perf stat: Fix --no-scale
[linux-2.6-microblaze.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41
42 #include "sane_ctype.h"
43
44 struct perf_missing_features perf_missing_features;
45
46 static clockid_t clockid;
47
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50         return 0;
51 }
52
53 void __weak test_attr__ready(void) { }
54
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58
59 static struct {
60         size_t  size;
61         int     (*init)(struct perf_evsel *evsel);
62         void    (*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64         .size = sizeof(struct perf_evsel),
65         .init = perf_evsel__no_extra_init,
66         .fini = perf_evsel__no_extra_fini,
67 };
68
69 int perf_evsel__object_config(size_t object_size,
70                               int (*init)(struct perf_evsel *evsel),
71                               void (*fini)(struct perf_evsel *evsel))
72 {
73
74         if (object_size == 0)
75                 goto set_methods;
76
77         if (perf_evsel__object.size > object_size)
78                 return -EINVAL;
79
80         perf_evsel__object.size = object_size;
81
82 set_methods:
83         if (init != NULL)
84                 perf_evsel__object.init = init;
85
86         if (fini != NULL)
87                 perf_evsel__object.fini = fini;
88
89         return 0;
90 }
91
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93
94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96         u64 mask = sample_type & PERF_SAMPLE_MASK;
97         int size = 0;
98         int i;
99
100         for (i = 0; i < 64; i++) {
101                 if (mask & (1ULL << i))
102                         size++;
103         }
104
105         size *= sizeof(u64);
106
107         return size;
108 }
109
110 /**
111  * __perf_evsel__calc_id_pos - calculate id_pos.
112  * @sample_type: sample type
113  *
114  * This function returns the position of the event id (PERF_SAMPLE_ID or
115  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116  * sample_event.
117  */
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120         int idx = 0;
121
122         if (sample_type & PERF_SAMPLE_IDENTIFIER)
123                 return 0;
124
125         if (!(sample_type & PERF_SAMPLE_ID))
126                 return -1;
127
128         if (sample_type & PERF_SAMPLE_IP)
129                 idx += 1;
130
131         if (sample_type & PERF_SAMPLE_TID)
132                 idx += 1;
133
134         if (sample_type & PERF_SAMPLE_TIME)
135                 idx += 1;
136
137         if (sample_type & PERF_SAMPLE_ADDR)
138                 idx += 1;
139
140         return idx;
141 }
142
143 /**
144  * __perf_evsel__calc_is_pos - calculate is_pos.
145  * @sample_type: sample type
146  *
147  * This function returns the position (counting backwards) of the event id
148  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149  * sample_id_all is used there is an id sample appended to non-sample events.
150  */
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153         int idx = 1;
154
155         if (sample_type & PERF_SAMPLE_IDENTIFIER)
156                 return 1;
157
158         if (!(sample_type & PERF_SAMPLE_ID))
159                 return -1;
160
161         if (sample_type & PERF_SAMPLE_CPU)
162                 idx += 1;
163
164         if (sample_type & PERF_SAMPLE_STREAM_ID)
165                 idx += 1;
166
167         return idx;
168 }
169
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177                                   enum perf_event_sample_format bit)
178 {
179         if (!(evsel->attr.sample_type & bit)) {
180                 evsel->attr.sample_type |= bit;
181                 evsel->sample_size += sizeof(u64);
182                 perf_evsel__calc_id_pos(evsel);
183         }
184 }
185
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187                                     enum perf_event_sample_format bit)
188 {
189         if (evsel->attr.sample_type & bit) {
190                 evsel->attr.sample_type &= ~bit;
191                 evsel->sample_size -= sizeof(u64);
192                 perf_evsel__calc_id_pos(evsel);
193         }
194 }
195
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197                                bool can_sample_identifier)
198 {
199         if (can_sample_identifier) {
200                 perf_evsel__reset_sample_bit(evsel, ID);
201                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202         } else {
203                 perf_evsel__set_sample_bit(evsel, ID);
204         }
205         evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207
208 /**
209  * perf_evsel__is_function_event - Return whether given evsel is a function
210  * trace event
211  *
212  * @evsel - evsel selector to be tested
213  *
214  * Return %true if event is function trace event
215  */
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219
220         return evsel->name &&
221                !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222
223 #undef FUNCTION_EVENT
224 }
225
226 void perf_evsel__init(struct perf_evsel *evsel,
227                       struct perf_event_attr *attr, int idx)
228 {
229         evsel->idx         = idx;
230         evsel->tracking    = !idx;
231         evsel->attr        = *attr;
232         evsel->leader      = evsel;
233         evsel->unit        = "";
234         evsel->scale       = 1.0;
235         evsel->max_events  = ULONG_MAX;
236         evsel->evlist      = NULL;
237         evsel->bpf_fd      = -1;
238         INIT_LIST_HEAD(&evsel->node);
239         INIT_LIST_HEAD(&evsel->config_terms);
240         perf_evsel__object.init(evsel);
241         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
242         perf_evsel__calc_id_pos(evsel);
243         evsel->cmdline_group_boundary = false;
244         evsel->metric_expr   = NULL;
245         evsel->metric_name   = NULL;
246         evsel->metric_events = NULL;
247         evsel->collect_stat  = false;
248         evsel->pmu_name      = NULL;
249 }
250
251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
252 {
253         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
254
255         if (!evsel)
256                 return NULL;
257         perf_evsel__init(evsel, attr, idx);
258
259         if (perf_evsel__is_bpf_output(evsel)) {
260                 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
261                                             PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
262                 evsel->attr.sample_period = 1;
263         }
264
265         if (perf_evsel__is_clock(evsel)) {
266                 /*
267                  * The evsel->unit points to static alias->unit
268                  * so it's ok to use static string in here.
269                  */
270                 static const char *unit = "msec";
271
272                 evsel->unit = unit;
273                 evsel->scale = 1e-6;
274         }
275
276         return evsel;
277 }
278
279 static bool perf_event_can_profile_kernel(void)
280 {
281         return geteuid() == 0 || perf_event_paranoid() == -1;
282 }
283
284 struct perf_evsel *perf_evsel__new_cycles(bool precise)
285 {
286         struct perf_event_attr attr = {
287                 .type   = PERF_TYPE_HARDWARE,
288                 .config = PERF_COUNT_HW_CPU_CYCLES,
289                 .exclude_kernel = !perf_event_can_profile_kernel(),
290         };
291         struct perf_evsel *evsel;
292
293         event_attr_init(&attr);
294
295         if (!precise)
296                 goto new_event;
297
298         perf_event_attr__set_max_precise_ip(&attr);
299         /*
300          * Now let the usual logic to set up the perf_event_attr defaults
301          * to kick in when we return and before perf_evsel__open() is called.
302          */
303 new_event:
304         evsel = perf_evsel__new(&attr);
305         if (evsel == NULL)
306                 goto out;
307
308         /* use asprintf() because free(evsel) assumes name is allocated */
309         if (asprintf(&evsel->name, "cycles%s%s%.*s",
310                      (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
311                      attr.exclude_kernel ? "u" : "",
312                      attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
313                 goto error_free;
314 out:
315         return evsel;
316 error_free:
317         perf_evsel__delete(evsel);
318         evsel = NULL;
319         goto out;
320 }
321
322 /*
323  * Returns pointer with encoded error via <linux/err.h> interface.
324  */
325 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
326 {
327         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
328         int err = -ENOMEM;
329
330         if (evsel == NULL) {
331                 goto out_err;
332         } else {
333                 struct perf_event_attr attr = {
334                         .type          = PERF_TYPE_TRACEPOINT,
335                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
336                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
337                 };
338
339                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
340                         goto out_free;
341
342                 evsel->tp_format = trace_event__tp_format(sys, name);
343                 if (IS_ERR(evsel->tp_format)) {
344                         err = PTR_ERR(evsel->tp_format);
345                         goto out_free;
346                 }
347
348                 event_attr_init(&attr);
349                 attr.config = evsel->tp_format->id;
350                 attr.sample_period = 1;
351                 perf_evsel__init(evsel, &attr, idx);
352         }
353
354         return evsel;
355
356 out_free:
357         zfree(&evsel->name);
358         free(evsel);
359 out_err:
360         return ERR_PTR(err);
361 }
362
363 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
364         "cycles",
365         "instructions",
366         "cache-references",
367         "cache-misses",
368         "branches",
369         "branch-misses",
370         "bus-cycles",
371         "stalled-cycles-frontend",
372         "stalled-cycles-backend",
373         "ref-cycles",
374 };
375
376 static const char *__perf_evsel__hw_name(u64 config)
377 {
378         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
379                 return perf_evsel__hw_names[config];
380
381         return "unknown-hardware";
382 }
383
384 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
385 {
386         int colon = 0, r = 0;
387         struct perf_event_attr *attr = &evsel->attr;
388         bool exclude_guest_default = false;
389
390 #define MOD_PRINT(context, mod) do {                                    \
391                 if (!attr->exclude_##context) {                         \
392                         if (!colon) colon = ++r;                        \
393                         r += scnprintf(bf + r, size - r, "%c", mod);    \
394                 } } while(0)
395
396         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
397                 MOD_PRINT(kernel, 'k');
398                 MOD_PRINT(user, 'u');
399                 MOD_PRINT(hv, 'h');
400                 exclude_guest_default = true;
401         }
402
403         if (attr->precise_ip) {
404                 if (!colon)
405                         colon = ++r;
406                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
407                 exclude_guest_default = true;
408         }
409
410         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
411                 MOD_PRINT(host, 'H');
412                 MOD_PRINT(guest, 'G');
413         }
414 #undef MOD_PRINT
415         if (colon)
416                 bf[colon - 1] = ':';
417         return r;
418 }
419
420 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
421 {
422         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
423         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
424 }
425
426 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
427         "cpu-clock",
428         "task-clock",
429         "page-faults",
430         "context-switches",
431         "cpu-migrations",
432         "minor-faults",
433         "major-faults",
434         "alignment-faults",
435         "emulation-faults",
436         "dummy",
437 };
438
439 static const char *__perf_evsel__sw_name(u64 config)
440 {
441         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
442                 return perf_evsel__sw_names[config];
443         return "unknown-software";
444 }
445
446 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
447 {
448         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
449         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
450 }
451
452 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
453 {
454         int r;
455
456         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
457
458         if (type & HW_BREAKPOINT_R)
459                 r += scnprintf(bf + r, size - r, "r");
460
461         if (type & HW_BREAKPOINT_W)
462                 r += scnprintf(bf + r, size - r, "w");
463
464         if (type & HW_BREAKPOINT_X)
465                 r += scnprintf(bf + r, size - r, "x");
466
467         return r;
468 }
469
470 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
471 {
472         struct perf_event_attr *attr = &evsel->attr;
473         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
474         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
475 }
476
477 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
478                                 [PERF_EVSEL__MAX_ALIASES] = {
479  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
480  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
481  { "LLC",       "L2",                                                   },
482  { "dTLB",      "d-tlb",        "Data-TLB",                             },
483  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
484  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
485  { "node",                                                              },
486 };
487
488 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
489                                    [PERF_EVSEL__MAX_ALIASES] = {
490  { "load",      "loads",        "read",                                 },
491  { "store",     "stores",       "write",                                },
492  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
493 };
494
495 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
496                                        [PERF_EVSEL__MAX_ALIASES] = {
497  { "refs",      "Reference",    "ops",          "access",               },
498  { "misses",    "miss",                                                 },
499 };
500
501 #define C(x)            PERF_COUNT_HW_CACHE_##x
502 #define CACHE_READ      (1 << C(OP_READ))
503 #define CACHE_WRITE     (1 << C(OP_WRITE))
504 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
505 #define COP(x)          (1 << x)
506
507 /*
508  * cache operartion stat
509  * L1I : Read and prefetch only
510  * ITLB and BPU : Read-only
511  */
512 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
513  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
514  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
515  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
516  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
517  [C(ITLB)]      = (CACHE_READ),
518  [C(BPU)]       = (CACHE_READ),
519  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
520 };
521
522 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
523 {
524         if (perf_evsel__hw_cache_stat[type] & COP(op))
525                 return true;    /* valid */
526         else
527                 return false;   /* invalid */
528 }
529
530 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
531                                             char *bf, size_t size)
532 {
533         if (result) {
534                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
535                                  perf_evsel__hw_cache_op[op][0],
536                                  perf_evsel__hw_cache_result[result][0]);
537         }
538
539         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
540                          perf_evsel__hw_cache_op[op][1]);
541 }
542
543 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
544 {
545         u8 op, result, type = (config >>  0) & 0xff;
546         const char *err = "unknown-ext-hardware-cache-type";
547
548         if (type >= PERF_COUNT_HW_CACHE_MAX)
549                 goto out_err;
550
551         op = (config >>  8) & 0xff;
552         err = "unknown-ext-hardware-cache-op";
553         if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
554                 goto out_err;
555
556         result = (config >> 16) & 0xff;
557         err = "unknown-ext-hardware-cache-result";
558         if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
559                 goto out_err;
560
561         err = "invalid-cache";
562         if (!perf_evsel__is_cache_op_valid(type, op))
563                 goto out_err;
564
565         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
566 out_err:
567         return scnprintf(bf, size, "%s", err);
568 }
569
570 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
571 {
572         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
573         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
574 }
575
576 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
577 {
578         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
579         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
580 }
581
582 const char *perf_evsel__name(struct perf_evsel *evsel)
583 {
584         char bf[128];
585
586         if (evsel->name)
587                 return evsel->name;
588
589         switch (evsel->attr.type) {
590         case PERF_TYPE_RAW:
591                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
592                 break;
593
594         case PERF_TYPE_HARDWARE:
595                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
596                 break;
597
598         case PERF_TYPE_HW_CACHE:
599                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
600                 break;
601
602         case PERF_TYPE_SOFTWARE:
603                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
604                 break;
605
606         case PERF_TYPE_TRACEPOINT:
607                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
608                 break;
609
610         case PERF_TYPE_BREAKPOINT:
611                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
612                 break;
613
614         default:
615                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
616                           evsel->attr.type);
617                 break;
618         }
619
620         evsel->name = strdup(bf);
621
622         return evsel->name ?: "unknown";
623 }
624
625 const char *perf_evsel__group_name(struct perf_evsel *evsel)
626 {
627         return evsel->group_name ?: "anon group";
628 }
629
630 /*
631  * Returns the group details for the specified leader,
632  * with following rules.
633  *
634  *  For record -e '{cycles,instructions}'
635  *    'anon group { cycles:u, instructions:u }'
636  *
637  *  For record -e 'cycles,instructions' and report --group
638  *    'cycles:u, instructions:u'
639  */
640 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
641 {
642         int ret = 0;
643         struct perf_evsel *pos;
644         const char *group_name = perf_evsel__group_name(evsel);
645
646         if (!evsel->forced_leader)
647                 ret = scnprintf(buf, size, "%s { ", group_name);
648
649         ret += scnprintf(buf + ret, size - ret, "%s",
650                          perf_evsel__name(evsel));
651
652         for_each_group_member(pos, evsel)
653                 ret += scnprintf(buf + ret, size - ret, ", %s",
654                                  perf_evsel__name(pos));
655
656         if (!evsel->forced_leader)
657                 ret += scnprintf(buf + ret, size - ret, " }");
658
659         return ret;
660 }
661
662 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
663                                            struct record_opts *opts,
664                                            struct callchain_param *param)
665 {
666         bool function = perf_evsel__is_function_event(evsel);
667         struct perf_event_attr *attr = &evsel->attr;
668
669         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
670
671         attr->sample_max_stack = param->max_stack;
672
673         if (param->record_mode == CALLCHAIN_LBR) {
674                 if (!opts->branch_stack) {
675                         if (attr->exclude_user) {
676                                 pr_warning("LBR callstack option is only available "
677                                            "to get user callchain information. "
678                                            "Falling back to framepointers.\n");
679                         } else {
680                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
681                                 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
682                                                         PERF_SAMPLE_BRANCH_CALL_STACK |
683                                                         PERF_SAMPLE_BRANCH_NO_CYCLES |
684                                                         PERF_SAMPLE_BRANCH_NO_FLAGS;
685                         }
686                 } else
687                          pr_warning("Cannot use LBR callstack with branch stack. "
688                                     "Falling back to framepointers.\n");
689         }
690
691         if (param->record_mode == CALLCHAIN_DWARF) {
692                 if (!function) {
693                         perf_evsel__set_sample_bit(evsel, REGS_USER);
694                         perf_evsel__set_sample_bit(evsel, STACK_USER);
695                         attr->sample_regs_user |= PERF_REGS_MASK;
696                         attr->sample_stack_user = param->dump_size;
697                         attr->exclude_callchain_user = 1;
698                 } else {
699                         pr_info("Cannot use DWARF unwind for function trace event,"
700                                 " falling back to framepointers.\n");
701                 }
702         }
703
704         if (function) {
705                 pr_info("Disabling user space callchains for function trace event.\n");
706                 attr->exclude_callchain_user = 1;
707         }
708 }
709
710 void perf_evsel__config_callchain(struct perf_evsel *evsel,
711                                   struct record_opts *opts,
712                                   struct callchain_param *param)
713 {
714         if (param->enabled)
715                 return __perf_evsel__config_callchain(evsel, opts, param);
716 }
717
718 static void
719 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
720                             struct callchain_param *param)
721 {
722         struct perf_event_attr *attr = &evsel->attr;
723
724         perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
725         if (param->record_mode == CALLCHAIN_LBR) {
726                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
727                 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
728                                               PERF_SAMPLE_BRANCH_CALL_STACK);
729         }
730         if (param->record_mode == CALLCHAIN_DWARF) {
731                 perf_evsel__reset_sample_bit(evsel, REGS_USER);
732                 perf_evsel__reset_sample_bit(evsel, STACK_USER);
733         }
734 }
735
736 static void apply_config_terms(struct perf_evsel *evsel,
737                                struct record_opts *opts, bool track)
738 {
739         struct perf_evsel_config_term *term;
740         struct list_head *config_terms = &evsel->config_terms;
741         struct perf_event_attr *attr = &evsel->attr;
742         /* callgraph default */
743         struct callchain_param param = {
744                 .record_mode = callchain_param.record_mode,
745         };
746         u32 dump_size = 0;
747         int max_stack = 0;
748         const char *callgraph_buf = NULL;
749
750         list_for_each_entry(term, config_terms, list) {
751                 switch (term->type) {
752                 case PERF_EVSEL__CONFIG_TERM_PERIOD:
753                         if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
754                                 attr->sample_period = term->val.period;
755                                 attr->freq = 0;
756                                 perf_evsel__reset_sample_bit(evsel, PERIOD);
757                         }
758                         break;
759                 case PERF_EVSEL__CONFIG_TERM_FREQ:
760                         if (!(term->weak && opts->user_freq != UINT_MAX)) {
761                                 attr->sample_freq = term->val.freq;
762                                 attr->freq = 1;
763                                 perf_evsel__set_sample_bit(evsel, PERIOD);
764                         }
765                         break;
766                 case PERF_EVSEL__CONFIG_TERM_TIME:
767                         if (term->val.time)
768                                 perf_evsel__set_sample_bit(evsel, TIME);
769                         else
770                                 perf_evsel__reset_sample_bit(evsel, TIME);
771                         break;
772                 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
773                         callgraph_buf = term->val.callgraph;
774                         break;
775                 case PERF_EVSEL__CONFIG_TERM_BRANCH:
776                         if (term->val.branch && strcmp(term->val.branch, "no")) {
777                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
778                                 parse_branch_str(term->val.branch,
779                                                  &attr->branch_sample_type);
780                         } else
781                                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
782                         break;
783                 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
784                         dump_size = term->val.stack_user;
785                         break;
786                 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
787                         max_stack = term->val.max_stack;
788                         break;
789                 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
790                         evsel->max_events = term->val.max_events;
791                         break;
792                 case PERF_EVSEL__CONFIG_TERM_INHERIT:
793                         /*
794                          * attr->inherit should has already been set by
795                          * perf_evsel__config. If user explicitly set
796                          * inherit using config terms, override global
797                          * opt->no_inherit setting.
798                          */
799                         attr->inherit = term->val.inherit ? 1 : 0;
800                         break;
801                 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
802                         attr->write_backward = term->val.overwrite ? 1 : 0;
803                         break;
804                 case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
805                         break;
806                 default:
807                         break;
808                 }
809         }
810
811         /* User explicitly set per-event callgraph, clear the old setting and reset. */
812         if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
813                 bool sample_address = false;
814
815                 if (max_stack) {
816                         param.max_stack = max_stack;
817                         if (callgraph_buf == NULL)
818                                 callgraph_buf = "fp";
819                 }
820
821                 /* parse callgraph parameters */
822                 if (callgraph_buf != NULL) {
823                         if (!strcmp(callgraph_buf, "no")) {
824                                 param.enabled = false;
825                                 param.record_mode = CALLCHAIN_NONE;
826                         } else {
827                                 param.enabled = true;
828                                 if (parse_callchain_record(callgraph_buf, &param)) {
829                                         pr_err("per-event callgraph setting for %s failed. "
830                                                "Apply callgraph global setting for it\n",
831                                                evsel->name);
832                                         return;
833                                 }
834                                 if (param.record_mode == CALLCHAIN_DWARF)
835                                         sample_address = true;
836                         }
837                 }
838                 if (dump_size > 0) {
839                         dump_size = round_up(dump_size, sizeof(u64));
840                         param.dump_size = dump_size;
841                 }
842
843                 /* If global callgraph set, clear it */
844                 if (callchain_param.enabled)
845                         perf_evsel__reset_callgraph(evsel, &callchain_param);
846
847                 /* set perf-event callgraph */
848                 if (param.enabled) {
849                         if (sample_address) {
850                                 perf_evsel__set_sample_bit(evsel, ADDR);
851                                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
852                                 evsel->attr.mmap_data = track;
853                         }
854                         perf_evsel__config_callchain(evsel, opts, &param);
855                 }
856         }
857 }
858
859 static bool is_dummy_event(struct perf_evsel *evsel)
860 {
861         return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
862                (evsel->attr.config == PERF_COUNT_SW_DUMMY);
863 }
864
865 /*
866  * The enable_on_exec/disabled value strategy:
867  *
868  *  1) For any type of traced program:
869  *    - all independent events and group leaders are disabled
870  *    - all group members are enabled
871  *
872  *     Group members are ruled by group leaders. They need to
873  *     be enabled, because the group scheduling relies on that.
874  *
875  *  2) For traced programs executed by perf:
876  *     - all independent events and group leaders have
877  *       enable_on_exec set
878  *     - we don't specifically enable or disable any event during
879  *       the record command
880  *
881  *     Independent events and group leaders are initially disabled
882  *     and get enabled by exec. Group members are ruled by group
883  *     leaders as stated in 1).
884  *
885  *  3) For traced programs attached by perf (pid/tid):
886  *     - we specifically enable or disable all events during
887  *       the record command
888  *
889  *     When attaching events to already running traced we
890  *     enable/disable events specifically, as there's no
891  *     initial traced exec call.
892  */
893 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
894                         struct callchain_param *callchain)
895 {
896         struct perf_evsel *leader = evsel->leader;
897         struct perf_event_attr *attr = &evsel->attr;
898         int track = evsel->tracking;
899         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
900
901         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
902         attr->inherit       = !opts->no_inherit;
903         attr->write_backward = opts->overwrite ? 1 : 0;
904
905         perf_evsel__set_sample_bit(evsel, IP);
906         perf_evsel__set_sample_bit(evsel, TID);
907
908         if (evsel->sample_read) {
909                 perf_evsel__set_sample_bit(evsel, READ);
910
911                 /*
912                  * We need ID even in case of single event, because
913                  * PERF_SAMPLE_READ process ID specific data.
914                  */
915                 perf_evsel__set_sample_id(evsel, false);
916
917                 /*
918                  * Apply group format only if we belong to group
919                  * with more than one members.
920                  */
921                 if (leader->nr_members > 1) {
922                         attr->read_format |= PERF_FORMAT_GROUP;
923                         attr->inherit = 0;
924                 }
925         }
926
927         /*
928          * We default some events to have a default interval. But keep
929          * it a weak assumption overridable by the user.
930          */
931         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
932                                      opts->user_interval != ULLONG_MAX)) {
933                 if (opts->freq) {
934                         perf_evsel__set_sample_bit(evsel, PERIOD);
935                         attr->freq              = 1;
936                         attr->sample_freq       = opts->freq;
937                 } else {
938                         attr->sample_period = opts->default_interval;
939                 }
940         }
941
942         /*
943          * Disable sampling for all group members other
944          * than leader in case leader 'leads' the sampling.
945          */
946         if ((leader != evsel) && leader->sample_read) {
947                 attr->freq           = 0;
948                 attr->sample_freq    = 0;
949                 attr->sample_period  = 0;
950                 attr->write_backward = 0;
951
952                 /*
953                  * We don't get sample for slave events, we make them
954                  * when delivering group leader sample. Set the slave
955                  * event to follow the master sample_type to ease up
956                  * report.
957                  */
958                 attr->sample_type = leader->attr.sample_type;
959         }
960
961         if (opts->no_samples)
962                 attr->sample_freq = 0;
963
964         if (opts->inherit_stat) {
965                 evsel->attr.read_format |=
966                         PERF_FORMAT_TOTAL_TIME_ENABLED |
967                         PERF_FORMAT_TOTAL_TIME_RUNNING |
968                         PERF_FORMAT_ID;
969                 attr->inherit_stat = 1;
970         }
971
972         if (opts->sample_address) {
973                 perf_evsel__set_sample_bit(evsel, ADDR);
974                 attr->mmap_data = track;
975         }
976
977         /*
978          * We don't allow user space callchains for  function trace
979          * event, due to issues with page faults while tracing page
980          * fault handler and its overall trickiness nature.
981          */
982         if (perf_evsel__is_function_event(evsel))
983                 evsel->attr.exclude_callchain_user = 1;
984
985         if (callchain && callchain->enabled && !evsel->no_aux_samples)
986                 perf_evsel__config_callchain(evsel, opts, callchain);
987
988         if (opts->sample_intr_regs) {
989                 attr->sample_regs_intr = opts->sample_intr_regs;
990                 perf_evsel__set_sample_bit(evsel, REGS_INTR);
991         }
992
993         if (opts->sample_user_regs) {
994                 attr->sample_regs_user |= opts->sample_user_regs;
995                 perf_evsel__set_sample_bit(evsel, REGS_USER);
996         }
997
998         if (target__has_cpu(&opts->target) || opts->sample_cpu)
999                 perf_evsel__set_sample_bit(evsel, CPU);
1000
1001         /*
1002          * When the user explicitly disabled time don't force it here.
1003          */
1004         if (opts->sample_time &&
1005             (!perf_missing_features.sample_id_all &&
1006             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1007              opts->sample_time_set)))
1008                 perf_evsel__set_sample_bit(evsel, TIME);
1009
1010         if (opts->raw_samples && !evsel->no_aux_samples) {
1011                 perf_evsel__set_sample_bit(evsel, TIME);
1012                 perf_evsel__set_sample_bit(evsel, RAW);
1013                 perf_evsel__set_sample_bit(evsel, CPU);
1014         }
1015
1016         if (opts->sample_address)
1017                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
1018
1019         if (opts->sample_phys_addr)
1020                 perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1021
1022         if (opts->no_buffering) {
1023                 attr->watermark = 0;
1024                 attr->wakeup_events = 1;
1025         }
1026         if (opts->branch_stack && !evsel->no_aux_samples) {
1027                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1028                 attr->branch_sample_type = opts->branch_stack;
1029         }
1030
1031         if (opts->sample_weight)
1032                 perf_evsel__set_sample_bit(evsel, WEIGHT);
1033
1034         attr->task  = track;
1035         attr->mmap  = track;
1036         attr->mmap2 = track && !perf_missing_features.mmap2;
1037         attr->comm  = track;
1038         attr->ksymbol = track && !perf_missing_features.ksymbol;
1039         attr->bpf_event = track && opts->bpf_event &&
1040                 !perf_missing_features.bpf_event;
1041
1042         if (opts->record_namespaces)
1043                 attr->namespaces  = track;
1044
1045         if (opts->record_switch_events)
1046                 attr->context_switch = track;
1047
1048         if (opts->sample_transaction)
1049                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
1050
1051         if (opts->running_time) {
1052                 evsel->attr.read_format |=
1053                         PERF_FORMAT_TOTAL_TIME_ENABLED |
1054                         PERF_FORMAT_TOTAL_TIME_RUNNING;
1055         }
1056
1057         /*
1058          * XXX see the function comment above
1059          *
1060          * Disabling only independent events or group leaders,
1061          * keeping group members enabled.
1062          */
1063         if (perf_evsel__is_group_leader(evsel))
1064                 attr->disabled = 1;
1065
1066         /*
1067          * Setting enable_on_exec for independent events and
1068          * group leaders for traced executed by perf.
1069          */
1070         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1071                 !opts->initial_delay)
1072                 attr->enable_on_exec = 1;
1073
1074         if (evsel->immediate) {
1075                 attr->disabled = 0;
1076                 attr->enable_on_exec = 0;
1077         }
1078
1079         clockid = opts->clockid;
1080         if (opts->use_clockid) {
1081                 attr->use_clockid = 1;
1082                 attr->clockid = opts->clockid;
1083         }
1084
1085         if (evsel->precise_max)
1086                 perf_event_attr__set_max_precise_ip(attr);
1087
1088         if (opts->all_user) {
1089                 attr->exclude_kernel = 1;
1090                 attr->exclude_user   = 0;
1091         }
1092
1093         if (opts->all_kernel) {
1094                 attr->exclude_kernel = 0;
1095                 attr->exclude_user   = 1;
1096         }
1097
1098         if (evsel->own_cpus || evsel->unit)
1099                 evsel->attr.read_format |= PERF_FORMAT_ID;
1100
1101         /*
1102          * Apply event specific term settings,
1103          * it overloads any global configuration.
1104          */
1105         apply_config_terms(evsel, opts, track);
1106
1107         evsel->ignore_missing_thread = opts->ignore_missing_thread;
1108
1109         /* The --period option takes the precedence. */
1110         if (opts->period_set) {
1111                 if (opts->period)
1112                         perf_evsel__set_sample_bit(evsel, PERIOD);
1113                 else
1114                         perf_evsel__reset_sample_bit(evsel, PERIOD);
1115         }
1116
1117         /*
1118          * For initial_delay, a dummy event is added implicitly.
1119          * The software event will trigger -EOPNOTSUPP error out,
1120          * if BRANCH_STACK bit is set.
1121          */
1122         if (opts->initial_delay && is_dummy_event(evsel))
1123                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1124 }
1125
1126 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1127 {
1128         if (evsel->system_wide)
1129                 nthreads = 1;
1130
1131         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1132
1133         if (evsel->fd) {
1134                 int cpu, thread;
1135                 for (cpu = 0; cpu < ncpus; cpu++) {
1136                         for (thread = 0; thread < nthreads; thread++) {
1137                                 FD(evsel, cpu, thread) = -1;
1138                         }
1139                 }
1140         }
1141
1142         return evsel->fd != NULL ? 0 : -ENOMEM;
1143 }
1144
1145 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1146                           int ioc,  void *arg)
1147 {
1148         int cpu, thread;
1149
1150         for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1151                 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1152                         int fd = FD(evsel, cpu, thread),
1153                             err = ioctl(fd, ioc, arg);
1154
1155                         if (err)
1156                                 return err;
1157                 }
1158         }
1159
1160         return 0;
1161 }
1162
1163 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1164 {
1165         return perf_evsel__run_ioctl(evsel,
1166                                      PERF_EVENT_IOC_SET_FILTER,
1167                                      (void *)filter);
1168 }
1169
1170 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1171 {
1172         char *new_filter = strdup(filter);
1173
1174         if (new_filter != NULL) {
1175                 free(evsel->filter);
1176                 evsel->filter = new_filter;
1177                 return 0;
1178         }
1179
1180         return -1;
1181 }
1182
1183 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1184                                      const char *fmt, const char *filter)
1185 {
1186         char *new_filter;
1187
1188         if (evsel->filter == NULL)
1189                 return perf_evsel__set_filter(evsel, filter);
1190
1191         if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1192                 free(evsel->filter);
1193                 evsel->filter = new_filter;
1194                 return 0;
1195         }
1196
1197         return -1;
1198 }
1199
1200 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1201 {
1202         return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1203 }
1204
1205 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1206 {
1207         return perf_evsel__append_filter(evsel, "%s,%s", filter);
1208 }
1209
1210 int perf_evsel__enable(struct perf_evsel *evsel)
1211 {
1212         int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);
1213
1214         if (!err)
1215                 evsel->disabled = false;
1216
1217         return err;
1218 }
1219
1220 int perf_evsel__disable(struct perf_evsel *evsel)
1221 {
1222         int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
1223         /*
1224          * We mark it disabled here so that tools that disable a event can
1225          * ignore events after they disable it. I.e. the ring buffer may have
1226          * already a few more events queued up before the kernel got the stop
1227          * request.
1228          */
1229         if (!err)
1230                 evsel->disabled = true;
1231
1232         return err;
1233 }
1234
1235 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1236 {
1237         if (ncpus == 0 || nthreads == 0)
1238                 return 0;
1239
1240         if (evsel->system_wide)
1241                 nthreads = 1;
1242
1243         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1244         if (evsel->sample_id == NULL)
1245                 return -ENOMEM;
1246
1247         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1248         if (evsel->id == NULL) {
1249                 xyarray__delete(evsel->sample_id);
1250                 evsel->sample_id = NULL;
1251                 return -ENOMEM;
1252         }
1253
1254         return 0;
1255 }
1256
1257 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1258 {
1259         xyarray__delete(evsel->fd);
1260         evsel->fd = NULL;
1261 }
1262
1263 static void perf_evsel__free_id(struct perf_evsel *evsel)
1264 {
1265         xyarray__delete(evsel->sample_id);
1266         evsel->sample_id = NULL;
1267         zfree(&evsel->id);
1268 }
1269
1270 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1271 {
1272         struct perf_evsel_config_term *term, *h;
1273
1274         list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1275                 list_del(&term->list);
1276                 free(term);
1277         }
1278 }
1279
1280 void perf_evsel__close_fd(struct perf_evsel *evsel)
1281 {
1282         int cpu, thread;
1283
1284         for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1285                 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1286                         close(FD(evsel, cpu, thread));
1287                         FD(evsel, cpu, thread) = -1;
1288                 }
1289 }
1290
1291 void perf_evsel__exit(struct perf_evsel *evsel)
1292 {
1293         assert(list_empty(&evsel->node));
1294         assert(evsel->evlist == NULL);
1295         perf_evsel__free_fd(evsel);
1296         perf_evsel__free_id(evsel);
1297         perf_evsel__free_config_terms(evsel);
1298         cgroup__put(evsel->cgrp);
1299         cpu_map__put(evsel->cpus);
1300         cpu_map__put(evsel->own_cpus);
1301         thread_map__put(evsel->threads);
1302         zfree(&evsel->group_name);
1303         zfree(&evsel->name);
1304         perf_evsel__object.fini(evsel);
1305 }
1306
1307 void perf_evsel__delete(struct perf_evsel *evsel)
1308 {
1309         perf_evsel__exit(evsel);
1310         free(evsel);
1311 }
1312
1313 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1314                                 struct perf_counts_values *count)
1315 {
1316         struct perf_counts_values tmp;
1317
1318         if (!evsel->prev_raw_counts)
1319                 return;
1320
1321         if (cpu == -1) {
1322                 tmp = evsel->prev_raw_counts->aggr;
1323                 evsel->prev_raw_counts->aggr = *count;
1324         } else {
1325                 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1326                 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1327         }
1328
1329         count->val = count->val - tmp.val;
1330         count->ena = count->ena - tmp.ena;
1331         count->run = count->run - tmp.run;
1332 }
1333
1334 void perf_counts_values__scale(struct perf_counts_values *count,
1335                                bool scale, s8 *pscaled)
1336 {
1337         s8 scaled = 0;
1338
1339         if (scale) {
1340                 if (count->run == 0) {
1341                         scaled = -1;
1342                         count->val = 0;
1343                 } else if (count->run < count->ena) {
1344                         scaled = 1;
1345                         count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1346                 }
1347         }
1348
1349         if (pscaled)
1350                 *pscaled = scaled;
1351 }
1352
1353 static int perf_evsel__read_size(struct perf_evsel *evsel)
1354 {
1355         u64 read_format = evsel->attr.read_format;
1356         int entry = sizeof(u64); /* value */
1357         int size = 0;
1358         int nr = 1;
1359
1360         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1361                 size += sizeof(u64);
1362
1363         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1364                 size += sizeof(u64);
1365
1366         if (read_format & PERF_FORMAT_ID)
1367                 entry += sizeof(u64);
1368
1369         if (read_format & PERF_FORMAT_GROUP) {
1370                 nr = evsel->nr_members;
1371                 size += sizeof(u64);
1372         }
1373
1374         size += entry * nr;
1375         return size;
1376 }
1377
1378 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1379                      struct perf_counts_values *count)
1380 {
1381         size_t size = perf_evsel__read_size(evsel);
1382
1383         memset(count, 0, sizeof(*count));
1384
1385         if (FD(evsel, cpu, thread) < 0)
1386                 return -EINVAL;
1387
1388         if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1389                 return -errno;
1390
1391         return 0;
1392 }
1393
1394 static int
1395 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1396 {
1397         struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1398
1399         return perf_evsel__read(evsel, cpu, thread, count);
1400 }
1401
1402 static void
1403 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1404                       u64 val, u64 ena, u64 run)
1405 {
1406         struct perf_counts_values *count;
1407
1408         count = perf_counts(counter->counts, cpu, thread);
1409
1410         count->val    = val;
1411         count->ena    = ena;
1412         count->run    = run;
1413         count->loaded = true;
1414 }
1415
1416 static int
1417 perf_evsel__process_group_data(struct perf_evsel *leader,
1418                                int cpu, int thread, u64 *data)
1419 {
1420         u64 read_format = leader->attr.read_format;
1421         struct sample_read_value *v;
1422         u64 nr, ena = 0, run = 0, i;
1423
1424         nr = *data++;
1425
1426         if (nr != (u64) leader->nr_members)
1427                 return -EINVAL;
1428
1429         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1430                 ena = *data++;
1431
1432         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1433                 run = *data++;
1434
1435         v = (struct sample_read_value *) data;
1436
1437         perf_evsel__set_count(leader, cpu, thread,
1438                               v[0].value, ena, run);
1439
1440         for (i = 1; i < nr; i++) {
1441                 struct perf_evsel *counter;
1442
1443                 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1444                 if (!counter)
1445                         return -EINVAL;
1446
1447                 perf_evsel__set_count(counter, cpu, thread,
1448                                       v[i].value, ena, run);
1449         }
1450
1451         return 0;
1452 }
1453
1454 static int
1455 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1456 {
1457         struct perf_stat_evsel *ps = leader->stats;
1458         u64 read_format = leader->attr.read_format;
1459         int size = perf_evsel__read_size(leader);
1460         u64 *data = ps->group_data;
1461
1462         if (!(read_format & PERF_FORMAT_ID))
1463                 return -EINVAL;
1464
1465         if (!perf_evsel__is_group_leader(leader))
1466                 return -EINVAL;
1467
1468         if (!data) {
1469                 data = zalloc(size);
1470                 if (!data)
1471                         return -ENOMEM;
1472
1473                 ps->group_data = data;
1474         }
1475
1476         if (FD(leader, cpu, thread) < 0)
1477                 return -EINVAL;
1478
1479         if (readn(FD(leader, cpu, thread), data, size) <= 0)
1480                 return -errno;
1481
1482         return perf_evsel__process_group_data(leader, cpu, thread, data);
1483 }
1484
1485 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1486 {
1487         u64 read_format = evsel->attr.read_format;
1488
1489         if (read_format & PERF_FORMAT_GROUP)
1490                 return perf_evsel__read_group(evsel, cpu, thread);
1491         else
1492                 return perf_evsel__read_one(evsel, cpu, thread);
1493 }
1494
1495 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1496                               int cpu, int thread, bool scale)
1497 {
1498         struct perf_counts_values count;
1499         size_t nv = scale ? 3 : 1;
1500
1501         if (FD(evsel, cpu, thread) < 0)
1502                 return -EINVAL;
1503
1504         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1505                 return -ENOMEM;
1506
1507         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1508                 return -errno;
1509
1510         perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1511         perf_counts_values__scale(&count, scale, NULL);
1512         *perf_counts(evsel->counts, cpu, thread) = count;
1513         return 0;
1514 }
1515
1516 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1517 {
1518         struct perf_evsel *leader = evsel->leader;
1519         int fd;
1520
1521         if (perf_evsel__is_group_leader(evsel))
1522                 return -1;
1523
1524         /*
1525          * Leader must be already processed/open,
1526          * if not it's a bug.
1527          */
1528         BUG_ON(!leader->fd);
1529
1530         fd = FD(leader, cpu, thread);
1531         BUG_ON(fd == -1);
1532
1533         return fd;
1534 }
1535
1536 struct bit_names {
1537         int bit;
1538         const char *name;
1539 };
1540
1541 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1542 {
1543         bool first_bit = true;
1544         int i = 0;
1545
1546         do {
1547                 if (value & bits[i].bit) {
1548                         buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1549                         first_bit = false;
1550                 }
1551         } while (bits[++i].name != NULL);
1552 }
1553
1554 static void __p_sample_type(char *buf, size_t size, u64 value)
1555 {
1556 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1557         struct bit_names bits[] = {
1558                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1559                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1560                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1561                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1562                 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1563                 bit_name(WEIGHT), bit_name(PHYS_ADDR),
1564                 { .name = NULL, }
1565         };
1566 #undef bit_name
1567         __p_bits(buf, size, value, bits);
1568 }
1569
1570 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1571 {
1572 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1573         struct bit_names bits[] = {
1574                 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1575                 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1576                 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1577                 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1578                 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1579                 { .name = NULL, }
1580         };
1581 #undef bit_name
1582         __p_bits(buf, size, value, bits);
1583 }
1584
1585 static void __p_read_format(char *buf, size_t size, u64 value)
1586 {
1587 #define bit_name(n) { PERF_FORMAT_##n, #n }
1588         struct bit_names bits[] = {
1589                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1590                 bit_name(ID), bit_name(GROUP),
1591                 { .name = NULL, }
1592         };
1593 #undef bit_name
1594         __p_bits(buf, size, value, bits);
1595 }
1596
1597 #define BUF_SIZE                1024
1598
1599 #define p_hex(val)              snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1600 #define p_unsigned(val)         snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1601 #define p_signed(val)           snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1602 #define p_sample_type(val)      __p_sample_type(buf, BUF_SIZE, val)
1603 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1604 #define p_read_format(val)      __p_read_format(buf, BUF_SIZE, val)
1605
1606 #define PRINT_ATTRn(_n, _f, _p)                         \
1607 do {                                                    \
1608         if (attr->_f) {                                 \
1609                 _p(attr->_f);                           \
1610                 ret += attr__fprintf(fp, _n, buf, priv);\
1611         }                                               \
1612 } while (0)
1613
1614 #define PRINT_ATTRf(_f, _p)     PRINT_ATTRn(#_f, _f, _p)
1615
1616 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1617                              attr__fprintf_f attr__fprintf, void *priv)
1618 {
1619         char buf[BUF_SIZE];
1620         int ret = 0;
1621
1622         PRINT_ATTRf(type, p_unsigned);
1623         PRINT_ATTRf(size, p_unsigned);
1624         PRINT_ATTRf(config, p_hex);
1625         PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1626         PRINT_ATTRf(sample_type, p_sample_type);
1627         PRINT_ATTRf(read_format, p_read_format);
1628
1629         PRINT_ATTRf(disabled, p_unsigned);
1630         PRINT_ATTRf(inherit, p_unsigned);
1631         PRINT_ATTRf(pinned, p_unsigned);
1632         PRINT_ATTRf(exclusive, p_unsigned);
1633         PRINT_ATTRf(exclude_user, p_unsigned);
1634         PRINT_ATTRf(exclude_kernel, p_unsigned);
1635         PRINT_ATTRf(exclude_hv, p_unsigned);
1636         PRINT_ATTRf(exclude_idle, p_unsigned);
1637         PRINT_ATTRf(mmap, p_unsigned);
1638         PRINT_ATTRf(comm, p_unsigned);
1639         PRINT_ATTRf(freq, p_unsigned);
1640         PRINT_ATTRf(inherit_stat, p_unsigned);
1641         PRINT_ATTRf(enable_on_exec, p_unsigned);
1642         PRINT_ATTRf(task, p_unsigned);
1643         PRINT_ATTRf(watermark, p_unsigned);
1644         PRINT_ATTRf(precise_ip, p_unsigned);
1645         PRINT_ATTRf(mmap_data, p_unsigned);
1646         PRINT_ATTRf(sample_id_all, p_unsigned);
1647         PRINT_ATTRf(exclude_host, p_unsigned);
1648         PRINT_ATTRf(exclude_guest, p_unsigned);
1649         PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1650         PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1651         PRINT_ATTRf(mmap2, p_unsigned);
1652         PRINT_ATTRf(comm_exec, p_unsigned);
1653         PRINT_ATTRf(use_clockid, p_unsigned);
1654         PRINT_ATTRf(context_switch, p_unsigned);
1655         PRINT_ATTRf(write_backward, p_unsigned);
1656         PRINT_ATTRf(namespaces, p_unsigned);
1657         PRINT_ATTRf(ksymbol, p_unsigned);
1658         PRINT_ATTRf(bpf_event, p_unsigned);
1659
1660         PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1661         PRINT_ATTRf(bp_type, p_unsigned);
1662         PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1663         PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1664         PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1665         PRINT_ATTRf(sample_regs_user, p_hex);
1666         PRINT_ATTRf(sample_stack_user, p_unsigned);
1667         PRINT_ATTRf(clockid, p_signed);
1668         PRINT_ATTRf(sample_regs_intr, p_hex);
1669         PRINT_ATTRf(aux_watermark, p_unsigned);
1670         PRINT_ATTRf(sample_max_stack, p_unsigned);
1671
1672         return ret;
1673 }
1674
1675 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1676                                 void *priv __maybe_unused)
1677 {
1678         return fprintf(fp, "  %-32s %s\n", name, val);
1679 }
1680
1681 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1682                                   int nr_cpus, int nr_threads,
1683                                   int thread_idx)
1684 {
1685         for (int cpu = 0; cpu < nr_cpus; cpu++)
1686                 for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1687                         FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1688 }
1689
1690 static int update_fds(struct perf_evsel *evsel,
1691                       int nr_cpus, int cpu_idx,
1692                       int nr_threads, int thread_idx)
1693 {
1694         struct perf_evsel *pos;
1695
1696         if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1697                 return -EINVAL;
1698
1699         evlist__for_each_entry(evsel->evlist, pos) {
1700                 nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1701
1702                 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1703
1704                 /*
1705                  * Since fds for next evsel has not been created,
1706                  * there is no need to iterate whole event list.
1707                  */
1708                 if (pos == evsel)
1709                         break;
1710         }
1711         return 0;
1712 }
1713
1714 static bool ignore_missing_thread(struct perf_evsel *evsel,
1715                                   int nr_cpus, int cpu,
1716                                   struct thread_map *threads,
1717                                   int thread, int err)
1718 {
1719         pid_t ignore_pid = thread_map__pid(threads, thread);
1720
1721         if (!evsel->ignore_missing_thread)
1722                 return false;
1723
1724         /* The system wide setup does not work with threads. */
1725         if (evsel->system_wide)
1726                 return false;
1727
1728         /* The -ESRCH is perf event syscall errno for pid's not found. */
1729         if (err != -ESRCH)
1730                 return false;
1731
1732         /* If there's only one thread, let it fail. */
1733         if (threads->nr == 1)
1734                 return false;
1735
1736         /*
1737          * We should remove fd for missing_thread first
1738          * because thread_map__remove() will decrease threads->nr.
1739          */
1740         if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1741                 return false;
1742
1743         if (thread_map__remove(threads, thread))
1744                 return false;
1745
1746         pr_warning("WARNING: Ignored open failure for pid %d\n",
1747                    ignore_pid);
1748         return true;
1749 }
1750
1751 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1752                      struct thread_map *threads)
1753 {
1754         int cpu, thread, nthreads;
1755         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1756         int pid = -1, err;
1757         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1758
1759         if (perf_missing_features.write_backward && evsel->attr.write_backward)
1760                 return -EINVAL;
1761
1762         if (cpus == NULL) {
1763                 static struct cpu_map *empty_cpu_map;
1764
1765                 if (empty_cpu_map == NULL) {
1766                         empty_cpu_map = cpu_map__dummy_new();
1767                         if (empty_cpu_map == NULL)
1768                                 return -ENOMEM;
1769                 }
1770
1771                 cpus = empty_cpu_map;
1772         }
1773
1774         if (threads == NULL) {
1775                 static struct thread_map *empty_thread_map;
1776
1777                 if (empty_thread_map == NULL) {
1778                         empty_thread_map = thread_map__new_by_tid(-1);
1779                         if (empty_thread_map == NULL)
1780                                 return -ENOMEM;
1781                 }
1782
1783                 threads = empty_thread_map;
1784         }
1785
1786         if (evsel->system_wide)
1787                 nthreads = 1;
1788         else
1789                 nthreads = threads->nr;
1790
1791         if (evsel->fd == NULL &&
1792             perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1793                 return -ENOMEM;
1794
1795         if (evsel->cgrp) {
1796                 flags |= PERF_FLAG_PID_CGROUP;
1797                 pid = evsel->cgrp->fd;
1798         }
1799
1800 fallback_missing_features:
1801         if (perf_missing_features.clockid_wrong)
1802                 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1803         if (perf_missing_features.clockid) {
1804                 evsel->attr.use_clockid = 0;
1805                 evsel->attr.clockid = 0;
1806         }
1807         if (perf_missing_features.cloexec)
1808                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1809         if (perf_missing_features.mmap2)
1810                 evsel->attr.mmap2 = 0;
1811         if (perf_missing_features.exclude_guest)
1812                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1813         if (perf_missing_features.lbr_flags)
1814                 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1815                                      PERF_SAMPLE_BRANCH_NO_CYCLES);
1816         if (perf_missing_features.group_read && evsel->attr.inherit)
1817                 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1818         if (perf_missing_features.ksymbol)
1819                 evsel->attr.ksymbol = 0;
1820         if (perf_missing_features.bpf_event)
1821                 evsel->attr.bpf_event = 0;
1822 retry_sample_id:
1823         if (perf_missing_features.sample_id_all)
1824                 evsel->attr.sample_id_all = 0;
1825
1826         if (verbose >= 2) {
1827                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1828                 fprintf(stderr, "perf_event_attr:\n");
1829                 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1830                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1831         }
1832
1833         for (cpu = 0; cpu < cpus->nr; cpu++) {
1834
1835                 for (thread = 0; thread < nthreads; thread++) {
1836                         int fd, group_fd;
1837
1838                         if (!evsel->cgrp && !evsel->system_wide)
1839                                 pid = thread_map__pid(threads, thread);
1840
1841                         group_fd = get_group_fd(evsel, cpu, thread);
1842 retry_open:
1843                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1844                                   pid, cpus->map[cpu], group_fd, flags);
1845
1846                         test_attr__ready();
1847
1848                         fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1849                                                  group_fd, flags);
1850
1851                         FD(evsel, cpu, thread) = fd;
1852
1853                         if (fd < 0) {
1854                                 err = -errno;
1855
1856                                 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1857                                         /*
1858                                          * We just removed 1 thread, so take a step
1859                                          * back on thread index and lower the upper
1860                                          * nthreads limit.
1861                                          */
1862                                         nthreads--;
1863                                         thread--;
1864
1865                                         /* ... and pretend like nothing have happened. */
1866                                         err = 0;
1867                                         continue;
1868                                 }
1869
1870                                 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1871                                           err);
1872                                 goto try_fallback;
1873                         }
1874
1875                         pr_debug2(" = %d\n", fd);
1876
1877                         if (evsel->bpf_fd >= 0) {
1878                                 int evt_fd = fd;
1879                                 int bpf_fd = evsel->bpf_fd;
1880
1881                                 err = ioctl(evt_fd,
1882                                             PERF_EVENT_IOC_SET_BPF,
1883                                             bpf_fd);
1884                                 if (err && errno != EEXIST) {
1885                                         pr_err("failed to attach bpf fd %d: %s\n",
1886                                                bpf_fd, strerror(errno));
1887                                         err = -EINVAL;
1888                                         goto out_close;
1889                                 }
1890                         }
1891
1892                         set_rlimit = NO_CHANGE;
1893
1894                         /*
1895                          * If we succeeded but had to kill clockid, fail and
1896                          * have perf_evsel__open_strerror() print us a nice
1897                          * error.
1898                          */
1899                         if (perf_missing_features.clockid ||
1900                             perf_missing_features.clockid_wrong) {
1901                                 err = -EINVAL;
1902                                 goto out_close;
1903                         }
1904                 }
1905         }
1906
1907         return 0;
1908
1909 try_fallback:
1910         /*
1911          * perf stat needs between 5 and 22 fds per CPU. When we run out
1912          * of them try to increase the limits.
1913          */
1914         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1915                 struct rlimit l;
1916                 int old_errno = errno;
1917
1918                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1919                         if (set_rlimit == NO_CHANGE)
1920                                 l.rlim_cur = l.rlim_max;
1921                         else {
1922                                 l.rlim_cur = l.rlim_max + 1000;
1923                                 l.rlim_max = l.rlim_cur;
1924                         }
1925                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1926                                 set_rlimit++;
1927                                 errno = old_errno;
1928                                 goto retry_open;
1929                         }
1930                 }
1931                 errno = old_errno;
1932         }
1933
1934         if (err != -EINVAL || cpu > 0 || thread > 0)
1935                 goto out_close;
1936
1937         /*
1938          * Must probe features in the order they were added to the
1939          * perf_event_attr interface.
1940          */
1941         if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) {
1942                 perf_missing_features.bpf_event = true;
1943                 pr_debug2("switching off bpf_event\n");
1944                 goto fallback_missing_features;
1945         } else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) {
1946                 perf_missing_features.ksymbol = true;
1947                 pr_debug2("switching off ksymbol\n");
1948                 goto fallback_missing_features;
1949         } else if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1950                 perf_missing_features.write_backward = true;
1951                 pr_debug2("switching off write_backward\n");
1952                 goto out_close;
1953         } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1954                 perf_missing_features.clockid_wrong = true;
1955                 pr_debug2("switching off clockid\n");
1956                 goto fallback_missing_features;
1957         } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1958                 perf_missing_features.clockid = true;
1959                 pr_debug2("switching off use_clockid\n");
1960                 goto fallback_missing_features;
1961         } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1962                 perf_missing_features.cloexec = true;
1963                 pr_debug2("switching off cloexec flag\n");
1964                 goto fallback_missing_features;
1965         } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1966                 perf_missing_features.mmap2 = true;
1967                 pr_debug2("switching off mmap2\n");
1968                 goto fallback_missing_features;
1969         } else if (!perf_missing_features.exclude_guest &&
1970                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1971                 perf_missing_features.exclude_guest = true;
1972                 pr_debug2("switching off exclude_guest, exclude_host\n");
1973                 goto fallback_missing_features;
1974         } else if (!perf_missing_features.sample_id_all) {
1975                 perf_missing_features.sample_id_all = true;
1976                 pr_debug2("switching off sample_id_all\n");
1977                 goto retry_sample_id;
1978         } else if (!perf_missing_features.lbr_flags &&
1979                         (evsel->attr.branch_sample_type &
1980                          (PERF_SAMPLE_BRANCH_NO_CYCLES |
1981                           PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1982                 perf_missing_features.lbr_flags = true;
1983                 pr_debug2("switching off branch sample type no (cycles/flags)\n");
1984                 goto fallback_missing_features;
1985         } else if (!perf_missing_features.group_read &&
1986                     evsel->attr.inherit &&
1987                    (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
1988                    perf_evsel__is_group_leader(evsel)) {
1989                 perf_missing_features.group_read = true;
1990                 pr_debug2("switching off group read\n");
1991                 goto fallback_missing_features;
1992         }
1993 out_close:
1994         if (err)
1995                 threads->err_thread = thread;
1996
1997         do {
1998                 while (--thread >= 0) {
1999                         close(FD(evsel, cpu, thread));
2000                         FD(evsel, cpu, thread) = -1;
2001                 }
2002                 thread = nthreads;
2003         } while (--cpu >= 0);
2004         return err;
2005 }
2006
2007 void perf_evsel__close(struct perf_evsel *evsel)
2008 {
2009         if (evsel->fd == NULL)
2010                 return;
2011
2012         perf_evsel__close_fd(evsel);
2013         perf_evsel__free_fd(evsel);
2014 }
2015
2016 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
2017                              struct cpu_map *cpus)
2018 {
2019         return perf_evsel__open(evsel, cpus, NULL);
2020 }
2021
2022 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
2023                                 struct thread_map *threads)
2024 {
2025         return perf_evsel__open(evsel, NULL, threads);
2026 }
2027
2028 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
2029                                        const union perf_event *event,
2030                                        struct perf_sample *sample)
2031 {
2032         u64 type = evsel->attr.sample_type;
2033         const u64 *array = event->sample.array;
2034         bool swapped = evsel->needs_swap;
2035         union u64_swap u;
2036
2037         array += ((event->header.size -
2038                    sizeof(event->header)) / sizeof(u64)) - 1;
2039
2040         if (type & PERF_SAMPLE_IDENTIFIER) {
2041                 sample->id = *array;
2042                 array--;
2043         }
2044
2045         if (type & PERF_SAMPLE_CPU) {
2046                 u.val64 = *array;
2047                 if (swapped) {
2048                         /* undo swap of u64, then swap on individual u32s */
2049                         u.val64 = bswap_64(u.val64);
2050                         u.val32[0] = bswap_32(u.val32[0]);
2051                 }
2052
2053                 sample->cpu = u.val32[0];
2054                 array--;
2055         }
2056
2057         if (type & PERF_SAMPLE_STREAM_ID) {
2058                 sample->stream_id = *array;
2059                 array--;
2060         }
2061
2062         if (type & PERF_SAMPLE_ID) {
2063                 sample->id = *array;
2064                 array--;
2065         }
2066
2067         if (type & PERF_SAMPLE_TIME) {
2068                 sample->time = *array;
2069                 array--;
2070         }
2071
2072         if (type & PERF_SAMPLE_TID) {
2073                 u.val64 = *array;
2074                 if (swapped) {
2075                         /* undo swap of u64, then swap on individual u32s */
2076                         u.val64 = bswap_64(u.val64);
2077                         u.val32[0] = bswap_32(u.val32[0]);
2078                         u.val32[1] = bswap_32(u.val32[1]);
2079                 }
2080
2081                 sample->pid = u.val32[0];
2082                 sample->tid = u.val32[1];
2083                 array--;
2084         }
2085
2086         return 0;
2087 }
2088
2089 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2090                             u64 size)
2091 {
2092         return size > max_size || offset + size > endp;
2093 }
2094
2095 #define OVERFLOW_CHECK(offset, size, max_size)                          \
2096         do {                                                            \
2097                 if (overflow(endp, (max_size), (offset), (size)))       \
2098                         return -EFAULT;                                 \
2099         } while (0)
2100
2101 #define OVERFLOW_CHECK_u64(offset) \
2102         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2103
2104 static int
2105 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2106 {
2107         /*
2108          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2109          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2110          * check the format does not go past the end of the event.
2111          */
2112         if (sample_size + sizeof(event->header) > event->header.size)
2113                 return -EFAULT;
2114
2115         return 0;
2116 }
2117
2118 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2119                              struct perf_sample *data)
2120 {
2121         u64 type = evsel->attr.sample_type;
2122         bool swapped = evsel->needs_swap;
2123         const u64 *array;
2124         u16 max_size = event->header.size;
2125         const void *endp = (void *)event + max_size;
2126         u64 sz;
2127
2128         /*
2129          * used for cross-endian analysis. See git commit 65014ab3
2130          * for why this goofiness is needed.
2131          */
2132         union u64_swap u;
2133
2134         memset(data, 0, sizeof(*data));
2135         data->cpu = data->pid = data->tid = -1;
2136         data->stream_id = data->id = data->time = -1ULL;
2137         data->period = evsel->attr.sample_period;
2138         data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2139         data->misc    = event->header.misc;
2140         data->id = -1ULL;
2141         data->data_src = PERF_MEM_DATA_SRC_NONE;
2142
2143         if (event->header.type != PERF_RECORD_SAMPLE) {
2144                 if (!evsel->attr.sample_id_all)
2145                         return 0;
2146                 return perf_evsel__parse_id_sample(evsel, event, data);
2147         }
2148
2149         array = event->sample.array;
2150
2151         if (perf_event__check_size(event, evsel->sample_size))
2152                 return -EFAULT;
2153
2154         if (type & PERF_SAMPLE_IDENTIFIER) {
2155                 data->id = *array;
2156                 array++;
2157         }
2158
2159         if (type & PERF_SAMPLE_IP) {
2160                 data->ip = *array;
2161                 array++;
2162         }
2163
2164         if (type & PERF_SAMPLE_TID) {
2165                 u.val64 = *array;
2166                 if (swapped) {
2167                         /* undo swap of u64, then swap on individual u32s */
2168                         u.val64 = bswap_64(u.val64);
2169                         u.val32[0] = bswap_32(u.val32[0]);
2170                         u.val32[1] = bswap_32(u.val32[1]);
2171                 }
2172
2173                 data->pid = u.val32[0];
2174                 data->tid = u.val32[1];
2175                 array++;
2176         }
2177
2178         if (type & PERF_SAMPLE_TIME) {
2179                 data->time = *array;
2180                 array++;
2181         }
2182
2183         if (type & PERF_SAMPLE_ADDR) {
2184                 data->addr = *array;
2185                 array++;
2186         }
2187
2188         if (type & PERF_SAMPLE_ID) {
2189                 data->id = *array;
2190                 array++;
2191         }
2192
2193         if (type & PERF_SAMPLE_STREAM_ID) {
2194                 data->stream_id = *array;
2195                 array++;
2196         }
2197
2198         if (type & PERF_SAMPLE_CPU) {
2199
2200                 u.val64 = *array;
2201                 if (swapped) {
2202                         /* undo swap of u64, then swap on individual u32s */
2203                         u.val64 = bswap_64(u.val64);
2204                         u.val32[0] = bswap_32(u.val32[0]);
2205                 }
2206
2207                 data->cpu = u.val32[0];
2208                 array++;
2209         }
2210
2211         if (type & PERF_SAMPLE_PERIOD) {
2212                 data->period = *array;
2213                 array++;
2214         }
2215
2216         if (type & PERF_SAMPLE_READ) {
2217                 u64 read_format = evsel->attr.read_format;
2218
2219                 OVERFLOW_CHECK_u64(array);
2220                 if (read_format & PERF_FORMAT_GROUP)
2221                         data->read.group.nr = *array;
2222                 else
2223                         data->read.one.value = *array;
2224
2225                 array++;
2226
2227                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2228                         OVERFLOW_CHECK_u64(array);
2229                         data->read.time_enabled = *array;
2230                         array++;
2231                 }
2232
2233                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2234                         OVERFLOW_CHECK_u64(array);
2235                         data->read.time_running = *array;
2236                         array++;
2237                 }
2238
2239                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2240                 if (read_format & PERF_FORMAT_GROUP) {
2241                         const u64 max_group_nr = UINT64_MAX /
2242                                         sizeof(struct sample_read_value);
2243
2244                         if (data->read.group.nr > max_group_nr)
2245                                 return -EFAULT;
2246                         sz = data->read.group.nr *
2247                              sizeof(struct sample_read_value);
2248                         OVERFLOW_CHECK(array, sz, max_size);
2249                         data->read.group.values =
2250                                         (struct sample_read_value *)array;
2251                         array = (void *)array + sz;
2252                 } else {
2253                         OVERFLOW_CHECK_u64(array);
2254                         data->read.one.id = *array;
2255                         array++;
2256                 }
2257         }
2258
2259         if (evsel__has_callchain(evsel)) {
2260                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2261
2262                 OVERFLOW_CHECK_u64(array);
2263                 data->callchain = (struct ip_callchain *)array++;
2264                 if (data->callchain->nr > max_callchain_nr)
2265                         return -EFAULT;
2266                 sz = data->callchain->nr * sizeof(u64);
2267                 OVERFLOW_CHECK(array, sz, max_size);
2268                 array = (void *)array + sz;
2269         }
2270
2271         if (type & PERF_SAMPLE_RAW) {
2272                 OVERFLOW_CHECK_u64(array);
2273                 u.val64 = *array;
2274
2275                 /*
2276                  * Undo swap of u64, then swap on individual u32s,
2277                  * get the size of the raw area and undo all of the
2278                  * swap. The pevent interface handles endianity by
2279                  * itself.
2280                  */
2281                 if (swapped) {
2282                         u.val64 = bswap_64(u.val64);
2283                         u.val32[0] = bswap_32(u.val32[0]);
2284                         u.val32[1] = bswap_32(u.val32[1]);
2285                 }
2286                 data->raw_size = u.val32[0];
2287
2288                 /*
2289                  * The raw data is aligned on 64bits including the
2290                  * u32 size, so it's safe to use mem_bswap_64.
2291                  */
2292                 if (swapped)
2293                         mem_bswap_64((void *) array, data->raw_size);
2294
2295                 array = (void *)array + sizeof(u32);
2296
2297                 OVERFLOW_CHECK(array, data->raw_size, max_size);
2298                 data->raw_data = (void *)array;
2299                 array = (void *)array + data->raw_size;
2300         }
2301
2302         if (type & PERF_SAMPLE_BRANCH_STACK) {
2303                 const u64 max_branch_nr = UINT64_MAX /
2304                                           sizeof(struct branch_entry);
2305
2306                 OVERFLOW_CHECK_u64(array);
2307                 data->branch_stack = (struct branch_stack *)array++;
2308
2309                 if (data->branch_stack->nr > max_branch_nr)
2310                         return -EFAULT;
2311                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2312                 OVERFLOW_CHECK(array, sz, max_size);
2313                 array = (void *)array + sz;
2314         }
2315
2316         if (type & PERF_SAMPLE_REGS_USER) {
2317                 OVERFLOW_CHECK_u64(array);
2318                 data->user_regs.abi = *array;
2319                 array++;
2320
2321                 if (data->user_regs.abi) {
2322                         u64 mask = evsel->attr.sample_regs_user;
2323
2324                         sz = hweight_long(mask) * sizeof(u64);
2325                         OVERFLOW_CHECK(array, sz, max_size);
2326                         data->user_regs.mask = mask;
2327                         data->user_regs.regs = (u64 *)array;
2328                         array = (void *)array + sz;
2329                 }
2330         }
2331
2332         if (type & PERF_SAMPLE_STACK_USER) {
2333                 OVERFLOW_CHECK_u64(array);
2334                 sz = *array++;
2335
2336                 data->user_stack.offset = ((char *)(array - 1)
2337                                           - (char *) event);
2338
2339                 if (!sz) {
2340                         data->user_stack.size = 0;
2341                 } else {
2342                         OVERFLOW_CHECK(array, sz, max_size);
2343                         data->user_stack.data = (char *)array;
2344                         array = (void *)array + sz;
2345                         OVERFLOW_CHECK_u64(array);
2346                         data->user_stack.size = *array++;
2347                         if (WARN_ONCE(data->user_stack.size > sz,
2348                                       "user stack dump failure\n"))
2349                                 return -EFAULT;
2350                 }
2351         }
2352
2353         if (type & PERF_SAMPLE_WEIGHT) {
2354                 OVERFLOW_CHECK_u64(array);
2355                 data->weight = *array;
2356                 array++;
2357         }
2358
2359         if (type & PERF_SAMPLE_DATA_SRC) {
2360                 OVERFLOW_CHECK_u64(array);
2361                 data->data_src = *array;
2362                 array++;
2363         }
2364
2365         if (type & PERF_SAMPLE_TRANSACTION) {
2366                 OVERFLOW_CHECK_u64(array);
2367                 data->transaction = *array;
2368                 array++;
2369         }
2370
2371         data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2372         if (type & PERF_SAMPLE_REGS_INTR) {
2373                 OVERFLOW_CHECK_u64(array);
2374                 data->intr_regs.abi = *array;
2375                 array++;
2376
2377                 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2378                         u64 mask = evsel->attr.sample_regs_intr;
2379
2380                         sz = hweight_long(mask) * sizeof(u64);
2381                         OVERFLOW_CHECK(array, sz, max_size);
2382                         data->intr_regs.mask = mask;
2383                         data->intr_regs.regs = (u64 *)array;
2384                         array = (void *)array + sz;
2385                 }
2386         }
2387
2388         data->phys_addr = 0;
2389         if (type & PERF_SAMPLE_PHYS_ADDR) {
2390                 data->phys_addr = *array;
2391                 array++;
2392         }
2393
2394         return 0;
2395 }
2396
2397 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2398                                        union perf_event *event,
2399                                        u64 *timestamp)
2400 {
2401         u64 type = evsel->attr.sample_type;
2402         const u64 *array;
2403
2404         if (!(type & PERF_SAMPLE_TIME))
2405                 return -1;
2406
2407         if (event->header.type != PERF_RECORD_SAMPLE) {
2408                 struct perf_sample data = {
2409                         .time = -1ULL,
2410                 };
2411
2412                 if (!evsel->attr.sample_id_all)
2413                         return -1;
2414                 if (perf_evsel__parse_id_sample(evsel, event, &data))
2415                         return -1;
2416
2417                 *timestamp = data.time;
2418                 return 0;
2419         }
2420
2421         array = event->sample.array;
2422
2423         if (perf_event__check_size(event, evsel->sample_size))
2424                 return -EFAULT;
2425
2426         if (type & PERF_SAMPLE_IDENTIFIER)
2427                 array++;
2428
2429         if (type & PERF_SAMPLE_IP)
2430                 array++;
2431
2432         if (type & PERF_SAMPLE_TID)
2433                 array++;
2434
2435         if (type & PERF_SAMPLE_TIME)
2436                 *timestamp = *array;
2437
2438         return 0;
2439 }
2440
2441 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2442                                      u64 read_format)
2443 {
2444         size_t sz, result = sizeof(struct sample_event);
2445
2446         if (type & PERF_SAMPLE_IDENTIFIER)
2447                 result += sizeof(u64);
2448
2449         if (type & PERF_SAMPLE_IP)
2450                 result += sizeof(u64);
2451
2452         if (type & PERF_SAMPLE_TID)
2453                 result += sizeof(u64);
2454
2455         if (type & PERF_SAMPLE_TIME)
2456                 result += sizeof(u64);
2457
2458         if (type & PERF_SAMPLE_ADDR)
2459                 result += sizeof(u64);
2460
2461         if (type & PERF_SAMPLE_ID)
2462                 result += sizeof(u64);
2463
2464         if (type & PERF_SAMPLE_STREAM_ID)
2465                 result += sizeof(u64);
2466
2467         if (type & PERF_SAMPLE_CPU)
2468                 result += sizeof(u64);
2469
2470         if (type & PERF_SAMPLE_PERIOD)
2471                 result += sizeof(u64);
2472
2473         if (type & PERF_SAMPLE_READ) {
2474                 result += sizeof(u64);
2475                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2476                         result += sizeof(u64);
2477                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2478                         result += sizeof(u64);
2479                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2480                 if (read_format & PERF_FORMAT_GROUP) {
2481                         sz = sample->read.group.nr *
2482                              sizeof(struct sample_read_value);
2483                         result += sz;
2484                 } else {
2485                         result += sizeof(u64);
2486                 }
2487         }
2488
2489         if (type & PERF_SAMPLE_CALLCHAIN) {
2490                 sz = (sample->callchain->nr + 1) * sizeof(u64);
2491                 result += sz;
2492         }
2493
2494         if (type & PERF_SAMPLE_RAW) {
2495                 result += sizeof(u32);
2496                 result += sample->raw_size;
2497         }
2498
2499         if (type & PERF_SAMPLE_BRANCH_STACK) {
2500                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2501                 sz += sizeof(u64);
2502                 result += sz;
2503         }
2504
2505         if (type & PERF_SAMPLE_REGS_USER) {
2506                 if (sample->user_regs.abi) {
2507                         result += sizeof(u64);
2508                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2509                         result += sz;
2510                 } else {
2511                         result += sizeof(u64);
2512                 }
2513         }
2514
2515         if (type & PERF_SAMPLE_STACK_USER) {
2516                 sz = sample->user_stack.size;
2517                 result += sizeof(u64);
2518                 if (sz) {
2519                         result += sz;
2520                         result += sizeof(u64);
2521                 }
2522         }
2523
2524         if (type & PERF_SAMPLE_WEIGHT)
2525                 result += sizeof(u64);
2526
2527         if (type & PERF_SAMPLE_DATA_SRC)
2528                 result += sizeof(u64);
2529
2530         if (type & PERF_SAMPLE_TRANSACTION)
2531                 result += sizeof(u64);
2532
2533         if (type & PERF_SAMPLE_REGS_INTR) {
2534                 if (sample->intr_regs.abi) {
2535                         result += sizeof(u64);
2536                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2537                         result += sz;
2538                 } else {
2539                         result += sizeof(u64);
2540                 }
2541         }
2542
2543         if (type & PERF_SAMPLE_PHYS_ADDR)
2544                 result += sizeof(u64);
2545
2546         return result;
2547 }
2548
2549 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2550                                   u64 read_format,
2551                                   const struct perf_sample *sample)
2552 {
2553         u64 *array;
2554         size_t sz;
2555         /*
2556          * used for cross-endian analysis. See git commit 65014ab3
2557          * for why this goofiness is needed.
2558          */
2559         union u64_swap u;
2560
2561         array = event->sample.array;
2562
2563         if (type & PERF_SAMPLE_IDENTIFIER) {
2564                 *array = sample->id;
2565                 array++;
2566         }
2567
2568         if (type & PERF_SAMPLE_IP) {
2569                 *array = sample->ip;
2570                 array++;
2571         }
2572
2573         if (type & PERF_SAMPLE_TID) {
2574                 u.val32[0] = sample->pid;
2575                 u.val32[1] = sample->tid;
2576                 *array = u.val64;
2577                 array++;
2578         }
2579
2580         if (type & PERF_SAMPLE_TIME) {
2581                 *array = sample->time;
2582                 array++;
2583         }
2584
2585         if (type & PERF_SAMPLE_ADDR) {
2586                 *array = sample->addr;
2587                 array++;
2588         }
2589
2590         if (type & PERF_SAMPLE_ID) {
2591                 *array = sample->id;
2592                 array++;
2593         }
2594
2595         if (type & PERF_SAMPLE_STREAM_ID) {
2596                 *array = sample->stream_id;
2597                 array++;
2598         }
2599
2600         if (type & PERF_SAMPLE_CPU) {
2601                 u.val32[0] = sample->cpu;
2602                 u.val32[1] = 0;
2603                 *array = u.val64;
2604                 array++;
2605         }
2606
2607         if (type & PERF_SAMPLE_PERIOD) {
2608                 *array = sample->period;
2609                 array++;
2610         }
2611
2612         if (type & PERF_SAMPLE_READ) {
2613                 if (read_format & PERF_FORMAT_GROUP)
2614                         *array = sample->read.group.nr;
2615                 else
2616                         *array = sample->read.one.value;
2617                 array++;
2618
2619                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2620                         *array = sample->read.time_enabled;
2621                         array++;
2622                 }
2623
2624                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2625                         *array = sample->read.time_running;
2626                         array++;
2627                 }
2628
2629                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2630                 if (read_format & PERF_FORMAT_GROUP) {
2631                         sz = sample->read.group.nr *
2632                              sizeof(struct sample_read_value);
2633                         memcpy(array, sample->read.group.values, sz);
2634                         array = (void *)array + sz;
2635                 } else {
2636                         *array = sample->read.one.id;
2637                         array++;
2638                 }
2639         }
2640
2641         if (type & PERF_SAMPLE_CALLCHAIN) {
2642                 sz = (sample->callchain->nr + 1) * sizeof(u64);
2643                 memcpy(array, sample->callchain, sz);
2644                 array = (void *)array + sz;
2645         }
2646
2647         if (type & PERF_SAMPLE_RAW) {
2648                 u.val32[0] = sample->raw_size;
2649                 *array = u.val64;
2650                 array = (void *)array + sizeof(u32);
2651
2652                 memcpy(array, sample->raw_data, sample->raw_size);
2653                 array = (void *)array + sample->raw_size;
2654         }
2655
2656         if (type & PERF_SAMPLE_BRANCH_STACK) {
2657                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2658                 sz += sizeof(u64);
2659                 memcpy(array, sample->branch_stack, sz);
2660                 array = (void *)array + sz;
2661         }
2662
2663         if (type & PERF_SAMPLE_REGS_USER) {
2664                 if (sample->user_regs.abi) {
2665                         *array++ = sample->user_regs.abi;
2666                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2667                         memcpy(array, sample->user_regs.regs, sz);
2668                         array = (void *)array + sz;
2669                 } else {
2670                         *array++ = 0;
2671                 }
2672         }
2673
2674         if (type & PERF_SAMPLE_STACK_USER) {
2675                 sz = sample->user_stack.size;
2676                 *array++ = sz;
2677                 if (sz) {
2678                         memcpy(array, sample->user_stack.data, sz);
2679                         array = (void *)array + sz;
2680                         *array++ = sz;
2681                 }
2682         }
2683
2684         if (type & PERF_SAMPLE_WEIGHT) {
2685                 *array = sample->weight;
2686                 array++;
2687         }
2688
2689         if (type & PERF_SAMPLE_DATA_SRC) {
2690                 *array = sample->data_src;
2691                 array++;
2692         }
2693
2694         if (type & PERF_SAMPLE_TRANSACTION) {
2695                 *array = sample->transaction;
2696                 array++;
2697         }
2698
2699         if (type & PERF_SAMPLE_REGS_INTR) {
2700                 if (sample->intr_regs.abi) {
2701                         *array++ = sample->intr_regs.abi;
2702                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2703                         memcpy(array, sample->intr_regs.regs, sz);
2704                         array = (void *)array + sz;
2705                 } else {
2706                         *array++ = 0;
2707                 }
2708         }
2709
2710         if (type & PERF_SAMPLE_PHYS_ADDR) {
2711                 *array = sample->phys_addr;
2712                 array++;
2713         }
2714
2715         return 0;
2716 }
2717
2718 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2719 {
2720         return tep_find_field(evsel->tp_format, name);
2721 }
2722
2723 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2724                          const char *name)
2725 {
2726         struct tep_format_field *field = perf_evsel__field(evsel, name);
2727         int offset;
2728
2729         if (!field)
2730                 return NULL;
2731
2732         offset = field->offset;
2733
2734         if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2735                 offset = *(int *)(sample->raw_data + field->offset);
2736                 offset &= 0xffff;
2737         }
2738
2739         return sample->raw_data + offset;
2740 }
2741
2742 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2743                          bool needs_swap)
2744 {
2745         u64 value;
2746         void *ptr = sample->raw_data + field->offset;
2747
2748         switch (field->size) {
2749         case 1:
2750                 return *(u8 *)ptr;
2751         case 2:
2752                 value = *(u16 *)ptr;
2753                 break;
2754         case 4:
2755                 value = *(u32 *)ptr;
2756                 break;
2757         case 8:
2758                 memcpy(&value, ptr, sizeof(u64));
2759                 break;
2760         default:
2761                 return 0;
2762         }
2763
2764         if (!needs_swap)
2765                 return value;
2766
2767         switch (field->size) {
2768         case 2:
2769                 return bswap_16(value);
2770         case 4:
2771                 return bswap_32(value);
2772         case 8:
2773                 return bswap_64(value);
2774         default:
2775                 return 0;
2776         }
2777
2778         return 0;
2779 }
2780
2781 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2782                        const char *name)
2783 {
2784         struct tep_format_field *field = perf_evsel__field(evsel, name);
2785
2786         if (!field)
2787                 return 0;
2788
2789         return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2790 }
2791
2792 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2793                           char *msg, size_t msgsize)
2794 {
2795         int paranoid;
2796
2797         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2798             evsel->attr.type   == PERF_TYPE_HARDWARE &&
2799             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2800                 /*
2801                  * If it's cycles then fall back to hrtimer based
2802                  * cpu-clock-tick sw counter, which is always available even if
2803                  * no PMU support.
2804                  *
2805                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2806                  * b0a873e).
2807                  */
2808                 scnprintf(msg, msgsize, "%s",
2809 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2810
2811                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
2812                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2813
2814                 zfree(&evsel->name);
2815                 return true;
2816         } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2817                    (paranoid = perf_event_paranoid()) > 1) {
2818                 const char *name = perf_evsel__name(evsel);
2819                 char *new_name;
2820                 const char *sep = ":";
2821
2822                 /* Is there already the separator in the name. */
2823                 if (strchr(name, '/') ||
2824                     strchr(name, ':'))
2825                         sep = "";
2826
2827                 if (asprintf(&new_name, "%s%su", name, sep) < 0)
2828                         return false;
2829
2830                 if (evsel->name)
2831                         free(evsel->name);
2832                 evsel->name = new_name;
2833                 scnprintf(msg, msgsize,
2834 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2835                 evsel->attr.exclude_kernel = 1;
2836
2837                 return true;
2838         }
2839
2840         return false;
2841 }
2842
2843 static bool find_process(const char *name)
2844 {
2845         size_t len = strlen(name);
2846         DIR *dir;
2847         struct dirent *d;
2848         int ret = -1;
2849
2850         dir = opendir(procfs__mountpoint());
2851         if (!dir)
2852                 return false;
2853
2854         /* Walk through the directory. */
2855         while (ret && (d = readdir(dir)) != NULL) {
2856                 char path[PATH_MAX];
2857                 char *data;
2858                 size_t size;
2859
2860                 if ((d->d_type != DT_DIR) ||
2861                      !strcmp(".", d->d_name) ||
2862                      !strcmp("..", d->d_name))
2863                         continue;
2864
2865                 scnprintf(path, sizeof(path), "%s/%s/comm",
2866                           procfs__mountpoint(), d->d_name);
2867
2868                 if (filename__read_str(path, &data, &size))
2869                         continue;
2870
2871                 ret = strncmp(name, data, len);
2872                 free(data);
2873         }
2874
2875         closedir(dir);
2876         return ret ? false : true;
2877 }
2878
2879 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2880                               int err, char *msg, size_t size)
2881 {
2882         char sbuf[STRERR_BUFSIZE];
2883         int printed = 0;
2884
2885         switch (err) {
2886         case EPERM:
2887         case EACCES:
2888                 if (err == EPERM)
2889                         printed = scnprintf(msg, size,
2890                                 "No permission to enable %s event.\n\n",
2891                                 perf_evsel__name(evsel));
2892
2893                 return scnprintf(msg + printed, size - printed,
2894                  "You may not have permission to collect %sstats.\n\n"
2895                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2896                  "which controls use of the performance events system by\n"
2897                  "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2898                  "The current value is %d:\n\n"
2899                  "  -1: Allow use of (almost) all events by all users\n"
2900                  "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2901                  ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2902                  "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2903                  ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2904                  ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2905                  "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2906                  "      kernel.perf_event_paranoid = -1\n" ,
2907                                  target->system_wide ? "system-wide " : "",
2908                                  perf_event_paranoid());
2909         case ENOENT:
2910                 return scnprintf(msg, size, "The %s event is not supported.",
2911                                  perf_evsel__name(evsel));
2912         case EMFILE:
2913                 return scnprintf(msg, size, "%s",
2914                          "Too many events are opened.\n"
2915                          "Probably the maximum number of open file descriptors has been reached.\n"
2916                          "Hint: Try again after reducing the number of events.\n"
2917                          "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2918         case ENOMEM:
2919                 if (evsel__has_callchain(evsel) &&
2920                     access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2921                         return scnprintf(msg, size,
2922                                          "Not enough memory to setup event with callchain.\n"
2923                                          "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2924                                          "Hint: Current value: %d", sysctl__max_stack());
2925                 break;
2926         case ENODEV:
2927                 if (target->cpu_list)
2928                         return scnprintf(msg, size, "%s",
2929          "No such device - did you specify an out-of-range profile CPU?");
2930                 break;
2931         case EOPNOTSUPP:
2932                 if (evsel->attr.sample_period != 0)
2933                         return scnprintf(msg, size,
2934         "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2935                                          perf_evsel__name(evsel));
2936                 if (evsel->attr.precise_ip)
2937                         return scnprintf(msg, size, "%s",
2938         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2939 #if defined(__i386__) || defined(__x86_64__)
2940                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2941                         return scnprintf(msg, size, "%s",
2942         "No hardware sampling interrupt available.\n");
2943 #endif
2944                 break;
2945         case EBUSY:
2946                 if (find_process("oprofiled"))
2947                         return scnprintf(msg, size,
2948         "The PMU counters are busy/taken by another profiler.\n"
2949         "We found oprofile daemon running, please stop it and try again.");
2950                 break;
2951         case EINVAL:
2952                 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2953                         return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2954                 if (perf_missing_features.clockid)
2955                         return scnprintf(msg, size, "clockid feature not supported.");
2956                 if (perf_missing_features.clockid_wrong)
2957                         return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2958                 break;
2959         default:
2960                 break;
2961         }
2962
2963         return scnprintf(msg, size,
2964         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2965         "/bin/dmesg | grep -i perf may provide additional information.\n",
2966                          err, str_error_r(err, sbuf, sizeof(sbuf)),
2967                          perf_evsel__name(evsel));
2968 }
2969
2970 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2971 {
2972         if (evsel && evsel->evlist)
2973                 return evsel->evlist->env;
2974         return NULL;
2975 }
2976
2977 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
2978 {
2979         int cpu, thread;
2980
2981         for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
2982                 for (thread = 0; thread < xyarray__max_y(evsel->fd);
2983                      thread++) {
2984                         int fd = FD(evsel, cpu, thread);
2985
2986                         if (perf_evlist__id_add_fd(evlist, evsel,
2987                                                    cpu, thread, fd) < 0)
2988                                 return -1;
2989                 }
2990         }
2991
2992         return 0;
2993 }
2994
2995 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
2996 {
2997         struct cpu_map *cpus = evsel->cpus;
2998         struct thread_map *threads = evsel->threads;
2999
3000         if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
3001                 return -ENOMEM;
3002
3003         return store_evsel_ids(evsel, evlist);
3004 }