7389746c0dc4821df34adfe1be2337a95f0a145c
[linux-2.6-microblaze.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "util/parse-branch-options.h"
40
41 #include "sane_ctype.h"
42
43 static struct {
44         bool sample_id_all;
45         bool exclude_guest;
46         bool mmap2;
47         bool cloexec;
48         bool clockid;
49         bool clockid_wrong;
50         bool lbr_flags;
51         bool write_backward;
52         bool group_read;
53 } perf_missing_features;
54
55 static clockid_t clockid;
56
57 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
58 {
59         return 0;
60 }
61
62 void __weak test_attr__ready(void) { }
63
64 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
65 {
66 }
67
68 static struct {
69         size_t  size;
70         int     (*init)(struct perf_evsel *evsel);
71         void    (*fini)(struct perf_evsel *evsel);
72 } perf_evsel__object = {
73         .size = sizeof(struct perf_evsel),
74         .init = perf_evsel__no_extra_init,
75         .fini = perf_evsel__no_extra_fini,
76 };
77
78 int perf_evsel__object_config(size_t object_size,
79                               int (*init)(struct perf_evsel *evsel),
80                               void (*fini)(struct perf_evsel *evsel))
81 {
82
83         if (object_size == 0)
84                 goto set_methods;
85
86         if (perf_evsel__object.size > object_size)
87                 return -EINVAL;
88
89         perf_evsel__object.size = object_size;
90
91 set_methods:
92         if (init != NULL)
93                 perf_evsel__object.init = init;
94
95         if (fini != NULL)
96                 perf_evsel__object.fini = fini;
97
98         return 0;
99 }
100
101 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
102
103 int __perf_evsel__sample_size(u64 sample_type)
104 {
105         u64 mask = sample_type & PERF_SAMPLE_MASK;
106         int size = 0;
107         int i;
108
109         for (i = 0; i < 64; i++) {
110                 if (mask & (1ULL << i))
111                         size++;
112         }
113
114         size *= sizeof(u64);
115
116         return size;
117 }
118
119 /**
120  * __perf_evsel__calc_id_pos - calculate id_pos.
121  * @sample_type: sample type
122  *
123  * This function returns the position of the event id (PERF_SAMPLE_ID or
124  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
125  * sample_event.
126  */
127 static int __perf_evsel__calc_id_pos(u64 sample_type)
128 {
129         int idx = 0;
130
131         if (sample_type & PERF_SAMPLE_IDENTIFIER)
132                 return 0;
133
134         if (!(sample_type & PERF_SAMPLE_ID))
135                 return -1;
136
137         if (sample_type & PERF_SAMPLE_IP)
138                 idx += 1;
139
140         if (sample_type & PERF_SAMPLE_TID)
141                 idx += 1;
142
143         if (sample_type & PERF_SAMPLE_TIME)
144                 idx += 1;
145
146         if (sample_type & PERF_SAMPLE_ADDR)
147                 idx += 1;
148
149         return idx;
150 }
151
152 /**
153  * __perf_evsel__calc_is_pos - calculate is_pos.
154  * @sample_type: sample type
155  *
156  * This function returns the position (counting backwards) of the event id
157  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
158  * sample_id_all is used there is an id sample appended to non-sample events.
159  */
160 static int __perf_evsel__calc_is_pos(u64 sample_type)
161 {
162         int idx = 1;
163
164         if (sample_type & PERF_SAMPLE_IDENTIFIER)
165                 return 1;
166
167         if (!(sample_type & PERF_SAMPLE_ID))
168                 return -1;
169
170         if (sample_type & PERF_SAMPLE_CPU)
171                 idx += 1;
172
173         if (sample_type & PERF_SAMPLE_STREAM_ID)
174                 idx += 1;
175
176         return idx;
177 }
178
179 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
180 {
181         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
182         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
183 }
184
185 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
186                                   enum perf_event_sample_format bit)
187 {
188         if (!(evsel->attr.sample_type & bit)) {
189                 evsel->attr.sample_type |= bit;
190                 evsel->sample_size += sizeof(u64);
191                 perf_evsel__calc_id_pos(evsel);
192         }
193 }
194
195 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
196                                     enum perf_event_sample_format bit)
197 {
198         if (evsel->attr.sample_type & bit) {
199                 evsel->attr.sample_type &= ~bit;
200                 evsel->sample_size -= sizeof(u64);
201                 perf_evsel__calc_id_pos(evsel);
202         }
203 }
204
205 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
206                                bool can_sample_identifier)
207 {
208         if (can_sample_identifier) {
209                 perf_evsel__reset_sample_bit(evsel, ID);
210                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
211         } else {
212                 perf_evsel__set_sample_bit(evsel, ID);
213         }
214         evsel->attr.read_format |= PERF_FORMAT_ID;
215 }
216
217 /**
218  * perf_evsel__is_function_event - Return whether given evsel is a function
219  * trace event
220  *
221  * @evsel - evsel selector to be tested
222  *
223  * Return %true if event is function trace event
224  */
225 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
226 {
227 #define FUNCTION_EVENT "ftrace:function"
228
229         return evsel->name &&
230                !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
231
232 #undef FUNCTION_EVENT
233 }
234
235 void perf_evsel__init(struct perf_evsel *evsel,
236                       struct perf_event_attr *attr, int idx)
237 {
238         evsel->idx         = idx;
239         evsel->tracking    = !idx;
240         evsel->attr        = *attr;
241         evsel->leader      = evsel;
242         evsel->unit        = "";
243         evsel->scale       = 1.0;
244         evsel->evlist      = NULL;
245         evsel->bpf_fd      = -1;
246         INIT_LIST_HEAD(&evsel->node);
247         INIT_LIST_HEAD(&evsel->config_terms);
248         perf_evsel__object.init(evsel);
249         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
250         perf_evsel__calc_id_pos(evsel);
251         evsel->cmdline_group_boundary = false;
252         evsel->metric_expr   = NULL;
253         evsel->metric_name   = NULL;
254         evsel->metric_events = NULL;
255         evsel->collect_stat  = false;
256 }
257
258 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
259 {
260         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
261
262         if (evsel != NULL)
263                 perf_evsel__init(evsel, attr, idx);
264
265         if (perf_evsel__is_bpf_output(evsel)) {
266                 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
267                                             PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
268                 evsel->attr.sample_period = 1;
269         }
270
271         return evsel;
272 }
273
274 struct perf_evsel *perf_evsel__new_cycles(bool precise)
275 {
276         struct perf_event_attr attr = {
277                 .type   = PERF_TYPE_HARDWARE,
278                 .config = PERF_COUNT_HW_CPU_CYCLES,
279                 .exclude_kernel = geteuid() != 0,
280         };
281         struct perf_evsel *evsel;
282
283         event_attr_init(&attr);
284
285         if (!precise)
286                 goto new_event;
287         /*
288          * Unnamed union member, not supported as struct member named
289          * initializer in older compilers such as gcc 4.4.7
290          *
291          * Just for probing the precise_ip:
292          */
293         attr.sample_period = 1;
294
295         perf_event_attr__set_max_precise_ip(&attr);
296         /*
297          * Now let the usual logic to set up the perf_event_attr defaults
298          * to kick in when we return and before perf_evsel__open() is called.
299          */
300         attr.sample_period = 0;
301 new_event:
302         evsel = perf_evsel__new(&attr);
303         if (evsel == NULL)
304                 goto out;
305
306         /* use asprintf() because free(evsel) assumes name is allocated */
307         if (asprintf(&evsel->name, "cycles%s%s%.*s",
308                      (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
309                      attr.exclude_kernel ? "u" : "",
310                      attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
311                 goto error_free;
312 out:
313         return evsel;
314 error_free:
315         perf_evsel__delete(evsel);
316         evsel = NULL;
317         goto out;
318 }
319
320 /*
321  * Returns pointer with encoded error via <linux/err.h> interface.
322  */
323 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
324 {
325         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
326         int err = -ENOMEM;
327
328         if (evsel == NULL) {
329                 goto out_err;
330         } else {
331                 struct perf_event_attr attr = {
332                         .type          = PERF_TYPE_TRACEPOINT,
333                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
334                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
335                 };
336
337                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
338                         goto out_free;
339
340                 evsel->tp_format = trace_event__tp_format(sys, name);
341                 if (IS_ERR(evsel->tp_format)) {
342                         err = PTR_ERR(evsel->tp_format);
343                         goto out_free;
344                 }
345
346                 event_attr_init(&attr);
347                 attr.config = evsel->tp_format->id;
348                 attr.sample_period = 1;
349                 perf_evsel__init(evsel, &attr, idx);
350         }
351
352         return evsel;
353
354 out_free:
355         zfree(&evsel->name);
356         free(evsel);
357 out_err:
358         return ERR_PTR(err);
359 }
360
361 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
362         "cycles",
363         "instructions",
364         "cache-references",
365         "cache-misses",
366         "branches",
367         "branch-misses",
368         "bus-cycles",
369         "stalled-cycles-frontend",
370         "stalled-cycles-backend",
371         "ref-cycles",
372 };
373
374 static const char *__perf_evsel__hw_name(u64 config)
375 {
376         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
377                 return perf_evsel__hw_names[config];
378
379         return "unknown-hardware";
380 }
381
382 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
383 {
384         int colon = 0, r = 0;
385         struct perf_event_attr *attr = &evsel->attr;
386         bool exclude_guest_default = false;
387
388 #define MOD_PRINT(context, mod) do {                                    \
389                 if (!attr->exclude_##context) {                         \
390                         if (!colon) colon = ++r;                        \
391                         r += scnprintf(bf + r, size - r, "%c", mod);    \
392                 } } while(0)
393
394         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
395                 MOD_PRINT(kernel, 'k');
396                 MOD_PRINT(user, 'u');
397                 MOD_PRINT(hv, 'h');
398                 exclude_guest_default = true;
399         }
400
401         if (attr->precise_ip) {
402                 if (!colon)
403                         colon = ++r;
404                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
405                 exclude_guest_default = true;
406         }
407
408         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
409                 MOD_PRINT(host, 'H');
410                 MOD_PRINT(guest, 'G');
411         }
412 #undef MOD_PRINT
413         if (colon)
414                 bf[colon - 1] = ':';
415         return r;
416 }
417
418 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
419 {
420         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
421         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
422 }
423
424 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
425         "cpu-clock",
426         "task-clock",
427         "page-faults",
428         "context-switches",
429         "cpu-migrations",
430         "minor-faults",
431         "major-faults",
432         "alignment-faults",
433         "emulation-faults",
434         "dummy",
435 };
436
437 static const char *__perf_evsel__sw_name(u64 config)
438 {
439         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
440                 return perf_evsel__sw_names[config];
441         return "unknown-software";
442 }
443
444 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
445 {
446         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
447         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
448 }
449
450 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
451 {
452         int r;
453
454         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
455
456         if (type & HW_BREAKPOINT_R)
457                 r += scnprintf(bf + r, size - r, "r");
458
459         if (type & HW_BREAKPOINT_W)
460                 r += scnprintf(bf + r, size - r, "w");
461
462         if (type & HW_BREAKPOINT_X)
463                 r += scnprintf(bf + r, size - r, "x");
464
465         return r;
466 }
467
468 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
469 {
470         struct perf_event_attr *attr = &evsel->attr;
471         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
472         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
473 }
474
475 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
476                                 [PERF_EVSEL__MAX_ALIASES] = {
477  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
478  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
479  { "LLC",       "L2",                                                   },
480  { "dTLB",      "d-tlb",        "Data-TLB",                             },
481  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
482  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
483  { "node",                                                              },
484 };
485
486 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
487                                    [PERF_EVSEL__MAX_ALIASES] = {
488  { "load",      "loads",        "read",                                 },
489  { "store",     "stores",       "write",                                },
490  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
491 };
492
493 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
494                                        [PERF_EVSEL__MAX_ALIASES] = {
495  { "refs",      "Reference",    "ops",          "access",               },
496  { "misses",    "miss",                                                 },
497 };
498
499 #define C(x)            PERF_COUNT_HW_CACHE_##x
500 #define CACHE_READ      (1 << C(OP_READ))
501 #define CACHE_WRITE     (1 << C(OP_WRITE))
502 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
503 #define COP(x)          (1 << x)
504
505 /*
506  * cache operartion stat
507  * L1I : Read and prefetch only
508  * ITLB and BPU : Read-only
509  */
510 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
511  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
512  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
513  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
514  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
515  [C(ITLB)]      = (CACHE_READ),
516  [C(BPU)]       = (CACHE_READ),
517  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518 };
519
520 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
521 {
522         if (perf_evsel__hw_cache_stat[type] & COP(op))
523                 return true;    /* valid */
524         else
525                 return false;   /* invalid */
526 }
527
528 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
529                                             char *bf, size_t size)
530 {
531         if (result) {
532                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
533                                  perf_evsel__hw_cache_op[op][0],
534                                  perf_evsel__hw_cache_result[result][0]);
535         }
536
537         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
538                          perf_evsel__hw_cache_op[op][1]);
539 }
540
541 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
542 {
543         u8 op, result, type = (config >>  0) & 0xff;
544         const char *err = "unknown-ext-hardware-cache-type";
545
546         if (type >= PERF_COUNT_HW_CACHE_MAX)
547                 goto out_err;
548
549         op = (config >>  8) & 0xff;
550         err = "unknown-ext-hardware-cache-op";
551         if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
552                 goto out_err;
553
554         result = (config >> 16) & 0xff;
555         err = "unknown-ext-hardware-cache-result";
556         if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
557                 goto out_err;
558
559         err = "invalid-cache";
560         if (!perf_evsel__is_cache_op_valid(type, op))
561                 goto out_err;
562
563         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
564 out_err:
565         return scnprintf(bf, size, "%s", err);
566 }
567
568 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
569 {
570         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
571         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
572 }
573
574 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
575 {
576         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
577         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
578 }
579
580 const char *perf_evsel__name(struct perf_evsel *evsel)
581 {
582         char bf[128];
583
584         if (evsel->name)
585                 return evsel->name;
586
587         switch (evsel->attr.type) {
588         case PERF_TYPE_RAW:
589                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
590                 break;
591
592         case PERF_TYPE_HARDWARE:
593                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
594                 break;
595
596         case PERF_TYPE_HW_CACHE:
597                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
598                 break;
599
600         case PERF_TYPE_SOFTWARE:
601                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
602                 break;
603
604         case PERF_TYPE_TRACEPOINT:
605                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
606                 break;
607
608         case PERF_TYPE_BREAKPOINT:
609                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
610                 break;
611
612         default:
613                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
614                           evsel->attr.type);
615                 break;
616         }
617
618         evsel->name = strdup(bf);
619
620         return evsel->name ?: "unknown";
621 }
622
623 const char *perf_evsel__group_name(struct perf_evsel *evsel)
624 {
625         return evsel->group_name ?: "anon group";
626 }
627
628 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
629 {
630         int ret;
631         struct perf_evsel *pos;
632         const char *group_name = perf_evsel__group_name(evsel);
633
634         ret = scnprintf(buf, size, "%s", group_name);
635
636         ret += scnprintf(buf + ret, size - ret, " { %s",
637                          perf_evsel__name(evsel));
638
639         for_each_group_member(pos, evsel)
640                 ret += scnprintf(buf + ret, size - ret, ", %s",
641                                  perf_evsel__name(pos));
642
643         ret += scnprintf(buf + ret, size - ret, " }");
644
645         return ret;
646 }
647
648 void perf_evsel__config_callchain(struct perf_evsel *evsel,
649                                   struct record_opts *opts,
650                                   struct callchain_param *param)
651 {
652         bool function = perf_evsel__is_function_event(evsel);
653         struct perf_event_attr *attr = &evsel->attr;
654
655         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
656
657         attr->sample_max_stack = param->max_stack;
658
659         if (param->record_mode == CALLCHAIN_LBR) {
660                 if (!opts->branch_stack) {
661                         if (attr->exclude_user) {
662                                 pr_warning("LBR callstack option is only available "
663                                            "to get user callchain information. "
664                                            "Falling back to framepointers.\n");
665                         } else {
666                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
667                                 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
668                                                         PERF_SAMPLE_BRANCH_CALL_STACK |
669                                                         PERF_SAMPLE_BRANCH_NO_CYCLES |
670                                                         PERF_SAMPLE_BRANCH_NO_FLAGS;
671                         }
672                 } else
673                          pr_warning("Cannot use LBR callstack with branch stack. "
674                                     "Falling back to framepointers.\n");
675         }
676
677         if (param->record_mode == CALLCHAIN_DWARF) {
678                 if (!function) {
679                         perf_evsel__set_sample_bit(evsel, REGS_USER);
680                         perf_evsel__set_sample_bit(evsel, STACK_USER);
681                         attr->sample_regs_user |= PERF_REGS_MASK;
682                         attr->sample_stack_user = param->dump_size;
683                         attr->exclude_callchain_user = 1;
684                 } else {
685                         pr_info("Cannot use DWARF unwind for function trace event,"
686                                 " falling back to framepointers.\n");
687                 }
688         }
689
690         if (function) {
691                 pr_info("Disabling user space callchains for function trace event.\n");
692                 attr->exclude_callchain_user = 1;
693         }
694 }
695
696 static void
697 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
698                             struct callchain_param *param)
699 {
700         struct perf_event_attr *attr = &evsel->attr;
701
702         perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
703         if (param->record_mode == CALLCHAIN_LBR) {
704                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
705                 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
706                                               PERF_SAMPLE_BRANCH_CALL_STACK);
707         }
708         if (param->record_mode == CALLCHAIN_DWARF) {
709                 perf_evsel__reset_sample_bit(evsel, REGS_USER);
710                 perf_evsel__reset_sample_bit(evsel, STACK_USER);
711         }
712 }
713
714 static void apply_config_terms(struct perf_evsel *evsel,
715                                struct record_opts *opts)
716 {
717         struct perf_evsel_config_term *term;
718         struct list_head *config_terms = &evsel->config_terms;
719         struct perf_event_attr *attr = &evsel->attr;
720         struct callchain_param param;
721         u32 dump_size = 0;
722         int max_stack = 0;
723         const char *callgraph_buf = NULL;
724
725         /* callgraph default */
726         param.record_mode = callchain_param.record_mode;
727
728         list_for_each_entry(term, config_terms, list) {
729                 switch (term->type) {
730                 case PERF_EVSEL__CONFIG_TERM_PERIOD:
731                         attr->sample_period = term->val.period;
732                         attr->freq = 0;
733                         break;
734                 case PERF_EVSEL__CONFIG_TERM_FREQ:
735                         attr->sample_freq = term->val.freq;
736                         attr->freq = 1;
737                         break;
738                 case PERF_EVSEL__CONFIG_TERM_TIME:
739                         if (term->val.time)
740                                 perf_evsel__set_sample_bit(evsel, TIME);
741                         else
742                                 perf_evsel__reset_sample_bit(evsel, TIME);
743                         break;
744                 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
745                         callgraph_buf = term->val.callgraph;
746                         break;
747                 case PERF_EVSEL__CONFIG_TERM_BRANCH:
748                         if (term->val.branch && strcmp(term->val.branch, "no")) {
749                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
750                                 parse_branch_str(term->val.branch,
751                                                  &attr->branch_sample_type);
752                         } else
753                                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
754                         break;
755                 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
756                         dump_size = term->val.stack_user;
757                         break;
758                 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
759                         max_stack = term->val.max_stack;
760                         break;
761                 case PERF_EVSEL__CONFIG_TERM_INHERIT:
762                         /*
763                          * attr->inherit should has already been set by
764                          * perf_evsel__config. If user explicitly set
765                          * inherit using config terms, override global
766                          * opt->no_inherit setting.
767                          */
768                         attr->inherit = term->val.inherit ? 1 : 0;
769                         break;
770                 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
771                         attr->write_backward = term->val.overwrite ? 1 : 0;
772                         break;
773                 default:
774                         break;
775                 }
776         }
777
778         /* User explicitly set per-event callgraph, clear the old setting and reset. */
779         if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
780                 if (max_stack) {
781                         param.max_stack = max_stack;
782                         if (callgraph_buf == NULL)
783                                 callgraph_buf = "fp";
784                 }
785
786                 /* parse callgraph parameters */
787                 if (callgraph_buf != NULL) {
788                         if (!strcmp(callgraph_buf, "no")) {
789                                 param.enabled = false;
790                                 param.record_mode = CALLCHAIN_NONE;
791                         } else {
792                                 param.enabled = true;
793                                 if (parse_callchain_record(callgraph_buf, &param)) {
794                                         pr_err("per-event callgraph setting for %s failed. "
795                                                "Apply callgraph global setting for it\n",
796                                                evsel->name);
797                                         return;
798                                 }
799                         }
800                 }
801                 if (dump_size > 0) {
802                         dump_size = round_up(dump_size, sizeof(u64));
803                         param.dump_size = dump_size;
804                 }
805
806                 /* If global callgraph set, clear it */
807                 if (callchain_param.enabled)
808                         perf_evsel__reset_callgraph(evsel, &callchain_param);
809
810                 /* set perf-event callgraph */
811                 if (param.enabled)
812                         perf_evsel__config_callchain(evsel, opts, &param);
813         }
814 }
815
816 /*
817  * The enable_on_exec/disabled value strategy:
818  *
819  *  1) For any type of traced program:
820  *    - all independent events and group leaders are disabled
821  *    - all group members are enabled
822  *
823  *     Group members are ruled by group leaders. They need to
824  *     be enabled, because the group scheduling relies on that.
825  *
826  *  2) For traced programs executed by perf:
827  *     - all independent events and group leaders have
828  *       enable_on_exec set
829  *     - we don't specifically enable or disable any event during
830  *       the record command
831  *
832  *     Independent events and group leaders are initially disabled
833  *     and get enabled by exec. Group members are ruled by group
834  *     leaders as stated in 1).
835  *
836  *  3) For traced programs attached by perf (pid/tid):
837  *     - we specifically enable or disable all events during
838  *       the record command
839  *
840  *     When attaching events to already running traced we
841  *     enable/disable events specifically, as there's no
842  *     initial traced exec call.
843  */
844 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
845                         struct callchain_param *callchain)
846 {
847         struct perf_evsel *leader = evsel->leader;
848         struct perf_event_attr *attr = &evsel->attr;
849         int track = evsel->tracking;
850         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
851
852         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
853         attr->inherit       = !opts->no_inherit;
854         attr->write_backward = opts->overwrite ? 1 : 0;
855
856         perf_evsel__set_sample_bit(evsel, IP);
857         perf_evsel__set_sample_bit(evsel, TID);
858
859         if (evsel->sample_read) {
860                 perf_evsel__set_sample_bit(evsel, READ);
861
862                 /*
863                  * We need ID even in case of single event, because
864                  * PERF_SAMPLE_READ process ID specific data.
865                  */
866                 perf_evsel__set_sample_id(evsel, false);
867
868                 /*
869                  * Apply group format only if we belong to group
870                  * with more than one members.
871                  */
872                 if (leader->nr_members > 1) {
873                         attr->read_format |= PERF_FORMAT_GROUP;
874                         attr->inherit = 0;
875                 }
876         }
877
878         /*
879          * We default some events to have a default interval. But keep
880          * it a weak assumption overridable by the user.
881          */
882         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
883                                      opts->user_interval != ULLONG_MAX)) {
884                 if (opts->freq) {
885                         perf_evsel__set_sample_bit(evsel, PERIOD);
886                         attr->freq              = 1;
887                         attr->sample_freq       = opts->freq;
888                 } else {
889                         attr->sample_period = opts->default_interval;
890                 }
891         }
892
893         /*
894          * Disable sampling for all group members other
895          * than leader in case leader 'leads' the sampling.
896          */
897         if ((leader != evsel) && leader->sample_read) {
898                 attr->sample_freq   = 0;
899                 attr->sample_period = 0;
900         }
901
902         if (opts->no_samples)
903                 attr->sample_freq = 0;
904
905         if (opts->inherit_stat) {
906                 evsel->attr.read_format |=
907                         PERF_FORMAT_TOTAL_TIME_ENABLED |
908                         PERF_FORMAT_TOTAL_TIME_RUNNING |
909                         PERF_FORMAT_ID;
910                 attr->inherit_stat = 1;
911         }
912
913         if (opts->sample_address) {
914                 perf_evsel__set_sample_bit(evsel, ADDR);
915                 attr->mmap_data = track;
916         }
917
918         /*
919          * We don't allow user space callchains for  function trace
920          * event, due to issues with page faults while tracing page
921          * fault handler and its overall trickiness nature.
922          */
923         if (perf_evsel__is_function_event(evsel))
924                 evsel->attr.exclude_callchain_user = 1;
925
926         if (callchain && callchain->enabled && !evsel->no_aux_samples)
927                 perf_evsel__config_callchain(evsel, opts, callchain);
928
929         if (opts->sample_intr_regs) {
930                 attr->sample_regs_intr = opts->sample_intr_regs;
931                 perf_evsel__set_sample_bit(evsel, REGS_INTR);
932         }
933
934         if (opts->sample_user_regs) {
935                 attr->sample_regs_user |= opts->sample_user_regs;
936                 perf_evsel__set_sample_bit(evsel, REGS_USER);
937         }
938
939         if (target__has_cpu(&opts->target) || opts->sample_cpu)
940                 perf_evsel__set_sample_bit(evsel, CPU);
941
942         if (opts->period)
943                 perf_evsel__set_sample_bit(evsel, PERIOD);
944
945         /*
946          * When the user explicitly disabled time don't force it here.
947          */
948         if (opts->sample_time &&
949             (!perf_missing_features.sample_id_all &&
950             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
951              opts->sample_time_set)))
952                 perf_evsel__set_sample_bit(evsel, TIME);
953
954         if (opts->raw_samples && !evsel->no_aux_samples) {
955                 perf_evsel__set_sample_bit(evsel, TIME);
956                 perf_evsel__set_sample_bit(evsel, RAW);
957                 perf_evsel__set_sample_bit(evsel, CPU);
958         }
959
960         if (opts->sample_address)
961                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
962
963         if (opts->sample_phys_addr)
964                 perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
965
966         if (opts->no_buffering) {
967                 attr->watermark = 0;
968                 attr->wakeup_events = 1;
969         }
970         if (opts->branch_stack && !evsel->no_aux_samples) {
971                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
972                 attr->branch_sample_type = opts->branch_stack;
973         }
974
975         if (opts->sample_weight)
976                 perf_evsel__set_sample_bit(evsel, WEIGHT);
977
978         attr->task  = track;
979         attr->mmap  = track;
980         attr->mmap2 = track && !perf_missing_features.mmap2;
981         attr->comm  = track;
982
983         if (opts->record_namespaces)
984                 attr->namespaces  = track;
985
986         if (opts->record_switch_events)
987                 attr->context_switch = track;
988
989         if (opts->sample_transaction)
990                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
991
992         if (opts->running_time) {
993                 evsel->attr.read_format |=
994                         PERF_FORMAT_TOTAL_TIME_ENABLED |
995                         PERF_FORMAT_TOTAL_TIME_RUNNING;
996         }
997
998         /*
999          * XXX see the function comment above
1000          *
1001          * Disabling only independent events or group leaders,
1002          * keeping group members enabled.
1003          */
1004         if (perf_evsel__is_group_leader(evsel))
1005                 attr->disabled = 1;
1006
1007         /*
1008          * Setting enable_on_exec for independent events and
1009          * group leaders for traced executed by perf.
1010          */
1011         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1012                 !opts->initial_delay)
1013                 attr->enable_on_exec = 1;
1014
1015         if (evsel->immediate) {
1016                 attr->disabled = 0;
1017                 attr->enable_on_exec = 0;
1018         }
1019
1020         clockid = opts->clockid;
1021         if (opts->use_clockid) {
1022                 attr->use_clockid = 1;
1023                 attr->clockid = opts->clockid;
1024         }
1025
1026         if (evsel->precise_max)
1027                 perf_event_attr__set_max_precise_ip(attr);
1028
1029         if (opts->all_user) {
1030                 attr->exclude_kernel = 1;
1031                 attr->exclude_user   = 0;
1032         }
1033
1034         if (opts->all_kernel) {
1035                 attr->exclude_kernel = 0;
1036                 attr->exclude_user   = 1;
1037         }
1038
1039         /*
1040          * Apply event specific term settings,
1041          * it overloads any global configuration.
1042          */
1043         apply_config_terms(evsel, opts);
1044
1045         evsel->ignore_missing_thread = opts->ignore_missing_thread;
1046 }
1047
1048 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1049 {
1050         if (evsel->system_wide)
1051                 nthreads = 1;
1052
1053         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1054
1055         if (evsel->fd) {
1056                 int cpu, thread;
1057                 for (cpu = 0; cpu < ncpus; cpu++) {
1058                         for (thread = 0; thread < nthreads; thread++) {
1059                                 FD(evsel, cpu, thread) = -1;
1060                         }
1061                 }
1062         }
1063
1064         return evsel->fd != NULL ? 0 : -ENOMEM;
1065 }
1066
1067 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1068                           int ioc,  void *arg)
1069 {
1070         int cpu, thread;
1071
1072         for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1073                 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1074                         int fd = FD(evsel, cpu, thread),
1075                             err = ioctl(fd, ioc, arg);
1076
1077                         if (err)
1078                                 return err;
1079                 }
1080         }
1081
1082         return 0;
1083 }
1084
1085 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1086 {
1087         return perf_evsel__run_ioctl(evsel,
1088                                      PERF_EVENT_IOC_SET_FILTER,
1089                                      (void *)filter);
1090 }
1091
1092 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1093 {
1094         char *new_filter = strdup(filter);
1095
1096         if (new_filter != NULL) {
1097                 free(evsel->filter);
1098                 evsel->filter = new_filter;
1099                 return 0;
1100         }
1101
1102         return -1;
1103 }
1104
1105 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1106                                      const char *fmt, const char *filter)
1107 {
1108         char *new_filter;
1109
1110         if (evsel->filter == NULL)
1111                 return perf_evsel__set_filter(evsel, filter);
1112
1113         if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1114                 free(evsel->filter);
1115                 evsel->filter = new_filter;
1116                 return 0;
1117         }
1118
1119         return -1;
1120 }
1121
1122 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1123 {
1124         return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1125 }
1126
1127 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1128 {
1129         return perf_evsel__append_filter(evsel, "%s,%s", filter);
1130 }
1131
1132 int perf_evsel__enable(struct perf_evsel *evsel)
1133 {
1134         return perf_evsel__run_ioctl(evsel,
1135                                      PERF_EVENT_IOC_ENABLE,
1136                                      0);
1137 }
1138
1139 int perf_evsel__disable(struct perf_evsel *evsel)
1140 {
1141         return perf_evsel__run_ioctl(evsel,
1142                                      PERF_EVENT_IOC_DISABLE,
1143                                      0);
1144 }
1145
1146 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1147 {
1148         if (ncpus == 0 || nthreads == 0)
1149                 return 0;
1150
1151         if (evsel->system_wide)
1152                 nthreads = 1;
1153
1154         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1155         if (evsel->sample_id == NULL)
1156                 return -ENOMEM;
1157
1158         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1159         if (evsel->id == NULL) {
1160                 xyarray__delete(evsel->sample_id);
1161                 evsel->sample_id = NULL;
1162                 return -ENOMEM;
1163         }
1164
1165         return 0;
1166 }
1167
1168 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1169 {
1170         xyarray__delete(evsel->fd);
1171         evsel->fd = NULL;
1172 }
1173
1174 static void perf_evsel__free_id(struct perf_evsel *evsel)
1175 {
1176         xyarray__delete(evsel->sample_id);
1177         evsel->sample_id = NULL;
1178         zfree(&evsel->id);
1179 }
1180
1181 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1182 {
1183         struct perf_evsel_config_term *term, *h;
1184
1185         list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1186                 list_del(&term->list);
1187                 free(term);
1188         }
1189 }
1190
1191 void perf_evsel__close_fd(struct perf_evsel *evsel)
1192 {
1193         int cpu, thread;
1194
1195         for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1196                 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1197                         close(FD(evsel, cpu, thread));
1198                         FD(evsel, cpu, thread) = -1;
1199                 }
1200 }
1201
1202 void perf_evsel__exit(struct perf_evsel *evsel)
1203 {
1204         assert(list_empty(&evsel->node));
1205         assert(evsel->evlist == NULL);
1206         perf_evsel__free_fd(evsel);
1207         perf_evsel__free_id(evsel);
1208         perf_evsel__free_config_terms(evsel);
1209         close_cgroup(evsel->cgrp);
1210         cpu_map__put(evsel->cpus);
1211         cpu_map__put(evsel->own_cpus);
1212         thread_map__put(evsel->threads);
1213         zfree(&evsel->group_name);
1214         zfree(&evsel->name);
1215         perf_evsel__object.fini(evsel);
1216 }
1217
1218 void perf_evsel__delete(struct perf_evsel *evsel)
1219 {
1220         perf_evsel__exit(evsel);
1221         free(evsel);
1222 }
1223
1224 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1225                                 struct perf_counts_values *count)
1226 {
1227         struct perf_counts_values tmp;
1228
1229         if (!evsel->prev_raw_counts)
1230                 return;
1231
1232         if (cpu == -1) {
1233                 tmp = evsel->prev_raw_counts->aggr;
1234                 evsel->prev_raw_counts->aggr = *count;
1235         } else {
1236                 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1237                 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1238         }
1239
1240         count->val = count->val - tmp.val;
1241         count->ena = count->ena - tmp.ena;
1242         count->run = count->run - tmp.run;
1243 }
1244
1245 void perf_counts_values__scale(struct perf_counts_values *count,
1246                                bool scale, s8 *pscaled)
1247 {
1248         s8 scaled = 0;
1249
1250         if (scale) {
1251                 if (count->run == 0) {
1252                         scaled = -1;
1253                         count->val = 0;
1254                 } else if (count->run < count->ena) {
1255                         scaled = 1;
1256                         count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1257                 }
1258         } else
1259                 count->ena = count->run = 0;
1260
1261         if (pscaled)
1262                 *pscaled = scaled;
1263 }
1264
1265 static int perf_evsel__read_size(struct perf_evsel *evsel)
1266 {
1267         u64 read_format = evsel->attr.read_format;
1268         int entry = sizeof(u64); /* value */
1269         int size = 0;
1270         int nr = 1;
1271
1272         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1273                 size += sizeof(u64);
1274
1275         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1276                 size += sizeof(u64);
1277
1278         if (read_format & PERF_FORMAT_ID)
1279                 entry += sizeof(u64);
1280
1281         if (read_format & PERF_FORMAT_GROUP) {
1282                 nr = evsel->nr_members;
1283                 size += sizeof(u64);
1284         }
1285
1286         size += entry * nr;
1287         return size;
1288 }
1289
1290 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1291                      struct perf_counts_values *count)
1292 {
1293         size_t size = perf_evsel__read_size(evsel);
1294
1295         memset(count, 0, sizeof(*count));
1296
1297         if (FD(evsel, cpu, thread) < 0)
1298                 return -EINVAL;
1299
1300         if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1301                 return -errno;
1302
1303         return 0;
1304 }
1305
1306 static int
1307 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1308 {
1309         struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1310
1311         return perf_evsel__read(evsel, cpu, thread, count);
1312 }
1313
1314 static void
1315 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1316                       u64 val, u64 ena, u64 run)
1317 {
1318         struct perf_counts_values *count;
1319
1320         count = perf_counts(counter->counts, cpu, thread);
1321
1322         count->val    = val;
1323         count->ena    = ena;
1324         count->run    = run;
1325         count->loaded = true;
1326 }
1327
1328 static int
1329 perf_evsel__process_group_data(struct perf_evsel *leader,
1330                                int cpu, int thread, u64 *data)
1331 {
1332         u64 read_format = leader->attr.read_format;
1333         struct sample_read_value *v;
1334         u64 nr, ena = 0, run = 0, i;
1335
1336         nr = *data++;
1337
1338         if (nr != (u64) leader->nr_members)
1339                 return -EINVAL;
1340
1341         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1342                 ena = *data++;
1343
1344         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1345                 run = *data++;
1346
1347         v = (struct sample_read_value *) data;
1348
1349         perf_evsel__set_count(leader, cpu, thread,
1350                               v[0].value, ena, run);
1351
1352         for (i = 1; i < nr; i++) {
1353                 struct perf_evsel *counter;
1354
1355                 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1356                 if (!counter)
1357                         return -EINVAL;
1358
1359                 perf_evsel__set_count(counter, cpu, thread,
1360                                       v[i].value, ena, run);
1361         }
1362
1363         return 0;
1364 }
1365
1366 static int
1367 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1368 {
1369         struct perf_stat_evsel *ps = leader->priv;
1370         u64 read_format = leader->attr.read_format;
1371         int size = perf_evsel__read_size(leader);
1372         u64 *data = ps->group_data;
1373
1374         if (!(read_format & PERF_FORMAT_ID))
1375                 return -EINVAL;
1376
1377         if (!perf_evsel__is_group_leader(leader))
1378                 return -EINVAL;
1379
1380         if (!data) {
1381                 data = zalloc(size);
1382                 if (!data)
1383                         return -ENOMEM;
1384
1385                 ps->group_data = data;
1386         }
1387
1388         if (FD(leader, cpu, thread) < 0)
1389                 return -EINVAL;
1390
1391         if (readn(FD(leader, cpu, thread), data, size) <= 0)
1392                 return -errno;
1393
1394         return perf_evsel__process_group_data(leader, cpu, thread, data);
1395 }
1396
1397 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1398 {
1399         u64 read_format = evsel->attr.read_format;
1400
1401         if (read_format & PERF_FORMAT_GROUP)
1402                 return perf_evsel__read_group(evsel, cpu, thread);
1403         else
1404                 return perf_evsel__read_one(evsel, cpu, thread);
1405 }
1406
1407 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1408                               int cpu, int thread, bool scale)
1409 {
1410         struct perf_counts_values count;
1411         size_t nv = scale ? 3 : 1;
1412
1413         if (FD(evsel, cpu, thread) < 0)
1414                 return -EINVAL;
1415
1416         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1417                 return -ENOMEM;
1418
1419         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1420                 return -errno;
1421
1422         perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1423         perf_counts_values__scale(&count, scale, NULL);
1424         *perf_counts(evsel->counts, cpu, thread) = count;
1425         return 0;
1426 }
1427
1428 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1429 {
1430         struct perf_evsel *leader = evsel->leader;
1431         int fd;
1432
1433         if (perf_evsel__is_group_leader(evsel))
1434                 return -1;
1435
1436         /*
1437          * Leader must be already processed/open,
1438          * if not it's a bug.
1439          */
1440         BUG_ON(!leader->fd);
1441
1442         fd = FD(leader, cpu, thread);
1443         BUG_ON(fd == -1);
1444
1445         return fd;
1446 }
1447
1448 struct bit_names {
1449         int bit;
1450         const char *name;
1451 };
1452
1453 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1454 {
1455         bool first_bit = true;
1456         int i = 0;
1457
1458         do {
1459                 if (value & bits[i].bit) {
1460                         buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1461                         first_bit = false;
1462                 }
1463         } while (bits[++i].name != NULL);
1464 }
1465
1466 static void __p_sample_type(char *buf, size_t size, u64 value)
1467 {
1468 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1469         struct bit_names bits[] = {
1470                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1471                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1472                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1473                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1474                 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1475                 bit_name(WEIGHT), bit_name(PHYS_ADDR),
1476                 { .name = NULL, }
1477         };
1478 #undef bit_name
1479         __p_bits(buf, size, value, bits);
1480 }
1481
1482 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1483 {
1484 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1485         struct bit_names bits[] = {
1486                 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1487                 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1488                 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1489                 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1490                 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1491                 { .name = NULL, }
1492         };
1493 #undef bit_name
1494         __p_bits(buf, size, value, bits);
1495 }
1496
1497 static void __p_read_format(char *buf, size_t size, u64 value)
1498 {
1499 #define bit_name(n) { PERF_FORMAT_##n, #n }
1500         struct bit_names bits[] = {
1501                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1502                 bit_name(ID), bit_name(GROUP),
1503                 { .name = NULL, }
1504         };
1505 #undef bit_name
1506         __p_bits(buf, size, value, bits);
1507 }
1508
1509 #define BUF_SIZE                1024
1510
1511 #define p_hex(val)              snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1512 #define p_unsigned(val)         snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1513 #define p_signed(val)           snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1514 #define p_sample_type(val)      __p_sample_type(buf, BUF_SIZE, val)
1515 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1516 #define p_read_format(val)      __p_read_format(buf, BUF_SIZE, val)
1517
1518 #define PRINT_ATTRn(_n, _f, _p)                         \
1519 do {                                                    \
1520         if (attr->_f) {                                 \
1521                 _p(attr->_f);                           \
1522                 ret += attr__fprintf(fp, _n, buf, priv);\
1523         }                                               \
1524 } while (0)
1525
1526 #define PRINT_ATTRf(_f, _p)     PRINT_ATTRn(#_f, _f, _p)
1527
1528 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1529                              attr__fprintf_f attr__fprintf, void *priv)
1530 {
1531         char buf[BUF_SIZE];
1532         int ret = 0;
1533
1534         PRINT_ATTRf(type, p_unsigned);
1535         PRINT_ATTRf(size, p_unsigned);
1536         PRINT_ATTRf(config, p_hex);
1537         PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1538         PRINT_ATTRf(sample_type, p_sample_type);
1539         PRINT_ATTRf(read_format, p_read_format);
1540
1541         PRINT_ATTRf(disabled, p_unsigned);
1542         PRINT_ATTRf(inherit, p_unsigned);
1543         PRINT_ATTRf(pinned, p_unsigned);
1544         PRINT_ATTRf(exclusive, p_unsigned);
1545         PRINT_ATTRf(exclude_user, p_unsigned);
1546         PRINT_ATTRf(exclude_kernel, p_unsigned);
1547         PRINT_ATTRf(exclude_hv, p_unsigned);
1548         PRINT_ATTRf(exclude_idle, p_unsigned);
1549         PRINT_ATTRf(mmap, p_unsigned);
1550         PRINT_ATTRf(comm, p_unsigned);
1551         PRINT_ATTRf(freq, p_unsigned);
1552         PRINT_ATTRf(inherit_stat, p_unsigned);
1553         PRINT_ATTRf(enable_on_exec, p_unsigned);
1554         PRINT_ATTRf(task, p_unsigned);
1555         PRINT_ATTRf(watermark, p_unsigned);
1556         PRINT_ATTRf(precise_ip, p_unsigned);
1557         PRINT_ATTRf(mmap_data, p_unsigned);
1558         PRINT_ATTRf(sample_id_all, p_unsigned);
1559         PRINT_ATTRf(exclude_host, p_unsigned);
1560         PRINT_ATTRf(exclude_guest, p_unsigned);
1561         PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1562         PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1563         PRINT_ATTRf(mmap2, p_unsigned);
1564         PRINT_ATTRf(comm_exec, p_unsigned);
1565         PRINT_ATTRf(use_clockid, p_unsigned);
1566         PRINT_ATTRf(context_switch, p_unsigned);
1567         PRINT_ATTRf(write_backward, p_unsigned);
1568
1569         PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1570         PRINT_ATTRf(bp_type, p_unsigned);
1571         PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1572         PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1573         PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1574         PRINT_ATTRf(sample_regs_user, p_hex);
1575         PRINT_ATTRf(sample_stack_user, p_unsigned);
1576         PRINT_ATTRf(clockid, p_signed);
1577         PRINT_ATTRf(sample_regs_intr, p_hex);
1578         PRINT_ATTRf(aux_watermark, p_unsigned);
1579         PRINT_ATTRf(sample_max_stack, p_unsigned);
1580
1581         return ret;
1582 }
1583
1584 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1585                                 void *priv __maybe_unused)
1586 {
1587         return fprintf(fp, "  %-32s %s\n", name, val);
1588 }
1589
1590 static bool ignore_missing_thread(struct perf_evsel *evsel,
1591                                   struct thread_map *threads,
1592                                   int thread, int err)
1593 {
1594         if (!evsel->ignore_missing_thread)
1595                 return false;
1596
1597         /* The system wide setup does not work with threads. */
1598         if (evsel->system_wide)
1599                 return false;
1600
1601         /* The -ESRCH is perf event syscall errno for pid's not found. */
1602         if (err != -ESRCH)
1603                 return false;
1604
1605         /* If there's only one thread, let it fail. */
1606         if (threads->nr == 1)
1607                 return false;
1608
1609         if (thread_map__remove(threads, thread))
1610                 return false;
1611
1612         pr_warning("WARNING: Ignored open failure for pid %d\n",
1613                    thread_map__pid(threads, thread));
1614         return true;
1615 }
1616
1617 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1618                      struct thread_map *threads)
1619 {
1620         int cpu, thread, nthreads;
1621         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1622         int pid = -1, err;
1623         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1624
1625         if (perf_missing_features.write_backward && evsel->attr.write_backward)
1626                 return -EINVAL;
1627
1628         if (cpus == NULL) {
1629                 static struct cpu_map *empty_cpu_map;
1630
1631                 if (empty_cpu_map == NULL) {
1632                         empty_cpu_map = cpu_map__dummy_new();
1633                         if (empty_cpu_map == NULL)
1634                                 return -ENOMEM;
1635                 }
1636
1637                 cpus = empty_cpu_map;
1638         }
1639
1640         if (threads == NULL) {
1641                 static struct thread_map *empty_thread_map;
1642
1643                 if (empty_thread_map == NULL) {
1644                         empty_thread_map = thread_map__new_by_tid(-1);
1645                         if (empty_thread_map == NULL)
1646                                 return -ENOMEM;
1647                 }
1648
1649                 threads = empty_thread_map;
1650         }
1651
1652         if (evsel->system_wide)
1653                 nthreads = 1;
1654         else
1655                 nthreads = threads->nr;
1656
1657         if (evsel->fd == NULL &&
1658             perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1659                 return -ENOMEM;
1660
1661         if (evsel->cgrp) {
1662                 flags |= PERF_FLAG_PID_CGROUP;
1663                 pid = evsel->cgrp->fd;
1664         }
1665
1666 fallback_missing_features:
1667         if (perf_missing_features.clockid_wrong)
1668                 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1669         if (perf_missing_features.clockid) {
1670                 evsel->attr.use_clockid = 0;
1671                 evsel->attr.clockid = 0;
1672         }
1673         if (perf_missing_features.cloexec)
1674                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1675         if (perf_missing_features.mmap2)
1676                 evsel->attr.mmap2 = 0;
1677         if (perf_missing_features.exclude_guest)
1678                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1679         if (perf_missing_features.lbr_flags)
1680                 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1681                                      PERF_SAMPLE_BRANCH_NO_CYCLES);
1682         if (perf_missing_features.group_read && evsel->attr.inherit)
1683                 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1684 retry_sample_id:
1685         if (perf_missing_features.sample_id_all)
1686                 evsel->attr.sample_id_all = 0;
1687
1688         if (verbose >= 2) {
1689                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1690                 fprintf(stderr, "perf_event_attr:\n");
1691                 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1692                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1693         }
1694
1695         for (cpu = 0; cpu < cpus->nr; cpu++) {
1696
1697                 for (thread = 0; thread < nthreads; thread++) {
1698                         int fd, group_fd;
1699
1700                         if (!evsel->cgrp && !evsel->system_wide)
1701                                 pid = thread_map__pid(threads, thread);
1702
1703                         group_fd = get_group_fd(evsel, cpu, thread);
1704 retry_open:
1705                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1706                                   pid, cpus->map[cpu], group_fd, flags);
1707
1708                         test_attr__ready();
1709
1710                         fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1711                                                  group_fd, flags);
1712
1713                         FD(evsel, cpu, thread) = fd;
1714
1715                         if (fd < 0) {
1716                                 err = -errno;
1717
1718                                 if (ignore_missing_thread(evsel, threads, thread, err)) {
1719                                         /*
1720                                          * We just removed 1 thread, so take a step
1721                                          * back on thread index and lower the upper
1722                                          * nthreads limit.
1723                                          */
1724                                         nthreads--;
1725                                         thread--;
1726
1727                                         /* ... and pretend like nothing have happened. */
1728                                         err = 0;
1729                                         continue;
1730                                 }
1731
1732                                 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1733                                           err);
1734                                 goto try_fallback;
1735                         }
1736
1737                         pr_debug2(" = %d\n", fd);
1738
1739                         if (evsel->bpf_fd >= 0) {
1740                                 int evt_fd = fd;
1741                                 int bpf_fd = evsel->bpf_fd;
1742
1743                                 err = ioctl(evt_fd,
1744                                             PERF_EVENT_IOC_SET_BPF,
1745                                             bpf_fd);
1746                                 if (err && errno != EEXIST) {
1747                                         pr_err("failed to attach bpf fd %d: %s\n",
1748                                                bpf_fd, strerror(errno));
1749                                         err = -EINVAL;
1750                                         goto out_close;
1751                                 }
1752                         }
1753
1754                         set_rlimit = NO_CHANGE;
1755
1756                         /*
1757                          * If we succeeded but had to kill clockid, fail and
1758                          * have perf_evsel__open_strerror() print us a nice
1759                          * error.
1760                          */
1761                         if (perf_missing_features.clockid ||
1762                             perf_missing_features.clockid_wrong) {
1763                                 err = -EINVAL;
1764                                 goto out_close;
1765                         }
1766                 }
1767         }
1768
1769         return 0;
1770
1771 try_fallback:
1772         /*
1773          * perf stat needs between 5 and 22 fds per CPU. When we run out
1774          * of them try to increase the limits.
1775          */
1776         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1777                 struct rlimit l;
1778                 int old_errno = errno;
1779
1780                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1781                         if (set_rlimit == NO_CHANGE)
1782                                 l.rlim_cur = l.rlim_max;
1783                         else {
1784                                 l.rlim_cur = l.rlim_max + 1000;
1785                                 l.rlim_max = l.rlim_cur;
1786                         }
1787                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1788                                 set_rlimit++;
1789                                 errno = old_errno;
1790                                 goto retry_open;
1791                         }
1792                 }
1793                 errno = old_errno;
1794         }
1795
1796         if (err != -EINVAL || cpu > 0 || thread > 0)
1797                 goto out_close;
1798
1799         /*
1800          * Must probe features in the order they were added to the
1801          * perf_event_attr interface.
1802          */
1803         if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1804                 perf_missing_features.write_backward = true;
1805                 pr_debug2("switching off write_backward\n");
1806                 goto out_close;
1807         } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1808                 perf_missing_features.clockid_wrong = true;
1809                 pr_debug2("switching off clockid\n");
1810                 goto fallback_missing_features;
1811         } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1812                 perf_missing_features.clockid = true;
1813                 pr_debug2("switching off use_clockid\n");
1814                 goto fallback_missing_features;
1815         } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1816                 perf_missing_features.cloexec = true;
1817                 pr_debug2("switching off cloexec flag\n");
1818                 goto fallback_missing_features;
1819         } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1820                 perf_missing_features.mmap2 = true;
1821                 pr_debug2("switching off mmap2\n");
1822                 goto fallback_missing_features;
1823         } else if (!perf_missing_features.exclude_guest &&
1824                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1825                 perf_missing_features.exclude_guest = true;
1826                 pr_debug2("switching off exclude_guest, exclude_host\n");
1827                 goto fallback_missing_features;
1828         } else if (!perf_missing_features.sample_id_all) {
1829                 perf_missing_features.sample_id_all = true;
1830                 pr_debug2("switching off sample_id_all\n");
1831                 goto retry_sample_id;
1832         } else if (!perf_missing_features.lbr_flags &&
1833                         (evsel->attr.branch_sample_type &
1834                          (PERF_SAMPLE_BRANCH_NO_CYCLES |
1835                           PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1836                 perf_missing_features.lbr_flags = true;
1837                 pr_debug2("switching off branch sample type no (cycles/flags)\n");
1838                 goto fallback_missing_features;
1839         } else if (!perf_missing_features.group_read &&
1840                     evsel->attr.inherit &&
1841                    (evsel->attr.read_format & PERF_FORMAT_GROUP)) {
1842                 perf_missing_features.group_read = true;
1843                 pr_debug2("switching off group read\n");
1844                 goto fallback_missing_features;
1845         }
1846 out_close:
1847         do {
1848                 while (--thread >= 0) {
1849                         close(FD(evsel, cpu, thread));
1850                         FD(evsel, cpu, thread) = -1;
1851                 }
1852                 thread = nthreads;
1853         } while (--cpu >= 0);
1854         return err;
1855 }
1856
1857 void perf_evsel__close(struct perf_evsel *evsel)
1858 {
1859         if (evsel->fd == NULL)
1860                 return;
1861
1862         perf_evsel__close_fd(evsel);
1863         perf_evsel__free_fd(evsel);
1864 }
1865
1866 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1867                              struct cpu_map *cpus)
1868 {
1869         return perf_evsel__open(evsel, cpus, NULL);
1870 }
1871
1872 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1873                                 struct thread_map *threads)
1874 {
1875         return perf_evsel__open(evsel, NULL, threads);
1876 }
1877
1878 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1879                                        const union perf_event *event,
1880                                        struct perf_sample *sample)
1881 {
1882         u64 type = evsel->attr.sample_type;
1883         const u64 *array = event->sample.array;
1884         bool swapped = evsel->needs_swap;
1885         union u64_swap u;
1886
1887         array += ((event->header.size -
1888                    sizeof(event->header)) / sizeof(u64)) - 1;
1889
1890         if (type & PERF_SAMPLE_IDENTIFIER) {
1891                 sample->id = *array;
1892                 array--;
1893         }
1894
1895         if (type & PERF_SAMPLE_CPU) {
1896                 u.val64 = *array;
1897                 if (swapped) {
1898                         /* undo swap of u64, then swap on individual u32s */
1899                         u.val64 = bswap_64(u.val64);
1900                         u.val32[0] = bswap_32(u.val32[0]);
1901                 }
1902
1903                 sample->cpu = u.val32[0];
1904                 array--;
1905         }
1906
1907         if (type & PERF_SAMPLE_STREAM_ID) {
1908                 sample->stream_id = *array;
1909                 array--;
1910         }
1911
1912         if (type & PERF_SAMPLE_ID) {
1913                 sample->id = *array;
1914                 array--;
1915         }
1916
1917         if (type & PERF_SAMPLE_TIME) {
1918                 sample->time = *array;
1919                 array--;
1920         }
1921
1922         if (type & PERF_SAMPLE_TID) {
1923                 u.val64 = *array;
1924                 if (swapped) {
1925                         /* undo swap of u64, then swap on individual u32s */
1926                         u.val64 = bswap_64(u.val64);
1927                         u.val32[0] = bswap_32(u.val32[0]);
1928                         u.val32[1] = bswap_32(u.val32[1]);
1929                 }
1930
1931                 sample->pid = u.val32[0];
1932                 sample->tid = u.val32[1];
1933                 array--;
1934         }
1935
1936         return 0;
1937 }
1938
1939 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1940                             u64 size)
1941 {
1942         return size > max_size || offset + size > endp;
1943 }
1944
1945 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1946         do {                                                            \
1947                 if (overflow(endp, (max_size), (offset), (size)))       \
1948                         return -EFAULT;                                 \
1949         } while (0)
1950
1951 #define OVERFLOW_CHECK_u64(offset) \
1952         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1953
1954 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1955                              struct perf_sample *data)
1956 {
1957         u64 type = evsel->attr.sample_type;
1958         bool swapped = evsel->needs_swap;
1959         const u64 *array;
1960         u16 max_size = event->header.size;
1961         const void *endp = (void *)event + max_size;
1962         u64 sz;
1963
1964         /*
1965          * used for cross-endian analysis. See git commit 65014ab3
1966          * for why this goofiness is needed.
1967          */
1968         union u64_swap u;
1969
1970         memset(data, 0, sizeof(*data));
1971         data->cpu = data->pid = data->tid = -1;
1972         data->stream_id = data->id = data->time = -1ULL;
1973         data->period = evsel->attr.sample_period;
1974         data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1975
1976         if (event->header.type != PERF_RECORD_SAMPLE) {
1977                 if (!evsel->attr.sample_id_all)
1978                         return 0;
1979                 return perf_evsel__parse_id_sample(evsel, event, data);
1980         }
1981
1982         array = event->sample.array;
1983
1984         /*
1985          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1986          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1987          * check the format does not go past the end of the event.
1988          */
1989         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1990                 return -EFAULT;
1991
1992         data->id = -1ULL;
1993         if (type & PERF_SAMPLE_IDENTIFIER) {
1994                 data->id = *array;
1995                 array++;
1996         }
1997
1998         if (type & PERF_SAMPLE_IP) {
1999                 data->ip = *array;
2000                 array++;
2001         }
2002
2003         if (type & PERF_SAMPLE_TID) {
2004                 u.val64 = *array;
2005                 if (swapped) {
2006                         /* undo swap of u64, then swap on individual u32s */
2007                         u.val64 = bswap_64(u.val64);
2008                         u.val32[0] = bswap_32(u.val32[0]);
2009                         u.val32[1] = bswap_32(u.val32[1]);
2010                 }
2011
2012                 data->pid = u.val32[0];
2013                 data->tid = u.val32[1];
2014                 array++;
2015         }
2016
2017         if (type & PERF_SAMPLE_TIME) {
2018                 data->time = *array;
2019                 array++;
2020         }
2021
2022         data->addr = 0;
2023         if (type & PERF_SAMPLE_ADDR) {
2024                 data->addr = *array;
2025                 array++;
2026         }
2027
2028         if (type & PERF_SAMPLE_ID) {
2029                 data->id = *array;
2030                 array++;
2031         }
2032
2033         if (type & PERF_SAMPLE_STREAM_ID) {
2034                 data->stream_id = *array;
2035                 array++;
2036         }
2037
2038         if (type & PERF_SAMPLE_CPU) {
2039
2040                 u.val64 = *array;
2041                 if (swapped) {
2042                         /* undo swap of u64, then swap on individual u32s */
2043                         u.val64 = bswap_64(u.val64);
2044                         u.val32[0] = bswap_32(u.val32[0]);
2045                 }
2046
2047                 data->cpu = u.val32[0];
2048                 array++;
2049         }
2050
2051         if (type & PERF_SAMPLE_PERIOD) {
2052                 data->period = *array;
2053                 array++;
2054         }
2055
2056         if (type & PERF_SAMPLE_READ) {
2057                 u64 read_format = evsel->attr.read_format;
2058
2059                 OVERFLOW_CHECK_u64(array);
2060                 if (read_format & PERF_FORMAT_GROUP)
2061                         data->read.group.nr = *array;
2062                 else
2063                         data->read.one.value = *array;
2064
2065                 array++;
2066
2067                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2068                         OVERFLOW_CHECK_u64(array);
2069                         data->read.time_enabled = *array;
2070                         array++;
2071                 }
2072
2073                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2074                         OVERFLOW_CHECK_u64(array);
2075                         data->read.time_running = *array;
2076                         array++;
2077                 }
2078
2079                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2080                 if (read_format & PERF_FORMAT_GROUP) {
2081                         const u64 max_group_nr = UINT64_MAX /
2082                                         sizeof(struct sample_read_value);
2083
2084                         if (data->read.group.nr > max_group_nr)
2085                                 return -EFAULT;
2086                         sz = data->read.group.nr *
2087                              sizeof(struct sample_read_value);
2088                         OVERFLOW_CHECK(array, sz, max_size);
2089                         data->read.group.values =
2090                                         (struct sample_read_value *)array;
2091                         array = (void *)array + sz;
2092                 } else {
2093                         OVERFLOW_CHECK_u64(array);
2094                         data->read.one.id = *array;
2095                         array++;
2096                 }
2097         }
2098
2099         if (type & PERF_SAMPLE_CALLCHAIN) {
2100                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2101
2102                 OVERFLOW_CHECK_u64(array);
2103                 data->callchain = (struct ip_callchain *)array++;
2104                 if (data->callchain->nr > max_callchain_nr)
2105                         return -EFAULT;
2106                 sz = data->callchain->nr * sizeof(u64);
2107                 OVERFLOW_CHECK(array, sz, max_size);
2108                 array = (void *)array + sz;
2109         }
2110
2111         if (type & PERF_SAMPLE_RAW) {
2112                 OVERFLOW_CHECK_u64(array);
2113                 u.val64 = *array;
2114                 if (WARN_ONCE(swapped,
2115                               "Endianness of raw data not corrected!\n")) {
2116                         /* undo swap of u64, then swap on individual u32s */
2117                         u.val64 = bswap_64(u.val64);
2118                         u.val32[0] = bswap_32(u.val32[0]);
2119                         u.val32[1] = bswap_32(u.val32[1]);
2120                 }
2121                 data->raw_size = u.val32[0];
2122                 array = (void *)array + sizeof(u32);
2123
2124                 OVERFLOW_CHECK(array, data->raw_size, max_size);
2125                 data->raw_data = (void *)array;
2126                 array = (void *)array + data->raw_size;
2127         }
2128
2129         if (type & PERF_SAMPLE_BRANCH_STACK) {
2130                 const u64 max_branch_nr = UINT64_MAX /
2131                                           sizeof(struct branch_entry);
2132
2133                 OVERFLOW_CHECK_u64(array);
2134                 data->branch_stack = (struct branch_stack *)array++;
2135
2136                 if (data->branch_stack->nr > max_branch_nr)
2137                         return -EFAULT;
2138                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2139                 OVERFLOW_CHECK(array, sz, max_size);
2140                 array = (void *)array + sz;
2141         }
2142
2143         if (type & PERF_SAMPLE_REGS_USER) {
2144                 OVERFLOW_CHECK_u64(array);
2145                 data->user_regs.abi = *array;
2146                 array++;
2147
2148                 if (data->user_regs.abi) {
2149                         u64 mask = evsel->attr.sample_regs_user;
2150
2151                         sz = hweight_long(mask) * sizeof(u64);
2152                         OVERFLOW_CHECK(array, sz, max_size);
2153                         data->user_regs.mask = mask;
2154                         data->user_regs.regs = (u64 *)array;
2155                         array = (void *)array + sz;
2156                 }
2157         }
2158
2159         if (type & PERF_SAMPLE_STACK_USER) {
2160                 OVERFLOW_CHECK_u64(array);
2161                 sz = *array++;
2162
2163                 data->user_stack.offset = ((char *)(array - 1)
2164                                           - (char *) event);
2165
2166                 if (!sz) {
2167                         data->user_stack.size = 0;
2168                 } else {
2169                         OVERFLOW_CHECK(array, sz, max_size);
2170                         data->user_stack.data = (char *)array;
2171                         array = (void *)array + sz;
2172                         OVERFLOW_CHECK_u64(array);
2173                         data->user_stack.size = *array++;
2174                         if (WARN_ONCE(data->user_stack.size > sz,
2175                                       "user stack dump failure\n"))
2176                                 return -EFAULT;
2177                 }
2178         }
2179
2180         if (type & PERF_SAMPLE_WEIGHT) {
2181                 OVERFLOW_CHECK_u64(array);
2182                 data->weight = *array;
2183                 array++;
2184         }
2185
2186         data->data_src = PERF_MEM_DATA_SRC_NONE;
2187         if (type & PERF_SAMPLE_DATA_SRC) {
2188                 OVERFLOW_CHECK_u64(array);
2189                 data->data_src = *array;
2190                 array++;
2191         }
2192
2193         data->transaction = 0;
2194         if (type & PERF_SAMPLE_TRANSACTION) {
2195                 OVERFLOW_CHECK_u64(array);
2196                 data->transaction = *array;
2197                 array++;
2198         }
2199
2200         data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2201         if (type & PERF_SAMPLE_REGS_INTR) {
2202                 OVERFLOW_CHECK_u64(array);
2203                 data->intr_regs.abi = *array;
2204                 array++;
2205
2206                 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2207                         u64 mask = evsel->attr.sample_regs_intr;
2208
2209                         sz = hweight_long(mask) * sizeof(u64);
2210                         OVERFLOW_CHECK(array, sz, max_size);
2211                         data->intr_regs.mask = mask;
2212                         data->intr_regs.regs = (u64 *)array;
2213                         array = (void *)array + sz;
2214                 }
2215         }
2216
2217         data->phys_addr = 0;
2218         if (type & PERF_SAMPLE_PHYS_ADDR) {
2219                 data->phys_addr = *array;
2220                 array++;
2221         }
2222
2223         return 0;
2224 }
2225
2226 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2227                                      u64 read_format)
2228 {
2229         size_t sz, result = sizeof(struct sample_event);
2230
2231         if (type & PERF_SAMPLE_IDENTIFIER)
2232                 result += sizeof(u64);
2233
2234         if (type & PERF_SAMPLE_IP)
2235                 result += sizeof(u64);
2236
2237         if (type & PERF_SAMPLE_TID)
2238                 result += sizeof(u64);
2239
2240         if (type & PERF_SAMPLE_TIME)
2241                 result += sizeof(u64);
2242
2243         if (type & PERF_SAMPLE_ADDR)
2244                 result += sizeof(u64);
2245
2246         if (type & PERF_SAMPLE_ID)
2247                 result += sizeof(u64);
2248
2249         if (type & PERF_SAMPLE_STREAM_ID)
2250                 result += sizeof(u64);
2251
2252         if (type & PERF_SAMPLE_CPU)
2253                 result += sizeof(u64);
2254
2255         if (type & PERF_SAMPLE_PERIOD)
2256                 result += sizeof(u64);
2257
2258         if (type & PERF_SAMPLE_READ) {
2259                 result += sizeof(u64);
2260                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2261                         result += sizeof(u64);
2262                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2263                         result += sizeof(u64);
2264                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2265                 if (read_format & PERF_FORMAT_GROUP) {
2266                         sz = sample->read.group.nr *
2267                              sizeof(struct sample_read_value);
2268                         result += sz;
2269                 } else {
2270                         result += sizeof(u64);
2271                 }
2272         }
2273
2274         if (type & PERF_SAMPLE_CALLCHAIN) {
2275                 sz = (sample->callchain->nr + 1) * sizeof(u64);
2276                 result += sz;
2277         }
2278
2279         if (type & PERF_SAMPLE_RAW) {
2280                 result += sizeof(u32);
2281                 result += sample->raw_size;
2282         }
2283
2284         if (type & PERF_SAMPLE_BRANCH_STACK) {
2285                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2286                 sz += sizeof(u64);
2287                 result += sz;
2288         }
2289
2290         if (type & PERF_SAMPLE_REGS_USER) {
2291                 if (sample->user_regs.abi) {
2292                         result += sizeof(u64);
2293                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2294                         result += sz;
2295                 } else {
2296                         result += sizeof(u64);
2297                 }
2298         }
2299
2300         if (type & PERF_SAMPLE_STACK_USER) {
2301                 sz = sample->user_stack.size;
2302                 result += sizeof(u64);
2303                 if (sz) {
2304                         result += sz;
2305                         result += sizeof(u64);
2306                 }
2307         }
2308
2309         if (type & PERF_SAMPLE_WEIGHT)
2310                 result += sizeof(u64);
2311
2312         if (type & PERF_SAMPLE_DATA_SRC)
2313                 result += sizeof(u64);
2314
2315         if (type & PERF_SAMPLE_TRANSACTION)
2316                 result += sizeof(u64);
2317
2318         if (type & PERF_SAMPLE_REGS_INTR) {
2319                 if (sample->intr_regs.abi) {
2320                         result += sizeof(u64);
2321                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2322                         result += sz;
2323                 } else {
2324                         result += sizeof(u64);
2325                 }
2326         }
2327
2328         if (type & PERF_SAMPLE_PHYS_ADDR)
2329                 result += sizeof(u64);
2330
2331         return result;
2332 }
2333
2334 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2335                                   u64 read_format,
2336                                   const struct perf_sample *sample,
2337                                   bool swapped)
2338 {
2339         u64 *array;
2340         size_t sz;
2341         /*
2342          * used for cross-endian analysis. See git commit 65014ab3
2343          * for why this goofiness is needed.
2344          */
2345         union u64_swap u;
2346
2347         array = event->sample.array;
2348
2349         if (type & PERF_SAMPLE_IDENTIFIER) {
2350                 *array = sample->id;
2351                 array++;
2352         }
2353
2354         if (type & PERF_SAMPLE_IP) {
2355                 *array = sample->ip;
2356                 array++;
2357         }
2358
2359         if (type & PERF_SAMPLE_TID) {
2360                 u.val32[0] = sample->pid;
2361                 u.val32[1] = sample->tid;
2362                 if (swapped) {
2363                         /*
2364                          * Inverse of what is done in perf_evsel__parse_sample
2365                          */
2366                         u.val32[0] = bswap_32(u.val32[0]);
2367                         u.val32[1] = bswap_32(u.val32[1]);
2368                         u.val64 = bswap_64(u.val64);
2369                 }
2370
2371                 *array = u.val64;
2372                 array++;
2373         }
2374
2375         if (type & PERF_SAMPLE_TIME) {
2376                 *array = sample->time;
2377                 array++;
2378         }
2379
2380         if (type & PERF_SAMPLE_ADDR) {
2381                 *array = sample->addr;
2382                 array++;
2383         }
2384
2385         if (type & PERF_SAMPLE_ID) {
2386                 *array = sample->id;
2387                 array++;
2388         }
2389
2390         if (type & PERF_SAMPLE_STREAM_ID) {
2391                 *array = sample->stream_id;
2392                 array++;
2393         }
2394
2395         if (type & PERF_SAMPLE_CPU) {
2396                 u.val32[0] = sample->cpu;
2397                 if (swapped) {
2398                         /*
2399                          * Inverse of what is done in perf_evsel__parse_sample
2400                          */
2401                         u.val32[0] = bswap_32(u.val32[0]);
2402                         u.val64 = bswap_64(u.val64);
2403                 }
2404                 *array = u.val64;
2405                 array++;
2406         }
2407
2408         if (type & PERF_SAMPLE_PERIOD) {
2409                 *array = sample->period;
2410                 array++;
2411         }
2412
2413         if (type & PERF_SAMPLE_READ) {
2414                 if (read_format & PERF_FORMAT_GROUP)
2415                         *array = sample->read.group.nr;
2416                 else
2417                         *array = sample->read.one.value;
2418                 array++;
2419
2420                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2421                         *array = sample->read.time_enabled;
2422                         array++;
2423                 }
2424
2425                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2426                         *array = sample->read.time_running;
2427                         array++;
2428                 }
2429
2430                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2431                 if (read_format & PERF_FORMAT_GROUP) {
2432                         sz = sample->read.group.nr *
2433                              sizeof(struct sample_read_value);
2434                         memcpy(array, sample->read.group.values, sz);
2435                         array = (void *)array + sz;
2436                 } else {
2437                         *array = sample->read.one.id;
2438                         array++;
2439                 }
2440         }
2441
2442         if (type & PERF_SAMPLE_CALLCHAIN) {
2443                 sz = (sample->callchain->nr + 1) * sizeof(u64);
2444                 memcpy(array, sample->callchain, sz);
2445                 array = (void *)array + sz;
2446         }
2447
2448         if (type & PERF_SAMPLE_RAW) {
2449                 u.val32[0] = sample->raw_size;
2450                 if (WARN_ONCE(swapped,
2451                               "Endianness of raw data not corrected!\n")) {
2452                         /*
2453                          * Inverse of what is done in perf_evsel__parse_sample
2454                          */
2455                         u.val32[0] = bswap_32(u.val32[0]);
2456                         u.val32[1] = bswap_32(u.val32[1]);
2457                         u.val64 = bswap_64(u.val64);
2458                 }
2459                 *array = u.val64;
2460                 array = (void *)array + sizeof(u32);
2461
2462                 memcpy(array, sample->raw_data, sample->raw_size);
2463                 array = (void *)array + sample->raw_size;
2464         }
2465
2466         if (type & PERF_SAMPLE_BRANCH_STACK) {
2467                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2468                 sz += sizeof(u64);
2469                 memcpy(array, sample->branch_stack, sz);
2470                 array = (void *)array + sz;
2471         }
2472
2473         if (type & PERF_SAMPLE_REGS_USER) {
2474                 if (sample->user_regs.abi) {
2475                         *array++ = sample->user_regs.abi;
2476                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2477                         memcpy(array, sample->user_regs.regs, sz);
2478                         array = (void *)array + sz;
2479                 } else {
2480                         *array++ = 0;
2481                 }
2482         }
2483
2484         if (type & PERF_SAMPLE_STACK_USER) {
2485                 sz = sample->user_stack.size;
2486                 *array++ = sz;
2487                 if (sz) {
2488                         memcpy(array, sample->user_stack.data, sz);
2489                         array = (void *)array + sz;
2490                         *array++ = sz;
2491                 }
2492         }
2493
2494         if (type & PERF_SAMPLE_WEIGHT) {
2495                 *array = sample->weight;
2496                 array++;
2497         }
2498
2499         if (type & PERF_SAMPLE_DATA_SRC) {
2500                 *array = sample->data_src;
2501                 array++;
2502         }
2503
2504         if (type & PERF_SAMPLE_TRANSACTION) {
2505                 *array = sample->transaction;
2506                 array++;
2507         }
2508
2509         if (type & PERF_SAMPLE_REGS_INTR) {
2510                 if (sample->intr_regs.abi) {
2511                         *array++ = sample->intr_regs.abi;
2512                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2513                         memcpy(array, sample->intr_regs.regs, sz);
2514                         array = (void *)array + sz;
2515                 } else {
2516                         *array++ = 0;
2517                 }
2518         }
2519
2520         if (type & PERF_SAMPLE_PHYS_ADDR) {
2521                 *array = sample->phys_addr;
2522                 array++;
2523         }
2524
2525         return 0;
2526 }
2527
2528 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2529 {
2530         return pevent_find_field(evsel->tp_format, name);
2531 }
2532
2533 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2534                          const char *name)
2535 {
2536         struct format_field *field = perf_evsel__field(evsel, name);
2537         int offset;
2538
2539         if (!field)
2540                 return NULL;
2541
2542         offset = field->offset;
2543
2544         if (field->flags & FIELD_IS_DYNAMIC) {
2545                 offset = *(int *)(sample->raw_data + field->offset);
2546                 offset &= 0xffff;
2547         }
2548
2549         return sample->raw_data + offset;
2550 }
2551
2552 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2553                          bool needs_swap)
2554 {
2555         u64 value;
2556         void *ptr = sample->raw_data + field->offset;
2557
2558         switch (field->size) {
2559         case 1:
2560                 return *(u8 *)ptr;
2561         case 2:
2562                 value = *(u16 *)ptr;
2563                 break;
2564         case 4:
2565                 value = *(u32 *)ptr;
2566                 break;
2567         case 8:
2568                 memcpy(&value, ptr, sizeof(u64));
2569                 break;
2570         default:
2571                 return 0;
2572         }
2573
2574         if (!needs_swap)
2575                 return value;
2576
2577         switch (field->size) {
2578         case 2:
2579                 return bswap_16(value);
2580         case 4:
2581                 return bswap_32(value);
2582         case 8:
2583                 return bswap_64(value);
2584         default:
2585                 return 0;
2586         }
2587
2588         return 0;
2589 }
2590
2591 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2592                        const char *name)
2593 {
2594         struct format_field *field = perf_evsel__field(evsel, name);
2595
2596         if (!field)
2597                 return 0;
2598
2599         return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2600 }
2601
2602 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2603                           char *msg, size_t msgsize)
2604 {
2605         int paranoid;
2606
2607         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2608             evsel->attr.type   == PERF_TYPE_HARDWARE &&
2609             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2610                 /*
2611                  * If it's cycles then fall back to hrtimer based
2612                  * cpu-clock-tick sw counter, which is always available even if
2613                  * no PMU support.
2614                  *
2615                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2616                  * b0a873e).
2617                  */
2618                 scnprintf(msg, msgsize, "%s",
2619 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2620
2621                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
2622                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2623
2624                 zfree(&evsel->name);
2625                 return true;
2626         } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2627                    (paranoid = perf_event_paranoid()) > 1) {
2628                 const char *name = perf_evsel__name(evsel);
2629                 char *new_name;
2630
2631                 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2632                         return false;
2633
2634                 if (evsel->name)
2635                         free(evsel->name);
2636                 evsel->name = new_name;
2637                 scnprintf(msg, msgsize,
2638 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2639                 evsel->attr.exclude_kernel = 1;
2640
2641                 return true;
2642         }
2643
2644         return false;
2645 }
2646
2647 static bool find_process(const char *name)
2648 {
2649         size_t len = strlen(name);
2650         DIR *dir;
2651         struct dirent *d;
2652         int ret = -1;
2653
2654         dir = opendir(procfs__mountpoint());
2655         if (!dir)
2656                 return false;
2657
2658         /* Walk through the directory. */
2659         while (ret && (d = readdir(dir)) != NULL) {
2660                 char path[PATH_MAX];
2661                 char *data;
2662                 size_t size;
2663
2664                 if ((d->d_type != DT_DIR) ||
2665                      !strcmp(".", d->d_name) ||
2666                      !strcmp("..", d->d_name))
2667                         continue;
2668
2669                 scnprintf(path, sizeof(path), "%s/%s/comm",
2670                           procfs__mountpoint(), d->d_name);
2671
2672                 if (filename__read_str(path, &data, &size))
2673                         continue;
2674
2675                 ret = strncmp(name, data, len);
2676                 free(data);
2677         }
2678
2679         closedir(dir);
2680         return ret ? false : true;
2681 }
2682
2683 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2684                               int err, char *msg, size_t size)
2685 {
2686         char sbuf[STRERR_BUFSIZE];
2687         int printed = 0;
2688
2689         switch (err) {
2690         case EPERM:
2691         case EACCES:
2692                 if (err == EPERM)
2693                         printed = scnprintf(msg, size,
2694                                 "No permission to enable %s event.\n\n",
2695                                 perf_evsel__name(evsel));
2696
2697                 return scnprintf(msg + printed, size - printed,
2698                  "You may not have permission to collect %sstats.\n\n"
2699                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2700                  "which controls use of the performance events system by\n"
2701                  "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2702                  "The current value is %d:\n\n"
2703                  "  -1: Allow use of (almost) all events by all users\n"
2704                  "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2705                  ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2706                  "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2707                  ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2708                  ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2709                  "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2710                  "      kernel.perf_event_paranoid = -1\n" ,
2711                                  target->system_wide ? "system-wide " : "",
2712                                  perf_event_paranoid());
2713         case ENOENT:
2714                 return scnprintf(msg, size, "The %s event is not supported.",
2715                                  perf_evsel__name(evsel));
2716         case EMFILE:
2717                 return scnprintf(msg, size, "%s",
2718                          "Too many events are opened.\n"
2719                          "Probably the maximum number of open file descriptors has been reached.\n"
2720                          "Hint: Try again after reducing the number of events.\n"
2721                          "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2722         case ENOMEM:
2723                 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2724                     access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2725                         return scnprintf(msg, size,
2726                                          "Not enough memory to setup event with callchain.\n"
2727                                          "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2728                                          "Hint: Current value: %d", sysctl_perf_event_max_stack);
2729                 break;
2730         case ENODEV:
2731                 if (target->cpu_list)
2732                         return scnprintf(msg, size, "%s",
2733          "No such device - did you specify an out-of-range profile CPU?");
2734                 break;
2735         case EOPNOTSUPP:
2736                 if (evsel->attr.sample_period != 0)
2737                         return scnprintf(msg, size, "%s",
2738         "PMU Hardware doesn't support sampling/overflow-interrupts.");
2739                 if (evsel->attr.precise_ip)
2740                         return scnprintf(msg, size, "%s",
2741         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2742 #if defined(__i386__) || defined(__x86_64__)
2743                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2744                         return scnprintf(msg, size, "%s",
2745         "No hardware sampling interrupt available.\n"
2746         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2747 #endif
2748                 break;
2749         case EBUSY:
2750                 if (find_process("oprofiled"))
2751                         return scnprintf(msg, size,
2752         "The PMU counters are busy/taken by another profiler.\n"
2753         "We found oprofile daemon running, please stop it and try again.");
2754                 break;
2755         case EINVAL:
2756                 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2757                         return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2758                 if (perf_missing_features.clockid)
2759                         return scnprintf(msg, size, "clockid feature not supported.");
2760                 if (perf_missing_features.clockid_wrong)
2761                         return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2762                 break;
2763         default:
2764                 break;
2765         }
2766
2767         return scnprintf(msg, size,
2768         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2769         "/bin/dmesg may provide additional information.\n"
2770         "No CONFIG_PERF_EVENTS=y kernel support configured?",
2771                          err, str_error_r(err, sbuf, sizeof(sbuf)),
2772                          perf_evsel__name(evsel));
2773 }
2774
2775 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2776 {
2777         if (evsel && evsel->evlist && evsel->evlist->env)
2778                 return evsel->evlist->env->arch;
2779         return NULL;
2780 }
2781
2782 char *perf_evsel__env_cpuid(struct perf_evsel *evsel)
2783 {
2784         if (evsel && evsel->evlist && evsel->evlist->env)
2785                 return evsel->evlist->env->cpuid;
2786         return NULL;
2787 }