         if (pt->sample_branches) {
1515                 err = intel_pt_synth_branch_sample(ptq);
1516                 if (err)
1517                         return err;
1518         }
1519
1520         if (pt->synth_opts.last_branch)
1521                 intel_pt_update_last_branch_rb(ptq);
1522
1523         if (!ptq->sync_switch)
1524                 return 0;
1525
1526         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1527                 switch (ptq->switch_state) {
1528                 case INTEL_PT_SS_NOT_TRACING:
1529                 case INTEL_PT_SS_UNKNOWN:
1530                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1531                         err = intel_pt_next_tid(pt, ptq);
1532                         if (err)
1533                                 return err;
1534                         ptq->switch_state = INTEL_PT_SS_TRACING;
1535                         break;
1536                 default:
1537                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
1538                         return 1;
1539                 }
1540         } else if (!state->to_ip) {
1541                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
1542         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
1543                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
1544         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1545                    state->to_ip == pt->ptss_ip &&
1546                    (ptq->flags & PERF_IP_FLAG_CALL)) {
1547                 ptq->switch_state = INTEL_PT_SS_TRACING;
1548         }
1549
1550         return 0;
1551 }
1552
1553 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
1554 {
1555         struct machine *machine = pt->machine;
1556         struct map *map;
1557         struct symbol *sym, *start;
1558         u64 ip, switch_ip = 0;
1559         const char *ptss;
1560
1561         if (ptss_ip)
1562                 *ptss_ip = 0;
1563
1564         map = machine__kernel_map(machine);
1565         if (!map)
1566                 return 0;
1567
1568         if (map__load(map))
1569                 return 0;
1570
1571         start = dso__first_symbol(map->dso);
1572
1573         for (sym = start; sym; sym = dso__next_symbol(sym)) {
1574                 if (sym->binding == STB_GLOBAL &&
1575                     !strcmp(sym->name, "__switch_to")) {
1576                         ip = map->unmap_ip(map, sym->start);
1577                         if (ip >= map->start && ip < map->end) {
1578                                 switch_ip = ip;
1579                                 break;
1580                         }
1581                 }
1582         }
1583
1584         if (!switch_ip || !ptss_ip)
1585                 return 0;
1586
1587         if (pt->have_sched_switch == 1)
1588                 ptss = "perf_trace_sched_switch";
1589         else
1590                 ptss = "__perf_event_task_sched_out";
1591
1592         for (sym = start; sym; sym = dso__next_symbol(sym)) {
1593                 if (!strcmp(sym->name, ptss)) {
1594                         ip = map->unmap_ip(map, sym->start);
1595                         if (ip >= map->start && ip < map->end) {
1596                                 *ptss_ip = ip;
1597                                 break;
1598                         }
1599                 }
1600         }
1601
1602         return switch_ip;
1603 }
1604
1605 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
1606 {
1607         unsigned int i;
1608
1609         pt->sync_switch = true;
1610
1611         for (i = 0; i < pt->queues.nr_queues; i++) {
1612                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1613                 struct intel_pt_queue *ptq = queue->priv;
1614
1615                 if (ptq)
1616                         ptq->sync_switch = true;
1617         }
1618 }
1619
1620 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
1621 {
1622         const struct intel_pt_state *state = ptq->state;
1623         struct intel_pt *pt = ptq->pt;
1624         int err;
1625
1626         if (!pt->kernel_start) {
1627                 pt->kernel_start = machine__kernel_start(pt->machine);
1628                 if (pt->per_cpu_mmaps &&
1629                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
1630                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
1631                     !pt->sampling_mode) {
1632                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
1633                         if (pt->switch_ip) {
1634                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
1635                                              pt->switch_ip, pt->ptss_ip);
1636                                 intel_pt_enable_sync_switch(pt);
1637                         }
1638                 }
1639         }
1640
1641         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1642                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1643         while (1) {
1644                 err = intel_pt_sample(ptq);
1645                 if (err)
1646                         return err;
1647
1648                 state = intel_pt_decode(ptq->decoder);
1649                 if (state->err) {
1650                         if (state->err == INTEL_PT_ERR_NODATA)
1651                                 return 1;
1652                         if (ptq->sync_switch &&
1653                             state->from_ip >= pt->kernel_start) {
1654                                 ptq->sync_switch = false;
1655                                 intel_pt_next_tid(pt, ptq);
1656                         }
1657                         if (pt->synth_opts.errors) {
1658                                 err = intel_pt_synth_error(pt, state->err,
1659                                                            ptq->cpu, ptq->pid,
1660                                                            ptq->tid,
1661                                                            state->from_ip);
1662                                 if (err)
1663                                         return err;
1664                         }
1665                         continue;
1666                 }
1667
1668                 ptq->state = state;
1669                 ptq->have_sample = true;
1670                 intel_pt_sample_flags(ptq);
1671
1672                 /* Use estimated TSC upon return to user space */
1673                 if (pt->est_tsc &&
1674                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
1675                     state->to_ip && state->to_ip < pt->kernel_start) {
1676                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1677                                      state->timestamp, state->est_timestamp);
1678                         ptq->timestamp = state->est_timestamp;
1679                 /* Use estimated TSC in unknown switch state */
1680                 } else if (ptq->sync_switch &&
1681                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1682                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
1683                            ptq->next_tid == -1) {
1684                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1685                                      state->timestamp, state->est_timestamp);
1686                         ptq->timestamp = state->est_timestamp;
1687                 } else if (state->timestamp > ptq->timestamp) {
1688                         ptq->timestamp = state->timestamp;
1689                 }
1690
1691                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
1692                         *timestamp = ptq->timestamp;
1693                         return 0;
1694                 }
1695         }
1696         return 0;
1697 }
1698
1699 static inline int intel_pt_update_queues(struct intel_pt *pt)
1700 {
1701         if (pt->queues.new_data) {
1702                 pt->queues.new_data = false;
1703                 return intel_pt_setup_queues(pt);
1704         }
1705         return 0;
1706 }
1707
1708 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
1709 {
1710         unsigned int queue_nr;
1711         u64 ts;
1712         int ret;
1713
1714         while (1) {
1715                 struct auxtrace_queue *queue;
1716                 struct intel_pt_queue *ptq;
1717
1718                 if (!pt->heap.heap_cnt)
1719                         return 0;
1720
1721                 if (pt->heap.heap_array[0].ordinal >= timestamp)
1722                         return 0;
1723
1724                 queue_nr = pt->heap.heap_array[0].queue_nr;
1725                 queue = &pt->queues.queue_array[queue_nr];
1726                 ptq = queue->priv;
1727
1728                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
1729                              queue_nr, pt->heap.heap_array[0].ordinal,
1730                              timestamp);
1731
1732                 auxtrace_heap__pop(&pt->heap);
1733
1734                 if (pt->heap.heap_cnt) {
1735                         ts = pt->heap.heap_array[0].ordinal + 1;
1736                         if (ts > timestamp)
1737                                 ts = timestamp;
1738                 } else {
1739                         ts = timestamp;
1740                 }
1741
1742                 intel_pt_set_pid_tid_cpu(pt, queue);
1743
1744                 ret = intel_pt_run_decoder(ptq, &ts);
1745
1746                 if (ret < 0) {
1747                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
1748                         return ret;
1749                 }
1750
1751                 if (!ret) {
1752                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
1753                         if (ret < 0)
1754                                 return ret;
1755                 } else {
1756                         ptq->on_heap = false;
1757                 }
1758         }
1759
1760         return 0;
1761 }
1762
1763 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
1764                                             u64 time_)
1765 {
1766         struct auxtrace_queues *queues = &pt->queues;
1767         unsigned int i;
1768         u64 ts = 0;
1769
1770         for (i = 0; i < queues->nr_queues; i++) {
1771                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1772                 struct intel_pt_queue *ptq = queue->priv;
1773
1774                 if (ptq && (tid == -1 || ptq->tid == tid)) {
1775                         ptq->time = time_;
1776                         intel_pt_set_pid_tid_cpu(pt, queue);
1777                         intel_pt_run_decoder(ptq, &ts);
1778                 }
1779         }
1780         return 0;
1781 }
1782
1783 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
1784 {
1785         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
1786                                     sample->pid, sample->tid, 0);
1787 }
1788
1789 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
1790 {
1791         unsigned i, j;
1792
1793         if (cpu < 0 || !pt->queues.nr_queues)
1794                 return NULL;
1795
1796         if ((unsigned)cpu >= pt->queues.nr_queues)
1797                 i = pt->queues.nr_queues - 1;
1798         else
1799                 i = cpu;
1800
1801         if (pt->queues.queue_array[i].cpu == cpu)
1802                 return pt->queues.queue_array[i].priv;
1803
1804         for (j = 0; i > 0; j++) {
1805                 if (pt->queues.queue_array[--i].cpu == cpu)
1806                         return pt->queues.queue_array[i].priv;
1807         }
1808
1809         for (; j < pt->queues.nr_queues; j++) {
1810                 if (pt->queues.queue_array[j].cpu == cpu)
1811                         return pt->queues.queue_array[j].priv;
1812         }
1813
1814         return NULL;
1815 }
1816
1817 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
1818                                 u64 timestamp)
1819 {
1820         struct intel_pt_queue *ptq;
1821         int err;
1822
1823         if (!pt->sync_switch)
1824                 return 1;
1825
1826         ptq = intel_pt_cpu_to_ptq(pt, cpu);
1827         if (!ptq || !ptq->sync_switch)
1828                 return 1;
1829
1830         switch (ptq->switch_state) {
1831         case INTEL_PT_SS_NOT_TRACING:
1832                 ptq->next_tid = -1;
1833                 break;
1834         case INTEL_PT_SS_UNKNOWN:
1835         case INTEL_PT_SS_TRACING:
1836                 ptq->next_tid = tid;
1837                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
1838                 return 0;
1839         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
1840                 if (!ptq->on_heap) {
1841                         ptq->timestamp = perf_time_to_tsc(timestamp,
1842                                                           &pt->tc);
1843                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
1844                                                  ptq->timestamp);
1845                         if (err)
1846                                 return err;
1847                         ptq->on_heap = true;
1848                 }
1849                 ptq->switch_state = INTEL_PT_SS_TRACING;
1850                 break;
1851         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1852                 ptq->next_tid = tid;
1853                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
1854                 break;
1855         default:
1856                 break;
1857         }
1858
1859         return 1;
1860 }
1861
1862 static int intel_pt_process_switch(struct intel_pt *pt,
1863                                    struct perf_sample *sample)
1864 {
1865         struct perf_evsel *evsel;
1866         pid_t tid;
1867         int cpu, ret;
1868
1869         evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
1870         if (evsel != pt->switch_evsel)
1871                 return 0;
1872
1873         tid = perf_evsel__intval(evsel, sample, "next_pid");
1874         cpu = sample->cpu;
1875
1876         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1877                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
1878                      &pt->tc));
1879
1880         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1881         if (ret <= 0)
1882                 return ret;
1883
1884         return machine__set_current_tid(pt->machine, cpu, -1, tid);
1885 }
1886
1887 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
1888                                    struct perf_sample *sample)
1889 {
1890         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
1891         pid_t pid, tid;
1892         int cpu, ret;
1893
1894         cpu = sample->cpu;
1895
1896         if (pt->have_sched_switch == 3) {
1897                 if (!out)
1898                         return 0;
1899                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
1900                         pr_err("Expecting CPU-wide context switch event\n");
1901                         return -EINVAL;
1902                 }
1903                 pid = event->context_switch.next_prev_pid;
1904                 tid = event->context_switch.next_prev_tid;
1905         } else {
1906                 if (out)
1907                         return 0;
1908                 pid = sample->pid;
1909                 tid = sample->tid;
1910         }
1911
1912         if (tid == -1) {
1913                 pr_err("context_switch event has no tid\n");
1914                 return -EINVAL;
1915         }
1916
1917         intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1918                      cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
1919                      &pt->tc));
1920
1921         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1922         if (ret <= 0)
1923                 return ret;
1924
1925         return machine__set_current_tid(pt->machine, cpu, pid, tid);
1926 }
1927
1928 static int intel_pt_process_itrace_start(struct intel_pt *pt,
1929                                          union perf_event *event,
1930                                          struct perf_sample *sample)
1931 {
1932         if (!pt->per_cpu_mmaps)
1933                 return 0;
1934
1935         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1936                      sample->cpu, event->itrace_start.pid,
1937                      event->itrace_start.tid, sample->time,
1938                      perf_time_to_tsc(sample->time, &pt->tc));
1939
1940         return machine__set_current_tid(pt->machine, sample->cpu,
1941                                         event->itrace_start.pid,
1942                                         event->itrace_start.tid);
1943 }
1944
1945 static int intel_pt_process_event(struct perf_session *session,
1946                                   union perf_event *event,
1947                                   struct perf_sample *sample,
1948                                   struct perf_tool *tool)
1949 {
1950         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1951                                            auxtrace);
1952         u64 timestamp;
1953         int err = 0;
1954
1955         if (dump_trace)
1956                 return 0;
1957
1958         if (!tool->ordered_events) {
1959                 pr_err("Intel Processor Trace requires ordered events\n");
1960                 return -EINVAL;
1961         }
1962
1963         if (sample->time && sample->time != (u64)-1)
1964                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
1965         else
1966                 timestamp = 0;
1967
1968         if (timestamp || pt->timeless_decoding) {
1969                 err = intel_pt_update_queues(pt);
1970                 if (err)
1971                         return err;
1972         }
1973
1974         if (pt->timeless_decoding) {
1975                 if (event->header.type == PERF_RECORD_EXIT) {
1976                         err = intel_pt_process_timeless_queues(pt,
1977                                                                event->fork.tid,
1978                                                                sample->time);
1979                 }
1980         } else if (timestamp) {
1981                 err = intel_pt_process_queues(pt, timestamp);
1982         }
1983         if (err)
1984                 return err;
1985
1986         if (event->header.type == PERF_RECORD_AUX &&
1987             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
1988             pt->synth_opts.errors) {
1989                 err = intel_pt_lost(pt, sample);
1990                 if (err)
1991                         return err;
1992         }
1993
1994         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
1995                 err = intel_pt_process_switch(pt, sample);
1996         else if (event->header.type == PERF_RECORD_ITRACE_START)
1997                 err = intel_pt_process_itrace_start(pt, event, sample);
1998         else if (event->header.type == PERF_RECORD_SWITCH ||
1999                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2000                 err = intel_pt_context_switch(pt, event, sample);
2001
2002         intel_pt_log("event %s (%u): cpu %d time %"PRIu64" tsc %#"PRIx64"\n",
2003                      perf_event__name(event->header.type), event->header.type,
2004                      sample->cpu, sample->time, timestamp);
2005
2006         return err;
2007 }
2008
2009 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2010 {
2011         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2012                                            auxtrace);
2013         int ret;
2014
2015         if (dump_trace)
2016                 return 0;
2017
2018         if (!tool->ordered_events)
2019                 return -EINVAL;
2020
2021         ret = intel_pt_update_queues(pt);
2022         if (ret < 0)
2023                 return ret;
2024
2025         if (pt->timeless_decoding)
2026                 return intel_pt_process_timeless_queues(pt, -1,
2027                                                         MAX_TIMESTAMP - 1);
2028
2029         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2030 }
2031
2032 static void intel_pt_free_events(struct perf_session *session)
2033 {
2034         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2035                                            auxtrace);
2036         struct auxtrace_queues *queues = &pt->queues;
2037         unsigned int i;
2038
2039         for (i = 0; i < queues->nr_queues; i++) {
2040                 intel_pt_free_queue(queues->queue_array[i].priv);
2041                 queues->queue_array[i].priv = NULL;
2042         }
2043         intel_pt_log_disable();
2044         auxtrace_queues__free(queues);
2045 }
2046
2047 static void intel_pt_free(struct perf_session *session)
2048 {
2049         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2050                                            auxtrace);
2051
2052         auxtrace_heap__free(&pt->heap);
2053         intel_pt_free_events(session);
2054         session->auxtrace = NULL;
2055         thread__put(pt->unknown_thread);
2056         addr_filters__exit(&pt->filts);
2057         zfree(&pt->filter);
2058         free(pt);
2059 }
2060
2061 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2062                                            union perf_event *event,
2063                                            struct perf_tool *tool __maybe_unused)
2064 {
2065         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2066                                            auxtrace);
2067
2068         if (!pt->data_queued) {
2069                 struct auxtrace_buffer *buffer;
2070                 off_t data_offset;
2071                 int fd = perf_data__fd(session->data);
2072                 int err;
2073
2074                 if (perf_data__is_pipe(session->data)) {
2075                         data_offset = 0;
2076                 } else {
2077                         data_offset = lseek(fd, 0, SEEK_CUR);
2078                         if (data_offset == -1)
2079                                 return -errno;
2080                 }
2081
2082                 err = auxtrace_queues__add_event(&pt->queues, session, event,
2083                                                  data_offset, &buffer);
2084                 if (err)
2085                         return err;
2086
2087                 /* Dump here now we have copied a piped trace out of the pipe */
2088                 if (dump_trace) {
2089                         if (auxtrace_buffer__get_data(buffer, fd)) {
2090                                 intel_pt_dump_event(pt, buffer->data,
2091                                                     buffer->size);
2092                                 auxtrace_buffer__put_data(buffer);
2093                         }
2094                 }
2095         }
2096
2097         return 0;
2098 }
2099
2100 struct intel_pt_synth {
2101         struct perf_tool dummy_tool;
2102         struct perf_session *session;
2103 };
2104
2105 static int intel_pt_event_synth(struct perf_tool *tool,
2106                                 union perf_event *event,
2107                                 struct perf_sample *sample __maybe_unused,
2108                                 struct machine *machine __maybe_unused)
2109 {
2110         struct intel_pt_synth *intel_pt_synth =
2111                         container_of(tool, struct intel_pt_synth, dummy_tool);
2112
2113         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2114                                                  NULL);
2115 }
2116
2117 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2118                                 struct perf_event_attr *attr, u64 id)
2119 {
2120         struct intel_pt_synth intel_pt_synth;
2121         int err;
2122
2123         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2124                  name, id, (u64)attr->sample_type);
2125
2126         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2127         intel_pt_synth.session = session;
2128
2129         err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2130                                           &id, intel_pt_event_synth);
2131         if (err)
2132                 pr_err("%s: failed to synthesize '%s' event type\n",
2133                        __func__, name);
2134
2135         return err;
2136 }
2137
2138 static void intel_pt_set_event_name(struct perf_evlist *evlist, u64 id,
2139                                     const char *name)
2140 {
2141         struct perf_evsel *evsel;
2142
2143         evlist__for_each_entry(evlist, evsel) {
2144                 if (evsel->id && evsel->id[0] == id) {
2145                         if (evsel->name)
2146                                 zfree(&evsel->name);
2147                         evsel->name = strdup(name);
2148                         break;
2149                 }
2150         }
2151 }
2152
2153 static struct perf_evsel *intel_pt_evsel(struct intel_pt *pt,
2154                                          struct perf_evlist *evlist)
2155 {
2156         struct perf_evsel *evsel;
2157
2158         evlist__for_each_entry(evlist, evsel) {
2159                 if (evsel->attr.type == pt->pmu_type && evsel->ids)
2160                         return evsel;
2161         }
2162
2163         return NULL;
2164 }
2165
2166 static int intel_pt_synth_events(struct intel_pt *pt,
2167                                  struct perf_session *session)
2168 {
2169         struct perf_evlist *evlist = session->evlist;
2170         struct perf_evsel *evsel = intel_pt_evsel(pt, evlist);
2171         struct perf_event_attr attr;
2172         u64 id;
2173         int err;
2174
2175         if (!evsel) {
2176                 pr_debug("There are no selected events with Intel Processor Trace data\n");
2177                 return 0;
2178         }
2179
2180         memset(&attr, 0, sizeof(struct perf_event_attr));
2181         attr.size = sizeof(struct perf_event_attr);
2182         attr.type = PERF_TYPE_HARDWARE;
2183         attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
2184         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2185                             PERF_SAMPLE_PERIOD;
2186         if (pt->timeless_decoding)
2187                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2188         else
2189                 attr.sample_type |= PERF_SAMPLE_TIME;
2190         if (!pt->per_cpu_mmaps)
2191                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2192         attr.exclude_user = evsel->attr.exclude_user;
2193         attr.exclude_kernel = evsel->attr.exclude_kernel;
2194         attr.exclude_hv = evsel->attr.exclude_hv;
2195         attr.exclude_host = evsel->attr.exclude_host;
2196         attr.exclude_guest = evsel->attr.exclude_guest;
2197         attr.sample_id_all = evsel->attr.sample_id_all;
2198         attr.read_format = evsel->attr.read_format;
2199
2200         id = evsel->id[0] + 1000000000;
2201         if (!id)
2202                 id = 1;
2203
2204         if (pt->synth_opts.branches) {
2205                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2206                 attr.sample_period = 1;
2207                 attr.sample_type |= PERF_SAMPLE_ADDR;
2208                 err = intel_pt_synth_event(session, "branches", &attr, id);
2209                 if (err)
2210                         return err;
2211                 pt->sample_branches = true;
2212                 pt->branches_sample_type = attr.sample_type;
2213                 pt->branches_id = id;
2214                 id += 1;
2215                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2216         }
2217
2218         if (pt->synth_opts.callchain)
2219                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2220         if (pt->synth_opts.last_branch)
2221                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2222
2223         if (pt->synth_opts.instructions) {
2224                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2225                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2226                         attr.sample_period =
2227                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2228                 else
2229                         attr.sample_period = pt->synth_opts.period;
2230                 err = intel_pt_synth_event(session, "instructions", &attr, id);
2231                 if (err)
2232                         return err;
2233                 pt->sample_instructions = true;
2234                 pt->instructions_sample_type = attr.sample_type;
2235                 pt->instructions_id = id;
2236                 id += 1;
2237         }
2238
2239         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2240         attr.sample_period = 1;
2241
2242         if (pt->synth_opts.transactions) {
2243                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2244                 err = intel_pt_synth_event(session, "transactions", &attr, id);
2245                 if (err)
2246                         return err;
2247                 pt->sample_transactions = true;
2248                 pt->transactions_sample_type = attr.sample_type;
2249                 pt->transactions_id = id;
2250                 intel_pt_set_event_name(evlist, id, "transactions");
2251                 id += 1;
2252         }
2253
2254         attr.type = PERF_TYPE_SYNTH;
2255         attr.sample_type |= PERF_SAMPLE_RAW;
2256
2257         if (pt->synth_opts.ptwrites) {
2258                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
2259                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2260                 if (err)
2261                         return err;
2262                 pt->sample_ptwrites = true;
2263                 pt->ptwrites_sample_type = attr.sample_type;
2264                 pt->ptwrites_id = id;
2265                 intel_pt_set_event_name(evlist, id, "ptwrite");
2266                 id += 1;
2267         }
2268
2269         if (pt->synth_opts.pwr_events) {
2270                 pt->sample_pwr_events = true;
2271                 pt->pwr_events_sample_type = attr.sample_type;
2272
2273                 attr.config = PERF_SYNTH_INTEL_CBR;
2274                 err = intel_pt_synth_event(session, "cbr", &attr, id);
2275                 if (err)
2276                         return err;
2277                 pt->cbr_id = id;
2278                 intel_pt_set_event_name(evlist, id, "cbr");
2279                 id += 1;
2280         }
2281
2282         if (pt->synth_opts.pwr_events && (evsel->attr.config & 0x10)) {
2283                 attr.config = PERF_SYNTH_INTEL_MWAIT;
2284                 err = intel_pt_synth_event(session, "mwait", &attr, id);
2285                 if (err)
2286                         return err;
2287                 pt->mwait_id = id;
2288                 intel_pt_set_event_name(evlist, id, "mwait");
2289                 id += 1;
2290
2291                 attr.config = PERF_SYNTH_INTEL_PWRE;
2292                 err = intel_pt_synth_event(session, "pwre", &attr, id);
2293                 if (err)
2294                         return err;
2295                 pt->pwre_id = id;
2296                 intel_pt_set_event_name(evlist, id, "pwre");
2297                 id += 1;
2298
2299                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
2300                 err = intel_pt_synth_event(session, "exstop", &attr, id);
2301                 if (err)
2302                         return err;
2303                 pt->exstop_id = id;
2304                 intel_pt_set_event_name(evlist, id, "exstop");
2305                 id += 1;
2306
2307                 attr.config = PERF_SYNTH_INTEL_PWRX;
2308                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
2309                 if (err)
2310                         return err;
2311                 pt->pwrx_id = id;
2312                 intel_pt_set_event_name(evlist, id, "pwrx");
2313                 id += 1;
2314         }
2315
2316         return 0;
2317 }
2318
2319 static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist)
2320 {
2321         struct perf_evsel *evsel;
2322
2323         evlist__for_each_entry_reverse(evlist, evsel) {
2324                 const char *name = perf_evsel__name(evsel);
2325
2326                 if (!strcmp(name, "sched:sched_switch"))
2327                         return evsel;
2328         }
2329
2330         return NULL;
2331 }
2332
2333 static bool intel_pt_find_switch(struct perf_evlist *evlist)
2334 {
2335         struct perf_evsel *evsel;
2336
2337         evlist__for_each_entry(evlist, evsel) {
2338                 if (evsel->attr.context_switch)
2339                         return true;
2340         }
2341
2342         return false;
2343 }
2344
2345 static int intel_pt_perf_config(const char *var, const char *value, void *data)
2346 {
2347         struct intel_pt *pt = data;
2348
2349         if (!strcmp(var, "intel-pt.mispred-all"))
2350                 pt->mispred_all = perf_config_bool(var, value);
2351
2352         return 0;
2353 }
2354
2355 static const char * const intel_pt_info_fmts[] = {
2356         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
2357         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
2358         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
2359         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
2360         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
2361         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
2362         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
2363         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
2364         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
2365         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
2366         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
2367         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
2368         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
2369         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
2370         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
2371         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
2372 };
2373
2374 static void intel_pt_print_info(u64 *arr, int start, int finish)
2375 {
2376         int i;
2377
2378         if (!dump_trace)
2379                 return;
2380
2381         for (i = start; i <= finish; i++)
2382                 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
2383 }
2384
2385 static void intel_pt_print_info_str(const char *name, const char *str)
2386 {
2387         if (!dump_trace)
2388                 return;
2389
2390         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
2391 }
2392
2393 static bool intel_pt_has(struct auxtrace_info_event *auxtrace_info, int pos)
2394 {
2395         return auxtrace_info->header.size >=
2396                 sizeof(struct auxtrace_info_event) + (sizeof(u64) * (pos + 1));
2397 }
2398
2399 int intel_pt_process_auxtrace_info(union perf_event *event,
2400                                    struct perf_session *session)
2401 {
2402         struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
2403         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
2404         struct intel_pt *pt;
2405         void *info_end;
2406         u64 *info;
2407         int err;
2408
2409         if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
2410                                         min_sz)
2411                 return -EINVAL;
2412
2413         pt = zalloc(sizeof(struct intel_pt));
2414         if (!pt)
2415                 return -ENOMEM;
2416
2417         addr_filters__init(&pt->filts);
2418
2419         err = perf_config(intel_pt_perf_config, pt);
2420         if (err)
2421                 goto err_free;
2422
2423         err = auxtrace_queues__init(&pt->queues);
2424         if (err)
2425                 goto err_free;
2426
2427         intel_pt_log_set_name(INTEL_PT_PMU_NAME);
2428
2429         pt->session = session;
2430         pt->machine = &session->machines.host; /* No kvm support */
2431         pt->auxtrace_type = auxtrace_info->type;
2432         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
2433         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
2434         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
2435         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
2436         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
2437         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
2438         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
2439         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
2440         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
2441         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
2442         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
2443                             INTEL_PT_PER_CPU_MMAPS);
2444
2445         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
2446                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
2447                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
2448                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
2449                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
2450                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
2451                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
2452                                     INTEL_PT_CYC_BIT);
2453         }
2454
2455         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
2456                 pt->max_non_turbo_ratio =
2457                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
2458                 intel_pt_print_info(&auxtrace_info->priv[0],
2459                                     INTEL_PT_MAX_NONTURBO_RATIO,
2460                                     INTEL_PT_MAX_NONTURBO_RATIO);
2461         }
2462
2463         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
2464         info_end = (void *)info + auxtrace_info->header.size;
2465
2466         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
2467                 size_t len;
2468
2469                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
2470                 intel_pt_print_info(&auxtrace_info->priv[0],
2471                                     INTEL_PT_FILTER_STR_LEN,
2472                                     INTEL_PT_FILTER_STR_LEN);
2473                 if (len) {
2474                         const char *filter = (const char *)info;
2475
2476                         len = roundup(len + 1, 8);
2477                         info += len >> 3;
2478                         if ((void *)info > info_end) {
2479                                 pr_err("%s: bad filter string length\n", __func__);
2480                                 err = -EINVAL;
2481                                 goto err_free_queues;
2482                         }
2483                         pt->filter = memdup(filter, len);
2484                         if (!pt->filter) {
2485                                 err = -ENOMEM;
2486                                 goto err_free_queues;
2487                         }
2488                         if (session->header.needs_swap)
2489                                 mem_bswap_64(pt->filter, len);
2490                         if (pt->filter[len - 1]) {
2491                                 pr_err("%s: filter string not null terminated\n", __func__);
2492                                 err = -EINVAL;
2493                                 goto err_free_queues;
2494                         }
2495                         err = addr_filters__parse_bare_filter(&pt->filts,
2496                                                               filter);
2497                         if (err)
2498                                 goto err_free_queues;
2499                 }
2500                 intel_pt_print_info_str("Filter string", pt->filter);
2501         }
2502
2503         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
2504         pt->have_tsc = intel_pt_have_tsc(pt);
2505         pt->sampling_mode = false;
2506         pt->est_tsc = !pt->timeless_decoding;
2507
2508         pt->unknown_thread = thread__new(999999999, 999999999);
2509         if (!pt->unknown_thread) {
2510                 err = -ENOMEM;
2511                 goto err_free_queues;
2512         }
2513
2514         /*
2515          * Since this thread will not be kept in any rbtree not in a
2516          * list, initialize its list node so that at thread__put() the
2517          * current thread lifetime assuption is kept and we don't segfault
2518          * at list_del_init().
2519          */
2520         INIT_LIST_HEAD(&pt->unknown_thread->node);
2521
2522         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
2523         if (err)
2524                 goto err_delete_thread;
2525         if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
2526                 err = -ENOMEM;
2527                 goto err_delete_thread;
2528         }
2529
2530         pt->auxtrace.process_event = intel_pt_process_event;
2531         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
2532         pt->auxtrace.flush_events = intel_pt_flush;
2533         pt->auxtrace.free_events = intel_pt_free_events;
2534         pt->auxtrace.free = intel_pt_free;
2535         session->auxtrace = &pt->auxtrace;
2536
2537         if (dump_trace)
2538                 return 0;
2539
2540         if (pt->have_sched_switch == 1) {
2541                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
2542                 if (!pt->switch_evsel) {
2543                         pr_err("%s: missing sched_switch event\n", __func__);
2544                         err = -EINVAL;
2545                         goto err_delete_thread;
2546                 }
2547         } else if (pt->have_sched_switch == 2 &&
2548                    !intel_pt_find_switch(session->evlist)) {
2549                 pr_err("%s: missing context_switch attribute flag\n", __func__);
2550                 err = -EINVAL;
2551                 goto err_delete_thread;
2552         }
2553
2554         if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
2555                 pt->synth_opts = *session->itrace_synth_opts;
2556         } else {
2557                 itrace_synth_opts__set_default(&pt->synth_opts);
2558                 if (use_browser != -1) {
2559                         pt->synth_opts.branches = false;
2560                         pt->synth_opts.callchain = true;
2561                 }
2562                 if (session->itrace_synth_opts)
2563                         pt->synth_opts.thread_stack =
2564                                 session->itrace_synth_opts->thread_stack;
2565         }
2566
2567         if (pt->synth_opts.log)
2568                 intel_pt_log_enable();
2569
2570         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
2571         if (pt->tc.time_mult) {
2572                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
2573
2574                 if (!pt->max_non_turbo_ratio)
2575                         pt->max_non_turbo_ratio =
2576                                         (tsc_freq + 50000000) / 100000000;
2577                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
2578                 intel_pt_log("Maximum non-turbo ratio %u\n",
2579                              pt->max_non_turbo_ratio);
2580                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
2581         }
2582
2583         if (pt->synth_opts.calls)
2584                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
2585                                        PERF_IP_FLAG_TRACE_END;
2586         if (pt->synth_opts.returns)
2587                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
2588                                        PERF_IP_FLAG_TRACE_BEGIN;
2589
2590         if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
2591                 symbol_conf.use_callchain = true;
2592                 if (callchain_register_param(&callchain_param) < 0) {
2593                         symbol_conf.use_callchain = false;
2594                         pt->synth_opts.callchain = false;
2595                 }
2596         }
2597
2598         err = intel_pt_synth_events(pt, session);
2599         if (err)
2600                 goto err_delete_thread;
2601
2602         err = auxtrace_queues__process_index(&pt->queues, session);
2603         if (err)
2604                 goto err_delete_thread;
2605
2606         if (pt->queues.populated)
2607                 pt->data_queued = true;
2608
2609         if (pt->timeless_decoding)
2610                 pr_debug2("Intel PT decoding without timestamps\n");
2611
2612         return 0;
2613
2614 err_delete_thread:
2615         thread__zput(pt->unknown_thread);
2616 err_free_queues:
2617         intel_pt_log_disable();
2618         auxtrace_queues__free(&pt->queues);
2619         session->auxtrace = NULL;
2620 err_free:
2621         addr_filters__exit(&pt->filts);
2622         zfree(&pt->filter);
2623         free(pt);
2624         return err;
2625 }