Merge tag 'qcom-arm64-fixes-for-5.14' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / tools / perf / util / intel-pt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46
47 #define MAX_TIMESTAMP (~0ULL)
48
49 struct range {
50         u64 start;
51         u64 end;
52 };
53
54 struct intel_pt {
55         struct auxtrace auxtrace;
56         struct auxtrace_queues queues;
57         struct auxtrace_heap heap;
58         u32 auxtrace_type;
59         struct perf_session *session;
60         struct machine *machine;
61         struct evsel *switch_evsel;
62         struct thread *unknown_thread;
63         bool timeless_decoding;
64         bool sampling_mode;
65         bool snapshot_mode;
66         bool per_cpu_mmaps;
67         bool have_tsc;
68         bool data_queued;
69         bool est_tsc;
70         bool sync_switch;
71         bool mispred_all;
72         bool use_thread_stack;
73         bool callstack;
74         unsigned int br_stack_sz;
75         unsigned int br_stack_sz_plus;
76         int have_sched_switch;
77         u32 pmu_type;
78         u64 kernel_start;
79         u64 switch_ip;
80         u64 ptss_ip;
81         u64 first_timestamp;
82
83         struct perf_tsc_conversion tc;
84         bool cap_user_time_zero;
85
86         struct itrace_synth_opts synth_opts;
87
88         bool sample_instructions;
89         u64 instructions_sample_type;
90         u64 instructions_id;
91
92         bool sample_branches;
93         u32 branches_filter;
94         u64 branches_sample_type;
95         u64 branches_id;
96
97         bool sample_transactions;
98         u64 transactions_sample_type;
99         u64 transactions_id;
100
101         bool sample_ptwrites;
102         u64 ptwrites_sample_type;
103         u64 ptwrites_id;
104
105         bool sample_pwr_events;
106         u64 pwr_events_sample_type;
107         u64 mwait_id;
108         u64 pwre_id;
109         u64 exstop_id;
110         u64 pwrx_id;
111         u64 cbr_id;
112         u64 psb_id;
113
114         bool sample_pebs;
115         struct evsel *pebs_evsel;
116
117         u64 tsc_bit;
118         u64 mtc_bit;
119         u64 mtc_freq_bits;
120         u32 tsc_ctc_ratio_n;
121         u32 tsc_ctc_ratio_d;
122         u64 cyc_bit;
123         u64 noretcomp_bit;
124         unsigned max_non_turbo_ratio;
125         unsigned cbr2khz;
126         int max_loops;
127
128         unsigned long num_events;
129
130         char *filter;
131         struct addr_filters filts;
132
133         struct range *time_ranges;
134         unsigned int range_cnt;
135
136         struct ip_callchain *chain;
137         struct branch_stack *br_stack;
138
139         u64 dflt_tsc_offset;
140         struct rb_root vmcs_info;
141 };
142
143 enum switch_state {
144         INTEL_PT_SS_NOT_TRACING,
145         INTEL_PT_SS_UNKNOWN,
146         INTEL_PT_SS_TRACING,
147         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
148         INTEL_PT_SS_EXPECTING_SWITCH_IP,
149 };
150
151 struct intel_pt_queue {
152         struct intel_pt *pt;
153         unsigned int queue_nr;
154         struct auxtrace_buffer *buffer;
155         struct auxtrace_buffer *old_buffer;
156         void *decoder;
157         const struct intel_pt_state *state;
158         struct ip_callchain *chain;
159         struct branch_stack *last_branch;
160         union perf_event *event_buf;
161         bool on_heap;
162         bool stop;
163         bool step_through_buffers;
164         bool use_buffer_pid_tid;
165         bool sync_switch;
166         pid_t pid, tid;
167         int cpu;
168         int switch_state;
169         pid_t next_tid;
170         struct thread *thread;
171         struct machine *guest_machine;
172         struct thread *unknown_guest_thread;
173         pid_t guest_machine_pid;
174         bool exclude_kernel;
175         bool have_sample;
176         u64 time;
177         u64 timestamp;
178         u64 sel_timestamp;
179         bool sel_start;
180         unsigned int sel_idx;
181         u32 flags;
182         u16 insn_len;
183         u64 last_insn_cnt;
184         u64 ipc_insn_cnt;
185         u64 ipc_cyc_cnt;
186         u64 last_in_insn_cnt;
187         u64 last_in_cyc_cnt;
188         u64 last_br_insn_cnt;
189         u64 last_br_cyc_cnt;
190         unsigned int cbr_seen;
191         char insn[INTEL_PT_INSN_BUF_SZ];
192 };
193
194 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
195                           unsigned char *buf, size_t len)
196 {
197         struct intel_pt_pkt packet;
198         size_t pos = 0;
199         int ret, pkt_len, i;
200         char desc[INTEL_PT_PKT_DESC_MAX];
201         const char *color = PERF_COLOR_BLUE;
202         enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
203
204         color_fprintf(stdout, color,
205                       ". ... Intel Processor Trace data: size %zu bytes\n",
206                       len);
207
208         while (len) {
209                 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
210                 if (ret > 0)
211                         pkt_len = ret;
212                 else
213                         pkt_len = 1;
214                 printf(".");
215                 color_fprintf(stdout, color, "  %08x: ", pos);
216                 for (i = 0; i < pkt_len; i++)
217                         color_fprintf(stdout, color, " %02x", buf[i]);
218                 for (; i < 16; i++)
219                         color_fprintf(stdout, color, "   ");
220                 if (ret > 0) {
221                         ret = intel_pt_pkt_desc(&packet, desc,
222                                                 INTEL_PT_PKT_DESC_MAX);
223                         if (ret > 0)
224                                 color_fprintf(stdout, color, " %s\n", desc);
225                 } else {
226                         color_fprintf(stdout, color, " Bad packet!\n");
227                 }
228                 pos += pkt_len;
229                 buf += pkt_len;
230                 len -= pkt_len;
231         }
232 }
233
234 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
235                                 size_t len)
236 {
237         printf(".\n");
238         intel_pt_dump(pt, buf, len);
239 }
240
241 static void intel_pt_log_event(union perf_event *event)
242 {
243         FILE *f = intel_pt_log_fp();
244
245         if (!intel_pt_enable_logging || !f)
246                 return;
247
248         perf_event__fprintf(event, NULL, f);
249 }
250
251 static void intel_pt_dump_sample(struct perf_session *session,
252                                  struct perf_sample *sample)
253 {
254         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
255                                            auxtrace);
256
257         printf("\n");
258         intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
259 }
260
261 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
262 {
263         struct perf_time_interval *range = pt->synth_opts.ptime_range;
264         int n = pt->synth_opts.range_num;
265
266         if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
267                 return true;
268
269         if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
270                 return false;
271
272         /* perf_time__ranges_skip_sample does not work if time is zero */
273         if (!tm)
274                 tm = 1;
275
276         return !n || !perf_time__ranges_skip_sample(range, n, tm);
277 }
278
279 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
280                                                         u64 vmcs,
281                                                         u64 dflt_tsc_offset)
282 {
283         struct rb_node **p = &rb_root->rb_node;
284         struct rb_node *parent = NULL;
285         struct intel_pt_vmcs_info *v;
286
287         while (*p) {
288                 parent = *p;
289                 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
290
291                 if (v->vmcs == vmcs)
292                         return v;
293
294                 if (vmcs < v->vmcs)
295                         p = &(*p)->rb_left;
296                 else
297                         p = &(*p)->rb_right;
298         }
299
300         v = zalloc(sizeof(*v));
301         if (v) {
302                 v->vmcs = vmcs;
303                 v->tsc_offset = dflt_tsc_offset;
304                 v->reliable = dflt_tsc_offset;
305
306                 rb_link_node(&v->rb_node, parent, p);
307                 rb_insert_color(&v->rb_node, rb_root);
308         }
309
310         return v;
311 }
312
313 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
314 {
315         struct intel_pt_queue *ptq = data;
316         struct intel_pt *pt = ptq->pt;
317
318         if (!vmcs && !pt->dflt_tsc_offset)
319                 return NULL;
320
321         return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
322 }
323
324 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
325 {
326         struct intel_pt_vmcs_info *v;
327         struct rb_node *n;
328
329         n = rb_first(&pt->vmcs_info);
330         while (n) {
331                 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
332                 n = rb_next(n);
333                 rb_erase(&v->rb_node, &pt->vmcs_info);
334                 free(v);
335         }
336 }
337
338 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
339                                    struct auxtrace_buffer *b)
340 {
341         bool consecutive = false;
342         void *start;
343
344         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
345                                       pt->have_tsc, &consecutive,
346                                       pt->synth_opts.vm_time_correlation);
347         if (!start)
348                 return -EINVAL;
349         /*
350          * In the case of vm_time_correlation, the overlap might contain TSC
351          * packets that will not be fixed, and that will then no longer work for
352          * overlap detection. Avoid that by zeroing out the overlap.
353          */
354         if (pt->synth_opts.vm_time_correlation)
355                 memset(b->data, 0, start - b->data);
356         b->use_size = b->data + b->size - start;
357         b->use_data = start;
358         if (b->use_size && consecutive)
359                 b->consecutive = true;
360         return 0;
361 }
362
363 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
364                                struct auxtrace_buffer *buffer,
365                                struct auxtrace_buffer *old_buffer,
366                                struct intel_pt_buffer *b)
367 {
368         bool might_overlap;
369
370         if (!buffer->data) {
371                 int fd = perf_data__fd(ptq->pt->session->data);
372
373                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
374                 if (!buffer->data)
375                         return -ENOMEM;
376         }
377
378         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
379         if (might_overlap && !buffer->consecutive && old_buffer &&
380             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
381                 return -ENOMEM;
382
383         if (buffer->use_data) {
384                 b->len = buffer->use_size;
385                 b->buf = buffer->use_data;
386         } else {
387                 b->len = buffer->size;
388                 b->buf = buffer->data;
389         }
390         b->ref_timestamp = buffer->reference;
391
392         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
393                 b->consecutive = false;
394                 b->trace_nr = buffer->buffer_nr + 1;
395         } else {
396                 b->consecutive = true;
397         }
398
399         return 0;
400 }
401
402 /* Do not drop buffers with references - refer intel_pt_get_trace() */
403 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
404                                            struct auxtrace_buffer *buffer)
405 {
406         if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
407                 return;
408
409         auxtrace_buffer__drop_data(buffer);
410 }
411
412 /* Must be serialized with respect to intel_pt_get_trace() */
413 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
414                               void *cb_data)
415 {
416         struct intel_pt_queue *ptq = data;
417         struct auxtrace_buffer *buffer = ptq->buffer;
418         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
419         struct auxtrace_queue *queue;
420         int err = 0;
421
422         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
423
424         while (1) {
425                 struct intel_pt_buffer b = { .len = 0 };
426
427                 buffer = auxtrace_buffer__next(queue, buffer);
428                 if (!buffer)
429                         break;
430
431                 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
432                 if (err)
433                         break;
434
435                 if (b.len) {
436                         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
437                         old_buffer = buffer;
438                 } else {
439                         intel_pt_lookahead_drop_buffer(ptq, buffer);
440                         continue;
441                 }
442
443                 err = cb(&b, cb_data);
444                 if (err)
445                         break;
446         }
447
448         if (buffer != old_buffer)
449                 intel_pt_lookahead_drop_buffer(ptq, buffer);
450         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
451
452         return err;
453 }
454
455 /*
456  * This function assumes data is processed sequentially only.
457  * Must be serialized with respect to intel_pt_lookahead()
458  */
459 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
460 {
461         struct intel_pt_queue *ptq = data;
462         struct auxtrace_buffer *buffer = ptq->buffer;
463         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
464         struct auxtrace_queue *queue;
465         int err;
466
467         if (ptq->stop) {
468                 b->len = 0;
469                 return 0;
470         }
471
472         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
473
474         buffer = auxtrace_buffer__next(queue, buffer);
475         if (!buffer) {
476                 if (old_buffer)
477                         auxtrace_buffer__drop_data(old_buffer);
478                 b->len = 0;
479                 return 0;
480         }
481
482         ptq->buffer = buffer;
483
484         err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
485         if (err)
486                 return err;
487
488         if (ptq->step_through_buffers)
489                 ptq->stop = true;
490
491         if (b->len) {
492                 if (old_buffer)
493                         auxtrace_buffer__drop_data(old_buffer);
494                 ptq->old_buffer = buffer;
495         } else {
496                 auxtrace_buffer__drop_data(buffer);
497                 return intel_pt_get_trace(b, data);
498         }
499
500         return 0;
501 }
502
503 struct intel_pt_cache_entry {
504         struct auxtrace_cache_entry     entry;
505         u64                             insn_cnt;
506         u64                             byte_cnt;
507         enum intel_pt_insn_op           op;
508         enum intel_pt_insn_branch       branch;
509         int                             length;
510         int32_t                         rel;
511         char                            insn[INTEL_PT_INSN_BUF_SZ];
512 };
513
514 static int intel_pt_config_div(const char *var, const char *value, void *data)
515 {
516         int *d = data;
517         long val;
518
519         if (!strcmp(var, "intel-pt.cache-divisor")) {
520                 val = strtol(value, NULL, 0);
521                 if (val > 0 && val <= INT_MAX)
522                         *d = val;
523         }
524
525         return 0;
526 }
527
528 static int intel_pt_cache_divisor(void)
529 {
530         static int d;
531
532         if (d)
533                 return d;
534
535         perf_config(intel_pt_config_div, &d);
536
537         if (!d)
538                 d = 64;
539
540         return d;
541 }
542
543 static unsigned int intel_pt_cache_size(struct dso *dso,
544                                         struct machine *machine)
545 {
546         off_t size;
547
548         size = dso__data_size(dso, machine);
549         size /= intel_pt_cache_divisor();
550         if (size < 1000)
551                 return 10;
552         if (size > (1 << 21))
553                 return 21;
554         return 32 - __builtin_clz(size);
555 }
556
557 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
558                                              struct machine *machine)
559 {
560         struct auxtrace_cache *c;
561         unsigned int bits;
562
563         if (dso->auxtrace_cache)
564                 return dso->auxtrace_cache;
565
566         bits = intel_pt_cache_size(dso, machine);
567
568         /* Ignoring cache creation failure */
569         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
570
571         dso->auxtrace_cache = c;
572
573         return c;
574 }
575
576 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
577                               u64 offset, u64 insn_cnt, u64 byte_cnt,
578                               struct intel_pt_insn *intel_pt_insn)
579 {
580         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
581         struct intel_pt_cache_entry *e;
582         int err;
583
584         if (!c)
585                 return -ENOMEM;
586
587         e = auxtrace_cache__alloc_entry(c);
588         if (!e)
589                 return -ENOMEM;
590
591         e->insn_cnt = insn_cnt;
592         e->byte_cnt = byte_cnt;
593         e->op = intel_pt_insn->op;
594         e->branch = intel_pt_insn->branch;
595         e->length = intel_pt_insn->length;
596         e->rel = intel_pt_insn->rel;
597         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
598
599         err = auxtrace_cache__add(c, offset, &e->entry);
600         if (err)
601                 auxtrace_cache__free_entry(c, e);
602
603         return err;
604 }
605
606 static struct intel_pt_cache_entry *
607 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
608 {
609         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
610
611         if (!c)
612                 return NULL;
613
614         return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
615 }
616
617 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
618                                       u64 offset)
619 {
620         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
621
622         if (!c)
623                 return;
624
625         auxtrace_cache__remove(dso->auxtrace_cache, offset);
626 }
627
628 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
629 {
630         /* Assumes 64-bit kernel */
631         return ip & (1ULL << 63);
632 }
633
634 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
635 {
636         if (nr) {
637                 return intel_pt_guest_kernel_ip(ip) ?
638                        PERF_RECORD_MISC_GUEST_KERNEL :
639                        PERF_RECORD_MISC_GUEST_USER;
640         }
641
642         return ip >= ptq->pt->kernel_start ?
643                PERF_RECORD_MISC_KERNEL :
644                PERF_RECORD_MISC_USER;
645 }
646
647 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
648 {
649         /* No support for non-zero CS base */
650         if (from_ip)
651                 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
652         return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
653 }
654
655 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
656 {
657         struct machines *machines = &ptq->pt->session->machines;
658         struct machine *machine;
659         pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
660
661         if (ptq->guest_machine && pid == ptq->guest_machine_pid)
662                 return 0;
663
664         ptq->guest_machine = NULL;
665         thread__zput(ptq->unknown_guest_thread);
666
667         machine = machines__find_guest(machines, pid);
668         if (!machine)
669                 return -1;
670
671         ptq->unknown_guest_thread = machine__idle_thread(machine);
672         if (!ptq->unknown_guest_thread)
673                 return -1;
674
675         ptq->guest_machine = machine;
676         ptq->guest_machine_pid = pid;
677
678         return 0;
679 }
680
681 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
682                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
683                                    uint64_t to_ip, uint64_t max_insn_cnt,
684                                    void *data)
685 {
686         struct intel_pt_queue *ptq = data;
687         struct machine *machine = ptq->pt->machine;
688         struct thread *thread;
689         struct addr_location al;
690         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
691         ssize_t len;
692         int x86_64;
693         u8 cpumode;
694         u64 offset, start_offset, start_ip;
695         u64 insn_cnt = 0;
696         bool one_map = true;
697         bool nr;
698
699         intel_pt_insn->length = 0;
700
701         if (to_ip && *ip == to_ip)
702                 goto out_no_cache;
703
704         nr = ptq->state->to_nr;
705         cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
706
707         if (nr) {
708                 if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL ||
709                     intel_pt_get_guest(ptq))
710                         return -EINVAL;
711                 machine = ptq->guest_machine;
712                 thread = ptq->unknown_guest_thread;
713         } else {
714                 thread = ptq->thread;
715                 if (!thread) {
716                         if (cpumode != PERF_RECORD_MISC_KERNEL)
717                                 return -EINVAL;
718                         thread = ptq->pt->unknown_thread;
719                 }
720         }
721
722         while (1) {
723                 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
724                         return -EINVAL;
725
726                 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
727                     dso__data_status_seen(al.map->dso,
728                                           DSO_DATA_STATUS_SEEN_ITRACE))
729                         return -ENOENT;
730
731                 offset = al.map->map_ip(al.map, *ip);
732
733                 if (!to_ip && one_map) {
734                         struct intel_pt_cache_entry *e;
735
736                         e = intel_pt_cache_lookup(al.map->dso, machine, offset);
737                         if (e &&
738                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
739                                 *insn_cnt_ptr = e->insn_cnt;
740                                 *ip += e->byte_cnt;
741                                 intel_pt_insn->op = e->op;
742                                 intel_pt_insn->branch = e->branch;
743                                 intel_pt_insn->length = e->length;
744                                 intel_pt_insn->rel = e->rel;
745                                 memcpy(intel_pt_insn->buf, e->insn,
746                                        INTEL_PT_INSN_BUF_SZ);
747                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
748                                 return 0;
749                         }
750                 }
751
752                 start_offset = offset;
753                 start_ip = *ip;
754
755                 /* Load maps to ensure dso->is_64_bit has been updated */
756                 map__load(al.map);
757
758                 x86_64 = al.map->dso->is_64_bit;
759
760                 while (1) {
761                         len = dso__data_read_offset(al.map->dso, machine,
762                                                     offset, buf,
763                                                     INTEL_PT_INSN_BUF_SZ);
764                         if (len <= 0)
765                                 return -EINVAL;
766
767                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
768                                 return -EINVAL;
769
770                         intel_pt_log_insn(intel_pt_insn, *ip);
771
772                         insn_cnt += 1;
773
774                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
775                                 goto out;
776
777                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
778                                 goto out_no_cache;
779
780                         *ip += intel_pt_insn->length;
781
782                         if (to_ip && *ip == to_ip) {
783                                 intel_pt_insn->length = 0;
784                                 goto out_no_cache;
785                         }
786
787                         if (*ip >= al.map->end)
788                                 break;
789
790                         offset += intel_pt_insn->length;
791                 }
792                 one_map = false;
793         }
794 out:
795         *insn_cnt_ptr = insn_cnt;
796
797         if (!one_map)
798                 goto out_no_cache;
799
800         /*
801          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
802          * entries.
803          */
804         if (to_ip) {
805                 struct intel_pt_cache_entry *e;
806
807                 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
808                 if (e)
809                         return 0;
810         }
811
812         /* Ignore cache errors */
813         intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
814                            *ip - start_ip, intel_pt_insn);
815
816         return 0;
817
818 out_no_cache:
819         *insn_cnt_ptr = insn_cnt;
820         return 0;
821 }
822
823 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
824                                   uint64_t offset, const char *filename)
825 {
826         struct addr_filter *filt;
827         bool have_filter   = false;
828         bool hit_tracestop = false;
829         bool hit_filter    = false;
830
831         list_for_each_entry(filt, &pt->filts.head, list) {
832                 if (filt->start)
833                         have_filter = true;
834
835                 if ((filename && !filt->filename) ||
836                     (!filename && filt->filename) ||
837                     (filename && strcmp(filename, filt->filename)))
838                         continue;
839
840                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
841                         continue;
842
843                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
844                              ip, offset, filename ? filename : "[kernel]",
845                              filt->start ? "filter" : "stop",
846                              filt->addr, filt->size);
847
848                 if (filt->start)
849                         hit_filter = true;
850                 else
851                         hit_tracestop = true;
852         }
853
854         if (!hit_tracestop && !hit_filter)
855                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
856                              ip, offset, filename ? filename : "[kernel]");
857
858         return hit_tracestop || (have_filter && !hit_filter);
859 }
860
861 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
862 {
863         struct intel_pt_queue *ptq = data;
864         struct thread *thread;
865         struct addr_location al;
866         u8 cpumode;
867         u64 offset;
868
869         if (ptq->state->to_nr) {
870                 if (intel_pt_guest_kernel_ip(ip))
871                         return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
872                 /* No support for decoding guest user space */
873                 return -EINVAL;
874         } else if (ip >= ptq->pt->kernel_start) {
875                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
876         }
877
878         cpumode = PERF_RECORD_MISC_USER;
879
880         thread = ptq->thread;
881         if (!thread)
882                 return -EINVAL;
883
884         if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
885                 return -EINVAL;
886
887         offset = al.map->map_ip(al.map, ip);
888
889         return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
890                                      al.map->dso->long_name);
891 }
892
893 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
894 {
895         return __intel_pt_pgd_ip(ip, data) > 0;
896 }
897
898 static bool intel_pt_get_config(struct intel_pt *pt,
899                                 struct perf_event_attr *attr, u64 *config)
900 {
901         if (attr->type == pt->pmu_type) {
902                 if (config)
903                         *config = attr->config;
904                 return true;
905         }
906
907         return false;
908 }
909
910 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
911 {
912         struct evsel *evsel;
913
914         evlist__for_each_entry(pt->session->evlist, evsel) {
915                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
916                     !evsel->core.attr.exclude_kernel)
917                         return false;
918         }
919         return true;
920 }
921
922 static bool intel_pt_return_compression(struct intel_pt *pt)
923 {
924         struct evsel *evsel;
925         u64 config;
926
927         if (!pt->noretcomp_bit)
928                 return true;
929
930         evlist__for_each_entry(pt->session->evlist, evsel) {
931                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
932                     (config & pt->noretcomp_bit))
933                         return false;
934         }
935         return true;
936 }
937
938 static bool intel_pt_branch_enable(struct intel_pt *pt)
939 {
940         struct evsel *evsel;
941         u64 config;
942
943         evlist__for_each_entry(pt->session->evlist, evsel) {
944                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
945                     (config & 1) && !(config & 0x2000))
946                         return false;
947         }
948         return true;
949 }
950
951 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
952 {
953         struct evsel *evsel;
954         unsigned int shift;
955         u64 config;
956
957         if (!pt->mtc_freq_bits)
958                 return 0;
959
960         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
961                 config >>= 1;
962
963         evlist__for_each_entry(pt->session->evlist, evsel) {
964                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
965                         return (config & pt->mtc_freq_bits) >> shift;
966         }
967         return 0;
968 }
969
970 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
971 {
972         struct evsel *evsel;
973         bool timeless_decoding = true;
974         u64 config;
975
976         if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
977                 return true;
978
979         evlist__for_each_entry(pt->session->evlist, evsel) {
980                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
981                         return true;
982                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
983                         if (config & pt->tsc_bit)
984                                 timeless_decoding = false;
985                         else
986                                 return true;
987                 }
988         }
989         return timeless_decoding;
990 }
991
992 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
993 {
994         struct evsel *evsel;
995
996         evlist__for_each_entry(pt->session->evlist, evsel) {
997                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
998                     !evsel->core.attr.exclude_kernel)
999                         return true;
1000         }
1001         return false;
1002 }
1003
1004 static bool intel_pt_have_tsc(struct intel_pt *pt)
1005 {
1006         struct evsel *evsel;
1007         bool have_tsc = false;
1008         u64 config;
1009
1010         if (!pt->tsc_bit)
1011                 return false;
1012
1013         evlist__for_each_entry(pt->session->evlist, evsel) {
1014                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1015                         if (config & pt->tsc_bit)
1016                                 have_tsc = true;
1017                         else
1018                                 return false;
1019                 }
1020         }
1021         return have_tsc;
1022 }
1023
1024 static bool intel_pt_have_mtc(struct intel_pt *pt)
1025 {
1026         struct evsel *evsel;
1027         u64 config;
1028
1029         evlist__for_each_entry(pt->session->evlist, evsel) {
1030                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1031                     (config & pt->mtc_bit))
1032                         return true;
1033         }
1034         return false;
1035 }
1036
1037 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1038 {
1039         struct evsel *evsel;
1040
1041         evlist__for_each_entry(pt->session->evlist, evsel) {
1042                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1043                     evsel->core.attr.aux_sample_size)
1044                         return true;
1045         }
1046         return false;
1047 }
1048
1049 static u64 intel_pt_ctl(struct intel_pt *pt)
1050 {
1051         struct evsel *evsel;
1052         u64 config;
1053
1054         evlist__for_each_entry(pt->session->evlist, evsel) {
1055                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1056                         return config;
1057         }
1058         return 0;
1059 }
1060
1061 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1062 {
1063         u64 quot, rem;
1064
1065         quot = ns / pt->tc.time_mult;
1066         rem  = ns % pt->tc.time_mult;
1067         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1068                 pt->tc.time_mult;
1069 }
1070
1071 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1072 {
1073         size_t sz = sizeof(struct ip_callchain);
1074
1075         /* Add 1 to callchain_sz for callchain context */
1076         sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1077         return zalloc(sz);
1078 }
1079
1080 static int intel_pt_callchain_init(struct intel_pt *pt)
1081 {
1082         struct evsel *evsel;
1083
1084         evlist__for_each_entry(pt->session->evlist, evsel) {
1085                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1086                         evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1087         }
1088
1089         pt->chain = intel_pt_alloc_chain(pt);
1090         if (!pt->chain)
1091                 return -ENOMEM;
1092
1093         return 0;
1094 }
1095
1096 static void intel_pt_add_callchain(struct intel_pt *pt,
1097                                    struct perf_sample *sample)
1098 {
1099         struct thread *thread = machine__findnew_thread(pt->machine,
1100                                                         sample->pid,
1101                                                         sample->tid);
1102
1103         thread_stack__sample_late(thread, sample->cpu, pt->chain,
1104                                   pt->synth_opts.callchain_sz + 1, sample->ip,
1105                                   pt->kernel_start);
1106
1107         sample->callchain = pt->chain;
1108 }
1109
1110 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1111 {
1112         size_t sz = sizeof(struct branch_stack);
1113
1114         sz += entry_cnt * sizeof(struct branch_entry);
1115         return zalloc(sz);
1116 }
1117
1118 static int intel_pt_br_stack_init(struct intel_pt *pt)
1119 {
1120         struct evsel *evsel;
1121
1122         evlist__for_each_entry(pt->session->evlist, evsel) {
1123                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1124                         evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1125         }
1126
1127         pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1128         if (!pt->br_stack)
1129                 return -ENOMEM;
1130
1131         return 0;
1132 }
1133
1134 static void intel_pt_add_br_stack(struct intel_pt *pt,
1135                                   struct perf_sample *sample)
1136 {
1137         struct thread *thread = machine__findnew_thread(pt->machine,
1138                                                         sample->pid,
1139                                                         sample->tid);
1140
1141         thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1142                                      pt->br_stack_sz, sample->ip,
1143                                      pt->kernel_start);
1144
1145         sample->branch_stack = pt->br_stack;
1146 }
1147
1148 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1149 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1150
1151 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1152                                                    unsigned int queue_nr)
1153 {
1154         struct intel_pt_params params = { .get_trace = 0, };
1155         struct perf_env *env = pt->machine->env;
1156         struct intel_pt_queue *ptq;
1157
1158         ptq = zalloc(sizeof(struct intel_pt_queue));
1159         if (!ptq)
1160                 return NULL;
1161
1162         if (pt->synth_opts.callchain) {
1163                 ptq->chain = intel_pt_alloc_chain(pt);
1164                 if (!ptq->chain)
1165                         goto out_free;
1166         }
1167
1168         if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1169                 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1170
1171                 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1172                 if (!ptq->last_branch)
1173                         goto out_free;
1174         }
1175
1176         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1177         if (!ptq->event_buf)
1178                 goto out_free;
1179
1180         ptq->pt = pt;
1181         ptq->queue_nr = queue_nr;
1182         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1183         ptq->pid = -1;
1184         ptq->tid = -1;
1185         ptq->cpu = -1;
1186         ptq->next_tid = -1;
1187
1188         params.get_trace = intel_pt_get_trace;
1189         params.walk_insn = intel_pt_walk_next_insn;
1190         params.lookahead = intel_pt_lookahead;
1191         params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1192         params.data = ptq;
1193         params.return_compression = intel_pt_return_compression(pt);
1194         params.branch_enable = intel_pt_branch_enable(pt);
1195         params.ctl = intel_pt_ctl(pt);
1196         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1197         params.mtc_period = intel_pt_mtc_period(pt);
1198         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1199         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1200         params.quick = pt->synth_opts.quick;
1201         params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1202         params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1203         params.first_timestamp = pt->first_timestamp;
1204         params.max_loops = pt->max_loops;
1205
1206         if (pt->filts.cnt > 0)
1207                 params.pgd_ip = intel_pt_pgd_ip;
1208
1209         if (pt->synth_opts.instructions) {
1210                 if (pt->synth_opts.period) {
1211                         switch (pt->synth_opts.period_type) {
1212                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1213                                 params.period_type =
1214                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
1215                                 params.period = pt->synth_opts.period;
1216                                 break;
1217                         case PERF_ITRACE_PERIOD_TICKS:
1218                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1219                                 params.period = pt->synth_opts.period;
1220                                 break;
1221                         case PERF_ITRACE_PERIOD_NANOSECS:
1222                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1223                                 params.period = intel_pt_ns_to_ticks(pt,
1224                                                         pt->synth_opts.period);
1225                                 break;
1226                         default:
1227                                 break;
1228                         }
1229                 }
1230
1231                 if (!params.period) {
1232                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1233                         params.period = 1;
1234                 }
1235         }
1236
1237         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1238                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1239
1240         ptq->decoder = intel_pt_decoder_new(&params);
1241         if (!ptq->decoder)
1242                 goto out_free;
1243
1244         return ptq;
1245
1246 out_free:
1247         zfree(&ptq->event_buf);
1248         zfree(&ptq->last_branch);
1249         zfree(&ptq->chain);
1250         free(ptq);
1251         return NULL;
1252 }
1253
1254 static void intel_pt_free_queue(void *priv)
1255 {
1256         struct intel_pt_queue *ptq = priv;
1257
1258         if (!ptq)
1259                 return;
1260         thread__zput(ptq->thread);
1261         thread__zput(ptq->unknown_guest_thread);
1262         intel_pt_decoder_free(ptq->decoder);
1263         zfree(&ptq->event_buf);
1264         zfree(&ptq->last_branch);
1265         zfree(&ptq->chain);
1266         free(ptq);
1267 }
1268
1269 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1270 {
1271         unsigned int i;
1272
1273         pt->first_timestamp = timestamp;
1274
1275         for (i = 0; i < pt->queues.nr_queues; i++) {
1276                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1277                 struct intel_pt_queue *ptq = queue->priv;
1278
1279                 if (ptq && ptq->decoder)
1280                         intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1281         }
1282 }
1283
1284 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1285                                      struct auxtrace_queue *queue)
1286 {
1287         struct intel_pt_queue *ptq = queue->priv;
1288
1289         if (queue->tid == -1 || pt->have_sched_switch) {
1290                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1291                 if (ptq->tid == -1)
1292                         ptq->pid = -1;
1293                 thread__zput(ptq->thread);
1294         }
1295
1296         if (!ptq->thread && ptq->tid != -1)
1297                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1298
1299         if (ptq->thread) {
1300                 ptq->pid = ptq->thread->pid_;
1301                 if (queue->cpu == -1)
1302                         ptq->cpu = ptq->thread->cpu;
1303         }
1304 }
1305
1306 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1307 {
1308         ptq->insn_len = 0;
1309         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1310                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1311         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1312                 if (!ptq->state->to_ip)
1313                         ptq->flags = PERF_IP_FLAG_BRANCH |
1314                                      PERF_IP_FLAG_TRACE_END;
1315                 else if (ptq->state->from_nr && !ptq->state->to_nr)
1316                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1317                                      PERF_IP_FLAG_VMEXIT;
1318                 else
1319                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1320                                      PERF_IP_FLAG_ASYNC |
1321                                      PERF_IP_FLAG_INTERRUPT;
1322         } else {
1323                 if (ptq->state->from_ip)
1324                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1325                 else
1326                         ptq->flags = PERF_IP_FLAG_BRANCH |
1327                                      PERF_IP_FLAG_TRACE_BEGIN;
1328                 if (ptq->state->flags & INTEL_PT_IN_TX)
1329                         ptq->flags |= PERF_IP_FLAG_IN_TX;
1330                 ptq->insn_len = ptq->state->insn_len;
1331                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1332         }
1333
1334         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1335                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1336         if (ptq->state->type & INTEL_PT_TRACE_END)
1337                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1338 }
1339
1340 static void intel_pt_setup_time_range(struct intel_pt *pt,
1341                                       struct intel_pt_queue *ptq)
1342 {
1343         if (!pt->range_cnt)
1344                 return;
1345
1346         ptq->sel_timestamp = pt->time_ranges[0].start;
1347         ptq->sel_idx = 0;
1348
1349         if (ptq->sel_timestamp) {
1350                 ptq->sel_start = true;
1351         } else {
1352                 ptq->sel_timestamp = pt->time_ranges[0].end;
1353                 ptq->sel_start = false;
1354         }
1355 }
1356
1357 static int intel_pt_setup_queue(struct intel_pt *pt,
1358                                 struct auxtrace_queue *queue,
1359                                 unsigned int queue_nr)
1360 {
1361         struct intel_pt_queue *ptq = queue->priv;
1362
1363         if (list_empty(&queue->head))
1364                 return 0;
1365
1366         if (!ptq) {
1367                 ptq = intel_pt_alloc_queue(pt, queue_nr);
1368                 if (!ptq)
1369                         return -ENOMEM;
1370                 queue->priv = ptq;
1371
1372                 if (queue->cpu != -1)
1373                         ptq->cpu = queue->cpu;
1374                 ptq->tid = queue->tid;
1375
1376                 ptq->cbr_seen = UINT_MAX;
1377
1378                 if (pt->sampling_mode && !pt->snapshot_mode &&
1379                     pt->timeless_decoding)
1380                         ptq->step_through_buffers = true;
1381
1382                 ptq->sync_switch = pt->sync_switch;
1383
1384                 intel_pt_setup_time_range(pt, ptq);
1385         }
1386
1387         if (!ptq->on_heap &&
1388             (!ptq->sync_switch ||
1389              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1390                 const struct intel_pt_state *state;
1391                 int ret;
1392
1393                 if (pt->timeless_decoding)
1394                         return 0;
1395
1396                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1397                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1398                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1399
1400                 if (ptq->sel_start && ptq->sel_timestamp) {
1401                         ret = intel_pt_fast_forward(ptq->decoder,
1402                                                     ptq->sel_timestamp);
1403                         if (ret)
1404                                 return ret;
1405                 }
1406
1407                 while (1) {
1408                         state = intel_pt_decode(ptq->decoder);
1409                         if (state->err) {
1410                                 if (state->err == INTEL_PT_ERR_NODATA) {
1411                                         intel_pt_log("queue %u has no timestamp\n",
1412                                                      queue_nr);
1413                                         return 0;
1414                                 }
1415                                 continue;
1416                         }
1417                         if (state->timestamp)
1418                                 break;
1419                 }
1420
1421                 ptq->timestamp = state->timestamp;
1422                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1423                              queue_nr, ptq->timestamp);
1424                 ptq->state = state;
1425                 ptq->have_sample = true;
1426                 if (ptq->sel_start && ptq->sel_timestamp &&
1427                     ptq->timestamp < ptq->sel_timestamp)
1428                         ptq->have_sample = false;
1429                 intel_pt_sample_flags(ptq);
1430                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1431                 if (ret)
1432                         return ret;
1433                 ptq->on_heap = true;
1434         }
1435
1436         return 0;
1437 }
1438
1439 static int intel_pt_setup_queues(struct intel_pt *pt)
1440 {
1441         unsigned int i;
1442         int ret;
1443
1444         for (i = 0; i < pt->queues.nr_queues; i++) {
1445                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1446                 if (ret)
1447                         return ret;
1448         }
1449         return 0;
1450 }
1451
1452 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1453 {
1454         return pt->synth_opts.initial_skip &&
1455                pt->num_events++ < pt->synth_opts.initial_skip;
1456 }
1457
1458 /*
1459  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1460  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1461  * from this decoder state.
1462  */
1463 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1464 {
1465         return pt->synth_opts.initial_skip &&
1466                pt->num_events + 4 < pt->synth_opts.initial_skip;
1467 }
1468
1469 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1470                                    union perf_event *event,
1471                                    struct perf_sample *sample)
1472 {
1473         event->sample.header.type = PERF_RECORD_SAMPLE;
1474         event->sample.header.size = sizeof(struct perf_event_header);
1475
1476         sample->pid = ptq->pid;
1477         sample->tid = ptq->tid;
1478         sample->cpu = ptq->cpu;
1479         sample->insn_len = ptq->insn_len;
1480         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1481 }
1482
1483 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1484                                    struct intel_pt_queue *ptq,
1485                                    union perf_event *event,
1486                                    struct perf_sample *sample)
1487 {
1488         intel_pt_prep_a_sample(ptq, event, sample);
1489
1490         if (!pt->timeless_decoding)
1491                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1492
1493         sample->ip = ptq->state->from_ip;
1494         sample->addr = ptq->state->to_ip;
1495         sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1496         sample->period = 1;
1497         sample->flags = ptq->flags;
1498
1499         event->sample.header.misc = sample->cpumode;
1500 }
1501
1502 static int intel_pt_inject_event(union perf_event *event,
1503                                  struct perf_sample *sample, u64 type)
1504 {
1505         event->header.size = perf_event__sample_event_size(sample, type, 0);
1506         return perf_event__synthesize_sample(event, type, 0, sample);
1507 }
1508
1509 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1510                                       union perf_event *event,
1511                                       struct perf_sample *sample, u64 type)
1512 {
1513         if (!pt->synth_opts.inject)
1514                 return 0;
1515
1516         return intel_pt_inject_event(event, sample, type);
1517 }
1518
1519 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1520                                         union perf_event *event,
1521                                         struct perf_sample *sample, u64 type)
1522 {
1523         int ret;
1524
1525         ret = intel_pt_opt_inject(pt, event, sample, type);
1526         if (ret)
1527                 return ret;
1528
1529         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1530         if (ret)
1531                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1532
1533         return ret;
1534 }
1535
1536 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1537 {
1538         struct intel_pt *pt = ptq->pt;
1539         union perf_event *event = ptq->event_buf;
1540         struct perf_sample sample = { .ip = 0, };
1541         struct dummy_branch_stack {
1542                 u64                     nr;
1543                 u64                     hw_idx;
1544                 struct branch_entry     entries;
1545         } dummy_bs;
1546
1547         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1548                 return 0;
1549
1550         if (intel_pt_skip_event(pt))
1551                 return 0;
1552
1553         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1554
1555         sample.id = ptq->pt->branches_id;
1556         sample.stream_id = ptq->pt->branches_id;
1557
1558         /*
1559          * perf report cannot handle events without a branch stack when using
1560          * SORT_MODE__BRANCH so make a dummy one.
1561          */
1562         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1563                 dummy_bs = (struct dummy_branch_stack){
1564                         .nr = 1,
1565                         .hw_idx = -1ULL,
1566                         .entries = {
1567                                 .from = sample.ip,
1568                                 .to = sample.addr,
1569                         },
1570                 };
1571                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1572         }
1573
1574         if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1575                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1576         if (sample.cyc_cnt) {
1577                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1578                 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1579                 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1580         }
1581
1582         return intel_pt_deliver_synth_event(pt, event, &sample,
1583                                             pt->branches_sample_type);
1584 }
1585
1586 static void intel_pt_prep_sample(struct intel_pt *pt,
1587                                  struct intel_pt_queue *ptq,
1588                                  union perf_event *event,
1589                                  struct perf_sample *sample)
1590 {
1591         intel_pt_prep_b_sample(pt, ptq, event, sample);
1592
1593         if (pt->synth_opts.callchain) {
1594                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1595                                      pt->synth_opts.callchain_sz + 1,
1596                                      sample->ip, pt->kernel_start);
1597                 sample->callchain = ptq->chain;
1598         }
1599
1600         if (pt->synth_opts.last_branch) {
1601                 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1602                                         pt->br_stack_sz);
1603                 sample->branch_stack = ptq->last_branch;
1604         }
1605 }
1606
1607 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1608 {
1609         struct intel_pt *pt = ptq->pt;
1610         union perf_event *event = ptq->event_buf;
1611         struct perf_sample sample = { .ip = 0, };
1612
1613         if (intel_pt_skip_event(pt))
1614                 return 0;
1615
1616         intel_pt_prep_sample(pt, ptq, event, &sample);
1617
1618         sample.id = ptq->pt->instructions_id;
1619         sample.stream_id = ptq->pt->instructions_id;
1620         if (pt->synth_opts.quick)
1621                 sample.period = 1;
1622         else
1623                 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1624
1625         if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1626                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1627         if (sample.cyc_cnt) {
1628                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1629                 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1630                 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1631         }
1632
1633         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1634
1635         return intel_pt_deliver_synth_event(pt, event, &sample,
1636                                             pt->instructions_sample_type);
1637 }
1638
1639 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1640 {
1641         struct intel_pt *pt = ptq->pt;
1642         union perf_event *event = ptq->event_buf;
1643         struct perf_sample sample = { .ip = 0, };
1644
1645         if (intel_pt_skip_event(pt))
1646                 return 0;
1647
1648         intel_pt_prep_sample(pt, ptq, event, &sample);
1649
1650         sample.id = ptq->pt->transactions_id;
1651         sample.stream_id = ptq->pt->transactions_id;
1652
1653         return intel_pt_deliver_synth_event(pt, event, &sample,
1654                                             pt->transactions_sample_type);
1655 }
1656
1657 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1658                                    struct intel_pt_queue *ptq,
1659                                    union perf_event *event,
1660                                    struct perf_sample *sample)
1661 {
1662         intel_pt_prep_sample(pt, ptq, event, sample);
1663
1664         /*
1665          * Zero IP is used to mean "trace start" but that is not the case for
1666          * power or PTWRITE events with no IP, so clear the flags.
1667          */
1668         if (!sample->ip)
1669                 sample->flags = 0;
1670 }
1671
1672 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1673 {
1674         struct intel_pt *pt = ptq->pt;
1675         union perf_event *event = ptq->event_buf;
1676         struct perf_sample sample = { .ip = 0, };
1677         struct perf_synth_intel_ptwrite raw;
1678
1679         if (intel_pt_skip_event(pt))
1680                 return 0;
1681
1682         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1683
1684         sample.id = ptq->pt->ptwrites_id;
1685         sample.stream_id = ptq->pt->ptwrites_id;
1686
1687         raw.flags = 0;
1688         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1689         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1690
1691         sample.raw_size = perf_synth__raw_size(raw);
1692         sample.raw_data = perf_synth__raw_data(&raw);
1693
1694         return intel_pt_deliver_synth_event(pt, event, &sample,
1695                                             pt->ptwrites_sample_type);
1696 }
1697
1698 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1699 {
1700         struct intel_pt *pt = ptq->pt;
1701         union perf_event *event = ptq->event_buf;
1702         struct perf_sample sample = { .ip = 0, };
1703         struct perf_synth_intel_cbr raw;
1704         u32 flags;
1705
1706         if (intel_pt_skip_cbr_event(pt))
1707                 return 0;
1708
1709         ptq->cbr_seen = ptq->state->cbr;
1710
1711         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1712
1713         sample.id = ptq->pt->cbr_id;
1714         sample.stream_id = ptq->pt->cbr_id;
1715
1716         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1717         raw.flags = cpu_to_le32(flags);
1718         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1719         raw.reserved3 = 0;
1720
1721         sample.raw_size = perf_synth__raw_size(raw);
1722         sample.raw_data = perf_synth__raw_data(&raw);
1723
1724         return intel_pt_deliver_synth_event(pt, event, &sample,
1725                                             pt->pwr_events_sample_type);
1726 }
1727
1728 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1729 {
1730         struct intel_pt *pt = ptq->pt;
1731         union perf_event *event = ptq->event_buf;
1732         struct perf_sample sample = { .ip = 0, };
1733         struct perf_synth_intel_psb raw;
1734
1735         if (intel_pt_skip_event(pt))
1736                 return 0;
1737
1738         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1739
1740         sample.id = ptq->pt->psb_id;
1741         sample.stream_id = ptq->pt->psb_id;
1742         sample.flags = 0;
1743
1744         raw.reserved = 0;
1745         raw.offset = ptq->state->psb_offset;
1746
1747         sample.raw_size = perf_synth__raw_size(raw);
1748         sample.raw_data = perf_synth__raw_data(&raw);
1749
1750         return intel_pt_deliver_synth_event(pt, event, &sample,
1751                                             pt->pwr_events_sample_type);
1752 }
1753
1754 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1755 {
1756         struct intel_pt *pt = ptq->pt;
1757         union perf_event *event = ptq->event_buf;
1758         struct perf_sample sample = { .ip = 0, };
1759         struct perf_synth_intel_mwait raw;
1760
1761         if (intel_pt_skip_event(pt))
1762                 return 0;
1763
1764         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1765
1766         sample.id = ptq->pt->mwait_id;
1767         sample.stream_id = ptq->pt->mwait_id;
1768
1769         raw.reserved = 0;
1770         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1771
1772         sample.raw_size = perf_synth__raw_size(raw);
1773         sample.raw_data = perf_synth__raw_data(&raw);
1774
1775         return intel_pt_deliver_synth_event(pt, event, &sample,
1776                                             pt->pwr_events_sample_type);
1777 }
1778
1779 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1780 {
1781         struct intel_pt *pt = ptq->pt;
1782         union perf_event *event = ptq->event_buf;
1783         struct perf_sample sample = { .ip = 0, };
1784         struct perf_synth_intel_pwre raw;
1785
1786         if (intel_pt_skip_event(pt))
1787                 return 0;
1788
1789         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1790
1791         sample.id = ptq->pt->pwre_id;
1792         sample.stream_id = ptq->pt->pwre_id;
1793
1794         raw.reserved = 0;
1795         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1796
1797         sample.raw_size = perf_synth__raw_size(raw);
1798         sample.raw_data = perf_synth__raw_data(&raw);
1799
1800         return intel_pt_deliver_synth_event(pt, event, &sample,
1801                                             pt->pwr_events_sample_type);
1802 }
1803
1804 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1805 {
1806         struct intel_pt *pt = ptq->pt;
1807         union perf_event *event = ptq->event_buf;
1808         struct perf_sample sample = { .ip = 0, };
1809         struct perf_synth_intel_exstop raw;
1810
1811         if (intel_pt_skip_event(pt))
1812                 return 0;
1813
1814         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1815
1816         sample.id = ptq->pt->exstop_id;
1817         sample.stream_id = ptq->pt->exstop_id;
1818
1819         raw.flags = 0;
1820         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1821
1822         sample.raw_size = perf_synth__raw_size(raw);
1823         sample.raw_data = perf_synth__raw_data(&raw);
1824
1825         return intel_pt_deliver_synth_event(pt, event, &sample,
1826                                             pt->pwr_events_sample_type);
1827 }
1828
1829 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1830 {
1831         struct intel_pt *pt = ptq->pt;
1832         union perf_event *event = ptq->event_buf;
1833         struct perf_sample sample = { .ip = 0, };
1834         struct perf_synth_intel_pwrx raw;
1835
1836         if (intel_pt_skip_event(pt))
1837                 return 0;
1838
1839         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1840
1841         sample.id = ptq->pt->pwrx_id;
1842         sample.stream_id = ptq->pt->pwrx_id;
1843
1844         raw.reserved = 0;
1845         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1846
1847         sample.raw_size = perf_synth__raw_size(raw);
1848         sample.raw_data = perf_synth__raw_data(&raw);
1849
1850         return intel_pt_deliver_synth_event(pt, event, &sample,
1851                                             pt->pwr_events_sample_type);
1852 }
1853
1854 /*
1855  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1856  * intel_pt_add_gp_regs().
1857  */
1858 static const int pebs_gp_regs[] = {
1859         [PERF_REG_X86_FLAGS]    = 1,
1860         [PERF_REG_X86_IP]       = 2,
1861         [PERF_REG_X86_AX]       = 3,
1862         [PERF_REG_X86_CX]       = 4,
1863         [PERF_REG_X86_DX]       = 5,
1864         [PERF_REG_X86_BX]       = 6,
1865         [PERF_REG_X86_SP]       = 7,
1866         [PERF_REG_X86_BP]       = 8,
1867         [PERF_REG_X86_SI]       = 9,
1868         [PERF_REG_X86_DI]       = 10,
1869         [PERF_REG_X86_R8]       = 11,
1870         [PERF_REG_X86_R9]       = 12,
1871         [PERF_REG_X86_R10]      = 13,
1872         [PERF_REG_X86_R11]      = 14,
1873         [PERF_REG_X86_R12]      = 15,
1874         [PERF_REG_X86_R13]      = 16,
1875         [PERF_REG_X86_R14]      = 17,
1876         [PERF_REG_X86_R15]      = 18,
1877 };
1878
1879 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1880                                  const struct intel_pt_blk_items *items,
1881                                  u64 regs_mask)
1882 {
1883         const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1884         u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1885         u32 bit;
1886         int i;
1887
1888         for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1889                 /* Get the PEBS gp_regs array index */
1890                 int n = pebs_gp_regs[i] - 1;
1891
1892                 if (n < 0)
1893                         continue;
1894                 /*
1895                  * Add only registers that were requested (i.e. 'regs_mask') and
1896                  * that were provided (i.e. 'mask'), and update the resulting
1897                  * mask (i.e. 'intr_regs->mask') accordingly.
1898                  */
1899                 if (mask & 1 << n && regs_mask & bit) {
1900                         intr_regs->mask |= bit;
1901                         *pos++ = gp_regs[n];
1902                 }
1903         }
1904
1905         return pos;
1906 }
1907
1908 #ifndef PERF_REG_X86_XMM0
1909 #define PERF_REG_X86_XMM0 32
1910 #endif
1911
1912 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1913                              const struct intel_pt_blk_items *items,
1914                              u64 regs_mask)
1915 {
1916         u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1917         const u64 *xmm = items->xmm;
1918
1919         /*
1920          * If there are any XMM registers, then there should be all of them.
1921          * Nevertheless, follow the logic to add only registers that were
1922          * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1923          * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1924          */
1925         intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1926
1927         for (; mask; mask >>= 1, xmm++) {
1928                 if (mask & 1)
1929                         *pos++ = *xmm;
1930         }
1931 }
1932
1933 #define LBR_INFO_MISPRED        (1ULL << 63)
1934 #define LBR_INFO_IN_TX          (1ULL << 62)
1935 #define LBR_INFO_ABORT          (1ULL << 61)
1936 #define LBR_INFO_CYCLES         0xffff
1937
1938 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1939 static u64 intel_pt_lbr_flags(u64 info)
1940 {
1941         union {
1942                 struct branch_flags flags;
1943                 u64 result;
1944         } u;
1945
1946         u.result          = 0;
1947         u.flags.mispred   = !!(info & LBR_INFO_MISPRED);
1948         u.flags.predicted = !(info & LBR_INFO_MISPRED);
1949         u.flags.in_tx     = !!(info & LBR_INFO_IN_TX);
1950         u.flags.abort     = !!(info & LBR_INFO_ABORT);
1951         u.flags.cycles    = info & LBR_INFO_CYCLES;
1952
1953         return u.result;
1954 }
1955
1956 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1957                               const struct intel_pt_blk_items *items)
1958 {
1959         u64 *to;
1960         int i;
1961
1962         br_stack->nr = 0;
1963
1964         to = &br_stack->entries[0].from;
1965
1966         for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1967                 u32 mask = items->mask[i];
1968                 const u64 *from = items->val[i];
1969
1970                 for (; mask; mask >>= 3, from += 3) {
1971                         if ((mask & 7) == 7) {
1972                                 *to++ = from[0];
1973                                 *to++ = from[1];
1974                                 *to++ = intel_pt_lbr_flags(from[2]);
1975                                 br_stack->nr += 1;
1976                         }
1977                 }
1978         }
1979 }
1980
1981 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1982 {
1983         const struct intel_pt_blk_items *items = &ptq->state->items;
1984         struct perf_sample sample = { .ip = 0, };
1985         union perf_event *event = ptq->event_buf;
1986         struct intel_pt *pt = ptq->pt;
1987         struct evsel *evsel = pt->pebs_evsel;
1988         u64 sample_type = evsel->core.attr.sample_type;
1989         u64 id = evsel->core.id[0];
1990         u8 cpumode;
1991         u64 regs[8 * sizeof(sample.intr_regs.mask)];
1992
1993         if (intel_pt_skip_event(pt))
1994                 return 0;
1995
1996         intel_pt_prep_a_sample(ptq, event, &sample);
1997
1998         sample.id = id;
1999         sample.stream_id = id;
2000
2001         if (!evsel->core.attr.freq)
2002                 sample.period = evsel->core.attr.sample_period;
2003
2004         /* No support for non-zero CS base */
2005         if (items->has_ip)
2006                 sample.ip = items->ip;
2007         else if (items->has_rip)
2008                 sample.ip = items->rip;
2009         else
2010                 sample.ip = ptq->state->from_ip;
2011
2012         cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2013
2014         event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2015
2016         sample.cpumode = cpumode;
2017
2018         if (sample_type & PERF_SAMPLE_TIME) {
2019                 u64 timestamp = 0;
2020
2021                 if (items->has_timestamp)
2022                         timestamp = items->timestamp;
2023                 else if (!pt->timeless_decoding)
2024                         timestamp = ptq->timestamp;
2025                 if (timestamp)
2026                         sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2027         }
2028
2029         if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2030             pt->synth_opts.callchain) {
2031                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2032                                      pt->synth_opts.callchain_sz, sample.ip,
2033                                      pt->kernel_start);
2034                 sample.callchain = ptq->chain;
2035         }
2036
2037         if (sample_type & PERF_SAMPLE_REGS_INTR &&
2038             (items->mask[INTEL_PT_GP_REGS_POS] ||
2039              items->mask[INTEL_PT_XMM_POS])) {
2040                 u64 regs_mask = evsel->core.attr.sample_regs_intr;
2041                 u64 *pos;
2042
2043                 sample.intr_regs.abi = items->is_32_bit ?
2044                                        PERF_SAMPLE_REGS_ABI_32 :
2045                                        PERF_SAMPLE_REGS_ABI_64;
2046                 sample.intr_regs.regs = regs;
2047
2048                 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2049
2050                 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2051         }
2052
2053         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2054                 if (items->mask[INTEL_PT_LBR_0_POS] ||
2055                     items->mask[INTEL_PT_LBR_1_POS] ||
2056                     items->mask[INTEL_PT_LBR_2_POS]) {
2057                         intel_pt_add_lbrs(ptq->last_branch, items);
2058                 } else if (pt->synth_opts.last_branch) {
2059                         thread_stack__br_sample(ptq->thread, ptq->cpu,
2060                                                 ptq->last_branch,
2061                                                 pt->br_stack_sz);
2062                 } else {
2063                         ptq->last_branch->nr = 0;
2064                 }
2065                 sample.branch_stack = ptq->last_branch;
2066         }
2067
2068         if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2069                 sample.addr = items->mem_access_address;
2070
2071         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2072                 /*
2073                  * Refer kernel's setup_pebs_adaptive_sample_data() and
2074                  * intel_hsw_weight().
2075                  */
2076                 if (items->has_mem_access_latency) {
2077                         u64 weight = items->mem_access_latency >> 32;
2078
2079                         /*
2080                          * Starts from SPR, the mem access latency field
2081                          * contains both cache latency [47:32] and instruction
2082                          * latency [15:0]. The cache latency is the same as the
2083                          * mem access latency on previous platforms.
2084                          *
2085                          * In practice, no memory access could last than 4G
2086                          * cycles. Use latency >> 32 to distinguish the
2087                          * different format of the mem access latency field.
2088                          */
2089                         if (weight > 0) {
2090                                 sample.weight = weight & 0xffff;
2091                                 sample.ins_lat = items->mem_access_latency & 0xffff;
2092                         } else
2093                                 sample.weight = items->mem_access_latency;
2094                 }
2095                 if (!sample.weight && items->has_tsx_aux_info) {
2096                         /* Cycles last block */
2097                         sample.weight = (u32)items->tsx_aux_info;
2098                 }
2099         }
2100
2101         if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2102                 u64 ax = items->has_rax ? items->rax : 0;
2103                 /* Refer kernel's intel_hsw_transaction() */
2104                 u64 txn = (u8)(items->tsx_aux_info >> 32);
2105
2106                 /* For RTM XABORTs also log the abort code from AX */
2107                 if (txn & PERF_TXN_TRANSACTION && ax & 1)
2108                         txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2109                 sample.transaction = txn;
2110         }
2111
2112         return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2113 }
2114
2115 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2116                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
2117 {
2118         union perf_event event;
2119         char msg[MAX_AUXTRACE_ERROR_MSG];
2120         int err;
2121
2122         if (pt->synth_opts.error_minus_flags) {
2123                 if (code == INTEL_PT_ERR_OVR &&
2124                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2125                         return 0;
2126                 if (code == INTEL_PT_ERR_LOST &&
2127                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2128                         return 0;
2129         }
2130
2131         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2132
2133         auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2134                              code, cpu, pid, tid, ip, msg, timestamp);
2135
2136         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2137         if (err)
2138                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2139                        err);
2140
2141         return err;
2142 }
2143
2144 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2145                                  const struct intel_pt_state *state)
2146 {
2147         struct intel_pt *pt = ptq->pt;
2148         u64 tm = ptq->timestamp;
2149
2150         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2151
2152         return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
2153                                     ptq->tid, state->from_ip, tm);
2154 }
2155
2156 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2157 {
2158         struct auxtrace_queue *queue;
2159         pid_t tid = ptq->next_tid;
2160         int err;
2161
2162         if (tid == -1)
2163                 return 0;
2164
2165         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2166
2167         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2168
2169         queue = &pt->queues.queue_array[ptq->queue_nr];
2170         intel_pt_set_pid_tid_cpu(pt, queue);
2171
2172         ptq->next_tid = -1;
2173
2174         return err;
2175 }
2176
2177 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2178 {
2179         struct intel_pt *pt = ptq->pt;
2180
2181         return ip == pt->switch_ip &&
2182                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2183                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2184                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2185 }
2186
2187 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2188                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2189
2190 static int intel_pt_sample(struct intel_pt_queue *ptq)
2191 {
2192         const struct intel_pt_state *state = ptq->state;
2193         struct intel_pt *pt = ptq->pt;
2194         int err;
2195
2196         if (!ptq->have_sample)
2197                 return 0;
2198
2199         ptq->have_sample = false;
2200
2201         ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2202         ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2203
2204         /*
2205          * Do PEBS first to allow for the possibility that the PEBS timestamp
2206          * precedes the current timestamp.
2207          */
2208         if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2209                 err = intel_pt_synth_pebs_sample(ptq);
2210                 if (err)
2211                         return err;
2212         }
2213
2214         if (pt->sample_pwr_events) {
2215                 if (state->type & INTEL_PT_PSB_EVT) {
2216                         err = intel_pt_synth_psb_sample(ptq);
2217                         if (err)
2218                                 return err;
2219                 }
2220                 if (ptq->state->cbr != ptq->cbr_seen) {
2221                         err = intel_pt_synth_cbr_sample(ptq);
2222                         if (err)
2223                                 return err;
2224                 }
2225                 if (state->type & INTEL_PT_PWR_EVT) {
2226                         if (state->type & INTEL_PT_MWAIT_OP) {
2227                                 err = intel_pt_synth_mwait_sample(ptq);
2228                                 if (err)
2229                                         return err;
2230                         }
2231                         if (state->type & INTEL_PT_PWR_ENTRY) {
2232                                 err = intel_pt_synth_pwre_sample(ptq);
2233                                 if (err)
2234                                         return err;
2235                         }
2236                         if (state->type & INTEL_PT_EX_STOP) {
2237                                 err = intel_pt_synth_exstop_sample(ptq);
2238                                 if (err)
2239                                         return err;
2240                         }
2241                         if (state->type & INTEL_PT_PWR_EXIT) {
2242                                 err = intel_pt_synth_pwrx_sample(ptq);
2243                                 if (err)
2244                                         return err;
2245                         }
2246                 }
2247         }
2248
2249         if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2250                 err = intel_pt_synth_instruction_sample(ptq);
2251                 if (err)
2252                         return err;
2253         }
2254
2255         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2256                 err = intel_pt_synth_transaction_sample(ptq);
2257                 if (err)
2258                         return err;
2259         }
2260
2261         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2262                 err = intel_pt_synth_ptwrite_sample(ptq);
2263                 if (err)
2264                         return err;
2265         }
2266
2267         if (!(state->type & INTEL_PT_BRANCH))
2268                 return 0;
2269
2270         if (pt->use_thread_stack) {
2271                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2272                                     state->from_ip, state->to_ip, ptq->insn_len,
2273                                     state->trace_nr, pt->callstack,
2274                                     pt->br_stack_sz_plus,
2275                                     pt->mispred_all);
2276         } else {
2277                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2278         }
2279
2280         if (pt->sample_branches) {
2281                 if (state->from_nr != state->to_nr &&
2282                     state->from_ip && state->to_ip) {
2283                         struct intel_pt_state *st = (struct intel_pt_state *)state;
2284                         u64 to_ip = st->to_ip;
2285                         u64 from_ip = st->from_ip;
2286
2287                         /*
2288                          * perf cannot handle having different machines for ip
2289                          * and addr, so create 2 branches.
2290                          */
2291                         st->to_ip = 0;
2292                         err = intel_pt_synth_branch_sample(ptq);
2293                         if (err)
2294                                 return err;
2295                         st->from_ip = 0;
2296                         st->to_ip = to_ip;
2297                         err = intel_pt_synth_branch_sample(ptq);
2298                         st->from_ip = from_ip;
2299                 } else {
2300                         err = intel_pt_synth_branch_sample(ptq);
2301                 }
2302                 if (err)
2303                         return err;
2304         }
2305
2306         if (!ptq->sync_switch)
2307                 return 0;
2308
2309         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2310                 switch (ptq->switch_state) {
2311                 case INTEL_PT_SS_NOT_TRACING:
2312                 case INTEL_PT_SS_UNKNOWN:
2313                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2314                         err = intel_pt_next_tid(pt, ptq);
2315                         if (err)
2316                                 return err;
2317                         ptq->switch_state = INTEL_PT_SS_TRACING;
2318                         break;
2319                 default:
2320                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2321                         return 1;
2322                 }
2323         } else if (!state->to_ip) {
2324                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2325         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2326                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2327         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2328                    state->to_ip == pt->ptss_ip &&
2329                    (ptq->flags & PERF_IP_FLAG_CALL)) {
2330                 ptq->switch_state = INTEL_PT_SS_TRACING;
2331         }
2332
2333         return 0;
2334 }
2335
2336 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2337 {
2338         struct machine *machine = pt->machine;
2339         struct map *map;
2340         struct symbol *sym, *start;
2341         u64 ip, switch_ip = 0;
2342         const char *ptss;
2343
2344         if (ptss_ip)
2345                 *ptss_ip = 0;
2346
2347         map = machine__kernel_map(machine);
2348         if (!map)
2349                 return 0;
2350
2351         if (map__load(map))
2352                 return 0;
2353
2354         start = dso__first_symbol(map->dso);
2355
2356         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2357                 if (sym->binding == STB_GLOBAL &&
2358                     !strcmp(sym->name, "__switch_to")) {
2359                         ip = map->unmap_ip(map, sym->start);
2360                         if (ip >= map->start && ip < map->end) {
2361                                 switch_ip = ip;
2362                                 break;
2363                         }
2364                 }
2365         }
2366
2367         if (!switch_ip || !ptss_ip)
2368                 return 0;
2369
2370         if (pt->have_sched_switch == 1)
2371                 ptss = "perf_trace_sched_switch";
2372         else
2373                 ptss = "__perf_event_task_sched_out";
2374
2375         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2376                 if (!strcmp(sym->name, ptss)) {
2377                         ip = map->unmap_ip(map, sym->start);
2378                         if (ip >= map->start && ip < map->end) {
2379                                 *ptss_ip = ip;
2380                                 break;
2381                         }
2382                 }
2383         }
2384
2385         return switch_ip;
2386 }
2387
2388 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2389 {
2390         unsigned int i;
2391
2392         pt->sync_switch = true;
2393
2394         for (i = 0; i < pt->queues.nr_queues; i++) {
2395                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2396                 struct intel_pt_queue *ptq = queue->priv;
2397
2398                 if (ptq)
2399                         ptq->sync_switch = true;
2400         }
2401 }
2402
2403 /*
2404  * To filter against time ranges, it is only necessary to look at the next start
2405  * or end time.
2406  */
2407 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2408 {
2409         struct intel_pt *pt = ptq->pt;
2410
2411         if (ptq->sel_start) {
2412                 /* Next time is an end time */
2413                 ptq->sel_start = false;
2414                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2415                 return true;
2416         } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2417                 /* Next time is a start time */
2418                 ptq->sel_start = true;
2419                 ptq->sel_idx += 1;
2420                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2421                 return true;
2422         }
2423
2424         /* No next time */
2425         return false;
2426 }
2427
2428 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2429 {
2430         int err;
2431
2432         while (1) {
2433                 if (ptq->sel_start) {
2434                         if (ptq->timestamp >= ptq->sel_timestamp) {
2435                                 /* After start time, so consider next time */
2436                                 intel_pt_next_time(ptq);
2437                                 if (!ptq->sel_timestamp) {
2438                                         /* No end time */
2439                                         return 0;
2440                                 }
2441                                 /* Check against end time */
2442                                 continue;
2443                         }
2444                         /* Before start time, so fast forward */
2445                         ptq->have_sample = false;
2446                         if (ptq->sel_timestamp > *ff_timestamp) {
2447                                 if (ptq->sync_switch) {
2448                                         intel_pt_next_tid(ptq->pt, ptq);
2449                                         ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2450                                 }
2451                                 *ff_timestamp = ptq->sel_timestamp;
2452                                 err = intel_pt_fast_forward(ptq->decoder,
2453                                                             ptq->sel_timestamp);
2454                                 if (err)
2455                                         return err;
2456                         }
2457                         return 0;
2458                 } else if (ptq->timestamp > ptq->sel_timestamp) {
2459                         /* After end time, so consider next time */
2460                         if (!intel_pt_next_time(ptq)) {
2461                                 /* No next time range, so stop decoding */
2462                                 ptq->have_sample = false;
2463                                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2464                                 return 1;
2465                         }
2466                         /* Check against next start time */
2467                         continue;
2468                 } else {
2469                         /* Before end time */
2470                         return 0;
2471                 }
2472         }
2473 }
2474
2475 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2476 {
2477         const struct intel_pt_state *state = ptq->state;
2478         struct intel_pt *pt = ptq->pt;
2479         u64 ff_timestamp = 0;
2480         int err;
2481
2482         if (!pt->kernel_start) {
2483                 pt->kernel_start = machine__kernel_start(pt->machine);
2484                 if (pt->per_cpu_mmaps &&
2485                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2486                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2487                     !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2488                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2489                         if (pt->switch_ip) {
2490                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2491                                              pt->switch_ip, pt->ptss_ip);
2492                                 intel_pt_enable_sync_switch(pt);
2493                         }
2494                 }
2495         }
2496
2497         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2498                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2499         while (1) {
2500                 err = intel_pt_sample(ptq);
2501                 if (err)
2502                         return err;
2503
2504                 state = intel_pt_decode(ptq->decoder);
2505                 if (state->err) {
2506                         if (state->err == INTEL_PT_ERR_NODATA)
2507                                 return 1;
2508                         if (ptq->sync_switch &&
2509                             state->from_ip >= pt->kernel_start) {
2510                                 ptq->sync_switch = false;
2511                                 intel_pt_next_tid(pt, ptq);
2512                         }
2513                         if (pt->synth_opts.errors) {
2514                                 err = intel_ptq_synth_error(ptq, state);
2515                                 if (err)
2516                                         return err;
2517                         }
2518                         continue;
2519                 }
2520
2521                 ptq->state = state;
2522                 ptq->have_sample = true;
2523                 intel_pt_sample_flags(ptq);
2524
2525                 /* Use estimated TSC upon return to user space */
2526                 if (pt->est_tsc &&
2527                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2528                     state->to_ip && state->to_ip < pt->kernel_start) {
2529                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2530                                      state->timestamp, state->est_timestamp);
2531                         ptq->timestamp = state->est_timestamp;
2532                 /* Use estimated TSC in unknown switch state */
2533                 } else if (ptq->sync_switch &&
2534                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2535                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
2536                            ptq->next_tid == -1) {
2537                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2538                                      state->timestamp, state->est_timestamp);
2539                         ptq->timestamp = state->est_timestamp;
2540                 } else if (state->timestamp > ptq->timestamp) {
2541                         ptq->timestamp = state->timestamp;
2542                 }
2543
2544                 if (ptq->sel_timestamp) {
2545                         err = intel_pt_time_filter(ptq, &ff_timestamp);
2546                         if (err)
2547                                 return err;
2548                 }
2549
2550                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2551                         *timestamp = ptq->timestamp;
2552                         return 0;
2553                 }
2554         }
2555         return 0;
2556 }
2557
2558 static inline int intel_pt_update_queues(struct intel_pt *pt)
2559 {
2560         if (pt->queues.new_data) {
2561                 pt->queues.new_data = false;
2562                 return intel_pt_setup_queues(pt);
2563         }
2564         return 0;
2565 }
2566
2567 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2568 {
2569         unsigned int queue_nr;
2570         u64 ts;
2571         int ret;
2572
2573         while (1) {
2574                 struct auxtrace_queue *queue;
2575                 struct intel_pt_queue *ptq;
2576
2577                 if (!pt->heap.heap_cnt)
2578                         return 0;
2579
2580                 if (pt->heap.heap_array[0].ordinal >= timestamp)
2581                         return 0;
2582
2583                 queue_nr = pt->heap.heap_array[0].queue_nr;
2584                 queue = &pt->queues.queue_array[queue_nr];
2585                 ptq = queue->priv;
2586
2587                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2588                              queue_nr, pt->heap.heap_array[0].ordinal,
2589                              timestamp);
2590
2591                 auxtrace_heap__pop(&pt->heap);
2592
2593                 if (pt->heap.heap_cnt) {
2594                         ts = pt->heap.heap_array[0].ordinal + 1;
2595                         if (ts > timestamp)
2596                                 ts = timestamp;
2597                 } else {
2598                         ts = timestamp;
2599                 }
2600
2601                 intel_pt_set_pid_tid_cpu(pt, queue);
2602
2603                 ret = intel_pt_run_decoder(ptq, &ts);
2604
2605                 if (ret < 0) {
2606                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
2607                         return ret;
2608                 }
2609
2610                 if (!ret) {
2611                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2612                         if (ret < 0)
2613                                 return ret;
2614                 } else {
2615                         ptq->on_heap = false;
2616                 }
2617         }
2618
2619         return 0;
2620 }
2621
2622 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2623                                             u64 time_)
2624 {
2625         struct auxtrace_queues *queues = &pt->queues;
2626         unsigned int i;
2627         u64 ts = 0;
2628
2629         for (i = 0; i < queues->nr_queues; i++) {
2630                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2631                 struct intel_pt_queue *ptq = queue->priv;
2632
2633                 if (ptq && (tid == -1 || ptq->tid == tid)) {
2634                         ptq->time = time_;
2635                         intel_pt_set_pid_tid_cpu(pt, queue);
2636                         intel_pt_run_decoder(ptq, &ts);
2637                 }
2638         }
2639         return 0;
2640 }
2641
2642 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2643                                             struct auxtrace_queue *queue,
2644                                             struct perf_sample *sample)
2645 {
2646         struct machine *m = ptq->pt->machine;
2647
2648         ptq->pid = sample->pid;
2649         ptq->tid = sample->tid;
2650         ptq->cpu = queue->cpu;
2651
2652         intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2653                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2654
2655         thread__zput(ptq->thread);
2656
2657         if (ptq->tid == -1)
2658                 return;
2659
2660         if (ptq->pid == -1) {
2661                 ptq->thread = machine__find_thread(m, -1, ptq->tid);
2662                 if (ptq->thread)
2663                         ptq->pid = ptq->thread->pid_;
2664                 return;
2665         }
2666
2667         ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2668 }
2669
2670 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2671                                             struct perf_sample *sample)
2672 {
2673         struct auxtrace_queue *queue;
2674         struct intel_pt_queue *ptq;
2675         u64 ts = 0;
2676
2677         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2678         if (!queue)
2679                 return -EINVAL;
2680
2681         ptq = queue->priv;
2682         if (!ptq)
2683                 return 0;
2684
2685         ptq->stop = false;
2686         ptq->time = sample->time;
2687         intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2688         intel_pt_run_decoder(ptq, &ts);
2689         return 0;
2690 }
2691
2692 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2693 {
2694         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2695                                     sample->pid, sample->tid, 0, sample->time);
2696 }
2697
2698 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2699 {
2700         unsigned i, j;
2701
2702         if (cpu < 0 || !pt->queues.nr_queues)
2703                 return NULL;
2704
2705         if ((unsigned)cpu >= pt->queues.nr_queues)
2706                 i = pt->queues.nr_queues - 1;
2707         else
2708                 i = cpu;
2709
2710         if (pt->queues.queue_array[i].cpu == cpu)
2711                 return pt->queues.queue_array[i].priv;
2712
2713         for (j = 0; i > 0; j++) {
2714                 if (pt->queues.queue_array[--i].cpu == cpu)
2715                         return pt->queues.queue_array[i].priv;
2716         }
2717
2718         for (; j < pt->queues.nr_queues; j++) {
2719                 if (pt->queues.queue_array[j].cpu == cpu)
2720                         return pt->queues.queue_array[j].priv;
2721         }
2722
2723         return NULL;
2724 }
2725
2726 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2727                                 u64 timestamp)
2728 {
2729         struct intel_pt_queue *ptq;
2730         int err;
2731
2732         if (!pt->sync_switch)
2733                 return 1;
2734
2735         ptq = intel_pt_cpu_to_ptq(pt, cpu);
2736         if (!ptq || !ptq->sync_switch)
2737                 return 1;
2738
2739         switch (ptq->switch_state) {
2740         case INTEL_PT_SS_NOT_TRACING:
2741                 break;
2742         case INTEL_PT_SS_UNKNOWN:
2743         case INTEL_PT_SS_TRACING:
2744                 ptq->next_tid = tid;
2745                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2746                 return 0;
2747         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2748                 if (!ptq->on_heap) {
2749                         ptq->timestamp = perf_time_to_tsc(timestamp,
2750                                                           &pt->tc);
2751                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2752                                                  ptq->timestamp);
2753                         if (err)
2754                                 return err;
2755                         ptq->on_heap = true;
2756                 }
2757                 ptq->switch_state = INTEL_PT_SS_TRACING;
2758                 break;
2759         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2760                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2761                 break;
2762         default:
2763                 break;
2764         }
2765
2766         ptq->next_tid = -1;
2767
2768         return 1;
2769 }
2770
2771 static int intel_pt_process_switch(struct intel_pt *pt,
2772                                    struct perf_sample *sample)
2773 {
2774         pid_t tid;
2775         int cpu, ret;
2776         struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
2777
2778         if (evsel != pt->switch_evsel)
2779                 return 0;
2780
2781         tid = evsel__intval(evsel, sample, "next_pid");
2782         cpu = sample->cpu;
2783
2784         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2785                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2786                      &pt->tc));
2787
2788         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2789         if (ret <= 0)
2790                 return ret;
2791
2792         return machine__set_current_tid(pt->machine, cpu, -1, tid);
2793 }
2794
2795 static int intel_pt_context_switch_in(struct intel_pt *pt,
2796                                       struct perf_sample *sample)
2797 {
2798         pid_t pid = sample->pid;
2799         pid_t tid = sample->tid;
2800         int cpu = sample->cpu;
2801
2802         if (pt->sync_switch) {
2803                 struct intel_pt_queue *ptq;
2804
2805                 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2806                 if (ptq && ptq->sync_switch) {
2807                         ptq->next_tid = -1;
2808                         switch (ptq->switch_state) {
2809                         case INTEL_PT_SS_NOT_TRACING:
2810                         case INTEL_PT_SS_UNKNOWN:
2811                         case INTEL_PT_SS_TRACING:
2812                                 break;
2813                         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2814                         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2815                                 ptq->switch_state = INTEL_PT_SS_TRACING;
2816                                 break;
2817                         default:
2818                                 break;
2819                         }
2820                 }
2821         }
2822
2823         /*
2824          * If the current tid has not been updated yet, ensure it is now that
2825          * a "switch in" event has occurred.
2826          */
2827         if (machine__get_current_tid(pt->machine, cpu) == tid)
2828                 return 0;
2829
2830         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2831 }
2832
2833 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2834                                    struct perf_sample *sample)
2835 {
2836         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2837         pid_t pid, tid;
2838         int cpu, ret;
2839
2840         cpu = sample->cpu;
2841
2842         if (pt->have_sched_switch == 3) {
2843                 if (!out)
2844                         return intel_pt_context_switch_in(pt, sample);
2845                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2846                         pr_err("Expecting CPU-wide context switch event\n");
2847                         return -EINVAL;
2848                 }
2849                 pid = event->context_switch.next_prev_pid;
2850                 tid = event->context_switch.next_prev_tid;
2851         } else {
2852                 if (out)
2853                         return 0;
2854                 pid = sample->pid;
2855                 tid = sample->tid;
2856         }
2857
2858         if (tid == -1)
2859                 intel_pt_log("context_switch event has no tid\n");
2860
2861         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2862         if (ret <= 0)
2863                 return ret;
2864
2865         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2866 }
2867
2868 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2869                                          union perf_event *event,
2870                                          struct perf_sample *sample)
2871 {
2872         if (!pt->per_cpu_mmaps)
2873                 return 0;
2874
2875         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2876                      sample->cpu, event->itrace_start.pid,
2877                      event->itrace_start.tid, sample->time,
2878                      perf_time_to_tsc(sample->time, &pt->tc));
2879
2880         return machine__set_current_tid(pt->machine, sample->cpu,
2881                                         event->itrace_start.pid,
2882                                         event->itrace_start.tid);
2883 }
2884
2885 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2886                              struct addr_location *al)
2887 {
2888         if (!al->map || addr < al->map->start || addr >= al->map->end) {
2889                 if (!thread__find_map(thread, cpumode, addr, al))
2890                         return -1;
2891         }
2892
2893         return 0;
2894 }
2895
2896 /* Invalidate all instruction cache entries that overlap the text poke */
2897 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2898 {
2899         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2900         u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2901         /* Assume text poke begins in a basic block no more than 4096 bytes */
2902         int cnt = 4096 + event->text_poke.new_len;
2903         struct thread *thread = pt->unknown_thread;
2904         struct addr_location al = { .map = NULL };
2905         struct machine *machine = pt->machine;
2906         struct intel_pt_cache_entry *e;
2907         u64 offset;
2908
2909         if (!event->text_poke.new_len)
2910                 return 0;
2911
2912         for (; cnt; cnt--, addr--) {
2913                 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2914                         if (addr < event->text_poke.addr)
2915                                 return 0;
2916                         continue;
2917                 }
2918
2919                 if (!al.map->dso || !al.map->dso->auxtrace_cache)
2920                         continue;
2921
2922                 offset = al.map->map_ip(al.map, addr);
2923
2924                 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2925                 if (!e)
2926                         continue;
2927
2928                 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2929                         /*
2930                          * No overlap. Working backwards there cannot be another
2931                          * basic block that overlaps the text poke if there is a
2932                          * branch instruction before the text poke address.
2933                          */
2934                         if (e->branch != INTEL_PT_BR_NO_BRANCH)
2935                                 return 0;
2936                 } else {
2937                         intel_pt_cache_invalidate(al.map->dso, machine, offset);
2938                         intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2939                                      al.map->dso->long_name, addr);
2940                 }
2941         }
2942
2943         return 0;
2944 }
2945
2946 static int intel_pt_process_event(struct perf_session *session,
2947                                   union perf_event *event,
2948                                   struct perf_sample *sample,
2949                                   struct perf_tool *tool)
2950 {
2951         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2952                                            auxtrace);
2953         u64 timestamp;
2954         int err = 0;
2955
2956         if (dump_trace)
2957                 return 0;
2958
2959         if (!tool->ordered_events) {
2960                 pr_err("Intel Processor Trace requires ordered events\n");
2961                 return -EINVAL;
2962         }
2963
2964         if (sample->time && sample->time != (u64)-1)
2965                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2966         else
2967                 timestamp = 0;
2968
2969         if (timestamp || pt->timeless_decoding) {
2970                 err = intel_pt_update_queues(pt);
2971                 if (err)
2972                         return err;
2973         }
2974
2975         if (pt->timeless_decoding) {
2976                 if (pt->sampling_mode) {
2977                         if (sample->aux_sample.size)
2978                                 err = intel_pt_process_timeless_sample(pt,
2979                                                                        sample);
2980                 } else if (event->header.type == PERF_RECORD_EXIT) {
2981                         err = intel_pt_process_timeless_queues(pt,
2982                                                                event->fork.tid,
2983                                                                sample->time);
2984                 }
2985         } else if (timestamp) {
2986                 if (!pt->first_timestamp)
2987                         intel_pt_first_timestamp(pt, timestamp);
2988                 err = intel_pt_process_queues(pt, timestamp);
2989         }
2990         if (err)
2991                 return err;
2992
2993         if (event->header.type == PERF_RECORD_SAMPLE) {
2994                 if (pt->synth_opts.add_callchain && !sample->callchain)
2995                         intel_pt_add_callchain(pt, sample);
2996                 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2997                         intel_pt_add_br_stack(pt, sample);
2998         }
2999
3000         if (event->header.type == PERF_RECORD_AUX &&
3001             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3002             pt->synth_opts.errors) {
3003                 err = intel_pt_lost(pt, sample);
3004                 if (err)
3005                         return err;
3006         }
3007
3008         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3009                 err = intel_pt_process_switch(pt, sample);
3010         else if (event->header.type == PERF_RECORD_ITRACE_START)
3011                 err = intel_pt_process_itrace_start(pt, event, sample);
3012         else if (event->header.type == PERF_RECORD_SWITCH ||
3013                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3014                 err = intel_pt_context_switch(pt, event, sample);
3015
3016         if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3017                 err = intel_pt_text_poke(pt, event);
3018
3019         if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3020                 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3021                              event->header.type, sample->cpu, sample->time, timestamp);
3022                 intel_pt_log_event(event);
3023         }
3024
3025         return err;
3026 }
3027
3028 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3029 {
3030         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3031                                            auxtrace);
3032         int ret;
3033
3034         if (dump_trace)
3035                 return 0;
3036
3037         if (!tool->ordered_events)
3038                 return -EINVAL;
3039
3040         ret = intel_pt_update_queues(pt);
3041         if (ret < 0)
3042                 return ret;
3043
3044         if (pt->timeless_decoding)
3045                 return intel_pt_process_timeless_queues(pt, -1,
3046                                                         MAX_TIMESTAMP - 1);
3047
3048         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3049 }
3050
3051 static void intel_pt_free_events(struct perf_session *session)
3052 {
3053         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3054                                            auxtrace);
3055         struct auxtrace_queues *queues = &pt->queues;
3056         unsigned int i;
3057
3058         for (i = 0; i < queues->nr_queues; i++) {
3059                 intel_pt_free_queue(queues->queue_array[i].priv);
3060                 queues->queue_array[i].priv = NULL;
3061         }
3062         intel_pt_log_disable();
3063         auxtrace_queues__free(queues);
3064 }
3065
3066 static void intel_pt_free(struct perf_session *session)
3067 {
3068         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3069                                            auxtrace);
3070
3071         auxtrace_heap__free(&pt->heap);
3072         intel_pt_free_events(session);
3073         session->auxtrace = NULL;
3074         intel_pt_free_vmcs_info(pt);
3075         thread__put(pt->unknown_thread);
3076         addr_filters__exit(&pt->filts);
3077         zfree(&pt->chain);
3078         zfree(&pt->filter);
3079         zfree(&pt->time_ranges);
3080         free(pt);
3081 }
3082
3083 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3084                                        struct evsel *evsel)
3085 {
3086         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3087                                            auxtrace);
3088
3089         return evsel->core.attr.type == pt->pmu_type;
3090 }
3091
3092 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3093                                            union perf_event *event,
3094                                            struct perf_tool *tool __maybe_unused)
3095 {
3096         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3097                                            auxtrace);
3098
3099         if (!pt->data_queued) {
3100                 struct auxtrace_buffer *buffer;
3101                 off_t data_offset;
3102                 int fd = perf_data__fd(session->data);
3103                 int err;
3104
3105                 if (perf_data__is_pipe(session->data)) {
3106                         data_offset = 0;
3107                 } else {
3108                         data_offset = lseek(fd, 0, SEEK_CUR);
3109                         if (data_offset == -1)
3110                                 return -errno;
3111                 }
3112
3113                 err = auxtrace_queues__add_event(&pt->queues, session, event,
3114                                                  data_offset, &buffer);
3115                 if (err)
3116                         return err;
3117
3118                 /* Dump here now we have copied a piped trace out of the pipe */
3119                 if (dump_trace) {
3120                         if (auxtrace_buffer__get_data(buffer, fd)) {
3121                                 intel_pt_dump_event(pt, buffer->data,
3122                                                     buffer->size);
3123                                 auxtrace_buffer__put_data(buffer);
3124                         }
3125                 }
3126         }
3127
3128         return 0;
3129 }
3130
3131 static int intel_pt_queue_data(struct perf_session *session,
3132                                struct perf_sample *sample,
3133                                union perf_event *event, u64 data_offset)
3134 {
3135         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3136                                            auxtrace);
3137         u64 timestamp;
3138
3139         if (event) {
3140                 return auxtrace_queues__add_event(&pt->queues, session, event,
3141                                                   data_offset, NULL);
3142         }
3143
3144         if (sample->time && sample->time != (u64)-1)
3145                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3146         else
3147                 timestamp = 0;
3148
3149         return auxtrace_queues__add_sample(&pt->queues, session, sample,
3150                                            data_offset, timestamp);
3151 }
3152
3153 struct intel_pt_synth {
3154         struct perf_tool dummy_tool;
3155         struct perf_session *session;
3156 };
3157
3158 static int intel_pt_event_synth(struct perf_tool *tool,
3159                                 union perf_event *event,
3160                                 struct perf_sample *sample __maybe_unused,
3161                                 struct machine *machine __maybe_unused)
3162 {
3163         struct intel_pt_synth *intel_pt_synth =
3164                         container_of(tool, struct intel_pt_synth, dummy_tool);
3165
3166         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3167                                                  NULL);
3168 }
3169
3170 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3171                                 struct perf_event_attr *attr, u64 id)
3172 {
3173         struct intel_pt_synth intel_pt_synth;
3174         int err;
3175
3176         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3177                  name, id, (u64)attr->sample_type);
3178
3179         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3180         intel_pt_synth.session = session;
3181
3182         err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3183                                           &id, intel_pt_event_synth);
3184         if (err)
3185                 pr_err("%s: failed to synthesize '%s' event type\n",
3186                        __func__, name);
3187
3188         return err;
3189 }
3190
3191 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3192                                     const char *name)
3193 {
3194         struct evsel *evsel;
3195
3196         evlist__for_each_entry(evlist, evsel) {
3197                 if (evsel->core.id && evsel->core.id[0] == id) {
3198                         if (evsel->name)
3199                                 zfree(&evsel->name);
3200                         evsel->name = strdup(name);
3201                         break;
3202                 }
3203         }
3204 }
3205
3206 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3207                                          struct evlist *evlist)
3208 {
3209         struct evsel *evsel;
3210
3211         evlist__for_each_entry(evlist, evsel) {
3212                 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3213                         return evsel;
3214         }
3215
3216         return NULL;
3217 }
3218
3219 static int intel_pt_synth_events(struct intel_pt *pt,
3220                                  struct perf_session *session)
3221 {
3222         struct evlist *evlist = session->evlist;
3223         struct evsel *evsel = intel_pt_evsel(pt, evlist);
3224         struct perf_event_attr attr;
3225         u64 id;
3226         int err;
3227
3228         if (!evsel) {
3229                 pr_debug("There are no selected events with Intel Processor Trace data\n");
3230                 return 0;
3231         }
3232
3233         memset(&attr, 0, sizeof(struct perf_event_attr));
3234         attr.size = sizeof(struct perf_event_attr);
3235         attr.type = PERF_TYPE_HARDWARE;
3236         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3237         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3238                             PERF_SAMPLE_PERIOD;
3239         if (pt->timeless_decoding)
3240                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3241         else
3242                 attr.sample_type |= PERF_SAMPLE_TIME;
3243         if (!pt->per_cpu_mmaps)
3244                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3245         attr.exclude_user = evsel->core.attr.exclude_user;
3246         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3247         attr.exclude_hv = evsel->core.attr.exclude_hv;
3248         attr.exclude_host = evsel->core.attr.exclude_host;
3249         attr.exclude_guest = evsel->core.attr.exclude_guest;
3250         attr.sample_id_all = evsel->core.attr.sample_id_all;
3251         attr.read_format = evsel->core.attr.read_format;
3252
3253         id = evsel->core.id[0] + 1000000000;
3254         if (!id)
3255                 id = 1;
3256
3257         if (pt->synth_opts.branches) {
3258                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3259                 attr.sample_period = 1;
3260                 attr.sample_type |= PERF_SAMPLE_ADDR;
3261                 err = intel_pt_synth_event(session, "branches", &attr, id);
3262                 if (err)
3263                         return err;
3264                 pt->sample_branches = true;
3265                 pt->branches_sample_type = attr.sample_type;
3266                 pt->branches_id = id;
3267                 id += 1;
3268                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3269         }
3270
3271         if (pt->synth_opts.callchain)
3272                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3273         if (pt->synth_opts.last_branch) {
3274                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3275                 /*
3276                  * We don't use the hardware index, but the sample generation
3277                  * code uses the new format branch_stack with this field,
3278                  * so the event attributes must indicate that it's present.
3279                  */
3280                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3281         }
3282
3283         if (pt->synth_opts.instructions) {
3284                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3285                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3286                         attr.sample_period =
3287                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3288                 else
3289                         attr.sample_period = pt->synth_opts.period;
3290                 err = intel_pt_synth_event(session, "instructions", &attr, id);
3291                 if (err)
3292                         return err;
3293                 pt->sample_instructions = true;
3294                 pt->instructions_sample_type = attr.sample_type;
3295                 pt->instructions_id = id;
3296                 id += 1;
3297         }
3298
3299         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3300         attr.sample_period = 1;
3301
3302         if (pt->synth_opts.transactions) {
3303                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3304                 err = intel_pt_synth_event(session, "transactions", &attr, id);
3305                 if (err)
3306                         return err;
3307                 pt->sample_transactions = true;
3308                 pt->transactions_sample_type = attr.sample_type;
3309                 pt->transactions_id = id;
3310                 intel_pt_set_event_name(evlist, id, "transactions");
3311                 id += 1;
3312         }
3313
3314         attr.type = PERF_TYPE_SYNTH;
3315         attr.sample_type |= PERF_SAMPLE_RAW;
3316
3317         if (pt->synth_opts.ptwrites) {
3318                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3319                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3320                 if (err)
3321                         return err;
3322                 pt->sample_ptwrites = true;
3323                 pt->ptwrites_sample_type = attr.sample_type;
3324                 pt->ptwrites_id = id;
3325                 intel_pt_set_event_name(evlist, id, "ptwrite");
3326                 id += 1;
3327         }
3328
3329         if (pt->synth_opts.pwr_events) {
3330                 pt->sample_pwr_events = true;
3331                 pt->pwr_events_sample_type = attr.sample_type;
3332
3333                 attr.config = PERF_SYNTH_INTEL_CBR;
3334                 err = intel_pt_synth_event(session, "cbr", &attr, id);
3335                 if (err)
3336                         return err;
3337                 pt->cbr_id = id;
3338                 intel_pt_set_event_name(evlist, id, "cbr");
3339                 id += 1;
3340
3341                 attr.config = PERF_SYNTH_INTEL_PSB;
3342                 err = intel_pt_synth_event(session, "psb", &attr, id);
3343                 if (err)
3344                         return err;
3345                 pt->psb_id = id;
3346                 intel_pt_set_event_name(evlist, id, "psb");
3347                 id += 1;
3348         }
3349
3350         if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3351                 attr.config = PERF_SYNTH_INTEL_MWAIT;
3352                 err = intel_pt_synth_event(session, "mwait", &attr, id);
3353                 if (err)
3354                         return err;
3355                 pt->mwait_id = id;
3356                 intel_pt_set_event_name(evlist, id, "mwait");
3357                 id += 1;
3358
3359                 attr.config = PERF_SYNTH_INTEL_PWRE;
3360                 err = intel_pt_synth_event(session, "pwre", &attr, id);
3361                 if (err)
3362                         return err;
3363                 pt->pwre_id = id;
3364                 intel_pt_set_event_name(evlist, id, "pwre");
3365                 id += 1;
3366
3367                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3368                 err = intel_pt_synth_event(session, "exstop", &attr, id);
3369                 if (err)
3370                         return err;
3371                 pt->exstop_id = id;
3372                 intel_pt_set_event_name(evlist, id, "exstop");
3373                 id += 1;
3374
3375                 attr.config = PERF_SYNTH_INTEL_PWRX;
3376                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3377                 if (err)
3378                         return err;
3379                 pt->pwrx_id = id;
3380                 intel_pt_set_event_name(evlist, id, "pwrx");
3381                 id += 1;
3382         }
3383
3384         return 0;
3385 }
3386
3387 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3388 {
3389         struct evsel *evsel;
3390
3391         if (!pt->synth_opts.other_events)
3392                 return;
3393
3394         evlist__for_each_entry(pt->session->evlist, evsel) {
3395                 if (evsel->core.attr.aux_output && evsel->core.id) {
3396                         pt->sample_pebs = true;
3397                         pt->pebs_evsel = evsel;
3398                         return;
3399                 }
3400         }
3401 }
3402
3403 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3404 {
3405         struct evsel *evsel;
3406
3407         evlist__for_each_entry_reverse(evlist, evsel) {
3408                 const char *name = evsel__name(evsel);
3409
3410                 if (!strcmp(name, "sched:sched_switch"))
3411                         return evsel;
3412         }
3413
3414         return NULL;
3415 }
3416
3417 static bool intel_pt_find_switch(struct evlist *evlist)
3418 {
3419         struct evsel *evsel;
3420
3421         evlist__for_each_entry(evlist, evsel) {
3422                 if (evsel->core.attr.context_switch)
3423                         return true;
3424         }
3425
3426         return false;
3427 }
3428
3429 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3430 {
3431         struct intel_pt *pt = data;
3432
3433         if (!strcmp(var, "intel-pt.mispred-all"))
3434                 pt->mispred_all = perf_config_bool(var, value);
3435
3436         if (!strcmp(var, "intel-pt.max-loops"))
3437                 perf_config_int(&pt->max_loops, var, value);
3438
3439         return 0;
3440 }
3441
3442 /* Find least TSC which converts to ns or later */
3443 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3444 {
3445         u64 tsc, tm;
3446
3447         tsc = perf_time_to_tsc(ns, &pt->tc);
3448
3449         while (1) {
3450                 tm = tsc_to_perf_time(tsc, &pt->tc);
3451                 if (tm < ns)
3452                         break;
3453                 tsc -= 1;
3454         }
3455
3456         while (tm < ns)
3457                 tm = tsc_to_perf_time(++tsc, &pt->tc);
3458
3459         return tsc;
3460 }
3461
3462 /* Find greatest TSC which converts to ns or earlier */
3463 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3464 {
3465         u64 tsc, tm;
3466
3467         tsc = perf_time_to_tsc(ns, &pt->tc);
3468
3469         while (1) {
3470                 tm = tsc_to_perf_time(tsc, &pt->tc);
3471                 if (tm > ns)
3472                         break;
3473                 tsc += 1;
3474         }
3475
3476         while (tm > ns)
3477                 tm = tsc_to_perf_time(--tsc, &pt->tc);
3478
3479         return tsc;
3480 }
3481
3482 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3483                                       struct itrace_synth_opts *opts)
3484 {
3485         struct perf_time_interval *p = opts->ptime_range;
3486         int n = opts->range_num;
3487         int i;
3488
3489         if (!n || !p || pt->timeless_decoding)
3490                 return 0;
3491
3492         pt->time_ranges = calloc(n, sizeof(struct range));
3493         if (!pt->time_ranges)
3494                 return -ENOMEM;
3495
3496         pt->range_cnt = n;
3497
3498         intel_pt_log("%s: %u range(s)\n", __func__, n);
3499
3500         for (i = 0; i < n; i++) {
3501                 struct range *r = &pt->time_ranges[i];
3502                 u64 ts = p[i].start;
3503                 u64 te = p[i].end;
3504
3505                 /*
3506                  * Take care to ensure the TSC range matches the perf-time range
3507                  * when converted back to perf-time.
3508                  */
3509                 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3510                 r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3511
3512                 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3513                              i, ts, te);
3514                 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3515                              i, r->start, r->end);
3516         }
3517
3518         return 0;
3519 }
3520
3521 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3522 {
3523         struct intel_pt_vmcs_info *vmcs_info;
3524         u64 tsc_offset, vmcs;
3525         char *p = *args;
3526
3527         errno = 0;
3528
3529         p = skip_spaces(p);
3530         if (!*p)
3531                 return 1;
3532
3533         tsc_offset = strtoull(p, &p, 0);
3534         if (errno)
3535                 return -errno;
3536         p = skip_spaces(p);
3537         if (*p != ':') {
3538                 pt->dflt_tsc_offset = tsc_offset;
3539                 *args = p;
3540                 return 0;
3541         }
3542         while (1) {
3543                 vmcs = strtoull(p, &p, 0);
3544                 if (errno)
3545                         return -errno;
3546                 if (!vmcs)
3547                         return -EINVAL;
3548                 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
3549                 if (!vmcs_info)
3550                         return -ENOMEM;
3551                 p = skip_spaces(p);
3552                 if (*p != ',')
3553                         break;
3554                 p += 1;
3555         }
3556         *args = p;
3557         return 0;
3558 }
3559
3560 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
3561 {
3562         char *args = pt->synth_opts.vm_tm_corr_args;
3563         int ret;
3564
3565         if (!args)
3566                 return 0;
3567
3568         do {
3569                 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
3570         } while (!ret);
3571
3572         if (ret < 0) {
3573                 pr_err("Failed to parse VM Time Correlation options\n");
3574                 return ret;
3575         }
3576
3577         return 0;
3578 }
3579
3580 static const char * const intel_pt_info_fmts[] = {
3581         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
3582         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
3583         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
3584         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
3585         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
3586         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
3587         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
3588         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
3589         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
3590         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
3591         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
3592         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
3593         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
3594         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
3595         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
3596         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
3597 };
3598
3599 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3600 {
3601         int i;
3602
3603         if (!dump_trace)
3604                 return;
3605
3606         for (i = start; i <= finish; i++)
3607                 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3608 }
3609
3610 static void intel_pt_print_info_str(const char *name, const char *str)
3611 {
3612         if (!dump_trace)
3613                 return;
3614
3615         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3616 }
3617
3618 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3619 {
3620         return auxtrace_info->header.size >=
3621                 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3622 }
3623
3624 int intel_pt_process_auxtrace_info(union perf_event *event,
3625                                    struct perf_session *session)
3626 {
3627         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3628         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3629         struct intel_pt *pt;
3630         void *info_end;
3631         __u64 *info;
3632         int err;
3633
3634         if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3635                                         min_sz)
3636                 return -EINVAL;
3637
3638         pt = zalloc(sizeof(struct intel_pt));
3639         if (!pt)
3640                 return -ENOMEM;
3641
3642         pt->vmcs_info = RB_ROOT;
3643
3644         addr_filters__init(&pt->filts);
3645
3646         err = perf_config(intel_pt_perf_config, pt);
3647         if (err)
3648                 goto err_free;
3649
3650         err = auxtrace_queues__init(&pt->queues);
3651         if (err)
3652                 goto err_free;
3653
3654         intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3655
3656         if (session->itrace_synth_opts->set) {
3657                 pt->synth_opts = *session->itrace_synth_opts;
3658         } else {
3659                 struct itrace_synth_opts *opts = session->itrace_synth_opts;
3660
3661                 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
3662                 if (!opts->default_no_sample && !opts->inject) {
3663                         pt->synth_opts.branches = false;
3664                         pt->synth_opts.callchain = true;
3665                         pt->synth_opts.add_callchain = true;
3666                 }
3667                 pt->synth_opts.thread_stack = opts->thread_stack;
3668         }
3669
3670         pt->session = session;
3671         pt->machine = &session->machines.host; /* No kvm support */
3672         pt->auxtrace_type = auxtrace_info->type;
3673         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3674         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3675         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3676         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3677         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3678         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3679         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3680         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3681         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3682         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3683         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3684                             INTEL_PT_PER_CPU_MMAPS);
3685
3686         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3687                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3688                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3689                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3690                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3691                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3692                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3693                                     INTEL_PT_CYC_BIT);
3694         }
3695
3696         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3697                 pt->max_non_turbo_ratio =
3698                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3699                 intel_pt_print_info(&auxtrace_info->priv[0],
3700                                     INTEL_PT_MAX_NONTURBO_RATIO,
3701                                     INTEL_PT_MAX_NONTURBO_RATIO);
3702         }
3703
3704         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3705         info_end = (void *)info + auxtrace_info->header.size;
3706
3707         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3708                 size_t len;
3709
3710                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3711                 intel_pt_print_info(&auxtrace_info->priv[0],
3712                                     INTEL_PT_FILTER_STR_LEN,
3713                                     INTEL_PT_FILTER_STR_LEN);
3714                 if (len) {
3715                         const char *filter = (const char *)info;
3716
3717                         len = roundup(len + 1, 8);
3718                         info += len >> 3;
3719                         if ((void *)info > info_end) {
3720                                 pr_err("%s: bad filter string length\n", __func__);
3721                                 err = -EINVAL;
3722                                 goto err_free_queues;
3723                         }
3724                         pt->filter = memdup(filter, len);
3725                         if (!pt->filter) {
3726                                 err = -ENOMEM;
3727                                 goto err_free_queues;
3728                         }
3729                         if (session->header.needs_swap)
3730                                 mem_bswap_64(pt->filter, len);
3731                         if (pt->filter[len - 1]) {
3732                                 pr_err("%s: filter string not null terminated\n", __func__);
3733                                 err = -EINVAL;
3734                                 goto err_free_queues;
3735                         }
3736                         err = addr_filters__parse_bare_filter(&pt->filts,
3737                                                               filter);
3738                         if (err)
3739                                 goto err_free_queues;
3740                 }
3741                 intel_pt_print_info_str("Filter string", pt->filter);
3742         }
3743
3744         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3745         if (pt->timeless_decoding && !pt->tc.time_mult)
3746                 pt->tc.time_mult = 1;
3747         pt->have_tsc = intel_pt_have_tsc(pt);
3748         pt->sampling_mode = intel_pt_sampling_mode(pt);
3749         pt->est_tsc = !pt->timeless_decoding;
3750
3751         if (pt->synth_opts.vm_time_correlation) {
3752                 if (pt->timeless_decoding) {
3753                         pr_err("Intel PT has no time information for VM Time Correlation\n");
3754                         err = -EINVAL;
3755                         goto err_free_queues;
3756                 }
3757                 if (session->itrace_synth_opts->ptime_range) {
3758                         pr_err("Time ranges cannot be specified with VM Time Correlation\n");
3759                         err = -EINVAL;
3760                         goto err_free_queues;
3761                 }
3762                 /* Currently TSC Offset is calculated using MTC packets */
3763                 if (!intel_pt_have_mtc(pt)) {
3764                         pr_err("MTC packets must have been enabled for VM Time Correlation\n");
3765                         err = -EINVAL;
3766                         goto err_free_queues;
3767                 }
3768                 err = intel_pt_parse_vm_tm_corr_args(pt);
3769                 if (err)
3770                         goto err_free_queues;
3771         }
3772
3773         pt->unknown_thread = thread__new(999999999, 999999999);
3774         if (!pt->unknown_thread) {
3775                 err = -ENOMEM;
3776                 goto err_free_queues;
3777         }
3778
3779         /*
3780          * Since this thread will not be kept in any rbtree not in a
3781          * list, initialize its list node so that at thread__put() the
3782          * current thread lifetime assumption is kept and we don't segfault
3783          * at list_del_init().
3784          */
3785         INIT_LIST_HEAD(&pt->unknown_thread->node);
3786
3787         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3788         if (err)
3789                 goto err_delete_thread;
3790         if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3791                 err = -ENOMEM;
3792                 goto err_delete_thread;
3793         }
3794
3795         pt->auxtrace.process_event = intel_pt_process_event;
3796         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3797         pt->auxtrace.queue_data = intel_pt_queue_data;
3798         pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3799         pt->auxtrace.flush_events = intel_pt_flush;
3800         pt->auxtrace.free_events = intel_pt_free_events;
3801         pt->auxtrace.free = intel_pt_free;
3802         pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3803         session->auxtrace = &pt->auxtrace;
3804
3805         if (dump_trace)
3806                 return 0;
3807
3808         if (pt->have_sched_switch == 1) {
3809                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3810                 if (!pt->switch_evsel) {
3811                         pr_err("%s: missing sched_switch event\n", __func__);
3812                         err = -EINVAL;
3813                         goto err_delete_thread;
3814                 }
3815         } else if (pt->have_sched_switch == 2 &&
3816                    !intel_pt_find_switch(session->evlist)) {
3817                 pr_err("%s: missing context_switch attribute flag\n", __func__);
3818                 err = -EINVAL;
3819                 goto err_delete_thread;
3820         }
3821
3822         if (pt->synth_opts.log)
3823                 intel_pt_log_enable();
3824
3825         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3826         if (pt->tc.time_mult) {
3827                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3828
3829                 if (!pt->max_non_turbo_ratio)
3830                         pt->max_non_turbo_ratio =
3831                                         (tsc_freq + 50000000) / 100000000;
3832                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3833                 intel_pt_log("Maximum non-turbo ratio %u\n",
3834                              pt->max_non_turbo_ratio);
3835                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3836         }
3837
3838         err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3839         if (err)
3840                 goto err_delete_thread;
3841
3842         if (pt->synth_opts.calls)
3843                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3844                                        PERF_IP_FLAG_TRACE_END;
3845         if (pt->synth_opts.returns)
3846                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
3847                                        PERF_IP_FLAG_TRACE_BEGIN;
3848
3849         if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3850             !symbol_conf.use_callchain) {
3851                 symbol_conf.use_callchain = true;
3852                 if (callchain_register_param(&callchain_param) < 0) {
3853                         symbol_conf.use_callchain = false;
3854                         pt->synth_opts.callchain = false;
3855                         pt->synth_opts.add_callchain = false;
3856                 }
3857         }
3858
3859         if (pt->synth_opts.add_callchain) {
3860                 err = intel_pt_callchain_init(pt);
3861                 if (err)
3862                         goto err_delete_thread;
3863         }
3864
3865         if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3866                 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3867                 pt->br_stack_sz_plus = pt->br_stack_sz;
3868         }
3869
3870         if (pt->synth_opts.add_last_branch) {
3871                 err = intel_pt_br_stack_init(pt);
3872                 if (err)
3873                         goto err_delete_thread;
3874                 /*
3875                  * Additional branch stack size to cater for tracing from the
3876                  * actual sample ip to where the sample time is recorded.
3877                  * Measured at about 200 branches, but generously set to 1024.
3878                  * If kernel space is not being traced, then add just 1 for the
3879                  * branch to kernel space.
3880                  */
3881                 if (intel_pt_tracing_kernel(pt))
3882                         pt->br_stack_sz_plus += 1024;
3883                 else
3884                         pt->br_stack_sz_plus += 1;
3885         }
3886
3887         pt->use_thread_stack = pt->synth_opts.callchain ||
3888                                pt->synth_opts.add_callchain ||
3889                                pt->synth_opts.thread_stack ||
3890                                pt->synth_opts.last_branch ||
3891                                pt->synth_opts.add_last_branch;
3892
3893         pt->callstack = pt->synth_opts.callchain ||
3894                         pt->synth_opts.add_callchain ||
3895                         pt->synth_opts.thread_stack;
3896
3897         err = intel_pt_synth_events(pt, session);
3898         if (err)
3899                 goto err_delete_thread;
3900
3901         intel_pt_setup_pebs_events(pt);
3902
3903         if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3904                 err = auxtrace_queue_data(session, true, true);
3905         else
3906                 err = auxtrace_queues__process_index(&pt->queues, session);
3907         if (err)
3908                 goto err_delete_thread;
3909
3910         if (pt->queues.populated)
3911                 pt->data_queued = true;
3912
3913         if (pt->timeless_decoding)
3914                 pr_debug2("Intel PT decoding without timestamps\n");
3915
3916         return 0;
3917
3918 err_delete_thread:
3919         zfree(&pt->chain);
3920         thread__zput(pt->unknown_thread);
3921 err_free_queues:
3922         intel_pt_log_disable();
3923         auxtrace_queues__free(&pt->queues);
3924         session->auxtrace = NULL;
3925 err_free:
3926         addr_filters__exit(&pt->filts);
3927         zfree(&pt->filter);
3928         zfree(&pt->time_ranges);
3929         free(pt);
3930         return err;
3931 }