Merge tag 'soundwire-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[linux-2.6-microblaze.git] / tools / perf / util / intel-pt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46
47 #define MAX_TIMESTAMP (~0ULL)
48
49 struct range {
50         u64 start;
51         u64 end;
52 };
53
54 struct intel_pt {
55         struct auxtrace auxtrace;
56         struct auxtrace_queues queues;
57         struct auxtrace_heap heap;
58         u32 auxtrace_type;
59         struct perf_session *session;
60         struct machine *machine;
61         struct evsel *switch_evsel;
62         struct thread *unknown_thread;
63         bool timeless_decoding;
64         bool sampling_mode;
65         bool snapshot_mode;
66         bool per_cpu_mmaps;
67         bool have_tsc;
68         bool data_queued;
69         bool est_tsc;
70         bool sync_switch;
71         bool mispred_all;
72         bool use_thread_stack;
73         bool callstack;
74         unsigned int br_stack_sz;
75         unsigned int br_stack_sz_plus;
76         int have_sched_switch;
77         u32 pmu_type;
78         u64 kernel_start;
79         u64 switch_ip;
80         u64 ptss_ip;
81
82         struct perf_tsc_conversion tc;
83         bool cap_user_time_zero;
84
85         struct itrace_synth_opts synth_opts;
86
87         bool sample_instructions;
88         u64 instructions_sample_type;
89         u64 instructions_id;
90
91         bool sample_branches;
92         u32 branches_filter;
93         u64 branches_sample_type;
94         u64 branches_id;
95
96         bool sample_transactions;
97         u64 transactions_sample_type;
98         u64 transactions_id;
99
100         bool sample_ptwrites;
101         u64 ptwrites_sample_type;
102         u64 ptwrites_id;
103
104         bool sample_pwr_events;
105         u64 pwr_events_sample_type;
106         u64 mwait_id;
107         u64 pwre_id;
108         u64 exstop_id;
109         u64 pwrx_id;
110         u64 cbr_id;
111
112         bool sample_pebs;
113         struct evsel *pebs_evsel;
114
115         u64 tsc_bit;
116         u64 mtc_bit;
117         u64 mtc_freq_bits;
118         u32 tsc_ctc_ratio_n;
119         u32 tsc_ctc_ratio_d;
120         u64 cyc_bit;
121         u64 noretcomp_bit;
122         unsigned max_non_turbo_ratio;
123         unsigned cbr2khz;
124
125         unsigned long num_events;
126
127         char *filter;
128         struct addr_filters filts;
129
130         struct range *time_ranges;
131         unsigned int range_cnt;
132
133         struct ip_callchain *chain;
134         struct branch_stack *br_stack;
135 };
136
137 enum switch_state {
138         INTEL_PT_SS_NOT_TRACING,
139         INTEL_PT_SS_UNKNOWN,
140         INTEL_PT_SS_TRACING,
141         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
142         INTEL_PT_SS_EXPECTING_SWITCH_IP,
143 };
144
145 struct intel_pt_queue {
146         struct intel_pt *pt;
147         unsigned int queue_nr;
148         struct auxtrace_buffer *buffer;
149         struct auxtrace_buffer *old_buffer;
150         void *decoder;
151         const struct intel_pt_state *state;
152         struct ip_callchain *chain;
153         struct branch_stack *last_branch;
154         union perf_event *event_buf;
155         bool on_heap;
156         bool stop;
157         bool step_through_buffers;
158         bool use_buffer_pid_tid;
159         bool sync_switch;
160         pid_t pid, tid;
161         int cpu;
162         int switch_state;
163         pid_t next_tid;
164         struct thread *thread;
165         bool exclude_kernel;
166         bool have_sample;
167         u64 time;
168         u64 timestamp;
169         u64 sel_timestamp;
170         bool sel_start;
171         unsigned int sel_idx;
172         u32 flags;
173         u16 insn_len;
174         u64 last_insn_cnt;
175         u64 ipc_insn_cnt;
176         u64 ipc_cyc_cnt;
177         u64 last_in_insn_cnt;
178         u64 last_in_cyc_cnt;
179         u64 last_br_insn_cnt;
180         u64 last_br_cyc_cnt;
181         unsigned int cbr_seen;
182         char insn[INTEL_PT_INSN_BUF_SZ];
183 };
184
185 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
186                           unsigned char *buf, size_t len)
187 {
188         struct intel_pt_pkt packet;
189         size_t pos = 0;
190         int ret, pkt_len, i;
191         char desc[INTEL_PT_PKT_DESC_MAX];
192         const char *color = PERF_COLOR_BLUE;
193         enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
194
195         color_fprintf(stdout, color,
196                       ". ... Intel Processor Trace data: size %zu bytes\n",
197                       len);
198
199         while (len) {
200                 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
201                 if (ret > 0)
202                         pkt_len = ret;
203                 else
204                         pkt_len = 1;
205                 printf(".");
206                 color_fprintf(stdout, color, "  %08x: ", pos);
207                 for (i = 0; i < pkt_len; i++)
208                         color_fprintf(stdout, color, " %02x", buf[i]);
209                 for (; i < 16; i++)
210                         color_fprintf(stdout, color, "   ");
211                 if (ret > 0) {
212                         ret = intel_pt_pkt_desc(&packet, desc,
213                                                 INTEL_PT_PKT_DESC_MAX);
214                         if (ret > 0)
215                                 color_fprintf(stdout, color, " %s\n", desc);
216                 } else {
217                         color_fprintf(stdout, color, " Bad packet!\n");
218                 }
219                 pos += pkt_len;
220                 buf += pkt_len;
221                 len -= pkt_len;
222         }
223 }
224
225 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
226                                 size_t len)
227 {
228         printf(".\n");
229         intel_pt_dump(pt, buf, len);
230 }
231
232 static void intel_pt_log_event(union perf_event *event)
233 {
234         FILE *f = intel_pt_log_fp();
235
236         if (!intel_pt_enable_logging || !f)
237                 return;
238
239         perf_event__fprintf(event, NULL, f);
240 }
241
242 static void intel_pt_dump_sample(struct perf_session *session,
243                                  struct perf_sample *sample)
244 {
245         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
246                                            auxtrace);
247
248         printf("\n");
249         intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
250 }
251
252 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
253 {
254         struct perf_time_interval *range = pt->synth_opts.ptime_range;
255         int n = pt->synth_opts.range_num;
256
257         if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
258                 return true;
259
260         if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
261                 return false;
262
263         /* perf_time__ranges_skip_sample does not work if time is zero */
264         if (!tm)
265                 tm = 1;
266
267         return !n || !perf_time__ranges_skip_sample(range, n, tm);
268 }
269
270 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
271                                    struct auxtrace_buffer *b)
272 {
273         bool consecutive = false;
274         void *start;
275
276         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
277                                       pt->have_tsc, &consecutive);
278         if (!start)
279                 return -EINVAL;
280         b->use_size = b->data + b->size - start;
281         b->use_data = start;
282         if (b->use_size && consecutive)
283                 b->consecutive = true;
284         return 0;
285 }
286
287 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
288                                struct auxtrace_buffer *buffer,
289                                struct auxtrace_buffer *old_buffer,
290                                struct intel_pt_buffer *b)
291 {
292         bool might_overlap;
293
294         if (!buffer->data) {
295                 int fd = perf_data__fd(ptq->pt->session->data);
296
297                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
298                 if (!buffer->data)
299                         return -ENOMEM;
300         }
301
302         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
303         if (might_overlap && !buffer->consecutive && old_buffer &&
304             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
305                 return -ENOMEM;
306
307         if (buffer->use_data) {
308                 b->len = buffer->use_size;
309                 b->buf = buffer->use_data;
310         } else {
311                 b->len = buffer->size;
312                 b->buf = buffer->data;
313         }
314         b->ref_timestamp = buffer->reference;
315
316         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
317                 b->consecutive = false;
318                 b->trace_nr = buffer->buffer_nr + 1;
319         } else {
320                 b->consecutive = true;
321         }
322
323         return 0;
324 }
325
326 /* Do not drop buffers with references - refer intel_pt_get_trace() */
327 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
328                                            struct auxtrace_buffer *buffer)
329 {
330         if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
331                 return;
332
333         auxtrace_buffer__drop_data(buffer);
334 }
335
336 /* Must be serialized with respect to intel_pt_get_trace() */
337 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
338                               void *cb_data)
339 {
340         struct intel_pt_queue *ptq = data;
341         struct auxtrace_buffer *buffer = ptq->buffer;
342         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
343         struct auxtrace_queue *queue;
344         int err = 0;
345
346         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
347
348         while (1) {
349                 struct intel_pt_buffer b = { .len = 0 };
350
351                 buffer = auxtrace_buffer__next(queue, buffer);
352                 if (!buffer)
353                         break;
354
355                 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
356                 if (err)
357                         break;
358
359                 if (b.len) {
360                         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
361                         old_buffer = buffer;
362                 } else {
363                         intel_pt_lookahead_drop_buffer(ptq, buffer);
364                         continue;
365                 }
366
367                 err = cb(&b, cb_data);
368                 if (err)
369                         break;
370         }
371
372         if (buffer != old_buffer)
373                 intel_pt_lookahead_drop_buffer(ptq, buffer);
374         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
375
376         return err;
377 }
378
379 /*
380  * This function assumes data is processed sequentially only.
381  * Must be serialized with respect to intel_pt_lookahead()
382  */
383 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
384 {
385         struct intel_pt_queue *ptq = data;
386         struct auxtrace_buffer *buffer = ptq->buffer;
387         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
388         struct auxtrace_queue *queue;
389         int err;
390
391         if (ptq->stop) {
392                 b->len = 0;
393                 return 0;
394         }
395
396         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
397
398         buffer = auxtrace_buffer__next(queue, buffer);
399         if (!buffer) {
400                 if (old_buffer)
401                         auxtrace_buffer__drop_data(old_buffer);
402                 b->len = 0;
403                 return 0;
404         }
405
406         ptq->buffer = buffer;
407
408         err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
409         if (err)
410                 return err;
411
412         if (ptq->step_through_buffers)
413                 ptq->stop = true;
414
415         if (b->len) {
416                 if (old_buffer)
417                         auxtrace_buffer__drop_data(old_buffer);
418                 ptq->old_buffer = buffer;
419         } else {
420                 auxtrace_buffer__drop_data(buffer);
421                 return intel_pt_get_trace(b, data);
422         }
423
424         return 0;
425 }
426
427 struct intel_pt_cache_entry {
428         struct auxtrace_cache_entry     entry;
429         u64                             insn_cnt;
430         u64                             byte_cnt;
431         enum intel_pt_insn_op           op;
432         enum intel_pt_insn_branch       branch;
433         int                             length;
434         int32_t                         rel;
435         char                            insn[INTEL_PT_INSN_BUF_SZ];
436 };
437
438 static int intel_pt_config_div(const char *var, const char *value, void *data)
439 {
440         int *d = data;
441         long val;
442
443         if (!strcmp(var, "intel-pt.cache-divisor")) {
444                 val = strtol(value, NULL, 0);
445                 if (val > 0 && val <= INT_MAX)
446                         *d = val;
447         }
448
449         return 0;
450 }
451
452 static int intel_pt_cache_divisor(void)
453 {
454         static int d;
455
456         if (d)
457                 return d;
458
459         perf_config(intel_pt_config_div, &d);
460
461         if (!d)
462                 d = 64;
463
464         return d;
465 }
466
467 static unsigned int intel_pt_cache_size(struct dso *dso,
468                                         struct machine *machine)
469 {
470         off_t size;
471
472         size = dso__data_size(dso, machine);
473         size /= intel_pt_cache_divisor();
474         if (size < 1000)
475                 return 10;
476         if (size > (1 << 21))
477                 return 21;
478         return 32 - __builtin_clz(size);
479 }
480
481 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
482                                              struct machine *machine)
483 {
484         struct auxtrace_cache *c;
485         unsigned int bits;
486
487         if (dso->auxtrace_cache)
488                 return dso->auxtrace_cache;
489
490         bits = intel_pt_cache_size(dso, machine);
491
492         /* Ignoring cache creation failure */
493         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
494
495         dso->auxtrace_cache = c;
496
497         return c;
498 }
499
500 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
501                               u64 offset, u64 insn_cnt, u64 byte_cnt,
502                               struct intel_pt_insn *intel_pt_insn)
503 {
504         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
505         struct intel_pt_cache_entry *e;
506         int err;
507
508         if (!c)
509                 return -ENOMEM;
510
511         e = auxtrace_cache__alloc_entry(c);
512         if (!e)
513                 return -ENOMEM;
514
515         e->insn_cnt = insn_cnt;
516         e->byte_cnt = byte_cnt;
517         e->op = intel_pt_insn->op;
518         e->branch = intel_pt_insn->branch;
519         e->length = intel_pt_insn->length;
520         e->rel = intel_pt_insn->rel;
521         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
522
523         err = auxtrace_cache__add(c, offset, &e->entry);
524         if (err)
525                 auxtrace_cache__free_entry(c, e);
526
527         return err;
528 }
529
530 static struct intel_pt_cache_entry *
531 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
532 {
533         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
534
535         if (!c)
536                 return NULL;
537
538         return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
539 }
540
541 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
542                                       u64 offset)
543 {
544         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
545
546         if (!c)
547                 return;
548
549         auxtrace_cache__remove(dso->auxtrace_cache, offset);
550 }
551
552 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
553 {
554         return ip >= pt->kernel_start ?
555                PERF_RECORD_MISC_KERNEL :
556                PERF_RECORD_MISC_USER;
557 }
558
559 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
560                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
561                                    uint64_t to_ip, uint64_t max_insn_cnt,
562                                    void *data)
563 {
564         struct intel_pt_queue *ptq = data;
565         struct machine *machine = ptq->pt->machine;
566         struct thread *thread;
567         struct addr_location al;
568         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
569         ssize_t len;
570         int x86_64;
571         u8 cpumode;
572         u64 offset, start_offset, start_ip;
573         u64 insn_cnt = 0;
574         bool one_map = true;
575
576         intel_pt_insn->length = 0;
577
578         if (to_ip && *ip == to_ip)
579                 goto out_no_cache;
580
581         cpumode = intel_pt_cpumode(ptq->pt, *ip);
582
583         thread = ptq->thread;
584         if (!thread) {
585                 if (cpumode != PERF_RECORD_MISC_KERNEL)
586                         return -EINVAL;
587                 thread = ptq->pt->unknown_thread;
588         }
589
590         while (1) {
591                 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
592                         return -EINVAL;
593
594                 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
595                     dso__data_status_seen(al.map->dso,
596                                           DSO_DATA_STATUS_SEEN_ITRACE))
597                         return -ENOENT;
598
599                 offset = al.map->map_ip(al.map, *ip);
600
601                 if (!to_ip && one_map) {
602                         struct intel_pt_cache_entry *e;
603
604                         e = intel_pt_cache_lookup(al.map->dso, machine, offset);
605                         if (e &&
606                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
607                                 *insn_cnt_ptr = e->insn_cnt;
608                                 *ip += e->byte_cnt;
609                                 intel_pt_insn->op = e->op;
610                                 intel_pt_insn->branch = e->branch;
611                                 intel_pt_insn->length = e->length;
612                                 intel_pt_insn->rel = e->rel;
613                                 memcpy(intel_pt_insn->buf, e->insn,
614                                        INTEL_PT_INSN_BUF_SZ);
615                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
616                                 return 0;
617                         }
618                 }
619
620                 start_offset = offset;
621                 start_ip = *ip;
622
623                 /* Load maps to ensure dso->is_64_bit has been updated */
624                 map__load(al.map);
625
626                 x86_64 = al.map->dso->is_64_bit;
627
628                 while (1) {
629                         len = dso__data_read_offset(al.map->dso, machine,
630                                                     offset, buf,
631                                                     INTEL_PT_INSN_BUF_SZ);
632                         if (len <= 0)
633                                 return -EINVAL;
634
635                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
636                                 return -EINVAL;
637
638                         intel_pt_log_insn(intel_pt_insn, *ip);
639
640                         insn_cnt += 1;
641
642                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
643                                 goto out;
644
645                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
646                                 goto out_no_cache;
647
648                         *ip += intel_pt_insn->length;
649
650                         if (to_ip && *ip == to_ip)
651                                 goto out_no_cache;
652
653                         if (*ip >= al.map->end)
654                                 break;
655
656                         offset += intel_pt_insn->length;
657                 }
658                 one_map = false;
659         }
660 out:
661         *insn_cnt_ptr = insn_cnt;
662
663         if (!one_map)
664                 goto out_no_cache;
665
666         /*
667          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
668          * entries.
669          */
670         if (to_ip) {
671                 struct intel_pt_cache_entry *e;
672
673                 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
674                 if (e)
675                         return 0;
676         }
677
678         /* Ignore cache errors */
679         intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
680                            *ip - start_ip, intel_pt_insn);
681
682         return 0;
683
684 out_no_cache:
685         *insn_cnt_ptr = insn_cnt;
686         return 0;
687 }
688
689 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
690                                   uint64_t offset, const char *filename)
691 {
692         struct addr_filter *filt;
693         bool have_filter   = false;
694         bool hit_tracestop = false;
695         bool hit_filter    = false;
696
697         list_for_each_entry(filt, &pt->filts.head, list) {
698                 if (filt->start)
699                         have_filter = true;
700
701                 if ((filename && !filt->filename) ||
702                     (!filename && filt->filename) ||
703                     (filename && strcmp(filename, filt->filename)))
704                         continue;
705
706                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
707                         continue;
708
709                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
710                              ip, offset, filename ? filename : "[kernel]",
711                              filt->start ? "filter" : "stop",
712                              filt->addr, filt->size);
713
714                 if (filt->start)
715                         hit_filter = true;
716                 else
717                         hit_tracestop = true;
718         }
719
720         if (!hit_tracestop && !hit_filter)
721                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
722                              ip, offset, filename ? filename : "[kernel]");
723
724         return hit_tracestop || (have_filter && !hit_filter);
725 }
726
727 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
728 {
729         struct intel_pt_queue *ptq = data;
730         struct thread *thread;
731         struct addr_location al;
732         u8 cpumode;
733         u64 offset;
734
735         if (ip >= ptq->pt->kernel_start)
736                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
737
738         cpumode = PERF_RECORD_MISC_USER;
739
740         thread = ptq->thread;
741         if (!thread)
742                 return -EINVAL;
743
744         if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
745                 return -EINVAL;
746
747         offset = al.map->map_ip(al.map, ip);
748
749         return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
750                                      al.map->dso->long_name);
751 }
752
753 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
754 {
755         return __intel_pt_pgd_ip(ip, data) > 0;
756 }
757
758 static bool intel_pt_get_config(struct intel_pt *pt,
759                                 struct perf_event_attr *attr, u64 *config)
760 {
761         if (attr->type == pt->pmu_type) {
762                 if (config)
763                         *config = attr->config;
764                 return true;
765         }
766
767         return false;
768 }
769
770 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
771 {
772         struct evsel *evsel;
773
774         evlist__for_each_entry(pt->session->evlist, evsel) {
775                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
776                     !evsel->core.attr.exclude_kernel)
777                         return false;
778         }
779         return true;
780 }
781
782 static bool intel_pt_return_compression(struct intel_pt *pt)
783 {
784         struct evsel *evsel;
785         u64 config;
786
787         if (!pt->noretcomp_bit)
788                 return true;
789
790         evlist__for_each_entry(pt->session->evlist, evsel) {
791                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
792                     (config & pt->noretcomp_bit))
793                         return false;
794         }
795         return true;
796 }
797
798 static bool intel_pt_branch_enable(struct intel_pt *pt)
799 {
800         struct evsel *evsel;
801         u64 config;
802
803         evlist__for_each_entry(pt->session->evlist, evsel) {
804                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
805                     (config & 1) && !(config & 0x2000))
806                         return false;
807         }
808         return true;
809 }
810
811 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
812 {
813         struct evsel *evsel;
814         unsigned int shift;
815         u64 config;
816
817         if (!pt->mtc_freq_bits)
818                 return 0;
819
820         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
821                 config >>= 1;
822
823         evlist__for_each_entry(pt->session->evlist, evsel) {
824                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
825                         return (config & pt->mtc_freq_bits) >> shift;
826         }
827         return 0;
828 }
829
830 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
831 {
832         struct evsel *evsel;
833         bool timeless_decoding = true;
834         u64 config;
835
836         if (!pt->tsc_bit || !pt->cap_user_time_zero)
837                 return true;
838
839         evlist__for_each_entry(pt->session->evlist, evsel) {
840                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
841                         return true;
842                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
843                         if (config & pt->tsc_bit)
844                                 timeless_decoding = false;
845                         else
846                                 return true;
847                 }
848         }
849         return timeless_decoding;
850 }
851
852 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
853 {
854         struct evsel *evsel;
855
856         evlist__for_each_entry(pt->session->evlist, evsel) {
857                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
858                     !evsel->core.attr.exclude_kernel)
859                         return true;
860         }
861         return false;
862 }
863
864 static bool intel_pt_have_tsc(struct intel_pt *pt)
865 {
866         struct evsel *evsel;
867         bool have_tsc = false;
868         u64 config;
869
870         if (!pt->tsc_bit)
871                 return false;
872
873         evlist__for_each_entry(pt->session->evlist, evsel) {
874                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
875                         if (config & pt->tsc_bit)
876                                 have_tsc = true;
877                         else
878                                 return false;
879                 }
880         }
881         return have_tsc;
882 }
883
884 static bool intel_pt_sampling_mode(struct intel_pt *pt)
885 {
886         struct evsel *evsel;
887
888         evlist__for_each_entry(pt->session->evlist, evsel) {
889                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
890                     evsel->core.attr.aux_sample_size)
891                         return true;
892         }
893         return false;
894 }
895
896 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
897 {
898         u64 quot, rem;
899
900         quot = ns / pt->tc.time_mult;
901         rem  = ns % pt->tc.time_mult;
902         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
903                 pt->tc.time_mult;
904 }
905
906 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
907 {
908         size_t sz = sizeof(struct ip_callchain);
909
910         /* Add 1 to callchain_sz for callchain context */
911         sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
912         return zalloc(sz);
913 }
914
915 static int intel_pt_callchain_init(struct intel_pt *pt)
916 {
917         struct evsel *evsel;
918
919         evlist__for_each_entry(pt->session->evlist, evsel) {
920                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
921                         evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
922         }
923
924         pt->chain = intel_pt_alloc_chain(pt);
925         if (!pt->chain)
926                 return -ENOMEM;
927
928         return 0;
929 }
930
931 static void intel_pt_add_callchain(struct intel_pt *pt,
932                                    struct perf_sample *sample)
933 {
934         struct thread *thread = machine__findnew_thread(pt->machine,
935                                                         sample->pid,
936                                                         sample->tid);
937
938         thread_stack__sample_late(thread, sample->cpu, pt->chain,
939                                   pt->synth_opts.callchain_sz + 1, sample->ip,
940                                   pt->kernel_start);
941
942         sample->callchain = pt->chain;
943 }
944
945 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
946 {
947         size_t sz = sizeof(struct branch_stack);
948
949         sz += entry_cnt * sizeof(struct branch_entry);
950         return zalloc(sz);
951 }
952
953 static int intel_pt_br_stack_init(struct intel_pt *pt)
954 {
955         struct evsel *evsel;
956
957         evlist__for_each_entry(pt->session->evlist, evsel) {
958                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
959                         evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
960         }
961
962         pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
963         if (!pt->br_stack)
964                 return -ENOMEM;
965
966         return 0;
967 }
968
969 static void intel_pt_add_br_stack(struct intel_pt *pt,
970                                   struct perf_sample *sample)
971 {
972         struct thread *thread = machine__findnew_thread(pt->machine,
973                                                         sample->pid,
974                                                         sample->tid);
975
976         thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
977                                      pt->br_stack_sz, sample->ip,
978                                      pt->kernel_start);
979
980         sample->branch_stack = pt->br_stack;
981 }
982
983 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
984 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
985
986 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
987                                                    unsigned int queue_nr)
988 {
989         struct intel_pt_params params = { .get_trace = 0, };
990         struct perf_env *env = pt->machine->env;
991         struct intel_pt_queue *ptq;
992
993         ptq = zalloc(sizeof(struct intel_pt_queue));
994         if (!ptq)
995                 return NULL;
996
997         if (pt->synth_opts.callchain) {
998                 ptq->chain = intel_pt_alloc_chain(pt);
999                 if (!ptq->chain)
1000                         goto out_free;
1001         }
1002
1003         if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1004                 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1005
1006                 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1007                 if (!ptq->last_branch)
1008                         goto out_free;
1009         }
1010
1011         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1012         if (!ptq->event_buf)
1013                 goto out_free;
1014
1015         ptq->pt = pt;
1016         ptq->queue_nr = queue_nr;
1017         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1018         ptq->pid = -1;
1019         ptq->tid = -1;
1020         ptq->cpu = -1;
1021         ptq->next_tid = -1;
1022
1023         params.get_trace = intel_pt_get_trace;
1024         params.walk_insn = intel_pt_walk_next_insn;
1025         params.lookahead = intel_pt_lookahead;
1026         params.data = ptq;
1027         params.return_compression = intel_pt_return_compression(pt);
1028         params.branch_enable = intel_pt_branch_enable(pt);
1029         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1030         params.mtc_period = intel_pt_mtc_period(pt);
1031         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1032         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1033         params.quick = pt->synth_opts.quick;
1034
1035         if (pt->filts.cnt > 0)
1036                 params.pgd_ip = intel_pt_pgd_ip;
1037
1038         if (pt->synth_opts.instructions) {
1039                 if (pt->synth_opts.period) {
1040                         switch (pt->synth_opts.period_type) {
1041                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1042                                 params.period_type =
1043                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
1044                                 params.period = pt->synth_opts.period;
1045                                 break;
1046                         case PERF_ITRACE_PERIOD_TICKS:
1047                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1048                                 params.period = pt->synth_opts.period;
1049                                 break;
1050                         case PERF_ITRACE_PERIOD_NANOSECS:
1051                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1052                                 params.period = intel_pt_ns_to_ticks(pt,
1053                                                         pt->synth_opts.period);
1054                                 break;
1055                         default:
1056                                 break;
1057                         }
1058                 }
1059
1060                 if (!params.period) {
1061                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1062                         params.period = 1;
1063                 }
1064         }
1065
1066         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1067                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1068
1069         ptq->decoder = intel_pt_decoder_new(&params);
1070         if (!ptq->decoder)
1071                 goto out_free;
1072
1073         return ptq;
1074
1075 out_free:
1076         zfree(&ptq->event_buf);
1077         zfree(&ptq->last_branch);
1078         zfree(&ptq->chain);
1079         free(ptq);
1080         return NULL;
1081 }
1082
1083 static void intel_pt_free_queue(void *priv)
1084 {
1085         struct intel_pt_queue *ptq = priv;
1086
1087         if (!ptq)
1088                 return;
1089         thread__zput(ptq->thread);
1090         intel_pt_decoder_free(ptq->decoder);
1091         zfree(&ptq->event_buf);
1092         zfree(&ptq->last_branch);
1093         zfree(&ptq->chain);
1094         free(ptq);
1095 }
1096
1097 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1098                                      struct auxtrace_queue *queue)
1099 {
1100         struct intel_pt_queue *ptq = queue->priv;
1101
1102         if (queue->tid == -1 || pt->have_sched_switch) {
1103                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1104                 thread__zput(ptq->thread);
1105         }
1106
1107         if (!ptq->thread && ptq->tid != -1)
1108                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1109
1110         if (ptq->thread) {
1111                 ptq->pid = ptq->thread->pid_;
1112                 if (queue->cpu == -1)
1113                         ptq->cpu = ptq->thread->cpu;
1114         }
1115 }
1116
1117 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1118 {
1119         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1120                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1121         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1122                 if (ptq->state->to_ip)
1123                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1124                                      PERF_IP_FLAG_ASYNC |
1125                                      PERF_IP_FLAG_INTERRUPT;
1126                 else
1127                         ptq->flags = PERF_IP_FLAG_BRANCH |
1128                                      PERF_IP_FLAG_TRACE_END;
1129                 ptq->insn_len = 0;
1130         } else {
1131                 if (ptq->state->from_ip)
1132                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1133                 else
1134                         ptq->flags = PERF_IP_FLAG_BRANCH |
1135                                      PERF_IP_FLAG_TRACE_BEGIN;
1136                 if (ptq->state->flags & INTEL_PT_IN_TX)
1137                         ptq->flags |= PERF_IP_FLAG_IN_TX;
1138                 ptq->insn_len = ptq->state->insn_len;
1139                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1140         }
1141
1142         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1143                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1144         if (ptq->state->type & INTEL_PT_TRACE_END)
1145                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1146 }
1147
1148 static void intel_pt_setup_time_range(struct intel_pt *pt,
1149                                       struct intel_pt_queue *ptq)
1150 {
1151         if (!pt->range_cnt)
1152                 return;
1153
1154         ptq->sel_timestamp = pt->time_ranges[0].start;
1155         ptq->sel_idx = 0;
1156
1157         if (ptq->sel_timestamp) {
1158                 ptq->sel_start = true;
1159         } else {
1160                 ptq->sel_timestamp = pt->time_ranges[0].end;
1161                 ptq->sel_start = false;
1162         }
1163 }
1164
1165 static int intel_pt_setup_queue(struct intel_pt *pt,
1166                                 struct auxtrace_queue *queue,
1167                                 unsigned int queue_nr)
1168 {
1169         struct intel_pt_queue *ptq = queue->priv;
1170
1171         if (list_empty(&queue->head))
1172                 return 0;
1173
1174         if (!ptq) {
1175                 ptq = intel_pt_alloc_queue(pt, queue_nr);
1176                 if (!ptq)
1177                         return -ENOMEM;
1178                 queue->priv = ptq;
1179
1180                 if (queue->cpu != -1)
1181                         ptq->cpu = queue->cpu;
1182                 ptq->tid = queue->tid;
1183
1184                 ptq->cbr_seen = UINT_MAX;
1185
1186                 if (pt->sampling_mode && !pt->snapshot_mode &&
1187                     pt->timeless_decoding)
1188                         ptq->step_through_buffers = true;
1189
1190                 ptq->sync_switch = pt->sync_switch;
1191
1192                 intel_pt_setup_time_range(pt, ptq);
1193         }
1194
1195         if (!ptq->on_heap &&
1196             (!ptq->sync_switch ||
1197              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1198                 const struct intel_pt_state *state;
1199                 int ret;
1200
1201                 if (pt->timeless_decoding)
1202                         return 0;
1203
1204                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1205                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1206                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1207
1208                 if (ptq->sel_start && ptq->sel_timestamp) {
1209                         ret = intel_pt_fast_forward(ptq->decoder,
1210                                                     ptq->sel_timestamp);
1211                         if (ret)
1212                                 return ret;
1213                 }
1214
1215                 while (1) {
1216                         state = intel_pt_decode(ptq->decoder);
1217                         if (state->err) {
1218                                 if (state->err == INTEL_PT_ERR_NODATA) {
1219                                         intel_pt_log("queue %u has no timestamp\n",
1220                                                      queue_nr);
1221                                         return 0;
1222                                 }
1223                                 continue;
1224                         }
1225                         if (state->timestamp)
1226                                 break;
1227                 }
1228
1229                 ptq->timestamp = state->timestamp;
1230                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1231                              queue_nr, ptq->timestamp);
1232                 ptq->state = state;
1233                 ptq->have_sample = true;
1234                 if (ptq->sel_start && ptq->sel_timestamp &&
1235                     ptq->timestamp < ptq->sel_timestamp)
1236                         ptq->have_sample = false;
1237                 intel_pt_sample_flags(ptq);
1238                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1239                 if (ret)
1240                         return ret;
1241                 ptq->on_heap = true;
1242         }
1243
1244         return 0;
1245 }
1246
1247 static int intel_pt_setup_queues(struct intel_pt *pt)
1248 {
1249         unsigned int i;
1250         int ret;
1251
1252         for (i = 0; i < pt->queues.nr_queues; i++) {
1253                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1254                 if (ret)
1255                         return ret;
1256         }
1257         return 0;
1258 }
1259
1260 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1261 {
1262         return pt->synth_opts.initial_skip &&
1263                pt->num_events++ < pt->synth_opts.initial_skip;
1264 }
1265
1266 /*
1267  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1268  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1269  * from this decoder state.
1270  */
1271 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1272 {
1273         return pt->synth_opts.initial_skip &&
1274                pt->num_events + 4 < pt->synth_opts.initial_skip;
1275 }
1276
1277 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1278                                    union perf_event *event,
1279                                    struct perf_sample *sample)
1280 {
1281         event->sample.header.type = PERF_RECORD_SAMPLE;
1282         event->sample.header.size = sizeof(struct perf_event_header);
1283
1284         sample->pid = ptq->pid;
1285         sample->tid = ptq->tid;
1286         sample->cpu = ptq->cpu;
1287         sample->insn_len = ptq->insn_len;
1288         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1289 }
1290
1291 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1292                                    struct intel_pt_queue *ptq,
1293                                    union perf_event *event,
1294                                    struct perf_sample *sample)
1295 {
1296         intel_pt_prep_a_sample(ptq, event, sample);
1297
1298         if (!pt->timeless_decoding)
1299                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1300
1301         sample->ip = ptq->state->from_ip;
1302         sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1303         sample->addr = ptq->state->to_ip;
1304         sample->period = 1;
1305         sample->flags = ptq->flags;
1306
1307         event->sample.header.misc = sample->cpumode;
1308 }
1309
1310 static int intel_pt_inject_event(union perf_event *event,
1311                                  struct perf_sample *sample, u64 type)
1312 {
1313         event->header.size = perf_event__sample_event_size(sample, type, 0);
1314         return perf_event__synthesize_sample(event, type, 0, sample);
1315 }
1316
1317 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1318                                       union perf_event *event,
1319                                       struct perf_sample *sample, u64 type)
1320 {
1321         if (!pt->synth_opts.inject)
1322                 return 0;
1323
1324         return intel_pt_inject_event(event, sample, type);
1325 }
1326
1327 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1328                                         union perf_event *event,
1329                                         struct perf_sample *sample, u64 type)
1330 {
1331         int ret;
1332
1333         ret = intel_pt_opt_inject(pt, event, sample, type);
1334         if (ret)
1335                 return ret;
1336
1337         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1338         if (ret)
1339                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1340
1341         return ret;
1342 }
1343
1344 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1345 {
1346         struct intel_pt *pt = ptq->pt;
1347         union perf_event *event = ptq->event_buf;
1348         struct perf_sample sample = { .ip = 0, };
1349         struct dummy_branch_stack {
1350                 u64                     nr;
1351                 u64                     hw_idx;
1352                 struct branch_entry     entries;
1353         } dummy_bs;
1354
1355         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1356                 return 0;
1357
1358         if (intel_pt_skip_event(pt))
1359                 return 0;
1360
1361         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1362
1363         sample.id = ptq->pt->branches_id;
1364         sample.stream_id = ptq->pt->branches_id;
1365
1366         /*
1367          * perf report cannot handle events without a branch stack when using
1368          * SORT_MODE__BRANCH so make a dummy one.
1369          */
1370         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1371                 dummy_bs = (struct dummy_branch_stack){
1372                         .nr = 1,
1373                         .hw_idx = -1ULL,
1374                         .entries = {
1375                                 .from = sample.ip,
1376                                 .to = sample.addr,
1377                         },
1378                 };
1379                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1380         }
1381
1382         sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1383         if (sample.cyc_cnt) {
1384                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1385                 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1386                 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1387         }
1388
1389         return intel_pt_deliver_synth_event(pt, event, &sample,
1390                                             pt->branches_sample_type);
1391 }
1392
1393 static void intel_pt_prep_sample(struct intel_pt *pt,
1394                                  struct intel_pt_queue *ptq,
1395                                  union perf_event *event,
1396                                  struct perf_sample *sample)
1397 {
1398         intel_pt_prep_b_sample(pt, ptq, event, sample);
1399
1400         if (pt->synth_opts.callchain) {
1401                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1402                                      pt->synth_opts.callchain_sz + 1,
1403                                      sample->ip, pt->kernel_start);
1404                 sample->callchain = ptq->chain;
1405         }
1406
1407         if (pt->synth_opts.last_branch) {
1408                 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1409                                         pt->br_stack_sz);
1410                 sample->branch_stack = ptq->last_branch;
1411         }
1412 }
1413
1414 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1415 {
1416         struct intel_pt *pt = ptq->pt;
1417         union perf_event *event = ptq->event_buf;
1418         struct perf_sample sample = { .ip = 0, };
1419
1420         if (intel_pt_skip_event(pt))
1421                 return 0;
1422
1423         intel_pt_prep_sample(pt, ptq, event, &sample);
1424
1425         sample.id = ptq->pt->instructions_id;
1426         sample.stream_id = ptq->pt->instructions_id;
1427         if (pt->synth_opts.quick)
1428                 sample.period = 1;
1429         else
1430                 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1431
1432         sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1433         if (sample.cyc_cnt) {
1434                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1435                 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1436                 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1437         }
1438
1439         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1440
1441         return intel_pt_deliver_synth_event(pt, event, &sample,
1442                                             pt->instructions_sample_type);
1443 }
1444
1445 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1446 {
1447         struct intel_pt *pt = ptq->pt;
1448         union perf_event *event = ptq->event_buf;
1449         struct perf_sample sample = { .ip = 0, };
1450
1451         if (intel_pt_skip_event(pt))
1452                 return 0;
1453
1454         intel_pt_prep_sample(pt, ptq, event, &sample);
1455
1456         sample.id = ptq->pt->transactions_id;
1457         sample.stream_id = ptq->pt->transactions_id;
1458
1459         return intel_pt_deliver_synth_event(pt, event, &sample,
1460                                             pt->transactions_sample_type);
1461 }
1462
1463 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1464                                    struct intel_pt_queue *ptq,
1465                                    union perf_event *event,
1466                                    struct perf_sample *sample)
1467 {
1468         intel_pt_prep_sample(pt, ptq, event, sample);
1469
1470         /*
1471          * Zero IP is used to mean "trace start" but that is not the case for
1472          * power or PTWRITE events with no IP, so clear the flags.
1473          */
1474         if (!sample->ip)
1475                 sample->flags = 0;
1476 }
1477
1478 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1479 {
1480         struct intel_pt *pt = ptq->pt;
1481         union perf_event *event = ptq->event_buf;
1482         struct perf_sample sample = { .ip = 0, };
1483         struct perf_synth_intel_ptwrite raw;
1484
1485         if (intel_pt_skip_event(pt))
1486                 return 0;
1487
1488         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1489
1490         sample.id = ptq->pt->ptwrites_id;
1491         sample.stream_id = ptq->pt->ptwrites_id;
1492
1493         raw.flags = 0;
1494         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1495         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1496
1497         sample.raw_size = perf_synth__raw_size(raw);
1498         sample.raw_data = perf_synth__raw_data(&raw);
1499
1500         return intel_pt_deliver_synth_event(pt, event, &sample,
1501                                             pt->ptwrites_sample_type);
1502 }
1503
1504 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1505 {
1506         struct intel_pt *pt = ptq->pt;
1507         union perf_event *event = ptq->event_buf;
1508         struct perf_sample sample = { .ip = 0, };
1509         struct perf_synth_intel_cbr raw;
1510         u32 flags;
1511
1512         if (intel_pt_skip_cbr_event(pt))
1513                 return 0;
1514
1515         ptq->cbr_seen = ptq->state->cbr;
1516
1517         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1518
1519         sample.id = ptq->pt->cbr_id;
1520         sample.stream_id = ptq->pt->cbr_id;
1521
1522         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1523         raw.flags = cpu_to_le32(flags);
1524         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1525         raw.reserved3 = 0;
1526
1527         sample.raw_size = perf_synth__raw_size(raw);
1528         sample.raw_data = perf_synth__raw_data(&raw);
1529
1530         return intel_pt_deliver_synth_event(pt, event, &sample,
1531                                             pt->pwr_events_sample_type);
1532 }
1533
1534 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1535 {
1536         struct intel_pt *pt = ptq->pt;
1537         union perf_event *event = ptq->event_buf;
1538         struct perf_sample sample = { .ip = 0, };
1539         struct perf_synth_intel_mwait raw;
1540
1541         if (intel_pt_skip_event(pt))
1542                 return 0;
1543
1544         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1545
1546         sample.id = ptq->pt->mwait_id;
1547         sample.stream_id = ptq->pt->mwait_id;
1548
1549         raw.reserved = 0;
1550         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1551
1552         sample.raw_size = perf_synth__raw_size(raw);
1553         sample.raw_data = perf_synth__raw_data(&raw);
1554
1555         return intel_pt_deliver_synth_event(pt, event, &sample,
1556                                             pt->pwr_events_sample_type);
1557 }
1558
1559 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1560 {
1561         struct intel_pt *pt = ptq->pt;
1562         union perf_event *event = ptq->event_buf;
1563         struct perf_sample sample = { .ip = 0, };
1564         struct perf_synth_intel_pwre raw;
1565
1566         if (intel_pt_skip_event(pt))
1567                 return 0;
1568
1569         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1570
1571         sample.id = ptq->pt->pwre_id;
1572         sample.stream_id = ptq->pt->pwre_id;
1573
1574         raw.reserved = 0;
1575         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1576
1577         sample.raw_size = perf_synth__raw_size(raw);
1578         sample.raw_data = perf_synth__raw_data(&raw);
1579
1580         return intel_pt_deliver_synth_event(pt, event, &sample,
1581                                             pt->pwr_events_sample_type);
1582 }
1583
1584 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1585 {
1586         struct intel_pt *pt = ptq->pt;
1587         union perf_event *event = ptq->event_buf;
1588         struct perf_sample sample = { .ip = 0, };
1589         struct perf_synth_intel_exstop raw;
1590
1591         if (intel_pt_skip_event(pt))
1592                 return 0;
1593
1594         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1595
1596         sample.id = ptq->pt->exstop_id;
1597         sample.stream_id = ptq->pt->exstop_id;
1598
1599         raw.flags = 0;
1600         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1601
1602         sample.raw_size = perf_synth__raw_size(raw);
1603         sample.raw_data = perf_synth__raw_data(&raw);
1604
1605         return intel_pt_deliver_synth_event(pt, event, &sample,
1606                                             pt->pwr_events_sample_type);
1607 }
1608
1609 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1610 {
1611         struct intel_pt *pt = ptq->pt;
1612         union perf_event *event = ptq->event_buf;
1613         struct perf_sample sample = { .ip = 0, };
1614         struct perf_synth_intel_pwrx raw;
1615
1616         if (intel_pt_skip_event(pt))
1617                 return 0;
1618
1619         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1620
1621         sample.id = ptq->pt->pwrx_id;
1622         sample.stream_id = ptq->pt->pwrx_id;
1623
1624         raw.reserved = 0;
1625         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1626
1627         sample.raw_size = perf_synth__raw_size(raw);
1628         sample.raw_data = perf_synth__raw_data(&raw);
1629
1630         return intel_pt_deliver_synth_event(pt, event, &sample,
1631                                             pt->pwr_events_sample_type);
1632 }
1633
1634 /*
1635  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1636  * intel_pt_add_gp_regs().
1637  */
1638 static const int pebs_gp_regs[] = {
1639         [PERF_REG_X86_FLAGS]    = 1,
1640         [PERF_REG_X86_IP]       = 2,
1641         [PERF_REG_X86_AX]       = 3,
1642         [PERF_REG_X86_CX]       = 4,
1643         [PERF_REG_X86_DX]       = 5,
1644         [PERF_REG_X86_BX]       = 6,
1645         [PERF_REG_X86_SP]       = 7,
1646         [PERF_REG_X86_BP]       = 8,
1647         [PERF_REG_X86_SI]       = 9,
1648         [PERF_REG_X86_DI]       = 10,
1649         [PERF_REG_X86_R8]       = 11,
1650         [PERF_REG_X86_R9]       = 12,
1651         [PERF_REG_X86_R10]      = 13,
1652         [PERF_REG_X86_R11]      = 14,
1653         [PERF_REG_X86_R12]      = 15,
1654         [PERF_REG_X86_R13]      = 16,
1655         [PERF_REG_X86_R14]      = 17,
1656         [PERF_REG_X86_R15]      = 18,
1657 };
1658
1659 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1660                                  const struct intel_pt_blk_items *items,
1661                                  u64 regs_mask)
1662 {
1663         const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1664         u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1665         u32 bit;
1666         int i;
1667
1668         for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1669                 /* Get the PEBS gp_regs array index */
1670                 int n = pebs_gp_regs[i] - 1;
1671
1672                 if (n < 0)
1673                         continue;
1674                 /*
1675                  * Add only registers that were requested (i.e. 'regs_mask') and
1676                  * that were provided (i.e. 'mask'), and update the resulting
1677                  * mask (i.e. 'intr_regs->mask') accordingly.
1678                  */
1679                 if (mask & 1 << n && regs_mask & bit) {
1680                         intr_regs->mask |= bit;
1681                         *pos++ = gp_regs[n];
1682                 }
1683         }
1684
1685         return pos;
1686 }
1687
1688 #ifndef PERF_REG_X86_XMM0
1689 #define PERF_REG_X86_XMM0 32
1690 #endif
1691
1692 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1693                              const struct intel_pt_blk_items *items,
1694                              u64 regs_mask)
1695 {
1696         u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1697         const u64 *xmm = items->xmm;
1698
1699         /*
1700          * If there are any XMM registers, then there should be all of them.
1701          * Nevertheless, follow the logic to add only registers that were
1702          * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1703          * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1704          */
1705         intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1706
1707         for (; mask; mask >>= 1, xmm++) {
1708                 if (mask & 1)
1709                         *pos++ = *xmm;
1710         }
1711 }
1712
1713 #define LBR_INFO_MISPRED        (1ULL << 63)
1714 #define LBR_INFO_IN_TX          (1ULL << 62)
1715 #define LBR_INFO_ABORT          (1ULL << 61)
1716 #define LBR_INFO_CYCLES         0xffff
1717
1718 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1719 static u64 intel_pt_lbr_flags(u64 info)
1720 {
1721         union {
1722                 struct branch_flags flags;
1723                 u64 result;
1724         } u;
1725
1726         u.result          = 0;
1727         u.flags.mispred   = !!(info & LBR_INFO_MISPRED);
1728         u.flags.predicted = !(info & LBR_INFO_MISPRED);
1729         u.flags.in_tx     = !!(info & LBR_INFO_IN_TX);
1730         u.flags.abort     = !!(info & LBR_INFO_ABORT);
1731         u.flags.cycles    = info & LBR_INFO_CYCLES;
1732
1733         return u.result;
1734 }
1735
1736 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1737                               const struct intel_pt_blk_items *items)
1738 {
1739         u64 *to;
1740         int i;
1741
1742         br_stack->nr = 0;
1743
1744         to = &br_stack->entries[0].from;
1745
1746         for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1747                 u32 mask = items->mask[i];
1748                 const u64 *from = items->val[i];
1749
1750                 for (; mask; mask >>= 3, from += 3) {
1751                         if ((mask & 7) == 7) {
1752                                 *to++ = from[0];
1753                                 *to++ = from[1];
1754                                 *to++ = intel_pt_lbr_flags(from[2]);
1755                                 br_stack->nr += 1;
1756                         }
1757                 }
1758         }
1759 }
1760
1761 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1762 {
1763         const struct intel_pt_blk_items *items = &ptq->state->items;
1764         struct perf_sample sample = { .ip = 0, };
1765         union perf_event *event = ptq->event_buf;
1766         struct intel_pt *pt = ptq->pt;
1767         struct evsel *evsel = pt->pebs_evsel;
1768         u64 sample_type = evsel->core.attr.sample_type;
1769         u64 id = evsel->core.id[0];
1770         u8 cpumode;
1771         u64 regs[8 * sizeof(sample.intr_regs.mask)];
1772
1773         if (intel_pt_skip_event(pt))
1774                 return 0;
1775
1776         intel_pt_prep_a_sample(ptq, event, &sample);
1777
1778         sample.id = id;
1779         sample.stream_id = id;
1780
1781         if (!evsel->core.attr.freq)
1782                 sample.period = evsel->core.attr.sample_period;
1783
1784         /* No support for non-zero CS base */
1785         if (items->has_ip)
1786                 sample.ip = items->ip;
1787         else if (items->has_rip)
1788                 sample.ip = items->rip;
1789         else
1790                 sample.ip = ptq->state->from_ip;
1791
1792         /* No support for guest mode at this time */
1793         cpumode = sample.ip < ptq->pt->kernel_start ?
1794                   PERF_RECORD_MISC_USER :
1795                   PERF_RECORD_MISC_KERNEL;
1796
1797         event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1798
1799         sample.cpumode = cpumode;
1800
1801         if (sample_type & PERF_SAMPLE_TIME) {
1802                 u64 timestamp = 0;
1803
1804                 if (items->has_timestamp)
1805                         timestamp = items->timestamp;
1806                 else if (!pt->timeless_decoding)
1807                         timestamp = ptq->timestamp;
1808                 if (timestamp)
1809                         sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1810         }
1811
1812         if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1813             pt->synth_opts.callchain) {
1814                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1815                                      pt->synth_opts.callchain_sz, sample.ip,
1816                                      pt->kernel_start);
1817                 sample.callchain = ptq->chain;
1818         }
1819
1820         if (sample_type & PERF_SAMPLE_REGS_INTR &&
1821             (items->mask[INTEL_PT_GP_REGS_POS] ||
1822              items->mask[INTEL_PT_XMM_POS])) {
1823                 u64 regs_mask = evsel->core.attr.sample_regs_intr;
1824                 u64 *pos;
1825
1826                 sample.intr_regs.abi = items->is_32_bit ?
1827                                        PERF_SAMPLE_REGS_ABI_32 :
1828                                        PERF_SAMPLE_REGS_ABI_64;
1829                 sample.intr_regs.regs = regs;
1830
1831                 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1832
1833                 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1834         }
1835
1836         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1837                 if (items->mask[INTEL_PT_LBR_0_POS] ||
1838                     items->mask[INTEL_PT_LBR_1_POS] ||
1839                     items->mask[INTEL_PT_LBR_2_POS]) {
1840                         intel_pt_add_lbrs(ptq->last_branch, items);
1841                 } else if (pt->synth_opts.last_branch) {
1842                         thread_stack__br_sample(ptq->thread, ptq->cpu,
1843                                                 ptq->last_branch,
1844                                                 pt->br_stack_sz);
1845                 } else {
1846                         ptq->last_branch->nr = 0;
1847                 }
1848                 sample.branch_stack = ptq->last_branch;
1849         }
1850
1851         if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1852                 sample.addr = items->mem_access_address;
1853
1854         if (sample_type & PERF_SAMPLE_WEIGHT) {
1855                 /*
1856                  * Refer kernel's setup_pebs_adaptive_sample_data() and
1857                  * intel_hsw_weight().
1858                  */
1859                 if (items->has_mem_access_latency)
1860                         sample.weight = items->mem_access_latency;
1861                 if (!sample.weight && items->has_tsx_aux_info) {
1862                         /* Cycles last block */
1863                         sample.weight = (u32)items->tsx_aux_info;
1864                 }
1865         }
1866
1867         if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1868                 u64 ax = items->has_rax ? items->rax : 0;
1869                 /* Refer kernel's intel_hsw_transaction() */
1870                 u64 txn = (u8)(items->tsx_aux_info >> 32);
1871
1872                 /* For RTM XABORTs also log the abort code from AX */
1873                 if (txn & PERF_TXN_TRANSACTION && ax & 1)
1874                         txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1875                 sample.transaction = txn;
1876         }
1877
1878         return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
1879 }
1880
1881 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1882                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1883 {
1884         union perf_event event;
1885         char msg[MAX_AUXTRACE_ERROR_MSG];
1886         int err;
1887
1888         if (pt->synth_opts.error_minus_flags) {
1889                 if (code == INTEL_PT_ERR_OVR &&
1890                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
1891                         return 0;
1892                 if (code == INTEL_PT_ERR_LOST &&
1893                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
1894                         return 0;
1895         }
1896
1897         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1898
1899         auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1900                              code, cpu, pid, tid, ip, msg, timestamp);
1901
1902         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1903         if (err)
1904                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1905                        err);
1906
1907         return err;
1908 }
1909
1910 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1911                                  const struct intel_pt_state *state)
1912 {
1913         struct intel_pt *pt = ptq->pt;
1914         u64 tm = ptq->timestamp;
1915
1916         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1917
1918         return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1919                                     ptq->tid, state->from_ip, tm);
1920 }
1921
1922 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1923 {
1924         struct auxtrace_queue *queue;
1925         pid_t tid = ptq->next_tid;
1926         int err;
1927
1928         if (tid == -1)
1929                 return 0;
1930
1931         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1932
1933         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1934
1935         queue = &pt->queues.queue_array[ptq->queue_nr];
1936         intel_pt_set_pid_tid_cpu(pt, queue);
1937
1938         ptq->next_tid = -1;
1939
1940         return err;
1941 }
1942
1943 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1944 {
1945         struct intel_pt *pt = ptq->pt;
1946
1947         return ip == pt->switch_ip &&
1948                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1949                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1950                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1951 }
1952
1953 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1954                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1955
1956 static int intel_pt_sample(struct intel_pt_queue *ptq)
1957 {
1958         const struct intel_pt_state *state = ptq->state;
1959         struct intel_pt *pt = ptq->pt;
1960         int err;
1961
1962         if (!ptq->have_sample)
1963                 return 0;
1964
1965         ptq->have_sample = false;
1966
1967         if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1968                 /*
1969                  * Cycle count and instruction count only go together to create
1970                  * a valid IPC ratio when the cycle count changes.
1971                  */
1972                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1973                 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1974         }
1975
1976         /*
1977          * Do PEBS first to allow for the possibility that the PEBS timestamp
1978          * precedes the current timestamp.
1979          */
1980         if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1981                 err = intel_pt_synth_pebs_sample(ptq);
1982                 if (err)
1983                         return err;
1984         }
1985
1986         if (pt->sample_pwr_events) {
1987                 if (ptq->state->cbr != ptq->cbr_seen) {
1988                         err = intel_pt_synth_cbr_sample(ptq);
1989                         if (err)
1990                                 return err;
1991                 }
1992                 if (state->type & INTEL_PT_PWR_EVT) {
1993                         if (state->type & INTEL_PT_MWAIT_OP) {
1994                                 err = intel_pt_synth_mwait_sample(ptq);
1995                                 if (err)
1996                                         return err;
1997                         }
1998                         if (state->type & INTEL_PT_PWR_ENTRY) {
1999                                 err = intel_pt_synth_pwre_sample(ptq);
2000                                 if (err)
2001                                         return err;
2002                         }
2003                         if (state->type & INTEL_PT_EX_STOP) {
2004                                 err = intel_pt_synth_exstop_sample(ptq);
2005                                 if (err)
2006                                         return err;
2007                         }
2008                         if (state->type & INTEL_PT_PWR_EXIT) {
2009                                 err = intel_pt_synth_pwrx_sample(ptq);
2010                                 if (err)
2011                                         return err;
2012                         }
2013                 }
2014         }
2015
2016         if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2017                 err = intel_pt_synth_instruction_sample(ptq);
2018                 if (err)
2019                         return err;
2020         }
2021
2022         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2023                 err = intel_pt_synth_transaction_sample(ptq);
2024                 if (err)
2025                         return err;
2026         }
2027
2028         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2029                 err = intel_pt_synth_ptwrite_sample(ptq);
2030                 if (err)
2031                         return err;
2032         }
2033
2034         if (!(state->type & INTEL_PT_BRANCH))
2035                 return 0;
2036
2037         if (pt->use_thread_stack) {
2038                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2039                                     state->from_ip, state->to_ip, ptq->insn_len,
2040                                     state->trace_nr, pt->callstack,
2041                                     pt->br_stack_sz_plus,
2042                                     pt->mispred_all);
2043         } else {
2044                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2045         }
2046
2047         if (pt->sample_branches) {
2048                 err = intel_pt_synth_branch_sample(ptq);
2049                 if (err)
2050                         return err;
2051         }
2052
2053         if (!ptq->sync_switch)
2054                 return 0;
2055
2056         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2057                 switch (ptq->switch_state) {
2058                 case INTEL_PT_SS_NOT_TRACING:
2059                 case INTEL_PT_SS_UNKNOWN:
2060                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2061                         err = intel_pt_next_tid(pt, ptq);
2062                         if (err)
2063                                 return err;
2064                         ptq->switch_state = INTEL_PT_SS_TRACING;
2065                         break;
2066                 default:
2067                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2068                         return 1;
2069                 }
2070         } else if (!state->to_ip) {
2071                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2072         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2073                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2074         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2075                    state->to_ip == pt->ptss_ip &&
2076                    (ptq->flags & PERF_IP_FLAG_CALL)) {
2077                 ptq->switch_state = INTEL_PT_SS_TRACING;
2078         }
2079
2080         return 0;
2081 }
2082
2083 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2084 {
2085         struct machine *machine = pt->machine;
2086         struct map *map;
2087         struct symbol *sym, *start;
2088         u64 ip, switch_ip = 0;
2089         const char *ptss;
2090
2091         if (ptss_ip)
2092                 *ptss_ip = 0;
2093
2094         map = machine__kernel_map(machine);
2095         if (!map)
2096                 return 0;
2097
2098         if (map__load(map))
2099                 return 0;
2100
2101         start = dso__first_symbol(map->dso);
2102
2103         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2104                 if (sym->binding == STB_GLOBAL &&
2105                     !strcmp(sym->name, "__switch_to")) {
2106                         ip = map->unmap_ip(map, sym->start);
2107                         if (ip >= map->start && ip < map->end) {
2108                                 switch_ip = ip;
2109                                 break;
2110                         }
2111                 }
2112         }
2113
2114         if (!switch_ip || !ptss_ip)
2115                 return 0;
2116
2117         if (pt->have_sched_switch == 1)
2118                 ptss = "perf_trace_sched_switch";
2119         else
2120                 ptss = "__perf_event_task_sched_out";
2121
2122         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2123                 if (!strcmp(sym->name, ptss)) {
2124                         ip = map->unmap_ip(map, sym->start);
2125                         if (ip >= map->start && ip < map->end) {
2126                                 *ptss_ip = ip;
2127                                 break;
2128                         }
2129                 }
2130         }
2131
2132         return switch_ip;
2133 }
2134
2135 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2136 {
2137         unsigned int i;
2138
2139         pt->sync_switch = true;
2140
2141         for (i = 0; i < pt->queues.nr_queues; i++) {
2142                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2143                 struct intel_pt_queue *ptq = queue->priv;
2144
2145                 if (ptq)
2146                         ptq->sync_switch = true;
2147         }
2148 }
2149
2150 /*
2151  * To filter against time ranges, it is only necessary to look at the next start
2152  * or end time.
2153  */
2154 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2155 {
2156         struct intel_pt *pt = ptq->pt;
2157
2158         if (ptq->sel_start) {
2159                 /* Next time is an end time */
2160                 ptq->sel_start = false;
2161                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2162                 return true;
2163         } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2164                 /* Next time is a start time */
2165                 ptq->sel_start = true;
2166                 ptq->sel_idx += 1;
2167                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2168                 return true;
2169         }
2170
2171         /* No next time */
2172         return false;
2173 }
2174
2175 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2176 {
2177         int err;
2178
2179         while (1) {
2180                 if (ptq->sel_start) {
2181                         if (ptq->timestamp >= ptq->sel_timestamp) {
2182                                 /* After start time, so consider next time */
2183                                 intel_pt_next_time(ptq);
2184                                 if (!ptq->sel_timestamp) {
2185                                         /* No end time */
2186                                         return 0;
2187                                 }
2188                                 /* Check against end time */
2189                                 continue;
2190                         }
2191                         /* Before start time, so fast forward */
2192                         ptq->have_sample = false;
2193                         if (ptq->sel_timestamp > *ff_timestamp) {
2194                                 if (ptq->sync_switch) {
2195                                         intel_pt_next_tid(ptq->pt, ptq);
2196                                         ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2197                                 }
2198                                 *ff_timestamp = ptq->sel_timestamp;
2199                                 err = intel_pt_fast_forward(ptq->decoder,
2200                                                             ptq->sel_timestamp);
2201                                 if (err)
2202                                         return err;
2203                         }
2204                         return 0;
2205                 } else if (ptq->timestamp > ptq->sel_timestamp) {
2206                         /* After end time, so consider next time */
2207                         if (!intel_pt_next_time(ptq)) {
2208                                 /* No next time range, so stop decoding */
2209                                 ptq->have_sample = false;
2210                                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2211                                 return 1;
2212                         }
2213                         /* Check against next start time */
2214                         continue;
2215                 } else {
2216                         /* Before end time */
2217                         return 0;
2218                 }
2219         }
2220 }
2221
2222 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2223 {
2224         const struct intel_pt_state *state = ptq->state;
2225         struct intel_pt *pt = ptq->pt;
2226         u64 ff_timestamp = 0;
2227         int err;
2228
2229         if (!pt->kernel_start) {
2230                 pt->kernel_start = machine__kernel_start(pt->machine);
2231                 if (pt->per_cpu_mmaps &&
2232                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2233                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2234                     !pt->sampling_mode) {
2235                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2236                         if (pt->switch_ip) {
2237                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2238                                              pt->switch_ip, pt->ptss_ip);
2239                                 intel_pt_enable_sync_switch(pt);
2240                         }
2241                 }
2242         }
2243
2244         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2245                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2246         while (1) {
2247                 err = intel_pt_sample(ptq);
2248                 if (err)
2249                         return err;
2250
2251                 state = intel_pt_decode(ptq->decoder);
2252                 if (state->err) {
2253                         if (state->err == INTEL_PT_ERR_NODATA)
2254                                 return 1;
2255                         if (ptq->sync_switch &&
2256                             state->from_ip >= pt->kernel_start) {
2257                                 ptq->sync_switch = false;
2258                                 intel_pt_next_tid(pt, ptq);
2259                         }
2260                         if (pt->synth_opts.errors) {
2261                                 err = intel_ptq_synth_error(ptq, state);
2262                                 if (err)
2263                                         return err;
2264                         }
2265                         continue;
2266                 }
2267
2268                 ptq->state = state;
2269                 ptq->have_sample = true;
2270                 intel_pt_sample_flags(ptq);
2271
2272                 /* Use estimated TSC upon return to user space */
2273                 if (pt->est_tsc &&
2274                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2275                     state->to_ip && state->to_ip < pt->kernel_start) {
2276                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2277                                      state->timestamp, state->est_timestamp);
2278                         ptq->timestamp = state->est_timestamp;
2279                 /* Use estimated TSC in unknown switch state */
2280                 } else if (ptq->sync_switch &&
2281                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2282                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
2283                            ptq->next_tid == -1) {
2284                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2285                                      state->timestamp, state->est_timestamp);
2286                         ptq->timestamp = state->est_timestamp;
2287                 } else if (state->timestamp > ptq->timestamp) {
2288                         ptq->timestamp = state->timestamp;
2289                 }
2290
2291                 if (ptq->sel_timestamp) {
2292                         err = intel_pt_time_filter(ptq, &ff_timestamp);
2293                         if (err)
2294                                 return err;
2295                 }
2296
2297                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2298                         *timestamp = ptq->timestamp;
2299                         return 0;
2300                 }
2301         }
2302         return 0;
2303 }
2304
2305 static inline int intel_pt_update_queues(struct intel_pt *pt)
2306 {
2307         if (pt->queues.new_data) {
2308                 pt->queues.new_data = false;
2309                 return intel_pt_setup_queues(pt);
2310         }
2311         return 0;
2312 }
2313
2314 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2315 {
2316         unsigned int queue_nr;
2317         u64 ts;
2318         int ret;
2319
2320         while (1) {
2321                 struct auxtrace_queue *queue;
2322                 struct intel_pt_queue *ptq;
2323
2324                 if (!pt->heap.heap_cnt)
2325                         return 0;
2326
2327                 if (pt->heap.heap_array[0].ordinal >= timestamp)
2328                         return 0;
2329
2330                 queue_nr = pt->heap.heap_array[0].queue_nr;
2331                 queue = &pt->queues.queue_array[queue_nr];
2332                 ptq = queue->priv;
2333
2334                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2335                              queue_nr, pt->heap.heap_array[0].ordinal,
2336                              timestamp);
2337
2338                 auxtrace_heap__pop(&pt->heap);
2339
2340                 if (pt->heap.heap_cnt) {
2341                         ts = pt->heap.heap_array[0].ordinal + 1;
2342                         if (ts > timestamp)
2343                                 ts = timestamp;
2344                 } else {
2345                         ts = timestamp;
2346                 }
2347
2348                 intel_pt_set_pid_tid_cpu(pt, queue);
2349
2350                 ret = intel_pt_run_decoder(ptq, &ts);
2351
2352                 if (ret < 0) {
2353                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
2354                         return ret;
2355                 }
2356
2357                 if (!ret) {
2358                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2359                         if (ret < 0)
2360                                 return ret;
2361                 } else {
2362                         ptq->on_heap = false;
2363                 }
2364         }
2365
2366         return 0;
2367 }
2368
2369 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2370                                             u64 time_)
2371 {
2372         struct auxtrace_queues *queues = &pt->queues;
2373         unsigned int i;
2374         u64 ts = 0;
2375
2376         for (i = 0; i < queues->nr_queues; i++) {
2377                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2378                 struct intel_pt_queue *ptq = queue->priv;
2379
2380                 if (ptq && (tid == -1 || ptq->tid == tid)) {
2381                         ptq->time = time_;
2382                         intel_pt_set_pid_tid_cpu(pt, queue);
2383                         intel_pt_run_decoder(ptq, &ts);
2384                 }
2385         }
2386         return 0;
2387 }
2388
2389 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2390                                             struct auxtrace_queue *queue,
2391                                             struct perf_sample *sample)
2392 {
2393         struct machine *m = ptq->pt->machine;
2394
2395         ptq->pid = sample->pid;
2396         ptq->tid = sample->tid;
2397         ptq->cpu = queue->cpu;
2398
2399         intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2400                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2401
2402         thread__zput(ptq->thread);
2403
2404         if (ptq->tid == -1)
2405                 return;
2406
2407         if (ptq->pid == -1) {
2408                 ptq->thread = machine__find_thread(m, -1, ptq->tid);
2409                 if (ptq->thread)
2410                         ptq->pid = ptq->thread->pid_;
2411                 return;
2412         }
2413
2414         ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2415 }
2416
2417 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2418                                             struct perf_sample *sample)
2419 {
2420         struct auxtrace_queue *queue;
2421         struct intel_pt_queue *ptq;
2422         u64 ts = 0;
2423
2424         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2425         if (!queue)
2426                 return -EINVAL;
2427
2428         ptq = queue->priv;
2429         if (!ptq)
2430                 return 0;
2431
2432         ptq->stop = false;
2433         ptq->time = sample->time;
2434         intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2435         intel_pt_run_decoder(ptq, &ts);
2436         return 0;
2437 }
2438
2439 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2440 {
2441         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2442                                     sample->pid, sample->tid, 0, sample->time);
2443 }
2444
2445 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2446 {
2447         unsigned i, j;
2448
2449         if (cpu < 0 || !pt->queues.nr_queues)
2450                 return NULL;
2451
2452         if ((unsigned)cpu >= pt->queues.nr_queues)
2453                 i = pt->queues.nr_queues - 1;
2454         else
2455                 i = cpu;
2456
2457         if (pt->queues.queue_array[i].cpu == cpu)
2458                 return pt->queues.queue_array[i].priv;
2459
2460         for (j = 0; i > 0; j++) {
2461                 if (pt->queues.queue_array[--i].cpu == cpu)
2462                         return pt->queues.queue_array[i].priv;
2463         }
2464
2465         for (; j < pt->queues.nr_queues; j++) {
2466                 if (pt->queues.queue_array[j].cpu == cpu)
2467                         return pt->queues.queue_array[j].priv;
2468         }
2469
2470         return NULL;
2471 }
2472
2473 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2474                                 u64 timestamp)
2475 {
2476         struct intel_pt_queue *ptq;
2477         int err;
2478
2479         if (!pt->sync_switch)
2480                 return 1;
2481
2482         ptq = intel_pt_cpu_to_ptq(pt, cpu);
2483         if (!ptq || !ptq->sync_switch)
2484                 return 1;
2485
2486         switch (ptq->switch_state) {
2487         case INTEL_PT_SS_NOT_TRACING:
2488                 break;
2489         case INTEL_PT_SS_UNKNOWN:
2490         case INTEL_PT_SS_TRACING:
2491                 ptq->next_tid = tid;
2492                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2493                 return 0;
2494         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2495                 if (!ptq->on_heap) {
2496                         ptq->timestamp = perf_time_to_tsc(timestamp,
2497                                                           &pt->tc);
2498                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2499                                                  ptq->timestamp);
2500                         if (err)
2501                                 return err;
2502                         ptq->on_heap = true;
2503                 }
2504                 ptq->switch_state = INTEL_PT_SS_TRACING;
2505                 break;
2506         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2507                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2508                 break;
2509         default:
2510                 break;
2511         }
2512
2513         ptq->next_tid = -1;
2514
2515         return 1;
2516 }
2517
2518 static int intel_pt_process_switch(struct intel_pt *pt,
2519                                    struct perf_sample *sample)
2520 {
2521         struct evsel *evsel;
2522         pid_t tid;
2523         int cpu, ret;
2524
2525         evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2526         if (evsel != pt->switch_evsel)
2527                 return 0;
2528
2529         tid = evsel__intval(evsel, sample, "next_pid");
2530         cpu = sample->cpu;
2531
2532         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2533                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2534                      &pt->tc));
2535
2536         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2537         if (ret <= 0)
2538                 return ret;
2539
2540         return machine__set_current_tid(pt->machine, cpu, -1, tid);
2541 }
2542
2543 static int intel_pt_context_switch_in(struct intel_pt *pt,
2544                                       struct perf_sample *sample)
2545 {
2546         pid_t pid = sample->pid;
2547         pid_t tid = sample->tid;
2548         int cpu = sample->cpu;
2549
2550         if (pt->sync_switch) {
2551                 struct intel_pt_queue *ptq;
2552
2553                 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2554                 if (ptq && ptq->sync_switch) {
2555                         ptq->next_tid = -1;
2556                         switch (ptq->switch_state) {
2557                         case INTEL_PT_SS_NOT_TRACING:
2558                         case INTEL_PT_SS_UNKNOWN:
2559                         case INTEL_PT_SS_TRACING:
2560                                 break;
2561                         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2562                         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2563                                 ptq->switch_state = INTEL_PT_SS_TRACING;
2564                                 break;
2565                         default:
2566                                 break;
2567                         }
2568                 }
2569         }
2570
2571         /*
2572          * If the current tid has not been updated yet, ensure it is now that
2573          * a "switch in" event has occurred.
2574          */
2575         if (machine__get_current_tid(pt->machine, cpu) == tid)
2576                 return 0;
2577
2578         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2579 }
2580
2581 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2582                                    struct perf_sample *sample)
2583 {
2584         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2585         pid_t pid, tid;
2586         int cpu, ret;
2587
2588         cpu = sample->cpu;
2589
2590         if (pt->have_sched_switch == 3) {
2591                 if (!out)
2592                         return intel_pt_context_switch_in(pt, sample);
2593                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2594                         pr_err("Expecting CPU-wide context switch event\n");
2595                         return -EINVAL;
2596                 }
2597                 pid = event->context_switch.next_prev_pid;
2598                 tid = event->context_switch.next_prev_tid;
2599         } else {
2600                 if (out)
2601                         return 0;
2602                 pid = sample->pid;
2603                 tid = sample->tid;
2604         }
2605
2606         if (tid == -1) {
2607                 pr_err("context_switch event has no tid\n");
2608                 return -EINVAL;
2609         }
2610
2611         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2612         if (ret <= 0)
2613                 return ret;
2614
2615         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2616 }
2617
2618 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2619                                          union perf_event *event,
2620                                          struct perf_sample *sample)
2621 {
2622         if (!pt->per_cpu_mmaps)
2623                 return 0;
2624
2625         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2626                      sample->cpu, event->itrace_start.pid,
2627                      event->itrace_start.tid, sample->time,
2628                      perf_time_to_tsc(sample->time, &pt->tc));
2629
2630         return machine__set_current_tid(pt->machine, sample->cpu,
2631                                         event->itrace_start.pid,
2632                                         event->itrace_start.tid);
2633 }
2634
2635 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2636                              struct addr_location *al)
2637 {
2638         if (!al->map || addr < al->map->start || addr >= al->map->end) {
2639                 if (!thread__find_map(thread, cpumode, addr, al))
2640                         return -1;
2641         }
2642
2643         return 0;
2644 }
2645
2646 /* Invalidate all instruction cache entries that overlap the text poke */
2647 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2648 {
2649         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2650         u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2651         /* Assume text poke begins in a basic block no more than 4096 bytes */
2652         int cnt = 4096 + event->text_poke.new_len;
2653         struct thread *thread = pt->unknown_thread;
2654         struct addr_location al = { .map = NULL };
2655         struct machine *machine = pt->machine;
2656         struct intel_pt_cache_entry *e;
2657         u64 offset;
2658
2659         if (!event->text_poke.new_len)
2660                 return 0;
2661
2662         for (; cnt; cnt--, addr--) {
2663                 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2664                         if (addr < event->text_poke.addr)
2665                                 return 0;
2666                         continue;
2667                 }
2668
2669                 if (!al.map->dso || !al.map->dso->auxtrace_cache)
2670                         continue;
2671
2672                 offset = al.map->map_ip(al.map, addr);
2673
2674                 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2675                 if (!e)
2676                         continue;
2677
2678                 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2679                         /*
2680                          * No overlap. Working backwards there cannot be another
2681                          * basic block that overlaps the text poke if there is a
2682                          * branch instruction before the text poke address.
2683                          */
2684                         if (e->branch != INTEL_PT_BR_NO_BRANCH)
2685                                 return 0;
2686                 } else {
2687                         intel_pt_cache_invalidate(al.map->dso, machine, offset);
2688                         intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2689                                      al.map->dso->long_name, addr);
2690                 }
2691         }
2692
2693         return 0;
2694 }
2695
2696 static int intel_pt_process_event(struct perf_session *session,
2697                                   union perf_event *event,
2698                                   struct perf_sample *sample,
2699                                   struct perf_tool *tool)
2700 {
2701         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2702                                            auxtrace);
2703         u64 timestamp;
2704         int err = 0;
2705
2706         if (dump_trace)
2707                 return 0;
2708
2709         if (!tool->ordered_events) {
2710                 pr_err("Intel Processor Trace requires ordered events\n");
2711                 return -EINVAL;
2712         }
2713
2714         if (sample->time && sample->time != (u64)-1)
2715                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2716         else
2717                 timestamp = 0;
2718
2719         if (timestamp || pt->timeless_decoding) {
2720                 err = intel_pt_update_queues(pt);
2721                 if (err)
2722                         return err;
2723         }
2724
2725         if (pt->timeless_decoding) {
2726                 if (pt->sampling_mode) {
2727                         if (sample->aux_sample.size)
2728                                 err = intel_pt_process_timeless_sample(pt,
2729                                                                        sample);
2730                 } else if (event->header.type == PERF_RECORD_EXIT) {
2731                         err = intel_pt_process_timeless_queues(pt,
2732                                                                event->fork.tid,
2733                                                                sample->time);
2734                 }
2735         } else if (timestamp) {
2736                 err = intel_pt_process_queues(pt, timestamp);
2737         }
2738         if (err)
2739                 return err;
2740
2741         if (event->header.type == PERF_RECORD_SAMPLE) {
2742                 if (pt->synth_opts.add_callchain && !sample->callchain)
2743                         intel_pt_add_callchain(pt, sample);
2744                 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2745                         intel_pt_add_br_stack(pt, sample);
2746         }
2747
2748         if (event->header.type == PERF_RECORD_AUX &&
2749             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2750             pt->synth_opts.errors) {
2751                 err = intel_pt_lost(pt, sample);
2752                 if (err)
2753                         return err;
2754         }
2755
2756         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2757                 err = intel_pt_process_switch(pt, sample);
2758         else if (event->header.type == PERF_RECORD_ITRACE_START)
2759                 err = intel_pt_process_itrace_start(pt, event, sample);
2760         else if (event->header.type == PERF_RECORD_SWITCH ||
2761                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2762                 err = intel_pt_context_switch(pt, event, sample);
2763
2764         if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
2765                 err = intel_pt_text_poke(pt, event);
2766
2767         if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
2768                 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2769                              event->header.type, sample->cpu, sample->time, timestamp);
2770                 intel_pt_log_event(event);
2771         }
2772
2773         return err;
2774 }
2775
2776 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2777 {
2778         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2779                                            auxtrace);
2780         int ret;
2781
2782         if (dump_trace)
2783                 return 0;
2784
2785         if (!tool->ordered_events)
2786                 return -EINVAL;
2787
2788         ret = intel_pt_update_queues(pt);
2789         if (ret < 0)
2790                 return ret;
2791
2792         if (pt->timeless_decoding)
2793                 return intel_pt_process_timeless_queues(pt, -1,
2794                                                         MAX_TIMESTAMP - 1);
2795
2796         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2797 }
2798
2799 static void intel_pt_free_events(struct perf_session *session)
2800 {
2801         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2802                                            auxtrace);
2803         struct auxtrace_queues *queues = &pt->queues;
2804         unsigned int i;
2805
2806         for (i = 0; i < queues->nr_queues; i++) {
2807                 intel_pt_free_queue(queues->queue_array[i].priv);
2808                 queues->queue_array[i].priv = NULL;
2809         }
2810         intel_pt_log_disable();
2811         auxtrace_queues__free(queues);
2812 }
2813
2814 static void intel_pt_free(struct perf_session *session)
2815 {
2816         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2817                                            auxtrace);
2818
2819         auxtrace_heap__free(&pt->heap);
2820         intel_pt_free_events(session);
2821         session->auxtrace = NULL;
2822         thread__put(pt->unknown_thread);
2823         addr_filters__exit(&pt->filts);
2824         zfree(&pt->chain);
2825         zfree(&pt->filter);
2826         zfree(&pt->time_ranges);
2827         free(pt);
2828 }
2829
2830 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
2831                                        struct evsel *evsel)
2832 {
2833         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2834                                            auxtrace);
2835
2836         return evsel->core.attr.type == pt->pmu_type;
2837 }
2838
2839 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2840                                            union perf_event *event,
2841                                            struct perf_tool *tool __maybe_unused)
2842 {
2843         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2844                                            auxtrace);
2845
2846         if (!pt->data_queued) {
2847                 struct auxtrace_buffer *buffer;
2848                 off_t data_offset;
2849                 int fd = perf_data__fd(session->data);
2850                 int err;
2851
2852                 if (perf_data__is_pipe(session->data)) {
2853                         data_offset = 0;
2854                 } else {
2855                         data_offset = lseek(fd, 0, SEEK_CUR);
2856                         if (data_offset == -1)
2857                                 return -errno;
2858                 }
2859
2860                 err = auxtrace_queues__add_event(&pt->queues, session, event,
2861                                                  data_offset, &buffer);
2862                 if (err)
2863                         return err;
2864
2865                 /* Dump here now we have copied a piped trace out of the pipe */
2866                 if (dump_trace) {
2867                         if (auxtrace_buffer__get_data(buffer, fd)) {
2868                                 intel_pt_dump_event(pt, buffer->data,
2869                                                     buffer->size);
2870                                 auxtrace_buffer__put_data(buffer);
2871                         }
2872                 }
2873         }
2874
2875         return 0;
2876 }
2877
2878 static int intel_pt_queue_data(struct perf_session *session,
2879                                struct perf_sample *sample,
2880                                union perf_event *event, u64 data_offset)
2881 {
2882         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2883                                            auxtrace);
2884         u64 timestamp;
2885
2886         if (event) {
2887                 return auxtrace_queues__add_event(&pt->queues, session, event,
2888                                                   data_offset, NULL);
2889         }
2890
2891         if (sample->time && sample->time != (u64)-1)
2892                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2893         else
2894                 timestamp = 0;
2895
2896         return auxtrace_queues__add_sample(&pt->queues, session, sample,
2897                                            data_offset, timestamp);
2898 }
2899
2900 struct intel_pt_synth {
2901         struct perf_tool dummy_tool;
2902         struct perf_session *session;
2903 };
2904
2905 static int intel_pt_event_synth(struct perf_tool *tool,
2906                                 union perf_event *event,
2907                                 struct perf_sample *sample __maybe_unused,
2908                                 struct machine *machine __maybe_unused)
2909 {
2910         struct intel_pt_synth *intel_pt_synth =
2911                         container_of(tool, struct intel_pt_synth, dummy_tool);
2912
2913         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2914                                                  NULL);
2915 }
2916
2917 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2918                                 struct perf_event_attr *attr, u64 id)
2919 {
2920         struct intel_pt_synth intel_pt_synth;
2921         int err;
2922
2923         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2924                  name, id, (u64)attr->sample_type);
2925
2926         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2927         intel_pt_synth.session = session;
2928
2929         err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2930                                           &id, intel_pt_event_synth);
2931         if (err)
2932                 pr_err("%s: failed to synthesize '%s' event type\n",
2933                        __func__, name);
2934
2935         return err;
2936 }
2937
2938 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2939                                     const char *name)
2940 {
2941         struct evsel *evsel;
2942
2943         evlist__for_each_entry(evlist, evsel) {
2944                 if (evsel->core.id && evsel->core.id[0] == id) {
2945                         if (evsel->name)
2946                                 zfree(&evsel->name);
2947                         evsel->name = strdup(name);
2948                         break;
2949                 }
2950         }
2951 }
2952
2953 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2954                                          struct evlist *evlist)
2955 {
2956         struct evsel *evsel;
2957
2958         evlist__for_each_entry(evlist, evsel) {
2959                 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2960                         return evsel;
2961         }
2962
2963         return NULL;
2964 }
2965
2966 static int intel_pt_synth_events(struct intel_pt *pt,
2967                                  struct perf_session *session)
2968 {
2969         struct evlist *evlist = session->evlist;
2970         struct evsel *evsel = intel_pt_evsel(pt, evlist);
2971         struct perf_event_attr attr;
2972         u64 id;
2973         int err;
2974
2975         if (!evsel) {
2976                 pr_debug("There are no selected events with Intel Processor Trace data\n");
2977                 return 0;
2978         }
2979
2980         memset(&attr, 0, sizeof(struct perf_event_attr));
2981         attr.size = sizeof(struct perf_event_attr);
2982         attr.type = PERF_TYPE_HARDWARE;
2983         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2984         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2985                             PERF_SAMPLE_PERIOD;
2986         if (pt->timeless_decoding)
2987                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2988         else
2989                 attr.sample_type |= PERF_SAMPLE_TIME;
2990         if (!pt->per_cpu_mmaps)
2991                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2992         attr.exclude_user = evsel->core.attr.exclude_user;
2993         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2994         attr.exclude_hv = evsel->core.attr.exclude_hv;
2995         attr.exclude_host = evsel->core.attr.exclude_host;
2996         attr.exclude_guest = evsel->core.attr.exclude_guest;
2997         attr.sample_id_all = evsel->core.attr.sample_id_all;
2998         attr.read_format = evsel->core.attr.read_format;
2999
3000         id = evsel->core.id[0] + 1000000000;
3001         if (!id)
3002                 id = 1;
3003
3004         if (pt->synth_opts.branches) {
3005                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3006                 attr.sample_period = 1;
3007                 attr.sample_type |= PERF_SAMPLE_ADDR;
3008                 err = intel_pt_synth_event(session, "branches", &attr, id);
3009                 if (err)
3010                         return err;
3011                 pt->sample_branches = true;
3012                 pt->branches_sample_type = attr.sample_type;
3013                 pt->branches_id = id;
3014                 id += 1;
3015                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3016         }
3017
3018         if (pt->synth_opts.callchain)
3019                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3020         if (pt->synth_opts.last_branch) {
3021                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3022                 /*
3023                  * We don't use the hardware index, but the sample generation
3024                  * code uses the new format branch_stack with this field,
3025                  * so the event attributes must indicate that it's present.
3026                  */
3027                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3028         }
3029
3030         if (pt->synth_opts.instructions) {
3031                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3032                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3033                         attr.sample_period =
3034                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3035                 else
3036                         attr.sample_period = pt->synth_opts.period;
3037                 err = intel_pt_synth_event(session, "instructions", &attr, id);
3038                 if (err)
3039                         return err;
3040                 pt->sample_instructions = true;
3041                 pt->instructions_sample_type = attr.sample_type;
3042                 pt->instructions_id = id;
3043                 id += 1;
3044         }
3045
3046         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3047         attr.sample_period = 1;
3048
3049         if (pt->synth_opts.transactions) {
3050                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3051                 err = intel_pt_synth_event(session, "transactions", &attr, id);
3052                 if (err)
3053                         return err;
3054                 pt->sample_transactions = true;
3055                 pt->transactions_sample_type = attr.sample_type;
3056                 pt->transactions_id = id;
3057                 intel_pt_set_event_name(evlist, id, "transactions");
3058                 id += 1;
3059         }
3060
3061         attr.type = PERF_TYPE_SYNTH;
3062         attr.sample_type |= PERF_SAMPLE_RAW;
3063
3064         if (pt->synth_opts.ptwrites) {
3065                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3066                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3067                 if (err)
3068                         return err;
3069                 pt->sample_ptwrites = true;
3070                 pt->ptwrites_sample_type = attr.sample_type;
3071                 pt->ptwrites_id = id;
3072                 intel_pt_set_event_name(evlist, id, "ptwrite");
3073                 id += 1;
3074         }
3075
3076         if (pt->synth_opts.pwr_events) {
3077                 pt->sample_pwr_events = true;
3078                 pt->pwr_events_sample_type = attr.sample_type;
3079
3080                 attr.config = PERF_SYNTH_INTEL_CBR;
3081                 err = intel_pt_synth_event(session, "cbr", &attr, id);
3082                 if (err)
3083                         return err;
3084                 pt->cbr_id = id;
3085                 intel_pt_set_event_name(evlist, id, "cbr");
3086                 id += 1;
3087         }
3088
3089         if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3090                 attr.config = PERF_SYNTH_INTEL_MWAIT;
3091                 err = intel_pt_synth_event(session, "mwait", &attr, id);
3092                 if (err)
3093                         return err;
3094                 pt->mwait_id = id;
3095                 intel_pt_set_event_name(evlist, id, "mwait");
3096                 id += 1;
3097
3098                 attr.config = PERF_SYNTH_INTEL_PWRE;
3099                 err = intel_pt_synth_event(session, "pwre", &attr, id);
3100                 if (err)
3101                         return err;
3102                 pt->pwre_id = id;
3103                 intel_pt_set_event_name(evlist, id, "pwre");
3104                 id += 1;
3105
3106                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3107                 err = intel_pt_synth_event(session, "exstop", &attr, id);
3108                 if (err)
3109                         return err;
3110                 pt->exstop_id = id;
3111                 intel_pt_set_event_name(evlist, id, "exstop");
3112                 id += 1;
3113
3114                 attr.config = PERF_SYNTH_INTEL_PWRX;
3115                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3116                 if (err)
3117                         return err;
3118                 pt->pwrx_id = id;
3119                 intel_pt_set_event_name(evlist, id, "pwrx");
3120                 id += 1;
3121         }
3122
3123         return 0;
3124 }
3125
3126 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3127 {
3128         struct evsel *evsel;
3129
3130         if (!pt->synth_opts.other_events)
3131                 return;
3132
3133         evlist__for_each_entry(pt->session->evlist, evsel) {
3134                 if (evsel->core.attr.aux_output && evsel->core.id) {
3135                         pt->sample_pebs = true;
3136                         pt->pebs_evsel = evsel;
3137                         return;
3138                 }
3139         }
3140 }
3141
3142 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3143 {
3144         struct evsel *evsel;
3145
3146         evlist__for_each_entry_reverse(evlist, evsel) {
3147                 const char *name = evsel__name(evsel);
3148
3149                 if (!strcmp(name, "sched:sched_switch"))
3150                         return evsel;
3151         }
3152
3153         return NULL;
3154 }
3155
3156 static bool intel_pt_find_switch(struct evlist *evlist)
3157 {
3158         struct evsel *evsel;
3159
3160         evlist__for_each_entry(evlist, evsel) {
3161                 if (evsel->core.attr.context_switch)
3162                         return true;
3163         }
3164
3165         return false;
3166 }
3167
3168 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3169 {
3170         struct intel_pt *pt = data;
3171
3172         if (!strcmp(var, "intel-pt.mispred-all"))
3173                 pt->mispred_all = perf_config_bool(var, value);
3174
3175         return 0;
3176 }
3177
3178 /* Find least TSC which converts to ns or later */
3179 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3180 {
3181         u64 tsc, tm;
3182
3183         tsc = perf_time_to_tsc(ns, &pt->tc);
3184
3185         while (1) {
3186                 tm = tsc_to_perf_time(tsc, &pt->tc);
3187                 if (tm < ns)
3188                         break;
3189                 tsc -= 1;
3190         }
3191
3192         while (tm < ns)
3193                 tm = tsc_to_perf_time(++tsc, &pt->tc);
3194
3195         return tsc;
3196 }
3197
3198 /* Find greatest TSC which converts to ns or earlier */
3199 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3200 {
3201         u64 tsc, tm;
3202
3203         tsc = perf_time_to_tsc(ns, &pt->tc);
3204
3205         while (1) {
3206                 tm = tsc_to_perf_time(tsc, &pt->tc);
3207                 if (tm > ns)
3208                         break;
3209                 tsc += 1;
3210         }
3211
3212         while (tm > ns)
3213                 tm = tsc_to_perf_time(--tsc, &pt->tc);
3214
3215         return tsc;
3216 }
3217
3218 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3219                                       struct itrace_synth_opts *opts)
3220 {
3221         struct perf_time_interval *p = opts->ptime_range;
3222         int n = opts->range_num;
3223         int i;
3224
3225         if (!n || !p || pt->timeless_decoding)
3226                 return 0;
3227
3228         pt->time_ranges = calloc(n, sizeof(struct range));
3229         if (!pt->time_ranges)
3230                 return -ENOMEM;
3231
3232         pt->range_cnt = n;
3233
3234         intel_pt_log("%s: %u range(s)\n", __func__, n);
3235
3236         for (i = 0; i < n; i++) {
3237                 struct range *r = &pt->time_ranges[i];
3238                 u64 ts = p[i].start;
3239                 u64 te = p[i].end;
3240
3241                 /*
3242                  * Take care to ensure the TSC range matches the perf-time range
3243                  * when converted back to perf-time.
3244                  */
3245                 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3246                 r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3247
3248                 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3249                              i, ts, te);
3250                 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3251                              i, r->start, r->end);
3252         }
3253
3254         return 0;
3255 }
3256
3257 static const char * const intel_pt_info_fmts[] = {
3258         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
3259         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
3260         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
3261         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
3262         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
3263         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
3264         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
3265         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
3266         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
3267         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
3268         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
3269         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
3270         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
3271         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
3272         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
3273         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
3274 };
3275
3276 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3277 {
3278         int i;
3279
3280         if (!dump_trace)
3281                 return;
3282
3283         for (i = start; i <= finish; i++)
3284                 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3285 }
3286
3287 static void intel_pt_print_info_str(const char *name, const char *str)
3288 {
3289         if (!dump_trace)
3290                 return;
3291
3292         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3293 }
3294
3295 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3296 {
3297         return auxtrace_info->header.size >=
3298                 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3299 }
3300
3301 int intel_pt_process_auxtrace_info(union perf_event *event,
3302                                    struct perf_session *session)
3303 {
3304         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3305         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3306         struct intel_pt *pt;
3307         void *info_end;
3308         __u64 *info;
3309         int err;
3310
3311         if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3312                                         min_sz)
3313                 return -EINVAL;
3314
3315         pt = zalloc(sizeof(struct intel_pt));
3316         if (!pt)
3317                 return -ENOMEM;
3318
3319         addr_filters__init(&pt->filts);
3320
3321         err = perf_config(intel_pt_perf_config, pt);
3322         if (err)
3323                 goto err_free;
3324
3325         err = auxtrace_queues__init(&pt->queues);
3326         if (err)
3327                 goto err_free;
3328
3329         intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3330
3331         pt->session = session;
3332         pt->machine = &session->machines.host; /* No kvm support */
3333         pt->auxtrace_type = auxtrace_info->type;
3334         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3335         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3336         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3337         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3338         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3339         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3340         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3341         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3342         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3343         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3344         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3345                             INTEL_PT_PER_CPU_MMAPS);
3346
3347         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3348                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3349                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3350                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3351                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3352                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3353                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3354                                     INTEL_PT_CYC_BIT);
3355         }
3356
3357         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3358                 pt->max_non_turbo_ratio =
3359                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3360                 intel_pt_print_info(&auxtrace_info->priv[0],
3361                                     INTEL_PT_MAX_NONTURBO_RATIO,
3362                                     INTEL_PT_MAX_NONTURBO_RATIO);
3363         }
3364
3365         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3366         info_end = (void *)info + auxtrace_info->header.size;
3367
3368         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3369                 size_t len;
3370
3371                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3372                 intel_pt_print_info(&auxtrace_info->priv[0],
3373                                     INTEL_PT_FILTER_STR_LEN,
3374                                     INTEL_PT_FILTER_STR_LEN);
3375                 if (len) {
3376                         const char *filter = (const char *)info;
3377
3378                         len = roundup(len + 1, 8);
3379                         info += len >> 3;
3380                         if ((void *)info > info_end) {
3381                                 pr_err("%s: bad filter string length\n", __func__);
3382                                 err = -EINVAL;
3383                                 goto err_free_queues;
3384                         }
3385                         pt->filter = memdup(filter, len);
3386                         if (!pt->filter) {
3387                                 err = -ENOMEM;
3388                                 goto err_free_queues;
3389                         }
3390                         if (session->header.needs_swap)
3391                                 mem_bswap_64(pt->filter, len);
3392                         if (pt->filter[len - 1]) {
3393                                 pr_err("%s: filter string not null terminated\n", __func__);
3394                                 err = -EINVAL;
3395                                 goto err_free_queues;
3396                         }
3397                         err = addr_filters__parse_bare_filter(&pt->filts,
3398                                                               filter);
3399                         if (err)
3400                                 goto err_free_queues;
3401                 }
3402                 intel_pt_print_info_str("Filter string", pt->filter);
3403         }
3404
3405         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3406         if (pt->timeless_decoding && !pt->tc.time_mult)
3407                 pt->tc.time_mult = 1;
3408         pt->have_tsc = intel_pt_have_tsc(pt);
3409         pt->sampling_mode = intel_pt_sampling_mode(pt);
3410         pt->est_tsc = !pt->timeless_decoding;
3411
3412         pt->unknown_thread = thread__new(999999999, 999999999);
3413         if (!pt->unknown_thread) {
3414                 err = -ENOMEM;
3415                 goto err_free_queues;
3416         }
3417
3418         /*
3419          * Since this thread will not be kept in any rbtree not in a
3420          * list, initialize its list node so that at thread__put() the
3421          * current thread lifetime assuption is kept and we don't segfault
3422          * at list_del_init().
3423          */
3424         INIT_LIST_HEAD(&pt->unknown_thread->node);
3425
3426         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3427         if (err)
3428                 goto err_delete_thread;
3429         if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3430                 err = -ENOMEM;
3431                 goto err_delete_thread;
3432         }
3433
3434         pt->auxtrace.process_event = intel_pt_process_event;
3435         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3436         pt->auxtrace.queue_data = intel_pt_queue_data;
3437         pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3438         pt->auxtrace.flush_events = intel_pt_flush;
3439         pt->auxtrace.free_events = intel_pt_free_events;
3440         pt->auxtrace.free = intel_pt_free;
3441         pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3442         session->auxtrace = &pt->auxtrace;
3443
3444         if (dump_trace)
3445                 return 0;
3446
3447         if (pt->have_sched_switch == 1) {
3448                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3449                 if (!pt->switch_evsel) {
3450                         pr_err("%s: missing sched_switch event\n", __func__);
3451                         err = -EINVAL;
3452                         goto err_delete_thread;
3453                 }
3454         } else if (pt->have_sched_switch == 2 &&
3455                    !intel_pt_find_switch(session->evlist)) {
3456                 pr_err("%s: missing context_switch attribute flag\n", __func__);
3457                 err = -EINVAL;
3458                 goto err_delete_thread;
3459         }
3460
3461         if (session->itrace_synth_opts->set) {
3462                 pt->synth_opts = *session->itrace_synth_opts;
3463         } else {
3464                 itrace_synth_opts__set_default(&pt->synth_opts,
3465                                 session->itrace_synth_opts->default_no_sample);
3466                 if (!session->itrace_synth_opts->default_no_sample &&
3467                     !session->itrace_synth_opts->inject) {
3468                         pt->synth_opts.branches = false;
3469                         pt->synth_opts.callchain = true;
3470                         pt->synth_opts.add_callchain = true;
3471                 }
3472                 pt->synth_opts.thread_stack =
3473                                 session->itrace_synth_opts->thread_stack;
3474         }
3475
3476         if (pt->synth_opts.log)
3477                 intel_pt_log_enable();
3478
3479         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3480         if (pt->tc.time_mult) {
3481                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3482
3483                 if (!pt->max_non_turbo_ratio)
3484                         pt->max_non_turbo_ratio =
3485                                         (tsc_freq + 50000000) / 100000000;
3486                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3487                 intel_pt_log("Maximum non-turbo ratio %u\n",
3488                              pt->max_non_turbo_ratio);
3489                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3490         }
3491
3492         err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3493         if (err)
3494                 goto err_delete_thread;
3495
3496         if (pt->synth_opts.calls)
3497                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3498                                        PERF_IP_FLAG_TRACE_END;
3499         if (pt->synth_opts.returns)
3500                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
3501                                        PERF_IP_FLAG_TRACE_BEGIN;
3502
3503         if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3504             !symbol_conf.use_callchain) {
3505                 symbol_conf.use_callchain = true;
3506                 if (callchain_register_param(&callchain_param) < 0) {
3507                         symbol_conf.use_callchain = false;
3508                         pt->synth_opts.callchain = false;
3509                         pt->synth_opts.add_callchain = false;
3510                 }
3511         }
3512
3513         if (pt->synth_opts.add_callchain) {
3514                 err = intel_pt_callchain_init(pt);
3515                 if (err)
3516                         goto err_delete_thread;
3517         }
3518
3519         if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3520                 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3521                 pt->br_stack_sz_plus = pt->br_stack_sz;
3522         }
3523
3524         if (pt->synth_opts.add_last_branch) {
3525                 err = intel_pt_br_stack_init(pt);
3526                 if (err)
3527                         goto err_delete_thread;
3528                 /*
3529                  * Additional branch stack size to cater for tracing from the
3530                  * actual sample ip to where the sample time is recorded.
3531                  * Measured at about 200 branches, but generously set to 1024.
3532                  * If kernel space is not being traced, then add just 1 for the
3533                  * branch to kernel space.
3534                  */
3535                 if (intel_pt_tracing_kernel(pt))
3536                         pt->br_stack_sz_plus += 1024;
3537                 else
3538                         pt->br_stack_sz_plus += 1;
3539         }
3540
3541         pt->use_thread_stack = pt->synth_opts.callchain ||
3542                                pt->synth_opts.add_callchain ||
3543                                pt->synth_opts.thread_stack ||
3544                                pt->synth_opts.last_branch ||
3545                                pt->synth_opts.add_last_branch;
3546
3547         pt->callstack = pt->synth_opts.callchain ||
3548                         pt->synth_opts.add_callchain ||
3549                         pt->synth_opts.thread_stack;
3550
3551         err = intel_pt_synth_events(pt, session);
3552         if (err)
3553                 goto err_delete_thread;
3554
3555         intel_pt_setup_pebs_events(pt);
3556
3557         if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3558                 err = auxtrace_queue_data(session, true, true);
3559         else
3560                 err = auxtrace_queues__process_index(&pt->queues, session);
3561         if (err)
3562                 goto err_delete_thread;
3563
3564         if (pt->queues.populated)
3565                 pt->data_queued = true;
3566
3567         if (pt->timeless_decoding)
3568                 pr_debug2("Intel PT decoding without timestamps\n");
3569
3570         return 0;
3571
3572 err_delete_thread:
3573         zfree(&pt->chain);
3574         thread__zput(pt->unknown_thread);
3575 err_free_queues:
3576         intel_pt_log_disable();
3577         auxtrace_queues__free(&pt->queues);
3578         session->auxtrace = NULL;
3579 err_free:
3580         addr_filters__exit(&pt->filts);
3581         zfree(&pt->filter);
3582         zfree(&pt->time_ranges);
3583         free(pt);
3584         return err;
3585 }