perf record: Fix priv level with branch sampling for paranoid=2
[linux-2.6-microblaze.git] / tools / perf / util / evsel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8
9 #include <byteswap.h>
10 #include <errno.h>
11 #include <inttypes.h>
12 #include <linux/bitops.h>
13 #include <api/fs/fs.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/compiler.h>
19 #include <linux/err.h>
20 #include <linux/zalloc.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include <stdlib.h>
26 #include <perf/evsel.h>
27 #include "asm/bug.h"
28 #include "callchain.h"
29 #include "cgroup.h"
30 #include "counts.h"
31 #include "event.h"
32 #include "evsel.h"
33 #include "evlist.h"
34 #include <perf/cpumap.h>
35 #include "thread_map.h"
36 #include "target.h"
37 #include "perf_regs.h"
38 #include "record.h"
39 #include "debug.h"
40 #include "trace-event.h"
41 #include "stat.h"
42 #include "string2.h"
43 #include "memswap.h"
44 #include "util.h"
45 #include "../perf-sys.h"
46 #include "util/parse-branch-options.h"
47 #include <internal/xyarray.h>
48 #include <internal/lib.h>
49
50 #include <linux/ctype.h>
51
52 struct perf_missing_features perf_missing_features;
53
54 static clockid_t clockid;
55
56 static int perf_evsel__no_extra_init(struct evsel *evsel __maybe_unused)
57 {
58         return 0;
59 }
60
61 void __weak test_attr__ready(void) { }
62
63 static void perf_evsel__no_extra_fini(struct evsel *evsel __maybe_unused)
64 {
65 }
66
67 static struct {
68         size_t  size;
69         int     (*init)(struct evsel *evsel);
70         void    (*fini)(struct evsel *evsel);
71 } perf_evsel__object = {
72         .size = sizeof(struct evsel),
73         .init = perf_evsel__no_extra_init,
74         .fini = perf_evsel__no_extra_fini,
75 };
76
77 int perf_evsel__object_config(size_t object_size,
78                               int (*init)(struct evsel *evsel),
79                               void (*fini)(struct evsel *evsel))
80 {
81
82         if (object_size == 0)
83                 goto set_methods;
84
85         if (perf_evsel__object.size > object_size)
86                 return -EINVAL;
87
88         perf_evsel__object.size = object_size;
89
90 set_methods:
91         if (init != NULL)
92                 perf_evsel__object.init = init;
93
94         if (fini != NULL)
95                 perf_evsel__object.fini = fini;
96
97         return 0;
98 }
99
100 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y))
101
102 int __perf_evsel__sample_size(u64 sample_type)
103 {
104         u64 mask = sample_type & PERF_SAMPLE_MASK;
105         int size = 0;
106         int i;
107
108         for (i = 0; i < 64; i++) {
109                 if (mask & (1ULL << i))
110                         size++;
111         }
112
113         size *= sizeof(u64);
114
115         return size;
116 }
117
118 /**
119  * __perf_evsel__calc_id_pos - calculate id_pos.
120  * @sample_type: sample type
121  *
122  * This function returns the position of the event id (PERF_SAMPLE_ID or
123  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
124  * perf_record_sample.
125  */
126 static int __perf_evsel__calc_id_pos(u64 sample_type)
127 {
128         int idx = 0;
129
130         if (sample_type & PERF_SAMPLE_IDENTIFIER)
131                 return 0;
132
133         if (!(sample_type & PERF_SAMPLE_ID))
134                 return -1;
135
136         if (sample_type & PERF_SAMPLE_IP)
137                 idx += 1;
138
139         if (sample_type & PERF_SAMPLE_TID)
140                 idx += 1;
141
142         if (sample_type & PERF_SAMPLE_TIME)
143                 idx += 1;
144
145         if (sample_type & PERF_SAMPLE_ADDR)
146                 idx += 1;
147
148         return idx;
149 }
150
151 /**
152  * __perf_evsel__calc_is_pos - calculate is_pos.
153  * @sample_type: sample type
154  *
155  * This function returns the position (counting backwards) of the event id
156  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
157  * sample_id_all is used there is an id sample appended to non-sample events.
158  */
159 static int __perf_evsel__calc_is_pos(u64 sample_type)
160 {
161         int idx = 1;
162
163         if (sample_type & PERF_SAMPLE_IDENTIFIER)
164                 return 1;
165
166         if (!(sample_type & PERF_SAMPLE_ID))
167                 return -1;
168
169         if (sample_type & PERF_SAMPLE_CPU)
170                 idx += 1;
171
172         if (sample_type & PERF_SAMPLE_STREAM_ID)
173                 idx += 1;
174
175         return idx;
176 }
177
178 void perf_evsel__calc_id_pos(struct evsel *evsel)
179 {
180         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type);
181         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type);
182 }
183
184 void __perf_evsel__set_sample_bit(struct evsel *evsel,
185                                   enum perf_event_sample_format bit)
186 {
187         if (!(evsel->core.attr.sample_type & bit)) {
188                 evsel->core.attr.sample_type |= bit;
189                 evsel->sample_size += sizeof(u64);
190                 perf_evsel__calc_id_pos(evsel);
191         }
192 }
193
194 void __perf_evsel__reset_sample_bit(struct evsel *evsel,
195                                     enum perf_event_sample_format bit)
196 {
197         if (evsel->core.attr.sample_type & bit) {
198                 evsel->core.attr.sample_type &= ~bit;
199                 evsel->sample_size -= sizeof(u64);
200                 perf_evsel__calc_id_pos(evsel);
201         }
202 }
203
204 void perf_evsel__set_sample_id(struct evsel *evsel,
205                                bool can_sample_identifier)
206 {
207         if (can_sample_identifier) {
208                 perf_evsel__reset_sample_bit(evsel, ID);
209                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
210         } else {
211                 perf_evsel__set_sample_bit(evsel, ID);
212         }
213         evsel->core.attr.read_format |= PERF_FORMAT_ID;
214 }
215
216 /**
217  * perf_evsel__is_function_event - Return whether given evsel is a function
218  * trace event
219  *
220  * @evsel - evsel selector to be tested
221  *
222  * Return %true if event is function trace event
223  */
224 bool perf_evsel__is_function_event(struct evsel *evsel)
225 {
226 #define FUNCTION_EVENT "ftrace:function"
227
228         return evsel->name &&
229                !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
230
231 #undef FUNCTION_EVENT
232 }
233
234 void evsel__init(struct evsel *evsel,
235                  struct perf_event_attr *attr, int idx)
236 {
237         perf_evsel__init(&evsel->core, attr);
238         evsel->idx         = idx;
239         evsel->tracking    = !idx;
240         evsel->leader      = evsel;
241         evsel->unit        = "";
242         evsel->scale       = 1.0;
243         evsel->max_events  = ULONG_MAX;
244         evsel->evlist      = NULL;
245         evsel->bpf_obj     = NULL;
246         evsel->bpf_fd      = -1;
247         INIT_LIST_HEAD(&evsel->config_terms);
248         perf_evsel__object.init(evsel);
249         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
250         perf_evsel__calc_id_pos(evsel);
251         evsel->cmdline_group_boundary = false;
252         evsel->metric_expr   = NULL;
253         evsel->metric_name   = NULL;
254         evsel->metric_events = NULL;
255         evsel->collect_stat  = false;
256         evsel->pmu_name      = NULL;
257 }
258
259 struct evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
260 {
261         struct evsel *evsel = zalloc(perf_evsel__object.size);
262
263         if (!evsel)
264                 return NULL;
265         evsel__init(evsel, attr, idx);
266
267         if (perf_evsel__is_bpf_output(evsel)) {
268                 evsel->core.attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
269                                             PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
270                 evsel->core.attr.sample_period = 1;
271         }
272
273         if (perf_evsel__is_clock(evsel)) {
274                 /*
275                  * The evsel->unit points to static alias->unit
276                  * so it's ok to use static string in here.
277                  */
278                 static const char *unit = "msec";
279
280                 evsel->unit = unit;
281                 evsel->scale = 1e-6;
282         }
283
284         return evsel;
285 }
286
287 static bool perf_event_can_profile_kernel(void)
288 {
289         return perf_event_paranoid_check(1);
290 }
291
292 struct evsel *perf_evsel__new_cycles(bool precise)
293 {
294         struct perf_event_attr attr = {
295                 .type   = PERF_TYPE_HARDWARE,
296                 .config = PERF_COUNT_HW_CPU_CYCLES,
297                 .exclude_kernel = !perf_event_can_profile_kernel(),
298         };
299         struct evsel *evsel;
300
301         event_attr_init(&attr);
302
303         if (!precise)
304                 goto new_event;
305
306         /*
307          * Now let the usual logic to set up the perf_event_attr defaults
308          * to kick in when we return and before perf_evsel__open() is called.
309          */
310 new_event:
311         evsel = evsel__new(&attr);
312         if (evsel == NULL)
313                 goto out;
314
315         evsel->precise_max = true;
316
317         /* use asprintf() because free(evsel) assumes name is allocated */
318         if (asprintf(&evsel->name, "cycles%s%s%.*s",
319                      (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
320                      attr.exclude_kernel ? "u" : "",
321                      attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
322                 goto error_free;
323 out:
324         return evsel;
325 error_free:
326         evsel__delete(evsel);
327         evsel = NULL;
328         goto out;
329 }
330
331 /*
332  * Returns pointer with encoded error via <linux/err.h> interface.
333  */
334 struct evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
335 {
336         struct evsel *evsel = zalloc(perf_evsel__object.size);
337         int err = -ENOMEM;
338
339         if (evsel == NULL) {
340                 goto out_err;
341         } else {
342                 struct perf_event_attr attr = {
343                         .type          = PERF_TYPE_TRACEPOINT,
344                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
345                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
346                 };
347
348                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
349                         goto out_free;
350
351                 evsel->tp_format = trace_event__tp_format(sys, name);
352                 if (IS_ERR(evsel->tp_format)) {
353                         err = PTR_ERR(evsel->tp_format);
354                         goto out_free;
355                 }
356
357                 event_attr_init(&attr);
358                 attr.config = evsel->tp_format->id;
359                 attr.sample_period = 1;
360                 evsel__init(evsel, &attr, idx);
361         }
362
363         return evsel;
364
365 out_free:
366         zfree(&evsel->name);
367         free(evsel);
368 out_err:
369         return ERR_PTR(err);
370 }
371
372 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
373         "cycles",
374         "instructions",
375         "cache-references",
376         "cache-misses",
377         "branches",
378         "branch-misses",
379         "bus-cycles",
380         "stalled-cycles-frontend",
381         "stalled-cycles-backend",
382         "ref-cycles",
383 };
384
385 static const char *__perf_evsel__hw_name(u64 config)
386 {
387         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
388                 return perf_evsel__hw_names[config];
389
390         return "unknown-hardware";
391 }
392
393 static int perf_evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size)
394 {
395         int colon = 0, r = 0;
396         struct perf_event_attr *attr = &evsel->core.attr;
397         bool exclude_guest_default = false;
398
399 #define MOD_PRINT(context, mod) do {                                    \
400                 if (!attr->exclude_##context) {                         \
401                         if (!colon) colon = ++r;                        \
402                         r += scnprintf(bf + r, size - r, "%c", mod);    \
403                 } } while(0)
404
405         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
406                 MOD_PRINT(kernel, 'k');
407                 MOD_PRINT(user, 'u');
408                 MOD_PRINT(hv, 'h');
409                 exclude_guest_default = true;
410         }
411
412         if (attr->precise_ip) {
413                 if (!colon)
414                         colon = ++r;
415                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
416                 exclude_guest_default = true;
417         }
418
419         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
420                 MOD_PRINT(host, 'H');
421                 MOD_PRINT(guest, 'G');
422         }
423 #undef MOD_PRINT
424         if (colon)
425                 bf[colon - 1] = ':';
426         return r;
427 }
428
429 static int perf_evsel__hw_name(struct evsel *evsel, char *bf, size_t size)
430 {
431         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->core.attr.config));
432         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
433 }
434
435 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
436         "cpu-clock",
437         "task-clock",
438         "page-faults",
439         "context-switches",
440         "cpu-migrations",
441         "minor-faults",
442         "major-faults",
443         "alignment-faults",
444         "emulation-faults",
445         "dummy",
446 };
447
448 static const char *__perf_evsel__sw_name(u64 config)
449 {
450         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
451                 return perf_evsel__sw_names[config];
452         return "unknown-software";
453 }
454
455 static int perf_evsel__sw_name(struct evsel *evsel, char *bf, size_t size)
456 {
457         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->core.attr.config));
458         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
459 }
460
461 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
462 {
463         int r;
464
465         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
466
467         if (type & HW_BREAKPOINT_R)
468                 r += scnprintf(bf + r, size - r, "r");
469
470         if (type & HW_BREAKPOINT_W)
471                 r += scnprintf(bf + r, size - r, "w");
472
473         if (type & HW_BREAKPOINT_X)
474                 r += scnprintf(bf + r, size - r, "x");
475
476         return r;
477 }
478
479 static int perf_evsel__bp_name(struct evsel *evsel, char *bf, size_t size)
480 {
481         struct perf_event_attr *attr = &evsel->core.attr;
482         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
483         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
484 }
485
486 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
487                                 [PERF_EVSEL__MAX_ALIASES] = {
488  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
489  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
490  { "LLC",       "L2",                                                   },
491  { "dTLB",      "d-tlb",        "Data-TLB",                             },
492  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
493  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
494  { "node",                                                              },
495 };
496
497 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
498                                    [PERF_EVSEL__MAX_ALIASES] = {
499  { "load",      "loads",        "read",                                 },
500  { "store",     "stores",       "write",                                },
501  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
502 };
503
504 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
505                                        [PERF_EVSEL__MAX_ALIASES] = {
506  { "refs",      "Reference",    "ops",          "access",               },
507  { "misses",    "miss",                                                 },
508 };
509
510 #define C(x)            PERF_COUNT_HW_CACHE_##x
511 #define CACHE_READ      (1 << C(OP_READ))
512 #define CACHE_WRITE     (1 << C(OP_WRITE))
513 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
514 #define COP(x)          (1 << x)
515
516 /*
517  * cache operartion stat
518  * L1I : Read and prefetch only
519  * ITLB and BPU : Read-only
520  */
521 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
522  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
523  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
524  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
525  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
526  [C(ITLB)]      = (CACHE_READ),
527  [C(BPU)]       = (CACHE_READ),
528  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
529 };
530
531 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
532 {
533         if (perf_evsel__hw_cache_stat[type] & COP(op))
534                 return true;    /* valid */
535         else
536                 return false;   /* invalid */
537 }
538
539 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
540                                             char *bf, size_t size)
541 {
542         if (result) {
543                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
544                                  perf_evsel__hw_cache_op[op][0],
545                                  perf_evsel__hw_cache_result[result][0]);
546         }
547
548         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
549                          perf_evsel__hw_cache_op[op][1]);
550 }
551
552 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
553 {
554         u8 op, result, type = (config >>  0) & 0xff;
555         const char *err = "unknown-ext-hardware-cache-type";
556
557         if (type >= PERF_COUNT_HW_CACHE_MAX)
558                 goto out_err;
559
560         op = (config >>  8) & 0xff;
561         err = "unknown-ext-hardware-cache-op";
562         if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
563                 goto out_err;
564
565         result = (config >> 16) & 0xff;
566         err = "unknown-ext-hardware-cache-result";
567         if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
568                 goto out_err;
569
570         err = "invalid-cache";
571         if (!perf_evsel__is_cache_op_valid(type, op))
572                 goto out_err;
573
574         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
575 out_err:
576         return scnprintf(bf, size, "%s", err);
577 }
578
579 static int perf_evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size)
580 {
581         int ret = __perf_evsel__hw_cache_name(evsel->core.attr.config, bf, size);
582         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
583 }
584
585 static int perf_evsel__raw_name(struct evsel *evsel, char *bf, size_t size)
586 {
587         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config);
588         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
589 }
590
591 static int perf_evsel__tool_name(char *bf, size_t size)
592 {
593         int ret = scnprintf(bf, size, "duration_time");
594         return ret;
595 }
596
597 const char *perf_evsel__name(struct evsel *evsel)
598 {
599         char bf[128];
600
601         if (!evsel)
602                 goto out_unknown;
603
604         if (evsel->name)
605                 return evsel->name;
606
607         switch (evsel->core.attr.type) {
608         case PERF_TYPE_RAW:
609                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
610                 break;
611
612         case PERF_TYPE_HARDWARE:
613                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
614                 break;
615
616         case PERF_TYPE_HW_CACHE:
617                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
618                 break;
619
620         case PERF_TYPE_SOFTWARE:
621                 if (evsel->tool_event)
622                         perf_evsel__tool_name(bf, sizeof(bf));
623                 else
624                         perf_evsel__sw_name(evsel, bf, sizeof(bf));
625                 break;
626
627         case PERF_TYPE_TRACEPOINT:
628                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
629                 break;
630
631         case PERF_TYPE_BREAKPOINT:
632                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
633                 break;
634
635         default:
636                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
637                           evsel->core.attr.type);
638                 break;
639         }
640
641         evsel->name = strdup(bf);
642
643         if (evsel->name)
644                 return evsel->name;
645 out_unknown:
646         return "unknown";
647 }
648
649 const char *perf_evsel__group_name(struct evsel *evsel)
650 {
651         return evsel->group_name ?: "anon group";
652 }
653
654 /*
655  * Returns the group details for the specified leader,
656  * with following rules.
657  *
658  *  For record -e '{cycles,instructions}'
659  *    'anon group { cycles:u, instructions:u }'
660  *
661  *  For record -e 'cycles,instructions' and report --group
662  *    'cycles:u, instructions:u'
663  */
664 int perf_evsel__group_desc(struct evsel *evsel, char *buf, size_t size)
665 {
666         int ret = 0;
667         struct evsel *pos;
668         const char *group_name = perf_evsel__group_name(evsel);
669
670         if (!evsel->forced_leader)
671                 ret = scnprintf(buf, size, "%s { ", group_name);
672
673         ret += scnprintf(buf + ret, size - ret, "%s",
674                          perf_evsel__name(evsel));
675
676         for_each_group_member(pos, evsel)
677                 ret += scnprintf(buf + ret, size - ret, ", %s",
678                                  perf_evsel__name(pos));
679
680         if (!evsel->forced_leader)
681                 ret += scnprintf(buf + ret, size - ret, " }");
682
683         return ret;
684 }
685
686 static void __perf_evsel__config_callchain(struct evsel *evsel,
687                                            struct record_opts *opts,
688                                            struct callchain_param *param)
689 {
690         bool function = perf_evsel__is_function_event(evsel);
691         struct perf_event_attr *attr = &evsel->core.attr;
692
693         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
694
695         attr->sample_max_stack = param->max_stack;
696
697         if (opts->kernel_callchains)
698                 attr->exclude_callchain_user = 1;
699         if (opts->user_callchains)
700                 attr->exclude_callchain_kernel = 1;
701         if (param->record_mode == CALLCHAIN_LBR) {
702                 if (!opts->branch_stack) {
703                         if (attr->exclude_user) {
704                                 pr_warning("LBR callstack option is only available "
705                                            "to get user callchain information. "
706                                            "Falling back to framepointers.\n");
707                         } else {
708                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
709                                 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
710                                                         PERF_SAMPLE_BRANCH_CALL_STACK |
711                                                         PERF_SAMPLE_BRANCH_NO_CYCLES |
712                                                         PERF_SAMPLE_BRANCH_NO_FLAGS;
713                         }
714                 } else
715                          pr_warning("Cannot use LBR callstack with branch stack. "
716                                     "Falling back to framepointers.\n");
717         }
718
719         if (param->record_mode == CALLCHAIN_DWARF) {
720                 if (!function) {
721                         perf_evsel__set_sample_bit(evsel, REGS_USER);
722                         perf_evsel__set_sample_bit(evsel, STACK_USER);
723                         if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) {
724                                 attr->sample_regs_user |= DWARF_MINIMAL_REGS;
725                                 pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, "
726                                            "specifying a subset with --user-regs may render DWARF unwinding unreliable, "
727                                            "so the minimal registers set (IP, SP) is explicitly forced.\n");
728                         } else {
729                                 attr->sample_regs_user |= PERF_REGS_MASK;
730                         }
731                         attr->sample_stack_user = param->dump_size;
732                         attr->exclude_callchain_user = 1;
733                 } else {
734                         pr_info("Cannot use DWARF unwind for function trace event,"
735                                 " falling back to framepointers.\n");
736                 }
737         }
738
739         if (function) {
740                 pr_info("Disabling user space callchains for function trace event.\n");
741                 attr->exclude_callchain_user = 1;
742         }
743 }
744
745 void perf_evsel__config_callchain(struct evsel *evsel,
746                                   struct record_opts *opts,
747                                   struct callchain_param *param)
748 {
749         if (param->enabled)
750                 return __perf_evsel__config_callchain(evsel, opts, param);
751 }
752
753 static void
754 perf_evsel__reset_callgraph(struct evsel *evsel,
755                             struct callchain_param *param)
756 {
757         struct perf_event_attr *attr = &evsel->core.attr;
758
759         perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
760         if (param->record_mode == CALLCHAIN_LBR) {
761                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
762                 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
763                                               PERF_SAMPLE_BRANCH_CALL_STACK);
764         }
765         if (param->record_mode == CALLCHAIN_DWARF) {
766                 perf_evsel__reset_sample_bit(evsel, REGS_USER);
767                 perf_evsel__reset_sample_bit(evsel, STACK_USER);
768         }
769 }
770
771 static void apply_config_terms(struct evsel *evsel,
772                                struct record_opts *opts, bool track)
773 {
774         struct perf_evsel_config_term *term;
775         struct list_head *config_terms = &evsel->config_terms;
776         struct perf_event_attr *attr = &evsel->core.attr;
777         /* callgraph default */
778         struct callchain_param param = {
779                 .record_mode = callchain_param.record_mode,
780         };
781         u32 dump_size = 0;
782         int max_stack = 0;
783         const char *callgraph_buf = NULL;
784
785         list_for_each_entry(term, config_terms, list) {
786                 switch (term->type) {
787                 case PERF_EVSEL__CONFIG_TERM_PERIOD:
788                         if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
789                                 attr->sample_period = term->val.period;
790                                 attr->freq = 0;
791                                 perf_evsel__reset_sample_bit(evsel, PERIOD);
792                         }
793                         break;
794                 case PERF_EVSEL__CONFIG_TERM_FREQ:
795                         if (!(term->weak && opts->user_freq != UINT_MAX)) {
796                                 attr->sample_freq = term->val.freq;
797                                 attr->freq = 1;
798                                 perf_evsel__set_sample_bit(evsel, PERIOD);
799                         }
800                         break;
801                 case PERF_EVSEL__CONFIG_TERM_TIME:
802                         if (term->val.time)
803                                 perf_evsel__set_sample_bit(evsel, TIME);
804                         else
805                                 perf_evsel__reset_sample_bit(evsel, TIME);
806                         break;
807                 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
808                         callgraph_buf = term->val.callgraph;
809                         break;
810                 case PERF_EVSEL__CONFIG_TERM_BRANCH:
811                         if (term->val.branch && strcmp(term->val.branch, "no")) {
812                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
813                                 parse_branch_str(term->val.branch,
814                                                  &attr->branch_sample_type);
815                         } else
816                                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
817                         break;
818                 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
819                         dump_size = term->val.stack_user;
820                         break;
821                 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
822                         max_stack = term->val.max_stack;
823                         break;
824                 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
825                         evsel->max_events = term->val.max_events;
826                         break;
827                 case PERF_EVSEL__CONFIG_TERM_INHERIT:
828                         /*
829                          * attr->inherit should has already been set by
830                          * perf_evsel__config. If user explicitly set
831                          * inherit using config terms, override global
832                          * opt->no_inherit setting.
833                          */
834                         attr->inherit = term->val.inherit ? 1 : 0;
835                         break;
836                 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
837                         attr->write_backward = term->val.overwrite ? 1 : 0;
838                         break;
839                 case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
840                         break;
841                 case PERF_EVSEL__CONFIG_TERM_PERCORE:
842                         break;
843                 case PERF_EVSEL__CONFIG_TERM_AUX_OUTPUT:
844                         attr->aux_output = term->val.aux_output ? 1 : 0;
845                         break;
846                 default:
847                         break;
848                 }
849         }
850
851         /* User explicitly set per-event callgraph, clear the old setting and reset. */
852         if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
853                 bool sample_address = false;
854
855                 if (max_stack) {
856                         param.max_stack = max_stack;
857                         if (callgraph_buf == NULL)
858                                 callgraph_buf = "fp";
859                 }
860
861                 /* parse callgraph parameters */
862                 if (callgraph_buf != NULL) {
863                         if (!strcmp(callgraph_buf, "no")) {
864                                 param.enabled = false;
865                                 param.record_mode = CALLCHAIN_NONE;
866                         } else {
867                                 param.enabled = true;
868                                 if (parse_callchain_record(callgraph_buf, &param)) {
869                                         pr_err("per-event callgraph setting for %s failed. "
870                                                "Apply callgraph global setting for it\n",
871                                                evsel->name);
872                                         return;
873                                 }
874                                 if (param.record_mode == CALLCHAIN_DWARF)
875                                         sample_address = true;
876                         }
877                 }
878                 if (dump_size > 0) {
879                         dump_size = round_up(dump_size, sizeof(u64));
880                         param.dump_size = dump_size;
881                 }
882
883                 /* If global callgraph set, clear it */
884                 if (callchain_param.enabled)
885                         perf_evsel__reset_callgraph(evsel, &callchain_param);
886
887                 /* set perf-event callgraph */
888                 if (param.enabled) {
889                         if (sample_address) {
890                                 perf_evsel__set_sample_bit(evsel, ADDR);
891                                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
892                                 evsel->core.attr.mmap_data = track;
893                         }
894                         perf_evsel__config_callchain(evsel, opts, &param);
895                 }
896         }
897 }
898
899 static bool is_dummy_event(struct evsel *evsel)
900 {
901         return (evsel->core.attr.type == PERF_TYPE_SOFTWARE) &&
902                (evsel->core.attr.config == PERF_COUNT_SW_DUMMY);
903 }
904
905 /*
906  * The enable_on_exec/disabled value strategy:
907  *
908  *  1) For any type of traced program:
909  *    - all independent events and group leaders are disabled
910  *    - all group members are enabled
911  *
912  *     Group members are ruled by group leaders. They need to
913  *     be enabled, because the group scheduling relies on that.
914  *
915  *  2) For traced programs executed by perf:
916  *     - all independent events and group leaders have
917  *       enable_on_exec set
918  *     - we don't specifically enable or disable any event during
919  *       the record command
920  *
921  *     Independent events and group leaders are initially disabled
922  *     and get enabled by exec. Group members are ruled by group
923  *     leaders as stated in 1).
924  *
925  *  3) For traced programs attached by perf (pid/tid):
926  *     - we specifically enable or disable all events during
927  *       the record command
928  *
929  *     When attaching events to already running traced we
930  *     enable/disable events specifically, as there's no
931  *     initial traced exec call.
932  */
933 void perf_evsel__config(struct evsel *evsel, struct record_opts *opts,
934                         struct callchain_param *callchain)
935 {
936         struct evsel *leader = evsel->leader;
937         struct perf_event_attr *attr = &evsel->core.attr;
938         int track = evsel->tracking;
939         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
940
941         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
942         attr->inherit       = !opts->no_inherit;
943         attr->write_backward = opts->overwrite ? 1 : 0;
944
945         perf_evsel__set_sample_bit(evsel, IP);
946         perf_evsel__set_sample_bit(evsel, TID);
947
948         if (evsel->sample_read) {
949                 perf_evsel__set_sample_bit(evsel, READ);
950
951                 /*
952                  * We need ID even in case of single event, because
953                  * PERF_SAMPLE_READ process ID specific data.
954                  */
955                 perf_evsel__set_sample_id(evsel, false);
956
957                 /*
958                  * Apply group format only if we belong to group
959                  * with more than one members.
960                  */
961                 if (leader->core.nr_members > 1) {
962                         attr->read_format |= PERF_FORMAT_GROUP;
963                         attr->inherit = 0;
964                 }
965         }
966
967         /*
968          * We default some events to have a default interval. But keep
969          * it a weak assumption overridable by the user.
970          */
971         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
972                                      opts->user_interval != ULLONG_MAX)) {
973                 if (opts->freq) {
974                         perf_evsel__set_sample_bit(evsel, PERIOD);
975                         attr->freq              = 1;
976                         attr->sample_freq       = opts->freq;
977                 } else {
978                         attr->sample_period = opts->default_interval;
979                 }
980         }
981
982         /*
983          * Disable sampling for all group members other
984          * than leader in case leader 'leads' the sampling.
985          */
986         if ((leader != evsel) && leader->sample_read) {
987                 attr->freq           = 0;
988                 attr->sample_freq    = 0;
989                 attr->sample_period  = 0;
990                 attr->write_backward = 0;
991
992                 /*
993                  * We don't get sample for slave events, we make them
994                  * when delivering group leader sample. Set the slave
995                  * event to follow the master sample_type to ease up
996                  * report.
997                  */
998                 attr->sample_type = leader->core.attr.sample_type;
999         }
1000
1001         if (opts->no_samples)
1002                 attr->sample_freq = 0;
1003
1004         if (opts->inherit_stat) {
1005                 evsel->core.attr.read_format |=
1006                         PERF_FORMAT_TOTAL_TIME_ENABLED |
1007                         PERF_FORMAT_TOTAL_TIME_RUNNING |
1008                         PERF_FORMAT_ID;
1009                 attr->inherit_stat = 1;
1010         }
1011
1012         if (opts->sample_address) {
1013                 perf_evsel__set_sample_bit(evsel, ADDR);
1014                 attr->mmap_data = track;
1015         }
1016
1017         /*
1018          * We don't allow user space callchains for  function trace
1019          * event, due to issues with page faults while tracing page
1020          * fault handler and its overall trickiness nature.
1021          */
1022         if (perf_evsel__is_function_event(evsel))
1023                 evsel->core.attr.exclude_callchain_user = 1;
1024
1025         if (callchain && callchain->enabled && !evsel->no_aux_samples)
1026                 perf_evsel__config_callchain(evsel, opts, callchain);
1027
1028         if (opts->sample_intr_regs) {
1029                 attr->sample_regs_intr = opts->sample_intr_regs;
1030                 perf_evsel__set_sample_bit(evsel, REGS_INTR);
1031         }
1032
1033         if (opts->sample_user_regs) {
1034                 attr->sample_regs_user |= opts->sample_user_regs;
1035                 perf_evsel__set_sample_bit(evsel, REGS_USER);
1036         }
1037
1038         if (target__has_cpu(&opts->target) || opts->sample_cpu)
1039                 perf_evsel__set_sample_bit(evsel, CPU);
1040
1041         /*
1042          * When the user explicitly disabled time don't force it here.
1043          */
1044         if (opts->sample_time &&
1045             (!perf_missing_features.sample_id_all &&
1046             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1047              opts->sample_time_set)))
1048                 perf_evsel__set_sample_bit(evsel, TIME);
1049
1050         if (opts->raw_samples && !evsel->no_aux_samples) {
1051                 perf_evsel__set_sample_bit(evsel, TIME);
1052                 perf_evsel__set_sample_bit(evsel, RAW);
1053                 perf_evsel__set_sample_bit(evsel, CPU);
1054         }
1055
1056         if (opts->sample_address)
1057                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
1058
1059         if (opts->sample_phys_addr)
1060                 perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1061
1062         if (opts->no_buffering) {
1063                 attr->watermark = 0;
1064                 attr->wakeup_events = 1;
1065         }
1066         if (opts->branch_stack && !evsel->no_aux_samples) {
1067                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1068                 attr->branch_sample_type = opts->branch_stack;
1069         }
1070
1071         if (opts->sample_weight)
1072                 perf_evsel__set_sample_bit(evsel, WEIGHT);
1073
1074         attr->task  = track;
1075         attr->mmap  = track;
1076         attr->mmap2 = track && !perf_missing_features.mmap2;
1077         attr->comm  = track;
1078         attr->ksymbol = track && !perf_missing_features.ksymbol;
1079         attr->bpf_event = track && !opts->no_bpf_event && !perf_missing_features.bpf;
1080
1081         if (opts->record_namespaces)
1082                 attr->namespaces  = track;
1083
1084         if (opts->record_switch_events)
1085                 attr->context_switch = track;
1086
1087         if (opts->sample_transaction)
1088                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
1089
1090         if (opts->running_time) {
1091                 evsel->core.attr.read_format |=
1092                         PERF_FORMAT_TOTAL_TIME_ENABLED |
1093                         PERF_FORMAT_TOTAL_TIME_RUNNING;
1094         }
1095
1096         /*
1097          * XXX see the function comment above
1098          *
1099          * Disabling only independent events or group leaders,
1100          * keeping group members enabled.
1101          */
1102         if (perf_evsel__is_group_leader(evsel))
1103                 attr->disabled = 1;
1104
1105         /*
1106          * Setting enable_on_exec for independent events and
1107          * group leaders for traced executed by perf.
1108          */
1109         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1110                 !opts->initial_delay)
1111                 attr->enable_on_exec = 1;
1112
1113         if (evsel->immediate) {
1114                 attr->disabled = 0;
1115                 attr->enable_on_exec = 0;
1116         }
1117
1118         clockid = opts->clockid;
1119         if (opts->use_clockid) {
1120                 attr->use_clockid = 1;
1121                 attr->clockid = opts->clockid;
1122         }
1123
1124         if (evsel->precise_max)
1125                 attr->precise_ip = 3;
1126
1127         if (opts->all_user) {
1128                 attr->exclude_kernel = 1;
1129                 attr->exclude_user   = 0;
1130         }
1131
1132         if (opts->all_kernel) {
1133                 attr->exclude_kernel = 0;
1134                 attr->exclude_user   = 1;
1135         }
1136
1137         if (evsel->core.own_cpus || evsel->unit)
1138                 evsel->core.attr.read_format |= PERF_FORMAT_ID;
1139
1140         /*
1141          * Apply event specific term settings,
1142          * it overloads any global configuration.
1143          */
1144         apply_config_terms(evsel, opts, track);
1145
1146         evsel->ignore_missing_thread = opts->ignore_missing_thread;
1147
1148         /* The --period option takes the precedence. */
1149         if (opts->period_set) {
1150                 if (opts->period)
1151                         perf_evsel__set_sample_bit(evsel, PERIOD);
1152                 else
1153                         perf_evsel__reset_sample_bit(evsel, PERIOD);
1154         }
1155
1156         /*
1157          * For initial_delay, a dummy event is added implicitly.
1158          * The software event will trigger -EOPNOTSUPP error out,
1159          * if BRANCH_STACK bit is set.
1160          */
1161         if (opts->initial_delay && is_dummy_event(evsel))
1162                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1163 }
1164
1165 int perf_evsel__set_filter(struct evsel *evsel, const char *filter)
1166 {
1167         char *new_filter = strdup(filter);
1168
1169         if (new_filter != NULL) {
1170                 free(evsel->filter);
1171                 evsel->filter = new_filter;
1172                 return 0;
1173         }
1174
1175         return -1;
1176 }
1177
1178 static int perf_evsel__append_filter(struct evsel *evsel,
1179                                      const char *fmt, const char *filter)
1180 {
1181         char *new_filter;
1182
1183         if (evsel->filter == NULL)
1184                 return perf_evsel__set_filter(evsel, filter);
1185
1186         if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1187                 free(evsel->filter);
1188                 evsel->filter = new_filter;
1189                 return 0;
1190         }
1191
1192         return -1;
1193 }
1194
1195 int perf_evsel__append_tp_filter(struct evsel *evsel, const char *filter)
1196 {
1197         return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1198 }
1199
1200 int perf_evsel__append_addr_filter(struct evsel *evsel, const char *filter)
1201 {
1202         return perf_evsel__append_filter(evsel, "%s,%s", filter);
1203 }
1204
1205 int evsel__enable(struct evsel *evsel)
1206 {
1207         int err = perf_evsel__enable(&evsel->core);
1208
1209         if (!err)
1210                 evsel->disabled = false;
1211
1212         return err;
1213 }
1214
1215 int evsel__disable(struct evsel *evsel)
1216 {
1217         int err = perf_evsel__disable(&evsel->core);
1218         /*
1219          * We mark it disabled here so that tools that disable a event can
1220          * ignore events after they disable it. I.e. the ring buffer may have
1221          * already a few more events queued up before the kernel got the stop
1222          * request.
1223          */
1224         if (!err)
1225                 evsel->disabled = true;
1226
1227         return err;
1228 }
1229
1230 int perf_evsel__alloc_id(struct evsel *evsel, int ncpus, int nthreads)
1231 {
1232         if (ncpus == 0 || nthreads == 0)
1233                 return 0;
1234
1235         if (evsel->system_wide)
1236                 nthreads = 1;
1237
1238         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1239         if (evsel->sample_id == NULL)
1240                 return -ENOMEM;
1241
1242         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1243         if (evsel->id == NULL) {
1244                 xyarray__delete(evsel->sample_id);
1245                 evsel->sample_id = NULL;
1246                 return -ENOMEM;
1247         }
1248
1249         return 0;
1250 }
1251
1252 static void perf_evsel__free_id(struct evsel *evsel)
1253 {
1254         xyarray__delete(evsel->sample_id);
1255         evsel->sample_id = NULL;
1256         zfree(&evsel->id);
1257         evsel->ids = 0;
1258 }
1259
1260 static void perf_evsel__free_config_terms(struct evsel *evsel)
1261 {
1262         struct perf_evsel_config_term *term, *h;
1263
1264         list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1265                 list_del_init(&term->list);
1266                 free(term);
1267         }
1268 }
1269
1270 void perf_evsel__exit(struct evsel *evsel)
1271 {
1272         assert(list_empty(&evsel->core.node));
1273         assert(evsel->evlist == NULL);
1274         perf_evsel__free_counts(evsel);
1275         perf_evsel__free_fd(&evsel->core);
1276         perf_evsel__free_id(evsel);
1277         perf_evsel__free_config_terms(evsel);
1278         cgroup__put(evsel->cgrp);
1279         perf_cpu_map__put(evsel->core.cpus);
1280         perf_cpu_map__put(evsel->core.own_cpus);
1281         perf_thread_map__put(evsel->core.threads);
1282         zfree(&evsel->group_name);
1283         zfree(&evsel->name);
1284         perf_evsel__object.fini(evsel);
1285 }
1286
1287 void evsel__delete(struct evsel *evsel)
1288 {
1289         perf_evsel__exit(evsel);
1290         free(evsel);
1291 }
1292
1293 void perf_evsel__compute_deltas(struct evsel *evsel, int cpu, int thread,
1294                                 struct perf_counts_values *count)
1295 {
1296         struct perf_counts_values tmp;
1297
1298         if (!evsel->prev_raw_counts)
1299                 return;
1300
1301         if (cpu == -1) {
1302                 tmp = evsel->prev_raw_counts->aggr;
1303                 evsel->prev_raw_counts->aggr = *count;
1304         } else {
1305                 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1306                 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1307         }
1308
1309         count->val = count->val - tmp.val;
1310         count->ena = count->ena - tmp.ena;
1311         count->run = count->run - tmp.run;
1312 }
1313
1314 void perf_counts_values__scale(struct perf_counts_values *count,
1315                                bool scale, s8 *pscaled)
1316 {
1317         s8 scaled = 0;
1318
1319         if (scale) {
1320                 if (count->run == 0) {
1321                         scaled = -1;
1322                         count->val = 0;
1323                 } else if (count->run < count->ena) {
1324                         scaled = 1;
1325                         count->val = (u64)((double) count->val * count->ena / count->run);
1326                 }
1327         }
1328
1329         if (pscaled)
1330                 *pscaled = scaled;
1331 }
1332
1333 static int
1334 perf_evsel__read_one(struct evsel *evsel, int cpu, int thread)
1335 {
1336         struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1337
1338         return perf_evsel__read(&evsel->core, cpu, thread, count);
1339 }
1340
1341 static void
1342 perf_evsel__set_count(struct evsel *counter, int cpu, int thread,
1343                       u64 val, u64 ena, u64 run)
1344 {
1345         struct perf_counts_values *count;
1346
1347         count = perf_counts(counter->counts, cpu, thread);
1348
1349         count->val    = val;
1350         count->ena    = ena;
1351         count->run    = run;
1352
1353         perf_counts__set_loaded(counter->counts, cpu, thread, true);
1354 }
1355
1356 static int
1357 perf_evsel__process_group_data(struct evsel *leader,
1358                                int cpu, int thread, u64 *data)
1359 {
1360         u64 read_format = leader->core.attr.read_format;
1361         struct sample_read_value *v;
1362         u64 nr, ena = 0, run = 0, i;
1363
1364         nr = *data++;
1365
1366         if (nr != (u64) leader->core.nr_members)
1367                 return -EINVAL;
1368
1369         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1370                 ena = *data++;
1371
1372         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1373                 run = *data++;
1374
1375         v = (struct sample_read_value *) data;
1376
1377         perf_evsel__set_count(leader, cpu, thread,
1378                               v[0].value, ena, run);
1379
1380         for (i = 1; i < nr; i++) {
1381                 struct evsel *counter;
1382
1383                 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1384                 if (!counter)
1385                         return -EINVAL;
1386
1387                 perf_evsel__set_count(counter, cpu, thread,
1388                                       v[i].value, ena, run);
1389         }
1390
1391         return 0;
1392 }
1393
1394 static int
1395 perf_evsel__read_group(struct evsel *leader, int cpu, int thread)
1396 {
1397         struct perf_stat_evsel *ps = leader->stats;
1398         u64 read_format = leader->core.attr.read_format;
1399         int size = perf_evsel__read_size(&leader->core);
1400         u64 *data = ps->group_data;
1401
1402         if (!(read_format & PERF_FORMAT_ID))
1403                 return -EINVAL;
1404
1405         if (!perf_evsel__is_group_leader(leader))
1406                 return -EINVAL;
1407
1408         if (!data) {
1409                 data = zalloc(size);
1410                 if (!data)
1411                         return -ENOMEM;
1412
1413                 ps->group_data = data;
1414         }
1415
1416         if (FD(leader, cpu, thread) < 0)
1417                 return -EINVAL;
1418
1419         if (readn(FD(leader, cpu, thread), data, size) <= 0)
1420                 return -errno;
1421
1422         return perf_evsel__process_group_data(leader, cpu, thread, data);
1423 }
1424
1425 int perf_evsel__read_counter(struct evsel *evsel, int cpu, int thread)
1426 {
1427         u64 read_format = evsel->core.attr.read_format;
1428
1429         if (read_format & PERF_FORMAT_GROUP)
1430                 return perf_evsel__read_group(evsel, cpu, thread);
1431         else
1432                 return perf_evsel__read_one(evsel, cpu, thread);
1433 }
1434
1435 int __perf_evsel__read_on_cpu(struct evsel *evsel,
1436                               int cpu, int thread, bool scale)
1437 {
1438         struct perf_counts_values count;
1439         size_t nv = scale ? 3 : 1;
1440
1441         if (FD(evsel, cpu, thread) < 0)
1442                 return -EINVAL;
1443
1444         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1445                 return -ENOMEM;
1446
1447         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1448                 return -errno;
1449
1450         perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1451         perf_counts_values__scale(&count, scale, NULL);
1452         *perf_counts(evsel->counts, cpu, thread) = count;
1453         return 0;
1454 }
1455
1456 static int get_group_fd(struct evsel *evsel, int cpu, int thread)
1457 {
1458         struct evsel *leader = evsel->leader;
1459         int fd;
1460
1461         if (perf_evsel__is_group_leader(evsel))
1462                 return -1;
1463
1464         /*
1465          * Leader must be already processed/open,
1466          * if not it's a bug.
1467          */
1468         BUG_ON(!leader->core.fd);
1469
1470         fd = FD(leader, cpu, thread);
1471         BUG_ON(fd == -1);
1472
1473         return fd;
1474 }
1475
1476 struct bit_names {
1477         int bit;
1478         const char *name;
1479 };
1480
1481 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1482 {
1483         bool first_bit = true;
1484         int i = 0;
1485
1486         do {
1487                 if (value & bits[i].bit) {
1488                         buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1489                         first_bit = false;
1490                 }
1491         } while (bits[++i].name != NULL);
1492 }
1493
1494 static void __p_sample_type(char *buf, size_t size, u64 value)
1495 {
1496 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1497         struct bit_names bits[] = {
1498                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1499                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1500                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1501                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1502                 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1503                 bit_name(WEIGHT), bit_name(PHYS_ADDR),
1504                 { .name = NULL, }
1505         };
1506 #undef bit_name
1507         __p_bits(buf, size, value, bits);
1508 }
1509
1510 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1511 {
1512 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1513         struct bit_names bits[] = {
1514                 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1515                 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1516                 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1517                 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1518                 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1519                 { .name = NULL, }
1520         };
1521 #undef bit_name
1522         __p_bits(buf, size, value, bits);
1523 }
1524
1525 static void __p_read_format(char *buf, size_t size, u64 value)
1526 {
1527 #define bit_name(n) { PERF_FORMAT_##n, #n }
1528         struct bit_names bits[] = {
1529                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1530                 bit_name(ID), bit_name(GROUP),
1531                 { .name = NULL, }
1532         };
1533 #undef bit_name
1534         __p_bits(buf, size, value, bits);
1535 }
1536
1537 #define BUF_SIZE                1024
1538
1539 #define p_hex(val)              snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1540 #define p_unsigned(val)         snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1541 #define p_signed(val)           snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1542 #define p_sample_type(val)      __p_sample_type(buf, BUF_SIZE, val)
1543 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1544 #define p_read_format(val)      __p_read_format(buf, BUF_SIZE, val)
1545
1546 #define PRINT_ATTRn(_n, _f, _p)                         \
1547 do {                                                    \
1548         if (attr->_f) {                                 \
1549                 _p(attr->_f);                           \
1550                 ret += attr__fprintf(fp, _n, buf, priv);\
1551         }                                               \
1552 } while (0)
1553
1554 #define PRINT_ATTRf(_f, _p)     PRINT_ATTRn(#_f, _f, _p)
1555
1556 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1557                              attr__fprintf_f attr__fprintf, void *priv)
1558 {
1559         char buf[BUF_SIZE];
1560         int ret = 0;
1561
1562         PRINT_ATTRf(type, p_unsigned);
1563         PRINT_ATTRf(size, p_unsigned);
1564         PRINT_ATTRf(config, p_hex);
1565         PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1566         PRINT_ATTRf(sample_type, p_sample_type);
1567         PRINT_ATTRf(read_format, p_read_format);
1568
1569         PRINT_ATTRf(disabled, p_unsigned);
1570         PRINT_ATTRf(inherit, p_unsigned);
1571         PRINT_ATTRf(pinned, p_unsigned);
1572         PRINT_ATTRf(exclusive, p_unsigned);
1573         PRINT_ATTRf(exclude_user, p_unsigned);
1574         PRINT_ATTRf(exclude_kernel, p_unsigned);
1575         PRINT_ATTRf(exclude_hv, p_unsigned);
1576         PRINT_ATTRf(exclude_idle, p_unsigned);
1577         PRINT_ATTRf(mmap, p_unsigned);
1578         PRINT_ATTRf(comm, p_unsigned);
1579         PRINT_ATTRf(freq, p_unsigned);
1580         PRINT_ATTRf(inherit_stat, p_unsigned);
1581         PRINT_ATTRf(enable_on_exec, p_unsigned);
1582         PRINT_ATTRf(task, p_unsigned);
1583         PRINT_ATTRf(watermark, p_unsigned);
1584         PRINT_ATTRf(precise_ip, p_unsigned);
1585         PRINT_ATTRf(mmap_data, p_unsigned);
1586         PRINT_ATTRf(sample_id_all, p_unsigned);
1587         PRINT_ATTRf(exclude_host, p_unsigned);
1588         PRINT_ATTRf(exclude_guest, p_unsigned);
1589         PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1590         PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1591         PRINT_ATTRf(mmap2, p_unsigned);
1592         PRINT_ATTRf(comm_exec, p_unsigned);
1593         PRINT_ATTRf(use_clockid, p_unsigned);
1594         PRINT_ATTRf(context_switch, p_unsigned);
1595         PRINT_ATTRf(write_backward, p_unsigned);
1596         PRINT_ATTRf(namespaces, p_unsigned);
1597         PRINT_ATTRf(ksymbol, p_unsigned);
1598         PRINT_ATTRf(bpf_event, p_unsigned);
1599         PRINT_ATTRf(aux_output, p_unsigned);
1600
1601         PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1602         PRINT_ATTRf(bp_type, p_unsigned);
1603         PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1604         PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1605         PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1606         PRINT_ATTRf(sample_regs_user, p_hex);
1607         PRINT_ATTRf(sample_stack_user, p_unsigned);
1608         PRINT_ATTRf(clockid, p_signed);
1609         PRINT_ATTRf(sample_regs_intr, p_hex);
1610         PRINT_ATTRf(aux_watermark, p_unsigned);
1611         PRINT_ATTRf(sample_max_stack, p_unsigned);
1612
1613         return ret;
1614 }
1615
1616 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1617                                 void *priv __maybe_unused)
1618 {
1619         return fprintf(fp, "  %-32s %s\n", name, val);
1620 }
1621
1622 static void perf_evsel__remove_fd(struct evsel *pos,
1623                                   int nr_cpus, int nr_threads,
1624                                   int thread_idx)
1625 {
1626         for (int cpu = 0; cpu < nr_cpus; cpu++)
1627                 for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1628                         FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1629 }
1630
1631 static int update_fds(struct evsel *evsel,
1632                       int nr_cpus, int cpu_idx,
1633                       int nr_threads, int thread_idx)
1634 {
1635         struct evsel *pos;
1636
1637         if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1638                 return -EINVAL;
1639
1640         evlist__for_each_entry(evsel->evlist, pos) {
1641                 nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1642
1643                 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1644
1645                 /*
1646                  * Since fds for next evsel has not been created,
1647                  * there is no need to iterate whole event list.
1648                  */
1649                 if (pos == evsel)
1650                         break;
1651         }
1652         return 0;
1653 }
1654
1655 static bool ignore_missing_thread(struct evsel *evsel,
1656                                   int nr_cpus, int cpu,
1657                                   struct perf_thread_map *threads,
1658                                   int thread, int err)
1659 {
1660         pid_t ignore_pid = perf_thread_map__pid(threads, thread);
1661
1662         if (!evsel->ignore_missing_thread)
1663                 return false;
1664
1665         /* The system wide setup does not work with threads. */
1666         if (evsel->system_wide)
1667                 return false;
1668
1669         /* The -ESRCH is perf event syscall errno for pid's not found. */
1670         if (err != -ESRCH)
1671                 return false;
1672
1673         /* If there's only one thread, let it fail. */
1674         if (threads->nr == 1)
1675                 return false;
1676
1677         /*
1678          * We should remove fd for missing_thread first
1679          * because thread_map__remove() will decrease threads->nr.
1680          */
1681         if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1682                 return false;
1683
1684         if (thread_map__remove(threads, thread))
1685                 return false;
1686
1687         pr_warning("WARNING: Ignored open failure for pid %d\n",
1688                    ignore_pid);
1689         return true;
1690 }
1691
1692 static void display_attr(struct perf_event_attr *attr)
1693 {
1694         if (verbose >= 2) {
1695                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1696                 fprintf(stderr, "perf_event_attr:\n");
1697                 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1698                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1699         }
1700 }
1701
1702 static int perf_event_open(struct evsel *evsel,
1703                            pid_t pid, int cpu, int group_fd,
1704                            unsigned long flags)
1705 {
1706         int precise_ip = evsel->core.attr.precise_ip;
1707         int fd;
1708
1709         while (1) {
1710                 pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1711                           pid, cpu, group_fd, flags);
1712
1713                 fd = sys_perf_event_open(&evsel->core.attr, pid, cpu, group_fd, flags);
1714                 if (fd >= 0)
1715                         break;
1716
1717                 /* Do not try less precise if not requested. */
1718                 if (!evsel->precise_max)
1719                         break;
1720
1721                 /*
1722                  * We tried all the precise_ip values, and it's
1723                  * still failing, so leave it to standard fallback.
1724                  */
1725                 if (!evsel->core.attr.precise_ip) {
1726                         evsel->core.attr.precise_ip = precise_ip;
1727                         break;
1728                 }
1729
1730                 pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
1731                 evsel->core.attr.precise_ip--;
1732                 pr_debug2("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip);
1733                 display_attr(&evsel->core.attr);
1734         }
1735
1736         return fd;
1737 }
1738
1739 int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus,
1740                 struct perf_thread_map *threads)
1741 {
1742         int cpu, thread, nthreads;
1743         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1744         int pid = -1, err;
1745         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1746
1747         if ((perf_missing_features.write_backward && evsel->core.attr.write_backward) ||
1748             (perf_missing_features.aux_output     && evsel->core.attr.aux_output))
1749                 return -EINVAL;
1750
1751         if (cpus == NULL) {
1752                 static struct perf_cpu_map *empty_cpu_map;
1753
1754                 if (empty_cpu_map == NULL) {
1755                         empty_cpu_map = perf_cpu_map__dummy_new();
1756                         if (empty_cpu_map == NULL)
1757                                 return -ENOMEM;
1758                 }
1759
1760                 cpus = empty_cpu_map;
1761         }
1762
1763         if (threads == NULL) {
1764                 static struct perf_thread_map *empty_thread_map;
1765
1766                 if (empty_thread_map == NULL) {
1767                         empty_thread_map = thread_map__new_by_tid(-1);
1768                         if (empty_thread_map == NULL)
1769                                 return -ENOMEM;
1770                 }
1771
1772                 threads = empty_thread_map;
1773         }
1774
1775         if (evsel->system_wide)
1776                 nthreads = 1;
1777         else
1778                 nthreads = threads->nr;
1779
1780         if (evsel->core.fd == NULL &&
1781             perf_evsel__alloc_fd(&evsel->core, cpus->nr, nthreads) < 0)
1782                 return -ENOMEM;
1783
1784         if (evsel->cgrp) {
1785                 flags |= PERF_FLAG_PID_CGROUP;
1786                 pid = evsel->cgrp->fd;
1787         }
1788
1789 fallback_missing_features:
1790         if (perf_missing_features.clockid_wrong)
1791                 evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */
1792         if (perf_missing_features.clockid) {
1793                 evsel->core.attr.use_clockid = 0;
1794                 evsel->core.attr.clockid = 0;
1795         }
1796         if (perf_missing_features.cloexec)
1797                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1798         if (perf_missing_features.mmap2)
1799                 evsel->core.attr.mmap2 = 0;
1800         if (perf_missing_features.exclude_guest)
1801                 evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0;
1802         if (perf_missing_features.lbr_flags)
1803                 evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1804                                      PERF_SAMPLE_BRANCH_NO_CYCLES);
1805         if (perf_missing_features.group_read && evsel->core.attr.inherit)
1806                 evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1807         if (perf_missing_features.ksymbol)
1808                 evsel->core.attr.ksymbol = 0;
1809         if (perf_missing_features.bpf)
1810                 evsel->core.attr.bpf_event = 0;
1811 retry_sample_id:
1812         if (perf_missing_features.sample_id_all)
1813                 evsel->core.attr.sample_id_all = 0;
1814
1815         display_attr(&evsel->core.attr);
1816
1817         for (cpu = 0; cpu < cpus->nr; cpu++) {
1818
1819                 for (thread = 0; thread < nthreads; thread++) {
1820                         int fd, group_fd;
1821
1822                         if (!evsel->cgrp && !evsel->system_wide)
1823                                 pid = perf_thread_map__pid(threads, thread);
1824
1825                         group_fd = get_group_fd(evsel, cpu, thread);
1826 retry_open:
1827                         test_attr__ready();
1828
1829                         fd = perf_event_open(evsel, pid, cpus->map[cpu],
1830                                              group_fd, flags);
1831
1832                         FD(evsel, cpu, thread) = fd;
1833
1834                         if (fd < 0) {
1835                                 err = -errno;
1836
1837                                 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1838                                         /*
1839                                          * We just removed 1 thread, so take a step
1840                                          * back on thread index and lower the upper
1841                                          * nthreads limit.
1842                                          */
1843                                         nthreads--;
1844                                         thread--;
1845
1846                                         /* ... and pretend like nothing have happened. */
1847                                         err = 0;
1848                                         continue;
1849                                 }
1850
1851                                 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1852                                           err);
1853                                 goto try_fallback;
1854                         }
1855
1856                         pr_debug2(" = %d\n", fd);
1857
1858                         if (evsel->bpf_fd >= 0) {
1859                                 int evt_fd = fd;
1860                                 int bpf_fd = evsel->bpf_fd;
1861
1862                                 err = ioctl(evt_fd,
1863                                             PERF_EVENT_IOC_SET_BPF,
1864                                             bpf_fd);
1865                                 if (err && errno != EEXIST) {
1866                                         pr_err("failed to attach bpf fd %d: %s\n",
1867                                                bpf_fd, strerror(errno));
1868                                         err = -EINVAL;
1869                                         goto out_close;
1870                                 }
1871                         }
1872
1873                         set_rlimit = NO_CHANGE;
1874
1875                         /*
1876                          * If we succeeded but had to kill clockid, fail and
1877                          * have perf_evsel__open_strerror() print us a nice
1878                          * error.
1879                          */
1880                         if (perf_missing_features.clockid ||
1881                             perf_missing_features.clockid_wrong) {
1882                                 err = -EINVAL;
1883                                 goto out_close;
1884                         }
1885                 }
1886         }
1887
1888         return 0;
1889
1890 try_fallback:
1891         /*
1892          * perf stat needs between 5 and 22 fds per CPU. When we run out
1893          * of them try to increase the limits.
1894          */
1895         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1896                 struct rlimit l;
1897                 int old_errno = errno;
1898
1899                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1900                         if (set_rlimit == NO_CHANGE)
1901                                 l.rlim_cur = l.rlim_max;
1902                         else {
1903                                 l.rlim_cur = l.rlim_max + 1000;
1904                                 l.rlim_max = l.rlim_cur;
1905                         }
1906                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1907                                 set_rlimit++;
1908                                 errno = old_errno;
1909                                 goto retry_open;
1910                         }
1911                 }
1912                 errno = old_errno;
1913         }
1914
1915         if (err != -EINVAL || cpu > 0 || thread > 0)
1916                 goto out_close;
1917
1918         /*
1919          * Must probe features in the order they were added to the
1920          * perf_event_attr interface.
1921          */
1922         if (!perf_missing_features.aux_output && evsel->core.attr.aux_output) {
1923                 perf_missing_features.aux_output = true;
1924                 pr_debug2("Kernel has no attr.aux_output support, bailing out\n");
1925                 goto out_close;
1926         } else if (!perf_missing_features.bpf && evsel->core.attr.bpf_event) {
1927                 perf_missing_features.bpf = true;
1928                 pr_debug2("switching off bpf_event\n");
1929                 goto fallback_missing_features;
1930         } else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) {
1931                 perf_missing_features.ksymbol = true;
1932                 pr_debug2("switching off ksymbol\n");
1933                 goto fallback_missing_features;
1934         } else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) {
1935                 perf_missing_features.write_backward = true;
1936                 pr_debug2("switching off write_backward\n");
1937                 goto out_close;
1938         } else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) {
1939                 perf_missing_features.clockid_wrong = true;
1940                 pr_debug2("switching off clockid\n");
1941                 goto fallback_missing_features;
1942         } else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) {
1943                 perf_missing_features.clockid = true;
1944                 pr_debug2("switching off use_clockid\n");
1945                 goto fallback_missing_features;
1946         } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1947                 perf_missing_features.cloexec = true;
1948                 pr_debug2("switching off cloexec flag\n");
1949                 goto fallback_missing_features;
1950         } else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) {
1951                 perf_missing_features.mmap2 = true;
1952                 pr_debug2("switching off mmap2\n");
1953                 goto fallback_missing_features;
1954         } else if (!perf_missing_features.exclude_guest &&
1955                    (evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host)) {
1956                 perf_missing_features.exclude_guest = true;
1957                 pr_debug2("switching off exclude_guest, exclude_host\n");
1958                 goto fallback_missing_features;
1959         } else if (!perf_missing_features.sample_id_all) {
1960                 perf_missing_features.sample_id_all = true;
1961                 pr_debug2("switching off sample_id_all\n");
1962                 goto retry_sample_id;
1963         } else if (!perf_missing_features.lbr_flags &&
1964                         (evsel->core.attr.branch_sample_type &
1965                          (PERF_SAMPLE_BRANCH_NO_CYCLES |
1966                           PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1967                 perf_missing_features.lbr_flags = true;
1968                 pr_debug2("switching off branch sample type no (cycles/flags)\n");
1969                 goto fallback_missing_features;
1970         } else if (!perf_missing_features.group_read &&
1971                     evsel->core.attr.inherit &&
1972                    (evsel->core.attr.read_format & PERF_FORMAT_GROUP) &&
1973                    perf_evsel__is_group_leader(evsel)) {
1974                 perf_missing_features.group_read = true;
1975                 pr_debug2("switching off group read\n");
1976                 goto fallback_missing_features;
1977         }
1978 out_close:
1979         if (err)
1980                 threads->err_thread = thread;
1981
1982         do {
1983                 while (--thread >= 0) {
1984                         close(FD(evsel, cpu, thread));
1985                         FD(evsel, cpu, thread) = -1;
1986                 }
1987                 thread = nthreads;
1988         } while (--cpu >= 0);
1989         return err;
1990 }
1991
1992 void evsel__close(struct evsel *evsel)
1993 {
1994         perf_evsel__close(&evsel->core);
1995         perf_evsel__free_id(evsel);
1996 }
1997
1998 int perf_evsel__open_per_cpu(struct evsel *evsel,
1999                              struct perf_cpu_map *cpus)
2000 {
2001         return evsel__open(evsel, cpus, NULL);
2002 }
2003
2004 int perf_evsel__open_per_thread(struct evsel *evsel,
2005                                 struct perf_thread_map *threads)
2006 {
2007         return evsel__open(evsel, NULL, threads);
2008 }
2009
2010 static int perf_evsel__parse_id_sample(const struct evsel *evsel,
2011                                        const union perf_event *event,
2012                                        struct perf_sample *sample)
2013 {
2014         u64 type = evsel->core.attr.sample_type;
2015         const __u64 *array = event->sample.array;
2016         bool swapped = evsel->needs_swap;
2017         union u64_swap u;
2018
2019         array += ((event->header.size -
2020                    sizeof(event->header)) / sizeof(u64)) - 1;
2021
2022         if (type & PERF_SAMPLE_IDENTIFIER) {
2023                 sample->id = *array;
2024                 array--;
2025         }
2026
2027         if (type & PERF_SAMPLE_CPU) {
2028                 u.val64 = *array;
2029                 if (swapped) {
2030                         /* undo swap of u64, then swap on individual u32s */
2031                         u.val64 = bswap_64(u.val64);
2032                         u.val32[0] = bswap_32(u.val32[0]);
2033                 }
2034
2035                 sample->cpu = u.val32[0];
2036                 array--;
2037         }
2038
2039         if (type & PERF_SAMPLE_STREAM_ID) {
2040                 sample->stream_id = *array;
2041                 array--;
2042         }
2043
2044         if (type & PERF_SAMPLE_ID) {
2045                 sample->id = *array;
2046                 array--;
2047         }
2048
2049         if (type & PERF_SAMPLE_TIME) {
2050                 sample->time = *array;
2051                 array--;
2052         }
2053
2054         if (type & PERF_SAMPLE_TID) {
2055                 u.val64 = *array;
2056                 if (swapped) {
2057                         /* undo swap of u64, then swap on individual u32s */
2058                         u.val64 = bswap_64(u.val64);
2059                         u.val32[0] = bswap_32(u.val32[0]);
2060                         u.val32[1] = bswap_32(u.val32[1]);
2061                 }
2062
2063                 sample->pid = u.val32[0];
2064                 sample->tid = u.val32[1];
2065                 array--;
2066         }
2067
2068         return 0;
2069 }
2070
2071 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2072                             u64 size)
2073 {
2074         return size > max_size || offset + size > endp;
2075 }
2076
2077 #define OVERFLOW_CHECK(offset, size, max_size)                          \
2078         do {                                                            \
2079                 if (overflow(endp, (max_size), (offset), (size)))       \
2080                         return -EFAULT;                                 \
2081         } while (0)
2082
2083 #define OVERFLOW_CHECK_u64(offset) \
2084         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2085
2086 static int
2087 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2088 {
2089         /*
2090          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2091          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2092          * check the format does not go past the end of the event.
2093          */
2094         if (sample_size + sizeof(event->header) > event->header.size)
2095                 return -EFAULT;
2096
2097         return 0;
2098 }
2099
2100 int perf_evsel__parse_sample(struct evsel *evsel, union perf_event *event,
2101                              struct perf_sample *data)
2102 {
2103         u64 type = evsel->core.attr.sample_type;
2104         bool swapped = evsel->needs_swap;
2105         const __u64 *array;
2106         u16 max_size = event->header.size;
2107         const void *endp = (void *)event + max_size;
2108         u64 sz;
2109
2110         /*
2111          * used for cross-endian analysis. See git commit 65014ab3
2112          * for why this goofiness is needed.
2113          */
2114         union u64_swap u;
2115
2116         memset(data, 0, sizeof(*data));
2117         data->cpu = data->pid = data->tid = -1;
2118         data->stream_id = data->id = data->time = -1ULL;
2119         data->period = evsel->core.attr.sample_period;
2120         data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2121         data->misc    = event->header.misc;
2122         data->id = -1ULL;
2123         data->data_src = PERF_MEM_DATA_SRC_NONE;
2124
2125         if (event->header.type != PERF_RECORD_SAMPLE) {
2126                 if (!evsel->core.attr.sample_id_all)
2127                         return 0;
2128                 return perf_evsel__parse_id_sample(evsel, event, data);
2129         }
2130
2131         array = event->sample.array;
2132
2133         if (perf_event__check_size(event, evsel->sample_size))
2134                 return -EFAULT;
2135
2136         if (type & PERF_SAMPLE_IDENTIFIER) {
2137                 data->id = *array;
2138                 array++;
2139         }
2140
2141         if (type & PERF_SAMPLE_IP) {
2142                 data->ip = *array;
2143                 array++;
2144         }
2145
2146         if (type & PERF_SAMPLE_TID) {
2147                 u.val64 = *array;
2148                 if (swapped) {
2149                         /* undo swap of u64, then swap on individual u32s */
2150                         u.val64 = bswap_64(u.val64);
2151                         u.val32[0] = bswap_32(u.val32[0]);
2152                         u.val32[1] = bswap_32(u.val32[1]);
2153                 }
2154
2155                 data->pid = u.val32[0];
2156                 data->tid = u.val32[1];
2157                 array++;
2158         }
2159
2160         if (type & PERF_SAMPLE_TIME) {
2161                 data->time = *array;
2162                 array++;
2163         }
2164
2165         if (type & PERF_SAMPLE_ADDR) {
2166                 data->addr = *array;
2167                 array++;
2168         }
2169
2170         if (type & PERF_SAMPLE_ID) {
2171                 data->id = *array;
2172                 array++;
2173         }
2174
2175         if (type & PERF_SAMPLE_STREAM_ID) {
2176                 data->stream_id = *array;
2177                 array++;
2178         }
2179
2180         if (type & PERF_SAMPLE_CPU) {
2181
2182                 u.val64 = *array;
2183                 if (swapped) {
2184                         /* undo swap of u64, then swap on individual u32s */
2185                         u.val64 = bswap_64(u.val64);
2186                         u.val32[0] = bswap_32(u.val32[0]);
2187                 }
2188
2189                 data->cpu = u.val32[0];
2190                 array++;
2191         }
2192
2193         if (type & PERF_SAMPLE_PERIOD) {
2194                 data->period = *array;
2195                 array++;
2196         }
2197
2198         if (type & PERF_SAMPLE_READ) {
2199                 u64 read_format = evsel->core.attr.read_format;
2200
2201                 OVERFLOW_CHECK_u64(array);
2202                 if (read_format & PERF_FORMAT_GROUP)
2203                         data->read.group.nr = *array;
2204                 else
2205                         data->read.one.value = *array;
2206
2207                 array++;
2208
2209                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2210                         OVERFLOW_CHECK_u64(array);
2211                         data->read.time_enabled = *array;
2212                         array++;
2213                 }
2214
2215                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2216                         OVERFLOW_CHECK_u64(array);
2217                         data->read.time_running = *array;
2218                         array++;
2219                 }
2220
2221                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2222                 if (read_format & PERF_FORMAT_GROUP) {
2223                         const u64 max_group_nr = UINT64_MAX /
2224                                         sizeof(struct sample_read_value);
2225
2226                         if (data->read.group.nr > max_group_nr)
2227                                 return -EFAULT;
2228                         sz = data->read.group.nr *
2229                              sizeof(struct sample_read_value);
2230                         OVERFLOW_CHECK(array, sz, max_size);
2231                         data->read.group.values =
2232                                         (struct sample_read_value *)array;
2233                         array = (void *)array + sz;
2234                 } else {
2235                         OVERFLOW_CHECK_u64(array);
2236                         data->read.one.id = *array;
2237                         array++;
2238                 }
2239         }
2240
2241         if (evsel__has_callchain(evsel)) {
2242                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2243
2244                 OVERFLOW_CHECK_u64(array);
2245                 data->callchain = (struct ip_callchain *)array++;
2246                 if (data->callchain->nr > max_callchain_nr)
2247                         return -EFAULT;
2248                 sz = data->callchain->nr * sizeof(u64);
2249                 OVERFLOW_CHECK(array, sz, max_size);
2250                 array = (void *)array + sz;
2251         }
2252
2253         if (type & PERF_SAMPLE_RAW) {
2254                 OVERFLOW_CHECK_u64(array);
2255                 u.val64 = *array;
2256
2257                 /*
2258                  * Undo swap of u64, then swap on individual u32s,
2259                  * get the size of the raw area and undo all of the
2260                  * swap. The pevent interface handles endianity by
2261                  * itself.
2262                  */
2263                 if (swapped) {
2264                         u.val64 = bswap_64(u.val64);
2265                         u.val32[0] = bswap_32(u.val32[0]);
2266                         u.val32[1] = bswap_32(u.val32[1]);
2267                 }
2268                 data->raw_size = u.val32[0];
2269
2270                 /*
2271                  * The raw data is aligned on 64bits including the
2272                  * u32 size, so it's safe to use mem_bswap_64.
2273                  */
2274                 if (swapped)
2275                         mem_bswap_64((void *) array, data->raw_size);
2276
2277                 array = (void *)array + sizeof(u32);
2278
2279                 OVERFLOW_CHECK(array, data->raw_size, max_size);
2280                 data->raw_data = (void *)array;
2281                 array = (void *)array + data->raw_size;
2282         }
2283
2284         if (type & PERF_SAMPLE_BRANCH_STACK) {
2285                 const u64 max_branch_nr = UINT64_MAX /
2286                                           sizeof(struct branch_entry);
2287
2288                 OVERFLOW_CHECK_u64(array);
2289                 data->branch_stack = (struct branch_stack *)array++;
2290
2291                 if (data->branch_stack->nr > max_branch_nr)
2292                         return -EFAULT;
2293                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2294                 OVERFLOW_CHECK(array, sz, max_size);
2295                 array = (void *)array + sz;
2296         }
2297
2298         if (type & PERF_SAMPLE_REGS_USER) {
2299                 OVERFLOW_CHECK_u64(array);
2300                 data->user_regs.abi = *array;
2301                 array++;
2302
2303                 if (data->user_regs.abi) {
2304                         u64 mask = evsel->core.attr.sample_regs_user;
2305
2306                         sz = hweight64(mask) * sizeof(u64);
2307                         OVERFLOW_CHECK(array, sz, max_size);
2308                         data->user_regs.mask = mask;
2309                         data->user_regs.regs = (u64 *)array;
2310                         array = (void *)array + sz;
2311                 }
2312         }
2313
2314         if (type & PERF_SAMPLE_STACK_USER) {
2315                 OVERFLOW_CHECK_u64(array);
2316                 sz = *array++;
2317
2318                 data->user_stack.offset = ((char *)(array - 1)
2319                                           - (char *) event);
2320
2321                 if (!sz) {
2322                         data->user_stack.size = 0;
2323                 } else {
2324                         OVERFLOW_CHECK(array, sz, max_size);
2325                         data->user_stack.data = (char *)array;
2326                         array = (void *)array + sz;
2327                         OVERFLOW_CHECK_u64(array);
2328                         data->user_stack.size = *array++;
2329                         if (WARN_ONCE(data->user_stack.size > sz,
2330                                       "user stack dump failure\n"))
2331                                 return -EFAULT;
2332                 }
2333         }
2334
2335         if (type & PERF_SAMPLE_WEIGHT) {
2336                 OVERFLOW_CHECK_u64(array);
2337                 data->weight = *array;
2338                 array++;
2339         }
2340
2341         if (type & PERF_SAMPLE_DATA_SRC) {
2342                 OVERFLOW_CHECK_u64(array);
2343                 data->data_src = *array;
2344                 array++;
2345         }
2346
2347         if (type & PERF_SAMPLE_TRANSACTION) {
2348                 OVERFLOW_CHECK_u64(array);
2349                 data->transaction = *array;
2350                 array++;
2351         }
2352
2353         data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2354         if (type & PERF_SAMPLE_REGS_INTR) {
2355                 OVERFLOW_CHECK_u64(array);
2356                 data->intr_regs.abi = *array;
2357                 array++;
2358
2359                 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2360                         u64 mask = evsel->core.attr.sample_regs_intr;
2361
2362                         sz = hweight64(mask) * sizeof(u64);
2363                         OVERFLOW_CHECK(array, sz, max_size);
2364                         data->intr_regs.mask = mask;
2365                         data->intr_regs.regs = (u64 *)array;
2366                         array = (void *)array + sz;
2367                 }
2368         }
2369
2370         data->phys_addr = 0;
2371         if (type & PERF_SAMPLE_PHYS_ADDR) {
2372                 data->phys_addr = *array;
2373                 array++;
2374         }
2375
2376         return 0;
2377 }
2378
2379 int perf_evsel__parse_sample_timestamp(struct evsel *evsel,
2380                                        union perf_event *event,
2381                                        u64 *timestamp)
2382 {
2383         u64 type = evsel->core.attr.sample_type;
2384         const __u64 *array;
2385
2386         if (!(type & PERF_SAMPLE_TIME))
2387                 return -1;
2388
2389         if (event->header.type != PERF_RECORD_SAMPLE) {
2390                 struct perf_sample data = {
2391                         .time = -1ULL,
2392                 };
2393
2394                 if (!evsel->core.attr.sample_id_all)
2395                         return -1;
2396                 if (perf_evsel__parse_id_sample(evsel, event, &data))
2397                         return -1;
2398
2399                 *timestamp = data.time;
2400                 return 0;
2401         }
2402
2403         array = event->sample.array;
2404
2405         if (perf_event__check_size(event, evsel->sample_size))
2406                 return -EFAULT;
2407
2408         if (type & PERF_SAMPLE_IDENTIFIER)
2409                 array++;
2410
2411         if (type & PERF_SAMPLE_IP)
2412                 array++;
2413
2414         if (type & PERF_SAMPLE_TID)
2415                 array++;
2416
2417         if (type & PERF_SAMPLE_TIME)
2418                 *timestamp = *array;
2419
2420         return 0;
2421 }
2422
2423 struct tep_format_field *perf_evsel__field(struct evsel *evsel, const char *name)
2424 {
2425         return tep_find_field(evsel->tp_format, name);
2426 }
2427
2428 void *perf_evsel__rawptr(struct evsel *evsel, struct perf_sample *sample,
2429                          const char *name)
2430 {
2431         struct tep_format_field *field = perf_evsel__field(evsel, name);
2432         int offset;
2433
2434         if (!field)
2435                 return NULL;
2436
2437         offset = field->offset;
2438
2439         if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2440                 offset = *(int *)(sample->raw_data + field->offset);
2441                 offset &= 0xffff;
2442         }
2443
2444         return sample->raw_data + offset;
2445 }
2446
2447 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2448                          bool needs_swap)
2449 {
2450         u64 value;
2451         void *ptr = sample->raw_data + field->offset;
2452
2453         switch (field->size) {
2454         case 1:
2455                 return *(u8 *)ptr;
2456         case 2:
2457                 value = *(u16 *)ptr;
2458                 break;
2459         case 4:
2460                 value = *(u32 *)ptr;
2461                 break;
2462         case 8:
2463                 memcpy(&value, ptr, sizeof(u64));
2464                 break;
2465         default:
2466                 return 0;
2467         }
2468
2469         if (!needs_swap)
2470                 return value;
2471
2472         switch (field->size) {
2473         case 2:
2474                 return bswap_16(value);
2475         case 4:
2476                 return bswap_32(value);
2477         case 8:
2478                 return bswap_64(value);
2479         default:
2480                 return 0;
2481         }
2482
2483         return 0;
2484 }
2485
2486 u64 perf_evsel__intval(struct evsel *evsel, struct perf_sample *sample,
2487                        const char *name)
2488 {
2489         struct tep_format_field *field = perf_evsel__field(evsel, name);
2490
2491         if (!field)
2492                 return 0;
2493
2494         return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2495 }
2496
2497 bool perf_evsel__fallback(struct evsel *evsel, int err,
2498                           char *msg, size_t msgsize)
2499 {
2500         int paranoid;
2501
2502         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2503             evsel->core.attr.type   == PERF_TYPE_HARDWARE &&
2504             evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2505                 /*
2506                  * If it's cycles then fall back to hrtimer based
2507                  * cpu-clock-tick sw counter, which is always available even if
2508                  * no PMU support.
2509                  *
2510                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2511                  * b0a873e).
2512                  */
2513                 scnprintf(msg, msgsize, "%s",
2514 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2515
2516                 evsel->core.attr.type   = PERF_TYPE_SOFTWARE;
2517                 evsel->core.attr.config = PERF_COUNT_SW_CPU_CLOCK;
2518
2519                 zfree(&evsel->name);
2520                 return true;
2521         } else if (err == EACCES && !evsel->core.attr.exclude_kernel &&
2522                    (paranoid = perf_event_paranoid()) > 1) {
2523                 const char *name = perf_evsel__name(evsel);
2524                 char *new_name;
2525                 const char *sep = ":";
2526
2527                 /* Is there already the separator in the name. */
2528                 if (strchr(name, '/') ||
2529                     strchr(name, ':'))
2530                         sep = "";
2531
2532                 if (asprintf(&new_name, "%s%su", name, sep) < 0)
2533                         return false;
2534
2535                 if (evsel->name)
2536                         free(evsel->name);
2537                 evsel->name = new_name;
2538                 scnprintf(msg, msgsize, "kernel.perf_event_paranoid=%d, trying "
2539                           "to fall back to excluding kernel and hypervisor "
2540                           " samples", paranoid);
2541                 evsel->core.attr.exclude_kernel = 1;
2542                 evsel->core.attr.exclude_hv     = 1;
2543
2544                 return true;
2545         }
2546
2547         return false;
2548 }
2549
2550 static bool find_process(const char *name)
2551 {
2552         size_t len = strlen(name);
2553         DIR *dir;
2554         struct dirent *d;
2555         int ret = -1;
2556
2557         dir = opendir(procfs__mountpoint());
2558         if (!dir)
2559                 return false;
2560
2561         /* Walk through the directory. */
2562         while (ret && (d = readdir(dir)) != NULL) {
2563                 char path[PATH_MAX];
2564                 char *data;
2565                 size_t size;
2566
2567                 if ((d->d_type != DT_DIR) ||
2568                      !strcmp(".", d->d_name) ||
2569                      !strcmp("..", d->d_name))
2570                         continue;
2571
2572                 scnprintf(path, sizeof(path), "%s/%s/comm",
2573                           procfs__mountpoint(), d->d_name);
2574
2575                 if (filename__read_str(path, &data, &size))
2576                         continue;
2577
2578                 ret = strncmp(name, data, len);
2579                 free(data);
2580         }
2581
2582         closedir(dir);
2583         return ret ? false : true;
2584 }
2585
2586 int perf_evsel__open_strerror(struct evsel *evsel, struct target *target,
2587                               int err, char *msg, size_t size)
2588 {
2589         char sbuf[STRERR_BUFSIZE];
2590         int printed = 0;
2591
2592         switch (err) {
2593         case EPERM:
2594         case EACCES:
2595                 if (err == EPERM)
2596                         printed = scnprintf(msg, size,
2597                                 "No permission to enable %s event.\n\n",
2598                                 perf_evsel__name(evsel));
2599
2600                 return scnprintf(msg + printed, size - printed,
2601                  "You may not have permission to collect %sstats.\n\n"
2602                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2603                  "which controls use of the performance events system by\n"
2604                  "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2605                  "The current value is %d:\n\n"
2606                  "  -1: Allow use of (almost) all events by all users\n"
2607                  "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2608                  ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2609                  "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2610                  ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2611                  ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2612                  "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2613                  "      kernel.perf_event_paranoid = -1\n" ,
2614                                  target->system_wide ? "system-wide " : "",
2615                                  perf_event_paranoid());
2616         case ENOENT:
2617                 return scnprintf(msg, size, "The %s event is not supported.",
2618                                  perf_evsel__name(evsel));
2619         case EMFILE:
2620                 return scnprintf(msg, size, "%s",
2621                          "Too many events are opened.\n"
2622                          "Probably the maximum number of open file descriptors has been reached.\n"
2623                          "Hint: Try again after reducing the number of events.\n"
2624                          "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2625         case ENOMEM:
2626                 if (evsel__has_callchain(evsel) &&
2627                     access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2628                         return scnprintf(msg, size,
2629                                          "Not enough memory to setup event with callchain.\n"
2630                                          "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2631                                          "Hint: Current value: %d", sysctl__max_stack());
2632                 break;
2633         case ENODEV:
2634                 if (target->cpu_list)
2635                         return scnprintf(msg, size, "%s",
2636          "No such device - did you specify an out-of-range profile CPU?");
2637                 break;
2638         case EOPNOTSUPP:
2639                 if (evsel->core.attr.sample_period != 0)
2640                         return scnprintf(msg, size,
2641         "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2642                                          perf_evsel__name(evsel));
2643                 if (evsel->core.attr.precise_ip)
2644                         return scnprintf(msg, size, "%s",
2645         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2646 #if defined(__i386__) || defined(__x86_64__)
2647                 if (evsel->core.attr.type == PERF_TYPE_HARDWARE)
2648                         return scnprintf(msg, size, "%s",
2649         "No hardware sampling interrupt available.\n");
2650 #endif
2651                 break;
2652         case EBUSY:
2653                 if (find_process("oprofiled"))
2654                         return scnprintf(msg, size,
2655         "The PMU counters are busy/taken by another profiler.\n"
2656         "We found oprofile daemon running, please stop it and try again.");
2657                 break;
2658         case EINVAL:
2659                 if (evsel->core.attr.write_backward && perf_missing_features.write_backward)
2660                         return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2661                 if (perf_missing_features.clockid)
2662                         return scnprintf(msg, size, "clockid feature not supported.");
2663                 if (perf_missing_features.clockid_wrong)
2664                         return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2665                 if (perf_missing_features.aux_output)
2666                         return scnprintf(msg, size, "The 'aux_output' feature is not supported, update the kernel.");
2667                 break;
2668         default:
2669                 break;
2670         }
2671
2672         return scnprintf(msg, size,
2673         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2674         "/bin/dmesg | grep -i perf may provide additional information.\n",
2675                          err, str_error_r(err, sbuf, sizeof(sbuf)),
2676                          perf_evsel__name(evsel));
2677 }
2678
2679 struct perf_env *perf_evsel__env(struct evsel *evsel)
2680 {
2681         if (evsel && evsel->evlist)
2682                 return evsel->evlist->env;
2683         return NULL;
2684 }
2685
2686 static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist)
2687 {
2688         int cpu, thread;
2689
2690         for (cpu = 0; cpu < xyarray__max_x(evsel->core.fd); cpu++) {
2691                 for (thread = 0; thread < xyarray__max_y(evsel->core.fd);
2692                      thread++) {
2693                         int fd = FD(evsel, cpu, thread);
2694
2695                         if (perf_evlist__id_add_fd(evlist, evsel,
2696                                                    cpu, thread, fd) < 0)
2697                                 return -1;
2698                 }
2699         }
2700
2701         return 0;
2702 }
2703
2704 int perf_evsel__store_ids(struct evsel *evsel, struct evlist *evlist)
2705 {
2706         struct perf_cpu_map *cpus = evsel->core.cpus;
2707         struct perf_thread_map *threads = evsel->core.threads;
2708
2709         if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
2710                 return -ENOMEM;
2711
2712         return store_evsel_ids(evsel, evlist);
2713 }