Merge tag 'v5.8-rc3' into arm/qcom
[linux-2.6-microblaze.git] / tools / perf / util / cs-etm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8
9 #include <linux/bitops.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include <opencsd/ocsd_if_types.h>
17 #include <stdlib.h>
18
19 #include "auxtrace.h"
20 #include "color.h"
21 #include "cs-etm.h"
22 #include "cs-etm-decoder/cs-etm-decoder.h"
23 #include "debug.h"
24 #include "dso.h"
25 #include "evlist.h"
26 #include "intlist.h"
27 #include "machine.h"
28 #include "map.h"
29 #include "perf.h"
30 #include "session.h"
31 #include "map_symbol.h"
32 #include "branch.h"
33 #include "symbol.h"
34 #include "tool.h"
35 #include "thread.h"
36 #include "thread-stack.h"
37 #include <tools/libc_compat.h>
38 #include "util/synthetic-events.h"
39
40 #define MAX_TIMESTAMP (~0ULL)
41
42 struct cs_etm_auxtrace {
43         struct auxtrace auxtrace;
44         struct auxtrace_queues queues;
45         struct auxtrace_heap heap;
46         struct itrace_synth_opts synth_opts;
47         struct perf_session *session;
48         struct machine *machine;
49         struct thread *unknown_thread;
50
51         u8 timeless_decoding;
52         u8 snapshot_mode;
53         u8 data_queued;
54         u8 sample_branches;
55         u8 sample_instructions;
56
57         int num_cpu;
58         u32 auxtrace_type;
59         u64 branches_sample_type;
60         u64 branches_id;
61         u64 instructions_sample_type;
62         u64 instructions_sample_period;
63         u64 instructions_id;
64         u64 **metadata;
65         u64 kernel_start;
66         unsigned int pmu_type;
67 };
68
69 struct cs_etm_traceid_queue {
70         u8 trace_chan_id;
71         pid_t pid, tid;
72         u64 period_instructions;
73         size_t last_branch_pos;
74         union perf_event *event_buf;
75         struct thread *thread;
76         struct branch_stack *last_branch;
77         struct branch_stack *last_branch_rb;
78         struct cs_etm_packet *prev_packet;
79         struct cs_etm_packet *packet;
80         struct cs_etm_packet_queue packet_queue;
81 };
82
83 struct cs_etm_queue {
84         struct cs_etm_auxtrace *etm;
85         struct cs_etm_decoder *decoder;
86         struct auxtrace_buffer *buffer;
87         unsigned int queue_nr;
88         u8 pending_timestamp;
89         u64 offset;
90         const unsigned char *buf;
91         size_t buf_len, buf_used;
92         /* Conversion between traceID and index in traceid_queues array */
93         struct intlist *traceid_queues_list;
94         struct cs_etm_traceid_queue **traceid_queues;
95 };
96
97 /* RB tree for quick conversion between traceID and metadata pointers */
98 static struct intlist *traceid_list;
99
100 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
101 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
102 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
103                                            pid_t tid);
104 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
105 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
106
107 /* PTMs ETMIDR [11:8] set to b0011 */
108 #define ETMIDR_PTM_VERSION 0x00000300
109
110 /*
111  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
112  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
113  * encode the etm queue number as the upper 16 bit and the channel as
114  * the lower 16 bit.
115  */
116 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
117                       (queue_nr << 16 | trace_chan_id)
118 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
119 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
120
121 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
122 {
123         etmidr &= ETMIDR_PTM_VERSION;
124
125         if (etmidr == ETMIDR_PTM_VERSION)
126                 return CS_ETM_PROTO_PTM;
127
128         return CS_ETM_PROTO_ETMV3;
129 }
130
131 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
132 {
133         struct int_node *inode;
134         u64 *metadata;
135
136         inode = intlist__find(traceid_list, trace_chan_id);
137         if (!inode)
138                 return -EINVAL;
139
140         metadata = inode->priv;
141         *magic = metadata[CS_ETM_MAGIC];
142         return 0;
143 }
144
145 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
146 {
147         struct int_node *inode;
148         u64 *metadata;
149
150         inode = intlist__find(traceid_list, trace_chan_id);
151         if (!inode)
152                 return -EINVAL;
153
154         metadata = inode->priv;
155         *cpu = (int)metadata[CS_ETM_CPU];
156         return 0;
157 }
158
159 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
160                                               u8 trace_chan_id)
161 {
162         /*
163          * Wnen a timestamp packet is encountered the backend code
164          * is stopped so that the front end has time to process packets
165          * that were accumulated in the traceID queue.  Since there can
166          * be more than one channel per cs_etm_queue, we need to specify
167          * what traceID queue needs servicing.
168          */
169         etmq->pending_timestamp = trace_chan_id;
170 }
171
172 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
173                                       u8 *trace_chan_id)
174 {
175         struct cs_etm_packet_queue *packet_queue;
176
177         if (!etmq->pending_timestamp)
178                 return 0;
179
180         if (trace_chan_id)
181                 *trace_chan_id = etmq->pending_timestamp;
182
183         packet_queue = cs_etm__etmq_get_packet_queue(etmq,
184                                                      etmq->pending_timestamp);
185         if (!packet_queue)
186                 return 0;
187
188         /* Acknowledge pending status */
189         etmq->pending_timestamp = 0;
190
191         /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
192         return packet_queue->timestamp;
193 }
194
195 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
196 {
197         int i;
198
199         queue->head = 0;
200         queue->tail = 0;
201         queue->packet_count = 0;
202         for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
203                 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
204                 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
205                 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
206                 queue->packet_buffer[i].instr_count = 0;
207                 queue->packet_buffer[i].last_instr_taken_branch = false;
208                 queue->packet_buffer[i].last_instr_size = 0;
209                 queue->packet_buffer[i].last_instr_type = 0;
210                 queue->packet_buffer[i].last_instr_subtype = 0;
211                 queue->packet_buffer[i].last_instr_cond = 0;
212                 queue->packet_buffer[i].flags = 0;
213                 queue->packet_buffer[i].exception_number = UINT32_MAX;
214                 queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
215                 queue->packet_buffer[i].cpu = INT_MIN;
216         }
217 }
218
219 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
220 {
221         int idx;
222         struct int_node *inode;
223         struct cs_etm_traceid_queue *tidq;
224         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
225
226         intlist__for_each_entry(inode, traceid_queues_list) {
227                 idx = (int)(intptr_t)inode->priv;
228                 tidq = etmq->traceid_queues[idx];
229                 cs_etm__clear_packet_queue(&tidq->packet_queue);
230         }
231 }
232
233 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
234                                       struct cs_etm_traceid_queue *tidq,
235                                       u8 trace_chan_id)
236 {
237         int rc = -ENOMEM;
238         struct auxtrace_queue *queue;
239         struct cs_etm_auxtrace *etm = etmq->etm;
240
241         cs_etm__clear_packet_queue(&tidq->packet_queue);
242
243         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
244         tidq->tid = queue->tid;
245         tidq->pid = -1;
246         tidq->trace_chan_id = trace_chan_id;
247
248         tidq->packet = zalloc(sizeof(struct cs_etm_packet));
249         if (!tidq->packet)
250                 goto out;
251
252         tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
253         if (!tidq->prev_packet)
254                 goto out_free;
255
256         if (etm->synth_opts.last_branch) {
257                 size_t sz = sizeof(struct branch_stack);
258
259                 sz += etm->synth_opts.last_branch_sz *
260                       sizeof(struct branch_entry);
261                 tidq->last_branch = zalloc(sz);
262                 if (!tidq->last_branch)
263                         goto out_free;
264                 tidq->last_branch_rb = zalloc(sz);
265                 if (!tidq->last_branch_rb)
266                         goto out_free;
267         }
268
269         tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
270         if (!tidq->event_buf)
271                 goto out_free;
272
273         return 0;
274
275 out_free:
276         zfree(&tidq->last_branch_rb);
277         zfree(&tidq->last_branch);
278         zfree(&tidq->prev_packet);
279         zfree(&tidq->packet);
280 out:
281         return rc;
282 }
283
284 static struct cs_etm_traceid_queue
285 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
286 {
287         int idx;
288         struct int_node *inode;
289         struct intlist *traceid_queues_list;
290         struct cs_etm_traceid_queue *tidq, **traceid_queues;
291         struct cs_etm_auxtrace *etm = etmq->etm;
292
293         if (etm->timeless_decoding)
294                 trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
295
296         traceid_queues_list = etmq->traceid_queues_list;
297
298         /*
299          * Check if the traceid_queue exist for this traceID by looking
300          * in the queue list.
301          */
302         inode = intlist__find(traceid_queues_list, trace_chan_id);
303         if (inode) {
304                 idx = (int)(intptr_t)inode->priv;
305                 return etmq->traceid_queues[idx];
306         }
307
308         /* We couldn't find a traceid_queue for this traceID, allocate one */
309         tidq = malloc(sizeof(*tidq));
310         if (!tidq)
311                 return NULL;
312
313         memset(tidq, 0, sizeof(*tidq));
314
315         /* Get a valid index for the new traceid_queue */
316         idx = intlist__nr_entries(traceid_queues_list);
317         /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
318         inode = intlist__findnew(traceid_queues_list, trace_chan_id);
319         if (!inode)
320                 goto out_free;
321
322         /* Associate this traceID with this index */
323         inode->priv = (void *)(intptr_t)idx;
324
325         if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
326                 goto out_free;
327
328         /* Grow the traceid_queues array by one unit */
329         traceid_queues = etmq->traceid_queues;
330         traceid_queues = reallocarray(traceid_queues,
331                                       idx + 1,
332                                       sizeof(*traceid_queues));
333
334         /*
335          * On failure reallocarray() returns NULL and the original block of
336          * memory is left untouched.
337          */
338         if (!traceid_queues)
339                 goto out_free;
340
341         traceid_queues[idx] = tidq;
342         etmq->traceid_queues = traceid_queues;
343
344         return etmq->traceid_queues[idx];
345
346 out_free:
347         /*
348          * Function intlist__remove() removes the inode from the list
349          * and delete the memory associated to it.
350          */
351         intlist__remove(traceid_queues_list, inode);
352         free(tidq);
353
354         return NULL;
355 }
356
357 struct cs_etm_packet_queue
358 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
359 {
360         struct cs_etm_traceid_queue *tidq;
361
362         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
363         if (tidq)
364                 return &tidq->packet_queue;
365
366         return NULL;
367 }
368
369 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
370                                 struct cs_etm_traceid_queue *tidq)
371 {
372         struct cs_etm_packet *tmp;
373
374         if (etm->sample_branches || etm->synth_opts.last_branch ||
375             etm->sample_instructions) {
376                 /*
377                  * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
378                  * the next incoming packet.
379                  */
380                 tmp = tidq->packet;
381                 tidq->packet = tidq->prev_packet;
382                 tidq->prev_packet = tmp;
383         }
384 }
385
386 static void cs_etm__packet_dump(const char *pkt_string)
387 {
388         const char *color = PERF_COLOR_BLUE;
389         int len = strlen(pkt_string);
390
391         if (len && (pkt_string[len-1] == '\n'))
392                 color_fprintf(stdout, color, "  %s", pkt_string);
393         else
394                 color_fprintf(stdout, color, "  %s\n", pkt_string);
395
396         fflush(stdout);
397 }
398
399 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
400                                           struct cs_etm_auxtrace *etm, int idx,
401                                           u32 etmidr)
402 {
403         u64 **metadata = etm->metadata;
404
405         t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
406         t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
407         t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
408 }
409
410 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
411                                           struct cs_etm_auxtrace *etm, int idx)
412 {
413         u64 **metadata = etm->metadata;
414
415         t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
416         t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
417         t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
418         t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
419         t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
420         t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
421         t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
422 }
423
424 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
425                                      struct cs_etm_auxtrace *etm)
426 {
427         int i;
428         u32 etmidr;
429         u64 architecture;
430
431         for (i = 0; i < etm->num_cpu; i++) {
432                 architecture = etm->metadata[i][CS_ETM_MAGIC];
433
434                 switch (architecture) {
435                 case __perf_cs_etmv3_magic:
436                         etmidr = etm->metadata[i][CS_ETM_ETMIDR];
437                         cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
438                         break;
439                 case __perf_cs_etmv4_magic:
440                         cs_etm__set_trace_param_etmv4(t_params, etm, i);
441                         break;
442                 default:
443                         return -EINVAL;
444                 }
445         }
446
447         return 0;
448 }
449
450 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
451                                        struct cs_etm_queue *etmq,
452                                        enum cs_etm_decoder_operation mode)
453 {
454         int ret = -EINVAL;
455
456         if (!(mode < CS_ETM_OPERATION_MAX))
457                 goto out;
458
459         d_params->packet_printer = cs_etm__packet_dump;
460         d_params->operation = mode;
461         d_params->data = etmq;
462         d_params->formatted = true;
463         d_params->fsyncs = false;
464         d_params->hsyncs = false;
465         d_params->frame_aligned = true;
466
467         ret = 0;
468 out:
469         return ret;
470 }
471
472 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
473                                struct auxtrace_buffer *buffer)
474 {
475         int ret;
476         const char *color = PERF_COLOR_BLUE;
477         struct cs_etm_decoder_params d_params;
478         struct cs_etm_trace_params *t_params;
479         struct cs_etm_decoder *decoder;
480         size_t buffer_used = 0;
481
482         fprintf(stdout, "\n");
483         color_fprintf(stdout, color,
484                      ". ... CoreSight ETM Trace data: size %zu bytes\n",
485                      buffer->size);
486
487         /* Use metadata to fill in trace parameters for trace decoder */
488         t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
489
490         if (!t_params)
491                 return;
492
493         if (cs_etm__init_trace_params(t_params, etm))
494                 goto out_free;
495
496         /* Set decoder parameters to simply print the trace packets */
497         if (cs_etm__init_decoder_params(&d_params, NULL,
498                                         CS_ETM_OPERATION_PRINT))
499                 goto out_free;
500
501         decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
502
503         if (!decoder)
504                 goto out_free;
505         do {
506                 size_t consumed;
507
508                 ret = cs_etm_decoder__process_data_block(
509                                 decoder, buffer->offset,
510                                 &((u8 *)buffer->data)[buffer_used],
511                                 buffer->size - buffer_used, &consumed);
512                 if (ret)
513                         break;
514
515                 buffer_used += consumed;
516         } while (buffer_used < buffer->size);
517
518         cs_etm_decoder__free(decoder);
519
520 out_free:
521         zfree(&t_params);
522 }
523
524 static int cs_etm__flush_events(struct perf_session *session,
525                                 struct perf_tool *tool)
526 {
527         int ret;
528         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
529                                                    struct cs_etm_auxtrace,
530                                                    auxtrace);
531         if (dump_trace)
532                 return 0;
533
534         if (!tool->ordered_events)
535                 return -EINVAL;
536
537         ret = cs_etm__update_queues(etm);
538
539         if (ret < 0)
540                 return ret;
541
542         if (etm->timeless_decoding)
543                 return cs_etm__process_timeless_queues(etm, -1);
544
545         return cs_etm__process_queues(etm);
546 }
547
548 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
549 {
550         int idx;
551         uintptr_t priv;
552         struct int_node *inode, *tmp;
553         struct cs_etm_traceid_queue *tidq;
554         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
555
556         intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
557                 priv = (uintptr_t)inode->priv;
558                 idx = priv;
559
560                 /* Free this traceid_queue from the array */
561                 tidq = etmq->traceid_queues[idx];
562                 thread__zput(tidq->thread);
563                 zfree(&tidq->event_buf);
564                 zfree(&tidq->last_branch);
565                 zfree(&tidq->last_branch_rb);
566                 zfree(&tidq->prev_packet);
567                 zfree(&tidq->packet);
568                 zfree(&tidq);
569
570                 /*
571                  * Function intlist__remove() removes the inode from the list
572                  * and delete the memory associated to it.
573                  */
574                 intlist__remove(traceid_queues_list, inode);
575         }
576
577         /* Then the RB tree itself */
578         intlist__delete(traceid_queues_list);
579         etmq->traceid_queues_list = NULL;
580
581         /* finally free the traceid_queues array */
582         zfree(&etmq->traceid_queues);
583 }
584
585 static void cs_etm__free_queue(void *priv)
586 {
587         struct cs_etm_queue *etmq = priv;
588
589         if (!etmq)
590                 return;
591
592         cs_etm_decoder__free(etmq->decoder);
593         cs_etm__free_traceid_queues(etmq);
594         free(etmq);
595 }
596
597 static void cs_etm__free_events(struct perf_session *session)
598 {
599         unsigned int i;
600         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
601                                                    struct cs_etm_auxtrace,
602                                                    auxtrace);
603         struct auxtrace_queues *queues = &aux->queues;
604
605         for (i = 0; i < queues->nr_queues; i++) {
606                 cs_etm__free_queue(queues->queue_array[i].priv);
607                 queues->queue_array[i].priv = NULL;
608         }
609
610         auxtrace_queues__free(queues);
611 }
612
613 static void cs_etm__free(struct perf_session *session)
614 {
615         int i;
616         struct int_node *inode, *tmp;
617         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
618                                                    struct cs_etm_auxtrace,
619                                                    auxtrace);
620         cs_etm__free_events(session);
621         session->auxtrace = NULL;
622
623         /* First remove all traceID/metadata nodes for the RB tree */
624         intlist__for_each_entry_safe(inode, tmp, traceid_list)
625                 intlist__remove(traceid_list, inode);
626         /* Then the RB tree itself */
627         intlist__delete(traceid_list);
628
629         for (i = 0; i < aux->num_cpu; i++)
630                 zfree(&aux->metadata[i]);
631
632         thread__zput(aux->unknown_thread);
633         zfree(&aux->metadata);
634         zfree(&aux);
635 }
636
637 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
638                                       struct evsel *evsel)
639 {
640         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
641                                                    struct cs_etm_auxtrace,
642                                                    auxtrace);
643
644         return evsel->core.attr.type == aux->pmu_type;
645 }
646
647 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
648 {
649         struct machine *machine;
650
651         machine = etmq->etm->machine;
652
653         if (address >= etmq->etm->kernel_start) {
654                 if (machine__is_host(machine))
655                         return PERF_RECORD_MISC_KERNEL;
656                 else
657                         return PERF_RECORD_MISC_GUEST_KERNEL;
658         } else {
659                 if (machine__is_host(machine))
660                         return PERF_RECORD_MISC_USER;
661                 else if (perf_guest)
662                         return PERF_RECORD_MISC_GUEST_USER;
663                 else
664                         return PERF_RECORD_MISC_HYPERVISOR;
665         }
666 }
667
668 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
669                               u64 address, size_t size, u8 *buffer)
670 {
671         u8  cpumode;
672         u64 offset;
673         int len;
674         struct thread *thread;
675         struct machine *machine;
676         struct addr_location al;
677         struct cs_etm_traceid_queue *tidq;
678
679         if (!etmq)
680                 return 0;
681
682         machine = etmq->etm->machine;
683         cpumode = cs_etm__cpu_mode(etmq, address);
684         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
685         if (!tidq)
686                 return 0;
687
688         thread = tidq->thread;
689         if (!thread) {
690                 if (cpumode != PERF_RECORD_MISC_KERNEL)
691                         return 0;
692                 thread = etmq->etm->unknown_thread;
693         }
694
695         if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
696                 return 0;
697
698         if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
699             dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
700                 return 0;
701
702         offset = al.map->map_ip(al.map, address);
703
704         map__load(al.map);
705
706         len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
707
708         if (len <= 0)
709                 return 0;
710
711         return len;
712 }
713
714 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
715 {
716         struct cs_etm_decoder_params d_params;
717         struct cs_etm_trace_params  *t_params = NULL;
718         struct cs_etm_queue *etmq;
719
720         etmq = zalloc(sizeof(*etmq));
721         if (!etmq)
722                 return NULL;
723
724         etmq->traceid_queues_list = intlist__new(NULL);
725         if (!etmq->traceid_queues_list)
726                 goto out_free;
727
728         /* Use metadata to fill in trace parameters for trace decoder */
729         t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
730
731         if (!t_params)
732                 goto out_free;
733
734         if (cs_etm__init_trace_params(t_params, etm))
735                 goto out_free;
736
737         /* Set decoder parameters to decode trace packets */
738         if (cs_etm__init_decoder_params(&d_params, etmq,
739                                         CS_ETM_OPERATION_DECODE))
740                 goto out_free;
741
742         etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
743
744         if (!etmq->decoder)
745                 goto out_free;
746
747         /*
748          * Register a function to handle all memory accesses required by
749          * the trace decoder library.
750          */
751         if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
752                                               0x0L, ((u64) -1L),
753                                               cs_etm__mem_access))
754                 goto out_free_decoder;
755
756         zfree(&t_params);
757         return etmq;
758
759 out_free_decoder:
760         cs_etm_decoder__free(etmq->decoder);
761 out_free:
762         intlist__delete(etmq->traceid_queues_list);
763         free(etmq);
764
765         return NULL;
766 }
767
768 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
769                                struct auxtrace_queue *queue,
770                                unsigned int queue_nr)
771 {
772         int ret = 0;
773         unsigned int cs_queue_nr;
774         u8 trace_chan_id;
775         u64 timestamp;
776         struct cs_etm_queue *etmq = queue->priv;
777
778         if (list_empty(&queue->head) || etmq)
779                 goto out;
780
781         etmq = cs_etm__alloc_queue(etm);
782
783         if (!etmq) {
784                 ret = -ENOMEM;
785                 goto out;
786         }
787
788         queue->priv = etmq;
789         etmq->etm = etm;
790         etmq->queue_nr = queue_nr;
791         etmq->offset = 0;
792
793         if (etm->timeless_decoding)
794                 goto out;
795
796         /*
797          * We are under a CPU-wide trace scenario.  As such we need to know
798          * when the code that generated the traces started to execute so that
799          * it can be correlated with execution on other CPUs.  So we get a
800          * handle on the beginning of traces and decode until we find a
801          * timestamp.  The timestamp is then added to the auxtrace min heap
802          * in order to know what nibble (of all the etmqs) to decode first.
803          */
804         while (1) {
805                 /*
806                  * Fetch an aux_buffer from this etmq.  Bail if no more
807                  * blocks or an error has been encountered.
808                  */
809                 ret = cs_etm__get_data_block(etmq);
810                 if (ret <= 0)
811                         goto out;
812
813                 /*
814                  * Run decoder on the trace block.  The decoder will stop when
815                  * encountering a timestamp, a full packet queue or the end of
816                  * trace for that block.
817                  */
818                 ret = cs_etm__decode_data_block(etmq);
819                 if (ret)
820                         goto out;
821
822                 /*
823                  * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
824                  * the timestamp calculation for us.
825                  */
826                 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
827
828                 /* We found a timestamp, no need to continue. */
829                 if (timestamp)
830                         break;
831
832                 /*
833                  * We didn't find a timestamp so empty all the traceid packet
834                  * queues before looking for another timestamp packet, either
835                  * in the current data block or a new one.  Packets that were
836                  * just decoded are useless since no timestamp has been
837                  * associated with them.  As such simply discard them.
838                  */
839                 cs_etm__clear_all_packet_queues(etmq);
840         }
841
842         /*
843          * We have a timestamp.  Add it to the min heap to reflect when
844          * instructions conveyed by the range packets of this traceID queue
845          * started to execute.  Once the same has been done for all the traceID
846          * queues of each etmq, redenring and decoding can start in
847          * chronological order.
848          *
849          * Note that packets decoded above are still in the traceID's packet
850          * queue and will be processed in cs_etm__process_queues().
851          */
852         cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
853         ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
854 out:
855         return ret;
856 }
857
858 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
859 {
860         unsigned int i;
861         int ret;
862
863         if (!etm->kernel_start)
864                 etm->kernel_start = machine__kernel_start(etm->machine);
865
866         for (i = 0; i < etm->queues.nr_queues; i++) {
867                 ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
868                 if (ret)
869                         return ret;
870         }
871
872         return 0;
873 }
874
875 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
876 {
877         if (etm->queues.new_data) {
878                 etm->queues.new_data = false;
879                 return cs_etm__setup_queues(etm);
880         }
881
882         return 0;
883 }
884
885 static inline
886 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
887                                  struct cs_etm_traceid_queue *tidq)
888 {
889         struct branch_stack *bs_src = tidq->last_branch_rb;
890         struct branch_stack *bs_dst = tidq->last_branch;
891         size_t nr = 0;
892
893         /*
894          * Set the number of records before early exit: ->nr is used to
895          * determine how many branches to copy from ->entries.
896          */
897         bs_dst->nr = bs_src->nr;
898
899         /*
900          * Early exit when there is nothing to copy.
901          */
902         if (!bs_src->nr)
903                 return;
904
905         /*
906          * As bs_src->entries is a circular buffer, we need to copy from it in
907          * two steps.  First, copy the branches from the most recently inserted
908          * branch ->last_branch_pos until the end of bs_src->entries buffer.
909          */
910         nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
911         memcpy(&bs_dst->entries[0],
912                &bs_src->entries[tidq->last_branch_pos],
913                sizeof(struct branch_entry) * nr);
914
915         /*
916          * If we wrapped around at least once, the branches from the beginning
917          * of the bs_src->entries buffer and until the ->last_branch_pos element
918          * are older valid branches: copy them over.  The total number of
919          * branches copied over will be equal to the number of branches asked by
920          * the user in last_branch_sz.
921          */
922         if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
923                 memcpy(&bs_dst->entries[nr],
924                        &bs_src->entries[0],
925                        sizeof(struct branch_entry) * tidq->last_branch_pos);
926         }
927 }
928
929 static inline
930 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
931 {
932         tidq->last_branch_pos = 0;
933         tidq->last_branch_rb->nr = 0;
934 }
935
936 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
937                                          u8 trace_chan_id, u64 addr)
938 {
939         u8 instrBytes[2];
940
941         cs_etm__mem_access(etmq, trace_chan_id, addr,
942                            ARRAY_SIZE(instrBytes), instrBytes);
943         /*
944          * T32 instruction size is indicated by bits[15:11] of the first
945          * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
946          * denote a 32-bit instruction.
947          */
948         return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
949 }
950
951 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
952 {
953         /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
954         if (packet->sample_type == CS_ETM_DISCONTINUITY)
955                 return 0;
956
957         return packet->start_addr;
958 }
959
960 static inline
961 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
962 {
963         /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
964         if (packet->sample_type == CS_ETM_DISCONTINUITY)
965                 return 0;
966
967         return packet->end_addr - packet->last_instr_size;
968 }
969
970 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
971                                      u64 trace_chan_id,
972                                      const struct cs_etm_packet *packet,
973                                      u64 offset)
974 {
975         if (packet->isa == CS_ETM_ISA_T32) {
976                 u64 addr = packet->start_addr;
977
978                 while (offset) {
979                         addr += cs_etm__t32_instr_size(etmq,
980                                                        trace_chan_id, addr);
981                         offset--;
982                 }
983                 return addr;
984         }
985
986         /* Assume a 4 byte instruction size (A32/A64) */
987         return packet->start_addr + offset * 4;
988 }
989
990 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
991                                           struct cs_etm_traceid_queue *tidq)
992 {
993         struct branch_stack *bs = tidq->last_branch_rb;
994         struct branch_entry *be;
995
996         /*
997          * The branches are recorded in a circular buffer in reverse
998          * chronological order: we start recording from the last element of the
999          * buffer down.  After writing the first element of the stack, move the
1000          * insert position back to the end of the buffer.
1001          */
1002         if (!tidq->last_branch_pos)
1003                 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1004
1005         tidq->last_branch_pos -= 1;
1006
1007         be       = &bs->entries[tidq->last_branch_pos];
1008         be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1009         be->to   = cs_etm__first_executed_instr(tidq->packet);
1010         /* No support for mispredict */
1011         be->flags.mispred = 0;
1012         be->flags.predicted = 1;
1013
1014         /*
1015          * Increment bs->nr until reaching the number of last branches asked by
1016          * the user on the command line.
1017          */
1018         if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1019                 bs->nr += 1;
1020 }
1021
1022 static int cs_etm__inject_event(union perf_event *event,
1023                                struct perf_sample *sample, u64 type)
1024 {
1025         event->header.size = perf_event__sample_event_size(sample, type, 0);
1026         return perf_event__synthesize_sample(event, type, 0, sample);
1027 }
1028
1029
1030 static int
1031 cs_etm__get_trace(struct cs_etm_queue *etmq)
1032 {
1033         struct auxtrace_buffer *aux_buffer = etmq->buffer;
1034         struct auxtrace_buffer *old_buffer = aux_buffer;
1035         struct auxtrace_queue *queue;
1036
1037         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1038
1039         aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1040
1041         /* If no more data, drop the previous auxtrace_buffer and return */
1042         if (!aux_buffer) {
1043                 if (old_buffer)
1044                         auxtrace_buffer__drop_data(old_buffer);
1045                 etmq->buf_len = 0;
1046                 return 0;
1047         }
1048
1049         etmq->buffer = aux_buffer;
1050
1051         /* If the aux_buffer doesn't have data associated, try to load it */
1052         if (!aux_buffer->data) {
1053                 /* get the file desc associated with the perf data file */
1054                 int fd = perf_data__fd(etmq->etm->session->data);
1055
1056                 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1057                 if (!aux_buffer->data)
1058                         return -ENOMEM;
1059         }
1060
1061         /* If valid, drop the previous buffer */
1062         if (old_buffer)
1063                 auxtrace_buffer__drop_data(old_buffer);
1064
1065         etmq->buf_used = 0;
1066         etmq->buf_len = aux_buffer->size;
1067         etmq->buf = aux_buffer->data;
1068
1069         return etmq->buf_len;
1070 }
1071
1072 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1073                                     struct cs_etm_traceid_queue *tidq)
1074 {
1075         if ((!tidq->thread) && (tidq->tid != -1))
1076                 tidq->thread = machine__find_thread(etm->machine, -1,
1077                                                     tidq->tid);
1078
1079         if (tidq->thread)
1080                 tidq->pid = tidq->thread->pid_;
1081 }
1082
1083 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1084                          pid_t tid, u8 trace_chan_id)
1085 {
1086         int cpu, err = -EINVAL;
1087         struct cs_etm_auxtrace *etm = etmq->etm;
1088         struct cs_etm_traceid_queue *tidq;
1089
1090         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1091         if (!tidq)
1092                 return err;
1093
1094         if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1095                 return err;
1096
1097         err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1098         if (err)
1099                 return err;
1100
1101         tidq->tid = tid;
1102         thread__zput(tidq->thread);
1103
1104         cs_etm__set_pid_tid_cpu(etm, tidq);
1105         return 0;
1106 }
1107
1108 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1109 {
1110         return !!etmq->etm->timeless_decoding;
1111 }
1112
1113 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1114                               u64 trace_chan_id,
1115                               const struct cs_etm_packet *packet,
1116                               struct perf_sample *sample)
1117 {
1118         /*
1119          * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1120          * packet, so directly bail out with 'insn_len' = 0.
1121          */
1122         if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1123                 sample->insn_len = 0;
1124                 return;
1125         }
1126
1127         /*
1128          * T32 instruction size might be 32-bit or 16-bit, decide by calling
1129          * cs_etm__t32_instr_size().
1130          */
1131         if (packet->isa == CS_ETM_ISA_T32)
1132                 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1133                                                           sample->ip);
1134         /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1135         else
1136                 sample->insn_len = 4;
1137
1138         cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1139                            sample->insn_len, (void *)sample->insn);
1140 }
1141
1142 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1143                                             struct cs_etm_traceid_queue *tidq,
1144                                             u64 addr, u64 period)
1145 {
1146         int ret = 0;
1147         struct cs_etm_auxtrace *etm = etmq->etm;
1148         union perf_event *event = tidq->event_buf;
1149         struct perf_sample sample = {.ip = 0,};
1150
1151         event->sample.header.type = PERF_RECORD_SAMPLE;
1152         event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1153         event->sample.header.size = sizeof(struct perf_event_header);
1154
1155         sample.ip = addr;
1156         sample.pid = tidq->pid;
1157         sample.tid = tidq->tid;
1158         sample.id = etmq->etm->instructions_id;
1159         sample.stream_id = etmq->etm->instructions_id;
1160         sample.period = period;
1161         sample.cpu = tidq->packet->cpu;
1162         sample.flags = tidq->prev_packet->flags;
1163         sample.cpumode = event->sample.header.misc;
1164
1165         cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1166
1167         if (etm->synth_opts.last_branch)
1168                 sample.branch_stack = tidq->last_branch;
1169
1170         if (etm->synth_opts.inject) {
1171                 ret = cs_etm__inject_event(event, &sample,
1172                                            etm->instructions_sample_type);
1173                 if (ret)
1174                         return ret;
1175         }
1176
1177         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1178
1179         if (ret)
1180                 pr_err(
1181                         "CS ETM Trace: failed to deliver instruction event, error %d\n",
1182                         ret);
1183
1184         return ret;
1185 }
1186
1187 /*
1188  * The cs etm packet encodes an instruction range between a branch target
1189  * and the next taken branch. Generate sample accordingly.
1190  */
1191 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1192                                        struct cs_etm_traceid_queue *tidq)
1193 {
1194         int ret = 0;
1195         struct cs_etm_auxtrace *etm = etmq->etm;
1196         struct perf_sample sample = {.ip = 0,};
1197         union perf_event *event = tidq->event_buf;
1198         struct dummy_branch_stack {
1199                 u64                     nr;
1200                 u64                     hw_idx;
1201                 struct branch_entry     entries;
1202         } dummy_bs;
1203         u64 ip;
1204
1205         ip = cs_etm__last_executed_instr(tidq->prev_packet);
1206
1207         event->sample.header.type = PERF_RECORD_SAMPLE;
1208         event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1209         event->sample.header.size = sizeof(struct perf_event_header);
1210
1211         sample.ip = ip;
1212         sample.pid = tidq->pid;
1213         sample.tid = tidq->tid;
1214         sample.addr = cs_etm__first_executed_instr(tidq->packet);
1215         sample.id = etmq->etm->branches_id;
1216         sample.stream_id = etmq->etm->branches_id;
1217         sample.period = 1;
1218         sample.cpu = tidq->packet->cpu;
1219         sample.flags = tidq->prev_packet->flags;
1220         sample.cpumode = event->sample.header.misc;
1221
1222         cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1223                           &sample);
1224
1225         /*
1226          * perf report cannot handle events without a branch stack
1227          */
1228         if (etm->synth_opts.last_branch) {
1229                 dummy_bs = (struct dummy_branch_stack){
1230                         .nr = 1,
1231                         .hw_idx = -1ULL,
1232                         .entries = {
1233                                 .from = sample.ip,
1234                                 .to = sample.addr,
1235                         },
1236                 };
1237                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1238         }
1239
1240         if (etm->synth_opts.inject) {
1241                 ret = cs_etm__inject_event(event, &sample,
1242                                            etm->branches_sample_type);
1243                 if (ret)
1244                         return ret;
1245         }
1246
1247         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1248
1249         if (ret)
1250                 pr_err(
1251                 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1252                 ret);
1253
1254         return ret;
1255 }
1256
1257 struct cs_etm_synth {
1258         struct perf_tool dummy_tool;
1259         struct perf_session *session;
1260 };
1261
1262 static int cs_etm__event_synth(struct perf_tool *tool,
1263                                union perf_event *event,
1264                                struct perf_sample *sample __maybe_unused,
1265                                struct machine *machine __maybe_unused)
1266 {
1267         struct cs_etm_synth *cs_etm_synth =
1268                       container_of(tool, struct cs_etm_synth, dummy_tool);
1269
1270         return perf_session__deliver_synth_event(cs_etm_synth->session,
1271                                                  event, NULL);
1272 }
1273
1274 static int cs_etm__synth_event(struct perf_session *session,
1275                                struct perf_event_attr *attr, u64 id)
1276 {
1277         struct cs_etm_synth cs_etm_synth;
1278
1279         memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1280         cs_etm_synth.session = session;
1281
1282         return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1283                                            &id, cs_etm__event_synth);
1284 }
1285
1286 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1287                                 struct perf_session *session)
1288 {
1289         struct evlist *evlist = session->evlist;
1290         struct evsel *evsel;
1291         struct perf_event_attr attr;
1292         bool found = false;
1293         u64 id;
1294         int err;
1295
1296         evlist__for_each_entry(evlist, evsel) {
1297                 if (evsel->core.attr.type == etm->pmu_type) {
1298                         found = true;
1299                         break;
1300                 }
1301         }
1302
1303         if (!found) {
1304                 pr_debug("No selected events with CoreSight Trace data\n");
1305                 return 0;
1306         }
1307
1308         memset(&attr, 0, sizeof(struct perf_event_attr));
1309         attr.size = sizeof(struct perf_event_attr);
1310         attr.type = PERF_TYPE_HARDWARE;
1311         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1312         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1313                             PERF_SAMPLE_PERIOD;
1314         if (etm->timeless_decoding)
1315                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1316         else
1317                 attr.sample_type |= PERF_SAMPLE_TIME;
1318
1319         attr.exclude_user = evsel->core.attr.exclude_user;
1320         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1321         attr.exclude_hv = evsel->core.attr.exclude_hv;
1322         attr.exclude_host = evsel->core.attr.exclude_host;
1323         attr.exclude_guest = evsel->core.attr.exclude_guest;
1324         attr.sample_id_all = evsel->core.attr.sample_id_all;
1325         attr.read_format = evsel->core.attr.read_format;
1326
1327         /* create new id val to be a fixed offset from evsel id */
1328         id = evsel->core.id[0] + 1000000000;
1329
1330         if (!id)
1331                 id = 1;
1332
1333         if (etm->synth_opts.branches) {
1334                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1335                 attr.sample_period = 1;
1336                 attr.sample_type |= PERF_SAMPLE_ADDR;
1337                 err = cs_etm__synth_event(session, &attr, id);
1338                 if (err)
1339                         return err;
1340                 etm->sample_branches = true;
1341                 etm->branches_sample_type = attr.sample_type;
1342                 etm->branches_id = id;
1343                 id += 1;
1344                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1345         }
1346
1347         if (etm->synth_opts.last_branch)
1348                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1349
1350         if (etm->synth_opts.instructions) {
1351                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1352                 attr.sample_period = etm->synth_opts.period;
1353                 etm->instructions_sample_period = attr.sample_period;
1354                 err = cs_etm__synth_event(session, &attr, id);
1355                 if (err)
1356                         return err;
1357                 etm->sample_instructions = true;
1358                 etm->instructions_sample_type = attr.sample_type;
1359                 etm->instructions_id = id;
1360                 id += 1;
1361         }
1362
1363         return 0;
1364 }
1365
1366 static int cs_etm__sample(struct cs_etm_queue *etmq,
1367                           struct cs_etm_traceid_queue *tidq)
1368 {
1369         struct cs_etm_auxtrace *etm = etmq->etm;
1370         int ret;
1371         u8 trace_chan_id = tidq->trace_chan_id;
1372         u64 instrs_prev;
1373
1374         /* Get instructions remainder from previous packet */
1375         instrs_prev = tidq->period_instructions;
1376
1377         tidq->period_instructions += tidq->packet->instr_count;
1378
1379         /*
1380          * Record a branch when the last instruction in
1381          * PREV_PACKET is a branch.
1382          */
1383         if (etm->synth_opts.last_branch &&
1384             tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1385             tidq->prev_packet->last_instr_taken_branch)
1386                 cs_etm__update_last_branch_rb(etmq, tidq);
1387
1388         if (etm->sample_instructions &&
1389             tidq->period_instructions >= etm->instructions_sample_period) {
1390                 /*
1391                  * Emit instruction sample periodically
1392                  * TODO: allow period to be defined in cycles and clock time
1393                  */
1394
1395                 /*
1396                  * Below diagram demonstrates the instruction samples
1397                  * generation flows:
1398                  *
1399                  *    Instrs     Instrs       Instrs       Instrs
1400                  *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1401                  *    |            |            |            |
1402                  *    V            V            V            V
1403                  *   --------------------------------------------------
1404                  *            ^                                  ^
1405                  *            |                                  |
1406                  *         Period                             Period
1407                  *    instructions(Pi)                   instructions(Pi')
1408                  *
1409                  *            |                                  |
1410                  *            \---------------- -----------------/
1411                  *                             V
1412                  *                 tidq->packet->instr_count
1413                  *
1414                  * Instrs Sample(n...) are the synthesised samples occurring
1415                  * every etm->instructions_sample_period instructions - as
1416                  * defined on the perf command line.  Sample(n) is being the
1417                  * last sample before the current etm packet, n+1 to n+3
1418                  * samples are generated from the current etm packet.
1419                  *
1420                  * tidq->packet->instr_count represents the number of
1421                  * instructions in the current etm packet.
1422                  *
1423                  * Period instructions (Pi) contains the the number of
1424                  * instructions executed after the sample point(n) from the
1425                  * previous etm packet.  This will always be less than
1426                  * etm->instructions_sample_period.
1427                  *
1428                  * When generate new samples, it combines with two parts
1429                  * instructions, one is the tail of the old packet and another
1430                  * is the head of the new coming packet, to generate
1431                  * sample(n+1); sample(n+2) and sample(n+3) consume the
1432                  * instructions with sample period.  After sample(n+3), the rest
1433                  * instructions will be used by later packet and it is assigned
1434                  * to tidq->period_instructions for next round calculation.
1435                  */
1436
1437                 /*
1438                  * Get the initial offset into the current packet instructions;
1439                  * entry conditions ensure that instrs_prev is less than
1440                  * etm->instructions_sample_period.
1441                  */
1442                 u64 offset = etm->instructions_sample_period - instrs_prev;
1443                 u64 addr;
1444
1445                 /* Prepare last branches for instruction sample */
1446                 if (etm->synth_opts.last_branch)
1447                         cs_etm__copy_last_branch_rb(etmq, tidq);
1448
1449                 while (tidq->period_instructions >=
1450                                 etm->instructions_sample_period) {
1451                         /*
1452                          * Calculate the address of the sampled instruction (-1
1453                          * as sample is reported as though instruction has just
1454                          * been executed, but PC has not advanced to next
1455                          * instruction)
1456                          */
1457                         addr = cs_etm__instr_addr(etmq, trace_chan_id,
1458                                                   tidq->packet, offset - 1);
1459                         ret = cs_etm__synth_instruction_sample(
1460                                 etmq, tidq, addr,
1461                                 etm->instructions_sample_period);
1462                         if (ret)
1463                                 return ret;
1464
1465                         offset += etm->instructions_sample_period;
1466                         tidq->period_instructions -=
1467                                 etm->instructions_sample_period;
1468                 }
1469         }
1470
1471         if (etm->sample_branches) {
1472                 bool generate_sample = false;
1473
1474                 /* Generate sample for tracing on packet */
1475                 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1476                         generate_sample = true;
1477
1478                 /* Generate sample for branch taken packet */
1479                 if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1480                     tidq->prev_packet->last_instr_taken_branch)
1481                         generate_sample = true;
1482
1483                 if (generate_sample) {
1484                         ret = cs_etm__synth_branch_sample(etmq, tidq);
1485                         if (ret)
1486                                 return ret;
1487                 }
1488         }
1489
1490         cs_etm__packet_swap(etm, tidq);
1491
1492         return 0;
1493 }
1494
1495 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1496 {
1497         /*
1498          * When the exception packet is inserted, whether the last instruction
1499          * in previous range packet is taken branch or not, we need to force
1500          * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1501          * to generate branch sample for the instruction range before the
1502          * exception is trapped to kernel or before the exception returning.
1503          *
1504          * The exception packet includes the dummy address values, so don't
1505          * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1506          * for generating instruction and branch samples.
1507          */
1508         if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1509                 tidq->prev_packet->last_instr_taken_branch = true;
1510
1511         return 0;
1512 }
1513
1514 static int cs_etm__flush(struct cs_etm_queue *etmq,
1515                          struct cs_etm_traceid_queue *tidq)
1516 {
1517         int err = 0;
1518         struct cs_etm_auxtrace *etm = etmq->etm;
1519
1520         /* Handle start tracing packet */
1521         if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1522                 goto swap_packet;
1523
1524         if (etmq->etm->synth_opts.last_branch &&
1525             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1526                 u64 addr;
1527
1528                 /* Prepare last branches for instruction sample */
1529                 cs_etm__copy_last_branch_rb(etmq, tidq);
1530
1531                 /*
1532                  * Generate a last branch event for the branches left in the
1533                  * circular buffer at the end of the trace.
1534                  *
1535                  * Use the address of the end of the last reported execution
1536                  * range
1537                  */
1538                 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1539
1540                 err = cs_etm__synth_instruction_sample(
1541                         etmq, tidq, addr,
1542                         tidq->period_instructions);
1543                 if (err)
1544                         return err;
1545
1546                 tidq->period_instructions = 0;
1547
1548         }
1549
1550         if (etm->sample_branches &&
1551             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1552                 err = cs_etm__synth_branch_sample(etmq, tidq);
1553                 if (err)
1554                         return err;
1555         }
1556
1557 swap_packet:
1558         cs_etm__packet_swap(etm, tidq);
1559
1560         /* Reset last branches after flush the trace */
1561         if (etm->synth_opts.last_branch)
1562                 cs_etm__reset_last_branch_rb(tidq);
1563
1564         return err;
1565 }
1566
1567 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1568                              struct cs_etm_traceid_queue *tidq)
1569 {
1570         int err;
1571
1572         /*
1573          * It has no new packet coming and 'etmq->packet' contains the stale
1574          * packet which was set at the previous time with packets swapping;
1575          * so skip to generate branch sample to avoid stale packet.
1576          *
1577          * For this case only flush branch stack and generate a last branch
1578          * event for the branches left in the circular buffer at the end of
1579          * the trace.
1580          */
1581         if (etmq->etm->synth_opts.last_branch &&
1582             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1583                 u64 addr;
1584
1585                 /* Prepare last branches for instruction sample */
1586                 cs_etm__copy_last_branch_rb(etmq, tidq);
1587
1588                 /*
1589                  * Use the address of the end of the last reported execution
1590                  * range.
1591                  */
1592                 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1593
1594                 err = cs_etm__synth_instruction_sample(
1595                         etmq, tidq, addr,
1596                         tidq->period_instructions);
1597                 if (err)
1598                         return err;
1599
1600                 tidq->period_instructions = 0;
1601         }
1602
1603         return 0;
1604 }
1605 /*
1606  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1607  *                         if need be.
1608  * Returns:     < 0     if error
1609  *              = 0     if no more auxtrace_buffer to read
1610  *              > 0     if the current buffer isn't empty yet
1611  */
1612 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1613 {
1614         int ret;
1615
1616         if (!etmq->buf_len) {
1617                 ret = cs_etm__get_trace(etmq);
1618                 if (ret <= 0)
1619                         return ret;
1620                 /*
1621                  * We cannot assume consecutive blocks in the data file
1622                  * are contiguous, reset the decoder to force re-sync.
1623                  */
1624                 ret = cs_etm_decoder__reset(etmq->decoder);
1625                 if (ret)
1626                         return ret;
1627         }
1628
1629         return etmq->buf_len;
1630 }
1631
1632 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1633                                  struct cs_etm_packet *packet,
1634                                  u64 end_addr)
1635 {
1636         /* Initialise to keep compiler happy */
1637         u16 instr16 = 0;
1638         u32 instr32 = 0;
1639         u64 addr;
1640
1641         switch (packet->isa) {
1642         case CS_ETM_ISA_T32:
1643                 /*
1644                  * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1645                  *
1646                  *  b'15         b'8
1647                  * +-----------------+--------+
1648                  * | 1 1 0 1 1 1 1 1 |  imm8  |
1649                  * +-----------------+--------+
1650                  *
1651                  * According to the specifiction, it only defines SVC for T32
1652                  * with 16 bits instruction and has no definition for 32bits;
1653                  * so below only read 2 bytes as instruction size for T32.
1654                  */
1655                 addr = end_addr - 2;
1656                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1657                                    sizeof(instr16), (u8 *)&instr16);
1658                 if ((instr16 & 0xFF00) == 0xDF00)
1659                         return true;
1660
1661                 break;
1662         case CS_ETM_ISA_A32:
1663                 /*
1664                  * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1665                  *
1666                  *  b'31 b'28 b'27 b'24
1667                  * +---------+---------+-------------------------+
1668                  * |  !1111  | 1 1 1 1 |        imm24            |
1669                  * +---------+---------+-------------------------+
1670                  */
1671                 addr = end_addr - 4;
1672                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1673                                    sizeof(instr32), (u8 *)&instr32);
1674                 if ((instr32 & 0x0F000000) == 0x0F000000 &&
1675                     (instr32 & 0xF0000000) != 0xF0000000)
1676                         return true;
1677
1678                 break;
1679         case CS_ETM_ISA_A64:
1680                 /*
1681                  * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1682                  *
1683                  *  b'31               b'21           b'4     b'0
1684                  * +-----------------------+---------+-----------+
1685                  * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1686                  * +-----------------------+---------+-----------+
1687                  */
1688                 addr = end_addr - 4;
1689                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1690                                    sizeof(instr32), (u8 *)&instr32);
1691                 if ((instr32 & 0xFFE0001F) == 0xd4000001)
1692                         return true;
1693
1694                 break;
1695         case CS_ETM_ISA_UNKNOWN:
1696         default:
1697                 break;
1698         }
1699
1700         return false;
1701 }
1702
1703 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1704                                struct cs_etm_traceid_queue *tidq, u64 magic)
1705 {
1706         u8 trace_chan_id = tidq->trace_chan_id;
1707         struct cs_etm_packet *packet = tidq->packet;
1708         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1709
1710         if (magic == __perf_cs_etmv3_magic)
1711                 if (packet->exception_number == CS_ETMV3_EXC_SVC)
1712                         return true;
1713
1714         /*
1715          * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1716          * HVC cases; need to check if it's SVC instruction based on
1717          * packet address.
1718          */
1719         if (magic == __perf_cs_etmv4_magic) {
1720                 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1721                     cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1722                                          prev_packet->end_addr))
1723                         return true;
1724         }
1725
1726         return false;
1727 }
1728
1729 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1730                                        u64 magic)
1731 {
1732         struct cs_etm_packet *packet = tidq->packet;
1733
1734         if (magic == __perf_cs_etmv3_magic)
1735                 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1736                     packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1737                     packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1738                     packet->exception_number == CS_ETMV3_EXC_IRQ ||
1739                     packet->exception_number == CS_ETMV3_EXC_FIQ)
1740                         return true;
1741
1742         if (magic == __perf_cs_etmv4_magic)
1743                 if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1744                     packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1745                     packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1746                     packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1747                     packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1748                     packet->exception_number == CS_ETMV4_EXC_IRQ ||
1749                     packet->exception_number == CS_ETMV4_EXC_FIQ)
1750                         return true;
1751
1752         return false;
1753 }
1754
1755 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1756                                       struct cs_etm_traceid_queue *tidq,
1757                                       u64 magic)
1758 {
1759         u8 trace_chan_id = tidq->trace_chan_id;
1760         struct cs_etm_packet *packet = tidq->packet;
1761         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1762
1763         if (magic == __perf_cs_etmv3_magic)
1764                 if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1765                     packet->exception_number == CS_ETMV3_EXC_HYP ||
1766                     packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1767                     packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1768                     packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1769                     packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1770                     packet->exception_number == CS_ETMV3_EXC_GENERIC)
1771                         return true;
1772
1773         if (magic == __perf_cs_etmv4_magic) {
1774                 if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1775                     packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1776                     packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1777                     packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1778                         return true;
1779
1780                 /*
1781                  * For CS_ETMV4_EXC_CALL, except SVC other instructions
1782                  * (SMC, HVC) are taken as sync exceptions.
1783                  */
1784                 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1785                     !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1786                                           prev_packet->end_addr))
1787                         return true;
1788
1789                 /*
1790                  * ETMv4 has 5 bits for exception number; if the numbers
1791                  * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1792                  * they are implementation defined exceptions.
1793                  *
1794                  * For this case, simply take it as sync exception.
1795                  */
1796                 if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1797                     packet->exception_number <= CS_ETMV4_EXC_END)
1798                         return true;
1799         }
1800
1801         return false;
1802 }
1803
1804 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1805                                     struct cs_etm_traceid_queue *tidq)
1806 {
1807         struct cs_etm_packet *packet = tidq->packet;
1808         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1809         u8 trace_chan_id = tidq->trace_chan_id;
1810         u64 magic;
1811         int ret;
1812
1813         switch (packet->sample_type) {
1814         case CS_ETM_RANGE:
1815                 /*
1816                  * Immediate branch instruction without neither link nor
1817                  * return flag, it's normal branch instruction within
1818                  * the function.
1819                  */
1820                 if (packet->last_instr_type == OCSD_INSTR_BR &&
1821                     packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1822                         packet->flags = PERF_IP_FLAG_BRANCH;
1823
1824                         if (packet->last_instr_cond)
1825                                 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1826                 }
1827
1828                 /*
1829                  * Immediate branch instruction with link (e.g. BL), this is
1830                  * branch instruction for function call.
1831                  */
1832                 if (packet->last_instr_type == OCSD_INSTR_BR &&
1833                     packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1834                         packet->flags = PERF_IP_FLAG_BRANCH |
1835                                         PERF_IP_FLAG_CALL;
1836
1837                 /*
1838                  * Indirect branch instruction with link (e.g. BLR), this is
1839                  * branch instruction for function call.
1840                  */
1841                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1842                     packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1843                         packet->flags = PERF_IP_FLAG_BRANCH |
1844                                         PERF_IP_FLAG_CALL;
1845
1846                 /*
1847                  * Indirect branch instruction with subtype of
1848                  * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1849                  * function return for A32/T32.
1850                  */
1851                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1852                     packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1853                         packet->flags = PERF_IP_FLAG_BRANCH |
1854                                         PERF_IP_FLAG_RETURN;
1855
1856                 /*
1857                  * Indirect branch instruction without link (e.g. BR), usually
1858                  * this is used for function return, especially for functions
1859                  * within dynamic link lib.
1860                  */
1861                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1862                     packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1863                         packet->flags = PERF_IP_FLAG_BRANCH |
1864                                         PERF_IP_FLAG_RETURN;
1865
1866                 /* Return instruction for function return. */
1867                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1868                     packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1869                         packet->flags = PERF_IP_FLAG_BRANCH |
1870                                         PERF_IP_FLAG_RETURN;
1871
1872                 /*
1873                  * Decoder might insert a discontinuity in the middle of
1874                  * instruction packets, fixup prev_packet with flag
1875                  * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1876                  */
1877                 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1878                         prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1879                                               PERF_IP_FLAG_TRACE_BEGIN;
1880
1881                 /*
1882                  * If the previous packet is an exception return packet
1883                  * and the return address just follows SVC instuction,
1884                  * it needs to calibrate the previous packet sample flags
1885                  * as PERF_IP_FLAG_SYSCALLRET.
1886                  */
1887                 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1888                                            PERF_IP_FLAG_RETURN |
1889                                            PERF_IP_FLAG_INTERRUPT) &&
1890                     cs_etm__is_svc_instr(etmq, trace_chan_id,
1891                                          packet, packet->start_addr))
1892                         prev_packet->flags = PERF_IP_FLAG_BRANCH |
1893                                              PERF_IP_FLAG_RETURN |
1894                                              PERF_IP_FLAG_SYSCALLRET;
1895                 break;
1896         case CS_ETM_DISCONTINUITY:
1897                 /*
1898                  * The trace is discontinuous, if the previous packet is
1899                  * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1900                  * for previous packet.
1901                  */
1902                 if (prev_packet->sample_type == CS_ETM_RANGE)
1903                         prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1904                                               PERF_IP_FLAG_TRACE_END;
1905                 break;
1906         case CS_ETM_EXCEPTION:
1907                 ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1908                 if (ret)
1909                         return ret;
1910
1911                 /* The exception is for system call. */
1912                 if (cs_etm__is_syscall(etmq, tidq, magic))
1913                         packet->flags = PERF_IP_FLAG_BRANCH |
1914                                         PERF_IP_FLAG_CALL |
1915                                         PERF_IP_FLAG_SYSCALLRET;
1916                 /*
1917                  * The exceptions are triggered by external signals from bus,
1918                  * interrupt controller, debug module, PE reset or halt.
1919                  */
1920                 else if (cs_etm__is_async_exception(tidq, magic))
1921                         packet->flags = PERF_IP_FLAG_BRANCH |
1922                                         PERF_IP_FLAG_CALL |
1923                                         PERF_IP_FLAG_ASYNC |
1924                                         PERF_IP_FLAG_INTERRUPT;
1925                 /*
1926                  * Otherwise, exception is caused by trap, instruction &
1927                  * data fault, or alignment errors.
1928                  */
1929                 else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1930                         packet->flags = PERF_IP_FLAG_BRANCH |
1931                                         PERF_IP_FLAG_CALL |
1932                                         PERF_IP_FLAG_INTERRUPT;
1933
1934                 /*
1935                  * When the exception packet is inserted, since exception
1936                  * packet is not used standalone for generating samples
1937                  * and it's affiliation to the previous instruction range
1938                  * packet; so set previous range packet flags to tell perf
1939                  * it is an exception taken branch.
1940                  */
1941                 if (prev_packet->sample_type == CS_ETM_RANGE)
1942                         prev_packet->flags = packet->flags;
1943                 break;
1944         case CS_ETM_EXCEPTION_RET:
1945                 /*
1946                  * When the exception return packet is inserted, since
1947                  * exception return packet is not used standalone for
1948                  * generating samples and it's affiliation to the previous
1949                  * instruction range packet; so set previous range packet
1950                  * flags to tell perf it is an exception return branch.
1951                  *
1952                  * The exception return can be for either system call or
1953                  * other exception types; unfortunately the packet doesn't
1954                  * contain exception type related info so we cannot decide
1955                  * the exception type purely based on exception return packet.
1956                  * If we record the exception number from exception packet and
1957                  * reuse it for excpetion return packet, this is not reliable
1958                  * due the trace can be discontinuity or the interrupt can
1959                  * be nested, thus the recorded exception number cannot be
1960                  * used for exception return packet for these two cases.
1961                  *
1962                  * For exception return packet, we only need to distinguish the
1963                  * packet is for system call or for other types.  Thus the
1964                  * decision can be deferred when receive the next packet which
1965                  * contains the return address, based on the return address we
1966                  * can read out the previous instruction and check if it's a
1967                  * system call instruction and then calibrate the sample flag
1968                  * as needed.
1969                  */
1970                 if (prev_packet->sample_type == CS_ETM_RANGE)
1971                         prev_packet->flags = PERF_IP_FLAG_BRANCH |
1972                                              PERF_IP_FLAG_RETURN |
1973                                              PERF_IP_FLAG_INTERRUPT;
1974                 break;
1975         case CS_ETM_EMPTY:
1976         default:
1977                 break;
1978         }
1979
1980         return 0;
1981 }
1982
1983 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1984 {
1985         int ret = 0;
1986         size_t processed = 0;
1987
1988         /*
1989          * Packets are decoded and added to the decoder's packet queue
1990          * until the decoder packet processing callback has requested that
1991          * processing stops or there is nothing left in the buffer.  Normal
1992          * operations that stop processing are a timestamp packet or a full
1993          * decoder buffer queue.
1994          */
1995         ret = cs_etm_decoder__process_data_block(etmq->decoder,
1996                                                  etmq->offset,
1997                                                  &etmq->buf[etmq->buf_used],
1998                                                  etmq->buf_len,
1999                                                  &processed);
2000         if (ret)
2001                 goto out;
2002
2003         etmq->offset += processed;
2004         etmq->buf_used += processed;
2005         etmq->buf_len -= processed;
2006
2007 out:
2008         return ret;
2009 }
2010
2011 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2012                                          struct cs_etm_traceid_queue *tidq)
2013 {
2014         int ret;
2015         struct cs_etm_packet_queue *packet_queue;
2016
2017         packet_queue = &tidq->packet_queue;
2018
2019         /* Process each packet in this chunk */
2020         while (1) {
2021                 ret = cs_etm_decoder__get_packet(packet_queue,
2022                                                  tidq->packet);
2023                 if (ret <= 0)
2024                         /*
2025                          * Stop processing this chunk on
2026                          * end of data or error
2027                          */
2028                         break;
2029
2030                 /*
2031                  * Since packet addresses are swapped in packet
2032                  * handling within below switch() statements,
2033                  * thus setting sample flags must be called
2034                  * prior to switch() statement to use address
2035                  * information before packets swapping.
2036                  */
2037                 ret = cs_etm__set_sample_flags(etmq, tidq);
2038                 if (ret < 0)
2039                         break;
2040
2041                 switch (tidq->packet->sample_type) {
2042                 case CS_ETM_RANGE:
2043                         /*
2044                          * If the packet contains an instruction
2045                          * range, generate instruction sequence
2046                          * events.
2047                          */
2048                         cs_etm__sample(etmq, tidq);
2049                         break;
2050                 case CS_ETM_EXCEPTION:
2051                 case CS_ETM_EXCEPTION_RET:
2052                         /*
2053                          * If the exception packet is coming,
2054                          * make sure the previous instruction
2055                          * range packet to be handled properly.
2056                          */
2057                         cs_etm__exception(tidq);
2058                         break;
2059                 case CS_ETM_DISCONTINUITY:
2060                         /*
2061                          * Discontinuity in trace, flush
2062                          * previous branch stack
2063                          */
2064                         cs_etm__flush(etmq, tidq);
2065                         break;
2066                 case CS_ETM_EMPTY:
2067                         /*
2068                          * Should not receive empty packet,
2069                          * report error.
2070                          */
2071                         pr_err("CS ETM Trace: empty packet\n");
2072                         return -EINVAL;
2073                 default:
2074                         break;
2075                 }
2076         }
2077
2078         return ret;
2079 }
2080
2081 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2082 {
2083         int idx;
2084         struct int_node *inode;
2085         struct cs_etm_traceid_queue *tidq;
2086         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2087
2088         intlist__for_each_entry(inode, traceid_queues_list) {
2089                 idx = (int)(intptr_t)inode->priv;
2090                 tidq = etmq->traceid_queues[idx];
2091
2092                 /* Ignore return value */
2093                 cs_etm__process_traceid_queue(etmq, tidq);
2094
2095                 /*
2096                  * Generate an instruction sample with the remaining
2097                  * branchstack entries.
2098                  */
2099                 cs_etm__flush(etmq, tidq);
2100         }
2101 }
2102
2103 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2104 {
2105         int err = 0;
2106         struct cs_etm_traceid_queue *tidq;
2107
2108         tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2109         if (!tidq)
2110                 return -EINVAL;
2111
2112         /* Go through each buffer in the queue and decode them one by one */
2113         while (1) {
2114                 err = cs_etm__get_data_block(etmq);
2115                 if (err <= 0)
2116                         return err;
2117
2118                 /* Run trace decoder until buffer consumed or end of trace */
2119                 do {
2120                         err = cs_etm__decode_data_block(etmq);
2121                         if (err)
2122                                 return err;
2123
2124                         /*
2125                          * Process each packet in this chunk, nothing to do if
2126                          * an error occurs other than hoping the next one will
2127                          * be better.
2128                          */
2129                         err = cs_etm__process_traceid_queue(etmq, tidq);
2130
2131                 } while (etmq->buf_len);
2132
2133                 if (err == 0)
2134                         /* Flush any remaining branch stack entries */
2135                         err = cs_etm__end_block(etmq, tidq);
2136         }
2137
2138         return err;
2139 }
2140
2141 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2142                                            pid_t tid)
2143 {
2144         unsigned int i;
2145         struct auxtrace_queues *queues = &etm->queues;
2146
2147         for (i = 0; i < queues->nr_queues; i++) {
2148                 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2149                 struct cs_etm_queue *etmq = queue->priv;
2150                 struct cs_etm_traceid_queue *tidq;
2151
2152                 if (!etmq)
2153                         continue;
2154
2155                 tidq = cs_etm__etmq_get_traceid_queue(etmq,
2156                                                 CS_ETM_PER_THREAD_TRACEID);
2157
2158                 if (!tidq)
2159                         continue;
2160
2161                 if ((tid == -1) || (tidq->tid == tid)) {
2162                         cs_etm__set_pid_tid_cpu(etm, tidq);
2163                         cs_etm__run_decoder(etmq);
2164                 }
2165         }
2166
2167         return 0;
2168 }
2169
2170 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2171 {
2172         int ret = 0;
2173         unsigned int cs_queue_nr, queue_nr;
2174         u8 trace_chan_id;
2175         u64 timestamp;
2176         struct auxtrace_queue *queue;
2177         struct cs_etm_queue *etmq;
2178         struct cs_etm_traceid_queue *tidq;
2179
2180         while (1) {
2181                 if (!etm->heap.heap_cnt)
2182                         goto out;
2183
2184                 /* Take the entry at the top of the min heap */
2185                 cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2186                 queue_nr = TO_QUEUE_NR(cs_queue_nr);
2187                 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2188                 queue = &etm->queues.queue_array[queue_nr];
2189                 etmq = queue->priv;
2190
2191                 /*
2192                  * Remove the top entry from the heap since we are about
2193                  * to process it.
2194                  */
2195                 auxtrace_heap__pop(&etm->heap);
2196
2197                 tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2198                 if (!tidq) {
2199                         /*
2200                          * No traceID queue has been allocated for this traceID,
2201                          * which means something somewhere went very wrong.  No
2202                          * other choice than simply exit.
2203                          */
2204                         ret = -EINVAL;
2205                         goto out;
2206                 }
2207
2208                 /*
2209                  * Packets associated with this timestamp are already in
2210                  * the etmq's traceID queue, so process them.
2211                  */
2212                 ret = cs_etm__process_traceid_queue(etmq, tidq);
2213                 if (ret < 0)
2214                         goto out;
2215
2216                 /*
2217                  * Packets for this timestamp have been processed, time to
2218                  * move on to the next timestamp, fetching a new auxtrace_buffer
2219                  * if need be.
2220                  */
2221 refetch:
2222                 ret = cs_etm__get_data_block(etmq);
2223                 if (ret < 0)
2224                         goto out;
2225
2226                 /*
2227                  * No more auxtrace_buffers to process in this etmq, simply
2228                  * move on to another entry in the auxtrace_heap.
2229                  */
2230                 if (!ret)
2231                         continue;
2232
2233                 ret = cs_etm__decode_data_block(etmq);
2234                 if (ret)
2235                         goto out;
2236
2237                 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2238
2239                 if (!timestamp) {
2240                         /*
2241                          * Function cs_etm__decode_data_block() returns when
2242                          * there is no more traces to decode in the current
2243                          * auxtrace_buffer OR when a timestamp has been
2244                          * encountered on any of the traceID queues.  Since we
2245                          * did not get a timestamp, there is no more traces to
2246                          * process in this auxtrace_buffer.  As such empty and
2247                          * flush all traceID queues.
2248                          */
2249                         cs_etm__clear_all_traceid_queues(etmq);
2250
2251                         /* Fetch another auxtrace_buffer for this etmq */
2252                         goto refetch;
2253                 }
2254
2255                 /*
2256                  * Add to the min heap the timestamp for packets that have
2257                  * just been decoded.  They will be processed and synthesized
2258                  * during the next call to cs_etm__process_traceid_queue() for
2259                  * this queue/traceID.
2260                  */
2261                 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2262                 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2263         }
2264
2265 out:
2266         return ret;
2267 }
2268
2269 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2270                                         union perf_event *event)
2271 {
2272         struct thread *th;
2273
2274         if (etm->timeless_decoding)
2275                 return 0;
2276
2277         /*
2278          * Add the tid/pid to the log so that we can get a match when
2279          * we get a contextID from the decoder.
2280          */
2281         th = machine__findnew_thread(etm->machine,
2282                                      event->itrace_start.pid,
2283                                      event->itrace_start.tid);
2284         if (!th)
2285                 return -ENOMEM;
2286
2287         thread__put(th);
2288
2289         return 0;
2290 }
2291
2292 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2293                                            union perf_event *event)
2294 {
2295         struct thread *th;
2296         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2297
2298         /*
2299          * Context switch in per-thread mode are irrelevant since perf
2300          * will start/stop tracing as the process is scheduled.
2301          */
2302         if (etm->timeless_decoding)
2303                 return 0;
2304
2305         /*
2306          * SWITCH_IN events carry the next process to be switched out while
2307          * SWITCH_OUT events carry the process to be switched in.  As such
2308          * we don't care about IN events.
2309          */
2310         if (!out)
2311                 return 0;
2312
2313         /*
2314          * Add the tid/pid to the log so that we can get a match when
2315          * we get a contextID from the decoder.
2316          */
2317         th = machine__findnew_thread(etm->machine,
2318                                      event->context_switch.next_prev_pid,
2319                                      event->context_switch.next_prev_tid);
2320         if (!th)
2321                 return -ENOMEM;
2322
2323         thread__put(th);
2324
2325         return 0;
2326 }
2327
2328 static int cs_etm__process_event(struct perf_session *session,
2329                                  union perf_event *event,
2330                                  struct perf_sample *sample,
2331                                  struct perf_tool *tool)
2332 {
2333         int err = 0;
2334         u64 timestamp;
2335         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2336                                                    struct cs_etm_auxtrace,
2337                                                    auxtrace);
2338
2339         if (dump_trace)
2340                 return 0;
2341
2342         if (!tool->ordered_events) {
2343                 pr_err("CoreSight ETM Trace requires ordered events\n");
2344                 return -EINVAL;
2345         }
2346
2347         if (sample->time && (sample->time != (u64) -1))
2348                 timestamp = sample->time;
2349         else
2350                 timestamp = 0;
2351
2352         if (timestamp || etm->timeless_decoding) {
2353                 err = cs_etm__update_queues(etm);
2354                 if (err)
2355                         return err;
2356         }
2357
2358         if (etm->timeless_decoding &&
2359             event->header.type == PERF_RECORD_EXIT)
2360                 return cs_etm__process_timeless_queues(etm,
2361                                                        event->fork.tid);
2362
2363         if (event->header.type == PERF_RECORD_ITRACE_START)
2364                 return cs_etm__process_itrace_start(etm, event);
2365         else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2366                 return cs_etm__process_switch_cpu_wide(etm, event);
2367
2368         if (!etm->timeless_decoding &&
2369             event->header.type == PERF_RECORD_AUX)
2370                 return cs_etm__process_queues(etm);
2371
2372         return 0;
2373 }
2374
2375 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2376                                           union perf_event *event,
2377                                           struct perf_tool *tool __maybe_unused)
2378 {
2379         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2380                                                    struct cs_etm_auxtrace,
2381                                                    auxtrace);
2382         if (!etm->data_queued) {
2383                 struct auxtrace_buffer *buffer;
2384                 off_t  data_offset;
2385                 int fd = perf_data__fd(session->data);
2386                 bool is_pipe = perf_data__is_pipe(session->data);
2387                 int err;
2388
2389                 if (is_pipe)
2390                         data_offset = 0;
2391                 else {
2392                         data_offset = lseek(fd, 0, SEEK_CUR);
2393                         if (data_offset == -1)
2394                                 return -errno;
2395                 }
2396
2397                 err = auxtrace_queues__add_event(&etm->queues, session,
2398                                                  event, data_offset, &buffer);
2399                 if (err)
2400                         return err;
2401
2402                 if (dump_trace)
2403                         if (auxtrace_buffer__get_data(buffer, fd)) {
2404                                 cs_etm__dump_event(etm, buffer);
2405                                 auxtrace_buffer__put_data(buffer);
2406                         }
2407         }
2408
2409         return 0;
2410 }
2411
2412 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2413 {
2414         struct evsel *evsel;
2415         struct evlist *evlist = etm->session->evlist;
2416         bool timeless_decoding = true;
2417
2418         /*
2419          * Circle through the list of event and complain if we find one
2420          * with the time bit set.
2421          */
2422         evlist__for_each_entry(evlist, evsel) {
2423                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2424                         timeless_decoding = false;
2425         }
2426
2427         return timeless_decoding;
2428 }
2429
2430 static const char * const cs_etm_global_header_fmts[] = {
2431         [CS_HEADER_VERSION_0]   = "     Header version                 %llx\n",
2432         [CS_PMU_TYPE_CPUS]      = "     PMU type/num cpus              %llx\n",
2433         [CS_ETM_SNAPSHOT]       = "     Snapshot                       %llx\n",
2434 };
2435
2436 static const char * const cs_etm_priv_fmts[] = {
2437         [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
2438         [CS_ETM_CPU]            = "     CPU                            %lld\n",
2439         [CS_ETM_ETMCR]          = "     ETMCR                          %llx\n",
2440         [CS_ETM_ETMTRACEIDR]    = "     ETMTRACEIDR                    %llx\n",
2441         [CS_ETM_ETMCCER]        = "     ETMCCER                        %llx\n",
2442         [CS_ETM_ETMIDR]         = "     ETMIDR                         %llx\n",
2443 };
2444
2445 static const char * const cs_etmv4_priv_fmts[] = {
2446         [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
2447         [CS_ETM_CPU]            = "     CPU                            %lld\n",
2448         [CS_ETMV4_TRCCONFIGR]   = "     TRCCONFIGR                     %llx\n",
2449         [CS_ETMV4_TRCTRACEIDR]  = "     TRCTRACEIDR                    %llx\n",
2450         [CS_ETMV4_TRCIDR0]      = "     TRCIDR0                        %llx\n",
2451         [CS_ETMV4_TRCIDR1]      = "     TRCIDR1                        %llx\n",
2452         [CS_ETMV4_TRCIDR2]      = "     TRCIDR2                        %llx\n",
2453         [CS_ETMV4_TRCIDR8]      = "     TRCIDR8                        %llx\n",
2454         [CS_ETMV4_TRCAUTHSTATUS] = "    TRCAUTHSTATUS                  %llx\n",
2455 };
2456
2457 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2458 {
2459         int i, j, cpu = 0;
2460
2461         for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2462                 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2463
2464         for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
2465                 if (val[i] == __perf_cs_etmv3_magic)
2466                         for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
2467                                 fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2468                 else if (val[i] == __perf_cs_etmv4_magic)
2469                         for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
2470                                 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2471                 else
2472                         /* failure.. return */
2473                         return;
2474         }
2475 }
2476
2477 int cs_etm__process_auxtrace_info(union perf_event *event,
2478                                   struct perf_session *session)
2479 {
2480         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2481         struct cs_etm_auxtrace *etm = NULL;
2482         struct int_node *inode;
2483         unsigned int pmu_type;
2484         int event_header_size = sizeof(struct perf_event_header);
2485         int info_header_size;
2486         int total_size = auxtrace_info->header.size;
2487         int priv_size = 0;
2488         int num_cpu;
2489         int err = 0, idx = -1;
2490         int i, j, k;
2491         u64 *ptr, *hdr = NULL;
2492         u64 **metadata = NULL;
2493
2494         /*
2495          * sizeof(auxtrace_info_event::type) +
2496          * sizeof(auxtrace_info_event::reserved) == 8
2497          */
2498         info_header_size = 8;
2499
2500         if (total_size < (event_header_size + info_header_size))
2501                 return -EINVAL;
2502
2503         priv_size = total_size - event_header_size - info_header_size;
2504
2505         /* First the global part */
2506         ptr = (u64 *) auxtrace_info->priv;
2507
2508         /* Look for version '0' of the header */
2509         if (ptr[0] != 0)
2510                 return -EINVAL;
2511
2512         hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
2513         if (!hdr)
2514                 return -ENOMEM;
2515
2516         /* Extract header information - see cs-etm.h for format */
2517         for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2518                 hdr[i] = ptr[i];
2519         num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2520         pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2521                                     0xffffffff);
2522
2523         /*
2524          * Create an RB tree for traceID-metadata tuple.  Since the conversion
2525          * has to be made for each packet that gets decoded, optimizing access
2526          * in anything other than a sequential array is worth doing.
2527          */
2528         traceid_list = intlist__new(NULL);
2529         if (!traceid_list) {
2530                 err = -ENOMEM;
2531                 goto err_free_hdr;
2532         }
2533
2534         metadata = zalloc(sizeof(*metadata) * num_cpu);
2535         if (!metadata) {
2536                 err = -ENOMEM;
2537                 goto err_free_traceid_list;
2538         }
2539
2540         /*
2541          * The metadata is stored in the auxtrace_info section and encodes
2542          * the configuration of the ARM embedded trace macrocell which is
2543          * required by the trace decoder to properly decode the trace due
2544          * to its highly compressed nature.
2545          */
2546         for (j = 0; j < num_cpu; j++) {
2547                 if (ptr[i] == __perf_cs_etmv3_magic) {
2548                         metadata[j] = zalloc(sizeof(*metadata[j]) *
2549                                              CS_ETM_PRIV_MAX);
2550                         if (!metadata[j]) {
2551                                 err = -ENOMEM;
2552                                 goto err_free_metadata;
2553                         }
2554                         for (k = 0; k < CS_ETM_PRIV_MAX; k++)
2555                                 metadata[j][k] = ptr[i + k];
2556
2557                         /* The traceID is our handle */
2558                         idx = metadata[j][CS_ETM_ETMTRACEIDR];
2559                         i += CS_ETM_PRIV_MAX;
2560                 } else if (ptr[i] == __perf_cs_etmv4_magic) {
2561                         metadata[j] = zalloc(sizeof(*metadata[j]) *
2562                                              CS_ETMV4_PRIV_MAX);
2563                         if (!metadata[j]) {
2564                                 err = -ENOMEM;
2565                                 goto err_free_metadata;
2566                         }
2567                         for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
2568                                 metadata[j][k] = ptr[i + k];
2569
2570                         /* The traceID is our handle */
2571                         idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
2572                         i += CS_ETMV4_PRIV_MAX;
2573                 }
2574
2575                 /* Get an RB node for this CPU */
2576                 inode = intlist__findnew(traceid_list, idx);
2577
2578                 /* Something went wrong, no need to continue */
2579                 if (!inode) {
2580                         err = -ENOMEM;
2581                         goto err_free_metadata;
2582                 }
2583
2584                 /*
2585                  * The node for that CPU should not be taken.
2586                  * Back out if that's the case.
2587                  */
2588                 if (inode->priv) {
2589                         err = -EINVAL;
2590                         goto err_free_metadata;
2591                 }
2592                 /* All good, associate the traceID with the metadata pointer */
2593                 inode->priv = metadata[j];
2594         }
2595
2596         /*
2597          * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
2598          * CS_ETMV4_PRIV_MAX mark how many double words are in the
2599          * global metadata, and each cpu's metadata respectively.
2600          * The following tests if the correct number of double words was
2601          * present in the auxtrace info section.
2602          */
2603         if (i * 8 != priv_size) {
2604                 err = -EINVAL;
2605                 goto err_free_metadata;
2606         }
2607
2608         etm = zalloc(sizeof(*etm));
2609
2610         if (!etm) {
2611                 err = -ENOMEM;
2612                 goto err_free_metadata;
2613         }
2614
2615         err = auxtrace_queues__init(&etm->queues);
2616         if (err)
2617                 goto err_free_etm;
2618
2619         etm->session = session;
2620         etm->machine = &session->machines.host;
2621
2622         etm->num_cpu = num_cpu;
2623         etm->pmu_type = pmu_type;
2624         etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2625         etm->metadata = metadata;
2626         etm->auxtrace_type = auxtrace_info->type;
2627         etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2628
2629         etm->auxtrace.process_event = cs_etm__process_event;
2630         etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2631         etm->auxtrace.flush_events = cs_etm__flush_events;
2632         etm->auxtrace.free_events = cs_etm__free_events;
2633         etm->auxtrace.free = cs_etm__free;
2634         etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
2635         session->auxtrace = &etm->auxtrace;
2636
2637         etm->unknown_thread = thread__new(999999999, 999999999);
2638         if (!etm->unknown_thread) {
2639                 err = -ENOMEM;
2640                 goto err_free_queues;
2641         }
2642
2643         /*
2644          * Initialize list node so that at thread__zput() we can avoid
2645          * segmentation fault at list_del_init().
2646          */
2647         INIT_LIST_HEAD(&etm->unknown_thread->node);
2648
2649         err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2650         if (err)
2651                 goto err_delete_thread;
2652
2653         if (thread__init_maps(etm->unknown_thread, etm->machine)) {
2654                 err = -ENOMEM;
2655                 goto err_delete_thread;
2656         }
2657
2658         if (dump_trace) {
2659                 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2660                 return 0;
2661         }
2662
2663         if (session->itrace_synth_opts->set) {
2664                 etm->synth_opts = *session->itrace_synth_opts;
2665         } else {
2666                 itrace_synth_opts__set_default(&etm->synth_opts,
2667                                 session->itrace_synth_opts->default_no_sample);
2668                 etm->synth_opts.callchain = false;
2669         }
2670
2671         err = cs_etm__synth_events(etm, session);
2672         if (err)
2673                 goto err_delete_thread;
2674
2675         err = auxtrace_queues__process_index(&etm->queues, session);
2676         if (err)
2677                 goto err_delete_thread;
2678
2679         etm->data_queued = etm->queues.populated;
2680
2681         return 0;
2682
2683 err_delete_thread:
2684         thread__zput(etm->unknown_thread);
2685 err_free_queues:
2686         auxtrace_queues__free(&etm->queues);
2687         session->auxtrace = NULL;
2688 err_free_etm:
2689         zfree(&etm);
2690 err_free_metadata:
2691         /* No need to check @metadata[j], free(NULL) is supported */
2692         for (j = 0; j < num_cpu; j++)
2693                 zfree(&metadata[j]);
2694         zfree(&metadata);
2695 err_free_traceid_list:
2696         intlist__delete(traceid_list);
2697 err_free_hdr:
2698         zfree(&hdr);
2699
2700         return err;
2701 }